effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
listlengths
0
2
ideal_premises
listlengths
0
236
mutual_with
listlengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
listlengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Tactics.Effect.TacH
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else ()
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) let guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) =
true
null
false
if not b then fail "guard failed"
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.bool", "Prims.op_Negation", "FStar.Tactics.V1.Derived.fail", "Prims.unit", "FStar.Tactics.Types.proofstate", "Prims.l_True", "FStar.Tactics.Result.__result", "Prims.l_and", "Prims.b2t", "FStar.Tactics.Result.uu___is_Success", "Prims.eq2", "FStar.Tactics.Result.__proj__Success__item__ps", "FStar.Tactics.Result.uu___is_Failed" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val guard (b: bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r))
[]
FStar.Tactics.V1.Derived.guard
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: Prims.bool -> FStar.Tactics.Effect.TacH Prims.unit
{ "end_col": 11, "end_line": 409, "start_col": 4, "start_line": 407 }
FStar.Tactics.Effect.TAC
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m)
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) let fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) =
true
null
false
raise #a (TacticFailure m)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.TacticFailure", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Result.__result", "FStar.Tactics.Result.Failed" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
[]
FStar.Tactics.V1.Derived.fail
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.TAC a
{ "end_col": 30, "end_line": 52, "start_col": 4, "start_line": 52 }
FStar.Tactics.Effect.Tac
val norm_term (s: list norm_step) (t: term) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t
val norm_term (s: list norm_step) (t: term) : Tac term let norm_term (s: list norm_step) (t: term) : Tac term =
true
null
false
let e = try cur_env () with | _ -> top_env () in norm_term_env e s t
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "FStar.Pervasives.norm_step", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.norm_term_env", "FStar.Reflection.Types.env", "FStar.Tactics.V1.Derived.try_with", "Prims.unit", "FStar.Tactics.V1.Derived.cur_env", "Prims.exn", "FStar.Tactics.V1.Builtins.top_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val norm_term (s: list norm_step) (t: term) : Tac term
[]
FStar.Tactics.V1.Derived.norm_term
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.list FStar.Pervasives.norm_step -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.term
{ "end_col": 23, "end_line": 449, "start_col": 58, "start_line": 444 }
FStar.Tactics.Effect.Tac
val iseq (ts: list (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> ()
val iseq (ts: list (unit -> Tac unit)) : Tac unit let rec iseq (ts: list (unit -> Tac unit)) : Tac unit =
true
null
false
match ts with | t :: ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Derived.divide", "FStar.Tactics.V1.Derived.iseq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val iseq (ts: list (unit -> Tac unit)) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.iseq
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 17, "end_line": 313, "start_col": 4, "start_line": 311 }
FStar.Tactics.Effect.Tac
val trytac (t: (unit -> Tac 'a)) : Tac (option 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None
val trytac (t: (unit -> Tac 'a)) : Tac (option 'a) let trytac (t: (unit -> Tac 'a)) : Tac (option 'a) =
true
null
false
try Some (t ()) with | _ -> None
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.try_with", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some", "Prims.exn", "FStar.Pervasives.Native.None" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val trytac (t: (unit -> Tac 'a)) : Tac (option 'a)
[]
FStar.Tactics.V1.Derived.trytac
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option 'a)
{ "end_col": 15, "end_line": 419, "start_col": 4, "start_line": 417 }
FStar.Tactics.Effect.Tac
val first (ts: list (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
val first (ts: list (unit -> Tac 'a)) : Tac 'a let first (ts: list (unit -> Tac 'a)) : Tac 'a =
true
null
false
L.fold_right ( <|> ) ts (fun () -> fail "no tactics to try") ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "Prims.unit", "FStar.List.Tot.Base.fold_right", "FStar.Tactics.V1.Derived.op_Less_Bar_Greater", "FStar.Tactics.V1.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val first (ts: list (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V1.Derived.first
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 65, "end_line": 431, "start_col": 4, "start_line": 431 }
FStar.Tactics.Effect.Tac
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) let rec mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) =
true
null
false
match goals () with | [] -> [] | _ :: _ -> let h, t = divide 1 t (fun () -> mapAll t) in h :: t
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.Nil", "Prims.list", "FStar.Tactics.Types.goal", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Derived.divide", "FStar.Tactics.V1.Derived.mapAll", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a)
[ "recursion" ]
FStar.Tactics.V1.Derived.mapAll
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (Prims.list 'a)
{ "end_col": 66, "end_line": 333, "start_col": 4, "start_line": 331 }
FStar.Tactics.Effect.Tac
val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit let rec repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit =
true
null
false
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Pervasives.Native.option", "FStar.Tactics.V1.Derived.trytac", "FStar.Tactics.V1.Derived.seq", "FStar.Tactics.V1.Derived.discard", "FStar.Tactics.V1.Derived.repeatseq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.repeatseq
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 88, "end_line": 469, "start_col": 60, "start_line": 468 }
FStar.Tactics.Effect.Tac
val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t
val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) let repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) =
true
null
false
t () :: repeat t
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.Cons", "Prims.list", "FStar.Tactics.V1.Derived.repeat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[]
FStar.Tactics.V1.Derived.repeat1
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a)
{ "end_col": 20, "end_line": 439, "start_col": 4, "start_line": 439 }
FStar.Tactics.Effect.Tac
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 ()
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a let or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a =
true
null
false
try t1 () with | _ -> t2 ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.try_with", "Prims.exn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a
[]
FStar.Tactics.V1.Derived.or_else
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> t2: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac a
{ "end_col": 21, "end_line": 423, "start_col": 4, "start_line": 422 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs'
let join_all_smt_goals () =
true
null
false
let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in set_goals gs; set_smt_goals sgs'
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Tactics.V1.Builtins.set_smt_goals", "FStar.Tactics.V1.Builtins.set_goals", "FStar.Tactics.V1.Derived.goals", "FStar.Tactics.V1.Derived.repeat'", "FStar.Tactics.V1.Builtins.join", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.V1.Derived.smt_goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val join_all_smt_goals : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V1.Derived.join_all_smt_goals
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 20, "end_line": 462, "start_col": 27, "start_line": 455 }
FStar.Tactics.Effect.Tac
val pose_as (s: string) (t: term) : Tac binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s
val pose_as (s: string) (t: term) : Tac binder let pose_as (s: string) (t: term) : Tac binder =
true
null
false
let b = pose t in rename_to b s
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.string", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.rename_to", "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.pose" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pose_as (s: string) (t: term) : Tac binder
[]
FStar.Tactics.V1.Derived.pose_as
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.string -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.binder
{ "end_col": 17, "end_line": 524, "start_col": 46, "start_line": 522 }
FStar.Tactics.Effect.Tac
val admit_all: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit_all () : Tac unit = let _ = repeat tadmit in ()
val admit_all: Prims.unit -> Tac unit let admit_all () : Tac unit =
true
null
false
let _ = repeat tadmit in ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.V1.Derived.repeat", "FStar.Tactics.V1.Derived.tadmit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit_all: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.admit_all
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 6, "end_line": 478, "start_col": 29, "start_line": 476 }
FStar.Tactics.Effect.Tac
val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in ()
val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit let discard (tau: (unit -> Tac 'a)) : unit -> Tac unit =
true
null
false
fun () -> let _ = tau () in ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs'
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit
[]
FStar.Tactics.V1.Derived.discard
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 34, "end_line": 465, "start_col": 4, "start_line": 465 }
FStar.Tactics.Effect.Tac
val intros: Prims.unit -> Tac (list binder)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intros () : Tac (list binder) = repeat intro
val intros: Prims.unit -> Tac (list binder) let intros () : Tac (list binder) =
true
null
false
repeat intro
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.repeat", "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Builtins.intro", "Prims.list" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta]
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intros: Prims.unit -> Tac (list binder)
[]
FStar.Tactics.V1.Derived.intros
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Reflection.Types.binder)
{ "end_col": 48, "end_line": 497, "start_col": 36, "start_line": 497 }
FStar.Tactics.Effect.Tac
val binder_to_term (b: binder) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv
val binder_to_term (b: binder) : Tac term let binder_to_term (b: binder) : Tac term =
true
null
false
let bview = inspect_binder b in bv_to_term bview.binder_bv
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.bv_to_term", "FStar.Reflection.V1.Data.__proj__Mkbinder_view__item__binder_bv", "FStar.Reflection.Types.term", "FStar.Reflection.V1.Data.binder_view", "Prims.precedes", "FStar.Reflection.V1.Builtins.inspect_binder" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val binder_to_term (b: binder) : Tac term
[]
FStar.Tactics.V1.Derived.binder_to_term
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Reflection.Types.binder -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.term
{ "end_col": 28, "end_line": 541, "start_col": 44, "start_line": 539 }
FStar.Tactics.Effect.Tac
val bv_to_term (bv: bv) : Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
val bv_to_term (bv: bv) : Tac term let bv_to_term (bv: bv) : Tac term =
true
null
false
pack (Tv_Var bv)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.bv", "FStar.Tactics.V1.Builtins.pack", "FStar.Reflection.V1.Data.Tv_Var", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bv_to_term (bv: bv) : Tac term
[]
FStar.Tactics.V1.Derived.bv_to_term
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bv: FStar.Reflection.Types.bv -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.term
{ "end_col": 54, "end_line": 536, "start_col": 38, "start_line": 536 }
FStar.Tactics.Effect.Tac
val intros': Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intros' () : Tac unit = let _ = intros () in ()
val intros': Prims.unit -> Tac unit let intros' () : Tac unit =
true
null
false
let _ = intros () in ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.intros" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intros': Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.intros'
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 51, "end_line": 499, "start_col": 27, "start_line": 499 }
FStar.Tactics.Effect.Tac
val pose (t: term) : Tac binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro ()
val pose (t: term) : Tac binder let pose (t: term) : Tac binder =
true
null
false
apply (`__cut); flip (); exact t; intro ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.intro", "FStar.Reflection.Types.binder", "Prims.unit", "FStar.Tactics.V1.Derived.exact", "FStar.Tactics.V1.Derived.flip", "FStar.Tactics.V1.Derived.apply" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pose (t: term) : Tac binder
[]
FStar.Tactics.V1.Derived.pose
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.binder
{ "end_col": 12, "end_line": 516, "start_col": 4, "start_line": 513 }
FStar.Tactics.Effect.Tac
val assumption: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let assumption () : Tac unit = __assumption_aux (cur_binders ())
val assumption: Prims.unit -> Tac unit let assumption () : Tac unit =
true
null
false
__assumption_aux (cur_binders ())
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.__assumption_aux", "FStar.Reflection.Types.binders", "FStar.Tactics.V1.Derived.cur_binders" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val assumption: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.assumption
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 37, "end_line": 560, "start_col": 4, "start_line": 560 }
FStar.Tactics.Effect.Tac
val rewrite_equality (t: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ())
val rewrite_equality (t: term) : Tac unit let rewrite_equality (t: term) : Tac unit =
true
null
false
try_rewrite_equality t (cur_binders ())
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.try_rewrite_equality", "Prims.unit", "FStar.Reflection.Types.binders", "FStar.Tactics.V1.Derived.cur_binders" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ())
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_equality (t: term) : Tac unit
[]
FStar.Tactics.V1.Derived.rewrite_equality
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 43, "end_line": 610, "start_col": 4, "start_line": 610 }
FStar.Tactics.Effect.Tac
val rewrite_eqs_from_context: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ())
val rewrite_eqs_from_context: Prims.unit -> Tac unit let rewrite_eqs_from_context () : Tac unit =
true
null
false
rewrite_all_context_equalities (cur_binders ())
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.rewrite_all_context_equalities", "FStar.Reflection.Types.binders", "FStar.Tactics.V1.Derived.cur_binders" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_eqs_from_context: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.rewrite_eqs_from_context
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 51, "end_line": 607, "start_col": 4, "start_line": 607 }
Prims.Tot
val mk_sq_eq (t1 t2: term) : term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2])
val mk_sq_eq (t1 t2: term) : term let mk_sq_eq (t1 t2: term) : term =
false
null
false
let eq:term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2])
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.mk_squash", "FStar.Reflection.V1.Derived.mk_e_app", "Prims.Cons", "Prims.Nil", "FStar.Reflection.V1.Builtins.pack_ln", "FStar.Reflection.V1.Data.Tv_FVar", "FStar.Reflection.V1.Builtins.pack_fv", "FStar.Reflection.Const.eq2_qn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t]
false
true
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_sq_eq (t1 t2: term) : term
[]
FStar.Tactics.V1.Derived.mk_sq_eq
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> FStar.Reflection.Types.term
{ "end_col": 36, "end_line": 636, "start_col": 36, "start_line": 634 }
FStar.Tactics.Effect.Tac
val flip: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs)
val flip: Prims.unit -> Tac unit let flip () : Tac unit =
true
null
false
let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1 :: g2 :: gs -> set_goals (g2 :: g1 :: gs)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val flip: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.flip
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 42, "end_line": 131, "start_col": 24, "start_line": 127 }
FStar.Tactics.Effect.Tac
val rewrite' (b: binder) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) ()
val rewrite' (b: binder) : Tac unit let rewrite' (b: binder) : Tac unit =
true
null
false
((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.op_Less_Bar_Greater", "Prims.unit", "FStar.Tactics.V1.Builtins.rewrite", "FStar.Tactics.V1.Derived.apply_lemma", "FStar.Tactics.V1.Builtins.binder_retype", "FStar.Tactics.V1.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite' (b: binder) : Tac unit
[]
FStar.Tactics.V1.Derived.rewrite'
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Reflection.Types.binder -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 6, "end_line": 583, "start_col": 4, "start_line": 578 }
FStar.Tactics.Effect.Tac
val grewrite (t1 t2: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ())
val grewrite (t1 t2: term) : Tac unit let grewrite (t1 t2: term) : Tac unit =
true
null
false
let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> let is_uvar = match term_as_formula (cur_goal ()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ())
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.pointwise", "Prims.unit", "FStar.Tactics.V1.Derived.trefl", "Prims.bool", "FStar.Tactics.V1.Derived.try_with", "FStar.Tactics.V1.Derived.exact", "Prims.exn", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Reflection.V1.Builtins.inspect_ln", "Prims.nat", "FStar.Reflection.Types.ctx_uvar_and_subst", "FStar.Reflection.V1.Data.term_view", "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Formula.term_as_formula", "FStar.Tactics.V1.Derived.cur_goal", "FStar.Reflection.V1.Builtins.pack_ln", "FStar.Reflection.V1.Data.Tv_Var", "FStar.Reflection.V1.Derived.bv_of_binder", "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.tcut", "FStar.Tactics.V1.Derived.mk_sq_eq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2].
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val grewrite (t1 t2: term) : Tac unit
[]
FStar.Tactics.V1.Derived.grewrite
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Reflection.Types.term -> t2: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 44, "end_line": 655, "start_col": 40, "start_line": 640 }
FStar.Tactics.Effect.TAC
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m)
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) let fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) =
true
null
false
set_urgency 0; raise #a (TacticFailure m)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.TacticFailure", "Prims.unit", "FStar.Tactics.V1.Builtins.set_urgency", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Result.__result", "Prims.l_Forall", "FStar.Tactics.Result.Failed", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fail_silently (#a: Type) (m: string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
[]
FStar.Tactics.V1.Derived.fail_silently
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
m: Prims.string -> FStar.Tactics.Effect.TAC a
{ "end_col": 30, "end_line": 57, "start_col": 4, "start_line": 56 }
FStar.Tactics.Effect.Tac
val l_to_r (lems: list term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl
val l_to_r (lems: list term) : Tac unit let l_to_r (lems: list term) : Tac unit =
true
null
false
let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.pointwise", "Prims.unit", "FStar.Tactics.Util.fold_left", "FStar.Tactics.V1.Derived.or_else", "FStar.Tactics.V1.Derived.apply_lemma_rw", "FStar.Tactics.V1.Derived.trefl" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_to_r (lems: list term) : Tac unit
[]
FStar.Tactics.V1.Derived.l_to_r
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
lems: Prims.list FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 28, "end_line": 628, "start_col": 40, "start_line": 622 }
FStar.Tactics.Effect.Tac
val last (x: list 'a) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs
val last (x: list 'a) : Tac 'a let rec last (x: list 'a) : Tac 'a =
true
null
false
match x with | [] -> fail "last: empty list" | [x] -> x | _ :: xs -> last xs
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.V1.Derived.last" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val last (x: list 'a) : Tac 'a
[ "recursion" ]
FStar.Tactics.V1.Derived.last
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.list 'a -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 22, "end_line": 885, "start_col": 4, "start_line": 882 }
FStar.Tactics.Effect.Tac
val admit_dump_t: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit)
val admit_dump_t: Prims.unit -> Tac unit let admit_dump_t () : Tac unit =
true
null
false
dump "Admitting"; apply (`admit)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.apply", "FStar.Tactics.V1.Builtins.dump" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit_dump_t: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.admit_dump_t
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 16, "end_line": 762, "start_col": 2, "start_line": 761 }
Prims.Admit
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let admit_dump #a #x () = x ()
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () =
true
null
false
x ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a
[]
FStar.Tactics.V1.Derived.admit_dump
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> Prims.Admit a
{ "end_col": 30, "end_line": 765, "start_col": 26, "start_line": 765 }
FStar.Tactics.Effect.Tac
val magic_dump_t: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); ()
val magic_dump_t: Prims.unit -> Tac unit let magic_dump_t () : Tac unit =
true
null
false
dump "Admitting"; apply (`magic); exact (`()); ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.exact", "FStar.Tactics.V1.Derived.apply", "FStar.Tactics.V1.Builtins.dump" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val magic_dump_t: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.magic_dump_t
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 4, "end_line": 772, "start_col": 2, "start_line": 769 }
FStar.Tactics.Effect.Tac
val smt: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end
val smt: Prims.unit -> Tac unit let smt () : Tac unit =
true
null
false
match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g :: gs, gs' -> set_goals gs; set_smt_goals (g :: gs')
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.V1.Builtins.set_smt_goals", "Prims.Cons", "FStar.Tactics.V1.Builtins.set_goals", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.V1.Derived.smt_goals", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smt: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.smt
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 11, "end_line": 156, "start_col": 4, "start_line": 150 }
Prims.Tot
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let magic_dump #a #x () = x
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () =
false
null
false
x
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[ "total" ]
[ "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a
[]
FStar.Tactics.V1.Derived.magic_dump
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> a
{ "end_col": 27, "end_line": 775, "start_col": 26, "start_line": 775 }
FStar.Tactics.Effect.Tac
val change_sq (t1: term) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1])
val change_sq (t1: term) : Tac unit let change_sq (t1: term) : Tac unit =
true
null
false
change (mk_e_app (`squash) [t1])
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.change", "FStar.Reflection.V1.Derived.mk_e_app", "Prims.Cons", "Prims.Nil", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] )
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val change_sq (t1: term) : Tac unit
[]
FStar.Tactics.V1.Derived.change_sq
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 36, "end_line": 784, "start_col": 4, "start_line": 784 }
FStar.Tactics.Effect.Tac
val finish_by (t: (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
val finish_by (t: (unit -> Tac 'a)) : Tac 'a let finish_by (t: (unit -> Tac 'a)) : Tac 'a =
true
null
false
let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.or_else", "FStar.Tactics.V1.Derived.qed", "FStar.Tactics.V1.Derived.fail" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1])
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finish_by (t: (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V1.Derived.finish_by
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 5, "end_line": 789, "start_col": 45, "start_line": 786 }
FStar.Tactics.Effect.Tac
val focus_all: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals []
val focus_all: Prims.unit -> Tac unit let focus_all () : Tac unit =
true
null
false
set_goals (goals () @ smt_goals ()); set_smt_goals []
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Builtins.set_smt_goals", "Prims.Nil", "FStar.Tactics.Types.goal", "FStar.Tactics.V1.Builtins.set_goals", "Prims.list", "FStar.Tactics.V1.Derived.op_At", "FStar.Tactics.V1.Derived.smt_goals", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val focus_all: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.focus_all
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 20, "end_line": 840, "start_col": 4, "start_line": 839 }
FStar.Tactics.Effect.Tac
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit let specialize (#a: Type) (f: a) (l: list string) : unit -> Tac unit =
true
null
false
fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.list", "Prims.string", "Prims.unit", "FStar.Tactics.V1.Derived.solve_then", "FStar.Tactics.V1.Derived.exact", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val specialize: #a: Type -> f: a -> l: list string -> unit -> Tac unit
[]
FStar.Tactics.V1.Derived.specialize
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: a -> l: Prims.list Prims.string -> _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 96, "end_line": 823, "start_col": 4, "start_line": 823 }
FStar.Tactics.Effect.TacH
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) =
true
null
false
match goals_of (get ()) with | g :: _ -> g
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.Types.goals_of", "FStar.Tactics.Types.proofstate", "FStar.Tactics.Effect.get", "Prims.l_not", "Prims.eq2", "Prims.Nil", "FStar.Tactics.Result.__result", "Prims.l_Exists", "FStar.Tactics.Result.Success" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cur_goal_safe: Prims.unit -> TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0))
[]
FStar.Tactics.V1.Derived.cur_goal_safe
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.TacH FStar.Tactics.Types.goal
{ "end_col": 16, "end_line": 80, "start_col": 3, "start_line": 79 }
FStar.Tactics.Effect.Tac
val name_appears_in (nm: name) (t: term) : Tac bool
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect_ln t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | _ -> t in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e
val name_appears_in (nm: name) (t: term) : Tac bool let name_appears_in (nm: name) (t: term) : Tac bool =
true
null
false
let ff (t: term) : Tac term = match inspect_ln t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | _ -> t in try (ignore (V.visit_tm ff t); false) with | Appears -> true | e -> raise e
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.name", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.try_with", "Prims.bool", "Prims.unit", "FStar.Pervasives.ignore", "FStar.Tactics.Visit.visit_tm", "Prims.exn", "FStar.Tactics.Effect.raise", "FStar.Reflection.V1.Builtins.inspect_ln", "FStar.Reflection.Types.fv", "Prims.op_Equality", "FStar.Reflection.V1.Builtins.inspect_fv", "FStar.Tactics.V1.Derived.Appears", "FStar.Reflection.V1.Data.term_view" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_binder (i:int) : Tac binder = let bs = cur_binders () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val name_appears_in (nm: name) (t: term) : Tac bool
[]
FStar.Tactics.V1.Derived.name_appears_in
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
nm: FStar.Reflection.Types.name -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.bool
{ "end_col": 16, "end_line": 929, "start_col": 51, "start_line": 918 }
FStar.Tactics.Effect.Tac
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b let solve_then #a #b (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b =
true
null
false
dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.trefl", "FStar.Tactics.V1.Derived.focus", "FStar.Tactics.V1.Derived.finish_by", "FStar.Tactics.V1.Builtins.dup" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val solve_then (#a #b: _) (t1: (unit -> Tac a)) (t2: (a -> Tac b)) : Tac b
[]
FStar.Tactics.V1.Derived.solve_then
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> t2: (_: a -> FStar.Tactics.Effect.Tac b) -> FStar.Tactics.Effect.Tac b
{ "end_col": 5, "end_line": 796, "start_col": 4, "start_line": 792 }
FStar.Tactics.Effect.Tac
val dismiss: Prims.unit -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs
val dismiss: Prims.unit -> Tac unit let dismiss () : Tac unit =
true
null
false
match goals () with | [] -> fail "dismiss: no more goals" | _ :: gs -> set_goals gs
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_goals", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dismiss: Prims.unit -> Tac unit
[]
FStar.Tactics.V1.Derived.dismiss
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 27, "end_line": 124, "start_col": 4, "start_line": 122 }
FStar.Tactics.Effect.Tac
val iterAll (t: (unit -> Tac unit)) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
val iterAll (t: (unit -> Tac unit)) : Tac unit let rec iterAll (t: (unit -> Tac unit)) : Tac unit =
true
null
false
match goals () with | [] -> () | _ :: _ -> let _ = divide 1 t (fun () -> iterAll t) in ()
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Derived.divide", "FStar.Tactics.V1.Derived.iterAll", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit =
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val iterAll (t: (unit -> Tac unit)) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.iterAll
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 60, "end_line": 339, "start_col": 4, "start_line": 337 }
FStar.Tactics.Effect.Tac
val _cur_goal: Prims.unit -> Tac goal
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g
val _cur_goal: Prims.unit -> Tac goal let _cur_goal () : Tac goal =
true
null
false
match goals () with | [] -> fail "no more goals" | g :: _ -> g
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val _cur_goal: Prims.unit -> Tac goal
[]
FStar.Tactics.V1.Derived._cur_goal
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.Types.goal
{ "end_col": 15, "end_line": 63, "start_col": 4, "start_line": 61 }
FStar.Tactics.Effect.Tac
val focus (t: (unit -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x
val focus (t: (unit -> Tac 'a)) : Tac 'a let focus (t: (unit -> Tac 'a)) : Tac 'a =
true
null
false
match goals () with | [] -> fail "focus: no goals" | g :: gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.fail", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_smt_goals", "FStar.Tactics.V1.Derived.op_At", "FStar.Tactics.V1.Derived.smt_goals", "FStar.Tactics.V1.Builtins.set_goals", "FStar.Tactics.V1.Derived.goals", "Prims.Nil", "Prims.Cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val focus (t: (unit -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V1.Derived.focus
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 9, "end_line": 325, "start_col": 4, "start_line": 318 }
FStar.Tactics.Effect.Tac
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) let divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) =
true
null
false
if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.int", "Prims.unit", "Prims.list", "FStar.Tactics.Types.goal", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Builtins.set_smt_goals", "FStar.Tactics.V1.Derived.op_At", "FStar.Tactics.V1.Builtins.set_goals", "FStar.Tactics.V1.Derived.smt_goals", "FStar.Tactics.V1.Derived.goals", "Prims.Nil", "FStar.List.Tot.Base.splitAt", "Prims.op_LessThan", "FStar.Tactics.V1.Derived.fail", "Prims.bool" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b)
[]
FStar.Tactics.V1.Derived.divide
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.int -> l: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> r: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'b) -> FStar.Tactics.Effect.Tac ('a * 'b)
{ "end_col": 10, "end_line": 308, "start_col": 4, "start_line": 294 }
FStar.Pervasives.Lemma
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a))
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a)
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a)) let __eq_sym #t (a: t) (b: t) : Lemma ((a == b) == (b == a)) =
false
null
true
FStar.PropositionalExtensionality.apply (a == b) (b == a)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[ "lemma" ]
[ "FStar.PropositionalExtensionality.apply", "Prims.eq2", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.logical", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __eq_sym (#t: _) (a b: t) : Lemma ((a == b) == (b == a))
[]
FStar.Tactics.V1.Derived.__eq_sym
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: t -> b: t -> FStar.Pervasives.Lemma (ensures a == b == (b == a))
{ "end_col": 55, "end_line": 574, "start_col": 2, "start_line": 574 }
FStar.Tactics.Effect.Tac
val __assumption_aux (bs: binders) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs
val __assumption_aux (bs: binders) : Tac unit let rec __assumption_aux (bs: binders) : Tac unit =
true
null
false
match bs with | [] -> fail "no assumption matches goal" | b :: bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.binders", "FStar.Tactics.V1.Derived.fail", "Prims.unit", "FStar.Reflection.Types.binder", "Prims.list", "FStar.Tactics.V1.Derived.try_with", "FStar.Tactics.V1.Derived.exact", "Prims.exn", "FStar.Tactics.V1.Derived.apply", "FStar.Tactics.V1.Derived.__assumption_aux", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.binder_to_term" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __assumption_aux (bs: binders) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.__assumption_aux
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: FStar.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 27, "end_line": 557, "start_col": 4, "start_line": 549 }
FStar.Tactics.Effect.Tac
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a let try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a =
true
null
false
match catch f with | Inl e -> h e | Inr x -> x
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.exn", "FStar.Pervasives.either", "FStar.Tactics.V1.Builtins.catch" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a
[]
FStar.Tactics.V1.Derived.try_with
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> h: (_: Prims.exn -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a
{ "end_col": 16, "end_line": 414, "start_col": 4, "start_line": 412 }
FStar.Tactics.Effect.Tac
val rewrite_all_context_equalities (bs: binders) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end
val rewrite_all_context_equalities (bs: binders) : Tac unit let rec rewrite_all_context_equalities (bs: binders) : Tac unit =
true
null
false
match bs with | [] -> () | x_t :: bs -> (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.binders", "Prims.unit", "FStar.Reflection.Types.binder", "Prims.list", "FStar.Tactics.V1.Derived.rewrite_all_context_equalities", "FStar.Tactics.V1.Derived.try_with", "FStar.Tactics.V1.Builtins.rewrite", "Prims.exn" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rewrite_all_context_equalities (bs: binders) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.rewrite_all_context_equalities
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bs: FStar.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 7, "end_line": 604, "start_col": 4, "start_line": 599 }
FStar.Tactics.Effect.Tac
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) let rec repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a) =
true
null
false
match catch t with | Inl _ -> [] | Inr x -> x :: repeat t
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "Prims.exn", "Prims.Nil", "Prims.list", "Prims.Cons", "FStar.Tactics.V1.Derived.repeat", "FStar.Pervasives.either", "FStar.Tactics.V1.Builtins.catch" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repeat (#a: Type) (t: (unit -> Tac a)) : Tac (list a)
[ "recursion" ]
FStar.Tactics.V1.Derived.repeat
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a)
{ "end_col": 28, "end_line": 436, "start_col": 4, "start_line": 434 }
FStar.Tactics.Effect.Tac
val try_rewrite_equality (x: term) (bs: binders) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end
val try_rewrite_equality (x: term) (bs: binders) : Tac unit let rec try_rewrite_equality (x: term) (bs: binders) : Tac unit =
true
null
false
match bs with | [] -> () | x_t :: bs -> match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.Types.binders", "Prims.unit", "FStar.Reflection.Types.binder", "Prims.list", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Reflection.V1.Builtins.term_eq", "FStar.Tactics.V1.Builtins.rewrite", "Prims.bool", "FStar.Tactics.V1.Derived.try_rewrite_equality", "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Formula.term_as_formula", "FStar.Reflection.V1.Derived.type_of_binder" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) ()
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val try_rewrite_equality (x: term) (bs: binders) : Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.try_rewrite_equality
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Reflection.Types.term -> bs: FStar.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 11, "end_line": 596, "start_col": 4, "start_line": 586 }
Prims.Tot
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) let rec extract_nth (n: nat) (l: list 'a) : option ('a * list 'a) =
false
null
false
match n, l with | _, [] -> None | 0, hd :: tl -> Some (hd, tl) | _, hd :: tl -> match extract_nth (n - 1) tl with | Some (hd', tl') -> Some (hd', hd :: tl') | None -> None
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[ "total" ]
[ "Prims.nat", "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "FStar.Tactics.V1.Derived.extract_nth", "Prims.op_Subtraction", "Prims.Cons", "FStar.Pervasives.Native.option" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val extract_nth (n: nat) (l: list 'a) : option ('a * list 'a)
[ "recursion" ]
FStar.Tactics.V1.Derived.extract_nth
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.nat -> l: Prims.list 'a -> FStar.Pervasives.Native.option ('a * Prims.list 'a)
{ "end_col": 5, "end_line": 851, "start_col": 2, "start_line": 844 }
FStar.Tactics.Effect.Tac
val apply_squash_or_lem : d:nat -> term -> Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end
val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t =
true
null
false
try apply t with | _ -> try (apply (`FStar.Squash.return_squash); apply t) with | _ -> try apply_lemma t with | _ -> if d <= 0 then fail "mapply: out of fuel" else let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> let post = `((`#post) ()) in let post = norm_term [] post in (match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d - 1) t | _ -> fail "mapply: can't apply (1)") | C_Total rt -> (match unsquash_term rt with | Some rt -> let rt = norm_term [] rt in (match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d - 1) t | _ -> fail "mapply: can't apply (1)") | None -> let rt = norm_term [] rt in match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d - 1) t | _ -> apply (`FStar.Squash.return_squash); apply t) | _ -> fail "mapply: can't apply (2)"
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.nat", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Derived.try_with", "Prims.unit", "FStar.Tactics.V1.Derived.apply", "Prims.exn", "FStar.Tactics.V1.Derived.apply_lemma", "Prims.op_LessThanOrEqual", "FStar.Tactics.V1.Derived.fail", "Prims.bool", "Prims.list", "FStar.Reflection.Types.typ", "FStar.Reflection.Types.comp", "FStar.Reflection.V1.Builtins.inspect_comp", "FStar.Tactics.V1.Derived.apply_squash_or_lem", "Prims.op_Subtraction", "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Formula.term_as_formula'", "FStar.Tactics.V1.Derived.norm_term", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Reflection.V1.Derived.unsquash_term", "FStar.Reflection.V1.Data.comp_view", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.SyntaxHelpers.collect_arr", "FStar.Tactics.V1.Builtins.tc", "FStar.Reflection.Types.env", "FStar.Tactics.V1.Derived.cur_env" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t =
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val apply_squash_or_lem : d:nat -> term -> Tac unit
[ "recursion" ]
FStar.Tactics.V1.Derived.apply_squash_or_lem
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
d: Prims.nat -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 7, "end_line": 752, "start_col": 4, "start_line": 695 }
FStar.Tactics.Effect.Tac
val nth_binder (i: int) : Tac binder
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nth_binder (i:int) : Tac binder = let bs = cur_binders () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b
val nth_binder (i: int) : Tac binder let nth_binder (i: int) : Tac binder =
true
null
false
let bs = cur_binders () in let k:int = if i >= 0 then i else List.Tot.Base.length bs + i in let k:nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.int", "FStar.List.Tot.Base.nth", "FStar.Reflection.Types.binder", "FStar.Tactics.V1.Derived.fail", "Prims.nat", "Prims.op_LessThan", "Prims.bool", "Prims.op_GreaterThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "FStar.Reflection.Types.binders", "FStar.Tactics.V1.Derived.cur_binders" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nth_binder (i: int) : Tac binder
[]
FStar.Tactics.V1.Derived.nth_binder
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
i: Prims.int -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.binder
{ "end_col": 15, "end_line": 912, "start_col": 37, "start_line": 906 }
FStar.Tactics.Effect.Tac
val bump_nth (n: pos) : Tac unit
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
val bump_nth (n: pos) : Tac unit let bump_nth (n: pos) : Tac unit =
true
null
false
match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.pos", "FStar.Tactics.V1.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_goals", "Prims.Cons", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V1.Derived.extract_nth", "Prims.op_Subtraction", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit =
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bump_nth (n: pos) : Tac unit
[]
FStar.Tactics.V1.Derived.bump_nth
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
n: Prims.pos -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 37, "end_line": 857, "start_col": 2, "start_line": 855 }
FStar.Tactics.Effect.Tac
val mk_abs (args: list binder) (t: term) : Tac term (decreases args)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mk_abs (args : list binder) (t : term) : Tac term (decreases args) = match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t')
val mk_abs (args: list binder) (t: term) : Tac term (decreases args) let rec mk_abs (args: list binder) (t: term) : Tac term (decreases args) =
true
null
false
match args with | [] -> t | a :: args' -> let t' = mk_abs args' t in pack (Tv_Abs a t')
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[ "" ]
[ "Prims.list", "FStar.Reflection.Types.binder", "FStar.Reflection.Types.term", "FStar.Tactics.V1.Builtins.pack", "FStar.Reflection.V1.Data.Tv_Abs", "FStar.Tactics.V1.Derived.mk_abs" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral private let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match" private let rec last (x : list 'a) : Tac 'a = match x with | [] -> fail "last: empty list" | [x] -> x | _::xs -> last xs (** When the goal is [match e with | p1 -> e1 ... | pn -> en], destruct it into [n] goals for each possible case, including an hypothesis for [e] matching the corresponding pattern. *) let branch_on_match () : Tac unit = focus (fun () -> let x = get_match_body () in let _ = t_destruct x in iterAll (fun () -> let bs = repeat intro in let b = last bs in (* this one is the equality *) grewrite_eq b; norm [iota]) ) (** When the argument [i] is non-negative, [nth_binder] grabs the nth binder in the current goal. When it is negative, it grabs the (-i-1)th binder counting from the end of the goal. That is, [nth_binder (-1)] will return the last binder, [nth_binder (-2)] the second to last, and so on. *) let nth_binder (i:int) : Tac binder = let bs = cur_binders () in let k : int = if i >= 0 then i else List.Tot.Base.length bs + i in let k : nat = if k < 0 then fail "not enough binders" else k in match List.Tot.Base.nth bs k with | None -> fail "not enough binders" | Some b -> b exception Appears (** Decides whether a top-level name [nm] syntactically appears in the term [t]. *) let name_appears_in (nm:name) (t:term) : Tac bool = let ff (t : term) : Tac term = match inspect_ln t with | Tv_FVar fv -> if inspect_fv fv = nm then raise Appears; t | _ -> t in try ignore (V.visit_tm ff t); false with | Appears -> true | e -> raise e (** [mk_abs [x1; ...; xn] t] returns the term [fun x1 ... xn -> t] *)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_abs (args: list binder) (t: term) : Tac term (decreases args)
[ "recursion" ]
FStar.Tactics.V1.Derived.mk_abs
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
args: Prims.list FStar.Reflection.Types.binder -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.term
{ "end_col": 22, "end_line": 937, "start_col": 2, "start_line": 933 }
FStar.Tactics.Effect.Tac
val get_match_body: Prims.unit -> Tac term
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_match_body () : Tac term = match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
val get_match_body: Prims.unit -> Tac term let get_match_body () : Tac term =
true
null
false
match unsquash_term (cur_goal ()) with | None -> fail "" | Some t -> match inspect_unascribe t with | Tv_Match sc _ _ -> sc | _ -> fail "Goal is not a match"
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.unit", "FStar.Tactics.V1.Derived.fail", "FStar.Reflection.Types.term", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.match_returns_ascription", "Prims.list", "FStar.Reflection.V1.Data.branch", "FStar.Reflection.V1.Data.term_view", "Prims.b2t", "FStar.Reflection.V1.Data.notAscription", "FStar.Tactics.V1.SyntaxHelpers.inspect_unascribe", "FStar.Reflection.V1.Derived.unsquash_term", "FStar.Tactics.V1.Derived.cur_goal", "FStar.Reflection.Types.typ" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t) let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_match_body: Prims.unit -> Tac term
[]
FStar.Tactics.V1.Derived.get_match_body
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.Types.term
{ "end_col": 46, "end_line": 879, "start_col": 2, "start_line": 875 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t)
let tlabel (l: string) =
true
null
false
match goals () with | [] -> fail "tlabel: no goals" | h :: t -> set_goals (set_label l h :: t)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V1.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.Types.set_label", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta])
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tlabel : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V1.Derived.tlabel
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 38, "end_line": 829, "start_col": 4, "start_line": 826 }
FStar.Tactics.Effect.Tac
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t)
let tlabel' (l: string) =
true
null
false
match goals () with | [] -> fail "tlabel': no goals" | h :: t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t)
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "Prims.string", "FStar.Tactics.V1.Derived.fail", "Prims.unit", "FStar.Tactics.Types.goal", "Prims.list", "FStar.Tactics.V1.Builtins.set_goals", "Prims.Cons", "FStar.Tactics.Types.set_label", "Prims.op_Hat", "FStar.Tactics.Types.get_label", "FStar.Tactics.V1.Derived.goals" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tlabel' : l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
[]
FStar.Tactics.V1.Derived.tlabel'
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit
{ "end_col": 26, "end_line": 836, "start_col": 4, "start_line": 832 }
FStar.Tactics.Effect.Tac
val destruct_list (t: term) : Tac (list term)
[ { "abbrev": true, "full_module": "FStar.Tactics.Visit", "short_module": "V" }, { "abbrev": true, "full_module": "FStar.List.Tot.Base", "short_module": "L" }, { "abbrev": false, "full_module": "FStar.VConfig", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.SyntaxHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Result", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec destruct_list (t : term) : Tac (list term) = let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] | Tv_FVar fv, [(_, Q_Implicit); (a1, Q_Explicit); (a2, Q_Explicit)] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
val destruct_list (t: term) : Tac (list term) let rec destruct_list (t: term) : Tac (list term) =
true
null
false
let head, args = collect_app t in match inspect_ln head, args with | Tv_FVar fv, [a1, Q_Explicit ; a2, Q_Explicit] | Tv_FVar fv, [_, Q_Implicit ; a1, Q_Explicit ; a2, Q_Explicit] -> if inspect_fv fv = cons_qn then a1 :: destruct_list a2 else raise NotAListLiteral | Tv_FVar fv, _ -> if inspect_fv fv = nil_qn then [] else raise NotAListLiteral | _ -> raise NotAListLiteral
{ "checked_file": "FStar.Tactics.V1.Derived.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.VConfig.fsti.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V1.SyntaxHelpers.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.Types.fsti.checked", "FStar.Tactics.Result.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V1.Formula.fst.checked", "FStar.Reflection.V1.fst.checked", "FStar.Range.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V1.Derived.fst" }
[]
[ "FStar.Reflection.Types.term", "Prims.list", "FStar.Reflection.V1.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V1.Data.term_view", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V1.Data.aqualv", "FStar.Reflection.V1.Builtins.inspect_ln", "FStar.Reflection.Types.fv", "Prims.op_Equality", "Prims.string", "FStar.Reflection.V1.Builtins.inspect_fv", "FStar.Reflection.Const.cons_qn", "Prims.Cons", "FStar.Tactics.V1.Derived.destruct_list", "Prims.bool", "FStar.Tactics.Effect.raise", "FStar.Tactics.Common.NotAListLiteral", "FStar.Reflection.Const.nil_qn", "Prims.Nil", "FStar.Tactics.V1.SyntaxHelpers.collect_app" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V1.Derived open FStar.Reflection.V1 open FStar.Reflection.V1.Formula open FStar.Tactics.Types open FStar.Tactics.Effect open FStar.Tactics.Result open FStar.Tactics.Util open FStar.Tactics.V1.Builtins open FStar.Tactics.V1.SyntaxHelpers open FStar.VConfig module L = FStar.List.Tot.Base module V = FStar.Tactics.Visit private let (@) = L.op_At let name_of_bv (bv : bv) : Tac string = unseal ((inspect_bv bv).bv_ppname) let bv_to_string (bv : bv) : Tac string = (* Could also print type...? *) name_of_bv bv let name_of_binder (b : binder) : Tac string = name_of_bv (bv_of_binder b) let binder_to_string (b : binder) : Tac string = bv_to_string (bv_of_binder b) //TODO: print aqual, attributes exception Goal_not_trivial let goals () : Tac (list goal) = goals_of (get ()) let smt_goals () : Tac (list goal) = smt_goals_of (get ()) let fail (#a:Type) (m:string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) = raise #a (TacticFailure m) let fail_silently (#a:Type) (m:string) : TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) = set_urgency 0; raise #a (TacticFailure m) (** Return the current *goal*, not its type. (Ignores SMT goals) *) let _cur_goal () : Tac goal = match goals () with | [] -> fail "no more goals" | g::_ -> g (** [cur_env] returns the current goal's environment *) let cur_env () : Tac env = goal_env (_cur_goal ()) (** [cur_goal] returns the current goal's type *) let cur_goal () : Tac typ = goal_type (_cur_goal ()) (** [cur_witness] returns the current goal's witness *) let cur_witness () : Tac term = goal_witness (_cur_goal ()) (** [cur_goal_safe] will always return the current goal, without failing. It must be statically verified that there indeed is a goal in order to call it. *) let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == []))) (ensures (fun ps0 r -> exists g. r == Success g ps0)) = match goals_of (get ()) with | g :: _ -> g (** [cur_binders] returns the list of binders in the current goal. *) let cur_binders () : Tac binders = binders_of_env (cur_env ()) (** Set the guard policy only locally, without affecting calling code *) let with_policy pol (f : unit -> Tac 'a) : Tac 'a = let old_pol = get_guard_policy () in set_guard_policy pol; let r = f () in set_guard_policy old_pol; r (** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly [t] in [Gamma]. *) let exact (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true false t) (** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more flexible variant of [exact]. *) let exact_with_ref (t : term) : Tac unit = with_policy SMT (fun () -> t_exact true true t) let trivial () : Tac unit = norm [iota; zeta; reify_; delta; primops; simplify; unmeta]; let g = cur_goal () in match term_as_formula g with | True_ -> exact (`()) | _ -> raise Goal_not_trivial (* Another hook to just run a tactic without goals, just by reusing `with_tactic` *) let run_tactic (t:unit -> Tac unit) : Pure unit (requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t))) (ensures (fun _ -> True)) = () (** Ignore the current goal. If left unproven, this will fail after the tactic finishes. *) let dismiss () : Tac unit = match goals () with | [] -> fail "dismiss: no more goals" | _::gs -> set_goals gs (** Flip the order of the first two goals. *) let flip () : Tac unit = let gs = goals () in match goals () with | [] | [_] -> fail "flip: less than two goals" | g1::g2::gs -> set_goals (g2::g1::gs) (** Succeed if there are no more goals left, and fail otherwise. *) let qed () : Tac unit = match goals () with | [] -> () | _ -> fail "qed: not done!" (** [debug str] is similar to [print str], but will only print the message if the [--debug] option was given for the current module AND [--debug_level Tac] is on. *) let debug (m:string) : Tac unit = if debugging () then print m (** [smt] will mark the current goal for being solved through the SMT. This does not immediately run the SMT: it just dumps the goal in the SMT bin. Note, if you dump a proof-relevant goal there, the engine will later raise an error. *) let smt () : Tac unit = match goals (), smt_goals () with | [], _ -> fail "smt: no active goals" | g::gs, gs' -> begin set_goals gs; set_smt_goals (g :: gs') end let idtac () : Tac unit = () (** Push the current goal to the back. *) let later () : Tac unit = match goals () with | g::gs -> set_goals (gs @ [g]) | _ -> fail "later: no goals" (** [apply f] will attempt to produce a solution to the goal by an application of [f] to any amount of arguments (which need to be solved as further goals). The amount of arguments introduced is the least such that [f a_i] unifies with the goal's type. *) let apply (t : term) : Tac unit = t_apply true false false t let apply_noinst (t : term) : Tac unit = t_apply true true false t (** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a Lemma ensuring [phi]. The arguments to [l] and its requires clause are introduced as new goals. As a small optimization, [unit] arguments are discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *) let apply_lemma (t : term) : Tac unit = t_apply_lemma false false t (** See docs for [t_trefl] *) let trefl () : Tac unit = t_trefl false (** See docs for [t_trefl] *) let trefl_guard () : Tac unit = t_trefl true (** See docs for [t_commute_applied_match] *) let commute_applied_match () : Tac unit = t_commute_applied_match () (** Similar to [apply_lemma], but will not instantiate uvars in the goal while applying. *) let apply_lemma_noinst (t : term) : Tac unit = t_apply_lemma true false t let apply_lemma_rw (t : term) : Tac unit = t_apply_lemma false true t (** [apply_raw f] is like [apply], but will ask for all arguments regardless of whether they appear free in further goals. See the explanation in [t_apply]. *) let apply_raw (t : term) : Tac unit = t_apply false false false t (** Like [exact], but allows for the term [e] to have a type [t] only under some guard [g], adding the guard as a goal. *) let exact_guard (t : term) : Tac unit = with_policy Goal (fun () -> t_exact true false t) (** (TODO: explain better) When running [pointwise tau] For every subterm [t'] of the goal's type [t], the engine will build a goal [Gamma |= t' == ?u] and run [tau] on it. When the tactic proves the goal, the engine will rewrite [t'] for [?u] in the original goal type. This is done for every subterm, bottom-up. This allows to recurse over an unknown goal type. By inspecting the goal, the [tau] can then decide what to do (to not do anything, use [trefl]). *) let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit = let ctrl (t:term) : Tac (bool & ctrl_flag) = true, Continue in let rw () : Tac unit = tau () in ctrl_rewrite d ctrl rw (** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t] of the goal on which [fst (ctrl t)] returns true. On each such sub-term, [rw] is presented with an equality of goal of the form [Gamma |= t == ?u]. When [rw] proves the goal, the engine will rewrite [t] for [?u] in the original goal type. The goal formula is traversed top-down and the traversal can be controlled by [snd (ctrl t)]: When [snd (ctrl t) = 0], the traversal continues down through the position in the goal term. When [snd (ctrl t) = 1], the traversal continues to the next sub-tree of the goal. When [snd (ctrl t) = 2], no more rewrites are performed in the goal. *) let topdown_rewrite (ctrl : term -> Tac (bool * int)) (rw:unit -> Tac unit) : Tac unit = let ctrl' (t:term) : Tac (bool & ctrl_flag) = let b, i = ctrl t in let f = match i with | 0 -> Continue | 1 -> Skip | 2 -> Abort | _ -> fail "topdown_rewrite: bad value from ctrl" in b, f in ctrl_rewrite TopDown ctrl' rw let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau let cur_module () : Tac name = moduleof (top_env ()) let open_modules () : Tac (list name) = env_open_modules (top_env ()) let fresh_uvar (o : option typ) : Tac term = let e = cur_env () in uvar_env e o let unify (t1 t2 : term) : Tac bool = let e = cur_env () in unify_env e t1 t2 let unify_guard (t1 t2 : term) : Tac bool = let e = cur_env () in unify_guard_env e t1 t2 let tmatch (t1 t2 : term) : Tac bool = let e = cur_env () in match_env e t1 t2 (** [divide n t1 t2] will split the current set of goals into the [n] first ones, and the rest. It then runs [t1] on the first set, and [t2] on the second, returning both results (and concatenating remaining goals). *) let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) = if n < 0 then fail "divide: negative n"; let gs, sgs = goals (), smt_goals () in let gs1, gs2 = List.Tot.Base.splitAt n gs in set_goals gs1; set_smt_goals []; let x = l () in let gsl, sgsl = goals (), smt_goals () in set_goals gs2; set_smt_goals []; let y = r () in let gsr, sgsr = goals (), smt_goals () in set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr); (x, y) let rec iseq (ts : list (unit -> Tac unit)) : Tac unit = match ts with | t::ts -> let _ = divide 1 t (fun () -> iseq ts) in () | [] -> () (** [focus t] runs [t ()] on the current active goal, hiding all others and restoring them at the end. *) let focus (t : unit -> Tac 'a) : Tac 'a = match goals () with | [] -> fail "focus: no goals" | g::gs -> let sgs = smt_goals () in set_goals [g]; set_smt_goals []; let x = t () in set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs); x (** Similar to [dump], but only dumping the current goal. *) let dump1 (m : string) = focus (fun () -> dump m) let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) = match goals () with | [] -> [] | _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t let rec iterAll (t : unit -> Tac unit) : Tac unit = (* Could use mapAll, but why even build that list *) match goals () with | [] -> () | _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () let iterAllSMT (t : unit -> Tac unit) : Tac unit = let gs, sgs = goals (), smt_goals () in set_goals sgs; set_smt_goals []; iterAll t; let gs', sgs' = goals (), smt_goals () in set_goals gs; set_smt_goals (gs'@sgs') (** Runs tactic [t1] on the current goal, and then tactic [t2] on *each* subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate with a single goal (they're "focused"). *) let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit = focus (fun () -> f (); iterAll g) let exact_args (qs : list aqualv) (t : term) : Tac unit = focus (fun () -> let n = List.Tot.Base.length qs in let uvs = repeatn n (fun () -> fresh_uvar None) in let t' = mk_app t (zip uvs qs) in exact t'; iter (fun uv -> if is_uvar uv then unshelve uv else ()) (L.rev uvs) ) let exact_n (n : int) (t : term) : Tac unit = exact_args (repeatn n (fun () -> Q_Explicit)) t (** [ngoals ()] returns the number of goals *) let ngoals () : Tac int = List.Tot.Base.length (goals ()) (** [ngoals_smt ()] returns the number of SMT goals *) let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) (* Create a fresh bound variable (bv), using a generic name. See also [fresh_bv_named]. *) let fresh_bv () : Tac bv = (* These bvs are fresh anyway through a separate counter, * but adding the integer allows for more readability when * generating code *) let i = fresh () in fresh_bv_named ("x" ^ string_of_int i) let fresh_binder_named nm t : Tac binder = mk_binder (fresh_bv_named nm) t let fresh_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_binder_named ("x" ^ string_of_int i) t let fresh_implicit_binder_named nm t : Tac binder = mk_implicit_binder (fresh_bv_named nm) t let fresh_implicit_binder t : Tac binder = (* See comment in fresh_bv *) let i = fresh () in fresh_implicit_binder_named ("x" ^ string_of_int i) t let guard (b : bool) : TacH unit (requires (fun _ -> True)) (ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) (* ^ the proofstate on failure is not exactly equal (has the psc set) *) = if not b then fail "guard failed" else () let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a = match catch f with | Inl e -> h e | Inr x -> x let trytac (t : unit -> Tac 'a) : Tac (option 'a) = try Some (t ()) with | _ -> None let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a = try t1 () with | _ -> t2 () val (<|>) : (unit -> Tac 'a) -> (unit -> Tac 'a) -> (unit -> Tac 'a) let (<|>) t1 t2 = fun () -> or_else t1 t2 let first (ts : list (unit -> Tac 'a)) : Tac 'a = L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) = match catch t with | Inl _ -> [] | Inr x -> x :: repeat t let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) = t () :: repeat t let repeat' (f : unit -> Tac 'a) : Tac unit = let _ = repeat f in () let norm_term (s : list norm_step) (t : term) : Tac term = let e = try cur_env () with | _ -> top_env () in norm_term_env e s t (** Join all of the SMT goals into one. This helps when all of them are expected to be similar, and therefore easier to prove at once by the SMT solver. TODO: would be nice to try to join them in a more meaningful way, as the order can matter. *) let join_all_smt_goals () = let gs, sgs = goals (), smt_goals () in set_smt_goals []; set_goals sgs; repeat' join; let sgs' = goals () in // should be a single one set_goals gs; set_smt_goals sgs' let discard (tau : unit -> Tac 'a) : unit -> Tac unit = fun () -> let _ = tau () in () // TODO: do we want some value out of this? let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit = let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () let tadmit () = tadmit_t (`()) let admit1 () : Tac unit = tadmit () let admit_all () : Tac unit = let _ = repeat tadmit in () (** [is_guard] returns whether the current goal arose from a typechecking guard *) let is_guard () : Tac bool = Tactics.Types.is_guard (_cur_goal ()) let skip_guard () : Tac unit = if is_guard () then smt () else fail "" let guards_to_smt () : Tac unit = let _ = repeat skip_guard in () let simpl () : Tac unit = norm [simplify; primops] let whnf () : Tac unit = norm [weak; hnf; primops; delta] let compute () : Tac unit = norm [primops; iota; delta; zeta] let intros () : Tac (list binder) = repeat intro let intros' () : Tac unit = let _ = intros () in () let destruct tm : Tac unit = let _ = t_destruct tm in () let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b private let __cut a b f x = f x let tcut (t:term) : Tac binder = let g = cur_goal () in let tt = mk_e_app (`__cut) [t; g] in apply tt; intro () let pose (t:term) : Tac binder = apply (`__cut); flip (); exact t; intro () let intro_as (s:string) : Tac binder = let b = intro () in rename_to b s let pose_as (s:string) (t:term) : Tac binder = let b = pose t in rename_to b s let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) = map f (cur_binders ()) let rec revert_all (bs:binders) : Tac unit = match bs with | [] -> () | _::tl -> revert (); revert_all tl (* Some syntax utility functions *) let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) [@@coercion] let binder_to_term (b : binder) : Tac term = let bview = inspect_binder b in bv_to_term bview.binder_bv let binder_sort (b : binder) : Tac typ = (inspect_binder b).binder_sort // Cannot define this inside `assumption` due to #1091 private let rec __assumption_aux (bs : binders) : Tac unit = match bs with | [] -> fail "no assumption matches goal" | b::bs -> let t = binder_to_term b in try exact t with | _ -> try (apply (`FStar.Squash.return_squash); exact t) with | _ -> __assumption_aux bs let assumption () : Tac unit = __assumption_aux (cur_binders ()) let destruct_equality_implication (t:term) : Tac (option (formula * term)) = match term_as_formula t with | Implies lhs rhs -> let lhs = term_as_formula' lhs in begin match lhs with | Comp (Eq _) _ _ -> Some (lhs, rhs) | _ -> None end | _ -> None private let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) = FStar.PropositionalExtensionality.apply (a==b) (b==a) (** Like [rewrite], but works with equalities [v == e] and [e == v] *) let rewrite' (b:binder) : Tac unit = ((fun () -> rewrite b) <|> (fun () -> binder_retype b; apply_lemma (`__eq_sym); rewrite b) <|> (fun () -> fail "rewrite' failed")) () let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin match term_as_formula (type_of_binder x_t) with | Comp (Eq _) y _ -> if term_eq x y then rewrite x_t else try_rewrite_equality x bs | _ -> try_rewrite_equality x bs end let rec rewrite_all_context_equalities (bs:binders) : Tac unit = match bs with | [] -> () | x_t::bs -> begin (try rewrite x_t with | _ -> ()); rewrite_all_context_equalities bs end let rewrite_eqs_from_context () : Tac unit = rewrite_all_context_equalities (cur_binders ()) let rewrite_equality (t:term) : Tac unit = try_rewrite_equality t (cur_binders ()) let unfold_def (t:term) : Tac unit = match inspect t with | Tv_FVar fv -> let n = implode_qn (inspect_fv fv) in norm [delta_fully [n]] | _ -> fail "unfold_def: term is not a fv" (** Rewrites left-to-right, and bottom-up, given a set of lemmas stating equalities. The lemmas need to prove *propositional* equalities, that is, using [==]. *) let l_to_r (lems:list term) : Tac unit = let first_or_trefl () : Tac unit = fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems () in pointwise first_or_trefl let mk_squash (t : term) : term = let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in mk_e_app sq [t] let mk_sq_eq (t1 t2 : term) : term = let eq : term = pack_ln (Tv_FVar (pack_fv eq2_qn)) in mk_squash (mk_e_app eq [t1; t2]) (** Rewrites all appearances of a term [t1] in the goal into [t2]. Creates a new goal for [t1 == t2]. *) let grewrite (t1 t2 : term) : Tac unit = let e = tcut (mk_sq_eq t1 t2) in let e = pack_ln (Tv_Var (bv_of_binder e)) in pointwise (fun () -> (* If the LHS is a uvar, do nothing, so we do not instantiate it. *) let is_uvar = match term_as_formula (cur_goal()) with | Comp (Eq _) lhs rhs -> (match inspect_ln lhs with | Tv_Uvar _ _ -> true | _ -> false) | _ -> false in if is_uvar then trefl () else try exact e with | _ -> trefl ()) private let __un_sq_eq (#a:Type) (x y : a) (_ : (x == y)) : Lemma (x == y) = () (** A wrapper to [grewrite] which takes a binder of an equality type *) let grewrite_eq (b:binder) : Tac unit = match term_as_formula (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> exact (binder_to_term b))] | _ -> begin match term_as_formula' (type_of_binder b) with | Comp (Eq _) l r -> grewrite l r; iseq [idtac; (fun () -> apply_lemma (`__un_sq_eq); exact (binder_to_term b))] | _ -> fail "grewrite_eq: binder type is not an equality" end private val push1 : (#p:Type) -> (#q:Type) -> squash (p ==> q) -> squash p -> squash q private let push1 #p #q f u = () private val push1' : (#p:Type) -> (#q:Type) -> (p ==> q) -> squash p -> squash q private let push1' #p #q f u = () (* * Some easier applying, which should prevent frustration * (or cause more when it doesn't do what you wanted to) *) val apply_squash_or_lem : d:nat -> term -> Tac unit let rec apply_squash_or_lem d t = (* Before anything, try a vanilla apply and apply_lemma *) try apply t with | _ -> try apply (`FStar.Squash.return_squash); apply t with | _ -> try apply_lemma t with | _ -> // Fuel cutoff, just in case. if d <= 0 then fail "mapply: out of fuel" else begin let ty = tc (cur_env ()) t in let tys, c = collect_arr ty in match inspect_comp c with | C_Lemma pre post _ -> begin let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* Is the lemma an implication? We can try to intro *) match term_as_formula' post with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end | C_Total rt -> begin match unsquash_term rt with (* If the function returns a squash, just apply it, since our goals are squashed *) | Some rt -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> fail "mapply: can't apply (1)" end (* If not, we can try to introduce the squash ourselves first *) | None -> // DUPLICATED, refactor! begin let rt = norm_term [] rt in (* Is the lemma an implication? We can try to intro *) match term_as_formula' rt with | Implies p q -> apply_lemma (`push1); apply_squash_or_lem (d-1) t | _ -> apply (`FStar.Squash.return_squash); apply t end end | _ -> fail "mapply: can't apply (2)" end (* `m` is for `magic` *) let mapply (t : term) : Tac unit = apply_squash_or_lem 10 t private let admit_dump_t () : Tac unit = dump "Admitting"; apply (`admit) val admit_dump : #a:Type -> (#[admit_dump_t ()] x : (unit -> Admit a)) -> unit -> Admit a let admit_dump #a #x () = x () private let magic_dump_t () : Tac unit = dump "Admitting"; apply (`magic); exact (`()); () val magic_dump : #a:Type -> (#[magic_dump_t ()] x : a) -> unit -> Tot a let magic_dump #a #x () = x let change_with t1 t2 : Tac unit = focus (fun () -> grewrite t1 t2; iseq [idtac; trivial] ) let change_sq (t1 : term) : Tac unit = change (mk_e_app (`squash) [t1]) let finish_by (t : unit -> Tac 'a) : Tac 'a = let x = t () in or_else qed (fun () -> fail "finish_by: not finished"); x let solve_then #a #b (t1 : unit -> Tac a) (t2 : a -> Tac b) : Tac b = dup (); let x = focus (fun () -> finish_by t1) in let y = t2 x in trefl (); y let add_elem (t : unit -> Tac 'a) : Tac 'a = focus (fun () -> apply (`Cons); focus (fun () -> let x = t () in qed (); x ) ) (* * Specialize a function by partially evaluating it * For example: * let rec foo (l:list int) (x:int) :St int = match l with | [] -> x | hd::tl -> x + foo tl x let f :int -> St int = synth_by_tactic (specialize (foo [1; 2]) [%`foo]) * would make the definition of f as x + x + x * * f is the term that needs to be specialized * l is the list of names to be delta-ed *) let specialize (#a:Type) (f:a) (l:list string) :unit -> Tac unit = fun () -> solve_then (fun () -> exact (quote f)) (fun () -> norm [delta_only l; iota; zeta]) let tlabel (l:string) = match goals () with | [] -> fail "tlabel: no goals" | h::t -> set_goals (set_label l h :: t) let tlabel' (l:string) = match goals () with | [] -> fail "tlabel': no goals" | h::t -> let h = set_label (l ^ get_label h) h in set_goals (h :: t) let focus_all () : Tac unit = set_goals (goals () @ smt_goals ()); set_smt_goals [] private let rec extract_nth (n:nat) (l : list 'a) : option ('a * list 'a) = match n, l with | _, [] -> None | 0, hd::tl -> Some (hd, tl) | _, hd::tl -> begin match extract_nth (n-1) tl with | Some (hd', tl') -> Some (hd', hd::tl') | None -> None end let bump_nth (n:pos) : Tac unit = // n-1 since goal numbering begins at 1 match extract_nth (n - 1) (goals ()) with | None -> fail "bump_nth: not that many goals" | Some (h, t) -> set_goals (h :: t)
false
false
FStar.Tactics.V1.Derived.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val destruct_list (t: term) : Tac (list term)
[ "recursion" ]
FStar.Tactics.V1.Derived.destruct_list
{ "file_name": "ulib/FStar.Tactics.V1.Derived.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac (Prims.list FStar.Reflection.Types.term)
{ "end_col": 27, "end_line": 872, "start_col": 52, "start_line": 859 }
FStar.HyperStack.ST.Stack
val load_acc4: acc:felem 4 -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc4 (as_seq h0 b) (feval h0 acc).[0])
[ { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_acc4 acc b = push_frame(); let e = create 5ul (zero 4) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let (acc0, acc1, acc2, acc3, acc4) = load_acc5_4 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame()
val load_acc4: acc:felem 4 -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc4 (as_seq h0 b) (feval h0 acc).[0]) let load_acc4 acc b =
true
null
false
push_frame (); let e = create 5ul (zero 4) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let acc0, acc1, acc2, acc3, acc4 = load_acc5_4 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame ()
{ "checked_file": "Hacl.Impl.Poly1305.Field32xN_256.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Poly1305.Field32xN_256.fst" }
[]
[ "Hacl.Impl.Poly1305.Field32xN.felem", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Hacl.Spec.Poly1305.Field32xN.felem5", "Hacl.Spec.Poly1305.Field32xN.load_acc5_4", "FStar.Pervasives.Native.Mktuple5", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Hacl.Impl.Poly1305.Field32xN.load_blocks", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Hacl.Spec.Poly1305.Field32xN.zero", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Poly1305.Field32xN_256 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer include Hacl.Spec.Poly1305.Field32xN open Hacl.Spec.Poly1305.Field32xN.Lemmas module Vec = Hacl.Spec.Poly1305.Vec module ST = FStar.HyperStack.ST open Hacl.Impl.Poly1305.Field32xN /// Note: on fstar-master, we extract everything in a single invocation of /// KaRaMeL. However, we cannot mix in the same C file functions that cannot /// assume avx2 and functions that demand it, because the compiler will optimize /// the fallback version with avx2 instructions, which will in turn generate /// illegal instruction errors on some target machines. /// /// The load_accN variants pose a problem, because they all end up in the same /// file when, really, they should be in separate files to allow compiling each /// C translation unit with the same flags. /// /// One way to solve this problem is to mark them noextract /// inline_for_extraction, as was done previously. Another way would be to fix /// KaRaMeL to allow moving functions in a given module to other modules. A /// third, more mundame fix is to split these functions in separate modules and /// package them with their top-level bundle file, which will achieve the same /// effect. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'" val load_acc4: acc:felem 4 -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc4 (as_seq h0 b) (feval h0 acc).[0])
false
false
Hacl.Impl.Poly1305.Field32xN_256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_acc4: acc:felem 4 -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc4 (as_seq h0 b) (feval h0 acc).[0])
[]
Hacl.Impl.Poly1305.Field32xN_256.load_acc4
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
acc: Hacl.Impl.Poly1305.Field32xN.felem 4 -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 13, "end_line": 71, "start_col": 2, "start_line": 49 }
FStar.HyperStack.ST.Stack
val fmul_r4_normalize: out:felem 4 -> p:precomp_r 4 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_4 r.[0] (feval h0 out)))
[ { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Field32xN", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": "Vec" }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_r4_normalize out p = let r = sub p 0ul 5ul in let r_5 = sub p 5ul 5ul in let r4 = sub p 10ul 5ul in let a0 = out.(0ul) in let a1 = out.(1ul) in let a2 = out.(2ul) in let a3 = out.(3ul) in let a4 = out.(4ul) in let r10 = r.(0ul) in let r11 = r.(1ul) in let r12 = r.(2ul) in let r13 = r.(3ul) in let r14 = r.(4ul) in let r150 = r_5.(0ul) in let r151 = r_5.(1ul) in let r152 = r_5.(2ul) in let r153 = r_5.(3ul) in let r154 = r_5.(4ul) in let r40 = r4.(0ul) in let r41 = r4.(1ul) in let r42 = r4.(2ul) in let r43 = r4.(3ul) in let r44 = r4.(4ul) in let (o0, o1, o2, o3, o4) = fmul_r4_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r150, r151, r152, r153, r154) (r40, r41, r42, r43, r44) in out.(0ul) <- o0; out.(1ul) <- o1; out.(2ul) <- o2; out.(3ul) <- o3; out.(4ul) <- o4
val fmul_r4_normalize: out:felem 4 -> p:precomp_r 4 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_4 r.[0] (feval h0 out))) let fmul_r4_normalize out p =
true
null
false
let r = sub p 0ul 5ul in let r_5 = sub p 5ul 5ul in let r4 = sub p 10ul 5ul in let a0 = out.(0ul) in let a1 = out.(1ul) in let a2 = out.(2ul) in let a3 = out.(3ul) in let a4 = out.(4ul) in let r10 = r.(0ul) in let r11 = r.(1ul) in let r12 = r.(2ul) in let r13 = r.(3ul) in let r14 = r.(4ul) in let r150 = r_5.(0ul) in let r151 = r_5.(1ul) in let r152 = r_5.(2ul) in let r153 = r_5.(3ul) in let r154 = r_5.(4ul) in let r40 = r4.(0ul) in let r41 = r4.(1ul) in let r42 = r4.(2ul) in let r43 = r4.(3ul) in let r44 = r4.(4ul) in let o0, o1, o2, o3, o4 = fmul_r4_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r150, r151, r152, r153, r154) (r40, r41, r42, r43, r44) in out.(0ul) <- o0; out.(1ul) <- o1; out.(2ul) <- o2; out.(3ul) <- o3; out.(4ul) <- o4
{ "checked_file": "Hacl.Impl.Poly1305.Field32xN_256.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "Hacl.Impl.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Poly1305.Field32xN_256.fst" }
[]
[ "Hacl.Impl.Poly1305.Field32xN.felem", "Hacl.Impl.Poly1305.Field32xN.precomp_r", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Lib.Buffer.op_Array_Assignment", "FStar.UInt32.__uint_to_t", "Prims.unit", "Hacl.Spec.Poly1305.Field32xN.felem5", "Hacl.Spec.Poly1305.Field32xN.fmul_r4_normalize5", "FStar.Pervasives.Native.Mktuple5", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub" ]
[]
module Hacl.Impl.Poly1305.Field32xN_256 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer include Hacl.Spec.Poly1305.Field32xN open Hacl.Spec.Poly1305.Field32xN.Lemmas module Vec = Hacl.Spec.Poly1305.Vec module ST = FStar.HyperStack.ST open Hacl.Impl.Poly1305.Field32xN /// Note: on fstar-master, we extract everything in a single invocation of /// KaRaMeL. However, we cannot mix in the same C file functions that cannot /// assume avx2 and functions that demand it, because the compiler will optimize /// the fallback version with avx2 instructions, which will in turn generate /// illegal instruction errors on some target machines. /// /// The load_accN variants pose a problem, because they all end up in the same /// file when, really, they should be in separate files to allow compiling each /// C translation unit with the same flags. /// /// One way to solve this problem is to mark them noextract /// inline_for_extraction, as was done previously. Another way would be to fix /// KaRaMeL to allow moving functions in a given module to other modules. A /// third, more mundame fix is to split these functions in separate modules and /// package them with their top-level bundle file, which will achieve the same /// effect. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'" val load_acc4: acc:felem 4 -> b:lbuffer uint8 64ul -> Stack unit (requires fun h -> live h acc /\ live h b /\ disjoint acc b /\ felem_fits h acc (2, 2, 2, 2, 2)) (ensures fun h0 _ h1 -> modifies (loc acc) h0 h1 /\ felem_fits h1 acc (3, 3, 3, 3, 3) /\ feval h1 acc == Vec.load_acc4 (as_seq h0 b) (feval h0 acc).[0]) let load_acc4 acc b = push_frame(); let e = create 5ul (zero 4) in load_blocks e b; let acc0 = acc.(0ul) in let acc1 = acc.(1ul) in let acc2 = acc.(2ul) in let acc3 = acc.(3ul) in let acc4 = acc.(4ul) in let e0 = e.(0ul) in let e1 = e.(1ul) in let e2 = e.(2ul) in let e3 = e.(3ul) in let e4 = e.(4ul) in let (acc0, acc1, acc2, acc3, acc4) = load_acc5_4 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in acc.(0ul) <- acc0; acc.(1ul) <- acc1; acc.(2ul) <- acc2; acc.(3ul) <- acc3; acc.(4ul) <- acc4; pop_frame() val fmul_r4_normalize: out:felem 4 -> p:precomp_r 4 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in
false
false
Hacl.Impl.Poly1305.Field32xN_256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_r4_normalize: out:felem 4 -> p:precomp_r 4 -> Stack unit (requires fun h -> live h out /\ live h p /\ felem_fits h out (3, 3, 3, 3, 3) /\ load_precompute_r_post h p) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ felem_fits h1 out (2, 2, 2, 2, 2) /\ (let r = feval h0 (gsub p 0ul 5ul) in (feval h1 out).[0] == Vec.normalize_4 r.[0] (feval h0 out)))
[]
Hacl.Impl.Poly1305.Field32xN_256.fmul_r4_normalize
{ "file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
out: Hacl.Impl.Poly1305.Field32xN.felem 4 -> p: Hacl.Impl.Poly1305.Field32xN.precomp_r 4 -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 17, "end_line": 123, "start_col": 29, "start_line": 87 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l
let op_Less_Less_Colon (l: list 'a) (r: 'r) =
false
null
false
forallP (fun x -> x << r) l
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "total" ]
[ "Prims.list", "FStar.Reflection.V2.Derived.Lemmas.forallP", "Prims.precedes" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Less_Less_Colon : l: Prims.list 'a -> r: 'r -> Type0
[]
FStar.Reflection.V2.Derived.Lemmas.op_Less_Less_Colon
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list 'a -> r: 'r -> Type0
{ "end_col": 31, "end_line": 33, "start_col": 4, "start_line": 33 }
FStar.Pervasives.Lemma
val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == [])))
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> ()
val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t =
false
null
true
match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> ()
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.V2.Data.argv", "FStar.Reflection.V2.Derived.Lemmas.collect_app_order'", "Prims.Cons", "Prims.Nil", "FStar.Reflection.V2.Data.term_view", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == [])))
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == [])))
[]
FStar.Reflection.V2.Derived.Lemmas.collect_app_order
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Pervasives.Lemma (ensures forall (f: FStar.Reflection.Types.term) (s: Prims.list FStar.Reflection.V2.Data.argv). FStar.Pervasives.Native.Mktuple2 f s == FStar.Reflection.V2.Derived.collect_app_ln t ==> f << t /\ s <<: t \/ f == t /\ s == [])
{ "end_col": 13, "end_line": 62, "start_col": 4, "start_line": 60 }
Prims.Pure
val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True))
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs
val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l =
false
null
false
match l with | [] -> [] | x :: xs -> x :: list_ref #a #p xs
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[]
[ "Prims.list", "Prims.Nil", "Prims.Cons", "FStar.Reflection.V2.Derived.Lemmas.list_ref" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True))
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True))
[ "recursion" ]
FStar.Reflection.V2.Derived.Lemmas.list_ref
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: Prims.list a -> Prims.Pure (Prims.list (x: a{p x}))
{ "end_col": 37, "end_line": 43, "start_col": 4, "start_line": 41 }
Prims.Tot
val collect_arr_ln_bs_ref : (t:term) -> list (bd:binder{bd << t}) * (c:comp{ c == pack_comp (C_Total t) \/ c << t})
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_arr_ln_bs_ref t = let bds, c = collect_arr_ln_bs t in collect_arr_ln_bs_order t; list_ref bds, c
val collect_arr_ln_bs_ref : (t:term) -> list (bd:binder{bd << t}) * (c:comp{ c == pack_comp (C_Total t) \/ c << t}) let collect_arr_ln_bs_ref t =
false
null
false
let bds, c = collect_arr_ln_bs t in collect_arr_ln_bs_order t; list_ref bds, c
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "Prims.list", "FStar.Reflection.Types.binder", "FStar.Reflection.Types.comp", "FStar.Pervasives.Native.Mktuple2", "Prims.precedes", "Prims.l_or", "Prims.eq2", "FStar.Reflection.V2.Builtins.pack_comp", "FStar.Reflection.V2.Data.C_Total", "FStar.Reflection.V2.Derived.Lemmas.list_ref", "Prims.unit", "FStar.Reflection.V2.Derived.Lemmas.collect_arr_ln_bs_order", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_arr_ln_bs" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> () val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) ) let collect_abs_ln_order t = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> () val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t}) let collect_abs_ln_ref t = let bds, body = collect_abs_ln t in collect_abs_ln_order t; list_ref bds, body (**** [collect_arr_ln_bs t] is smaller than [t] *) let rec collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c) = match inspect_comp c with | C_Total ret -> ( match inspect_ln_unascribe ret with | Tv_Arrow b c -> collect_arr_order' (b::bds) tt c | _ -> ()) | _ -> () val collect_arr_ln_bs_order : (t:term) -> Lemma (ensures forall bds c. (bds, c) == collect_arr_ln_bs t ==> (c << t /\ bds <<: t) \/ (c == pack_comp (C_Total t) /\ bds == []) ) let collect_arr_ln_bs_order t = match inspect_ln_unascribe t with | Tv_Arrow b c -> collect_arr_order' [b] t c; Classical.forall_intro_2 (rev_memP #binder); inspect_pack_comp_inv (C_Total t) | _ -> inspect_pack_comp_inv (C_Total t) val collect_arr_ln_bs_ref : (t:term) -> list (bd:binder{bd << t})
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_arr_ln_bs_ref : (t:term) -> list (bd:binder{bd << t}) * (c:comp{ c == pack_comp (C_Total t) \/ c << t})
[]
FStar.Reflection.V2.Derived.Lemmas.collect_arr_ln_bs_ref
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> Prims.list (bd: FStar.Reflection.Types.binder{bd << t}) * c: FStar.Reflection.Types.comp {c == FStar.Reflection.V2.Builtins.pack_comp (FStar.Reflection.V2.Data.C_Total t) \/ c << t}
{ "end_col": 19, "end_line": 132, "start_col": 29, "start_line": 129 }
Prims.Tot
val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t})
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a
val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t =
false
null
false
let h, a = collect_app_ln t in collect_app_order t; h, list_ref a
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "Prims.list", "FStar.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "Prims.l_or", "Prims.eq2", "Prims.precedes", "FStar.Pervasives.Native.fst", "FStar.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Derived.Lemmas.list_ref", "Prims.unit", "FStar.Reflection.V2.Derived.Lemmas.collect_app_order", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_app_ln" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> ()
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t})
[]
FStar.Reflection.V2.Derived.Lemmas.collect_app_ref
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> h: FStar.Reflection.Types.term{h == t \/ h << t} * Prims.list (a: FStar.Reflection.V2.Data.argv{FStar.Pervasives.Native.fst a << t})
{ "end_col": 17, "end_line": 68, "start_col": 23, "start_line": 65 }
Prims.Tot
val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t})
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_abs_ln_ref t = let bds, body = collect_abs_ln t in collect_abs_ln_order t; list_ref bds, body
val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t}) let collect_abs_ln_ref t =
false
null
false
let bds, body = collect_abs_ln t in collect_abs_ln_order t; list_ref bds, body
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "total" ]
[ "FStar.Reflection.Types.term", "Prims.list", "FStar.Reflection.Types.binder", "FStar.Pervasives.Native.Mktuple2", "Prims.precedes", "Prims.l_or", "Prims.eq2", "FStar.Reflection.V2.Derived.Lemmas.list_ref", "Prims.unit", "FStar.Reflection.V2.Derived.Lemmas.collect_abs_ln_order", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_abs_ln" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> () val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) ) let collect_abs_ln_order t = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> ()
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t})
[]
FStar.Reflection.V2.Derived.Lemmas.collect_abs_ln_ref
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> Prims.list (bd: FStar.Reflection.Types.binder{bd << t}) * body: FStar.Reflection.Types.term{body == t \/ body << t}
{ "end_col": 22, "end_line": 97, "start_col": 26, "start_line": 94 }
FStar.Pervasives.Lemma
val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) )
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_abs_ln_order t = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> ()
val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) ) let collect_abs_ln_order t =
false
null
true
match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> ()
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.Types.binder", "Prims.list", "FStar.Classical.forall_intro", "Prims.l_iff", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.rev", "FStar.List.Tot.Properties.rev_memP", "Prims.unit", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_abs'", "Prims.Nil", "FStar.Reflection.V2.Derived.Lemmas.collect_abs_order'", "Prims.Cons", "FStar.Reflection.V2.Data.term_view" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> () val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) )
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) )
[]
FStar.Reflection.V2.Derived.Lemmas.collect_abs_ln_order
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Pervasives.Lemma (ensures forall (bds: Prims.list FStar.Reflection.Types.binder) (body: FStar.Reflection.Types.term). FStar.Pervasives.Native.Mktuple2 bds body == FStar.Reflection.V2.Derived.collect_abs_ln t ==> body << t /\ bds <<: t \/ body == t /\ bds == [])
{ "end_col": 13, "end_line": 91, "start_col": 4, "start_line": 87 }
FStar.Pervasives.Lemma
val collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t)
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> ()
val collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) =
false
null
true
match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b :: bds) tt body | _ -> ()
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma", "" ]
[ "FStar.Reflection.Types.binders", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.Types.binder", "FStar.Reflection.V2.Derived.Lemmas.collect_abs_order'", "Prims.Cons", "FStar.Reflection.V2.Data.term_view", "Prims.unit", "Prims.l_and", "Prims.precedes", "FStar.Reflection.V2.Derived.Lemmas.op_Less_Less_Colon", "Prims.squash", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_abs'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt)))
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t)
[ "recursion" ]
FStar.Reflection.V2.Derived.Lemmas.collect_abs_order'
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bds: FStar.Reflection.Types.binders -> tt: FStar.Reflection.Types.term -> t: FStar.Reflection.Types.term -> FStar.Pervasives.Lemma (requires t << tt /\ bds <<: tt) (ensures (let _ = FStar.Reflection.V2.Derived.collect_abs' bds t in (let FStar.Pervasives.Native.Mktuple2 #_ #_ bds' body = _ in bds' <<: tt /\ body << tt) <: Type0)) (decreases t)
{ "end_col": 13, "end_line": 78, "start_col": 4, "start_line": 76 }
FStar.Pervasives.Lemma
val collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c)
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c) = match inspect_comp c with | C_Total ret -> ( match inspect_ln_unascribe ret with | Tv_Arrow b c -> collect_arr_order' (b::bds) tt c | _ -> ()) | _ -> ()
val collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c) let rec collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c) =
false
null
true
match inspect_comp c with | C_Total ret -> (match inspect_ln_unascribe ret with | Tv_Arrow b c -> collect_arr_order' (b :: bds) tt c | _ -> ()) | _ -> ()
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma", "" ]
[ "FStar.Reflection.Types.binders", "FStar.Reflection.Types.term", "FStar.Reflection.Types.comp", "FStar.Reflection.V2.Builtins.inspect_comp", "FStar.Reflection.Types.typ", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.Types.binder", "FStar.Reflection.V2.Derived.Lemmas.collect_arr_order'", "Prims.Cons", "FStar.Reflection.V2.Data.term_view", "Prims.unit", "FStar.Reflection.V2.Data.comp_view", "Prims.l_and", "Prims.precedes", "FStar.Reflection.V2.Derived.Lemmas.op_Less_Less_Colon", "Prims.squash", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.collect_arr'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> () val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) ) let collect_abs_ln_order t = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> () val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t}) let collect_abs_ln_ref t = let bds, body = collect_abs_ln t in collect_abs_ln_order t; list_ref bds, body (**** [collect_arr_ln_bs t] is smaller than [t] *) let rec collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt))
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c)
[ "recursion" ]
FStar.Reflection.V2.Derived.Lemmas.collect_arr_order'
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bds: FStar.Reflection.Types.binders -> tt: FStar.Reflection.Types.term -> c: FStar.Reflection.Types.comp -> FStar.Pervasives.Lemma (requires c << tt /\ bds <<: tt) (ensures (let _ = FStar.Reflection.V2.Derived.collect_arr' bds c in (let FStar.Pervasives.Native.Mktuple2 #_ #_ bds' c' = _ in bds' <<: tt /\ c' << tt) <: Type0)) (decreases c)
{ "end_col": 13, "end_line": 112, "start_col": 4, "start_line": 107 }
FStar.Pervasives.Lemma
val collect_arr_ln_bs_order : (t:term) -> Lemma (ensures forall bds c. (bds, c) == collect_arr_ln_bs t ==> (c << t /\ bds <<: t) \/ (c == pack_comp (C_Total t) /\ bds == []) )
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_arr_ln_bs_order t = match inspect_ln_unascribe t with | Tv_Arrow b c -> collect_arr_order' [b] t c; Classical.forall_intro_2 (rev_memP #binder); inspect_pack_comp_inv (C_Total t) | _ -> inspect_pack_comp_inv (C_Total t)
val collect_arr_ln_bs_order : (t:term) -> Lemma (ensures forall bds c. (bds, c) == collect_arr_ln_bs t ==> (c << t /\ bds <<: t) \/ (c == pack_comp (C_Total t) /\ bds == []) ) let collect_arr_ln_bs_order t =
false
null
true
match inspect_ln_unascribe t with | Tv_Arrow b c -> collect_arr_order' [b] t c; Classical.forall_intro_2 (rev_memP #binder); inspect_pack_comp_inv (C_Total t) | _ -> inspect_pack_comp_inv (C_Total t)
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma" ]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.Types.binder", "FStar.Reflection.Types.comp", "FStar.Reflection.V2.Builtins.inspect_pack_comp_inv", "FStar.Reflection.V2.Data.C_Total", "Prims.unit", "FStar.Classical.forall_intro_2", "Prims.list", "Prims.l_iff", "FStar.List.Tot.Base.memP", "FStar.List.Tot.Base.rev", "FStar.List.Tot.Properties.rev_memP", "FStar.Reflection.V2.Derived.Lemmas.collect_arr_order'", "Prims.Cons", "Prims.Nil", "FStar.Reflection.V2.Data.term_view" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> () val collect_app_order : (t:term) -> Lemma (ensures (forall (f:term). forall (s:list argv). (f,s) == collect_app_ln t ==> (f << t /\ s <<: t) \/ (f == t /\ s == []))) let collect_app_order t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' [r] t l | _ -> () val collect_app_ref : (t:term) -> (h:term{h == t \/ h << t}) * list (a:argv{fst a << t}) let collect_app_ref t = let h, a = collect_app_ln t in collect_app_order t; h, list_ref a (**** [collect_abs_ln t] is smaller than [t] *) let rec collect_abs_order' (bds: binders) (tt t: term) : Lemma (requires t << tt /\ bds <<: tt) (ensures (let bds', body = collect_abs' bds t in (bds' <<: tt /\ body << tt))) (decreases t) = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' (b::bds) tt body | _ -> () val collect_abs_ln_order : (t:term) -> Lemma (ensures forall bds body. (bds, body) == collect_abs_ln t ==> (body << t /\ bds <<: t) \/ (body == t /\ bds == []) ) let collect_abs_ln_order t = match inspect_ln_unascribe t with | Tv_Abs b body -> collect_abs_order' [b] t body; let bds, body = collect_abs' [] t in Classical.forall_intro (rev_memP bds) | _ -> () val collect_abs_ln_ref : (t:term) -> list (bd:binder{bd << t}) * (body:term{body == t \/ body << t}) let collect_abs_ln_ref t = let bds, body = collect_abs_ln t in collect_abs_ln_order t; list_ref bds, body (**** [collect_arr_ln_bs t] is smaller than [t] *) let rec collect_arr_order' (bds: binders) (tt: term) (c: comp) : Lemma (requires c << tt /\ bds <<: tt) (ensures (let bds', c' = collect_arr' bds c in bds' <<: tt /\ c' << tt)) (decreases c) = match inspect_comp c with | C_Total ret -> ( match inspect_ln_unascribe ret with | Tv_Arrow b c -> collect_arr_order' (b::bds) tt c | _ -> ()) | _ -> () val collect_arr_ln_bs_order : (t:term) -> Lemma (ensures forall bds c. (bds, c) == collect_arr_ln_bs t ==> (c << t /\ bds <<: t) \/ (c == pack_comp (C_Total t) /\ bds == []) )
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_arr_ln_bs_order : (t:term) -> Lemma (ensures forall bds c. (bds, c) == collect_arr_ln_bs t ==> (c << t /\ bds <<: t) \/ (c == pack_comp (C_Total t) /\ bds == []) )
[]
FStar.Reflection.V2.Derived.Lemmas.collect_arr_ln_bs_order
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Pervasives.Lemma (ensures forall (bds: Prims.list FStar.Reflection.Types.binder) (c: FStar.Reflection.Types.comp). FStar.Pervasives.Native.Mktuple2 bds c == FStar.Reflection.V2.Derived.collect_arr_ln_bs t ==> c << t /\ bds <<: t \/ c == FStar.Reflection.V2.Builtins.pack_comp (FStar.Reflection.V2.Data.C_Total t) /\ bds == [])
{ "end_col": 42, "end_line": 125, "start_col": 2, "start_line": 121 }
FStar.Pervasives.Lemma
val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t)
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec collect_app_order' args tt t = match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r::args) tt l | _ -> ()
val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t) let rec collect_app_order' args tt t =
false
null
true
match inspect_ln_unascribe t with | Tv_App l r -> collect_app_order' (r :: args) tt l | _ -> ()
{ "checked_file": "FStar.Reflection.V2.Derived.Lemmas.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Reflection.V2.Derived.fst.checked", "FStar.Reflection.V2.Data.fsti.checked", "FStar.Reflection.V2.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V2.Derived.Lemmas.fst" }
[ "lemma", "" ]
[ "Prims.list", "FStar.Reflection.V2.Data.argv", "FStar.Reflection.Types.term", "FStar.Reflection.V2.Derived.inspect_ln_unascribe", "FStar.Reflection.V2.Derived.Lemmas.collect_app_order'", "Prims.Cons", "FStar.Reflection.V2.Data.term_view", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V2.Derived.Lemmas open FStar.Reflection.Types open FStar.Reflection.V2.Builtins open FStar.Reflection.V2.Data open FStar.Reflection.V2.Derived open FStar.List.Tot let rec forall_list (p:'a -> Type) (l:list 'a) : Type = match l with | [] -> True | x::xs -> p x /\ forall_list p xs let forallP (p: 'a -> Type) (l: list 'a): Type = forall (x: 'a). memP x l ==> p x // Precedence relation on the element of a list unfold let (<<:) (l: list 'a) (r: 'r) = forallP (fun x -> x << r) l // A glorified `id` val list_ref : (#a:Type) -> (#p:(a -> Type)) -> (l:list a) -> Pure (list (x:a{p x})) (requires (forallP p l)) (ensures (fun _ -> True)) let rec list_ref #a #p l = match l with | [] -> [] | x::xs -> x :: list_ref #a #p xs val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t)
false
false
FStar.Reflection.V2.Derived.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_app_order' : (args:list argv) -> (tt:term) -> (t:term) -> Lemma (requires args <<: tt /\ t << tt) (ensures (let fn, args' = collect_app_ln' args t in args' <<: tt /\ fn << tt)) (decreases t)
[ "recursion" ]
FStar.Reflection.V2.Derived.Lemmas.collect_app_order'
{ "file_name": "ulib/FStar.Reflection.V2.Derived.Lemmas.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
args: Prims.list FStar.Reflection.V2.Data.argv -> tt: FStar.Reflection.Types.term -> t: FStar.Reflection.Types.term -> FStar.Pervasives.Lemma (requires args <<: tt /\ t << tt) (ensures (let _ = FStar.Reflection.V2.Derived.collect_app_ln' args t in (let FStar.Pervasives.Native.Mktuple2 #_ #_ fn args' = _ in args' <<: tt /\ fn << tt) <: Type0)) (decreases t)
{ "end_col": 13, "end_line": 53, "start_col": 4, "start_line": 51 }
Prims.GTot
val frameOf (#a: _) (b: buffer a) : GTot HS.rid
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b)
val frameOf (#a: _) (b: buffer a) : GTot HS.rid let frameOf #a (b: buffer a) : GTot HS.rid =
false
null
false
HS.frameOf (content b)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.frameOf", "FStar.Buffer.lseq", "FStar.Buffer.max_length", "FStar.Heap.trivial_preorder", "FStar.Buffer.content", "FStar.Monotonic.HyperHeap.rid" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frameOf (#a: _) (b: buffer a) : GTot HS.rid
[]
FStar.Buffer.frameOf
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot FStar.Monotonic.HyperHeap.rid
{ "end_col": 66, "end_line": 70, "start_col": 44, "start_line": 70 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b
let disjoint_from_bufs #a (b: buffer a) (bufs: TSet.set abuffer) =
false
null
false
forall b'. TSet.mem b' bufs ==> disjoint b b'.b
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Buffer.buffer", "FStar.TSet.set", "FStar.Buffer.abuffer", "Prims.l_Forall", "Prims.l_imp", "FStar.TSet.mem", "FStar.Buffer.disjoint", "FStar.Buffer.__proj__Buff__item__t", "FStar.Buffer.__proj__Buff__item__b", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val disjoint_from_bufs : b: FStar.Buffer.buffer a -> bufs: FStar.TSet.set FStar.Buffer.abuffer -> Prims.logical
[]
FStar.Buffer.disjoint_from_bufs
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> bufs: FStar.TSet.set FStar.Buffer.abuffer -> Prims.logical
{ "end_col": 49, "end_line": 191, "start_col": 2, "start_line": 191 }
Prims.Tot
val only (#t: _) (b: buffer t) : Tot (TSet.set abuffer)
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b)
val only (#t: _) (b: buffer t) : Tot (TSet.set abuffer) let only #t (b: buffer t) : Tot (TSet.set abuffer) =
false
null
false
FStar.TSet.singleton (Buff #t b)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Buffer.buffer", "FStar.TSet.singleton", "FStar.Buffer.abuffer", "FStar.Buffer.Buff", "FStar.TSet.set" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val only (#t: _) (b: buffer t) : Tot (TSet.set abuffer)
[]
FStar.Buffer.only
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer t -> FStar.TSet.set FStar.Buffer.abuffer
{ "end_col": 84, "end_line": 155, "start_col": 52, "start_line": 155 }
Prims.GTot
val unmapped_in (#a: _) (b: buffer a) (h: mem) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h
val unmapped_in (#a: _) (b: buffer a) (h: mem) : GTot Type0 let unmapped_in #a (b: buffer a) (h: mem) : GTot Type0 =
false
null
false
unused_in b h
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.unused_in" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val unmapped_in (#a: _) (b: buffer a) (h: mem) : GTot Type0
[]
FStar.Buffer.unmapped_in
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> h: FStar.Monotonic.HyperStack.mem -> Prims.GTot Type0
{ "end_col": 68, "end_line": 74, "start_col": 55, "start_line": 74 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r''
let disjoint_ref_3 a r r' r'' =
false
null
false
disjoint_ref_1 a r /\ disjoint_ref_2 a r' r''
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Buffer.buffer", "FStar.HyperStack.ST.reference", "Prims.l_and", "FStar.Buffer.disjoint_ref_1", "FStar.Buffer.disjoint_ref_2", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val disjoint_ref_3 : a: FStar.Buffer.buffer _ -> r: FStar.HyperStack.ST.reference _ -> r': FStar.HyperStack.ST.reference _ -> r'': FStar.HyperStack.ST.reference _ -> Prims.logical
[]
FStar.Buffer.disjoint_ref_3
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.Buffer.buffer _ -> r: FStar.HyperStack.ST.reference _ -> r': FStar.HyperStack.ST.reference _ -> r'': FStar.HyperStack.ST.reference _ -> Prims.logical
{ "end_col": 77, "end_line": 208, "start_col": 32, "start_line": 208 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Bang_Bang = TSet.singleton
let op_Bang_Bang =
false
null
false
TSet.singleton
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.TSet.singleton", "FStar.TSet.set" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bang_Bang : x: _ -> FStar.TSet.set _
[]
FStar.Buffer.op_Bang_Bang
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: _ -> FStar.TSet.set _
{ "end_col": 33, "end_line": 159, "start_col": 19, "start_line": 159 }
Prims.Tot
val modifies_3 (#a #a' #a'': Type) (b: buffer a) (b': buffer a') (b'': buffer a'') (h0 h1: mem) : Type0
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)))
val modifies_3 (#a #a' #a'': Type) (b: buffer a) (b': buffer a') (b'': buffer a'') (h0 h1: mem) : Type0 let modifies_3 (#a #a' #a'': Type) (b: buffer a) (b': buffer a') (b'': buffer a'') (h0 h1: mem) : Type0 =
false
null
false
HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)))
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.get_tip", "Prims.l_or", "FStar.Buffer.modifies_buf_3", "FStar.Monotonic.HyperStack.modifies_one", "Prims.l_not", "FStar.Buffer.modifies_buf_2", "FStar.Buffer.modifies_buf_1", "FStar.Monotonic.HyperStack.modifies", "FStar.Set.union", "FStar.Set.singleton", "FStar.Buffer.frameOf" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )))
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_3 (#a #a' #a'': Type) (b: buffer a) (b': buffer a') (b'': buffer a'') (h0 h1: mem) : Type0
[]
FStar.Buffer.modifies_3
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> b': FStar.Buffer.buffer a' -> b'': FStar.Buffer.buffer a'' -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> Type0
{ "end_col": 105, "end_line": 420, "start_col": 2, "start_line": 409 }
Prims.GTot
val content (#a: _) (b: buffer a) : GTot (reference (lseq a (max_length b)))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content
val content (#a: _) (b: buffer a) : GTot (reference (lseq a (max_length b))) let content #a (b: buffer a) : GTot (reference (lseq a (max_length b))) =
false
null
false
b.content
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.Buffer.__proj__MkBuffer__item__content", "FStar.HyperStack.ST.reference", "FStar.Buffer.lseq", "FStar.Buffer.max_length" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref?
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val content (#a: _) (b: buffer a) : GTot (reference (lseq a (max_length b)))
[]
FStar.Buffer.content
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot (FStar.HyperStack.ST.reference (FStar.Buffer.lseq a (FStar.Buffer.max_length b)))
{ "end_col": 54, "end_line": 65, "start_col": 45, "start_line": 65 }
Prims.GTot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_ref #a (b:buffer a) = as_ref (content b)
let as_ref #a (b: buffer a) =
false
null
false
as_ref (content b)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.as_ref", "FStar.Buffer.lseq", "FStar.Buffer.max_length", "FStar.Heap.trivial_preorder", "FStar.Buffer.content", "FStar.Monotonic.Heap.mref" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_ref : b: FStar.Buffer.buffer a -> Prims.GTot (FStar.Monotonic.Heap.mref (FStar.Buffer.lseq a (FStar.Buffer.max_length b)) (FStar.Heap.trivial_preorder (FStar.Buffer.lseq a (FStar.Buffer.max_length b))))
[]
FStar.Buffer.as_ref
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot (FStar.Monotonic.Heap.mref (FStar.Buffer.lseq a (FStar.Buffer.max_length b)) (FStar.Heap.trivial_preorder (FStar.Buffer.lseq a (FStar.Buffer.max_length b))))
{ "end_col": 47, "end_line": 68, "start_col": 29, "start_line": 68 }
Prims.GTot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_addr #a (b:buffer a) = as_addr (content b)
let as_addr #a (b: buffer a) =
false
null
false
as_addr (content b)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.as_addr", "FStar.Buffer.lseq", "FStar.Buffer.max_length", "FStar.Heap.trivial_preorder", "FStar.Buffer.content", "Prims.pos" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_addr : b: FStar.Buffer.buffer a -> Prims.GTot Prims.pos
[]
FStar.Buffer.as_addr
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot Prims.pos
{ "end_col": 49, "end_line": 69, "start_col": 30, "start_line": 69 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb)
let modifies_buf_3 (#t: Type) (#t': Type) (#t'': Type) rid (b: buffer t) (b': buffer t') (b'': buffer t'') h h' =
false
null
false
modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt: Type) (bb: buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Buffer.to_set_3", "FStar.Buffer.as_addr", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.frameOf", "FStar.Buffer.live", "FStar.Buffer.disjoint", "FStar.Buffer.equal", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_buf_3 : rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> b'': FStar.Buffer.buffer t'' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
[]
FStar.Buffer.modifies_buf_3
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> b'': FStar.Buffer.buffer t'' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
{ "end_col": 42, "end_line": 260, "start_col": 2, "start_line": 258 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb)
let modifies_buf_2 (#t: Type) (#t': Type) rid (b: buffer t) (b': buffer t') h h' =
false
null
false
modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt: Type) (bb: buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Buffer.to_set_2", "FStar.Buffer.as_addr", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.frameOf", "FStar.Buffer.live", "FStar.Buffer.disjoint", "FStar.Buffer.equal", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_buf_2 : rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
[]
FStar.Buffer.modifies_buf_2
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
{ "end_col": 42, "end_line": 253, "start_col": 2, "start_line": 251 }
FStar.Pervasives.Lemma
val includes_as_seq (#a h1 h2: _) (x y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y)
val includes_as_seq (#a h1 h2: _) (x y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) =
false
null
true
Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "lemma" ]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.buffer", "FStar.Seq.Properties.slice_slice", "FStar.Buffer.sel", "FStar.Buffer.idx", "Prims.op_Addition", "FStar.Buffer.length", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "FStar.Buffer.includes", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "FStar.Buffer.as_seq", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x))
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val includes_as_seq (#a h1 h2: _) (x y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y))
[]
FStar.Buffer.includes_as_seq
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> x: FStar.Buffer.buffer a -> y: FStar.Buffer.buffer a -> FStar.Pervasives.Lemma (requires FStar.Buffer.includes x y /\ FStar.Buffer.as_seq h1 x == FStar.Buffer.as_seq h2 x) (ensures FStar.Buffer.as_seq h1 y == FStar.Buffer.as_seq h2 y)
{ "end_col": 99, "end_line": 112, "start_col": 2, "start_line": 111 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb)
let modifies_buf_4 (#t: Type) (#t': Type) (#t'': Type) (#t''': Type) rid (b: buffer t) (b': buffer t') (b'': buffer t'') (b''': buffer t''') h h' =
false
null
false
modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt: Type) (bb: buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "FStar.Monotonic.HyperStack.modifies_ref", "FStar.Buffer.to_set_4", "FStar.Buffer.as_addr", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "FStar.Buffer.frameOf", "FStar.Buffer.live", "FStar.Buffer.disjoint", "FStar.Buffer.equal", "Prims.logical" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_buf_4 : rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> b'': FStar.Buffer.buffer t'' -> b''': FStar.Buffer.buffer t''' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
[]
FStar.Buffer.modifies_buf_4
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
rid: FStar.Monotonic.HyperHeap.rid -> b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t' -> b'': FStar.Buffer.buffer t'' -> b''': FStar.Buffer.buffer t''' -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> Prims.logical
{ "end_col": 42, "end_line": 268, "start_col": 2, "start_line": 266 }
Prims.GTot
val freeable (#a: Type) (b: buffer a) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let freeable (#a: Type) (b: buffer a) : GTot Type0 = is_mm b.content /\ is_eternal_region (frameOf b) /\ idx b == 0
val freeable (#a: Type) (b: buffer a) : GTot Type0 let freeable (#a: Type) (b: buffer a) : GTot Type0 =
false
null
false
is_mm b.content /\ is_eternal_region (frameOf b) /\ idx b == 0
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "Prims.l_and", "Prims.b2t", "FStar.Monotonic.HyperStack.is_mm", "FStar.Buffer.lseq", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__max_length", "FStar.Heap.trivial_preorder", "FStar.Buffer.__proj__MkBuffer__item__content", "FStar.HyperStack.ST.is_eternal_region", "FStar.Buffer.frameOf", "Prims.eq2", "Prims.int", "FStar.Buffer.idx" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" unfold let p (#a:Type0) (init:list a) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init <= UInt.max_int 32) unfold let q (#a:Type0) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) (** Concrete getters and setters *) val createL: #a:Type0 -> init:list a -> StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0:mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b)) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len = UInt32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in let content: reference (lseq a (v len)) = salloc (Seq.seq_of_list init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" let lemma_upd (#a:Type) (h:mem) (x:reference a{live_region h (HS.frameOf x)}) (v:a) : Lemma (requires True) (ensures (Map.domain (HS.get_hmap h) == Map.domain (HS.get_hmap (upd h x v)))) = let m = HS.get_hmap h in let m' = Map.upd m (HS.frameOf x) (Heap.upd (Map.sel m (HS.frameOf x)) (HS.as_ref x) v) in Set.lemma_equal_intro (Map.domain m) (Map.domain m') unfold let rcreate_post_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (b:buffer a) (h0 h1:mem) :Type0 = b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies (Set.singleton r) h0 h1 /\ modifies_ref r Set.empty h0 h1 /\ as_seq h1 b == Seq.create (v len) init private let rcreate_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (mm:bool) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm b.content == mm)) = let h0 = HST.get() in let s = Seq.create (v len) init in let content: reference (lseq a (v len)) = if mm then ralloc_mm r s else ralloc r s in let b = MkBuffer len content 0ul len in let h1 = HST.get() in assert (Seq.equal (as_seq h1 b) (sel h1 b)); lemma_upd h0 content s; b (** This function allocates a buffer in an "eternal" region, i.e. a region where memory is // * automatically-managed. One does not need to call rfree on such a buffer. It // * translates to C as a call to malloc and assumes a conservative garbage // * collector is running. *) val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content))) let rcreate #a r init len = rcreate_common r init len false (** This predicate tells whether a buffer can be `rfree`d. The only way to produce it should be `rcreate_mm`, and the only way to consume it should be `rfree.` Rationale: a buffer can be `rfree`d only if it is the result of `rcreate_mm`. Subbuffers should not. *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val freeable (#a: Type) (b: buffer a) : GTot Type0
[]
FStar.Buffer.freeable
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot Type0
{ "end_col": 64, "end_line": 905, "start_col": 2, "start_line": 905 }
Prims.Tot
val join (#t: _) (b: buffer t) (b': buffer t { b.max_length == b'.max_length /\ b.content === b'.content /\ idx b + length b == idx b' }) : Tot (buffer t)
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let join #t (b:buffer t) (b':buffer t{b.max_length == b'.max_length /\ b.content === b'.content /\ idx b + length b == idx b'}) : Tot (buffer t) = MkBuffer (b.max_length) (b.content) (b.idx) (FStar.UInt32.(b.length +^ b'.length))
val join (#t: _) (b: buffer t) (b': buffer t { b.max_length == b'.max_length /\ b.content === b'.content /\ idx b + length b == idx b' }) : Tot (buffer t) let join #t (b: buffer t) (b': buffer t { b.max_length == b'.max_length /\ b.content === b'.content /\ idx b + length b == idx b' }) : Tot (buffer t) =
false
null
false
MkBuffer (b.max_length) (b.content) (b.idx) (let open FStar.UInt32 in b.length +^ b'.length)
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.Buffer.buffer", "Prims.l_and", "Prims.eq2", "FStar.UInt32.t", "FStar.Buffer.__proj__MkBuffer__item__max_length", "Prims.op_Equals_Equals_Equals", "FStar.HyperStack.ST.reference", "FStar.Buffer.lseq", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__content", "Prims.int", "Prims.op_Addition", "FStar.Buffer.idx", "FStar.Buffer.length", "FStar.Buffer.MkBuffer", "FStar.Buffer.__proj__MkBuffer__item__idx", "FStar.UInt32.op_Plus_Hat", "FStar.Buffer.__proj__MkBuffer__item__length" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" unfold let p (#a:Type0) (init:list a) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init <= UInt.max_int 32) unfold let q (#a:Type0) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) (** Concrete getters and setters *) val createL: #a:Type0 -> init:list a -> StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0:mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b)) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len = UInt32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in let content: reference (lseq a (v len)) = salloc (Seq.seq_of_list init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" let lemma_upd (#a:Type) (h:mem) (x:reference a{live_region h (HS.frameOf x)}) (v:a) : Lemma (requires True) (ensures (Map.domain (HS.get_hmap h) == Map.domain (HS.get_hmap (upd h x v)))) = let m = HS.get_hmap h in let m' = Map.upd m (HS.frameOf x) (Heap.upd (Map.sel m (HS.frameOf x)) (HS.as_ref x) v) in Set.lemma_equal_intro (Map.domain m) (Map.domain m') unfold let rcreate_post_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (b:buffer a) (h0 h1:mem) :Type0 = b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies (Set.singleton r) h0 h1 /\ modifies_ref r Set.empty h0 h1 /\ as_seq h1 b == Seq.create (v len) init private let rcreate_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (mm:bool) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm b.content == mm)) = let h0 = HST.get() in let s = Seq.create (v len) init in let content: reference (lseq a (v len)) = if mm then ralloc_mm r s else ralloc r s in let b = MkBuffer len content 0ul len in let h1 = HST.get() in assert (Seq.equal (as_seq h1 b) (sel h1 b)); lemma_upd h0 content s; b (** This function allocates a buffer in an "eternal" region, i.e. a region where memory is // * automatically-managed. One does not need to call rfree on such a buffer. It // * translates to C as a call to malloc and assumes a conservative garbage // * collector is running. *) val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content))) let rcreate #a r init len = rcreate_common r init len false (** This predicate tells whether a buffer can be `rfree`d. The only way to produce it should be `rcreate_mm`, and the only way to consume it should be `rfree.` Rationale: a buffer can be `rfree`d only if it is the result of `rcreate_mm`. Subbuffers should not. *) let freeable (#a: Type) (b: buffer a) : GTot Type0 = is_mm b.content /\ is_eternal_region (frameOf b) /\ idx b == 0 (** This function allocates a buffer into a manually-managed buffer in a heap * region, meaning that the client must call rfree in order to avoid memory * leaks. It translates to C as a straight malloc. *) let rcreate_mm (#a:Type) (r:rid) (init:a) (len:UInt32.t) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm (content b) /\ freeable b)) = rcreate_common r init len true #reset-options (** This function frees a buffer allocated with `rcreate_mm`. It translates to C as a regular free. *) let rfree (#a:Type) (b:buffer a) :ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> is_mm (content b) /\ is_eternal_region (frameOf b) /\ h1 == HS.free (content b) h0)) = rfree b.content (* #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" *) (* val create_null: #a:Type -> init:a -> len:UInt32.t -> Stack (buffer a) *) (* (requires (fun h -> True)) *) (* (ensures (fun h0 b h1 -> length b = UInt32.v len /\ h0 == h1)) *) (* let create_null #a init len = *) (* push_frame(); *) (* let r = create init len in *) (* pop_frame(); *) (* r *) #reset-options "--initial_fuel 0 --max_fuel 0" // ocaml-only, used for conversions to Platform.bytes val to_seq: #a:Type -> b:buffer a -> l:UInt32.t{v l <= length b} -> STL (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ Seq.length r == v l (*/\ r == as_seq #a h1 b *) )) let to_seq #a b l = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v l) // ocaml-only, used for conversions to Platform.bytes val to_seq_full: #a:Type -> b:buffer a -> ST (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ r == as_seq #a h1 b )) let to_seq_full #a b = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v b.length) val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> live h0 b /\ h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n))) let index #a b n = let s = !b.content in Seq.index s (v b.idx + v n) (** REMARK: the proof of this lemma relies crucially on the `a == a'` condition // in `disjoint`, and on the pattern in `Seq.slice_upd` *) private let lemma_aux_0 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) (bb:buffer tt) :Lemma (requires (live h0 b /\ live h0 bb /\ disjoint b bb)) (ensures (live h0 b /\ live h0 bb /\ (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb))) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm () #set-options "--z3rlimit 10" private let lemma_aux_1 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_0 b n z h0 tt)) #reset-options "--initial_fuel 0 --max_fuel 0" private let lemma_aux_2 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (tt:Type) (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_1 b n z h0)) private val lemma_aux: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> z:a -> h0:mem -> Lemma (requires (live h0 b)) (ensures (live h0 b /\ modifies_1 b h0 (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z)) )) [SMTPat (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z))] let lemma_aux #a b n z h0 = lemma_aux_2 b n z h0 val upd: #a:Type -> b:buffer a -> n:UInt32.t -> z:a -> Stack unit (requires (fun h -> live h b /\ v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ v n < length b /\ modifies_1 b h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z )) let upd #a b n z = let h0 = HST.get () in let s0 = !b.content in let s = Seq.upd s0 (v b.idx + v n) z in b.content := s; lemma_aux b n z h0; let h = HST.get() in Seq.lemma_eq_intro (as_seq h b) (Seq.slice s (idx b) (idx b + length b)); Seq.upd_slice s0 (idx b) (idx b + length b) (v n) z val sub: #a:Type -> b:buffer a -> i:UInt32.t -> len:UInt32.t{v i + v len <= length b} -> Tot (b':buffer a{b `includes` b' /\ length b' == v len}) let sub #a b i len = assert (v i + v b.idx < pow2 n); // was formerly a precondition MkBuffer b.max_length b.content (i +^ b.idx) len let sub_sub (#a: Type) (b: buffer a) (i1: UInt32.t) (len1: UInt32.t{v i1 + v len1 <= length b}) (i2: UInt32.t) (len2: UInt32.t {v i2 + v len2 <= v len1}) : Lemma (ensures (sub (sub b i1 len1) i2 len2 == sub b (i1 +^ i2) len2)) = () let sub_zero_length (#a: Type) (b: buffer a) : Lemma (ensures (sub b (UInt32.uint_to_t 0) (UInt32.uint_to_t (length b)) == b)) = () let lemma_sub_spec (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (sub b i len); SMTPat (live h b)] = Seq.lemma_eq_intro (as_seq h (sub b i len)) (Seq.slice (as_seq h b) (v i) (v i + v len)) let lemma_sub_spec' (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (live h (sub b i len))] = lemma_sub_spec b i len h val offset: #a:Type -> b:buffer a -> i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length} -> Tot (b':buffer a{b `includes` b'}) let offset #a b i = MkBuffer b.max_length b.content (i +^ b.idx) (b.length -^ i) let lemma_offset_spec (#a:Type) (b:buffer a) (i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) h : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]]] = Seq.lemma_eq_intro (as_seq h (offset b i)) (Seq.slice (as_seq h b) (v i) (length b)) private val eq_lemma1: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> h:mem -> Lemma (requires (forall (j:nat). j < v len ==> get h b1 j == get h b2 j)) (ensures equal h (sub b1 0ul len) h (sub b2 0ul len)) [SMTPat (equal h (sub b1 0ul len) h (sub b2 0ul len))] let eq_lemma1 #a b1 b2 len h = Seq.lemma_eq_intro (as_seq h (sub b1 0ul len)) (as_seq h (sub b2 0ul len)) #reset-options "--z3rlimit 20" private val eq_lemma2: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> h:mem -> Lemma (requires equal h (sub b1 0ul len) h (sub b2 0ul len)) (ensures (forall (j:nat). j < v len ==> get h b1 j == get h b2 j)) [SMTPat (equal h (sub b1 0ul len) h (sub b2 0ul len))] let eq_lemma2 #a b1 b2 len h = let s1 = as_seq h (sub b1 0ul len) in let s2 = as_seq h (sub b2 0ul len) in cut (forall (j:nat). j < v len ==> get h b1 j == Seq.index s1 j); cut (forall (j:nat). j < v len ==> get h b2 j == Seq.index s2 j) (** Corresponds to memcmp for `eqtype` *) val eqb: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> ST bool (requires (fun h -> live h b1 /\ live h b2)) (ensures (fun h0 z h1 -> h1 == h0 /\ (z <==> equal h0 (sub b1 0ul len) h0 (sub b2 0ul len)))) let rec eqb #a b1 b2 len = if len =^ 0ul then true else let len' = len -^ 1ul in if index b1 len' = index b2 len' then eqb b1 b2 len' else false (** // Defining operators for buffer accesses as specified at // https://github.com/FStarLang/FStar/wiki/Parsing-and-operator-precedence // *) (* JP: if the [val] is not specified, there's an issue with these functions // * taking an extra unification parameter at extraction-time... *) val op_Array_Access: #a:Type -> b:buffer a -> n:UInt32.t{v n<length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n))) let op_Array_Access #a b n = index #a b n val op_Array_Assignment: #a:Type -> b:buffer a -> n:UInt32.t -> z:a -> Stack unit (requires (fun h -> live h b /\ v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ v n < length b /\ modifies_1 b h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z )) let op_Array_Assignment #a b n z = upd #a b n z let lemma_modifies_one_trans_1 (#a:Type) (b:buffer a) (h0:mem) (h1:mem) (h2:mem): Lemma (requires (modifies_one (frameOf b) h0 h1 /\ modifies_one (frameOf b) h1 h2)) (ensures (modifies_one (frameOf b) h0 h2)) [SMTPat (modifies_one (frameOf b) h0 h1); SMTPat (modifies_one (frameOf b) h1 h2)] = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (** Corresponds to memcpy *) val blit: #t:Type -> a:buffer t -> idx_a:UInt32.t{v idx_a <= length a} -> b:buffer t{disjoint a b} -> idx_b:UInt32.t{v idx_b <= length b} -> len:UInt32.t{v idx_a + v len <= length a /\ v idx_b + v len <= length b} -> Stack unit (requires (fun h -> live h a /\ live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h0 a /\ live h1 b /\ live h1 a /\ modifies_1 b h0 h1 /\ Seq.slice (as_seq h1 b) (v idx_b) (v idx_b + v len) == Seq.slice (as_seq h0 a) (v idx_a) (v idx_a + v len) /\ Seq.slice (as_seq h1 b) 0 (v idx_b) == Seq.slice (as_seq h0 b) 0 (v idx_b) /\ Seq.slice (as_seq h1 b) (v idx_b+v len) (length b) == Seq.slice (as_seq h0 b) (v idx_b+v len) (length b) )) let rec blit #t a idx_a b idx_b len = let h0 = HST.get () in if len =^ 0ul then () else begin let len' = len -^ 1ul in blit #t a idx_a b idx_b len'; let z = a.(idx_a +^ len') in b.(idx_b +^ len') <- z; let h1 = HST.get() in Seq.snoc_slice_index (as_seq h1 b) (v idx_b) (v idx_b + v len'); Seq.cons_head_tail (Seq.slice (as_seq h0 b) (v idx_b + v len') (length b)); Seq.cons_head_tail (Seq.slice (as_seq h1 b) (v idx_b + v len') (length b)) end (** Corresponds to memset *) val fill: #t:Type -> b:buffer t -> z:t -> len:UInt32.t{v len <= length b} -> Stack unit (requires (fun h -> live h b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ modifies_1 b h0 h1 /\ Seq.slice (as_seq h1 b) 0 (v len) == Seq.create (v len) z /\ Seq.slice (as_seq h1 b) (v len) (length b) == Seq.slice (as_seq h0 b) (v len) (length b) )) let rec fill #t b z len = let h0 = HST.get () in if len =^ 0ul then () else begin let len' = len -^ 1ul in fill #t b z len'; b.(len') <- z; let h = HST.get() in Seq.snoc_slice_index (as_seq h b) 0 (v len'); Seq.lemma_tail_slice (as_seq h b) (v len') (length b) end; let h1 = HST.get() in Seq.lemma_eq_intro (Seq.slice (as_seq h1 b) 0 (v len)) (Seq.create (v len) z) let split #t (b:buffer t) (i:UInt32.t{v i <= length b}) : Tot (buffer t * buffer t) = sub b 0ul i, offset b i
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val join (#t: _) (b: buffer t) (b': buffer t { b.max_length == b'.max_length /\ b.content === b'.content /\ idx b + length b == idx b' }) : Tot (buffer t)
[]
FStar.Buffer.join
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer t -> b': FStar.Buffer.buffer t { MkBuffer?.max_length b == MkBuffer?.max_length b' /\ MkBuffer?.content b === MkBuffer?.content b' /\ FStar.Buffer.idx b + FStar.Buffer.length b == FStar.Buffer.idx b' } -> FStar.Buffer.buffer t
{ "end_col": 86, "end_line": 1219, "start_col": 4, "start_line": 1219 }
FStar.HyperStack.ST.ST
val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content)))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rcreate #a r init len = rcreate_common r init len false
val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content))) let rcreate #a r init len =
true
null
false
rcreate_common r init len false
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.UInt32.t", "FStar.Buffer.rcreate_common", "FStar.Buffer.buffer" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" unfold let p (#a:Type0) (init:list a) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init <= UInt.max_int 32) unfold let q (#a:Type0) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) (** Concrete getters and setters *) val createL: #a:Type0 -> init:list a -> StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0:mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b)) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len = UInt32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in let content: reference (lseq a (v len)) = salloc (Seq.seq_of_list init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" let lemma_upd (#a:Type) (h:mem) (x:reference a{live_region h (HS.frameOf x)}) (v:a) : Lemma (requires True) (ensures (Map.domain (HS.get_hmap h) == Map.domain (HS.get_hmap (upd h x v)))) = let m = HS.get_hmap h in let m' = Map.upd m (HS.frameOf x) (Heap.upd (Map.sel m (HS.frameOf x)) (HS.as_ref x) v) in Set.lemma_equal_intro (Map.domain m) (Map.domain m') unfold let rcreate_post_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (b:buffer a) (h0 h1:mem) :Type0 = b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies (Set.singleton r) h0 h1 /\ modifies_ref r Set.empty h0 h1 /\ as_seq h1 b == Seq.create (v len) init private let rcreate_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (mm:bool) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm b.content == mm)) = let h0 = HST.get() in let s = Seq.create (v len) init in let content: reference (lseq a (v len)) = if mm then ralloc_mm r s else ralloc r s in let b = MkBuffer len content 0ul len in let h1 = HST.get() in assert (Seq.equal (as_seq h1 b) (sel h1 b)); lemma_upd h0 content s; b (** This function allocates a buffer in an "eternal" region, i.e. a region where memory is // * automatically-managed. One does not need to call rfree on such a buffer. It // * translates to C as a call to malloc and assumes a conservative garbage // * collector is running. *) val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r))
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content)))
[]
FStar.Buffer.rcreate
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
r: FStar.Monotonic.HyperHeap.rid -> init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (FStar.Buffer.buffer a)
{ "end_col": 59, "end_line": 898, "start_col": 28, "start_line": 898 }
FStar.HyperStack.ST.StackInline
val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b
val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len =
true
null
false
let content:reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get () in assert (Seq.equal (as_seq h b) (sel h b)); b
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[]
[ "FStar.UInt32.t", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Buffer.as_seq", "FStar.Buffer.sel", "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "FStar.Buffer._buffer", "FStar.Buffer.MkBuffer", "FStar.UInt32.__uint_to_t", "FStar.HyperStack.ST.reference", "FStar.Buffer.lseq", "FStar.UInt32.v", "FStar.HyperStack.ST.salloc", "FStar.Heap.trivial_preorder", "FStar.Seq.Base.create", "FStar.HyperStack.ST.mstackref" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init))
[]
FStar.Buffer.create
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
init: a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.StackInline (FStar.Buffer.buffer a)
{ "end_col": 3, "end_line": 822, "start_col": 24, "start_line": 816 }
FStar.HyperStack.ST.Stack
val op_Array_Access: #a:Type -> b:buffer a -> n:UInt32.t{v n<length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n)))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Array_Access #a b n = index #a b n
val op_Array_Access: #a:Type -> b:buffer a -> n:UInt32.t{v n<length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n))) let op_Array_Access #a b n =
true
null
false
index #a b n
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[]
[ "FStar.Buffer.buffer", "FStar.UInt32.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "FStar.Buffer.length", "FStar.Buffer.index" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" unfold let p (#a:Type0) (init:list a) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init <= UInt.max_int 32) unfold let q (#a:Type0) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) (** Concrete getters and setters *) val createL: #a:Type0 -> init:list a -> StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0:mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b)) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len = UInt32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in let content: reference (lseq a (v len)) = salloc (Seq.seq_of_list init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" let lemma_upd (#a:Type) (h:mem) (x:reference a{live_region h (HS.frameOf x)}) (v:a) : Lemma (requires True) (ensures (Map.domain (HS.get_hmap h) == Map.domain (HS.get_hmap (upd h x v)))) = let m = HS.get_hmap h in let m' = Map.upd m (HS.frameOf x) (Heap.upd (Map.sel m (HS.frameOf x)) (HS.as_ref x) v) in Set.lemma_equal_intro (Map.domain m) (Map.domain m') unfold let rcreate_post_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (b:buffer a) (h0 h1:mem) :Type0 = b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies (Set.singleton r) h0 h1 /\ modifies_ref r Set.empty h0 h1 /\ as_seq h1 b == Seq.create (v len) init private let rcreate_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (mm:bool) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm b.content == mm)) = let h0 = HST.get() in let s = Seq.create (v len) init in let content: reference (lseq a (v len)) = if mm then ralloc_mm r s else ralloc r s in let b = MkBuffer len content 0ul len in let h1 = HST.get() in assert (Seq.equal (as_seq h1 b) (sel h1 b)); lemma_upd h0 content s; b (** This function allocates a buffer in an "eternal" region, i.e. a region where memory is // * automatically-managed. One does not need to call rfree on such a buffer. It // * translates to C as a call to malloc and assumes a conservative garbage // * collector is running. *) val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content))) let rcreate #a r init len = rcreate_common r init len false (** This predicate tells whether a buffer can be `rfree`d. The only way to produce it should be `rcreate_mm`, and the only way to consume it should be `rfree.` Rationale: a buffer can be `rfree`d only if it is the result of `rcreate_mm`. Subbuffers should not. *) let freeable (#a: Type) (b: buffer a) : GTot Type0 = is_mm b.content /\ is_eternal_region (frameOf b) /\ idx b == 0 (** This function allocates a buffer into a manually-managed buffer in a heap * region, meaning that the client must call rfree in order to avoid memory * leaks. It translates to C as a straight malloc. *) let rcreate_mm (#a:Type) (r:rid) (init:a) (len:UInt32.t) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm (content b) /\ freeable b)) = rcreate_common r init len true #reset-options (** This function frees a buffer allocated with `rcreate_mm`. It translates to C as a regular free. *) let rfree (#a:Type) (b:buffer a) :ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> is_mm (content b) /\ is_eternal_region (frameOf b) /\ h1 == HS.free (content b) h0)) = rfree b.content (* #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" *) (* val create_null: #a:Type -> init:a -> len:UInt32.t -> Stack (buffer a) *) (* (requires (fun h -> True)) *) (* (ensures (fun h0 b h1 -> length b = UInt32.v len /\ h0 == h1)) *) (* let create_null #a init len = *) (* push_frame(); *) (* let r = create init len in *) (* pop_frame(); *) (* r *) #reset-options "--initial_fuel 0 --max_fuel 0" // ocaml-only, used for conversions to Platform.bytes val to_seq: #a:Type -> b:buffer a -> l:UInt32.t{v l <= length b} -> STL (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ Seq.length r == v l (*/\ r == as_seq #a h1 b *) )) let to_seq #a b l = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v l) // ocaml-only, used for conversions to Platform.bytes val to_seq_full: #a:Type -> b:buffer a -> ST (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ r == as_seq #a h1 b )) let to_seq_full #a b = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v b.length) val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> live h0 b /\ h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n))) let index #a b n = let s = !b.content in Seq.index s (v b.idx + v n) (** REMARK: the proof of this lemma relies crucially on the `a == a'` condition // in `disjoint`, and on the pattern in `Seq.slice_upd` *) private let lemma_aux_0 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) (bb:buffer tt) :Lemma (requires (live h0 b /\ live h0 bb /\ disjoint b bb)) (ensures (live h0 b /\ live h0 bb /\ (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb))) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm () #set-options "--z3rlimit 10" private let lemma_aux_1 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_0 b n z h0 tt)) #reset-options "--initial_fuel 0 --max_fuel 0" private let lemma_aux_2 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (tt:Type) (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_1 b n z h0)) private val lemma_aux: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> z:a -> h0:mem -> Lemma (requires (live h0 b)) (ensures (live h0 b /\ modifies_1 b h0 (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z)) )) [SMTPat (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z))] let lemma_aux #a b n z h0 = lemma_aux_2 b n z h0 val upd: #a:Type -> b:buffer a -> n:UInt32.t -> z:a -> Stack unit (requires (fun h -> live h b /\ v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ v n < length b /\ modifies_1 b h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z )) let upd #a b n z = let h0 = HST.get () in let s0 = !b.content in let s = Seq.upd s0 (v b.idx + v n) z in b.content := s; lemma_aux b n z h0; let h = HST.get() in Seq.lemma_eq_intro (as_seq h b) (Seq.slice s (idx b) (idx b + length b)); Seq.upd_slice s0 (idx b) (idx b + length b) (v n) z val sub: #a:Type -> b:buffer a -> i:UInt32.t -> len:UInt32.t{v i + v len <= length b} -> Tot (b':buffer a{b `includes` b' /\ length b' == v len}) let sub #a b i len = assert (v i + v b.idx < pow2 n); // was formerly a precondition MkBuffer b.max_length b.content (i +^ b.idx) len let sub_sub (#a: Type) (b: buffer a) (i1: UInt32.t) (len1: UInt32.t{v i1 + v len1 <= length b}) (i2: UInt32.t) (len2: UInt32.t {v i2 + v len2 <= v len1}) : Lemma (ensures (sub (sub b i1 len1) i2 len2 == sub b (i1 +^ i2) len2)) = () let sub_zero_length (#a: Type) (b: buffer a) : Lemma (ensures (sub b (UInt32.uint_to_t 0) (UInt32.uint_to_t (length b)) == b)) = () let lemma_sub_spec (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (sub b i len); SMTPat (live h b)] = Seq.lemma_eq_intro (as_seq h (sub b i len)) (Seq.slice (as_seq h b) (v i) (v i + v len)) let lemma_sub_spec' (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (live h (sub b i len))] = lemma_sub_spec b i len h val offset: #a:Type -> b:buffer a -> i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length} -> Tot (b':buffer a{b `includes` b'}) let offset #a b i = MkBuffer b.max_length b.content (i +^ b.idx) (b.length -^ i) let lemma_offset_spec (#a:Type) (b:buffer a) (i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) h : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]]] = Seq.lemma_eq_intro (as_seq h (offset b i)) (Seq.slice (as_seq h b) (v i) (length b)) private val eq_lemma1: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> h:mem -> Lemma (requires (forall (j:nat). j < v len ==> get h b1 j == get h b2 j)) (ensures equal h (sub b1 0ul len) h (sub b2 0ul len)) [SMTPat (equal h (sub b1 0ul len) h (sub b2 0ul len))] let eq_lemma1 #a b1 b2 len h = Seq.lemma_eq_intro (as_seq h (sub b1 0ul len)) (as_seq h (sub b2 0ul len)) #reset-options "--z3rlimit 20" private val eq_lemma2: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> h:mem -> Lemma (requires equal h (sub b1 0ul len) h (sub b2 0ul len)) (ensures (forall (j:nat). j < v len ==> get h b1 j == get h b2 j)) [SMTPat (equal h (sub b1 0ul len) h (sub b2 0ul len))] let eq_lemma2 #a b1 b2 len h = let s1 = as_seq h (sub b1 0ul len) in let s2 = as_seq h (sub b2 0ul len) in cut (forall (j:nat). j < v len ==> get h b1 j == Seq.index s1 j); cut (forall (j:nat). j < v len ==> get h b2 j == Seq.index s2 j) (** Corresponds to memcmp for `eqtype` *) val eqb: #a:eqtype -> b1:buffer a -> b2:buffer a -> len:UInt32.t{v len <= length b1 /\ v len <= length b2} -> ST bool (requires (fun h -> live h b1 /\ live h b2)) (ensures (fun h0 z h1 -> h1 == h0 /\ (z <==> equal h0 (sub b1 0ul len) h0 (sub b2 0ul len)))) let rec eqb #a b1 b2 len = if len =^ 0ul then true else let len' = len -^ 1ul in if index b1 len' = index b2 len' then eqb b1 b2 len' else false (** // Defining operators for buffer accesses as specified at // https://github.com/FStarLang/FStar/wiki/Parsing-and-operator-precedence // *) (* JP: if the [val] is not specified, there's an issue with these functions // * taking an extra unification parameter at extraction-time... *) val op_Array_Access: #a:Type -> b:buffer a -> n:UInt32.t{v n<length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> h1 == h0
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Array_Access: #a:Type -> b:buffer a -> n:UInt32.t{v n<length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n)))
[]
FStar.Buffer.op_Array_Access
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> n: FStar.UInt32.t{FStar.UInt32.v n < FStar.Buffer.length b} -> FStar.HyperStack.ST.Stack a
{ "end_col": 41, "end_line": 1140, "start_col": 29, "start_line": 1140 }
Prims.GTot
val length (#a: _) (b: buffer a) : GTot nat
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let length #a (b:buffer a) : GTot nat = v b.length
val length (#a: _) (b: buffer a) : GTot nat let length #a (b: buffer a) : GTot nat =
false
null
false
v b.length
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__length", "Prims.nat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val length (#a: _) (b: buffer a) : GTot nat
[]
FStar.Buffer.length
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot Prims.nat
{ "end_col": 50, "end_line": 60, "start_col": 40, "start_line": 60 }
Prims.GTot
val idx (#a: _) (b: buffer a) : GTot nat
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let idx #a (b:buffer a) : GTot nat = v b.idx
val idx (#a: _) (b: buffer a) : GTot nat let idx #a (b: buffer a) : GTot nat =
false
null
false
v b.idx
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__idx", "Prims.nat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val idx (#a: _) (b: buffer a) : GTot nat
[]
FStar.Buffer.idx
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot Prims.nat
{ "end_col": 44, "end_line": 61, "start_col": 37, "start_line": 61 }
FStar.Pervasives.Lemma
val lemma_offset_spec (#a: Type) (b: buffer a) (i: UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) (h: _) : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [ SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]] ]
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_offset_spec (#a:Type) (b:buffer a) (i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) h : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]]] = Seq.lemma_eq_intro (as_seq h (offset b i)) (Seq.slice (as_seq h b) (v i) (length b))
val lemma_offset_spec (#a: Type) (b: buffer a) (i: UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) (h: _) : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [ SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]] ] let lemma_offset_spec (#a: Type) (b: buffer a) (i: UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) h : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [ SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]] ] =
false
null
true
Seq.lemma_eq_intro (as_seq h (offset b i)) (Seq.slice (as_seq h b) (v i) (length b))
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "lemma" ]
[ "FStar.Buffer.buffer", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__idx", "Prims.pow2", "FStar.UInt32.n", "Prims.op_LessThanOrEqual", "FStar.Buffer.__proj__MkBuffer__item__length", "FStar.Monotonic.HyperStack.mem", "FStar.Seq.Base.lemma_eq_intro", "FStar.Buffer.as_seq", "FStar.Buffer.offset", "FStar.Seq.Base.slice", "FStar.Buffer.length", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.nat", "FStar.Seq.Base.length", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *) let op_Bang_Bang = TSet.singleton let op_Plus_Plus = TSet.union (* Maps a set of buffer to the set of their references *) assume val arefs: TSet.set abuffer -> Tot (Set.set nat) assume Arefs_def: forall (x:nat) (s:TSet.set abuffer). {:pattern (Set.mem x (arefs s))} Set.mem x (arefs s) <==> (exists (y:abuffer). TSet.mem y s /\ as_addr y.b == x) val lemma_arefs_1: s:TSet.set abuffer -> Lemma (requires (s == TSet.empty #abuffer)) (ensures (arefs s == Set.empty #nat)) [SMTPat (arefs s)] let lemma_arefs_1 s = Set.lemma_equal_intro (arefs s) (Set.empty) val lemma_arefs_2: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires True) (ensures (arefs (s1 ++ s2) == Set.union (arefs s1) (arefs s2))) [SMTPatOr [ [SMTPat (arefs (s2 ++ s1))]; [SMTPat (arefs (s1 ++ s2))] ]] let lemma_arefs_2 s1 s2 = Set.lemma_equal_intro (arefs (s1 ++ s2)) (Set.union (arefs s1) (arefs s2)) val lemma_arefs_3: s1:TSet.set abuffer -> s2:TSet.set abuffer -> Lemma (requires (TSet.subset s1 s2)) (ensures (Set.subset (arefs s1) (arefs s2))) let lemma_arefs_3 s1 s2 = () (* General disjointness predicate between a buffer and a set of heterogeneous buffers *) let disjoint_from_bufs #a (b:buffer a) (bufs:TSet.set abuffer) = forall b'. TSet.mem b' bufs ==> disjoint b b'.b (* General disjointness predicate between a buffer and a set of heterogeneous references *) let disjoint_from_refs #a (b:buffer a) (set:Set.set nat) = ~(Set.mem (as_addr b) set) (* Similar but specialized disjointness predicates *) let disjoint_1 a b = disjoint a b let disjoint_2 a b b' = disjoint a b /\ disjoint a b' let disjoint_3 a b b' b'' = disjoint a b /\ disjoint a b' /\ disjoint a b'' let disjoint_4 a b b' b'' b''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' let disjoint_5 a b b' b'' b''' b'''' = disjoint a b /\ disjoint a b' /\ disjoint a b'' /\ disjoint a b''' /\ disjoint a b'''' let disjoint_ref_1 (#t:Type) (#u:Type) (a:buffer t) (r:reference u) = frameOf a =!= HS.frameOf r \/ as_addr a =!= HS.as_addr r let disjoint_ref_2 a r r' = disjoint_ref_1 a r /\ disjoint_ref_1 a r' let disjoint_ref_3 a r r' r'' = disjoint_ref_1 a r /\ disjoint_ref_2 a r' r'' let disjoint_ref_4 a r r' r'' r''' = disjoint_ref_1 a r /\ disjoint_ref_3 a r' r'' r''' let disjoint_ref_5 a r r' r'' r''' r'''' = disjoint_ref_1 a r /\ disjoint_ref_4 a r' r'' r''' r'''' val disjoint_only_lemma: #a:Type -> #a':Type -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint b b')) (ensures (disjoint_from_bufs b (only b'))) let disjoint_only_lemma #a #a' b b' = () (* Fully general modifies clause *) let modifies_bufs_and_refs (bufs:TSet.set abuffer) (refs:Set.set nat) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (Set.union (arefs bufs) refs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs /\ disjoint_from_refs b refs) ==> equal h b h' b /\ live h' b))) (* Fully general modifies clause for buffer sets *) let modifies_buffers (bufs:TSet.set abuffer) h h' : GTot Type0 = (forall rid. Set.mem rid (Map.domain (HS.get_hmap h)) ==> (HS.modifies_ref rid (arefs bufs) h h' /\ (forall (#a:Type) (b:buffer a). {:pattern (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs)} (frameOf b == rid /\ live h b /\ disjoint_from_bufs b bufs ==> equal h b h' b /\ live h' b)))) (* General modifies clause for buffers only *) let modifies_bufs rid buffs h h' = modifies_ref rid (arefs buffs) h h' /\ (forall (#a:Type) (b:buffer a). (frameOf b == rid /\ live h b /\ disjoint_from_bufs b buffs) ==> equal h b h' b /\ live h' b) let modifies_none h h' = HS.get_tip h' == HS.get_tip h /\ HS.modifies_transitively Set.empty h h' (* Specialized clauses for small numbers of buffers *) let modifies_buf_0 rid h h' = modifies_ref rid (Set.empty #nat) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb) ==> equal h bb h' bb /\ live h' bb) let modifies_buf_1 (#t:Type) rid (b:buffer t) h h' = //would be good to drop the rid argument on these, since they can be computed from the buffers modifies_ref rid (Set.singleton (Heap.addr_of (as_ref b))) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb) ==> equal h bb h' bb /\ live h' bb) let to_set_2 (n1:nat) (n2:nat) :Set.set nat = Set.union (Set.singleton n1) (Set.singleton n2) let modifies_buf_2 (#t:Type) (#t':Type) rid (b:buffer t) (b':buffer t') h h' = modifies_ref rid (to_set_2 (as_addr b) (as_addr b')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_3 (n1:nat) (n2:nat) (n3:nat) :Set.set nat = Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3) let modifies_buf_3 (#t:Type) (#t':Type) (#t'':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') h h' = modifies_ref rid (to_set_3 (as_addr b) (as_addr b') (as_addr b'')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb) ==> equal h bb h' bb /\ live h' bb) let to_set_4 (n1:nat) (n2:nat) (n3:nat) (n4:nat) :Set.set nat = Set.union (Set.union (Set.union (Set.singleton n1) (Set.singleton n2)) (Set.singleton n3)) (Set.singleton n4) let modifies_buf_4 (#t:Type) (#t':Type) (#t'':Type) (#t''':Type) rid (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') h h' = modifies_ref rid (to_set_4 (as_addr b) (as_addr b') (as_addr b'') (as_addr b''')) h h' /\ (forall (#tt:Type) (bb:buffer tt). (frameOf bb == rid /\ live h bb /\ disjoint b bb /\ disjoint b' bb /\ disjoint b'' bb /\ disjoint b''' bb) ==> equal h bb h' bb /\ live h' bb) (* General lemmas for the modifies_bufs clause *) let lemma_modifies_bufs_trans rid bufs h0 h1 h2 : Lemma (requires (modifies_bufs rid bufs h0 h1 /\ modifies_bufs rid bufs h1 h2)) (ensures (modifies_bufs rid bufs h0 h2)) [SMTPat (modifies_bufs rid bufs h0 h1); SMTPat (modifies_bufs rid bufs h1 h2)] = () let lemma_modifies_bufs_sub rid bufs subbufs h0 h1 : Lemma (requires (TSet.subset subbufs bufs /\ modifies_bufs rid subbufs h0 h1)) (ensures (modifies_bufs rid bufs h0 h1)) [SMTPat (modifies_bufs rid subbufs h0 h1); SMTPat (TSet.subset subbufs bufs)] = () val lemma_modifies_bufs_subset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (disjoint_from_bufs b (bufs ++ (only b')) )) (ensures (disjoint_from_bufs b bufs)) [SMTPat (modifies_bufs (HS.get_tip h0) (bufs ++ (only b')) h0 h1); SMTPat (live h0 b)] let lemma_modifies_bufs_subset #a #a' h0 h1 bufs b b' = () val lemma_modifies_bufs_superset: #a:Type -> #a':Type -> h0:mem -> h1:mem -> bufs:TSet.set abuffer -> b:buffer a -> b':buffer a' -> Lemma (requires (b' `unused_in` h0 /\ live h0 b /\ disjoint_from_bufs b bufs)) (ensures (disjoint_from_bufs b (bufs ++ (only b')))) [SMTPat (modifies_bufs (HS.get_tip h0) bufs h0 h1); SMTPat (b' `unmapped_in` h0); SMTPat (live h0 b)] let lemma_modifies_bufs_superset #a #a' h0 h1 bufs b b' = () (* Specialized lemmas *) let modifies_trans_0_0 (rid:rid) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_0 rid h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_1_0 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_0_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1 (#t:Type) (rid:rid) (b:buffer t) (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_1 rid b h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_1_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_1 rid b' h1 h2)] = () let modifies_trans_2_0 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 rid h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_0 rid h1 h2)] = () let modifies_trans_2_1 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_2_1' (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b' b h0 h1 /\ modifies_buf_1 rid b h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b' b h0 h1); SMTPat (modifies_buf_1 rid b h1 h2)] = () let modifies_trans_0_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_0 rid h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_0 rid h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_1_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_1 rid b h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_1 rid b h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_2_2 (#t:Type) (#t':Type) (rid:rid) (b:buffer t) (b':buffer t') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_2 rid b b' h1 h2)) (ensures (modifies_buf_2 rid b b' h0 h2)) [SMTPat (modifies_buf_2 rid b b' h0 h1); SMTPat (modifies_buf_2 rid b b' h1 h2)] = () let modifies_trans_3_3 (#t #t' #t'':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_buf_3 rid b b' b'' h1 h2)) (ensures (modifies_buf_3 rid b b' b'' h0 h2)) [SMTPat (modifies_buf_3 rid b b' b'' h0 h1); SMTPat (modifies_buf_3 rid b b' b'' h1 h2)] = () let modifies_trans_4_4 (#t #t' #t'' #t''':Type) (rid:rid) (b:buffer t) (b':buffer t') (b'':buffer t'') (b''':buffer t''') (h0 h1 h2:mem) : Lemma (requires (modifies_buf_4 rid b b' b'' b''' h0 h1 /\ modifies_buf_4 rid b b' b'' b''' h1 h2)) (ensures (modifies_buf_4 rid b b' b'' b''' h0 h2)) [SMTPat (modifies_buf_4 rid b b' b'' b''' h0 h1); SMTPat (modifies_buf_4 rid b b' b'' b''' h1 h2)] = () (* TODO: complete with specialized versions of every general lemma *) (* Modifies clauses that do not change the shape of the HyperStack ((HS.get_tip h1) = (HS.get_tip h0)) *) (* NB: those clauses are made abstract in order to make verification faster // Lemmas follow to allow the programmer to make use of the real definition // of those predicates in a general setting *) let modifies_0 (h0 h1:mem) :Type0 = modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* This one is very generic: it says // * - some references have changed in the frame of b, but // * - among all buffers in this frame, b is the only one that changed. *) let modifies_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 let modifies_2_1 (#a:Type) (b:buffer a) (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))) let modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))) let modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))) let modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') (h0 h1:mem) :Type0 = HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))) let modifies_region (rid:rid) (bufs:TSet.set abuffer) (h0 h1:mem) :Type0 = modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1 (* Lemmas introducing the 'modifies' predicates *) let lemma_intro_modifies_0 h0 h1 : Lemma (requires (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_0 h0 h1)) = () let lemma_intro_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_1 b h0 h1)) = () let lemma_intro_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) (ensures (modifies_2_1 b h0 h1)) = () let lemma_intro_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 ))))) (ensures (modifies_2 b b' h0 h1)) = () let lemma_intro_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1))))) (ensures (modifies_3 b b' b'' h0 h1)) = () let lemma_intro_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1))))) (ensures (modifies_3_2 b b' h0 h1)) = () let lemma_intro_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) (ensures (modifies_region rid bufs h0 h1)) = () (* Lemmas revealing the content of the specialized modifies clauses in order to // be able to generalize them if needs be. *) let lemma_reveal_modifies_0 h0 h1 : Lemma (requires (modifies_0 h0 h1)) (ensures (modifies_one (HS.get_tip h0) h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_1 b h0 h1)) (ensures (let rid = frameOf b in modifies_one rid h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () let lemma_reveal_modifies_2_1 (#a:Type) (b:buffer a) h0 h1 : Lemma (requires (modifies_2_1 b h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in ((rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 ))))) = () let lemma_reveal_modifies_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid =!= rid' /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 )) ))) = () let lemma_reveal_modifies_3 (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 : Lemma (requires (modifies_3 b b' b'' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in let rid'' = frameOf b'' in ((rid == rid' /\ rid' == rid'' /\ modifies_buf_3 rid b b' b'' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid =!= rid' /\ rid' == rid'' /\ modifies_buf_2 rid' b' b'' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid'')) h0 h1 ) \/ (rid == rid'' /\ rid' =!= rid'' /\ modifies_buf_2 rid b b'' h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton rid')) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= rid'' /\ rid =!= rid'' /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton rid'')) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid'' b'' h0 h1)) ))) = () let lemma_reveal_modifies_3_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires (modifies_3_2 b b' h0 h1)) (ensures ( HS.get_tip h0 == HS.get_tip h1 /\ (let rid = frameOf b in let rid' = frameOf b' in ((rid == rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_one rid h0 h1) \/ (rid == rid' /\ rid' =!= HS.get_tip h0 /\ modifies_buf_2 rid b b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid == HS.get_tip h0 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ HS.modifies (Set.union (Set.singleton rid') (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' == HS.get_tip h0 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ HS.modifies (Set.union (Set.singleton rid) (Set.singleton (HS.get_tip h0))) h0 h1 ) \/ (rid =!= rid' /\ rid' =!= HS.get_tip h0 /\ rid =!= HS.get_tip h0 /\ HS.modifies (Set.union (Set.union (Set.singleton rid) (Set.singleton rid')) (Set.singleton (HS.get_tip h0))) h0 h1 /\ modifies_buf_1 rid b h0 h1 /\ modifies_buf_1 rid' b' h0 h1 /\ modifies_buf_0 (HS.get_tip h0) h0 h1)) ))) = () let lemma_reveal_modifies_region (rid:rid) bufs h0 h1 : Lemma (requires (modifies_region rid bufs h0 h1)) (ensures (modifies_one rid h0 h1 /\ modifies_bufs rid bufs h0 h1 /\ HS.get_tip h0 == HS.get_tip h1)) = () #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --initial_fuel 0 --initial_ifuel 0" (* Stack effect specific lemmas *) let lemma_stack_1 (#a:Type) (b:buffer a) h0 h1 h2 h3 : Lemma (requires (live h0 b /\ fresh_frame h0 h1 /\ modifies_1 b h1 h2 /\ popped h2 h3)) (ensures (modifies_buf_1 (frameOf b) b h0 h3)) [SMTPat (modifies_1 b h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () let lemma_stack_2 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 h3 : Lemma (requires (live h0 b /\ live h0 b' /\ fresh_frame h0 h1 /\ modifies_2 b b' h1 h2 /\ popped h2 h3)) (ensures (modifies_2 b b' h0 h3)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (fresh_frame h0 h1); SMTPat (popped h2 h3)] = () (* Specialized modifies clauses lemmas + associated SMTPatterns. Those are critical for // verification as the specialized modifies clauses are abstract from outside the // module *) (** Commutativity lemmas *) let lemma_modifies_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_2 b b' h0 h1 <==> modifies_2 b' b h0 h1)) [SMTPat (modifies_2 b b' h0 h1)] = () let lemma_modifies_3_2_comm (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 : Lemma (requires True) (ensures (modifies_3_2 b b' h0 h1 <==> modifies_3_2 b' b h0 h1)) [SMTPat (modifies_3_2 b b' h0 h1)] = () (* TODO: add commutativity lemmas for modifies_3 *) #reset-options "--z3rlimit 20" (** Transitivity lemmas *) let lemma_modifies_0_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_1 b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_2_1 b h0 h1 /\ modifies_2_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_2_1 b h1 h2)] = () let lemma_modifies_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) (* TODO: Make the following work and merge with the following lemma *) (* [SMTPatOr [ *) (* [SMTPat (modifies_2 b b' h0 h1); *) (* SMTPat (modifies_2 b' b h0 h1)]]; *) (* SMTPat (modifies_2 b' b h1 h2)] *) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_2 b b' h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () #reset-options "--z3rlimit 40" let lemma_modifies_3_trans (#a:Type) (#a':Type) (#a'':Type) (b:buffer a) (b':buffer a') (b'':buffer a'') h0 h1 h2 : Lemma (requires (modifies_3 b b' b'' h0 h1 /\ modifies_3 b b' b'' h1 h2)) (ensures (modifies_3 b b' b'' h0 h2)) (* TODO: add the appropriate SMTPatOr patterns so as not to rewrite X times the same lemma *) [SMTPat (modifies_3 b b' b'' h0 h1); SMTPat (modifies_3 b b' b'' h1 h2)] = () #reset-options "--z3rlimit 200" let lemma_modifies_3_2_trans (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b b' h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b b' h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () let lemma_modifies_3_2_trans' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (modifies_3_2 b' b h0 h1 /\ modifies_3_2 b b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_3_2 b' b h0 h1); SMTPat (modifies_3_2 b b' h1 h2)] = () #reset-options "--z3rlimit 20" (* Specific modifies clause lemmas *) val lemma_modifies_0_0: h0:mem -> h1:mem -> h2:mem -> Lemma (requires (modifies_0 h0 h1 /\ modifies_0 h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_0 h1 h2)] let lemma_modifies_0_0 h0 h1 h2 = () #reset-options "--z3rlimit 20 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_0 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ modifies_0 h1 h2)) (ensures (live h2 b /\ modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_0 h1 h2)] = () let lemma_modifies_0_1 (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_0_1' (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) [SMTPat (modifies_0 h0 h1); SMTPat (modifies_1 b h1 h2)] = () #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" let lemma_modifies_1_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_2 b b' h0 h2 /\ modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = if frameOf b = frameOf b' then modifies_trans_1_1' (frameOf b) b b' h0 h1 h2 else () #reset-options "--z3rlimit 200 --initial_fuel 0 --max_fuel 0" let lemma_modifies_0_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b b' h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_0_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ b' `unused_in` h0 /\ modifies_0 h0 h1 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_2 b' b h1 h2); SMTPat (modifies_0 h0 h1)] = () let lemma_modifies_1_2 (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_2 b' b h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_2'' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b b' h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b b' h1 h2)] = () let lemma_modifies_1_2''' (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_1 b h0 h1 /\ modifies_2 b' b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_2 b' b h1 h2)] = () let lemma_modifies_1_1_prime (#t:Type) (#t':Type) (b:buffer t) (b':buffer t') h0 h1 h2 : Lemma (requires (live h0 b /\ modifies_1 b h0 h1 /\ b' `unused_in` h0 /\ live h1 b' /\ modifies_1 b' h1 h2)) (ensures (modifies_2_1 b h0 h2)) [SMTPat (modifies_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () let lemma_modifies_2_1 (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b b' h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b b' h0 h2)) [SMTPat (modifies_2 b b' h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2 b' b h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_2 b' b h0 h2)) [SMTPat (modifies_2 b' b h0 h1); SMTPat (modifies_1 b h1 h2)] = () let lemma_modifies_2_1'' (#a:Type) (#a':Type) (b:buffer a) (b':buffer a') h0 h1 h2 : Lemma (requires (live h0 b /\ live h0 b' /\ modifies_2_1 b h0 h1 /\ modifies_1 b' h1 h2)) (ensures (modifies_3_2 b b' h0 h2)) [SMTPat (modifies_2_1 b h0 h1); SMTPat (modifies_1 b' h1 h2)] = () (* TODO: lemmas for modifies_3 *) let lemma_modifies_0_unalloc (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (b `unused_in` h0 /\ frameOf b == HS.get_tip h0 /\ modifies_0 h0 h1 /\ modifies_1 b h1 h2)) (ensures (modifies_0 h0 h2)) = () let lemma_modifies_none_1_trans (#a:Type) (b:buffer a) h0 h1 h2 : Lemma (requires (modifies_none h0 h1 /\ live h0 b /\ modifies_1 b h1 h2)) (ensures (modifies_1 b h0 h2)) = () let lemma_modifies_0_none_trans h0 h1 h2 : Lemma (requires (modifies_0 h0 h1 /\ modifies_none h1 h2)) (ensures (modifies_0 h0 h2)) = () #reset-options "--initial_fuel 0 --max_fuel 0" (** Concrete getters and setters *) val create: #a:Type -> init:a -> len:UInt32.t -> StackInline (buffer a) (requires (fun h -> True)) (ensures (fun (h0:mem) b h1 -> b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ frameOf b == HS.get_tip h0 /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.create (v len) init)) let create #a init len = let content: reference (lseq a (v len)) = salloc (Seq.create (v len) init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" unfold let p (#a:Type0) (init:list a) : GTot Type0 = normalize (0 < FStar.List.Tot.length init) /\ normalize (FStar.List.Tot.length init <= UInt.max_int 32) unfold let q (#a:Type0) (len:nat) (buf:buffer a) : GTot Type0 = normalize (length buf == len) (** Concrete getters and setters *) val createL: #a:Type0 -> init:list a -> StackInline (buffer a) (requires (fun h -> p #a init)) (ensures (fun (h0:mem) b h1 -> let len = FStar.List.Tot.length init in len > 0 /\ b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == len /\ frameOf b == (HS.get_tip h0) /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ modifies_0 h0 h1 /\ as_seq h1 b == Seq.seq_of_list init /\ q #a len b)) #set-options "--initial_fuel 1 --max_fuel 1" //the normalize_term (length init) in the pre-condition will be unfolded //whereas the L.length init below will not let createL #a init = let len = UInt32.uint_to_t (FStar.List.Tot.length init) in let s = Seq.seq_of_list init in let content: reference (lseq a (v len)) = salloc (Seq.seq_of_list init) in let b = MkBuffer len content 0ul len in let h = HST.get() in assert (Seq.equal (as_seq h b) (sel h b)); b #reset-options "--initial_fuel 0 --max_fuel 0" let lemma_upd (#a:Type) (h:mem) (x:reference a{live_region h (HS.frameOf x)}) (v:a) : Lemma (requires True) (ensures (Map.domain (HS.get_hmap h) == Map.domain (HS.get_hmap (upd h x v)))) = let m = HS.get_hmap h in let m' = Map.upd m (HS.frameOf x) (Heap.upd (Map.sel m (HS.frameOf x)) (HS.as_ref x) v) in Set.lemma_equal_intro (Map.domain m) (Map.domain m') unfold let rcreate_post_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (b:buffer a) (h0 h1:mem) :Type0 = b `unused_in` h0 /\ live h1 b /\ idx b == 0 /\ length b == v len /\ Map.domain (HS.get_hmap h1) == Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies (Set.singleton r) h0 h1 /\ modifies_ref r Set.empty h0 h1 /\ as_seq h1 b == Seq.create (v len) init private let rcreate_common (#a:Type) (r:rid) (init:a) (len:UInt32.t) (mm:bool) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm b.content == mm)) = let h0 = HST.get() in let s = Seq.create (v len) init in let content: reference (lseq a (v len)) = if mm then ralloc_mm r s else ralloc r s in let b = MkBuffer len content 0ul len in let h1 = HST.get() in assert (Seq.equal (as_seq h1 b) (sel h1 b)); lemma_upd h0 content s; b (** This function allocates a buffer in an "eternal" region, i.e. a region where memory is // * automatically-managed. One does not need to call rfree on such a buffer. It // * translates to C as a call to malloc and assumes a conservative garbage // * collector is running. *) val rcreate: #a:Type -> r:rid -> init:a -> len:UInt32.t -> ST (buffer a) (requires (fun h -> is_eternal_region r)) (ensures (fun (h0:mem) b h1 -> rcreate_post_common r init len b h0 h1 /\ ~(is_mm b.content))) let rcreate #a r init len = rcreate_common r init len false (** This predicate tells whether a buffer can be `rfree`d. The only way to produce it should be `rcreate_mm`, and the only way to consume it should be `rfree.` Rationale: a buffer can be `rfree`d only if it is the result of `rcreate_mm`. Subbuffers should not. *) let freeable (#a: Type) (b: buffer a) : GTot Type0 = is_mm b.content /\ is_eternal_region (frameOf b) /\ idx b == 0 (** This function allocates a buffer into a manually-managed buffer in a heap * region, meaning that the client must call rfree in order to avoid memory * leaks. It translates to C as a straight malloc. *) let rcreate_mm (#a:Type) (r:rid) (init:a) (len:UInt32.t) :ST (buffer a) (requires (fun h0 -> is_eternal_region r)) (ensures (fun h0 b h1 -> rcreate_post_common r init len b h0 h1 /\ is_mm (content b) /\ freeable b)) = rcreate_common r init len true #reset-options (** This function frees a buffer allocated with `rcreate_mm`. It translates to C as a regular free. *) let rfree (#a:Type) (b:buffer a) :ST unit (requires (fun h0 -> live h0 b /\ freeable b)) (ensures (fun h0 _ h1 -> is_mm (content b) /\ is_eternal_region (frameOf b) /\ h1 == HS.free (content b) h0)) = rfree b.content (* #reset-options "--z3rlimit 100 --initial_fuel 0 --max_fuel 0" *) (* val create_null: #a:Type -> init:a -> len:UInt32.t -> Stack (buffer a) *) (* (requires (fun h -> True)) *) (* (ensures (fun h0 b h1 -> length b = UInt32.v len /\ h0 == h1)) *) (* let create_null #a init len = *) (* push_frame(); *) (* let r = create init len in *) (* pop_frame(); *) (* r *) #reset-options "--initial_fuel 0 --max_fuel 0" // ocaml-only, used for conversions to Platform.bytes val to_seq: #a:Type -> b:buffer a -> l:UInt32.t{v l <= length b} -> STL (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ Seq.length r == v l (*/\ r == as_seq #a h1 b *) )) let to_seq #a b l = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v l) // ocaml-only, used for conversions to Platform.bytes val to_seq_full: #a:Type -> b:buffer a -> ST (seq a) (requires (fun h -> live h b)) (ensures (fun h0 r h1 -> h0 == h1 /\ live h1 b /\ r == as_seq #a h1 b )) let to_seq_full #a b = let s = !b.content in let i = v b.idx in Seq.slice s i (i + v b.length) val index: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> Stack a (requires (fun h -> live h b)) (ensures (fun h0 z h1 -> live h0 b /\ h1 == h0 /\ z == Seq.index (as_seq h0 b) (v n))) let index #a b n = let s = !b.content in Seq.index s (v b.idx + v n) (** REMARK: the proof of this lemma relies crucially on the `a == a'` condition // in `disjoint`, and on the pattern in `Seq.slice_upd` *) private let lemma_aux_0 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) (bb:buffer tt) :Lemma (requires (live h0 b /\ live h0 bb /\ disjoint b bb)) (ensures (live h0 b /\ live h0 bb /\ (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb))) = Heap.lemma_distinct_addrs_distinct_preorders (); Heap.lemma_distinct_addrs_distinct_mm () #set-options "--z3rlimit 10" private let lemma_aux_1 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) (tt:Type) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_0 b n z h0 tt)) #reset-options "--initial_fuel 0 --max_fuel 0" private let lemma_aux_2 (#a:Type) (b:buffer a) (n:UInt32.t{v n < length b}) (z:a) (h0:mem) :Lemma (requires (live h0 b)) (ensures (live h0 b /\ (forall (tt:Type) (bb:buffer tt). (live h0 bb /\ disjoint b bb) ==> (let h1 = HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z) in as_seq h0 bb == as_seq h1 bb)))) = let open FStar.Classical in forall_intro (move_requires (lemma_aux_1 b n z h0)) private val lemma_aux: #a:Type -> b:buffer a -> n:UInt32.t{v n < length b} -> z:a -> h0:mem -> Lemma (requires (live h0 b)) (ensures (live h0 b /\ modifies_1 b h0 (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z)) )) [SMTPat (HS.upd h0 b.content (Seq.upd (sel h0 b) (idx b + v n) z))] let lemma_aux #a b n z h0 = lemma_aux_2 b n z h0 val upd: #a:Type -> b:buffer a -> n:UInt32.t -> z:a -> Stack unit (requires (fun h -> live h b /\ v n < length b)) (ensures (fun h0 _ h1 -> live h0 b /\ live h1 b /\ v n < length b /\ modifies_1 b h0 h1 /\ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z )) let upd #a b n z = let h0 = HST.get () in let s0 = !b.content in let s = Seq.upd s0 (v b.idx + v n) z in b.content := s; lemma_aux b n z h0; let h = HST.get() in Seq.lemma_eq_intro (as_seq h b) (Seq.slice s (idx b) (idx b + length b)); Seq.upd_slice s0 (idx b) (idx b + length b) (v n) z val sub: #a:Type -> b:buffer a -> i:UInt32.t -> len:UInt32.t{v i + v len <= length b} -> Tot (b':buffer a{b `includes` b' /\ length b' == v len}) let sub #a b i len = assert (v i + v b.idx < pow2 n); // was formerly a precondition MkBuffer b.max_length b.content (i +^ b.idx) len let sub_sub (#a: Type) (b: buffer a) (i1: UInt32.t) (len1: UInt32.t{v i1 + v len1 <= length b}) (i2: UInt32.t) (len2: UInt32.t {v i2 + v len2 <= v len1}) : Lemma (ensures (sub (sub b i1 len1) i2 len2 == sub b (i1 +^ i2) len2)) = () let sub_zero_length (#a: Type) (b: buffer a) : Lemma (ensures (sub b (UInt32.uint_to_t 0) (UInt32.uint_to_t (length b)) == b)) = () let lemma_sub_spec (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (sub b i len); SMTPat (live h b)] = Seq.lemma_eq_intro (as_seq h (sub b i len)) (Seq.slice (as_seq h b) (v i) (v i + v len)) let lemma_sub_spec' (#a:Type) (b:buffer a) (i:UInt32.t) (len:UInt32.t{v len <= length b /\ v i + v len <= length b}) h : Lemma (requires (live h b)) (ensures (live h (sub b i len) /\ as_seq h (sub b i len) == Seq.slice (as_seq h b) (v i) (v i + v len))) [SMTPat (live h (sub b i len))] = lemma_sub_spec b i len h val offset: #a:Type -> b:buffer a -> i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length} -> Tot (b':buffer a{b `includes` b'}) let offset #a b i = MkBuffer b.max_length b.content (i +^ b.idx) (b.length -^ i) let lemma_offset_spec (#a:Type) (b:buffer a) (i:UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) h : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [SMTPatOr [[SMTPat (as_seq h (offset b i))];
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_offset_spec (#a: Type) (b: buffer a) (i: UInt32.t{v i + v b.idx < pow2 n /\ v i <= v b.length}) (h: _) : Lemma (requires True) (ensures (as_seq h (offset b i) == Seq.slice (as_seq h b) (v i) (length b))) [ SMTPatOr [[SMTPat (as_seq h (offset b i))]; [SMTPat (Seq.slice (as_seq h b) (v i) (length b))]] ]
[]
FStar.Buffer.lemma_offset_spec
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> i: FStar.UInt32.t { FStar.UInt32.v i + FStar.UInt32.v (MkBuffer?.idx b) < Prims.pow2 FStar.UInt32.n /\ FStar.UInt32.v i <= FStar.UInt32.v (MkBuffer?.length b) } -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (ensures FStar.Buffer.as_seq h (FStar.Buffer.offset b i) == FStar.Seq.Base.slice (FStar.Buffer.as_seq h b) (FStar.UInt32.v i) (FStar.Buffer.length b)) [ SMTPatOr [ [SMTPat (FStar.Buffer.as_seq h (FStar.Buffer.offset b i))]; [ SMTPat (FStar.Seq.Base.slice (FStar.Buffer.as_seq h b) (FStar.UInt32.v i) (FStar.Buffer.length b)) ] ] ]
{ "end_col": 88, "end_line": 1081, "start_col": 4, "start_line": 1081 }
Prims.GTot
val max_length (#a: _) (b: buffer a) : GTot nat
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let max_length #a (b:buffer a) : GTot nat = v b.max_length
val max_length (#a: _) (b: buffer a) : GTot nat let max_length #a (b: buffer a) : GTot nat =
false
null
false
v b.max_length
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__max_length", "Prims.nat" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val max_length (#a: _) (b: buffer a) : GTot nat
[]
FStar.Buffer.max_length
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: FStar.Buffer.buffer a -> Prims.GTot Prims.nat
{ "end_col": 58, "end_line": 59, "start_col": 44, "start_line": 59 }
Prims.GTot
val disjoint (#a #a': _) (x: buffer a) (y: buffer a') : GTot Type0
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x))
val disjoint (#a #a': _) (x: buffer a) (y: buffer a') : GTot Type0 let disjoint #a #a' (x: buffer a) (y: buffer a') : GTot Type0 =
false
null
false
frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x))
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Buffer.buffer", "Prims.l_or", "Prims.l_not", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "FStar.Buffer.frameOf", "Prims.pos", "FStar.Buffer.as_addr", "Prims.l_and", "FStar.UInt32.t", "FStar.Buffer.__proj__MkBuffer__item__max_length", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Buffer.idx", "FStar.Buffer.length" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val disjoint (#a #a': _) (x: buffer a) (y: buffer a') : GTot Type0
[]
FStar.Buffer.disjoint
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Buffer.buffer a -> y: FStar.Buffer.buffer a' -> Prims.GTot Type0
{ "end_col": 62, "end_line": 124, "start_col": 2, "start_line": 122 }
Prims.GTot
val live (#a: _) (h: mem) (b: buffer a) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content
val live (#a: _) (h: mem) (b: buffer a) : GTot Type0 let live #a (h: mem) (b: buffer a) : GTot Type0 =
false
null
false
HS.contains h b.content
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "sometrivial" ]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Buffer.buffer", "FStar.Monotonic.HyperStack.contains", "FStar.Buffer.lseq", "FStar.UInt32.v", "FStar.Buffer.__proj__MkBuffer__item__max_length", "FStar.Heap.trivial_preorder", "FStar.Buffer.__proj__MkBuffer__item__content" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val live (#a: _) (h: mem) (b: buffer a) : GTot Type0
[]
FStar.Buffer.live
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h: FStar.Monotonic.HyperStack.mem -> b: FStar.Buffer.buffer a -> Prims.GTot Type0
{ "end_col": 71, "end_line": 73, "start_col": 48, "start_line": 73 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int32", "short_module": "Int32" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_Plus = TSet.union
let op_Plus_Plus =
false
null
false
TSet.union
{ "checked_file": "FStar.Buffer.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.TSet.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int32.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Buffer.fst" }
[ "total" ]
[ "FStar.TSet.union", "FStar.TSet.set" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Buffer open FStar.Seq open FStar.UInt32 module Int32 = FStar.Int32 open FStar.HyperStack open FStar.HyperStack.ST open FStar.Ghost module HS = FStar.HyperStack module HST = FStar.HyperStack.ST #set-options "--initial_fuel 0 --max_fuel 0" //17-01-04 usage? move to UInt? let lemma_size (x:int) : Lemma (requires (UInt.size x n)) (ensures (x >= 0)) [SMTPat (UInt.size x n)] = () let lseq (a: Type) (l: nat) : Type = (s: seq a { Seq.length s == l } ) (* Buffer general type, fully implemented on FStar's arrays *) noeq private type _buffer (a:Type) = | MkBuffer: max_length:UInt32.t -> content:reference (lseq a (v max_length)) -> idx:UInt32.t -> length:UInt32.t{v idx + v length <= v max_length} -> _buffer a (* Exposed buffer type *) type buffer (a:Type) = _buffer a (* Ghost getters for specifications *) // TODO: remove `contains` after replacing all uses with `live` let contains #a h (b:buffer a) : GTot Type0 = HS.contains h b.content let unused_in #a (b:buffer a) h : GTot Type0 = HS.unused_in b.content h (* In most cases `as_seq` should be used instead of this one. *) let sel #a h (b:buffer a) : GTot (seq a) = HS.sel h b.content let max_length #a (b:buffer a) : GTot nat = v b.max_length let length #a (b:buffer a) : GTot nat = v b.length let idx #a (b:buffer a) : GTot nat = v b.idx //17-01-04 rename to container or ref? let content #a (b:buffer a) : GTot (reference (lseq a (max_length b))) = b.content (* Lifting from buffer to reference *) let as_ref #a (b:buffer a) = as_ref (content b) let as_addr #a (b:buffer a) = as_addr (content b) let frameOf #a (b:buffer a) : GTot HS.rid = HS.frameOf (content b) (* Liveliness condition, necessary for any computation on the buffer *) let live #a (h:mem) (b:buffer a) : GTot Type0 = HS.contains h b.content let unmapped_in #a (b:buffer a) (h:mem) : GTot Type0 = unused_in b h val recall: #a:Type -> b:buffer a{is_eternal_region (frameOf b) /\ not (is_mm b.content)} -> Stack unit (requires (fun m -> True)) (ensures (fun m0 _ m1 -> m0 == m1 /\ live m1 b)) let recall #a b = recall b.content (* Ghostly access an element of the array, or the full underlying sequence *) let as_seq #a h (b:buffer a) : GTot (s:seq a{Seq.length s == length b}) = Seq.slice (sel h b) (idx b) (idx b + length b) let get #a h (b:buffer a) (i:nat{i < length b}) : GTot a = Seq.index (as_seq h b) i (* Equality predicate on buffer contents, without quantifiers *) //17-01-04 revise comment? rename? let equal #a h (b:buffer a) h' (b':buffer a) : GTot Type0 = as_seq h b == as_seq h' b' (* y is included in x / x contains y *) let includes #a (x:buffer a) (y:buffer a) : GTot Type0 = x.max_length == y.max_length /\ x.content === y.content /\ idx y >= idx x /\ idx x + length x >= idx y + length y let includes_live #a h (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y)) (ensures (live h x <==> live h y)) = () let includes_as_seq #a h1 h2 (x: buffer a) (y: buffer a) : Lemma (requires (x `includes` y /\ as_seq h1 x == as_seq h2 x)) (ensures (as_seq h1 y == as_seq h2 y)) = Seq.slice_slice (sel h1 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y); Seq.slice_slice (sel h2 x) (idx x) (idx x + length x) (idx y - idx x) (idx y - idx x + length y) let includes_trans #a (x y z: buffer a) : Lemma (requires (x `includes` y /\ y `includes` z)) (ensures (x `includes` z)) = () (* Disjointness between two buffers *) let disjoint #a #a' (x:buffer a) (y:buffer a') : GTot Type0 = frameOf x =!= frameOf y \/ as_addr x =!= as_addr y \/ (a == a' /\ as_addr x == as_addr y /\ frameOf x == frameOf y /\ x.max_length == y.max_length /\ (idx x + length x <= idx y \/ idx y + length y <= idx x)) (* Disjointness is symmetric *) let lemma_disjoint_symm #a #a' (x:buffer a) (y:buffer a') : Lemma (requires True) (ensures (disjoint x y <==> disjoint y x)) [SMTPat (disjoint x y)] = () let lemma_disjoint_sub #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint subx y); SMTPat (includes x subx)] = () let lemma_disjoint_sub' #a #a' (x:buffer a) (subx:buffer a) (y:buffer a') : Lemma (requires (includes x subx /\ disjoint x y)) (ensures (disjoint subx y)) [SMTPat (disjoint y subx); SMTPat (includes x subx)] = () val lemma_live_disjoint: #a:Type -> #a':Type -> h:mem -> b:buffer a -> b':buffer a' -> Lemma (requires (live h b /\ b' `unused_in` h)) (ensures (disjoint b b')) [SMTPat (disjoint b b'); SMTPat (live h b)] let lemma_live_disjoint #a #a' h b b' = () (* Heterogeneous buffer type *) noeq type abuffer = | Buff: #t:Type -> b:buffer t -> abuffer (* let empty : TSet.set abuffer = TSet.empty #abuffer *) let only #t (b:buffer t) : Tot (TSet.set abuffer) = FStar.TSet.singleton (Buff #t b) (* let op_Plus_Plus #a s (b:buffer a) : Tot (TSet.set abuffer) = TSet.union s (only b) *) (* let op_Plus_Plus_Plus set1 set2 : Tot (TSet.set abuffer) = FStar.TSet.union set1 set2 *)
false
false
FStar.Buffer.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_Plus : x: FStar.TSet.set _ -> y: FStar.TSet.set _ -> FStar.TSet.set _
[]
FStar.Buffer.op_Plus_Plus
{ "file_name": "ulib/legacy/FStar.Buffer.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.TSet.set _ -> y: FStar.TSet.set _ -> FStar.TSet.set _
{ "end_col": 29, "end_line": 160, "start_col": 19, "start_line": 160 }