id
int64 0
843k
| repository_name
stringlengths 7
55
| file_path
stringlengths 9
332
| class_name
stringlengths 3
290
| human_written_code
stringlengths 12
4.36M
| class_skeleton
stringlengths 19
2.2M
| total_program_units
int64 1
9.57k
| total_doc_str
int64 0
4.2k
| AvgCountLine
float64 0
7.89k
| AvgCountLineBlank
float64 0
300
| AvgCountLineCode
float64 0
7.89k
| AvgCountLineComment
float64 0
7.89k
| AvgCyclomatic
float64 0
130
| CommentToCodeRatio
float64 0
176
| CountClassBase
float64 0
48
| CountClassCoupled
float64 0
589
| CountClassCoupledModified
float64 0
581
| CountClassDerived
float64 0
5.37k
| CountDeclInstanceMethod
float64 0
4.2k
| CountDeclInstanceVariable
float64 0
299
| CountDeclMethod
float64 0
4.2k
| CountDeclMethodAll
float64 0
4.2k
| CountLine
float64 1
115k
| CountLineBlank
float64 0
9.01k
| CountLineCode
float64 0
94.4k
| CountLineCodeDecl
float64 0
46.1k
| CountLineCodeExe
float64 0
91.3k
| CountLineComment
float64 0
27k
| CountStmt
float64 1
93.2k
| CountStmtDecl
float64 0
46.1k
| CountStmtExe
float64 0
90.2k
| MaxCyclomatic
float64 0
759
| MaxInheritanceTree
float64 0
16
| MaxNesting
float64 0
34
| SumCyclomatic
float64 0
6k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7,900 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/task_parameters.py
|
lightflow.models.task_parameters.TaskParameters
|
class TaskParameters(dict):
""" A class to store a mix of callable and native data type parameters for tasks.
A single parameter can either be a callable returning a native data type or the
native data type itself. This allows tasks do dynamically change their parameters
based on the data flowing into the task or data in the data_store. The structure
of the callable has to be either:
my_method(data, data_store)
or
lambda data, data_store:
Tasks that implement parameters create an object of the class in their __init__()
method and populate it with the tasks attributes. In their run() method tasks then
have to call the eval(data, data_store) method in order to evaluate any callables.
"""
def __init__(self, *args, **kwargs):
""" Initialise the class by passing any arguments down to the dict base type. """
super().__init__(*args, **kwargs)
self.update(*args, **kwargs)
def __getattr__(self, key):
""" Return the parameter value for a key using attribute-style dot notation.
Args:
key (str): The key that points to the parameter value that should be returned.
Returns:
str: The parameter value stored under the specified key.
"""
if key in self:
return self[key]
else:
raise AttributeError()
def __setattr__(self, key, value):
""" Assign a parameter value to a key using attribute-style dot notation.
Args:
key (str): The key to which the parameter value should be assigned.
value: The parameter value that should be assigned to the key.
"""
self[key] = value
def __delattr__(self, key):
""" Delete a parameter from the dictionary.
Args:
key (str): The key to the entry that should be deleted.
Raise:
AttributeError: if the key does not exist.
"""
if key in self:
del self[key]
else:
raise AttributeError()
def eval(self, data, data_store, *, exclude=None):
""" Return a new object in which callable parameters have been evaluated.
Native types are not touched and simply returned, while callable methods are
executed and their return value is returned.
Args:
data (MultiTaskData): The data object that has been passed from the
predecessor task.
data_store (DataStore): The persistent data store object that allows the task
to store data for access across the current workflow
run.
exclude (list): List of key names as strings that should be excluded from
the evaluation.
Returns:
TaskParameters: A new TaskParameters object with the callable parameters
replaced by their return value.
"""
exclude = [] if exclude is None else exclude
result = {}
for key, value in self.items():
if key in exclude:
continue
if value is not None and callable(value):
result[key] = value(data, data_store)
else:
result[key] = value
return TaskParameters(result)
def eval_single(self, key, data, data_store):
""" Evaluate the value of a single parameter taking into account callables .
Native types are not touched and simply returned, while callable methods are
executed and their return value is returned.
Args:
key (str): The name of the parameter that should be evaluated.
data (MultiTaskData): The data object that has been passed from the
predecessor task.
data_store (DataStore): The persistent data store object that allows the task
to store data for access across the current workflow
run.
"""
if key in self:
value = self[key]
if value is not None and callable(value):
return value(data, data_store)
else:
return value
else:
raise AttributeError()
|
class TaskParameters(dict):
''' A class to store a mix of callable and native data type parameters for tasks.
A single parameter can either be a callable returning a native data type or the
native data type itself. This allows tasks do dynamically change their parameters
based on the data flowing into the task or data in the data_store. The structure
of the callable has to be either:
my_method(data, data_store)
or
lambda data, data_store:
Tasks that implement parameters create an object of the class in their __init__()
method and populate it with the tasks attributes. In their run() method tasks then
have to call the eval(data, data_store) method in order to evaluate any callables.
'''
def __init__(self, *args, **kwargs):
''' Initialise the class by passing any arguments down to the dict base type. '''
pass
def __getattr__(self, key):
''' Return the parameter value for a key using attribute-style dot notation.
Args:
key (str): The key that points to the parameter value that should be returned.
Returns:
str: The parameter value stored under the specified key.
'''
pass
def __setattr__(self, key, value):
''' Assign a parameter value to a key using attribute-style dot notation.
Args:
key (str): The key to which the parameter value should be assigned.
value: The parameter value that should be assigned to the key.
'''
pass
def __delattr__(self, key):
''' Delete a parameter from the dictionary.
Args:
key (str): The key to the entry that should be deleted.
Raise:
AttributeError: if the key does not exist.
'''
pass
def eval(self, data, data_store, *, exclude=None):
''' Return a new object in which callable parameters have been evaluated.
Native types are not touched and simply returned, while callable methods are
executed and their return value is returned.
Args:
data (MultiTaskData): The data object that has been passed from the
predecessor task.
data_store (DataStore): The persistent data store object that allows the task
to store data for access across the current workflow
run.
exclude (list): List of key names as strings that should be excluded from
the evaluation.
Returns:
TaskParameters: A new TaskParameters object with the callable parameters
replaced by their return value.
'''
pass
def eval_single(self, key, data, data_store):
''' Evaluate the value of a single parameter taking into account callables .
Native types are not touched and simply returned, while callable methods are
executed and their return value is returned.
Args:
key (str): The name of the parameter that should be evaluated.
data (MultiTaskData): The data object that has been passed from the
predecessor task.
data_store (DataStore): The persistent data store object that allows the task
to store data for access across the current workflow
run.
'''
pass
| 7 | 7 | 15 | 2 | 6 | 7 | 2 | 1.56 | 1 | 2 | 0 | 0 | 6 | 0 | 6 | 33 | 113 | 21 | 36 | 10 | 29 | 56 | 31 | 10 | 24 | 5 | 2 | 2 | 14 |
7,901 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/task_signal.py
|
lightflow.models.task_signal.TaskSignal
|
class TaskSignal:
""" Class to wrap the construction and sending of signals into easy to use methods."""
def __init__(self, client, dag_name):
""" Initialise the task signal convenience class.
Args:
client (Client): A reference to a signal client object.
dag_name (str): The name of the dag the task belongs to.
"""
self._client = client
self._dag_name = dag_name
def start_dag(self, dag, *, data=None):
""" Schedule the execution of a dag by sending a signal to the workflow.
Args:
dag (Dag, str): The dag object or the name of the dag that should be started.
data (MultiTaskData): The data that should be passed on to the new dag.
Returns:
str: The name of the successfully started dag.
"""
return self._client.send(
Request(
action='start_dag',
payload={'name': dag.name if isinstance(dag, Dag) else dag,
'data': data if isinstance(data, MultiTaskData) else None}
)
).payload['dag_name']
def join_dags(self, names=None):
""" Wait for the specified dags to terminate.
This function blocks until the specified dags terminate. If no dags are specified
wait for all dags of the workflow, except the dag of the task calling this signal,
to terminate.
Args:
names (list): The names of the dags that have to terminate.
Returns:
bool: True if all the signal was sent successfully.
"""
return self._client.send(
Request(
action='join_dags',
payload={'names': names}
)
).success
def stop_dag(self, name=None):
""" Send a stop signal to the specified dag or the dag that hosts this task.
Args:
name str: The name of the dag that should be stopped. If no name is given the
dag that hosts this task is stopped.
Upon receiving the stop signal, the dag will not queue any new tasks and wait
for running tasks to terminate.
Returns:
bool: True if the signal was sent successfully.
"""
return self._client.send(
Request(
action='stop_dag',
payload={'name': name if name is not None else self._dag_name}
)
).success
def stop_workflow(self):
""" Send a stop signal to the workflow.
Upon receiving the stop signal, the workflow will not queue any new dags.
Furthermore it will make the stop signal available to the dags, which will
then stop queueing new tasks. As soon as all active tasks have finished
processing, the workflow will terminate.
Returns:
bool: True if the signal was sent successfully.
"""
return self._client.send(Request(action='stop_workflow')).success
@property
def is_stopped(self):
""" Check whether the task received a stop signal from the workflow.
Tasks can use the stop flag to gracefully terminate their work. This is
particularly important for long running tasks and tasks that employ an
infinite loop, such as trigger tasks.
Returns:
bool: True if the task should be stopped.
"""
resp = self._client.send(
Request(
action='is_dag_stopped',
payload={'dag_name': self._dag_name}
)
)
return resp.payload['is_stopped']
|
class TaskSignal:
''' Class to wrap the construction and sending of signals into easy to use methods.'''
def __init__(self, client, dag_name):
''' Initialise the task signal convenience class.
Args:
client (Client): A reference to a signal client object.
dag_name (str): The name of the dag the task belongs to.
'''
pass
def start_dag(self, dag, *, data=None):
''' Schedule the execution of a dag by sending a signal to the workflow.
Args:
dag (Dag, str): The dag object or the name of the dag that should be started.
data (MultiTaskData): The data that should be passed on to the new dag.
Returns:
str: The name of the successfully started dag.
'''
pass
def join_dags(self, names=None):
''' Wait for the specified dags to terminate.
This function blocks until the specified dags terminate. If no dags are specified
wait for all dags of the workflow, except the dag of the task calling this signal,
to terminate.
Args:
names (list): The names of the dags that have to terminate.
Returns:
bool: True if all the signal was sent successfully.
'''
pass
def stop_dag(self, name=None):
''' Send a stop signal to the specified dag or the dag that hosts this task.
Args:
name str: The name of the dag that should be stopped. If no name is given the
dag that hosts this task is stopped.
Upon receiving the stop signal, the dag will not queue any new tasks and wait
for running tasks to terminate.
Returns:
bool: True if the signal was sent successfully.
'''
pass
def stop_workflow(self):
''' Send a stop signal to the workflow.
Upon receiving the stop signal, the workflow will not queue any new dags.
Furthermore it will make the stop signal available to the dags, which will
then stop queueing new tasks. As soon as all active tasks have finished
processing, the workflow will terminate.
Returns:
bool: True if the signal was sent successfully.
'''
pass
@property
def is_stopped(self):
''' Check whether the task received a stop signal from the workflow.
Tasks can use the stop flag to gracefully terminate their work. This is
particularly important for long running tasks and tasks that employ an
infinite loop, such as trigger tasks.
Returns:
bool: True if the task should be stopped.
'''
pass
| 8 | 7 | 16 | 2 | 6 | 8 | 2 | 1.24 | 0 | 3 | 3 | 0 | 6 | 2 | 6 | 6 | 101 | 18 | 37 | 11 | 29 | 46 | 15 | 10 | 8 | 3 | 0 | 0 | 9 |
7,902 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/workflow.py
|
lightflow.models.workflow.Workflow
|
class Workflow:
""" A workflow manages the execution and monitoring of dags.
A workflow is a container for one or more dags. It is responsible for creating,
starting and monitoring dags.
It is also the central server for the signal system, handling the incoming
requests from dags, tasks and the library API.
The workflow class hosts the current stop flag for itself and a list of dags
that should be stopped.
Please note: this class has to be serialisable (e.g. by pickle)
Args:
queue (str): Name of the queue the workflow should be scheduled to.
clear_data_store (bool): Remove any documents created during the workflow
run in the data store after the run.
"""
def __init__(self, queue=DefaultJobQueueName.Workflow, clear_data_store=True):
self._queue = queue
self._clear_data_store = clear_data_store
self._dags_blueprint = {}
self._dags_running = {}
self._workflow_id = None
self._name = None
self._parameters = Parameters()
self._provided_arguments = {}
self._celery_app = None
self._stop_workflow = False
self._stop_dags = []
self._docstring = None
@classmethod
def from_name(cls, name, *, queue=DefaultJobQueueName.Workflow,
clear_data_store=True, arguments=None):
""" Create a workflow object from a workflow script.
Args:
name (str): The name of the workflow script.
queue (str): Name of the queue the workflow should be scheduled to.
clear_data_store (bool): Remove any documents created during the workflow
run in the data store after the run.
arguments (dict): Dictionary of additional arguments that are ingested
into the data store prior to the execution of the workflow.
Returns:
Workflow: A fully initialised workflow object
"""
new_workflow = cls(queue=queue, clear_data_store=clear_data_store)
new_workflow.load(name, arguments=arguments)
return new_workflow
@property
def name(self):
""" Returns the name of the workflow. """
return self._name
@property
def queue(self):
""" Returns the name queue the workflow should be scheduled to. """
return self._queue
@property
def docstring(self):
""" Returns the docstring of the workflow or None if empty. """
return self._docstring
@property
def parameters(self):
""" Returns the workflow list of parameters. """
return self._parameters
@property
def provided_arguments(self):
""" Returns the arguments provided to the workflow. """
return self._provided_arguments
@property
def is_stopped(self):
""" Returns whether the workflow was stopped. """
return self._stop_workflow
def load(self, name, *, arguments=None, validate_arguments=True, strict_dag=False):
""" Import the workflow script and load all known objects.
The workflow script is treated like a module and imported
into the Python namespace. After the import, the method looks
for instances of known classes and stores a reference for further
use in the workflow object.
Args:
name (str): The name of the workflow script.
arguments (dict): Dictionary of additional arguments that are ingested
into the data store prior to the execution of the workflow.
validate_arguments (bool): Whether to check that all required arguments have
been supplied.
strict_dag (bool): If true then the loaded workflow module must contain an
instance of Dag.
Raises:
WorkflowArgumentError: If the workflow requires arguments to be set that
were not supplied to the workflow.
WorkflowImportError: If the import of the workflow fails.
"""
arguments = {} if arguments is None else arguments
try:
workflow_module = importlib.import_module(name)
dag_present = False
# extract objects of specific types from the workflow module
for key, obj in workflow_module.__dict__.items():
if isinstance(obj, Dag):
self._dags_blueprint[obj.name] = obj
dag_present = True
elif isinstance(obj, Parameters):
self._parameters.extend(obj)
self._name = name
self._docstring = inspect.getdoc(workflow_module)
del sys.modules[name]
if strict_dag and not dag_present:
raise WorkflowImportError(
'Workflow does not include a dag {}'.format(name))
if validate_arguments:
missing_parameters = self._parameters.check_missing(arguments)
if len(missing_parameters) > 0:
raise WorkflowArgumentError(
'The following parameters are required ' +
'by the workflow, but are missing: {}'.format(
', '.join(missing_parameters)))
self._provided_arguments = arguments
except (TypeError, ImportError):
logger.error('Cannot import workflow {}'.format(name))
raise WorkflowImportError('Cannot import workflow {}'.format(name))
def run(self, config, data_store, signal_server, workflow_id):
""" Run all autostart dags in the workflow.
Only the dags that are flagged as autostart are started.
Args:
config (Config): Reference to the configuration object from which the
settings for the workflow are retrieved.
data_store (DataStore): A DataStore object that is fully initialised and
connected to the persistent data storage.
signal_server (Server): A signal Server object that receives requests
from dags and tasks.
workflow_id (str): A unique workflow id that represents this workflow run
"""
self._workflow_id = workflow_id
self._celery_app = create_app(config)
# pre-fill the data store with supplied arguments
args = self._parameters.consolidate(self._provided_arguments)
for key, value in args.items():
data_store.get(self._workflow_id).set(key, value)
# start all dags with the autostart flag set to True
for name, dag in self._dags_blueprint.items():
if dag.autostart:
self._queue_dag(name)
# as long as there are dags in the list keep running
while self._dags_running:
if config.workflow_polling_time > 0.0:
sleep(config.workflow_polling_time)
# handle new requests from dags, tasks and the library (e.g. cli, web)
for i in range(MAX_SIGNAL_REQUESTS):
request = signal_server.receive()
if request is None:
break
try:
response = self._handle_request(request)
if response is not None:
signal_server.send(response)
else:
signal_server.restore(request)
except (RequestActionUnknown, RequestFailed):
signal_server.send(Response(success=False, uid=request.uid))
# remove any dags and their result data that finished running
for name, dag in list(self._dags_running.items()):
if dag.ready():
if self._celery_app.conf.result_expires == 0:
dag.forget()
del self._dags_running[name]
elif dag.failed():
self._stop_workflow = True
# remove the signal entry
signal_server.clear()
# delete all entries in the data_store under this workflow id, if requested
if self._clear_data_store:
data_store.remove(self._workflow_id)
def _queue_dag(self, name, *, data=None):
""" Add a new dag to the queue.
If the stop workflow flag is set, no new dag can be queued.
Args:
name (str): The name of the dag that should be queued.
data (MultiTaskData): The data that should be passed on to the new dag.
Raises:
DagNameUnknown: If the specified dag name does not exist
Returns:
str: The name of the queued dag.
"""
if self._stop_workflow:
return None
if name not in self._dags_blueprint:
raise DagNameUnknown()
new_dag = copy.deepcopy(self._dags_blueprint[name])
new_dag.workflow_name = self.name
self._dags_running[new_dag.name] = self._celery_app.send_task(
JobExecPath.Dag, args=(new_dag, self._workflow_id, data),
queue=new_dag.queue, routing_key=new_dag.queue)
return new_dag.name
def _handle_request(self, request):
""" Handle an incoming request by forwarding it to the appropriate method.
Args:
request (Request): Reference to a request object containing the
incoming request.
Raises:
RequestActionUnknown: If the action specified in the request is not known.
Returns:
Response: A response object containing the response from the method handling
the request.
"""
if request is None:
return Response(success=False, uid=request.uid)
action_map = {
'start_dag': self._handle_start_dag,
'stop_workflow': self._handle_stop_workflow,
'join_dags': self._handle_join_dags,
'stop_dag': self._handle_stop_dag,
'is_dag_stopped': self._handle_is_dag_stopped
}
if request.action in action_map:
return action_map[request.action](request)
else:
raise RequestActionUnknown()
def _handle_start_dag(self, request):
""" The handler for the start_dag request.
The start_dag request creates a new dag and adds it to the queue.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'name': the name of the dag that should be started
'data': the data that is passed onto the start tasks
Returns:
Response: A response object containing the following fields:
- dag_name: The name of the started dag.
"""
dag_name = self._queue_dag(name=request.payload['name'],
data=request.payload['data'])
return Response(success=dag_name is not None, uid=request.uid,
payload={'dag_name': dag_name})
def _handle_stop_workflow(self, request):
""" The handler for the stop_workflow request.
The stop_workflow request adds all running dags to the list of dags
that should be stopped and prevents new dags from being started. The dags will
then stop queueing new tasks, which will terminate the dags and in turn the
workflow.
Args:
request (Request): Reference to a request object containing the
incoming request.
Returns:
Response: A response object containing the following fields:
- success: True if the dags were added successfully to the list
of dags that should be stopped.
"""
self._stop_workflow = True
for name, dag in self._dags_running.items():
if name not in self._stop_dags:
self._stop_dags.append(name)
return Response(success=True, uid=request.uid)
def _handle_join_dags(self, request):
""" The handler for the join_dags request.
If dag names are given in the payload only return a valid Response if none of
the dags specified by the names are running anymore. If no dag names are given,
wait for all dags except one, which by design is the one that issued the request,
to be finished.
Args:
request (Request): Reference to a request object containing the
incoming request.
Returns:
Response: A response object containing the following fields:
- success: True if all dags the request was waiting for have
completed.
"""
if request.payload['names'] is None:
send_response = len(self._dags_running) <= 1
else:
send_response = all([name not in self._dags_running.keys()
for name in request.payload['names']])
if send_response:
return Response(success=True, uid=request.uid)
else:
return None
def _handle_stop_dag(self, request):
""" The handler for the stop_dag request.
The stop_dag request adds a dag to the list of dags that should be stopped.
The dag will then stop queueing new tasks and will eventually stop running.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'name': the name of the dag that should be stopped
Returns:
Response: A response object containing the following fields:
- success: True if the dag was added successfully to the list
of dags that should be stopped.
"""
if (request.payload['name'] is not None) and \
(request.payload['name'] not in self._stop_dags):
self._stop_dags.append(request.payload['name'])
return Response(success=True, uid=request.uid)
def _handle_is_dag_stopped(self, request):
""" The handler for the dag_stopped request.
The dag_stopped request checks whether a dag is flagged to be terminated.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'dag_name': the name of the dag that should be checked
Returns:
Response: A response object containing the following fields:
- is_stopped: True if the dag is flagged to be stopped.
"""
return Response(success=True,
uid=request.uid,
payload={
'is_stopped': request.payload['dag_name'] in self._stop_dags
})
|
class Workflow:
''' A workflow manages the execution and monitoring of dags.
A workflow is a container for one or more dags. It is responsible for creating,
starting and monitoring dags.
It is also the central server for the signal system, handling the incoming
requests from dags, tasks and the library API.
The workflow class hosts the current stop flag for itself and a list of dags
that should be stopped.
Please note: this class has to be serialisable (e.g. by pickle)
Args:
queue (str): Name of the queue the workflow should be scheduled to.
clear_data_store (bool): Remove any documents created during the workflow
run in the data store after the run.
'''
def __init__(self, queue=DefaultJobQueueName.Workflow, clear_data_store=True):
pass
@classmethod
def from_name(cls, name, *, queue=DefaultJobQueueName.Workflow,
clear_data_store=True, arguments=None):
''' Create a workflow object from a workflow script.
Args:
name (str): The name of the workflow script.
queue (str): Name of the queue the workflow should be scheduled to.
clear_data_store (bool): Remove any documents created during the workflow
run in the data store after the run.
arguments (dict): Dictionary of additional arguments that are ingested
into the data store prior to the execution of the workflow.
Returns:
Workflow: A fully initialised workflow object
'''
pass
@property
def name(self):
''' Returns the name of the workflow. '''
pass
@property
def queue(self):
''' Returns the name queue the workflow should be scheduled to. '''
pass
@property
def docstring(self):
''' Returns the docstring of the workflow or None if empty. '''
pass
@property
def parameters(self):
''' Returns the workflow list of parameters. '''
pass
@property
def provided_arguments(self):
''' Returns the arguments provided to the workflow. '''
pass
@property
def is_stopped(self):
''' Returns whether the workflow was stopped. '''
pass
def load(self, name, *, arguments=None, validate_arguments=True, strict_dag=False):
''' Import the workflow script and load all known objects.
The workflow script is treated like a module and imported
into the Python namespace. After the import, the method looks
for instances of known classes and stores a reference for further
use in the workflow object.
Args:
name (str): The name of the workflow script.
arguments (dict): Dictionary of additional arguments that are ingested
into the data store prior to the execution of the workflow.
validate_arguments (bool): Whether to check that all required arguments have
been supplied.
strict_dag (bool): If true then the loaded workflow module must contain an
instance of Dag.
Raises:
WorkflowArgumentError: If the workflow requires arguments to be set that
were not supplied to the workflow.
WorkflowImportError: If the import of the workflow fails.
'''
pass
def run(self, config, data_store, signal_server, workflow_id):
''' Run all autostart dags in the workflow.
Only the dags that are flagged as autostart are started.
Args:
config (Config): Reference to the configuration object from which the
settings for the workflow are retrieved.
data_store (DataStore): A DataStore object that is fully initialised and
connected to the persistent data storage.
signal_server (Server): A signal Server object that receives requests
from dags and tasks.
workflow_id (str): A unique workflow id that represents this workflow run
'''
pass
def _queue_dag(self, name, *, data=None):
''' Add a new dag to the queue.
If the stop workflow flag is set, no new dag can be queued.
Args:
name (str): The name of the dag that should be queued.
data (MultiTaskData): The data that should be passed on to the new dag.
Raises:
DagNameUnknown: If the specified dag name does not exist
Returns:
str: The name of the queued dag.
'''
pass
def _handle_request(self, request):
''' Handle an incoming request by forwarding it to the appropriate method.
Args:
request (Request): Reference to a request object containing the
incoming request.
Raises:
RequestActionUnknown: If the action specified in the request is not known.
Returns:
Response: A response object containing the response from the method handling
the request.
'''
pass
def _handle_start_dag(self, request):
''' The handler for the start_dag request.
The start_dag request creates a new dag and adds it to the queue.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'name': the name of the dag that should be started
'data': the data that is passed onto the start tasks
Returns:
Response: A response object containing the following fields:
- dag_name: The name of the started dag.
'''
pass
def _handle_stop_workflow(self, request):
''' The handler for the stop_workflow request.
The stop_workflow request adds all running dags to the list of dags
that should be stopped and prevents new dags from being started. The dags will
then stop queueing new tasks, which will terminate the dags and in turn the
workflow.
Args:
request (Request): Reference to a request object containing the
incoming request.
Returns:
Response: A response object containing the following fields:
- success: True if the dags were added successfully to the list
of dags that should be stopped.
'''
pass
def _handle_join_dags(self, request):
''' The handler for the join_dags request.
If dag names are given in the payload only return a valid Response if none of
the dags specified by the names are running anymore. If no dag names are given,
wait for all dags except one, which by design is the one that issued the request,
to be finished.
Args:
request (Request): Reference to a request object containing the
incoming request.
Returns:
Response: A response object containing the following fields:
- success: True if all dags the request was waiting for have
completed.
'''
pass
def _handle_stop_dag(self, request):
''' The handler for the stop_dag request.
The stop_dag request adds a dag to the list of dags that should be stopped.
The dag will then stop queueing new tasks and will eventually stop running.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'name': the name of the dag that should be stopped
Returns:
Response: A response object containing the following fields:
- success: True if the dag was added successfully to the list
of dags that should be stopped.
'''
pass
def _handle_is_dag_stopped(self, request):
''' The handler for the dag_stopped request.
The dag_stopped request checks whether a dag is flagged to be terminated.
Args:
request (Request): Reference to a request object containing the
incoming request. The payload has to contain the
following fields:
'dag_name': the name of the dag that should be checked
Returns:
Response: A response object containing the following fields:
- is_stopped: True if the dag is flagged to be stopped.
'''
pass
| 25 | 17 | 20 | 3 | 9 | 8 | 3 | 0.95 | 0 | 14 | 10 | 0 | 16 | 12 | 17 | 17 | 382 | 76 | 157 | 55 | 131 | 149 | 123 | 46 | 105 | 15 | 0 | 4 | 48 |
7,903 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/const.py
|
lightflow.queue.const.DefaultJobQueueName
|
class DefaultJobQueueName:
Workflow = 'workflow'
Dag = 'dag'
Task = 'task'
|
class DefaultJobQueueName:
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 4 | 3 | 0 | 4 | 4 | 3 | 0 | 0 | 0 | 0 |
7,904 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/tasks/bash_task.py
|
lightflow.tasks.bash_task.BashTask
|
class BashTask(BaseTask):
""" The Bash task executes a user-defined bash command or bash file.
All task parameters except the name, callbacks, queue, force_run and
propagate_skip can either be their native type or a callable returning
the native type.
Args:
name (str): The name of the task.
command (function, str): The command or bash file that should be executed.
cwd (function, str, None): The working directory for the command.
env (function, dict, None): A dictionary of environment variables.
user (function, int, None): The user ID of the user with which the command
should be executed.
group (function, int, None): The group ID of the group with which the command
should be executed.
stdin (function, str, None): An input string that should be passed on to the
process.
refresh_time (function, float): The time in seconds the internal output
handling waits before checking for new output from the process.
capture_stdout (function, bool): Set to ``True`` to capture all standard output
in a temporary file.
capture_stderr (function, bool): Set to ``True`` to capture all standard errors
in a temporary file.
callback_process (callable): A callable that is called after the process
started. The definition is::
(pid, data, store, signal, context) -> None
with the parameters:
- **pid** (*int*): The process PID.
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_end (callable): A callable that is called after the process
completed. The definition is::
(returncode, stdout_file, stderr_file,
data, store, signal, context) -> None
with the parameters:
- **returncode** (*int*): The return code of the process.
- **stdout_file**: A file object with the standard output\
if the flag ``capture_stdout`` was set to ``True``,\
otherwise ``None``.
- **stderr_file**: A file object with the error output\
if the flag ``capture_stderr`` was set to ``True``
otherwise ``None.``
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_stdout (callable): A callable that is called for every line of
output the process sends to stdout. The definition is::
(line, data, store, signal, context) -> None
with the parameters:
- **line** (*str*): Single line of the process output as a string.
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_stderr (callable): A callable that is called for every line of
output the process sends to stderr. The definition is::
(line, data, store, signal, context) -> None
with the parameters:
- **line** (*str*): Single line of the process output as a string.
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
queue (str): Name of the queue the task should be scheduled to. Defaults to
the general task queue.
callback_init (callable): An optional callable that is called shortly
before the task is run. The definition is::
(data, store, signal, context) -> None
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_finally (callable): An optional callable that is always called
at the end of a task, regardless whether it completed successfully,
was stopped or was aborted. The definition is::
(status, data, store, signal, context) -> None
with the parameters:
- **status** (*TaskStatus*): The current status of the task. It can\
be one of the following:
- ``TaskStatus.Success`` -- task was successful
- ``TaskStatus.Stopped`` -- task was stopped
- ``TaskStatus.Aborted`` -- task was aborted
- ``TaskStatus.Error`` -- task raised an exception
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
force_run (bool): Run the task even if it is flagged to be skipped.
propagate_skip (bool): Propagate the skip flag to the next task.
"""
def __init__(self, name, command, cwd=None, env=None, user=None, group=None,
stdin=None, refresh_time=0.1, capture_stdout=False, capture_stderr=False,
callback_process=None, callback_end=None,
callback_stdout=None, callback_stderr=None,
*, queue=DefaultJobQueueName.Task, callback_init=None,
callback_finally=None, force_run=False, propagate_skip=True):
super().__init__(name, queue=queue,
callback_init=callback_init, callback_finally=callback_finally,
force_run=force_run, propagate_skip=propagate_skip)
self.params = TaskParameters(
command=command,
cwd=cwd,
env=env,
user=user,
group=group,
stdin=stdin,
refresh_time=refresh_time,
capture_stdout=capture_stdout,
capture_stderr=capture_stderr
)
self._callback_process = callback_process
self._callback_end = callback_end
self._callback_stdout = callback_stdout
self._callback_stderr = callback_stderr
def run(self, data, store, signal, context, **kwargs):
""" The main run method of the Python task.
Args:
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
Returns:
Action (Action): An Action object containing the data that should be passed on
to the next task and optionally a list of successor tasks that
should be executed.
"""
params = self.params.eval(data, store, exclude=['command'])
capture_stdout = self._callback_stdout is not None or params.capture_stdout
capture_stderr = self._callback_stderr is not None or params.capture_stderr
stdout_file = TemporaryFile() if params.capture_stdout else None
stderr_file = TemporaryFile() if params.capture_stderr else None
stdout = PIPE if capture_stdout else None
stderr = PIPE if capture_stderr else None
# change the user or group under which the process should run
if params.user is not None or params.group is not None:
pre_exec = self._run_as(params.user, params.group)
else:
pre_exec = None
# call the command
proc = Popen(self.params.eval_single('command', data, store),
cwd=params.cwd, shell=True, env=params.env,
preexec_fn=pre_exec, stdout=stdout, stderr=stderr,
stdin=PIPE if params.stdin is not None else None)
# if input is available, send it to the process
if params.stdin is not None:
proc.stdin.write(params.stdin.encode(sys.getfilesystemencoding()))
# send a notification that the process has been started
try:
if self._callback_process is not None:
self._callback_process(proc.pid, data, store, signal, context)
except (StopTask, AbortWorkflow):
proc.terminate()
raise
# send the output handling to a thread
if capture_stdout or capture_stderr:
output_reader = BashTaskOutputReader(proc, stdout_file, stderr_file,
self._callback_stdout,
self._callback_stderr,
params.refresh_time,
data, store, signal, context)
output_reader.start()
else:
output_reader = None
# wait for the process to complete and watch for a stop signal
while proc.poll() is None or\
(output_reader is not None and output_reader.is_alive()):
sleep(params.refresh_time)
if signal.is_stopped:
proc.terminate()
if output_reader is not None:
output_reader.join()
data = output_reader.data
# if a stop or abort exception was raised, stop the bash process and re-raise
if output_reader.exc_obj is not None:
if proc.poll() is None:
proc.terminate()
raise output_reader.exc_obj
# send a notification that the process has completed
if self._callback_end is not None:
if stdout_file is not None:
stdout_file.seek(0)
if stderr_file is not None:
stderr_file.seek(0)
self._callback_end(proc.returncode, stdout_file, stderr_file,
data, store, signal, context)
if stdout_file is not None:
stdout_file.close()
if stderr_file is not None:
stderr_file.close()
return Action(data)
@staticmethod
def _run_as(user, group):
""" Function wrapper that sets the user and group for the process """
def wrapper():
if user is not None:
os.setuid(user)
if group is not None:
os.setgid(group)
return wrapper
|
class BashTask(BaseTask):
''' The Bash task executes a user-defined bash command or bash file.
All task parameters except the name, callbacks, queue, force_run and
propagate_skip can either be their native type or a callable returning
the native type.
Args:
name (str): The name of the task.
command (function, str): The command or bash file that should be executed.
cwd (function, str, None): The working directory for the command.
env (function, dict, None): A dictionary of environment variables.
user (function, int, None): The user ID of the user with which the command
should be executed.
group (function, int, None): The group ID of the group with which the command
should be executed.
stdin (function, str, None): An input string that should be passed on to the
process.
refresh_time (function, float): The time in seconds the internal output
handling waits before checking for new output from the process.
capture_stdout (function, bool): Set to ``True`` to capture all standard output
in a temporary file.
capture_stderr (function, bool): Set to ``True`` to capture all standard errors
in a temporary file.
callback_process (callable): A callable that is called after the process
started. The definition is::
(pid, data, store, signal, context) -> None
with the parameters:
- **pid** (*int*): The process PID.
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_end (callable): A callable that is called after the process
completed. The definition is::
(returncode, stdout_file, stderr_file,
data, store, signal, context) -> None
with the parameters:
- **returncode** (*int*): The return code of the process.
- **stdout_file**: A file object with the standard output if the flag ``capture_stdout`` was set to ``True``, otherwise ``None``.
- **stderr_file**: A file object with the error output if the flag ``capture_stderr`` was set to ``True``
otherwise ``None.``
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_stdout (callable): A callable that is called for every line of
output the process sends to stdout. The definition is::
(line, data, store, signal, context) -> None
with the parameters:
- **line** (*str*): Single line of the process output as a string.
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_stderr (callable): A callable that is called for every line of
output the process sends to stderr. The definition is::
(line, data, store, signal, context) -> None
with the parameters:
- **line** (*str*): Single line of the process output as a string.
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
queue (str): Name of the queue the task should be scheduled to. Defaults to
the general task queue.
callback_init (callable): An optional callable that is called shortly
before the task is run. The definition is::
(data, store, signal, context) -> None
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_finally (callable): An optional callable that is always called
at the end of a task, regardless whether it completed successfully,
was stopped or was aborted. The definition is::
(status, data, store, signal, context) -> None
with the parameters:
- **status** (*TaskStatus*): The current status of the task. It can be one of the following:
- ``TaskStatus.Success`` -- task was successful
- ``TaskStatus.Stopped`` -- task was stopped
- ``TaskStatus.Aborted`` -- task was aborted
- ``TaskStatus.Error`` -- task raised an exception
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
force_run (bool): Run the task even if it is flagged to be skipped.
propagate_skip (bool): Propagate the skip flag to the next task.
'''
def __init__(self, name, command, cwd=None, env=None, user=None, group=None,
stdin=None, refresh_time=0.1, capture_stdout=False, capture_stderr=False,
callback_process=None, callback_end=None,
callback_stdout=None, callback_stderr=None,
*, queue=DefaultJobQueueName.Task, callback_init=None,
callback_finally=None, force_run=False, propagate_skip=True):
pass
def run(self, data, store, signal, context, **kwargs):
''' The main run method of the Python task.
Args:
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
Returns:
Action (Action): An Action object containing the data that should be passed on
to the next task and optionally a list of successor tasks that
should be executed.
'''
pass
@staticmethod
def _run_as(user, group):
''' Function wrapper that sets the user and group for the process '''
pass
def wrapper():
pass
| 6 | 3 | 34 | 5 | 23 | 6 | 7 | 1.54 | 1 | 8 | 6 | 0 | 2 | 5 | 3 | 27 | 278 | 49 | 90 | 26 | 79 | 139 | 61 | 20 | 56 | 21 | 1 | 3 | 26 |
7,905 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/tasks/bash_task.py
|
lightflow.tasks.bash_task.BashTaskOutputReader
|
class BashTaskOutputReader(Thread):
""" Helper class to read the output of the process. """
def __init__(self, process, stdout_file, stderr_file,
callback_stdout, callback_stderr, refresh_time,
data, store, signal, context):
""" Initializes the reader for the process output.
Args:
process: Reference to a Popen object representing the running process.
stdout_file: The file object for the standard output of the process.
stderr_file: The file object for the standard error of the process.
callback_stdout: The callback that should be called for every line of the
standard output.
callback_stderr: The callback that should be called for every line of the
standard error.
refresh_time (float): The time in seconds before checking for new output
from the process.
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
"""
super().__init__()
self._process = process
self._stdout_file = stdout_file
self._stderr_file = stderr_file
self._callback_stdout = callback_stdout
self._callback_stderr = callback_stderr
self._refresh_time = refresh_time
self._data = data
self._store = store
self._signal = signal
self._context = context
self._exc_obj = None
@property
def data(self):
return self._data
@property
def exc_obj(self):
return self._exc_obj
def run(self):
""" Drain the process output streams. """
read_stdout = partial(self._read_output, stream=self._process.stdout,
callback=self._callback_stdout,
output_file=self._stdout_file)
read_stderr = partial(self._read_output, stream=self._process.stderr,
callback=self._callback_stderr,
output_file=self._stderr_file)
# capture the process output as long as the process is active
try:
while self._process.poll() is None:
result_stdout = read_stdout()
result_stderr = read_stderr()
if not result_stdout and not result_stderr:
sleep(self._refresh_time)
# read remaining lines
while read_stdout():
pass
while read_stderr():
pass
except (StopTask, AbortWorkflow) as exc:
self._exc_obj = exc
def _read_output(self, stream, callback, output_file):
""" Read the output of the process, executed the callback and save the output.
Args:
stream: A file object pointing to the output stream that should be read.
callback(callable, None): A callback function that is called for each new
line of output.
output_file: A file object to which the full output is written.
Returns:
bool: True if a line was read from the output, otherwise False.
"""
if (callback is None and output_file is None) or stream.closed:
return False
line = stream.readline()
if line:
if callback is not None:
callback(line.decode(),
self._data, self._store, self._signal, self._context)
if output_file is not None:
output_file.write(line)
return True
else:
return False
|
class BashTaskOutputReader(Thread):
''' Helper class to read the output of the process. '''
def __init__(self, process, stdout_file, stderr_file,
callback_stdout, callback_stderr, refresh_time,
data, store, signal, context):
''' Initializes the reader for the process output.
Args:
process: Reference to a Popen object representing the running process.
stdout_file: The file object for the standard output of the process.
stderr_file: The file object for the standard error of the process.
callback_stdout: The callback that should be called for every line of the
standard output.
callback_stderr: The callback that should be called for every line of the
standard error.
refresh_time (float): The time in seconds before checking for new output
from the process.
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
'''
pass
@property
def data(self):
pass
@property
def exc_obj(self):
pass
def run(self):
''' Drain the process output streams. '''
pass
def _read_output(self, stream, callback, output_file):
''' Read the output of the process, executed the callback and save the output.
Args:
stream: A file object pointing to the output stream that should be read.
callback(callable, None): A callback function that is called for each new
line of output.
output_file: A file object to which the full output is written.
Returns:
bool: True if a line was read from the output, otherwise False.
'''
pass
| 8 | 4 | 19 | 3 | 10 | 6 | 3 | 0.59 | 1 | 4 | 2 | 0 | 5 | 11 | 5 | 30 | 103 | 17 | 54 | 27 | 44 | 32 | 44 | 22 | 38 | 6 | 1 | 3 | 14 |
7,906 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/tasks/python_task.py
|
lightflow.tasks.python_task.PythonTask
|
class PythonTask(BaseTask):
""" The Python task executes a user-defined python method.
Args:
name (str): The name of the task.
callback (callable): A reference to the Python method that should be called by
the task as soon as it is run. It has to have the following definition::
(data, store, signal, context) -> None, Action
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
queue (str): Name of the queue the task should be scheduled to. Defaults to
the general task queue.
callback_init (callable): An optional callable that is called shortly
before the task is run. The definition is::
(data, store, signal, context) -> None
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_finally (callable): An optional callable that is always called
at the end of a task, regardless whether it completed successfully,
was stopped or was aborted. The definition is::
(status, data, store, signal, context) -> None
with the parameters:
- **status** (*TaskStatus*): The current status of the task. It can\
be one of the following:
- ``TaskStatus.Success`` -- task was successful
- ``TaskStatus.Stopped`` -- task was stopped
- ``TaskStatus.Aborted`` -- task was aborted
- ``TaskStatus.Error`` -- task raised an exception
- **data** (:class:`.MultiTaskData`): The data object that has been passed\
from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object\
that allows the task to store data for access across the current\
workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps\
the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
force_run (bool): Run the task even if it is flagged to be skipped.
propagate_skip (bool): Propagate the skip flag to the next task.
"""
def __init__(self, name, callback=None, *, queue=DefaultJobQueueName.Task,
callback_init=None, callback_finally=None,
force_run=False, propagate_skip=True):
super().__init__(name, queue=queue,
callback_init=callback_init, callback_finally=callback_finally,
force_run=force_run, propagate_skip=propagate_skip)
self._callback = callback
def run(self, data, store, signal, context, **kwargs):
""" The main run method of the Python task.
Args:
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
Returns:
Action: An Action object containing the data that should be passed on
to the next task and optionally a list of successor tasks that
should be executed.
"""
if self._callback is not None:
result = self._callback(data, store, signal, context, **kwargs)
return result if result is not None else Action(data)
|
class PythonTask(BaseTask):
''' The Python task executes a user-defined python method.
Args:
name (str): The name of the task.
callback (callable): A reference to the Python method that should be called by
the task as soon as it is run. It has to have the following definition::
(data, store, signal, context) -> None, Action
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
queue (str): Name of the queue the task should be scheduled to. Defaults to
the general task queue.
callback_init (callable): An optional callable that is called shortly
before the task is run. The definition is::
(data, store, signal, context) -> None
with the parameters:
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
callback_finally (callable): An optional callable that is always called
at the end of a task, regardless whether it completed successfully,
was stopped or was aborted. The definition is::
(status, data, store, signal, context) -> None
with the parameters:
- **status** (*TaskStatus*): The current status of the task. It can be one of the following:
- ``TaskStatus.Success`` -- task was successful
- ``TaskStatus.Stopped`` -- task was stopped
- ``TaskStatus.Aborted`` -- task was aborted
- ``TaskStatus.Error`` -- task raised an exception
- **data** (:class:`.MultiTaskData`): The data object that has been passed from the predecessor task.
- **store** (:class:`.DataStoreDocument`): The persistent data store object that allows the task to store data for access across the current workflow run.
- **signal** (*TaskSignal*): The signal object for tasks. It wraps the construction and sending of signals into easy to use methods.
- **context** (*TaskContext*): The context in which the tasks runs.
force_run (bool): Run the task even if it is flagged to be skipped.
propagate_skip (bool): Propagate the skip flag to the next task.
'''
def __init__(self, name, callback=None, *, queue=DefaultJobQueueName.Task,
callback_init=None, callback_finally=None,
force_run=False, propagate_skip=True):
pass
def run(self, data, store, signal, context, **kwargs):
''' The main run method of the Python task.
Args:
data (:class:`.MultiTaskData`): The data object that has been passed from the
predecessor task.
store (:class:`.DataStoreDocument`): The persistent data store object that allows the
task to store data for access across the current workflow run.
signal (TaskSignal): The signal object for tasks. It wraps the construction
and sending of signals into easy to use methods.
context (TaskContext): The context in which the tasks runs.
Returns:
Action: An Action object containing the data that should be passed on
to the next task and optionally a list of successor tasks that
should be executed.
'''
pass
| 3 | 2 | 14 | 1 | 6 | 7 | 2 | 5.42 | 1 | 3 | 2 | 0 | 2 | 1 | 2 | 26 | 95 | 18 | 12 | 7 | 7 | 65 | 8 | 5 | 5 | 3 | 1 | 1 | 4 |
7,907 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/tests/test_base_task.py
|
tests.test_base_task.CeleryResultMock
|
class CeleryResultMock:
def __init__(self, *, state=None, ready=False, failed=False):
self.state = state
self._ready = ready
self._failed = failed
self._forget_called = False
def ready(self):
return self._ready
def failed(self):
return self._failed
def forget(self):
self._forget_called = True
|
class CeleryResultMock:
def __init__(self, *, state=None, ready=False, failed=False):
pass
def ready(self):
pass
def failed(self):
pass
def forget(self):
pass
| 5 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 15 | 3 | 12 | 9 | 7 | 0 | 12 | 9 | 7 | 1 | 0 | 0 | 4 |
7,908 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.QueueStats
|
class QueueStats:
""" Represents the queue information returned from celery.
Args:
name (str): The name of the queue.
routing_key (str): The routing key of the queue.
"""
def __init__(self, name, routing_key):
self.name = name
self.routing_key = routing_key
@classmethod
def from_celery(cls, queue_dict):
""" Create a QueueStats object from the dictionary returned by celery.
Args:
queue_dict (dict): The dictionary as returned by celery.
Returns:
QueueStats: A fully initialized QueueStats object.
"""
return QueueStats(
name=queue_dict['name'],
routing_key=queue_dict['routing_key']
)
def to_dict(self):
""" Return a dictionary of the queue stats.
Returns:
dict: Dictionary of the stats.
"""
return {
'name': self.name,
'routing_key': self.routing_key
}
|
class QueueStats:
''' Represents the queue information returned from celery.
Args:
name (str): The name of the queue.
routing_key (str): The routing key of the queue.
'''
def __init__(self, name, routing_key):
pass
@classmethod
def from_celery(cls, queue_dict):
''' Create a QueueStats object from the dictionary returned by celery.
Args:
queue_dict (dict): The dictionary as returned by celery.
Returns:
QueueStats: A fully initialized QueueStats object.
'''
pass
def to_dict(self):
''' Return a dictionary of the queue stats.
Returns:
dict: Dictionary of the stats.
'''
pass
| 5 | 3 | 9 | 1 | 4 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 36 | 6 | 15 | 7 | 10 | 15 | 8 | 6 | 4 | 1 | 0 | 0 | 3 |
7,909 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobSucceededEvent
|
class JobSucceededEvent(JobEvent):
""" This event is triggered when a job completed successfully. """
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
super().__init__(uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration)
|
class JobSucceededEvent(JobEvent):
''' This event is triggered when a job completed successfully. '''
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
pass
| 2 | 1 | 4 | 0 | 4 | 0 | 1 | 0.2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 6 | 0 | 5 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,910 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobStoppedEvent
|
class JobStoppedEvent(JobEvent):
""" This event is triggered when a job was stopped. """
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
super().__init__(uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration)
|
class JobStoppedEvent(JobEvent):
''' This event is triggered when a job was stopped. '''
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
pass
| 2 | 1 | 4 | 0 | 4 | 0 | 1 | 0.2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 6 | 0 | 5 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,911 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/mongo_proxy.py
|
lightflow.models.mongo_proxy.MongoClientProxy
|
class MongoClientProxy(MongoReconnectProxy):
""" Proxy for catching AutoReconnect exceptions in function calls of the MongoClient
Specialization of the MongoReconnectProxy class for the MongoClient class.
"""
def __init__(self, obj):
super().__init__(obj,
get_methods(pymongo.collection.Collection,
pymongo.database.Database,
MongoClient,
pymongo))
|
class MongoClientProxy(MongoReconnectProxy):
''' Proxy for catching AutoReconnect exceptions in function calls of the MongoClient
Specialization of the MongoReconnectProxy class for the MongoClient class.
'''
def __init__(self, obj):
pass
| 2 | 1 | 6 | 0 | 6 | 0 | 1 | 0.43 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 9 | 11 | 1 | 7 | 2 | 5 | 3 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,912 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobStats
|
class JobStats:
""" Represents the job (=celery task) information returned from celery.
Args:
name (str): The name of the job.
job_id (str): The internal ID of the job.
job_type (str): The type of the job (workflow, dag, task).
queue (str): The name of the queue the job was scheduled to.
workflow_id (str): The id of the workflow that started this job.
start_time (datetime): The time the job was started in UTC.
arguments (dict): The provided arguments to a workflow.
acknowledged (bool): True of the job was acknowledged by the message system.
func_name (str): The name of the function that represents this job.
hostname (str): The name of the host this job runs on.
worker_name (str): The name of the worker this job runs on.
worker_pid (int): The pid of the process this jobs runs on.
routing_key (str): The routing key for this job.
"""
def __init__(self, name, job_id, job_type, queue, workflow_id, start_time, arguments,
acknowledged, func_name, hostname, worker_name, worker_pid, routing_key):
self.name = name
self.id = job_id
self.type = job_type
self.workflow_id = workflow_id
self.queue = queue
self.start_time = start_time
self.arguments = arguments
self.acknowledged = acknowledged
self.func_name = func_name
self.hostname = hostname
self.worker_name = worker_name
self.worker_pid = worker_pid
self.routing_key = routing_key
@classmethod
def from_celery(cls, worker_name, job_dict, celery_app):
""" Create a JobStats object from the dictionary returned by celery.
Args:
worker_name (str): The name of the worker this jobs runs on.
job_dict (dict): The dictionary as returned by celery.
celery_app: Reference to a celery application object.
Returns:
JobStats: A fully initialized JobStats object.
"""
if not isinstance(job_dict, dict) or 'id' not in job_dict:
raise JobStatInvalid('The job description is missing important fields.')
async_result = AsyncResult(id=job_dict['id'], app=celery_app)
a_info = async_result.info if isinstance(async_result.info, dict) else None
return JobStats(
name=a_info.get('name', '') if a_info is not None else '',
job_id=job_dict['id'],
job_type=a_info.get('type', '') if a_info is not None else '',
workflow_id=a_info.get('workflow_id', '') if a_info is not None else '',
queue=a_info.get('queue', '') if a_info is not None else '',
start_time=a_info.get('start_time', None) if a_info is not None else None,
arguments=a_info.get('arguments', {}) if a_info is not None else {},
acknowledged=job_dict['acknowledged'],
func_name=job_dict['type'],
hostname=job_dict['hostname'],
worker_name=worker_name,
worker_pid=job_dict['worker_pid'],
routing_key=job_dict['delivery_info']['routing_key']
)
def to_dict(self):
""" Return a dictionary of the job stats.
Returns:
dict: Dictionary of the stats.
"""
return {
'name': self.name,
'id': self.id,
'type': self.type,
'workflow_id': self.workflow_id,
'queue': self.queue,
'start_time': self.start_time,
'arguments': self.arguments,
'acknowledged': self.acknowledged,
'func_name': self.func_name,
'hostname': self.hostname,
'worker_name': self.worker_name,
'worker_pid': self.worker_pid,
'routing_key': self.routing_key
}
|
class JobStats:
''' Represents the job (=celery task) information returned from celery.
Args:
name (str): The name of the job.
job_id (str): The internal ID of the job.
job_type (str): The type of the job (workflow, dag, task).
queue (str): The name of the queue the job was scheduled to.
workflow_id (str): The id of the workflow that started this job.
start_time (datetime): The time the job was started in UTC.
arguments (dict): The provided arguments to a workflow.
acknowledged (bool): True of the job was acknowledged by the message system.
func_name (str): The name of the function that represents this job.
hostname (str): The name of the host this job runs on.
worker_name (str): The name of the worker this job runs on.
worker_pid (int): The pid of the process this jobs runs on.
routing_key (str): The routing key for this job.
'''
def __init__(self, name, job_id, job_type, queue, workflow_id, start_time, arguments,
acknowledged, func_name, hostname, worker_name, worker_pid, routing_key):
pass
@classmethod
def from_celery(cls, worker_name, job_dict, celery_app):
''' Create a JobStats object from the dictionary returned by celery.
Args:
worker_name (str): The name of the worker this jobs runs on.
job_dict (dict): The dictionary as returned by celery.
celery_app: Reference to a celery application object.
Returns:
JobStats: A fully initialized JobStats object.
'''
pass
def to_dict(self):
''' Return a dictionary of the job stats.
Returns:
dict: Dictionary of the stats.
'''
pass
| 5 | 3 | 23 | 2 | 17 | 4 | 4 | 0.53 | 0 | 2 | 1 | 0 | 2 | 13 | 3 | 3 | 89 | 8 | 53 | 21 | 47 | 28 | 23 | 19 | 19 | 9 | 0 | 1 | 11 |
7,913 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobEvent
|
class JobEvent:
""" The base class for job events from celery.
Args:
uuid (str): The internal event id.
job_type (str): The type of job that caused this event (workflow, dag, task).
event_type (str): The internal event type name.
queue (str): The name of the queue the job was scheduled to.
hostname (str): The name of the host on which the job is running.
pid (int): The pid of the process that runs the job.
name (str): The name of the workflow, dag or task that caused this event.
workflow_id (str): The id of the workflow that hosts this job.
event_time (datetime): The time when the event was triggered.
duration (float, None): The duration it took to execute the job.
"""
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
self.uuid = uuid
self.type = job_type
self.event = event_type
self.queue = queue
self.hostname = hostname
self.pid = pid
self.name = name
self.workflow_id = workflow_id
self.event_time = event_time
self.duration = duration
@classmethod
def from_event(cls, event):
""" Create a JobEvent object from the event dictionary returned by celery.
Args:
event (dict): The dictionary as returned by celery.
Returns:
JobEvent: A fully initialized JobEvent object.
"""
return cls(
uuid=event['uuid'],
job_type=event['job_type'],
event_type=event['type'],
queue=event['queue'],
hostname=event['hostname'],
pid=event['pid'],
name=event['name'],
workflow_id=event['workflow_id'],
event_time=event['time'],
duration=event['duration']
)
|
class JobEvent:
''' The base class for job events from celery.
Args:
uuid (str): The internal event id.
job_type (str): The type of job that caused this event (workflow, dag, task).
event_type (str): The internal event type name.
queue (str): The name of the queue the job was scheduled to.
hostname (str): The name of the host on which the job is running.
pid (int): The pid of the process that runs the job.
name (str): The name of the workflow, dag or task that caused this event.
workflow_id (str): The id of the workflow that hosts this job.
event_time (datetime): The time when the event was triggered.
duration (float, None): The duration it took to execute the job.
'''
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
pass
@classmethod
def from_event(cls, event):
''' Create a JobEvent object from the event dictionary returned by celery.
Args:
event (dict): The dictionary as returned by celery.
Returns:
JobEvent: A fully initialized JobEvent object.
'''
pass
| 4 | 2 | 17 | 1 | 13 | 3 | 1 | 0.7 | 0 | 0 | 0 | 4 | 1 | 10 | 2 | 2 | 50 | 4 | 27 | 15 | 22 | 19 | 14 | 13 | 11 | 1 | 0 | 0 | 2 |
7,914 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobAbortedEvent
|
class JobAbortedEvent(JobEvent):
""" This event is triggered when a job was aborted. """
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
super().__init__(uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration)
|
class JobAbortedEvent(JobEvent):
''' This event is triggered when a job was aborted. '''
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
pass
| 2 | 1 | 4 | 0 | 4 | 0 | 1 | 0.2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 6 | 0 | 5 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,915 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.BrokerStats
|
class BrokerStats:
""" Represents the broker information returned from celery.
Args:
hostname (str): The broker hostname.
port (int): The broker port.
transport (str): The transport protocol of the broker.
virtual_host (str): The virtual host, e.g. the database number in redis.
"""
def __init__(self, hostname, port, transport, virtual_host):
self.hostname = hostname
self.port = port
self.transport = transport
self.virtual_host = virtual_host
@classmethod
def from_celery(cls, broker_dict):
""" Create a BrokerStats object from the dictionary returned by celery.
Args:
broker_dict (dict): The dictionary as returned by celery.
Returns:
BrokerStats: A fully initialized BrokerStats object.
"""
return BrokerStats(
hostname=broker_dict['hostname'],
port=broker_dict['port'],
transport=broker_dict['transport'],
virtual_host=broker_dict['virtual_host']
)
def to_dict(self):
""" Return a dictionary of the broker stats.
Returns:
dict: Dictionary of the stats.
"""
return {
'hostname': self.hostname,
'port': self.port,
'transport': self.transport,
'virtual_host': self.virtual_host
}
|
class BrokerStats:
''' Represents the broker information returned from celery.
Args:
hostname (str): The broker hostname.
port (int): The broker port.
transport (str): The transport protocol of the broker.
virtual_host (str): The virtual host, e.g. the database number in redis.
'''
def __init__(self, hostname, port, transport, virtual_host):
pass
@classmethod
def from_celery(cls, broker_dict):
''' Create a BrokerStats object from the dictionary returned by celery.
Args:
broker_dict (dict): The dictionary as returned by celery.
Returns:
BrokerStats: A fully initialized BrokerStats object.
'''
pass
def to_dict(self):
''' Return a dictionary of the broker stats.
Returns:
dict: Dictionary of the stats.
'''
pass
| 5 | 3 | 11 | 1 | 6 | 3 | 1 | 0.81 | 0 | 0 | 0 | 0 | 2 | 4 | 3 | 3 | 44 | 6 | 21 | 9 | 16 | 17 | 10 | 8 | 6 | 1 | 0 | 0 | 3 |
7,916 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/const.py
|
lightflow.queue.const.JobType
|
class JobType:
Workflow = 'workflow'
Dag = 'dag'
Task = 'task'
|
class JobType:
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 4 | 3 | 0 | 4 | 4 | 3 | 0 | 0 | 0 | 0 |
7,917 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/const.py
|
lightflow.queue.const.JobStatus
|
class JobStatus:
Active = 0
Registered = 1
Reserved = 2
Scheduled = 3
|
class JobStatus:
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 5 | 4 | 0 | 5 | 5 | 4 | 0 | 0 | 0 | 0 |
7,918 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/const.py
|
lightflow.queue.const.JobExecPath
|
class JobExecPath:
Workflow = 'lightflow.queue.jobs.execute_workflow'
Dag = 'lightflow.queue.jobs.execute_dag'
Task = 'lightflow.queue.jobs.execute_task'
|
class JobExecPath:
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 | 4 | 3 | 0 | 4 | 4 | 3 | 0 | 0 | 0 | 0 |
7,919 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/const.py
|
lightflow.queue.const.JobEventName
|
class JobEventName:
Started = 'task-lightflow-started'
Succeeded = 'task-lightflow-succeeded'
Stopped = 'task-lightflow-stopped'
Aborted = 'task-lightflow-aborted'
|
class JobEventName:
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 5 | 5 | 4 | 0 | 5 | 5 | 4 | 0 | 0 | 0 | 0 |
7,920 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.JobStartedEvent
|
class JobStartedEvent(JobEvent):
""" This event is triggered when a new job starts running. """
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
super().__init__(uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration)
|
class JobStartedEvent(JobEvent):
''' This event is triggered when a new job starts running. '''
def __init__(self, uuid, job_type, event_type, queue, hostname, pid,
name, workflow_id, event_time, duration):
pass
| 2 | 1 | 4 | 0 | 4 | 0 | 1 | 0.2 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 3 | 6 | 0 | 5 | 3 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,921 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/mongo_proxy.py
|
lightflow.models.mongo_proxy.GridFSProxy
|
class GridFSProxy(MongoReconnectProxy):
""" Proxy for catching AutoReconnect exceptions in function calls of the GridFS class
Specialization of the MongoReconnectProxy class for the GridFS class.
"""
def __init__(self, obj):
super().__init__(obj,
get_methods(gridfs, GridFS))
|
class GridFSProxy(MongoReconnectProxy):
''' Proxy for catching AutoReconnect exceptions in function calls of the GridFS class
Specialization of the MongoReconnectProxy class for the GridFS class.
'''
def __init__(self, obj):
pass
| 2 | 1 | 3 | 0 | 3 | 0 | 1 | 0.75 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 9 | 8 | 1 | 4 | 2 | 2 | 3 | 3 | 2 | 1 | 1 | 1 | 0 | 1 |
7,922 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataInvalidAlias
|
class DataInvalidAlias(RuntimeError):
pass
|
class DataInvalidAlias(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,923 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.WorkflowDefinitionError
|
class WorkflowDefinitionError(RuntimeError):
def __init__(self, workflow_name, graph_name):
""" Initialize the exception for invalid workflow definitions.
Args:
workflow_name (str): The name of the workflow that contains an invalid
definition.
graph_name (str): The name of the dag that is invalid.
"""
self.workflow_name = workflow_name
self.graph_name = graph_name
|
class WorkflowDefinitionError(RuntimeError):
def __init__(self, workflow_name, graph_name):
''' Initialize the exception for invalid workflow definitions.
Args:
workflow_name (str): The name of the workflow that contains an invalid
definition.
graph_name (str): The name of the dag that is invalid.
'''
pass
| 2 | 1 | 10 | 1 | 3 | 6 | 1 | 1.5 | 1 | 0 | 0 | 0 | 1 | 2 | 1 | 12 | 11 | 1 | 4 | 4 | 2 | 6 | 4 | 4 | 2 | 1 | 4 | 0 | 1 |
7,924 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/dag_signal.py
|
lightflow.models.dag_signal.DagSignal
|
class DagSignal:
""" Class to wrap the construction and sending of signals into easy to use methods """
def __init__(self, client, dag_name):
""" Initialise the dag signal convenience class.
Args:
client (Client): A reference to a signal client object.
dag_name (str): The name of the dag sending this signal.
"""
self._client = client
self._dag_name = dag_name
def stop_workflow(self):
""" Send a stop signal to the workflow.
Upon receiving the stop signal, the workflow will not queue any new dags.
Furthermore it will make the stop signal available to the dags, which will
then stop queueing new tasks. As soon as all active tasks have finished
processing, the workflow will terminate.
Returns:
bool: True if the signal was sent successfully.
"""
return self._client.send(Request(action='stop_workflow')).success
@property
def is_stopped(self):
""" Check whether the dag received a stop signal from the workflow.
As soon as the dag receives a stop signal, no new tasks will be queued
and the dag will wait for the active tasks to terminate.
Returns:
bool: True if the dag should be stopped.
"""
resp = self._client.send(
Request(
action='is_dag_stopped',
payload={'dag_name': self._dag_name}
)
)
return resp.payload['is_stopped']
|
class DagSignal:
''' Class to wrap the construction and sending of signals into easy to use methods '''
def __init__(self, client, dag_name):
''' Initialise the dag signal convenience class.
Args:
client (Client): A reference to a signal client object.
dag_name (str): The name of the dag sending this signal.
'''
pass
def stop_workflow(self):
''' Send a stop signal to the workflow.
Upon receiving the stop signal, the workflow will not queue any new dags.
Furthermore it will make the stop signal available to the dags, which will
then stop queueing new tasks. As soon as all active tasks have finished
processing, the workflow will terminate.
Returns:
bool: True if the signal was sent successfully.
'''
pass
@property
def is_stopped(self):
''' Check whether the dag received a stop signal from the workflow.
As soon as the dag receives a stop signal, no new tasks will be queued
and the dag will wait for the active tasks to terminate.
Returns:
bool: True if the dag should be stopped.
'''
pass
| 5 | 4 | 12 | 2 | 4 | 6 | 1 | 1.33 | 0 | 1 | 1 | 0 | 3 | 2 | 3 | 3 | 42 | 7 | 15 | 8 | 10 | 20 | 9 | 7 | 5 | 1 | 0 | 0 | 3 |
7,925 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.WorkflowImportError
|
class WorkflowImportError(RuntimeError):
pass
|
class WorkflowImportError(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,926 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/datastore.py
|
lightflow.models.datastore.DataStore
|
class DataStore:
""" The persistent data storage for data shared during the life of a workflow.
The DataStore is a persistent storage for all data that should be stored over the
lifetime of a workflow and be made available to all tasks in the workflow. This
storage is particularly useful for trigger based workflows that perform averaging
or summing work.
The DataStore is implemented using a MongoDB backend. For each workflow run a
document is created and its id is used for identifying the workflow run.
A proxy for the MongoClient is used to catch the AutoReconnect exception and handle
it gracefully. Please note:
Args:
host (str): The host on which the MongoDB server runs.
port (int): The port on which the MongoDB server listens.
database (str): The name of the MongoDB collection.
username (str): The username for the user logging in to MongoDB.
password (str): The password for the user logging in to MongoDB.
auth_source (str): The name of the database the user information is stored in.
auth_mechanism (str): The authentication mechanism.
connect_timeout (int): The timeout in ms after which a connection
attempt is ended.
auto_connect (bool): Set to True to connect to the MongoDB database immediately.
handle_reconnect (bool): Set to True to automatically reconnect to MongoDB should
the connection be lost.
"""
def __init__(self, host, port, database, *, username=None, password=None,
auth_source='admin', auth_mechanism=None, connect_timeout=30000,
auto_connect=False, handle_reconnect=True):
self.host = host
self.port = port
self.database = database
self._username = username
self._password = password
self._auth_source = auth_source
self._auth_mechanism = auth_mechanism
self._connect_timeout = connect_timeout
self._handle_reconnect = handle_reconnect
self._client = None
if auto_connect:
self.connect()
def __enter__(self):
""" Connects to MongoDB automatically when used as context manager """
if not self.is_connected:
self.connect()
return self
def __exit__(self, *args):
""" Disconnects from MongoDB automatically when used as context manager """
self.disconnect()
@property
def is_connected(self):
""" Returns the connection status of the data store.
Returns:
bool: ``True`` if the data store is connected to the MongoDB server.
"""
if self._client is not None:
try:
self._client.server_info()
except ConnectionFailure:
return False
return True
else:
return False
def connect(self):
""" Establishes a connection to the MongoDB server.
Use the MongoProxy library in order to automatically handle AutoReconnect
exceptions in a graceful and reliable way.
"""
mongodb_args = {
'host': self.host,
'port': self.port,
'username': self._username,
'password': self._password,
'authSource': self._auth_source,
'serverSelectionTimeoutMS': self._connect_timeout
}
if self._auth_mechanism is not None:
mongodb_args['authMechanism'] = self._auth_mechanism
self._client = MongoClient(**mongodb_args)
if self._handle_reconnect:
self._client = MongoClientProxy(self._client)
def disconnect(self):
""" Disconnect from the MongoDB server. """
if self._client is not None:
self._client.close()
@property
def server_info(self):
""" Returns the information of the connected MongoDB server.
Returns:
bool: ``True`` if a document with the specified workflow id exists.
"""
try:
return self._client.server_info()
except ConnectionFailure:
raise DataStoreNotConnected()
def exists(self, workflow_id):
""" Checks whether a document with the specified workflow id already exists.
Args:
workflow_id (str): The workflow id that should be checked.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
bool: ``True`` if a document with the specified workflow id exists.
"""
try:
db = self._client[self.database]
col = db[WORKFLOW_DATA_COLLECTION_NAME]
return col.find_one({"_id": ObjectId(workflow_id)}) is not None
except ConnectionFailure:
raise DataStoreNotConnected()
def add(self, payload=None):
""" Adds a new document to the data store and returns its id.
Args:
payload (dict): Dictionary of initial data that should be stored
in the new document in the meta section.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
str: The id of the newly created document.
"""
try:
db = self._client[self.database]
col = db[WORKFLOW_DATA_COLLECTION_NAME]
return str(col.insert_one({
DataStoreDocumentSection.Meta:
payload if isinstance(payload, dict) else {},
DataStoreDocumentSection.Data: {}
}).inserted_id)
except ConnectionFailure:
raise DataStoreNotConnected()
def remove(self, workflow_id):
""" Removes a document specified by its id from the data store.
All associated GridFs documents are deleted as well.
Args:
workflow_id (str): The id of the document that represents a workflow run.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
"""
try:
db = self._client[self.database]
fs = GridFSProxy(GridFS(db.unproxied_object))
for grid_doc in fs.find({"workflow_id": workflow_id},
no_cursor_timeout=True):
fs.delete(grid_doc._id)
col = db[WORKFLOW_DATA_COLLECTION_NAME]
return col.delete_one({"_id": ObjectId(workflow_id)})
except ConnectionFailure:
raise DataStoreNotConnected()
def get(self, workflow_id):
""" Returns the document for the given workflow id.
Args:
workflow_id (str): The id of the document that represents a workflow run.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
DataStoreDocument: The document for the given workflow id.
"""
try:
db = self._client[self.database]
fs = GridFSProxy(GridFS(db.unproxied_object))
return DataStoreDocument(db[WORKFLOW_DATA_COLLECTION_NAME], fs, workflow_id)
except ConnectionFailure:
raise DataStoreNotConnected()
|
class DataStore:
''' The persistent data storage for data shared during the life of a workflow.
The DataStore is a persistent storage for all data that should be stored over the
lifetime of a workflow and be made available to all tasks in the workflow. This
storage is particularly useful for trigger based workflows that perform averaging
or summing work.
The DataStore is implemented using a MongoDB backend. For each workflow run a
document is created and its id is used for identifying the workflow run.
A proxy for the MongoClient is used to catch the AutoReconnect exception and handle
it gracefully. Please note:
Args:
host (str): The host on which the MongoDB server runs.
port (int): The port on which the MongoDB server listens.
database (str): The name of the MongoDB collection.
username (str): The username for the user logging in to MongoDB.
password (str): The password for the user logging in to MongoDB.
auth_source (str): The name of the database the user information is stored in.
auth_mechanism (str): The authentication mechanism.
connect_timeout (int): The timeout in ms after which a connection
attempt is ended.
auto_connect (bool): Set to True to connect to the MongoDB database immediately.
handle_reconnect (bool): Set to True to automatically reconnect to MongoDB should
the connection be lost.
'''
def __init__(self, host, port, database, *, username=None, password=None,
auth_source='admin', auth_mechanism=None, connect_timeout=30000,
auto_connect=False, handle_reconnect=True):
pass
def __enter__(self):
''' Connects to MongoDB automatically when used as context manager '''
pass
def __exit__(self, *args):
''' Disconnects from MongoDB automatically when used as context manager '''
pass
@property
def is_connected(self):
''' Returns the connection status of the data store.
Returns:
bool: ``True`` if the data store is connected to the MongoDB server.
'''
pass
def connect(self):
''' Establishes a connection to the MongoDB server.
Use the MongoProxy library in order to automatically handle AutoReconnect
exceptions in a graceful and reliable way.
'''
pass
def disconnect(self):
''' Disconnect from the MongoDB server. '''
pass
@property
def server_info(self):
''' Returns the information of the connected MongoDB server.
Returns:
bool: ``True`` if a document with the specified workflow id exists.
'''
pass
def exists(self, workflow_id):
''' Checks whether a document with the specified workflow id already exists.
Args:
workflow_id (str): The workflow id that should be checked.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
bool: ``True`` if a document with the specified workflow id exists.
'''
pass
def add(self, payload=None):
''' Adds a new document to the data store and returns its id.
Args:
payload (dict): Dictionary of initial data that should be stored
in the new document in the meta section.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
str: The id of the newly created document.
'''
pass
def remove(self, workflow_id):
''' Removes a document specified by its id from the data store.
All associated GridFs documents are deleted as well.
Args:
workflow_id (str): The id of the document that represents a workflow run.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
'''
pass
def get(self, workflow_id):
''' Returns the document for the given workflow id.
Args:
workflow_id (str): The id of the document that represents a workflow run.
Raises:
DataStoreNotConnected: If the data store is not connected to the server.
Returns:
DataStoreDocument: The document for the given workflow id.
'''
pass
| 14 | 11 | 15 | 2 | 8 | 4 | 2 | 0.77 | 0 | 7 | 5 | 0 | 11 | 10 | 11 | 11 | 202 | 41 | 91 | 37 | 75 | 70 | 74 | 33 | 62 | 3 | 0 | 2 | 25 |
7,927 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/datastore.py
|
lightflow.models.datastore.DataStoreDocument
|
class DataStoreDocument:
""" A single data store document containing the data for a workflow run.
The document provides methods in order to retrieve and set data in the
persistent data store. It represents the data for a single workflow run.
Args:
collection: A MongoDB collection object pointing to the data store collection.
grid_fs: A GridFS object used for splitting large, binary data into smaller
chunks in order to avoid the 16MB document limit of MongoDB.
workflow_id: The id of the workflow run this document is associated with.
"""
def __init__(self, collection, grid_fs, workflow_id):
self._collection = collection
self._gridfs = grid_fs
self._workflow_id = workflow_id
def get(self, key, default=None, *, section=DataStoreDocumentSection.Data):
""" Return the field specified by its key from the specified section.
This method access the specified section of the workflow document and returns the
value for the given key.
Args:
key (str): The key pointing to the value that should be retrieved. It supports
MongoDB's dot notation for nested fields.
default: The default value that is returned if the key does not exist.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
object: The value from the field that the specified key is pointing to. If the
key does not exist, the default value is returned. If no default value
is provided and the key does not exist ``None`` is returned.
"""
key_notation = '.'.join([section, key])
try:
return self._decode_value(self._data_from_dotnotation(key_notation, default))
except KeyError:
return None
def set(self, key, value, *, section=DataStoreDocumentSection.Data):
""" Store a value under the specified key in the given section of the document.
This method stores a value into the specified section of the workflow data store
document. Any existing value is overridden. Before storing a value, any linked
GridFS document under the specified key is deleted.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
value: The value that should be stored/updated.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the value could be set/updated, otherwise ``False``.
"""
key_notation = '.'.join([section, key])
try:
self._delete_gridfs_data(self._data_from_dotnotation(key_notation,
default=None))
except KeyError:
logger.info('Adding new field {} to the data store'.format(key_notation))
result = self._collection.update_one(
{"_id": ObjectId(self._workflow_id)},
{
"$set": {
key_notation: self._encode_value(value)
},
"$currentDate": {"lastModified": True}
}
)
return result.modified_count == 1
def push(self, key, value, *, section=DataStoreDocumentSection.Data):
""" Appends a value to a list in the specified section of the document.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
value: The value that should be appended to a list in the data store.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the value could be appended, otherwise ``False``.
"""
key_notation = '.'.join([section, key])
result = self._collection.update_one(
{"_id": ObjectId(self._workflow_id)},
{
"$push": {
key_notation: self._encode_value(value)
},
"$currentDate": {"lastModified": True}
}
)
return result.modified_count == 1
def extend(self, key, values, *, section=DataStoreDocumentSection.Data):
""" Extends a list in the data store with the elements of values.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
values (list): A list of the values that should be used to extend the list
in the document.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the list in the database could be extended,
otherwise ``False``.
"""
key_notation = '.'.join([section, key])
if not isinstance(values, list):
return False
result = self._collection.update_one(
{"_id": ObjectId(self._workflow_id)},
{
"$push": {
key_notation: {"$each": self._encode_value(values)}
},
"$currentDate": {"lastModified": True}
}
)
return result.modified_count == 1
def _data_from_dotnotation(self, key, default=None):
""" Returns the MongoDB data from a key using dot notation.
Args:
key (str): The key to the field in the workflow document. Supports MongoDB's
dot notation for embedded fields.
default (object): The default value that is returned if the key
does not exist.
Returns:
object: The data for the specified key or the default value.
"""
if key is None:
raise KeyError('NoneType is not a valid key!')
doc = self._collection.find_one({"_id": ObjectId(self._workflow_id)})
if doc is None:
return default
for k in key.split('.'):
doc = doc[k]
return doc
def _encode_value(self, value):
""" Encodes the value such that it can be stored into MongoDB.
Any primitive types are stored directly into MongoDB, while non-primitive types
are pickled and stored as GridFS objects. The id pointing to a GridFS object
replaces the original value.
Args:
value (object): The object that should be encoded for storing in MongoDB.
Returns:
object: The encoded value ready to be stored in MongoDB.
"""
if isinstance(value, (int, float, str, bool, datetime)):
return value
elif isinstance(value, list):
return [self._encode_value(item) for item in value]
elif isinstance(value, dict):
result = {}
for key, item in value.items():
result[key] = self._encode_value(item)
return result
else:
return self._gridfs.put(Binary(pickle.dumps(value)),
workflow_id=self._workflow_id)
def _decode_value(self, value):
""" Decodes the value by turning any binary data back into Python objects.
The method searches for ObjectId values, loads the associated binary data from
GridFS and returns the decoded Python object.
Args:
value (object): The value that should be decoded.
Raises:
DataStoreDecodingError: An ObjectId was found but the id is not a valid
GridFS id.
DataStoreDecodeUnknownType: The type of the specified value is unknown.
Returns:
object: The decoded value as a valid Python object.
"""
if isinstance(value, (int, float, str, bool, datetime)):
return value
elif isinstance(value, list):
return [self._decode_value(item) for item in value]
elif isinstance(value, dict):
result = {}
for key, item in value.items():
result[key] = self._decode_value(item)
return result
elif isinstance(value, ObjectId):
if self._gridfs.exists({"_id": value}):
return pickle.loads(self._gridfs.get(value).read())
else:
raise DataStoreGridfsIdInvalid()
else:
raise DataStoreDecodeUnknownType()
def _delete_gridfs_data(self, data):
""" Delete all GridFS data that is linked by fields in the specified data.
Args:
data: The data that is parsed for MongoDB ObjectIDs. The linked GridFs object
for any ObjectID is deleted.
"""
if isinstance(data, ObjectId):
if self._gridfs.exists({"_id": data}):
self._gridfs.delete(data)
else:
raise DataStoreGridfsIdInvalid()
elif isinstance(data, list):
for item in data:
self._delete_gridfs_data(item)
elif isinstance(data, dict):
for key, item in data.items():
self._delete_gridfs_data(item)
|
class DataStoreDocument:
''' A single data store document containing the data for a workflow run.
The document provides methods in order to retrieve and set data in the
persistent data store. It represents the data for a single workflow run.
Args:
collection: A MongoDB collection object pointing to the data store collection.
grid_fs: A GridFS object used for splitting large, binary data into smaller
chunks in order to avoid the 16MB document limit of MongoDB.
workflow_id: The id of the workflow run this document is associated with.
'''
def __init__(self, collection, grid_fs, workflow_id):
pass
def get(self, key, default=None, *, section=DataStoreDocumentSection.Data):
''' Return the field specified by its key from the specified section.
This method access the specified section of the workflow document and returns the
value for the given key.
Args:
key (str): The key pointing to the value that should be retrieved. It supports
MongoDB's dot notation for nested fields.
default: The default value that is returned if the key does not exist.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
object: The value from the field that the specified key is pointing to. If the
key does not exist, the default value is returned. If no default value
is provided and the key does not exist ``None`` is returned.
'''
pass
def set(self, key, value, *, section=DataStoreDocumentSection.Data):
''' Store a value under the specified key in the given section of the document.
This method stores a value into the specified section of the workflow data store
document. Any existing value is overridden. Before storing a value, any linked
GridFS document under the specified key is deleted.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
value: The value that should be stored/updated.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the value could be set/updated, otherwise ``False``.
'''
pass
def push(self, key, value, *, section=DataStoreDocumentSection.Data):
''' Appends a value to a list in the specified section of the document.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
value: The value that should be appended to a list in the data store.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the value could be appended, otherwise ``False``.
'''
pass
def extend(self, key, values, *, section=DataStoreDocumentSection.Data):
''' Extends a list in the data store with the elements of values.
Args:
key (str): The key pointing to the value that should be stored/updated.
It supports MongoDB's dot notation for nested fields.
values (list): A list of the values that should be used to extend the list
in the document.
section (DataStoreDocumentSection): The section from which the data should
be retrieved.
Returns:
bool: ``True`` if the list in the database could be extended,
otherwise ``False``.
'''
pass
def _data_from_dotnotation(self, key, default=None):
''' Returns the MongoDB data from a key using dot notation.
Args:
key (str): The key to the field in the workflow document. Supports MongoDB's
dot notation for embedded fields.
default (object): The default value that is returned if the key
does not exist.
Returns:
object: The data for the specified key or the default value.
'''
pass
def _encode_value(self, value):
''' Encodes the value such that it can be stored into MongoDB.
Any primitive types are stored directly into MongoDB, while non-primitive types
are pickled and stored as GridFS objects. The id pointing to a GridFS object
replaces the original value.
Args:
value (object): The object that should be encoded for storing in MongoDB.
Returns:
object: The encoded value ready to be stored in MongoDB.
'''
pass
def _decode_value(self, value):
''' Decodes the value by turning any binary data back into Python objects.
The method searches for ObjectId values, loads the associated binary data from
GridFS and returns the decoded Python object.
Args:
value (object): The value that should be decoded.
Raises:
DataStoreDecodingError: An ObjectId was found but the id is not a valid
GridFS id.
DataStoreDecodeUnknownType: The type of the specified value is unknown.
Returns:
object: The decoded value as a valid Python object.
'''
pass
def _delete_gridfs_data(self, data):
''' Delete all GridFS data that is linked by fields in the specified data.
Args:
data: The data that is parsed for MongoDB ObjectIDs. The linked GridFs object
for any ObjectID is deleted.
'''
pass
| 10 | 9 | 24 | 3 | 12 | 9 | 3 | 0.89 | 0 | 11 | 3 | 0 | 9 | 3 | 9 | 9 | 235 | 37 | 105 | 28 | 95 | 93 | 68 | 28 | 58 | 7 | 0 | 2 | 31 |
7,928 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/datastore.py
|
lightflow.models.datastore.DataStoreDocumentSection
|
class DataStoreDocumentSection:
""" The different sections the data store document contains """
Meta = 'meta'
Data = 'data'
|
class DataStoreDocumentSection:
''' The different sections the data store document contains '''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 3 | 3 | 2 | 1 | 3 | 3 | 2 | 0 | 0 | 0 | 0 |
7,929 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.AbortWorkflow
|
class AbortWorkflow(LightflowException):
pass
|
class AbortWorkflow(LightflowException):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 5 | 0 | 0 |
7,930 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/dag.py
|
lightflow.models.dag.Dag
|
class Dag:
""" A dag hosts a graph built from tasks and manages the task execution process.
One ore more tasks, that are connected with each other, form a graph of tasks. The
connection between tasks has a direction, indicating the flow of data from task to
task. Closed loops are not allowed. Therefore, the graph topology employed here is
referred to as a dag (directed acyclic graph).
The dag class not only provides tools to build a task graph, but also manages the
processing of the tasks in the right order by traversing the graph using a
breadth-first search strategy.
Please note: this class has to be serializable (e.g. by pickle)
Args:
name (str): The name of the dag.
autostart (bool): Set to True in order to start the processing of the tasks
upon the start of the workflow.
queue (str): Name of the queue the dag should be scheduled to.
schema (dict): A dictionary with the definition of the task graph.
"""
def __init__(self, name, *, autostart=True, queue=DefaultJobQueueName.Dag,
schema=None):
self._name = name
self._autostart = autostart
self._queue = queue
self._schema = schema
self._copy_counter = 0
self._workflow_name = None
@property
def name(self):
""" Return the name of the dag. """
return self._name
@property
def autostart(self):
""" Return whether the dag is automatically run upon the start of the workflow."""
return self._autostart
@property
def queue(self):
""" Return the name of the queue the dag should be scheduled to."""
return self._queue
@property
def workflow_name(self):
""" Return the name of the workflow this dag belongs to. """
return self._workflow_name
@workflow_name.setter
def workflow_name(self, name):
""" Set the name of the workflow this dag belongs to.
Args:
name (str): The name of the workflow.
"""
self._workflow_name = name
def define(self, schema, *, validate=True):
""" Store the task graph definition (schema).
The schema has to adhere to the following rules:
A key in the schema dict represents a parent task and the value one or more
children:
{parent: [child]} or {parent: [child1, child2]}
The data output of one task can be routed to a labelled input slot of successor
tasks using a dictionary instead of a list for the children:
{parent: {child1: 'positive', child2: 'negative'}}
An empty slot name or None skips the creation of a labelled slot:
{parent: {child1: '', child2: None}}
Args:
schema (dict): A dictionary with the schema definition.
validate (bool): Set to True to validate the graph by checking whether it is
a directed acyclic graph.
"""
self._schema = schema
if validate:
self.validate(self.make_graph(self._schema))
def run(self, config, workflow_id, signal, *, data=None):
""" Run the dag by calling the tasks in the correct order.
Args:
config (Config): Reference to the configuration object from which the
settings for the dag are retrieved.
workflow_id (str): The unique ID of the workflow that runs this dag.
signal (DagSignal): The signal object for dags. It wraps the construction
and sending of signals into easy to use methods.
data (MultiTaskData): The initial data that is passed on to the start tasks.
Raises:
DirectedAcyclicGraphInvalid: If the graph is not a dag (e.g. contains loops).
ConfigNotDefinedError: If the configuration for the dag is empty.
"""
graph = self.make_graph(self._schema)
# pre-checks
self.validate(graph)
if config is None:
raise ConfigNotDefinedError()
# create the celery app for submitting tasks
celery_app = create_app(config)
# the task queue for managing the current state of the tasks
tasks = []
stopped = False
# add all tasks without predecessors to the task list
for task in nx.topological_sort(graph):
task.workflow_name = self.workflow_name
task.dag_name = self.name
if len(list(graph.predecessors(task))) == 0:
task.state = TaskState.Waiting
tasks.append(task)
def set_task_completed(completed_task):
""" For each completed task, add all successor tasks to the task list.
If they are not in the task list yet, flag them as 'waiting'.
"""
completed_task.state = TaskState.Completed
for successor in graph.successors(completed_task):
if successor not in tasks:
successor.state = TaskState.Waiting
tasks.append(successor)
# process the task queue as long as there are tasks in it
while tasks:
if not stopped:
stopped = signal.is_stopped
# delay the execution by the polling time
if config.dag_polling_time > 0.0:
sleep(config.dag_polling_time)
for i in range(len(tasks) - 1, -1, -1):
task = tasks[i]
# for each waiting task, wait for all predecessor tasks to be
# completed. Then check whether the task should be skipped by
# interrogating the predecessor tasks.
if task.is_waiting:
if stopped:
task.state = TaskState.Stopped
else:
pre_tasks = list(graph.predecessors(task))
if all([p.is_completed for p in pre_tasks]):
# check whether the task should be skipped
run_task = task.has_to_run or len(pre_tasks) == 0
for pre in pre_tasks:
if run_task:
break
# predecessor task is skipped and flag should
# not be propagated
if pre.is_skipped and not pre.propagate_skip:
run_task = True
# limits of a non-skipped predecessor task
if not pre.is_skipped:
if pre.celery_result.result.limit is not None:
if task.name in [
n.name if isinstance(n, BaseTask) else n
for n in pre.celery_result.result.limit]:
run_task = True
else:
run_task = True
task.is_skipped = not run_task
# send the task to celery or, if skipped, mark it as completed
if task.is_skipped:
set_task_completed(task)
else:
# compose the input data from the predecessor tasks
# output. Data from skipped predecessor tasks do not
# contribute to the input data
if len(pre_tasks) == 0:
input_data = data
else:
input_data = MultiTaskData()
for pt in [p for p in pre_tasks if not p.is_skipped]:
slot = graph[pt][task]['slot']
input_data.add_dataset(
pt.name,
pt.celery_result.result.data.default_dataset,
aliases=[slot] if slot is not None else None)
task.state = TaskState.Running
task.celery_result = celery_app.send_task(
JobExecPath.Task,
args=(task, workflow_id, input_data),
queue=task.queue,
routing_key=task.queue
)
# flag task as completed
elif task.is_running:
if task.celery_completed:
set_task_completed(task)
elif task.celery_failed:
task.state = TaskState.Aborted
signal.stop_workflow()
# cleanup task results that are not required anymore
elif task.is_completed:
if all([s.is_completed or s.is_stopped or s.is_aborted
for s in graph.successors(task)]):
if celery_app.conf.result_expires == 0:
task.clear_celery_result()
tasks.remove(task)
# cleanup and remove stopped and aborted tasks
elif task.is_stopped or task.is_aborted:
if celery_app.conf.result_expires == 0:
task.clear_celery_result()
tasks.remove(task)
def validate(self, graph):
""" Validate the graph by checking whether it is a directed acyclic graph.
Args:
graph (DiGraph): Reference to a DiGraph object from NetworkX.
Raises:
DirectedAcyclicGraphInvalid: If the graph is not a valid dag.
"""
if not nx.is_directed_acyclic_graph(graph):
raise DirectedAcyclicGraphInvalid(graph_name=self._name)
@staticmethod
def make_graph(schema):
""" Construct the task graph (dag) from a given schema.
Parses the graph schema definition and creates the task graph. Tasks are the
vertices of the graph and the connections defined in the schema become the edges.
A key in the schema dict represents a parent task and the value one or more
children:
{parent: [child]} or {parent: [child1, child2]}
The data output of one task can be routed to a labelled input slot of successor
tasks using a dictionary instead of a list for the children:
{parent: {child1: 'positive', child2: 'negative'}}
An empty slot name or None skips the creation of a labelled slot:
{parent: {child1: '', child2: None}}
The underlying graph library creates nodes automatically, when an edge between
non-existing nodes is created.
Args:
schema (dict): A dictionary with the schema definition.
Returns:
DiGraph: A reference to the fully constructed graph object.
Raises:
DirectedAcyclicGraphUndefined: If the schema is not defined.
"""
if schema is None:
raise DirectedAcyclicGraphUndefined()
# sanitize the input schema such that it follows the structure:
# {parent: {child_1: slot_1, child_2: slot_2, ...}, ...}
sanitized_schema = {}
for parent, children in schema.items():
child_dict = {}
if children is not None:
if isinstance(children, list):
if len(children) > 0:
child_dict = {child: None for child in children}
else:
child_dict = {None: None}
elif isinstance(children, dict):
for child, slot in children.items():
child_dict[child] = slot if slot != '' else None
else:
child_dict = {children: None}
else:
child_dict = {None: None}
sanitized_schema[parent] = child_dict
# build the graph from the sanitized schema
graph = nx.DiGraph()
for parent, children in sanitized_schema.items():
for child, slot in children.items():
if child is not None:
graph.add_edge(parent, child, slot=slot)
else:
graph.add_node(parent)
return graph
def __deepcopy__(self, memo):
""" Create a copy of the dag object.
This method keeps track of the number of copies that have been made. The number is
appended to the name of the copy.
Args:
memo (dict): a dictionary that keeps track of the objects that
have already been copied.
Returns:
Dag: a copy of the dag object
"""
self._copy_counter += 1
new_dag = Dag('{}:{}'.format(self._name, self._copy_counter),
autostart=self._autostart, queue=self._queue)
new_dag._schema = deepcopy(self._schema, memo)
return new_dag
|
class Dag:
''' A dag hosts a graph built from tasks and manages the task execution process.
One ore more tasks, that are connected with each other, form a graph of tasks. The
connection between tasks has a direction, indicating the flow of data from task to
task. Closed loops are not allowed. Therefore, the graph topology employed here is
referred to as a dag (directed acyclic graph).
The dag class not only provides tools to build a task graph, but also manages the
processing of the tasks in the right order by traversing the graph using a
breadth-first search strategy.
Please note: this class has to be serializable (e.g. by pickle)
Args:
name (str): The name of the dag.
autostart (bool): Set to True in order to start the processing of the tasks
upon the start of the workflow.
queue (str): Name of the queue the dag should be scheduled to.
schema (dict): A dictionary with the definition of the task graph.
'''
def __init__(self, name, *, autostart=True, queue=DefaultJobQueueName.Dag,
schema=None):
pass
@property
def name(self):
''' Return the name of the dag. '''
pass
@property
def autostart(self):
''' Return whether the dag is automatically run upon the start of the workflow.'''
pass
@property
def queue(self):
''' Return the name of the queue the dag should be scheduled to.'''
pass
@property
def workflow_name(self):
''' Return the name of the workflow this dag belongs to. '''
pass
@workflow_name.setter
def workflow_name(self):
''' Set the name of the workflow this dag belongs to.
Args:
name (str): The name of the workflow.
'''
pass
def define(self, schema, *, validate=True):
''' Store the task graph definition (schema).
The schema has to adhere to the following rules:
A key in the schema dict represents a parent task and the value one or more
children:
{parent: [child]} or {parent: [child1, child2]}
The data output of one task can be routed to a labelled input slot of successor
tasks using a dictionary instead of a list for the children:
{parent: {child1: 'positive', child2: 'negative'}}
An empty slot name or None skips the creation of a labelled slot:
{parent: {child1: '', child2: None}}
Args:
schema (dict): A dictionary with the schema definition.
validate (bool): Set to True to validate the graph by checking whether it is
a directed acyclic graph.
'''
pass
def run(self, config, workflow_id, signal, *, data=None):
''' Run the dag by calling the tasks in the correct order.
Args:
config (Config): Reference to the configuration object from which the
settings for the dag are retrieved.
workflow_id (str): The unique ID of the workflow that runs this dag.
signal (DagSignal): The signal object for dags. It wraps the construction
and sending of signals into easy to use methods.
data (MultiTaskData): The initial data that is passed on to the start tasks.
Raises:
DirectedAcyclicGraphInvalid: If the graph is not a dag (e.g. contains loops).
ConfigNotDefinedError: If the configuration for the dag is empty.
'''
pass
def set_task_completed(completed_task):
''' For each completed task, add all successor tasks to the task list.
If they are not in the task list yet, flag them as 'waiting'.
'''
pass
def validate(self, graph):
''' Validate the graph by checking whether it is a directed acyclic graph.
Args:
graph (DiGraph): Reference to a DiGraph object from NetworkX.
Raises:
DirectedAcyclicGraphInvalid: If the graph is not a valid dag.
'''
pass
@staticmethod
def make_graph(schema):
''' Construct the task graph (dag) from a given schema.
Parses the graph schema definition and creates the task graph. Tasks are the
vertices of the graph and the connections defined in the schema become the edges.
A key in the schema dict represents a parent task and the value one or more
children:
{parent: [child]} or {parent: [child1, child2]}
The data output of one task can be routed to a labelled input slot of successor
tasks using a dictionary instead of a list for the children:
{parent: {child1: 'positive', child2: 'negative'}}
An empty slot name or None skips the creation of a labelled slot:
{parent: {child1: '', child2: None}}
The underlying graph library creates nodes automatically, when an edge between
non-existing nodes is created.
Args:
schema (dict): A dictionary with the schema definition.
Returns:
DiGraph: A reference to the fully constructed graph object.
Raises:
DirectedAcyclicGraphUndefined: If the schema is not defined.
'''
pass
def __deepcopy__(self, memo):
''' Create a copy of the dag object.
This method keeps track of the number of copies that have been made. The number is
appended to the name of the copy.
Args:
memo (dict): a dictionary that keeps track of the objects that
have already been copied.
Returns:
Dag: a copy of the dag object
'''
pass
| 19 | 12 | 24 | 4 | 12 | 8 | 5 | 0.75 | 0 | 11 | 8 | 0 | 10 | 6 | 11 | 11 | 321 | 59 | 150 | 45 | 130 | 112 | 118 | 38 | 105 | 30 | 0 | 9 | 56 |
7,931 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.ConfigFieldError
|
class ConfigFieldError(RuntimeError):
pass
|
class ConfigFieldError(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,932 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.ConfigNotDefinedError
|
class ConfigNotDefinedError(RuntimeError):
pass
|
class ConfigNotDefinedError(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,933 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.ConfigOverwriteError
|
class ConfigOverwriteError(RuntimeError):
pass
|
class ConfigOverwriteError(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,934 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DagNameUnknown
|
class DagNameUnknown(RuntimeError):
pass
|
class DagNameUnknown(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,935 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataStoreIDExists
|
class DataStoreIDExists(RuntimeError):
pass
|
class DataStoreIDExists(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,936 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataStoreGridfsIdInvalid
|
class DataStoreGridfsIdInvalid(RuntimeError):
pass
|
class DataStoreGridfsIdInvalid(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,937 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataStoreDecodeUnknownType
|
class DataStoreDecodeUnknownType(RuntimeError):
pass
|
class DataStoreDecodeUnknownType(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,938 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.ConfigLoadError
|
class ConfigLoadError(RuntimeError):
""" Raise this if there is a configuration loading error. """
pass
|
class ConfigLoadError(RuntimeError):
''' Raise this if there is a configuration loading error. '''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,939 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/action.py
|
lightflow.models.action.Action
|
class Action:
""" The class for the action object that is returned by each task.
The action object encapsulates the information that is returned by a task to the
system. It contains the data that should be passed on to the successor tasks and
a list of immediate successor tasks that should be executed. The latter allows
to limit the execution of successor tasks.
"""
def __init__(self, data, limit=None):
""" Initialise the Action object.
Args:
data (MultiTaskData): The processed data from the task that should be passed
on to successor tasks.
limit (list): A list of names of all immediate successor tasks that
should be executed.
"""
self._data = data
self._limit = limit
@property
def data(self):
""" Returns the data object. """
return self._data
@property
def limit(self):
""" Returns the list of tasks that should be executed. """
return self._limit
def copy(self):
""" Return a copy of the Action object. """
return copy(self)
|
class Action:
''' The class for the action object that is returned by each task.
The action object encapsulates the information that is returned by a task to the
system. It contains the data that should be passed on to the successor tasks and
a list of immediate successor tasks that should be executed. The latter allows
to limit the execution of successor tasks.
'''
def __init__(self, data, limit=None):
''' Initialise the Action object.
Args:
data (MultiTaskData): The processed data from the task that should be passed
on to successor tasks.
limit (list): A list of names of all immediate successor tasks that
should be executed.
'''
pass
@property
def data(self):
''' Returns the data object. '''
pass
@property
def limit(self):
''' Returns the list of tasks that should be executed. '''
pass
def copy(self):
''' Return a copy of the Action object. '''
pass
| 7 | 5 | 5 | 0 | 2 | 3 | 1 | 1.33 | 0 | 0 | 0 | 0 | 4 | 2 | 4 | 4 | 33 | 5 | 12 | 9 | 5 | 16 | 10 | 7 | 5 | 1 | 0 | 0 | 4 |
7,940 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/queue/models.py
|
lightflow.queue.models.WorkerStats
|
class WorkerStats:
""" Represents the worker information returned from celery.
Args:
name (str): The name of the worker.
broker (BrokerStats): A reference to a BrokerStats Object the worker is using.
pid (int): The PID of the worker.
process_pids (int): The PIDs of the concurrent task processes.
concurrency (int): The number of concurrent processes.
job_count (int): The number of jobs this worker has processed so far.
queues (list): A list of QueueStats objects that represent the queues this
worker is listening on.
"""
def __init__(self, name, broker, pid, process_pids,
concurrency, job_count, queues):
self.name = name
self.broker = broker
self.pid = pid
self.process_pids = process_pids
self.concurrency = concurrency
self.job_count = job_count
self.queues = queues
@classmethod
def from_celery(cls, name, worker_dict, queues):
""" Create a WorkerStats object from the dictionary returned by celery.
Args:
name (str): The name of the worker.
worker_dict (dict): The dictionary as returned by celery.
queues (list): A list of QueueStats objects that represent the queues this
worker is listening on.
Returns:
WorkerStats: A fully initialized WorkerStats object.
"""
return WorkerStats(
name=name,
broker=BrokerStats.from_celery(worker_dict['broker']),
pid=worker_dict['pid'],
process_pids=worker_dict['pool']['processes'],
concurrency=worker_dict['pool']['max-concurrency'],
job_count=worker_dict['pool']['writes']['total'],
queues=queues
)
def to_dict(self):
""" Return a dictionary of the worker stats.
Returns:
dict: Dictionary of the stats.
"""
return {
'name': self.name,
'broker': self.broker.to_dict(),
'pid': self.pid,
'process_pids': self.process_pids,
'concurrency': self.concurrency,
'job_count': self.job_count,
'queues': [q.to_dict() for q in self.queues]
}
|
class WorkerStats:
''' Represents the worker information returned from celery.
Args:
name (str): The name of the worker.
broker (BrokerStats): A reference to a BrokerStats Object the worker is using.
pid (int): The PID of the worker.
process_pids (int): The PIDs of the concurrent task processes.
concurrency (int): The number of concurrent processes.
job_count (int): The number of jobs this worker has processed so far.
queues (list): A list of QueueStats objects that represent the queues this
worker is listening on.
'''
def __init__(self, name, broker, pid, process_pids,
concurrency, job_count, queues):
pass
@classmethod
def from_celery(cls, name, worker_dict, queues):
''' Create a WorkerStats object from the dictionary returned by celery.
Args:
name (str): The name of the worker.
worker_dict (dict): The dictionary as returned by celery.
queues (list): A list of QueueStats objects that represent the queues this
worker is listening on.
Returns:
WorkerStats: A fully initialized WorkerStats object.
'''
pass
def to_dict(self):
''' Return a dictionary of the worker stats.
Returns:
dict: Dictionary of the stats.
'''
pass
| 5 | 3 | 15 | 1 | 10 | 4 | 1 | 0.77 | 0 | 1 | 1 | 0 | 2 | 7 | 3 | 3 | 61 | 6 | 31 | 13 | 25 | 24 | 13 | 11 | 9 | 1 | 0 | 0 | 3 |
7,941 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataStoreIDInvalid
|
class DataStoreIDInvalid(RuntimeError):
pass
|
class DataStoreIDInvalid(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,942 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.WorkflowArgumentError
|
class WorkflowArgumentError(RuntimeError):
pass
|
class WorkflowArgumentError(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,943 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.WorkerEventTypeUnsupported
|
class WorkerEventTypeUnsupported(RuntimeError):
pass
|
class WorkerEventTypeUnsupported(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,944 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.TaskReturnActionInvalid
|
class TaskReturnActionInvalid(RuntimeError):
pass
|
class TaskReturnActionInvalid(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,945 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.StopTask
|
class StopTask(LightflowException):
def __init__(self, message='', *, skip_successors=True):
super().__init__(message)
self.skip_successors = skip_successors
|
class StopTask(LightflowException):
def __init__(self, message='', *, skip_successors=True):
pass
| 2 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 15 | 4 | 0 | 4 | 3 | 2 | 0 | 4 | 3 | 2 | 1 | 5 | 0 | 1 |
7,946 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/config.py
|
lightflow.config.Config
|
class Config:
""" Hosts the global configuration.
The configuration is read from a structured YAML file or a dictionary.
The location of the file can either be specified directly, is given in
the environment variable LIGHTFLOW_CONFIG_ENV, is looked for in the
current execution directory or in the home directory of the user.
"""
def __init__(self):
self._config = None
@classmethod
def from_file(cls, filename, *, strict=True):
""" Create a new Config object from a configuration file.
Args:
filename (str): The location and name of the configuration file.
strict (bool): If true raises a ConfigLoadError when the configuration
cannot be found.
Returns:
An instance of the Config class.
Raises:
ConfigLoadError: If the configuration cannot be found.
"""
config = cls()
config.load_from_file(filename, strict=strict)
return config
def load_from_file(self, filename=None, *, strict=True):
""" Load the configuration from a file.
The location of the configuration file can either be specified directly in the
parameter filename or is searched for in the following order:
1. In the environment variable given by LIGHTFLOW_CONFIG_ENV
2. In the current execution directory
3. In the user's home directory
Args:
filename (str): The location and name of the configuration file.
strict (bool): If true raises a ConfigLoadError when the configuration
cannot be found.
Raises:
ConfigLoadError: If the configuration cannot be found.
"""
self.set_to_default()
if filename:
self._update_from_file(filename)
else:
if LIGHTFLOW_CONFIG_ENV not in os.environ:
if os.path.isfile(os.path.join(os.getcwd(), LIGHTFLOW_CONFIG_NAME)):
self._update_from_file(
os.path.join(os.getcwd(), LIGHTFLOW_CONFIG_NAME))
elif os.path.isfile(expand_env_var('~/{}'.format(LIGHTFLOW_CONFIG_NAME))):
self._update_from_file(
expand_env_var('~/{}'.format(LIGHTFLOW_CONFIG_NAME)))
else:
if strict:
raise ConfigLoadError('Could not find the configuration file.')
else:
self._update_from_file(expand_env_var(os.environ[LIGHTFLOW_CONFIG_ENV]))
self._update_python_paths()
def load_from_dict(self, conf_dict=None):
""" Load the configuration from a dictionary.
Args:
conf_dict (dict): Dictionary with the configuration.
"""
self.set_to_default()
self._update_dict(self._config, conf_dict)
self._update_python_paths()
def to_dict(self):
""" Returns a copy of the internal configuration as a dictionary. """
return dict(self._config)
@property
def workflows(self):
""" Return the workflow folders """
return self._config.get('workflows')
@property
def data_store(self):
""" Return the data store settings """
return self._config.get('store')
@property
def signal(self):
""" Return the signal system settings """
return self._config.get('signal')
@property
def logging(self):
""" Return the logging settings """
return self._config.get('logging')
@property
def celery(self):
""" Return the celery settings """
return self._config.get('celery')
@property
def cli(self):
""" Return the cli settings """
return self._config.get('cli')
@property
def extensions(self):
""" Return the custom settings of extensions """
if 'extensions' not in self._config:
raise ConfigFieldError(
'The extensions section is missing in the configuration')
return self._config.get('extensions')
@property
def workflow_polling_time(self):
""" Return the waiting time between status checks of the running dags (sec) """
if 'graph' not in self._config:
raise ConfigFieldError('The graph section is missing in the configuration')
return self._config.get('graph').get('workflow_polling_time')
@property
def dag_polling_time(self):
""" Return the waiting time between status checks of the running tasks (sec) """
if 'graph' not in self._config:
raise ConfigFieldError('The graph section is missing in the configuration')
return self._config.get('graph').get('dag_polling_time')
def set_to_default(self):
""" Overwrite the configuration with the default configuration. """
self._config = yaml.safe_load(self.default())
def _update_from_file(self, filename):
""" Helper method to update an existing configuration with the values from a file.
Loads a configuration file and replaces all values in the existing configuration
dictionary with the values from the file.
Args:
filename (str): The path and name to the configuration file.
"""
if os.path.exists(filename):
try:
with open(filename, 'r') as config_file:
yaml_dict = yaml.safe_load(config_file.read())
if yaml_dict is not None:
self._update_dict(self._config, yaml_dict)
except IsADirectoryError:
raise ConfigLoadError(
'The specified configuration file is a directory not a file')
else:
raise ConfigLoadError('The config file {} does not exist'.format(filename))
def _update_dict(self, to_dict, from_dict):
""" Recursively merges the fields for two dictionaries.
Args:
to_dict (dict): The dictionary onto which the merge is executed.
from_dict (dict): The dictionary merged into to_dict
"""
for key, value in from_dict.items():
if key in to_dict and isinstance(to_dict[key], dict) and \
isinstance(from_dict[key], dict):
self._update_dict(to_dict[key], from_dict[key])
else:
to_dict[key] = from_dict[key]
def _update_python_paths(self):
""" Append the workflow and libraries paths to the PYTHONPATH. """
for path in self._config['workflows'] + self._config['libraries']:
if os.path.isdir(os.path.abspath(path)):
if path not in sys.path:
sys.path.append(path)
else:
raise ConfigLoadError(
'Workflow directory {} does not exist'.format(path))
@staticmethod
def default():
""" Returns the default configuration. """
return '''
workflows:
- ./examples
libraries: []
celery:
broker_url: redis://localhost:6379/0
result_backend: redis://localhost:6379/0
worker_concurrency: 8
result_expires: 0
worker_send_task_events: True
worker_prefetch_multiplier: 1
signal:
host: localhost
port: 6379
password: null
database: 0
polling_time: 0.5
store:
host: localhost
port: 27017
database: lightflow
username: null
password: null
auth_source: admin
auth_mechanism: null
connect_timeout: 30000
graph:
workflow_polling_time: 0.5
dag_polling_time: 0.5
cli:
time_format: '%d/%m/%Y %H:%M:%S'
extensions: {}
logging:
version: 1
disable_existing_loggers: false
formatters:
verbose:
format: '[%(asctime)s][%(levelname)s] %(name)s %(filename)s:%(funcName)s:%(lineno)d | %(message)s'
datefmt: '%d/%m/%Y %H:%M:%S'
simple:
(): 'colorlog.ColoredFormatter'
format: '%(log_color)s[%(asctime)s][%(levelname)s] %(blue)s%(processName)s%(reset)s | %(message)s'
datefmt: '%d/%m/%Y %H:%M:%S'
handlers:
console:
class: logging.StreamHandler
level: INFO
formatter: simple
loggers:
celery:
handlers:
- console
level: INFO
root:
handlers:
- console
level: INFO
'''
|
class Config:
''' Hosts the global configuration.
The configuration is read from a structured YAML file or a dictionary.
The location of the file can either be specified directly, is given in
the environment variable LIGHTFLOW_CONFIG_ENV, is looked for in the
current execution directory or in the home directory of the user.
'''
def __init__(self):
pass
@classmethod
def from_file(cls, filename, *, strict=True):
''' Create a new Config object from a configuration file.
Args:
filename (str): The location and name of the configuration file.
strict (bool): If true raises a ConfigLoadError when the configuration
cannot be found.
Returns:
An instance of the Config class.
Raises:
ConfigLoadError: If the configuration cannot be found.
'''
pass
def load_from_file(self, filename=None, *, strict=True):
''' Load the configuration from a file.
The location of the configuration file can either be specified directly in the
parameter filename or is searched for in the following order:
1. In the environment variable given by LIGHTFLOW_CONFIG_ENV
2. In the current execution directory
3. In the user's home directory
Args:
filename (str): The location and name of the configuration file.
strict (bool): If true raises a ConfigLoadError when the configuration
cannot be found.
Raises:
ConfigLoadError: If the configuration cannot be found.
'''
pass
def load_from_dict(self, conf_dict=None):
''' Load the configuration from a dictionary.
Args:
conf_dict (dict): Dictionary with the configuration.
'''
pass
def to_dict(self):
''' Returns a copy of the internal configuration as a dictionary. '''
pass
@property
def workflows(self):
''' Return the workflow folders '''
pass
@property
def data_store(self):
''' Return the data store settings '''
pass
@property
def signal(self):
''' Return the signal system settings '''
pass
@property
def logging(self):
''' Return the logging settings '''
pass
@property
def celery(self):
''' Return the celery settings '''
pass
@property
def cli(self):
''' Return the cli settings '''
pass
@property
def extensions(self):
''' Return the custom settings of extensions '''
pass
@property
def workflow_polling_time(self):
''' Return the waiting time between status checks of the running dags (sec) '''
pass
@property
def dag_polling_time(self):
''' Return the waiting time between status checks of the running tasks (sec) '''
pass
def set_to_default(self):
''' Overwrite the configuration with the default configuration. '''
pass
def _update_from_file(self, filename):
''' Helper method to update an existing configuration with the values from a file.
Loads a configuration file and replaces all values in the existing configuration
dictionary with the values from the file.
Args:
filename (str): The path and name to the configuration file.
'''
pass
def _update_dict(self, to_dict, from_dict):
''' Recursively merges the fields for two dictionaries.
Args:
to_dict (dict): The dictionary onto which the merge is executed.
from_dict (dict): The dictionary merged into to_dict
'''
pass
def _update_python_paths(self):
''' Append the workflow and libraries paths to the PYTHONPATH. '''
pass
@staticmethod
def default():
''' Returns the default configuration. '''
pass
| 31 | 19 | 11 | 1 | 8 | 3 | 2 | 0.37 | 0 | 4 | 2 | 0 | 17 | 1 | 19 | 19 | 253 | 41 | 155 | 37 | 124 | 57 | 74 | 25 | 54 | 6 | 0 | 4 | 35 |
7,947 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.RequestActionUnknown
|
class RequestActionUnknown(RuntimeError):
pass
|
class RequestActionUnknown(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,948 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.LightflowException
|
class LightflowException(RuntimeError):
""" Lightflow base class for all exceptions. """
def __init__(self, message=''):
self.message = message
def __str__(self):
return self.message
def __repr__(self):
return "<LightflowException - {}>".format(self.message)
|
class LightflowException(RuntimeError):
''' Lightflow base class for all exceptions. '''
def __init__(self, message=''):
pass
def __str__(self):
pass
def __repr__(self):
pass
| 4 | 1 | 2 | 0 | 2 | 0 | 1 | 0.14 | 1 | 0 | 0 | 2 | 3 | 1 | 3 | 14 | 10 | 2 | 7 | 5 | 3 | 1 | 7 | 5 | 3 | 1 | 4 | 0 | 3 |
7,949 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.JobStatInvalid
|
class JobStatInvalid(RuntimeError):
pass
|
class JobStatInvalid(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,950 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.RequestFailed
|
class RequestFailed(RuntimeError):
pass
|
class RequestFailed(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,951 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DataStoreNotConnected
|
class DataStoreNotConnected(RuntimeError):
pass
|
class DataStoreNotConnected(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,952 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DirectedAcyclicGraphUndefined
|
class DirectedAcyclicGraphUndefined(RuntimeError):
pass
|
class DirectedAcyclicGraphUndefined(RuntimeError):
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,953 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.DirectedAcyclicGraphInvalid
|
class DirectedAcyclicGraphInvalid(RuntimeError):
def __init__(self, graph_name):
""" Initialize the exception for invalid directed acyclic graphs.
Args:
graph_name (str): The name of the dag that is invalid.
"""
self.graph_name = graph_name
|
class DirectedAcyclicGraphInvalid(RuntimeError):
def __init__(self, graph_name):
''' Initialize the exception for invalid directed acyclic graphs.
Args:
graph_name (str): The name of the dag that is invalid.
'''
pass
| 2 | 1 | 7 | 1 | 2 | 4 | 1 | 1.33 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 12 | 8 | 1 | 3 | 3 | 1 | 4 | 3 | 3 | 1 | 1 | 4 | 0 | 1 |
7,954 |
AustralianSynchrotron/lightflow
|
AustralianSynchrotron_lightflow/lightflow/models/exceptions.py
|
lightflow.models.exceptions.JobEventTypeUnsupported
|
class JobEventTypeUnsupported(RuntimeError):
pass
|
class JobEventTypeUnsupported(RuntimeError):
pass
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 2 | 0 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 0 | 4 | 0 | 0 |
7,955 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_render.py
|
test_render.SecretKeyNameTest
|
class SecretKeyNameTest(unittest.TestCase):
def getopt(self, op, args):
args = parser_factory([op] + args)[1]
return args
def test_default(self):
args = self.getopt('environment', ['foo'])
assert secret_key_name('foo', 'baz', args) == 'foo_baz'
def test_prefix(self):
args = self.getopt('environment', ['foo', '--add-prefix',
'zoom',])
assert secret_key_name('foo', 'baz', args) == 'zoomfoo_baz'
args = self.getopt('environment', ['foo', '--add-prefix',
'zoom',
'--no-merge-path'])
assert secret_key_name('foo', 'baz', args) == 'zoombaz'
args = self.getopt('environment', ['foo', '--add-prefix',
'zoom',
'--add-suffix',
'mooz',
'--no-merge-path'])
assert secret_key_name('foo', 'baz', args) == 'zoombazmooz'
def test_suffix(self):
opt = self.getopt('environment', ['foo', '--add-suffix',
'mooz'])
assert secret_key_name('foo', 'baz', opt) == 'foo_bazmooz'
opt = self.getopt('environment', ['foo', '--add-suffix',
'mooz',
'--no-merge-path'])
assert secret_key_name('foo', 'baz', opt) == 'bazmooz'
opt = self.getopt('environment', ['foo', '--add-prefix',
'zoom',
'--add-suffix',
'mooz'])
assert secret_key_name('foo', 'baz', opt) == 'zoomfoo_bazmooz'
|
class SecretKeyNameTest(unittest.TestCase):
def getopt(self, op, args):
pass
def test_default(self):
pass
def test_prefix(self):
pass
def test_suffix(self):
pass
| 5 | 0 | 8 | 0 | 8 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 38 | 4 | 34 | 8 | 29 | 0 | 21 | 8 | 16 | 1 | 2 | 0 | 4 |
7,956 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_render.py
|
test_render.TemplateTest
|
class TemplateTest(unittest.TestCase):
def test_builtin(self):
builtin_file = grok_template_file('builtin:foo')
assert builtin_file.endswith('foo.j2')
assert not builtin_file.startswith('builtin:')
def test_normal(self):
builtin_file = grok_template_file('/foo')
assert builtin_file == '/foo'
|
class TemplateTest(unittest.TestCase):
def test_builtin(self):
pass
def test_normal(self):
pass
| 3 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 74 | 9 | 1 | 8 | 5 | 5 | 0 | 8 | 5 | 5 | 1 | 2 | 0 | 2 |
7,957 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_validation.py
|
test_validation.SanitizeMount
|
class SanitizeMount(unittest.TestCase):
def test_happy_path(self):
assert aomi.validation.sanitize_mount('foo') == 'foo'
assert aomi.validation.sanitize_mount('foo/bar') == 'foo/bar'
def test_prefix(self):
assert aomi.validation.sanitize_mount('/foo') == 'foo'
assert aomi.validation.sanitize_mount('/foo/bar') == 'foo/bar'
def test_suffix(self):
assert aomi.validation.sanitize_mount('/foo') == 'foo'
assert aomi.validation.sanitize_mount('/foo/bar') == 'foo/bar'
def test_both(self):
assert aomi.validation.sanitize_mount('/foo/') == 'foo'
assert aomi.validation.sanitize_mount('/foo/bar/') == 'foo/bar'
|
class SanitizeMount(unittest.TestCase):
def test_happy_path(self):
pass
def test_prefix(self):
pass
def test_suffix(self):
pass
def test_both(self):
pass
| 5 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 4 | 76 | 16 | 3 | 13 | 5 | 8 | 0 | 13 | 5 | 8 | 1 | 2 | 0 | 4 |
7,958 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_validation.py
|
test_validation.StringTests
|
class StringTests(unittest.TestCase):
ghost_emoji = portable_b64decode('8J+Ruwo=')
some_binary = portable_b64decode('uRo/OptvvkT790yaPjql5OItfFUBSM2tM42QJkPM7qvMTn4tQClPjB6mpdSFDtyzuqGVrMGaHRKv7XuzlZPpWGbVzlCjIvN0nOUiBXSQsockEJwCwIaiwm/xxWSE9+P2zWdqt1J/Iuwv6Rq60qpMRTqWNJD5dDzbw4VdDQhxzgK4zN2Er+JQQqQctsj1XuM8xJtzBQsozt5ZCJso4/jsUsWrFgHPp5nu4whuT7ZSgthsGz+NXo1f6v4njJ705ZMjLW0zdnkx/14E8qGJCsDs8pCkekDn+K4gTLfzZHga/du8xtN6e/X97K2BbdVC8Obz684wnqdHLWc+bNNso+5XFtQbFbK6vBtGtZNmBeiVBo594Zr5xRxFPSfOHIKz0jB4U5He7xgh2C7AFh2SCy4fW1fwC5XxQoz1pRSiFTRbUr/dMHMn0ZaspVYUNPdZccM4xj8ip5k4fXVRTKFF1qEiFGohcfLdabCBXAkckOmGogdN0swOpoiNEohYksW0bkof89q1aRJl6tM9E2spH62XZXDmQFHIdxFFHP6zAl2t7zGB2vxDCpLgQg3l8RytryMfDR7MXXXy2kbhtFpIl45gFl/8u+aOc7fP4dLxacCbJNz3cO3iMXIPytwiaq5HJbgQ6ZgeGjZBniTCRLwRpOv3l3GRsLstdRJSk2KP+kwY9Tk=')
def test_is_unicode(self):
assert aomi.validation.is_unicode_string("foo") == None
assert aomi.validation.is_unicode_string("70758F21-946C-4C14-AD67-53DDCA5C9F4B") == None
assert aomi.validation.is_unicode_string(self.ghost_emoji) == None
with self.assertRaises(aomi.exceptions.Validation):
aomi.validation.is_unicode_string(self.some_binary)
|
class StringTests(unittest.TestCase):
def test_is_unicode(self):
pass
| 2 | 0 | 6 | 0 | 6 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 73 | 10 | 1 | 9 | 4 | 7 | 0 | 9 | 4 | 7 | 1 | 2 | 1 | 1 |
7,959 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_validation.py
|
test_validation.UnicodeTests
|
class UnicodeTests(unittest.TestCase):
def test_is_unicode(self):
assert aomi.validation.is_unicode(str("test a thing"))
|
class UnicodeTests(unittest.TestCase):
def test_is_unicode(self):
pass
| 2 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 73 | 3 | 0 | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 1 | 2 | 0 | 1 |
7,960 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_helpers.py
|
test_helpers.FilePathTest
|
class FilePathTest(unittest.TestCase):
def test_subdir_happy_path(self):
assert aomi.helpers.subdir_path("/a/b/c", "/a/b/.gitignore") == "c"
assert aomi.helpers.subdir_path("/a/b/c/d", "/a/b/.gitignore") == "c/d"
def test_subdir_missing(self):
assert aomi.helpers.subdir_path("/a/b/c", "c/d") is None
def test_subdir_external(self):
assert aomi.helpers.subdir_path("/a/b/c", "/d/e") is None
|
class FilePathTest(unittest.TestCase):
def test_subdir_happy_path(self):
pass
def test_subdir_missing(self):
pass
def test_subdir_external(self):
pass
| 4 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 3 | 75 | 10 | 2 | 8 | 4 | 4 | 0 | 8 | 4 | 4 | 1 | 2 | 0 | 3 |
7,961 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_vault.py
|
test_vault.HelperTest
|
class HelperTest(unittest.TestCase):
def test_seconds_to_seconds(self):
assert grok_seconds('1s') == 1
assert grok_seconds('60s') == 60
assert grok_seconds('120s') == 120
def test_minutes_to_seconds(self):
assert grok_seconds('1m') == 60
assert grok_seconds('60m') == 3600
def test_hours_to_seconds(self):
assert grok_seconds('1h') == 3600
assert grok_seconds('24h') == 86400
def test_is_aws(self):
assert is_aws({'access_key': True, 'secret_key': True})
assert is_aws({'access_key': True, 'secret_key': True, 'security_token': True})
def test_is_not_aws(self):
assert not is_aws({'aaa': True})
|
class HelperTest(unittest.TestCase):
def test_seconds_to_seconds(self):
pass
def test_minutes_to_seconds(self):
pass
def test_hours_to_seconds(self):
pass
def test_is_aws(self):
pass
def test_is_not_aws(self):
pass
| 6 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 5 | 0 | 5 | 77 | 20 | 4 | 16 | 6 | 10 | 0 | 16 | 6 | 10 | 1 | 2 | 0 | 5 |
7,962 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_helpers.py
|
test_helpers.CliHashTest
|
class CliHashTest(unittest.TestCase):
def test_happy_path(self):
assert aomi.helpers.cli_hash(["foo=bar"]) == {'foo': 'bar'}
assert aomi.helpers.cli_hash(["foo=bar", "baz=bam"]) == {'foo': 'bar', 'baz': 'bam'}
|
class CliHashTest(unittest.TestCase):
def test_happy_path(self):
pass
| 2 | 0 | 3 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 73 | 4 | 0 | 4 | 2 | 2 | 0 | 4 | 2 | 2 | 1 | 2 | 0 | 1 |
7,963 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_cli.py
|
test_cli.OpParserTest
|
class OpParserTest(unittest.TestCase):
def enabled_options(self, operations, option):
for op in operations:
self.assertTrue(option.replace('-', '_') in aomi.cli.parser_factory(op)[1].__dict__)
def disabled_options(self, operations, option):
for op in operations:
self.assertFalse(option.replace('-', '_') in aomi.cli.parser_factory(op)[1].__dict__)
def test_secretfile_option(self):
self.enabled_options([['seed'],
['freeze', 'fake'],
['thaw', 'fake']], 'secretfile')
self.disabled_options([['environment', 'foo'],
['extract_file', 'foo', 'bar'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['set_password', 'foo'],
['token']], 'secretfiles')
def test_policies_option(self):
self.enabled_options([['seed'],
['thaw', 'foo'],
['freeze', 'foo']], 'policies')
self.disabled_options([['environment', 'foo'],
['extract_file', 'foo', 'bar'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['set_password', 'foo'],
['token']], 'policies')
def test_secrets_option(self):
self.enabled_options([['seed'],
['freeze', 'foo'],
['thaw', 'foo']], 'secrets')
self.disabled_options([['environment', 'foo'],
['extract_file', 'foo', 'bar'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['set_password', 'foo'],
['token']], 'secrets')
def test_mount_only_option(self):
self.enabled_options([['seed']], 'mount-only')
self.disabled_options([['environment', 'foo'],
['extract_file', 'foo', 'bar'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['set_password', 'foo'],
['token'],
['freeze', 'foo'],
['thaw', 'foo']], 'mount-only')
def test_prefix_option(self):
self.enabled_options([['environment', 'foo']], 'prefix')
self.disabled_options([['seed'],
['extract_file', 'foo', 'bar'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'prefix')
def test_add_prefix_option(self):
self.enabled_options([['environment', 'foo'],
['template', 'foo', 'bar', 'baz']], 'add-prefix')
self.disabled_options([['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'add-prefix')
def test_suffix_option(self):
self.enabled_options([['environment', 'foo'],
['template', 'foo', 'bar', 'baz']], 'add-suffix')
self.disabled_options([['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'add-suffix')
def test_merge_path_option(self):
self.enabled_options([['environment', 'foo'],
['template', 'foo', 'bar', 'baz']], 'merge-path')
self.disabled_options([['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'merge-path')
def test_verbose_option(self):
self.enabled_options([['environment', 'foo'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'verbose')
def test_metadata_option(self):
self.enabled_options([['environment', 'foo'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'metadata')
def test_lease_option(self):
self.enabled_options([['environment', 'foo'],
['aws_environment', 'foo'],
['template', 'foo', 'bar', 'baz'],
['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'lease')
def test_export_option(self):
self.enabled_options([['environment', 'foo'],
['aws_environment', 'foo']], 'export')
self.disabled_options([['template', 'foo', 'bar', 'baz'],
['seed'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['freeze', 'foo'],
['thaw', 'foo'],
['token']], 'export')
def test_extra_vars_option(self):
self.enabled_options([['template', 'foo', 'bar', 'baz'],
['freeze', 'foo'],
['thaw', 'foo'],
['seed']], 'extra-vars')
self.disabled_options([['environment', 'foo'],
['aws_environment', 'foo'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['token']], 'extra-vars')
def test_extra_vars_file_option(self):
self.enabled_options([['template', 'foo', 'bar', 'baz'],
['freeze', 'foo'],
['thaw', 'foo'],
['seed']], 'extra-vars-file')
self.disabled_options([['environment', 'foo'],
['aws_environment', 'foo'],
['extract_file', 'foo', 'bar'],
['set_password', 'foo'],
['token']], 'extra-vars-file')
|
class OpParserTest(unittest.TestCase):
def enabled_options(self, operations, option):
pass
def disabled_options(self, operations, option):
pass
def test_secretfile_option(self):
pass
def test_policies_option(self):
pass
def test_secrets_option(self):
pass
def test_mount_only_option(self):
pass
def test_prefix_option(self):
pass
def test_add_prefix_option(self):
pass
def test_suffix_option(self):
pass
def test_merge_path_option(self):
pass
def test_verbose_option(self):
pass
def test_metadata_option(self):
pass
def test_lease_option(self):
pass
def test_export_option(self):
pass
def test_extra_vars_option(self):
pass
def test_extra_vars_file_option(self):
pass
| 17 | 0 | 9 | 0 | 9 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 16 | 0 | 16 | 88 | 167 | 23 | 144 | 19 | 127 | 0 | 46 | 19 | 29 | 2 | 2 | 1 | 18 |
7,964 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/ssh.py
|
aomi.model.ssh.SSHRole
|
class SSHRole(Secret):
"""SSH Credential Backend"""
resource_key = 'ssh_creds'
required_fields = ['key_type']
backend = 'ssh'
def __init__(self, obj, opt):
super(SSHRole, self).__init__(obj, opt)
self.mount = sanitize_mount(obj.get('mount', 'ssh'))
a_name = obj.get('name', obj['ssh_creds'])
self.path = "%s/roles/%s" % (self.mount, a_name)
self._obj = {
'key_type': obj['key_type']
}
if 'cidr_list' in obj:
self._obj['cidr_list'] = ','.join(obj['cidr_list'])
if 'default_user' in obj:
self._obj['default_user'] = obj['default_user']
self.tunable(obj)
|
class SSHRole(Secret):
'''SSH Credential Backend'''
def __init__(self, obj, opt):
pass
| 2 | 1 | 15 | 2 | 13 | 0 | 3 | 0.06 | 1 | 1 | 0 | 0 | 1 | 3 | 1 | 22 | 21 | 3 | 17 | 9 | 15 | 1 | 15 | 9 | 13 | 3 | 3 | 1 | 3 |
7,965 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/resource.py
|
aomi.model.resource.Secret
|
class Secret(Resource):
"""Vault Secrets
These Vault resources will have some kind of secret backend
underneath them. Seems to work with generic and AWS"""
config_key = 'secrets'
|
class Secret(Resource):
'''Vault Secrets
These Vault resources will have some kind of secret backend
underneath them. Seems to work with generic and AWS'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1.5 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 21 | 5 | 0 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 0 | 2 | 0 | 0 |
7,966 |
Autodesk/aomi
|
Autodesk_aomi/tests/test_validation.py
|
test_validation.VaultPathTest
|
class VaultPathTest(unittest.TestCase):
def setUp(self):
self.args = parser_factory(['seed'])[1]
def test_happy_path(self):
self.assertTrue(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertTrue(aomi.validation.specific_path_check('foo/bam', self.args))
def test_include(self):
self.args.include = ['foo/bar']
self.assertTrue(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/bam', self.args))
def test_exclude(self):
self.args.exclude = ['foo/bar']
self.assertFalse(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertTrue(aomi.validation.specific_path_check('foo/bam', self.args))
def test_both(self):
self.args.exclude = ['foo/bar']
self.args.include = ['foo/bar']
self.assertFalse(aomi.validation.specific_path_check('foo/bar', self.args))
def test_include_multiple(self):
self.args.include = ['foo/bar', 'foo/baz']
self.assertTrue(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertTrue(aomi.validation.specific_path_check('foo/baz', self.args))
def test_exclude_multiple(self):
self.args.exclude = ['foo/bar', 'foo/baz']
self.assertFalse(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/baz', self.args))
def test_both(self):
self.args.exclude = ['foo/bar', 'foo/baz']
self.args.include = ['foo/bar', 'foo/baz']
self.assertFalse(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/baz', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/bam', self.args))
def test_complex(self):
self.args.include = ['foo/bar', 'foo/bam']
self.args.exclude = ['foo/baz', 'foo/bam']
self.assertTrue(aomi.validation.specific_path_check('foo/bar', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/bom', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/bam', self.args))
self.assertFalse(aomi.validation.specific_path_check('foo/baz', self.args))
|
class VaultPathTest(unittest.TestCase):
def setUp(self):
pass
def test_happy_path(self):
pass
def test_include(self):
pass
def test_exclude(self):
pass
def test_both(self):
pass
def test_include_multiple(self):
pass
def test_exclude_multiple(self):
pass
def test_both(self):
pass
def test_complex(self):
pass
| 10 | 0 | 4 | 0 | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 9 | 1 | 9 | 81 | 47 | 8 | 39 | 11 | 29 | 0 | 39 | 11 | 29 | 1 | 2 | 0 | 9 |
7,967 |
Autodesk/aomi
|
Autodesk_aomi/aomi/vault.py
|
aomi.vault.Client
|
class Client(hvac.Client):
"""Our Vault Client Wrapper
This class will pass the existing hvac bits through. When interacting
with cubbyhole paths, it will use the non operational token in order
to preserve access."""
# dat hvac tho
# pylint: disable=too-many-arguments
def __init__(self, _url=None, token=None, _cert=None, _verify=True,
_timeout=30, _proxies=None, _allow_redirects=True,
_session=None):
self.version = None
self.vault_addr = os.environ.get('VAULT_ADDR')
if not self.vault_addr:
raise aomi.exceptions.AomiError('VAULT_ADDR is undefined or empty')
if not self.vault_addr.startswith("http"):
raise aomi.exceptions.AomiError('VAULT_ADDR must be a URL')
ssl_verify = True
if 'VAULT_SKIP_VERIFY' in os.environ:
if os.environ['VAULT_SKIP_VERIFY'] == '1':
import urllib3
urllib3.disable_warnings()
ssl_verify = False
self.initial_token = None
self.operational_token = None
session = requests.Session()
retries = Retry(total=5,
backoff_factor=0.5)
adapter = HTTPAdapter(max_retries=retries)
session.mount('https://', adapter)
session.mount('http://', adapter)
super(Client, self).__init__(url=self.vault_addr,
verify=ssl_verify,
session=session)
def server_version(self):
"""Attempts to determine the version of Vault that a
server is running. Some actions will change on older
Vault deployments."""
health_url = "%s/v1/sys/health" % self.vault_addr
resp = self.session.request('get', health_url, **self._kwargs)
if resp.status_code == 200 or resp.status_code == 429:
blob = resp.json()
if 'version' in blob:
return blob['version']
else:
raise aomi.exceptions.VaultProblem('Health check failed')
return None
def connect(self, opt):
"""This sets up the tokens we expect to see in a way
that hvac also expects."""
if not self._kwargs['verify']:
LOG.warning('Skipping SSL Validation!')
self.version = self.server_version()
self.token = self.init_token()
my_token = self.lookup_token()
if not my_token or 'data' not in my_token:
raise aomi.exceptions.AomiCredentials('initial token')
display_name = my_token['data']['display_name']
vsn_string = ""
if self.version:
vsn_string = ", v%s" % self.version
else:
LOG.warning("Unable to deterine Vault version. Not all "
"functionality is supported")
LOG.info("Connected to %s as %s%s",
self._url,
display_name,
vsn_string)
if opt.reuse_token:
LOG.debug("Not creating operational token")
self.initial_token = self.token
self.operational_token = self.token
else:
self.initial_token = self.token
self.operational_token = self.op_token(display_name, opt)
if not self.is_authenticated():
raise aomi.exceptions.AomiCredentials('operational token')
self.token = self.operational_token
return self
def init_token(self):
"""Generate our first token based on workstation configuration"""
app_filename = appid_file()
token_filename = token_file()
approle_filename = approle_file()
token = None
if 'VAULT_ROLE_ID' in os.environ and \
'VAULT_SECRET_ID' in os.environ and \
os.environ['VAULT_ROLE_ID'] and os.environ['VAULT_SECRET_ID']:
token = approle_token(self,
os.environ['VAULT_ROLE_ID'],
os.environ['VAULT_SECRET_ID'])
LOG.debug("Token derived from VAULT_ROLE_ID and VAULT_SECRET_ID")
elif 'VAULT_TOKEN' in os.environ and os.environ['VAULT_TOKEN']:
LOG.debug('Token derived from VAULT_TOKEN environment variable')
token = os.environ['VAULT_TOKEN'].strip()
elif 'VAULT_USER_ID' in os.environ and \
'VAULT_APP_ID' in os.environ and \
os.environ['VAULT_USER_ID'] and os.environ['VAULT_APP_ID']:
LOG.debug("Token derived from VAULT_APP_ID and VAULT_USER_ID")
token = app_token(self,
os.environ['VAULT_APP_ID'].strip(),
os.environ['VAULT_USER_ID'].strip())
elif approle_filename:
creds = yaml.safe_load(open(approle_filename).read().strip())
if 'role_id' in creds and 'secret_id' in creds:
LOG.debug("Token derived from approle file")
token = approle_token(self,
creds['role_id'],
creds['secret_id'])
elif token_filename:
LOG.debug("Token derived from %s", token_filename)
try:
token = open(token_filename, 'r').read().strip()
except IOError as os_exception:
if os_exception.errno == 21:
raise aomi.exceptions.AomiFile('Bad Vault token file')
raise
elif app_filename:
token = yaml.safe_load(open(app_filename).read().strip())
if 'app_id' in token and 'user_id' in token:
LOG.debug("Token derived from %s", app_filename)
token = app_token(self,
token['app_id'],
token['user_id'])
else:
raise aomi.exceptions.AomiCredentials('unknown method')
return token
def op_token(self, display_name, opt):
"""Return a properly annotated token for our use. This
token will be revoked at the end of the session. The token
will have some decent amounts of metadata tho."""
args = {
'lease': opt.lease,
'display_name': display_name,
'meta': token_meta(opt)
}
try:
token = self.create_token(**args)
except (hvac.exceptions.InvalidRequest,
hvac.exceptions.Forbidden) as vault_exception:
if vault_exception.errors[0] == 'permission denied':
emsg = "Permission denied creating operational token"
raise aomi.exceptions.AomiCredentials(emsg)
else:
raise
LOG.debug("Created operational token with lease of %s", opt.lease)
return token['auth']['client_token']
def read(self, path, wrap_ttl=None):
"""Wrap the hvac read call, using the right token for
cubbyhole interactions."""
path = sanitize_mount(path)
if path.startswith('cubbyhole'):
self.token = self.initial_token
val = super(Client, self).read(path, wrap_ttl)
self.token = self.operational_token
return val
return super(Client, self).read(path, wrap_ttl)
def write(self, path, wrap_ttl=None, **kwargs):
"""Wrap the hvac write call, using the right token for
cubbyhole interactions."""
path = sanitize_mount(path)
val = None
if path.startswith('cubbyhole'):
self.token = self.initial_token
val = super(Client, self).write(path, wrap_ttl=wrap_ttl, **kwargs)
self.token = self.operational_token
else:
super(Client, self).write(path, wrap_ttl=wrap_ttl, **kwargs)
return val
def delete(self, path):
"""Wrap the hvac delete call, using the right token for
cubbyhole interactions."""
path = sanitize_mount(path)
val = None
if path.startswith('cubbyhole'):
self.token = self.initial_token
val = super(Client, self).delete(path)
self.token = self.operational_token
else:
super(Client, self).delete(path)
return val
|
class Client(hvac.Client):
'''Our Vault Client Wrapper
This class will pass the existing hvac bits through. When interacting
with cubbyhole paths, it will use the non operational token in order
to preserve access.'''
def __init__(self, _url=None, token=None, _cert=None, _verify=True,
_timeout=30, _proxies=None, _allow_redirects=True,
_session=None):
pass
def server_version(self):
'''Attempts to determine the version of Vault that a
server is running. Some actions will change on older
Vault deployments.'''
pass
def connect(self, opt):
'''This sets up the tokens we expect to see in a way
that hvac also expects.'''
pass
def init_token(self):
'''Generate our first token based on workstation configuration'''
pass
def op_token(self, display_name, opt):
'''Return a properly annotated token for our use. This
token will be revoked at the end of the session. The token
will have some decent amounts of metadata tho.'''
pass
def read(self, path, wrap_ttl=None):
'''Wrap the hvac read call, using the right token for
cubbyhole interactions.'''
pass
def write(self, path, wrap_ttl=None, **kwargs):
'''Wrap the hvac write call, using the right token for
cubbyhole interactions.'''
pass
def delete(self, path):
'''Wrap the hvac delete call, using the right token for
cubbyhole interactions.'''
pass
| 9 | 8 | 24 | 2 | 20 | 2 | 4 | 0.13 | 1 | 8 | 4 | 0 | 8 | 5 | 8 | 8 | 204 | 24 | 159 | 40 | 147 | 21 | 121 | 36 | 111 | 11 | 1 | 3 | 34 |
7,968 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/generic.py
|
aomi.model.generic.Generic
|
class Generic(Secret):
"""Generic Secrets"""
backend = 'generic'
def __init__(self, obj, opt):
super(Generic, self).__init__(obj, opt)
self.mount = sanitize_mount(obj['mount'])
self.path = "%s/%s" % (self.mount, obj['path'])
|
class Generic(Secret):
'''Generic Secrets'''
def __init__(self, obj, opt):
pass
| 2 | 1 | 4 | 0 | 4 | 0 | 1 | 0.17 | 1 | 1 | 0 | 3 | 1 | 2 | 1 | 22 | 8 | 1 | 6 | 5 | 4 | 1 | 6 | 5 | 4 | 1 | 3 | 0 | 1 |
7,969 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.AppRoleSecret
|
class AppRoleSecret(Resource):
"""Approle Secret"""
child = True
def __str__(self):
return "AppRole Secret %s %s" % (self.role_name, self.secret_name)
def __init__(self, obj, opt):
self.role_name = obj['role_name']
self.secret_name = obj['name']
self.filename = obj['filename']
self.opt = opt
super(AppRoleSecret, self).__init__(obj, opt)
def diff(self, obj=None):
if self.existing and 'secret_id_accessor' in self.existing:
return NOOP
return ADD
def obj(self):
filename = hard_path(self.filename, self.opt.secrets)
aomi.validation.secret_file(filename)
handle = open(filename, 'r')
s_obj = {
'role_name': self.role_name,
'secret_name': self.secret_name,
'secret_id': handle.read().strip()
}
handle.close()
return s_obj
def secrets(self):
return [self.filename]
@wrap_vault("writing")
def write(self, client):
s_obj = self.obj()
secret_id = s_obj['secret_id']
del s_obj['secret_id']
client.create_role_custom_secret_id(self.role_name,
secret_id,
s_obj)
@wrap_vault("reading")
def read(self, client):
try:
return client.get_role_secret_id(self.role_name,
self.obj()['secret_id'])
except hvac.exceptions.InvalidPath:
return None
except hvac.exceptions.InternalServerError as vault_excep:
e_msg = vault_excep.errors[0]
if "role %s does not exist" % self.role_name in e_msg:
return None
raise
except ValueError as an_excep:
if str(an_excep).startswith('No JSON object'):
return None
raise
@wrap_vault("deleting")
def delete(self, client):
client.delete_role_secret_id(self.role_name,
self.obj()['secret_id'])
|
class AppRoleSecret(Resource):
'''Approle Secret'''
def __str__(self):
pass
def __init__(self, obj, opt):
pass
def diff(self, obj=None):
pass
def obj(self):
pass
def secrets(self):
pass
@wrap_vault("writing")
def write(self, client):
pass
@wrap_vault("reading")
def read(self, client):
pass
@wrap_vault("deleting")
def delete(self, client):
pass
| 12 | 1 | 7 | 0 | 6 | 0 | 2 | 0.02 | 1 | 3 | 0 | 0 | 8 | 4 | 8 | 29 | 67 | 11 | 55 | 25 | 43 | 1 | 44 | 20 | 35 | 6 | 2 | 2 | 14 |
7,970 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.LDAPUser
|
class LDAPUser(Resource):
"""LDAP User Membership"""
required_fields = ['user']
config_key = 'ldap_users'
def __init__(self, obj, opt):
super(LDAPUser, self).__init__(obj, opt)
self.path = sanitize_mount("auth/%s/users/%s" %
(obj.get('mount', 'ldap'), obj['user']))
self._obj = {}
map_val(self._obj, obj, 'groups', [])
map_val(self._obj, obj, 'policies', [])
def obj(self):
return {
'groups': ','.join(sorted(self._obj.get('groups', []))),
'policies': ','.join(sorted(self._obj.get('policies', [])))
}
|
class LDAPUser(Resource):
'''LDAP User Membership'''
def __init__(self, obj, opt):
pass
def obj(self):
pass
| 3 | 1 | 6 | 0 | 6 | 0 | 1 | 0.07 | 1 | 1 | 0 | 0 | 2 | 2 | 2 | 23 | 18 | 2 | 15 | 7 | 12 | 1 | 11 | 7 | 8 | 1 | 2 | 0 | 2 |
7,971 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.AppRole
|
class AppRole(Auth):
"""AppRole"""
required_fields = ['name', 'policies']
config_key = 'approles'
def resources(self):
return [self] + self.secret_ids
def __init__(self, obj, opt):
super(AppRole, self).__init__('approle', obj, opt)
self.app_name = obj['name']
self.mount = 'approle'
self.path = "%s/role/%s" % (self.mount, self.app_name)
self.secret_ids = []
self.tunable(obj)
policies = obj['policies']
# HCV seems to always add this in anyway. Having this implicit
# at our end makes the diff'ing easier.
if 'default' not in policies:
policies.insert(0, 'default')
role_obj = {
'policies': ','.join(sorted(policies))
}
map_val(role_obj, obj, 'bound_cidr_list', '', 'cidr_list')
map_val(role_obj, obj, 'secret_id_num_uses', 0, 'secret_uses')
map_val(role_obj, obj, 'secret_id_ttl', 0, 'secret_ttl')
map_val(role_obj, obj, 'period', 0)
map_val(role_obj, obj, 'token_max_ttl', 0)
map_val(role_obj, obj, 'token_ttl', 0)
map_val(role_obj, obj, 'bind_secret_id', True)
map_val(role_obj, obj, 'token_num_uses', 0)
self._obj = role_obj
if 'preset' in obj:
self.presets(obj['preset'], opt)
def presets(self, presets, opt):
"""Will create representational objects for any preset (push)
based AppRole Secrets."""
for preset in presets:
secret_obj = dict(preset)
secret_obj['role_name'] = self.app_name
self.secret_ids.append(AppRoleSecret(secret_obj, opt))
def diff(self, obj=None):
obj = dict(self.obj())
obj['policies'] = obj['policies'].split(',')
obj['policies'] = sorted(obj['policies'])
return super(AppRole, self).diff(obj)
@wrap_vault("writing")
def write(self, client):
client.create_role(self.app_name, **self.obj())
@wrap_vault("reading")
def read(self, client):
try:
return client.get_role(self.app_name)
except hvac.exceptions.InvalidPath:
return None
@wrap_vault("deleting")
def delete(self, client):
client.delete_role(self.app_name)
|
class AppRole(Auth):
'''AppRole'''
def resources(self):
pass
def __init__(self, obj, opt):
pass
def presets(self, presets, opt):
'''Will create representational objects for any preset (push)
based AppRole Secrets.'''
pass
def diff(self, obj=None):
pass
@wrap_vault("writing")
def write(self, client):
pass
@wrap_vault("reading")
def read(self, client):
pass
@wrap_vault("deleting")
def delete(self, client):
pass
| 11 | 2 | 7 | 0 | 6 | 1 | 2 | 0.1 | 1 | 3 | 1 | 0 | 7 | 5 | 7 | 29 | 64 | 8 | 51 | 22 | 40 | 5 | 46 | 19 | 38 | 3 | 3 | 1 | 11 |
7,972 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.LDAP
|
class LDAP(Auth):
"""LDAP Authentication"""
required_fields = ['url']
config_key = 'ldap_auth'
def __init__(self, obj, opt):
super(LDAP, self).__init__('ldap', obj, opt)
auth_obj = {
'url': obj['url']
}
self.mount = obj.get('mount', 'ldap')
self.path = sanitize_mount("auth/%s/config" % self.mount)
self.secret = obj.get('secrets')
map_val(auth_obj, obj, 'starttls', False)
map_val(auth_obj, obj, 'insecure_tls', False)
map_val(auth_obj, obj, 'discoverdn')
map_val(auth_obj, obj, 'userdn')
map_val(auth_obj, obj, 'userattr')
map_val(auth_obj, obj, 'deny_null_bind', True)
map_val(auth_obj, obj, 'upndomain')
map_val(auth_obj, obj, 'groupfilter')
map_val(auth_obj, obj, 'groupdn')
map_val(auth_obj, obj, 'groupattr')
map_val(auth_obj, obj, 'binddn')
map_val(auth_obj, obj, 'tls_max_version')
map_val(auth_obj, obj, 'tls_min_version')
self._obj = auth_obj
self.tunable(obj)
def secrets(self):
if self.secret:
return [self.secret]
return []
def obj(self):
ldap_obj = self._obj
if self.secret:
filename = hard_path(self.secret, self.opt.secrets)
secret_file(filename)
s_obj = load_var_file(filename, load_vars(self.opt))
for obj_k, obj_v in iteritems(s_obj):
ldap_obj[obj_k] = obj_v
return ldap_obj
|
class LDAP(Auth):
'''LDAP Authentication'''
def __init__(self, obj, opt):
pass
def secrets(self):
pass
def obj(self):
pass
| 4 | 1 | 13 | 1 | 12 | 0 | 2 | 0.03 | 1 | 1 | 0 | 0 | 3 | 4 | 3 | 25 | 45 | 5 | 39 | 15 | 35 | 1 | 37 | 15 | 33 | 3 | 3 | 2 | 6 |
7,973 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.DUOAccess
|
class DUOAccess(Resource):
"""DUO API
Access Credentials"""
child = True
def export(self, _directory):
pass
def secrets(self):
return [self.secret]
def obj(self):
filename = hard_path(self.filename, self.opt.secrets)
aomi.validation.secret_file(filename)
obj = yaml.safe_load(open(filename).read())
return {
'host': self.host,
'skey': obj['secret'],
'ikey': obj['key']
}
def diff(self, obj=None):
return Resource.diff_write_only(self)
def __init__(self, duo, secret, opt):
s_obj = {
'state': 'present'
}
if not duo.present:
s_obj['state'] = 'absent'
super(DUOAccess, self).__init__(s_obj, opt)
self.backend = duo.backend
self.path = "auth/%s/duo/access" % self.backend
self.filename = secret
self.secret = secret
self.host = duo.host
def fetch(self, vault_client):
mfa_config = vault_client.read("auth/%s/mfa_config" % self.backend)
self.existing = mfa_config and mfa_config['data']['type'] == 'duo'
|
class DUOAccess(Resource):
'''DUO API
Access Credentials'''
def export(self, _directory):
pass
def secrets(self):
pass
def obj(self):
pass
def diff(self, obj=None):
pass
def __init__(self, duo, secret, opt):
pass
def fetch(self, vault_client):
pass
| 7 | 1 | 5 | 0 | 5 | 0 | 1 | 0.06 | 1 | 1 | 0 | 0 | 6 | 6 | 6 | 27 | 41 | 7 | 32 | 18 | 25 | 2 | 26 | 18 | 19 | 2 | 2 | 1 | 7 |
7,974 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.DUO
|
class DUO(Auth):
"""DUO MFA
Authentication Backend Decorator"""
required_fields = ['host', 'creds', 'backend']
resource = 'DUO MFA'
config_key = 'duo'
def resources(self):
return [self, self.access]
def __init__(self, obj, opt):
super(DUO, self).__init__(obj['backend'], obj, opt)
self.path = "auth/%s/mfa_config" % self.backend
self.host = obj['host']
self.mount = self.backend
self._obj = {'type': 'duo'}
self.access = DUOAccess(self, obj['creds'], opt)
|
class DUO(Auth):
'''DUO MFA
Authentication Backend Decorator'''
def resources(self):
pass
def __init__(self, obj, opt):
pass
| 3 | 1 | 5 | 0 | 5 | 0 | 1 | 0.15 | 1 | 2 | 1 | 0 | 2 | 5 | 2 | 24 | 17 | 2 | 13 | 11 | 10 | 2 | 13 | 11 | 10 | 1 | 3 | 0 | 2 |
7,975 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.AppUser
|
class AppUser(Resource):
"""App User"""
required_fields = ['id']
child = True
def __init__(self, app, obj, opt):
super(AppUser, self).__init__(obj, opt)
self.path = "auth/app-id/map/user-id/%s" % obj['id']
self._obj = {
'value': app.app_name
}
if 'cidr' in obj:
self._obj['cidr'] = obj['cidr']
|
class AppUser(Resource):
'''App User'''
def __init__(self, app, obj, opt):
pass
| 2 | 1 | 8 | 0 | 8 | 0 | 2 | 0.09 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 22 | 13 | 1 | 11 | 6 | 9 | 1 | 9 | 6 | 7 | 2 | 2 | 1 | 2 |
7,976 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.VaultProblem
|
class VaultProblem(AomiError):
"""Something is wrong with Vault itself. Network, sealed,
but it's at the point where we can't even validate if
the data is there"""
catmsg = 'Vault Problem'
|
class VaultProblem(AomiError):
'''Something is wrong with Vault itself. Network, sealed,
but it's at the point where we can't even validate if
the data is there'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 5 | 0 | 2 | 2 | 1 | 3 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,977 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.VaultData
|
class VaultData(AomiError):
"""Something is wrong with data received from Vault. Usually
indicates aomi trying to interact with something manually created"""
catmsg = 'Unexpected Vault Data Woe'
|
class VaultData(AomiError):
'''Something is wrong with data received from Vault. Usually
indicates aomi trying to interact with something manually created'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 4 | 0 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,978 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.UserPass
|
class UserPass(Auth):
"""UserPass Authentication Backend"""
config_key = 'userpass'
no_resource = True
def __init__(self, obj, opt):
super(UserPass, self).__init__('userpass', obj, opt)
self.tunable(obj)
self.mount = obj.get('path', 'userpass')
self.path = "auth/%s" % self.mount
|
class UserPass(Auth):
'''UserPass Authentication Backend'''
def __init__(self, obj, opt):
pass
| 2 | 1 | 5 | 0 | 5 | 0 | 1 | 0.13 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 23 | 10 | 1 | 8 | 6 | 6 | 1 | 8 | 6 | 6 | 1 | 3 | 0 | 1 |
7,979 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.VaultConstraint
|
class VaultConstraint(AomiError):
"""Vault is imposing constraints on us. Permission or pathing generally"""
catmsg = 'A Vault Constraint Exists'
|
class VaultConstraint(AomiError):
'''Vault is imposing constraints on us. Permission or pathing generally'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,980 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.KeybaseAPI
|
class KeybaseAPI(AomiError):
"""Covers errors related to the keybase API"""
catmsg = 'Something wrong with Keybase integration'
|
class KeybaseAPI(AomiError):
'''Covers errors related to the keybase API'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,981 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.IceFile
|
class IceFile(AomiError):
"""Something is wrong with an aomi generated icefile"""
catmsg = 'Corrupt Icefile'
|
class IceFile(AomiError):
'''Something is wrong with an aomi generated icefile'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,982 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.GPG
|
class GPG(AomiError):
"""Covers errors related to our GPG wrapper"""
catmsg = 'Something went wrong interacting with GPG'
|
class GPG(AomiError):
'''Covers errors related to our GPG wrapper'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,983 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.AomiFile
|
class AomiFile(AomiError):
"""Something is wrong with a file on the local filesystem"""
catmsg = 'Problem with a local file'
|
class AomiFile(AomiError):
'''Something is wrong with a file on the local filesystem'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,984 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.AomiError
|
class AomiError(Exception):
"""Our generic exception. Builds up an appropriate error message for
representation to the user"""
catmsg = None
def __init__(self, message=None):
msg = None
if self.catmsg is not None and message is not None:
msg = "%s - %s" % (self.catmsg, message)
elif self.catmsg is not None:
msg = self.catmsg
elif message is not None:
msg = message
if msg is not None:
super(AomiError, self).__init__(msg)
else:
super(AomiError, self).__init__()
|
class AomiError(Exception):
'''Our generic exception. Builds up an appropriate error message for
representation to the user'''
def __init__(self, message=None):
pass
| 2 | 1 | 13 | 1 | 12 | 0 | 5 | 0.14 | 1 | 1 | 0 | 11 | 1 | 0 | 1 | 11 | 18 | 2 | 14 | 4 | 12 | 2 | 11 | 4 | 9 | 5 | 3 | 1 | 5 |
7,985 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.AomiData
|
class AomiData(AomiError):
"""Some kind of aomi specific data is invalid"""
catmsg = 'Invalid aomi data'
|
class AomiData(AomiError):
'''Some kind of aomi specific data is invalid'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,986 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.AomiCredentials
|
class AomiCredentials(AomiError):
"""This exception is used for representing errors related to authenticating
against a running Vault server"""
catmsg = 'Something wrong with Vault credentials'
|
class AomiCredentials(AomiError):
'''This exception is used for representing errors related to authenticating
against a running Vault server'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 4 | 0 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,987 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.AomiCommand
|
class AomiCommand(AomiError):
"""Invalid interaction attempted with the aomi cli"""
catmsg = 'Problem with command line arguments'
|
class AomiCommand(AomiError):
'''Invalid interaction attempted with the aomi cli'''
pass
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 0 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 0 | 4 | 0 | 0 |
7,988 |
Autodesk/aomi
|
Autodesk_aomi/aomi/exceptions.py
|
aomi.exceptions.Validation
|
class Validation(AomiError):
"""Some kind of validation failed. Invalid string, length,
who knows. Never trust user input tho."""
catmsg = 'Validation Error'
source = None
def __init__(self, message=None, source=None):
super(Validation, self).__init__(message=message)
self.source = source
|
class Validation(AomiError):
'''Some kind of validation failed. Invalid string, length,
who knows. Never trust user input tho.'''
def __init__(self, message=None, source=None):
pass
| 2 | 1 | 3 | 0 | 3 | 0 | 1 | 0.33 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 12 | 9 | 1 | 6 | 4 | 4 | 2 | 6 | 4 | 4 | 1 | 4 | 0 | 1 |
7,989 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.UserPassUser
|
class UserPassUser(Auth):
"""UserPass User Account"""
required_fields = ['username', 'password_file', 'policies']
config_key = 'users'
def export(self, _directory):
pass
def __init__(self, obj, opt):
super(UserPassUser, self).__init__('userpass', obj, opt)
self.username = obj['username']
self.mount = 'userpass'
self.path = sanitize_mount("auth/userpass/users/%s" % self.username)
self.secret = obj['password_file']
self._obj = {
'policies': obj['policies']
}
map_val(self._obj, obj, 'ttl')
map_val(self._obj, obj, 'max_ttl')
self.filename = self.secret
def secrets(self):
return [self.secret]
def diff(self, obj=None):
return Resource.diff_write_only(self)
def obj(self):
filename = hard_path(self.filename, self.opt.secrets)
secret_file(filename)
password = open(filename).readline().strip()
a_obj = self._obj
a_obj['password'] = password
a_obj['policies'] = ','.join(sorted(a_obj['policies']))
return a_obj
|
class UserPassUser(Auth):
'''UserPass User Account'''
def export(self, _directory):
pass
def __init__(self, obj, opt):
pass
def secrets(self):
pass
def diff(self, obj=None):
pass
def obj(self):
pass
| 6 | 1 | 5 | 0 | 5 | 0 | 1 | 0.03 | 1 | 1 | 0 | 0 | 5 | 6 | 5 | 27 | 35 | 5 | 29 | 17 | 23 | 1 | 27 | 17 | 21 | 1 | 3 | 0 | 5 |
7,990 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.LDAPGroup
|
class LDAPGroup(Resource):
"""LDAP Group Policy Mapping"""
required_fields = ['policies', 'group']
config_key = 'ldap_groups'
def __init__(self, obj, opt):
super(LDAPGroup, self).__init__(obj, opt)
self.group = obj['group']
self.path = sanitize_mount("auth/%s/groups/%s" %
(obj.get('mount', 'ldap'), self.group))
if self.present:
self._obj = {
"policies": obj['policies']
}
def fetch(self, vault_client):
super(LDAPGroup, self).fetch(vault_client)
if self.existing:
s_policies = sorted(self.existing['policies'].split(','))
self.existing['policies'] = s_policies
def obj(self):
return {
'policies': sorted(self._obj.get('policies', []))
}
def write(self, client):
w_obj = self._obj
w_obj['policies'] = ','.join(w_obj['policies'])
client.write(self.path, **w_obj)
|
class LDAPGroup(Resource):
'''LDAP Group Policy Mapping'''
def __init__(self, obj, opt):
pass
def fetch(self, vault_client):
pass
def obj(self):
pass
def write(self, client):
pass
| 5 | 1 | 6 | 0 | 6 | 0 | 2 | 0.04 | 1 | 1 | 0 | 0 | 4 | 3 | 4 | 25 | 30 | 4 | 25 | 12 | 20 | 1 | 20 | 12 | 15 | 2 | 2 | 1 | 6 |
7,991 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/aws.py
|
aomi.model.aws.AWSRole
|
class AWSRole(Resource):
"""AWS Role"""
required_fields = ['name', ['policy', 'arn']]
child = True
def __init__(self, mount, obj, opt):
super(AWSRole, self).__init__(obj, opt)
self.path = "%s/roles/%s" % (mount, obj['name'])
if 'policy' in obj:
self.filename = obj['policy']
if self.present:
self._obj = obj
if 'policy' in self._obj:
self._obj['policy'] = hard_path(self.filename, opt.policies)
def export(self, directory):
if not hasattr(self, 'filename'):
return
secret_h = self.export_handle(directory)
secret_h.write(self.obj()['policy'])
secret_h.close()
def obj(self):
s_obj = {}
if 'policy' in self._obj:
role_template_obj = self._obj.get('vars', {})
base_obj = load_vars(self.opt)
template_obj = merge_dicts(role_template_obj, base_obj)
aws_role = render(self._obj['policy'], template_obj)
aws_role = aws_role.replace(" ", "").replace("\n", "")
s_obj = {'policy': aws_role}
elif 'arn' in self._obj:
s_obj = {'arn': self._obj['arn']}
return s_obj
|
class AWSRole(Resource):
'''AWS Role'''
def __init__(self, mount, obj, opt):
pass
def export(self, directory):
pass
def obj(self):
pass
| 4 | 1 | 10 | 1 | 9 | 0 | 3 | 0.03 | 1 | 1 | 0 | 0 | 3 | 3 | 3 | 24 | 37 | 6 | 30 | 15 | 26 | 1 | 29 | 15 | 25 | 4 | 2 | 2 | 9 |
7,992 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.Policy
|
class Policy(Resource):
"""Vault Policy"""
required_fields = ['file', 'name']
config_key = 'policies'
def __init__(self, obj, opt):
super(Policy, self).__init__(obj, opt)
self.path = obj['name']
if self.present:
self.filename = obj['file']
base_obj = load_vars(opt)
self._obj = merge_dicts(base_obj, obj.get('vars', {}))
def validate(self, obj):
super(Policy, self).validate(obj)
if 'vars' in obj and not isinstance(obj['vars'], dict):
raise aomi.exceptions.Validation('policy vars must be dicts')
def obj(self):
return render(hard_path(self.filename, self.opt.policies), self._obj) \
.lstrip() \
.strip() \
.replace("\n\n", "\n")
@wrap_vault("reading")
def read(self, client):
LOG.debug("Reading %s", self)
a_policy = client.get_policy(self.path)
if a_policy:
return a_policy.lstrip() \
.strip() \
.replace("\n\n", "\n")
return None
@wrap_vault("writing")
def write(self, client):
client.set_policy(self.path, self.obj())
@wrap_vault("deleting")
def delete(self, client):
LOG.debug("Deleting %s", self)
client.delete_policy(self.path)
|
class Policy(Resource):
'''Vault Policy'''
def __init__(self, obj, opt):
pass
def validate(self, obj):
pass
def obj(self):
pass
@wrap_vault("reading")
def read(self, client):
pass
@wrap_vault("writing")
def write(self, client):
pass
@wrap_vault("deleting")
def delete(self, client):
pass
| 10 | 1 | 5 | 0 | 5 | 0 | 2 | 0.03 | 1 | 3 | 1 | 0 | 6 | 3 | 6 | 27 | 43 | 7 | 35 | 17 | 25 | 1 | 27 | 14 | 20 | 2 | 2 | 1 | 9 |
7,993 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/aomi/model/auth.py
|
aomi.model.auth.TokenRole
|
class TokenRole(Auth):
"""TokenRole"""
required_fields = ['name']
config_key = 'tokenroles'
def resources(self):
return [self] + self.secret_ids
def __init__(self, obj, opt):
super(TokenRole, self).__init__('tokenrole', obj, opt)
self.role_name = obj['name']
self.path = "auth/token/roles/%s" % obj['name']
self.mount = 'token'
self.backend = 'token'
self.secret_ids = []
role_obj = {}
for policy_type in ['allowed_policies', 'disallowed_policies']:
if policy_type in obj:
policies = obj[policy_type]
role_obj[policy_type] = ','.join(sorted(policies))
map_val(role_obj, obj, 'orphan', True)
map_val(role_obj, obj, 'period', 0)
map_val(role_obj, obj, 'renewable', True)
map_val(role_obj, obj, 'explicit_max_ttl', 0)
map_val(role_obj, obj, 'path_suffix', '')
self._obj = role_obj
def diff(self, obj=None):
obj = dict(self.obj())
for policy_type in ['allowed_policies', 'disallowed_policies']:
if policy_type in obj:
obj[policy_type] = obj[policy_type].split(',')
obj[policy_type] = sorted(obj[policy_type])
return super(TokenRole, self).diff(obj)
@wrap_vault("writing")
def write(self, client):
client.write(self.path, **self.obj())
@wrap_vault("reading")
def read(self, client):
try:
return client.read(self.path)
except hvac.exceptions.InvalidPath:
return None
@wrap_vault("deleting")
def delete(self, client):
client.delete(self.path)
|
class TokenRole(Auth):
'''TokenRole'''
def resources(self):
pass
def __init__(self, obj, opt):
pass
def diff(self, obj=None):
pass
@wrap_vault("writing")
def write(self, client):
pass
@wrap_vault("reading")
def read(self, client):
pass
@wrap_vault("deleting")
def delete(self, client):
pass
| 10 | 1 | 7 | 1 | 6 | 0 | 2 | 0.02 | 1 | 2 | 0 | 0 | 6 | 6 | 6 | 28 | 54 | 11 | 42 | 22 | 32 | 1 | 39 | 19 | 32 | 3 | 3 | 2 | 11 |
7,994 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/aomi/model/resource.py
|
aomi.model.resource.Resource
|
class Resource(object):
"""Vault Resource
All aomi derived Vault resources should extend this
class. It provides functionality for validation and
API CRUD operations."""
required_fields = []
config_key = None
resource_key = None
child = False
no_resource = False
secret_format = 'data'
def thaw(self, tmp_dir):
"""Will perform some validation and copy a
decrypted secret to it's final location"""
for sfile in self.secrets():
src_file = "%s/%s" % (tmp_dir, sfile)
err_msg = "%s secret missing from icefile" % (self)
if not os.path.exists(src_file):
if hasattr(self.opt, 'ignore_missing') and \
self.opt.ignore_missing:
LOG.warning(err_msg)
continue
else:
raise aomi_excep.IceFile(err_msg)
dest_file = "%s/%s" % (self.opt.secrets, sfile)
dest_dir = os.path.dirname(dest_file)
if not os.path.exists(dest_dir):
os.mkdir(dest_dir)
shutil.copy(src_file, dest_file)
LOG.debug("Thawed %s %s", self, sfile)
def tunable(self, obj):
"""A tunable resource maps against a backend..."""
self.tune = dict()
if 'tune' in obj:
for tunable in MOUNT_TUNABLES:
tunable_key = tunable[0]
map_val(self.tune, obj['tune'], tunable_key)
if tunable_key in self.tune and \
is_vault_time(self.tune[tunable_key]):
vault_time_s = vault_time_to_s(self.tune[tunable_key])
self.tune[tunable_key] = vault_time_s
if 'description' in obj:
self.tune['description'] = obj['description']
def export_handle(self, directory):
"""Get a filehandle for exporting"""
filename = getattr(self, 'filename')
dest_file = "%s/%s" % (directory, filename)
dest_dir = os.path.dirname(dest_file)
if not os.path.isdir(dest_dir):
os.mkdir(dest_dir, 0o700)
return open(dest_file, 'w')
def export(self, directory):
"""Export exportable resources decoding as needed"""
if not self.existing or not hasattr(self, 'filename'):
return
secret_h = self.export_handle(directory)
obj = self.existing
if isinstance(obj, str):
secret_h.write(obj)
elif isinstance(obj, dict):
secret_h.write(yaml.safe_dump(obj))
def freeze(self, tmp_dir):
"""Copies a secret into a particular location"""
for sfile in self.secrets():
src_file = hard_path(sfile, self.opt.secrets)
if not os.path.exists(src_file):
raise aomi_excep.IceFile("%s secret not found at %s" %
(self, src_file))
dest_file = "%s/%s" % (tmp_dir, sfile)
dest_dir = os.path.dirname(dest_file)
if not os.path.isdir(dest_dir):
os.mkdir(dest_dir, 0o700)
shutil.copy(src_file, dest_file)
LOG.debug("Froze %s %s", self, sfile)
def resources(self):
"""List of included resources"""
return [self]
def grok_state(self, obj):
"""Determine the desired state of this
resource based on data present"""
if 'state' in obj:
my_state = obj['state'].lower()
if my_state != 'absent' and my_state != 'present':
raise aomi_excep \
.Validation('state must be either "absent" or "present"')
self.present = obj.get('state', 'present').lower() == 'present'
def validate(self, obj):
"""Base validation method. Will inspect class attributes
to dermine just what should be present"""
if 'tags' in obj and not isinstance(obj['tags'], list):
raise aomi_excep.Validation('tags must be a list')
if self.present:
check_obj(self.required_fields, self.name(), obj)
def name(self):
"""A Friendly Name for our Resource"""
return self.__doc__.split('\n')[0]
def __str__(self):
return "%s %s" % (self.name(), self.path)
def obj(self):
"""Returns the Python dict/JSON object representation
of this Secret as it is to be written to Vault"""
return self._obj
# note that this is going to be implemented by subclasses
def secrets(self): # pylint: disable=no-self-use
"""Returns a list of secrets which may be used used
locally by this Vault resource"""
return []
def __init__(self, obj, opt):
self.grok_state(obj)
self.validate(obj)
self.path = None
self.existing = None
self._obj = {}
self.tags = obj.get('tags', [])
self.opt = opt
self.tune = None
def diff(self, obj=None):
"""Determine if something has changed or not"""
if self.no_resource:
return NOOP
if not self.present:
if self.existing:
return DEL
return NOOP
if not obj:
obj = self.obj()
is_diff = NOOP
if self.present and self.existing:
if isinstance(self.existing, dict):
current = dict(self.existing)
if 'refresh_interval' in current:
del current['refresh_interval']
if diff_dict(current, obj):
is_diff = CHANGED
elif is_unicode(self.existing):
if self.existing != obj:
is_diff = CHANGED
elif self.present and not self.existing:
is_diff = ADD
return is_diff
def fetch(self, vault_client):
"""Populate internal representation of remote
Vault resource contents"""
result = self.read(vault_client)
if result:
if isinstance(result, dict) and 'data' in result:
self.existing = result['data']
else:
self.existing = result
else:
self.existing = None
def sync(self, vault_client):
"""Update remove Vault resource contents if needed"""
if self.present and not self.existing:
LOG.info("Writing new %s to %s",
self.secret_format, self)
self.write(vault_client)
elif self.present and self.existing:
if self.diff() == CHANGED or self.diff() == OVERWRITE:
LOG.info("Updating %s in %s",
self.secret_format, self)
self.write(vault_client)
elif not self.present and not self.existing:
LOG.info("No %s to remove from %s",
self.secret_format, self)
elif not self.present and self.existing:
LOG.info("Removing %s from %s",
self.secret_format, self)
self.delete(vault_client)
def filtered(self):
"""Determines whether or not resource is filtered.
Resources may be filtered if the tags do not match
or the user has specified explict paths to include
or exclude via command line options"""
if not is_tagged(self.tags, self.opt.tags):
LOG.info("Skipping %s as it does not have requested tags",
self.path)
return False
if not specific_path_check(self.path, self.opt):
LOG.info("Skipping %s as it does not match specified paths",
self.path)
return False
return True
@staticmethod
def diff_write_only(resource):
"""A different implementation of diff that is
used for those Vault resources that are write-only
such as AWS root configs"""
if resource.present and not resource.existing:
return ADD
elif not resource.present and resource.existing:
return DEL
elif resource.present and resource.existing:
return OVERWRITE
return NOOP
@wrap_vault("reading")
def read(self, client):
"""Read from Vault while handling non surprising errors."""
val = None
if self.no_resource:
return val
LOG.debug("Reading from %s", self)
try:
val = client.read(self.path)
except hvac.exceptions.InvalidRequest as vault_exception:
if str(vault_exception).startswith('no handler for route'):
val = None
return val
@wrap_vault("writing")
def write(self, client):
"""Write to Vault while handling non-surprising errors."""
val = None
if not self.no_resource:
val = client.write(self.path, **self.obj())
return val
@wrap_vault("deleting")
def delete(self, client):
"""Delete from Vault while handling non-surprising errors."""
val = None
if self.no_resource:
return val
LOG.debug("Deleting %s", self)
try:
client.delete(self.path)
except (hvac.exceptions.InvalidPath,
hvac.exceptions.InvalidRequest) \
as vault_exception:
if str(vault_exception).startswith('no handler for route'):
val = None
return val
|
class Resource(object):
'''Vault Resource
All aomi derived Vault resources should extend this
class. It provides functionality for validation and
API CRUD operations.'''
def thaw(self, tmp_dir):
'''Will perform some validation and copy a
decrypted secret to it's final location'''
pass
def tunable(self, obj):
'''A tunable resource maps against a backend...'''
pass
def export_handle(self, directory):
'''Get a filehandle for exporting'''
pass
def export_handle(self, directory):
'''Export exportable resources decoding as needed'''
pass
def freeze(self, tmp_dir):
'''Copies a secret into a particular location'''
pass
def resources(self):
'''List of included resources'''
pass
def grok_state(self, obj):
'''Determine the desired state of this
resource based on data present'''
pass
def validate(self, obj):
'''Base validation method. Will inspect class attributes
to dermine just what should be present'''
pass
def name(self):
'''A Friendly Name for our Resource'''
pass
def __str__(self):
pass
def obj(self):
'''Returns the Python dict/JSON object representation
of this Secret as it is to be written to Vault'''
pass
def secrets(self):
'''Returns a list of secrets which may be used used
locally by this Vault resource'''
pass
def __init__(self, obj, opt):
pass
def diff(self, obj=None):
'''Determine if something has changed or not'''
pass
def fetch(self, vault_client):
'''Populate internal representation of remote
Vault resource contents'''
pass
def sync(self, vault_client):
'''Update remove Vault resource contents if needed'''
pass
def filtered(self):
'''Determines whether or not resource is filtered.
Resources may be filtered if the tags do not match
or the user has specified explict paths to include
or exclude via command line options'''
pass
@staticmethod
def diff_write_only(resource):
'''A different implementation of diff that is
used for those Vault resources that are write-only
such as AWS root configs'''
pass
@wrap_vault("reading")
def read(self, client):
'''Read from Vault while handling non surprising errors.'''
pass
@wrap_vault("writing")
def write(self, client):
'''Write to Vault while handling non-surprising errors.'''
pass
@wrap_vault("deleting")
def delete(self, client):
'''Delete from Vault while handling non-surprising errors.'''
pass
| 26 | 20 | 11 | 1 | 9 | 1 | 3 | 0.18 | 1 | 5 | 2 | 13 | 20 | 7 | 21 | 21 | 275 | 45 | 195 | 65 | 169 | 36 | 168 | 59 | 146 | 12 | 1 | 3 | 70 |
7,995 |
Autodesk/aomi
|
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/Autodesk_aomi/tests/test_seed.py
|
test_seed.GeneratedSecretTest
|
class GeneratedSecretTest(unittest.TestCase):
@unittest.skip("until it uses the model")
def test_secretfile_overwrite(self):
aomi_opt = aomi.cli.parser_factory(['seed'])[1]
og_obj = {
'mount': 'foo',
'path': 'bar',
'keys': [
{
'name': 'user',
'method': 'words',
'overwrite': False
},
{
'name': 'pass',
'method': 'words',
'overwrite': True
}
]
}
secret = aomi.model.generic.generate_obj(
'foo/bar', og_obj, {}, aomi_opt)
secret2 = aomi.model.generic.generate_obj(
'foo/bar', og_obj, secret, aomi_opt)
assert secret['user'] == secret2['user']
assert secret['pass'] != secret2['pass']
|
class GeneratedSecretTest(unittest.TestCase):
@unittest.skip("until it uses the model")
def test_secretfile_overwrite(self):
pass
| 3 | 0 | 22 | 0 | 22 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 73 | 24 | 0 | 24 | 7 | 21 | 0 | 8 | 6 | 6 | 1 | 2 | 0 | 1 |
7,996 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/resource.py
|
aomi.model.resource.Mount
|
class Mount(Resource):
"""Vault Generic Backend"""
required_fields = ['path']
config_key = 'mounts'
backend = 'generic'
secret_format = 'mount point'
no_resource = True
def __init__(self, obj, opt):
super(Mount, self).__init__(obj, opt)
self.mount = obj['path']
self.path = self.mount
self.tunable(obj)
|
class Mount(Resource):
'''Vault Generic Backend'''
def __init__(self, obj, opt):
pass
| 2 | 1 | 5 | 0 | 5 | 0 | 1 | 0.09 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 22 | 13 | 1 | 11 | 9 | 9 | 1 | 11 | 9 | 9 | 1 | 2 | 0 | 1 |
7,997 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/aws.py
|
aomi.model.aws.AWS
|
class AWS(Secret):
"""AWS Backend"""
resource_key = 'aws_file'
required_fields = [['aws_file', 'aws'], 'mount',
'region', 'roles']
backend = 'aws'
def resources(self):
pieces = [self]
if self.present:
pieces = pieces + [self.ttl] + self.roles
return pieces
def diff(self, obj=None):
return Resource.diff_write_only(self)
def fetch(self, vault_client):
if is_mounted(self.backend,
self.mount,
vault_client.list_secret_backends()):
self.existing = True
def sync(self, vault_client):
if self.present:
LOG.info("Writing AWS root to %s", self.path)
self.write(vault_client)
else:
LOG.info("Removing AWS root at %s", self.path)
self.delete(vault_client)
def obj(self):
_secret, filename, region = self._obj
actual_filename = hard_path(filename, self.opt.secrets)
secret_file(actual_filename)
template_obj = load_vars(self.opt)
aws_obj = load_var_file(actual_filename, template_obj)
check_obj(['access_key_id', 'secret_access_key'],
self, aws_obj)
return {
'access_key': aws_obj['access_key_id'],
'secret_key': aws_obj['secret_access_key'],
'region': region
}
def secrets(self):
return [self._obj[0]]
def __init__(self, obj, opt):
super(AWS, self).__init__(obj, opt)
self.mount = sanitize_mount(obj['mount'])
self.path = "%s/config/root" % self.mount
aws_file_path = obj['aws_file']
if self.present:
self._obj = (obj['aws_file'],
aws_file_path,
obj['region'])
self.roles = []
for role in obj['roles']:
self.roles.append(AWSRole(self.mount, role, opt))
if self.roles is None:
raise aomi.exceptions.AomiData('missing aws roles')
ttl_obj, _lease_msg = grok_ttl(obj)
if ttl_obj:
self.ttl = AWSTTL(self.mount, ttl_obj, opt)
self.tunable(obj)
|
class AWS(Secret):
'''AWS Backend'''
def resources(self):
pass
def diff(self, obj=None):
pass
def fetch(self, vault_client):
pass
def sync(self, vault_client):
pass
def obj(self):
pass
def secrets(self):
pass
def __init__(self, obj, opt):
pass
| 8 | 1 | 8 | 1 | 7 | 0 | 2 | 0.02 | 1 | 4 | 3 | 0 | 7 | 6 | 7 | 28 | 70 | 12 | 57 | 25 | 49 | 1 | 46 | 25 | 38 | 5 | 3 | 2 | 14 |
7,998 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/resource.py
|
aomi.model.resource.Auth
|
class Auth(Resource):
"""Auth Backend"""
def __init__(self, backend, obj, opt):
super(Auth, self).__init__(obj, opt)
self.backend = backend
|
class Auth(Resource):
'''Auth Backend'''
def __init__(self, backend, obj, opt):
pass
| 2 | 1 | 3 | 0 | 3 | 0 | 1 | 0.25 | 1 | 1 | 0 | 6 | 1 | 1 | 1 | 22 | 5 | 0 | 4 | 3 | 2 | 1 | 4 | 3 | 2 | 1 | 2 | 0 | 1 |
7,999 |
Autodesk/aomi
|
Autodesk_aomi/aomi/model/resource.py
|
aomi.model.resource.AuditLog
|
class AuditLog(Resource):
"""Audit Logs
Only supports syslog and file backends"""
required_fields = ['type']
config_key = 'audit_logs'
no_resource = True
def __init__(self, log_obj, opt):
super(AuditLog, self).__init__(log_obj, opt)
self.backend = log_obj['type']
self.mount = self.backend
self.path = log_obj.get('path', self.backend)
obj = {
'name': log_obj.get('name', self.backend),
}
obj_opt = dict()
if self.backend == 'file':
obj_opt['file_path'] = log_obj['file_path']
if self.backend == 'syslog':
if 'tag' in log_obj:
obj_opt['tag'] = log_obj['tag']
if 'facility' in log_obj:
obj_opt['facility'] = log_obj['facility']
if 'description' in log_obj:
obj_opt['description'] = log_obj['description']
obj['options'] = obj_opt
self._obj = obj
self.tunable(obj)
|
class AuditLog(Resource):
'''Audit Logs
Only supports syslog and file backends'''
def __init__(self, log_obj, opt):
pass
| 2 | 1 | 25 | 4 | 21 | 0 | 6 | 0.08 | 1 | 2 | 0 | 0 | 1 | 4 | 1 | 22 | 32 | 5 | 25 | 11 | 23 | 2 | 23 | 11 | 21 | 6 | 2 | 2 | 6 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.