id
int64
0
843k
repository_name
stringlengths
7
55
file_path
stringlengths
9
332
class_name
stringlengths
3
290
human_written_code
stringlengths
12
4.36M
class_skeleton
stringlengths
19
2.2M
total_program_units
int64
1
9.57k
total_doc_str
int64
0
4.2k
AvgCountLine
float64
0
7.89k
AvgCountLineBlank
float64
0
300
AvgCountLineCode
float64
0
7.89k
AvgCountLineComment
float64
0
7.89k
AvgCyclomatic
float64
0
130
CommentToCodeRatio
float64
0
176
CountClassBase
float64
0
48
CountClassCoupled
float64
0
589
CountClassCoupledModified
float64
0
581
CountClassDerived
float64
0
5.37k
CountDeclInstanceMethod
float64
0
4.2k
CountDeclInstanceVariable
float64
0
299
CountDeclMethod
float64
0
4.2k
CountDeclMethodAll
float64
0
4.2k
CountLine
float64
1
115k
CountLineBlank
float64
0
9.01k
CountLineCode
float64
0
94.4k
CountLineCodeDecl
float64
0
46.1k
CountLineCodeExe
float64
0
91.3k
CountLineComment
float64
0
27k
CountStmt
float64
1
93.2k
CountStmtDecl
float64
0
46.1k
CountStmtExe
float64
0
90.2k
MaxCyclomatic
float64
0
759
MaxInheritanceTree
float64
0
16
MaxNesting
float64
0
34
SumCyclomatic
float64
0
6k
147,648
MAVENSDC/cdflib
benchmarks/benchmarks.py
benchmarks.benchmarks.TimeSuite
class TimeSuite: """ An example benchmark that times the performance of various kinds of iterating over dictionaries in Python. """ def setup(self): self.epochs = np.ones(1000) * 62567898765432.0 self.epochs_tt2000 = (np.ones(1000) * 186999622360321123).astype(int) def time_epoch_encode(self): cdfepoch.encode(self.epochs) def time_epoch_to_datetime(self): cdfepoch.to_datetime(self.epochs) def time_epoch_to_datetime_tt2000(self): cdfepoch.to_datetime(self.epochs_tt2000)
class TimeSuite: ''' An example benchmark that times the performance of various kinds of iterating over dictionaries in Python. ''' def setup(self): pass def time_epoch_encode(self): pass def time_epoch_to_datetime(self): pass def time_epoch_to_datetime_tt2000(self): pass
5
1
2
0
2
0
1
0.4
0
2
1
0
4
2
4
4
18
4
10
7
5
4
10
7
5
1
0
0
4
147,649
MAVENSDC/cdflib
cdflib/cdfread.py
cdflib.cdfread.CDF
class CDF: """ Read a CDF file into the CDF object. This object contains methods to load the cdf file information, variable names, and values. Example ------- >>> import cdflib >>> cdf_file = cdflib.CDF('/path/to/cdf_file.cdf') >>> cdf_file.cdf_info() >>> x = cdf_file.varget("NameOfVariable", startrec=0, endrec=150) """ def __init__(self, path: Union[str, Path], validate: bool = False, string_encoding: str = "ascii", s3_read_method: int = 1): """ Parameters ---------- path : Path, str Path to CDF file. This can be a link to a file in an S3 bucket as well. validate : bool, optional If True, validate the MD5 checksum of the CDF file. string_encoding : str, optional The encoding used to read strings. Defaults to 'ascii', which is what the CDF internal format description prescribes as the encoding for character strings. Other encodings may have been used to create files however, and this keyword argument gives users the flexibility to read those files. s3_read_method: int, optional If the user is specifying a file that lives within an AWS S3 bucket, this variable defines how the file is read in. The choices are: - 1 will read the file into memory to load in memory) - 2 will download the file to a tmp directory - 3 reads the file in chunks directly from S3 over https Notes ----- An open file handle to the CDF file remains whilst a CDF object is live. It is automatically cleaned up with the CDF instance is deleted. """ if isinstance(path, Path): fname = path.absolute().as_posix() else: fname = path self.file: Union[str, Path] if fname.startswith("s3://"): # later put in s3 'does it exist' checker self.ftype = "s3" self.file = fname # path for files, fname for urls and S3 elif fname.startswith("http://") or fname.startswith("https://"): # later put in url 404 'does it exist' checker self.ftype = "url" self.file = fname # path for files, fname for urls and S3 else: self.ftype = "file" path = Path(path).resolve().expanduser() if not path.is_file(): path = path.with_suffix(".cdf") if not path.is_file(): raise FileNotFoundError(f"{path} not found") self.file = path # path for files, fname for urls and S3 self.file = path self.string_encoding = string_encoding self._f = self._file_or_url_or_s3_handler(str(self.file), self.ftype, s3_read_method) magic_number = self._f.read(4).hex() compressed_bool = self._f.read(4).hex() if magic_number not in ("cdf30001", "cdf26002", "0000ffff"): raise OSError(f"{path} is not a CDF file or a non-supported CDF!") self.cdfversion = 3 if magic_number == "cdf30001" else 2 self._compressed = not (compressed_bool == "0000ffff") self.compressed_file = None self.temp_file: Optional[Path] = None if self._compressed: if self.ftype == "url" or self.ftype == "s3": if s3_read_method == 3: # extra step, read entire file self._f.seek(0) self._f = s3_fetchall(self._f.fhandle) # type: ignore self._unstream_file(self._f) path = self.file self._uncompress_file() if self.temp_file is None: raise OSError("Decompression was unsuccessful. Only GZIP compression is currently supported.") self.compressed_file = self.file self.file = self.temp_file self._f.close() self._f = self.file.open("rb") self.ftype = "file" if self.cdfversion == 3: cdr_info, foffs = self._read_cdr(8) gdr_info = self._read_gdr(foffs) else: cdr_info, foffs = self._read_cdr2(8) gdr_info = self._read_gdr2(foffs) if cdr_info.md5 and validate: if not self._md5_validation(): raise OSError("This file fails the md5 checksum.") if not cdr_info.format_: raise OSError("This package does not support multi-format CDF") if cdr_info.encoding in (3, 14, 15): raise OSError("This package does not support CDFs with this " + self._encoding_token(cdr_info.encoding) + " encoding") # SET GLOBAL VARIABLES self._post25 = cdr_info.post25 self._version = cdr_info.version self._encoding = cdr_info.encoding self._majority = self._major_token(cdr_info.majority) self._copyright = cdr_info.copyright_ self._md5 = cdr_info.md5 self._first_zvariable = gdr_info.first_zvariable self._first_rvariable = gdr_info.first_rvariable self._first_adr = gdr_info.first_adr self._num_zvariable = gdr_info.num_zvariables self._num_rvariable = gdr_info.num_rvariables self._rvariables_num_dims = gdr_info.rvariables_num_dims self._rvariables_dim_sizes = gdr_info.rvariables_dim_sizes self._num_att = gdr_info.num_attributes self._num_rdim = gdr_info.rvariables_num_dims self._rdim_sizes = gdr_info.rvariables_dim_sizes if self.cdfversion == 3: self._leap_second_updated = gdr_info.leapsecond_updated if self.compressed_file is not None: self.compressed_file = None def __del__(self) -> None: # This implicitly will delete a temporary uncompressed file if we # created it earlier. if hasattr(self, "_f") and hasattr(self._f, "close"): self._f.close() if hasattr(self, "temp_file") and self.temp_file is not None: os.remove(self.temp_file) def __getitem__(self, variable: str) -> Union[str, np.ndarray]: return self.varget(variable) def __enter__(self) -> "CDF": return self def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: return def cdf_info(self) -> CDFInfo: """ Returns basic CDF information. Returns ------- CDFInfo """ varnames = self._get_varnames() return CDFInfo( self.file, self._version, self._encoding, self._majority, varnames[0], varnames[1], self._get_attnames(), self._copyright, self._md5, self._num_rdim, self._rdim_sizes, self._compressed, ) def varinq(self, variable: str) -> VDRInfo: """ Get basic variable information. Returns ------- VDRInfo """ vdr_info = self.vdr_info(variable) return VDRInfo( vdr_info.name, vdr_info.variable_number, self._variable_token(vdr_info.section_type), vdr_info.data_type, self._datatype_token(vdr_info.data_type), vdr_info.num_elements, vdr_info.num_dims, vdr_info.dim_sizes, self._sparse_token(vdr_info.sparse), vdr_info.max_rec, vdr_info.record_vary, vdr_info.dim_vary, vdr_info.compression_level, vdr_info.pad, vdr_info.blocking_factor, ) def attinq(self, attribute: Union[str, int]) -> ADRInfo: """ Get attribute information. Parameters ---------- attribute : str, int Attribute to get information for. Returns ------- ADRInfo """ position = self._first_adr if isinstance(attribute, str): for _ in range(0, self._num_att): name, next_adr = self._read_adr_fast(position) if name.strip().lower() == attribute.strip().lower(): return self._read_adr(position) position = next_adr raise KeyError(f"No attribute {attribute}") elif isinstance(attribute, int): if attribute < 0 or attribute > self._num_zvariable: raise KeyError(f"No attribute {attribute}") for _ in range(0, attribute): name, next_adr = self._read_adr_fast(position) position = next_adr return self._read_adr(position) else: raise ValueError("attribute keyword must be a string or integer") def attget(self, attribute: Union[str, int], entry: Optional[Union[str, int]] = None) -> AttData: """ Returns the value of the attribute at the entry number provided. A variable name can be used instead of its corresponding entry number. Parameters ---------- attribute : str, int Attribute name or number to get. entry : int, optional Returns ------- AttData """ # Starting position position = self._first_adr # Get Correct ADR adr_info = None if isinstance(attribute, str): for _ in range(0, self._num_att): name, next_adr = self._read_adr_fast(position) if name.strip().lower() == attribute.strip().lower(): adr_info = self._read_adr(position) if isinstance(entry, str) and adr_info.scope == 1: # If the user has specified a string entry, they are obviously looking for a variable attribute. # Filter out any global attributes that may have the same name. adr_info = None position = next_adr continue break else: position = next_adr if adr_info is None: raise KeyError(f"No attribute {attribute} for entry {entry}") elif isinstance(attribute, int): if (attribute < 0) or (attribute > self._num_att): raise KeyError(f"No attribute {attribute}") if not isinstance(entry, int): raise TypeError(f"{entry} has to be a number.") for _ in range(0, attribute): name, next_adr = self._read_adr_fast(position) position = next_adr adr_info = self._read_adr(position) else: raise ValueError("Please set attribute keyword equal to " "the name or number of an attribute") # Find the correct entry from the "entry" variable if adr_info.scope == 1: if not isinstance(entry, int): raise ValueError('"entry" must be an integer') num_entry_string = "num_gr_entry" first_entry_string = "first_gr_entry" max_entry_string = "max_gr_entry" entry_num = entry else: var_num = -1 zvar = False if isinstance(entry, str): # a zVariable? positionx = self._first_zvariable for x in range(0, self._num_zvariable): name, vdr_next = self._read_vdr_fast(positionx) if name.strip().lower() == entry.strip().lower(): var_num = x zvar = True break positionx = vdr_next if var_num == -1: # a rVariable? positionx = self._first_rvariable for x in range(0, self._num_rvariable): name, vdr_next = self._read_vdr_fast(positionx) if name.strip().lower() == entry.strip().lower(): var_num = x break positionx = vdr_next if var_num == -1: raise ValueError(f"No variable by this name: {entry}") entry_num = var_num else: if self._num_zvariable > 0 and self._num_rvariable > 0: raise ValueError("This CDF has both r and z variables. " "Use variable name instead") if self._num_zvariable > 0: zvar = True entry_num = entry if zvar: num_entry_string = "num_z_entry" first_entry_string = "first_z_entry" max_entry_string = "max_z_entry" else: num_entry_string = "num_gr_entry" first_entry_string = "first_gr_entry" max_entry_string = "max_gr_entry" if entry_num > getattr(adr_info, max_entry_string): raise ValueError("The entry does not exist") return self._get_attdata(adr_info, entry_num, getattr(adr_info, num_entry_string), getattr(adr_info, first_entry_string)) def varget( self, variable: Optional[str] = None, epoch: Optional[str] = None, starttime: Optional[epoch.epoch_types] = None, endtime: Optional[epoch.epoch_types] = None, startrec: int = 0, endrec: Optional[int] = None, ) -> Union[str, np.ndarray]: """ Returns the variable data. Parameters ---------- variable: str Variable name to fetch. startrec: int Index of the first record to get. endrec : int Index of the last record to get. All records from *startrec* to *endrec* inclusive are fetched. Notes ----- Variable can be entered either a name or a variable number. By default, it returns a 'numpy.ndarray' or 'list' class object, depending on the data type, with the variable data and its specification. By default, the full variable data is returned. To acquire only a portion of the data for a record-varying variable, either the time or record (0-based) range can be specified. 'epoch' can be used to specify which time variable this variable depends on and is to be searched for the time range. For the ISTP-compliant CDFs, the time variable will come from the attribute 'DEPEND_0' from this variable. The function will automatically search for it thus no need to specify 'epoch'. If either the start or end time is not specified, the possible minimum or maximum value for the specific epoch data type is assumed. If either the start or end record is not specified, the range starts at 0 or/and ends at the last of the written data. The start (and end) time should be presented in a list as: [year month day hour minute second millisec] for CDF_EPOCH [year month day hour minute second millisec microsec nanosec picosec] for CDF_EPOCH16 [year month day hour minute second millisec microsec nanosec] for CDF_TIME_TT2000 If not enough time components are presented, only the last item can have the floating portion for the sub-time components. Note: CDF's CDF_EPOCH16 data type uses 2 8-byte doubles for each data value. In Python, each value is presented as a complex or numpy.complex128. """ if isinstance(variable, int) and self._num_zvariable > 0 and self._num_rvariable > 0: raise ValueError("This CDF has both r and z variables. " "Use variable name instead") if (starttime is not None or endtime is not None) and (startrec != 0 or endrec is not None): raise ValueError("Can't specify both time and record range") vdr_info = self.vdr_info(variable) if vdr_info.max_rec < 0: raise ValueError(f"No records found for variable {variable}") return self._read_vardata( vdr_info, epoch=epoch, starttime=starttime, endtime=endtime, startrec=startrec, endrec=endrec, ) def vdr_info(self, variable: Union[str, int]) -> VDR: if isinstance(variable, int) and self._num_zvariable > 0 and self._num_rvariable > 0: raise ValueError("This CDF has both r and z variables. " "Use variable name instead") if isinstance(variable, str): # Check z variables for the name, then r variables position = self._first_zvariable num_variables = self._num_zvariable vdr_info = None for zVar in [1, 0]: for _ in range(0, num_variables): name, vdr_next = self._read_vdr_fast(position) if name.strip().lower() == variable.strip().lower(): vdr_info = self._read_vdr(position) break position = vdr_next position = self._first_rvariable num_variables = self._num_rvariable if vdr_info is None: raise ValueError(f"Variable name '{variable}' not found.") elif isinstance(variable, int): if self._num_zvariable > 0: position = self._first_zvariable num_variable = self._num_zvariable # zVar = True elif self._num_rvariable > 0: position = self._first_rvariable num_variable = self._num_rvariable # zVar = False if variable < 0 or variable >= num_variable: raise ValueError(f"No variable by this number: {variable}") for _ in range(0, variable): name, next_vdr = self._read_vdr_fast(position) position = next_vdr vdr_info = self._read_vdr(position) else: raise ValueError("Please set variable keyword equal to " "the name or number of an variable") return vdr_info def globalattsget(self) -> Dict[str, List[Union[str, np.ndarray]]]: """ Gets all global attributes. This function returns all of the global attribute entries, in a dictionary (in the form of ``'attribute': {entry: value}`` pairs) from a CDF. """ byte_loc = self._first_adr return_dict: Dict[str, List[Union[str, np.ndarray]]] = {} for _ in range(self._num_att): adr_info = self._read_adr(byte_loc) if adr_info.scope != 1: byte_loc = adr_info.next_adr_loc continue if adr_info.num_gr_entry == 0: byte_loc = adr_info.next_adr_loc continue entries = [] aedr_byte_loc = adr_info.first_gr_entry for _ in range(adr_info.num_gr_entry): aedr_info = self._read_aedr(aedr_byte_loc) entryData = aedr_info.entry # This exists to get rid of extraneous numpy arrays if isinstance(entryData, np.ndarray): if len(entryData) == 1: entryData = entryData[0] entries.append(entryData) aedr_byte_loc = aedr_info.next_aedr return_dict[adr_info.name] = entries byte_loc = adr_info.next_adr_loc return return_dict def varattsget(self, variable: Union[str, int]) -> Dict[str, Union[None, str, np.ndarray]]: """ Gets all variable attributes. Unlike attget, which returns a single attribute entry value, this function returns all of the variable attribute entries, in a dictionary (in the form of 'attribute': value pair) for a variable. """ if isinstance(variable, int) and self._num_zvariable > 0 and self._num_rvariable > 0: raise ValueError("This CDF has both r and z variables. Use variable name") if isinstance(variable, str): position = self._first_zvariable num_variables = self._num_zvariable for zVar in [True, False]: for _ in range(0, num_variables): name, vdr_next = self._read_vdr_fast(position) if name.strip().lower() == variable.strip().lower(): vdr_info = self._read_vdr(position) return self._read_varatts(vdr_info.variable_number, zVar) position = vdr_next position = self._first_rvariable num_variables = self._num_rvariable raise ValueError(f"No variable by this name: {variable}") elif isinstance(variable, int): if self._num_zvariable > 0: num_variable = self._num_zvariable zVar = True else: num_variable = self._num_rvariable zVar = False if variable < 0 or variable >= num_variable: raise ValueError(f"No variable by this number: {variable}") return self._read_varatts(variable, zVar) def _uncompress_rle(self, data: bytes) -> bytearray: result = bytearray() index = 0 while index < len(data): value = data[index] if value == 0: index += 1 count = data[index] + 1 result += b"\0" * count else: result.append(value) index += 1 return result def _uncompress_file(self) -> None: """ Writes the current file into a file in the temporary directory. If that doesn't work, create a new file in the CDFs directory. """ if self.cdfversion == 3: data_start, data_size, cType, _ = self._read_ccr(8) else: data_start, data_size, cType, _ = self._read_ccr2(8) if cType == 5: self._f.seek(data_start) decompressed_data = gzip_inflate(self._f.read(data_size)) elif cType == 1: self._f.seek(data_start) decompressed_data = self._uncompress_rle(self._f.read(data_size)) else: return self.temp_file = Path(tempfile.NamedTemporaryFile(suffix=".cdf").name) with self.temp_file.open("wb") as g: g.write(bytearray.fromhex("cdf30001")) g.write(bytearray.fromhex("0000ffff")) g.write(decompressed_data) def _read_ccr(self, byte_loc: int) -> Tuple[int, int, int, int]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") self._f.seek(byte_loc + 12) cproffset = int.from_bytes(self._f.read(8), "big") data_start = byte_loc + 32 data_size = block_size - 32 cType, cParams = self._read_cpr(cproffset) return data_start, data_size, cType, cParams def _read_ccr2(self, byte_loc: int) -> Tuple[int, int, int, int]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") self._f.seek(byte_loc + 8) cproffset = int.from_bytes(self._f.read(4), "big") data_start = byte_loc + 20 data_size = block_size - 20 cType, cParams = self._read_cpr2(cproffset) return data_start, data_size, cType, cParams def _read_cpr(self, byte_loc: int) -> Tuple[int, int]: if self.cdfversion == 3: return self._read_cpr3(byte_loc) else: return self._read_cpr2(byte_loc) def _read_cpr3(self, byte_loc: int) -> Tuple[int, int]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") cpr = self._f.read(block_size - 8) cType = int.from_bytes(cpr[4:8], "big") cParams = int.from_bytes(cpr[16:20], "big") return cType, cParams def _read_cpr2(self, byte_loc: int) -> Tuple[int, int]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") cpr = self._f.read(block_size - 4) cType = int.from_bytes(cpr[4:8], "big") cParams = int.from_bytes(cpr[16:20], "big") return cType, cParams def _md5_validation(self) -> bool: """ Verifies the MD5 checksum. Only used in the __init__() function """ if self.compressed_file is not None: fh = self.compressed_file.open("rb") else: fh = self._f md5 = hashlib.md5() block_size = 16384 fh.seek(-16, 2) remaining = fh.tell() # File size minus checksum size fh.seek(0) while remaining > block_size: data = fh.read(block_size) remaining = remaining - block_size md5.update(data) if remaining > 0: data = fh.read(remaining) md5.update(data) existing_md5 = fh.read(16).hex() if self.compressed_file is not None: fh.close() return md5.hexdigest() == existing_md5 @staticmethod def _encoding_token(encoding: int) -> str: encodings = { 1: "NETWORK", 2: "SUN", 3: "VAX", 4: "DECSTATION", 5: "SGi", 6: "IBMPC", 7: "IBMRS", 9: "PPC", 11: "HP", 12: "NeXT", 13: "ALPHAOSF1", 14: "ALPHAVMSd", 15: "ALPHAVMSg", 16: "ALPHAVMSi", } return encodings[encoding] @staticmethod def _major_token(major: int) -> str: majors = {1: "Row_major", 2: "Column_major"} return majors[major] @staticmethod def _scope_token(scope: int) -> str: scopes = {1: "Global", 2: "Variable"} return scopes[scope] @staticmethod def _variable_token(variable: int) -> str: variables = {3: "rVariable", 8: "zVariable"} return variables[variable] @staticmethod def _datatype_token(datatype: int) -> str: datatypes = { 1: "CDF_INT1", 2: "CDF_INT2", 4: "CDF_INT4", 8: "CDF_INT8", 11: "CDF_UINT1", 12: "CDF_UINT2", 14: "CDF_UINT4", 21: "CDF_REAL4", 22: "CDF_REAL8", 31: "CDF_EPOCH", 32: "CDF_EPOCH16", 33: "CDF_TIME_TT2000", 41: "CDF_BYTE", 44: "CDF_FLOAT", 45: "CDF_DOUBLE", 51: "CDF_CHAR", 52: "CDF_UCHAR", } return datatypes[datatype] @staticmethod def _sparse_token(sparse: int) -> str: sparses = {0: "No_sparse", 1: "Pad_sparse", 2: "Prev_sparse"} return sparses[sparse] def _get_varnames(self) -> Tuple[List[str], List[str]]: zvars = [] rvars = [] if self._num_zvariable > 0: position = self._first_zvariable num_variable = self._num_zvariable for _ in range(0, num_variable): name, next_vdr = self._read_vdr_fast(position) zvars.append(name) position = next_vdr if self._num_rvariable > 0: position = self._first_rvariable num_variable = self._num_rvariable for _ in range(0, num_variable): name, next_vdr = self._read_vdr_fast(position) rvars.append(name) position = next_vdr return rvars, zvars def _get_attnames(self) -> List[Dict[str, str]]: attrs = [] position = self._first_adr for _ in range(0, self._num_att): attr = {} adr_info = self._read_adr(position) attr[adr_info.name] = self._scope_token(adr_info.scope) attrs.append(attr) position = adr_info.next_adr_loc return attrs def _read_cdr(self, byte_loc: int) -> Tuple[CDRInfo, int]: """ Read a CDF descriptor record (CDR). """ self._f.seek(0) self._f.seek(byte_loc) block_size = int.from_bytes(self._f.read(8), "big") cdr = self._f.read(block_size - 8) foffs = self._f.tell() # _ = int.from_bytes(cdr[0:4],'big') #Section Type # gdroff = int.from_bytes(cdr[4:12], 'big') # GDR Location version = int.from_bytes(cdr[12:16], "big") if version not in (2, 3): raise ValueError(f"CDF version {version} not handled") release = int.from_bytes(cdr[16:20], "big") encoding = int.from_bytes(cdr[20:24], "big") # FLAG # # 0 The majority of variable values within a variable record. # Variable records are described in Chapter 4. Set indicates # row-majority. Clear indicates column-majority. # 1 The file format of the CDF. Set indicates single-file. # Clear indicates multi-file. # 2 The checksum of the CDF. Set indicates a checksum method is used. # 3 The MD5 checksum method indicator. # Set indicates MD5 method is used for the checksum. Bit 2 must be set. # 4 Reserved for another checksum method. # Bit 2 must be set and bit 3 must be clear. flag = int.from_bytes(cdr[24:28], "big") flag_bits = f"{flag:032b}" row_majority = flag_bits[31] == "1" single_format = flag_bits[30] == "1" md5 = flag_bits[29] == "1" and flag_bits[28] == "1" increment = int.from_bytes(cdr[36:40], "big") cdfcopyright = cdr[48:].decode(self.string_encoding) cdfcopyright = cdfcopyright.replace("\x00", "") cdr_info = CDRInfo( encoding=encoding, copyright_=cdfcopyright, version=str(version) + "." + str(release) + "." + str(increment), majority=1 if row_majority else 2, format_=single_format, md5=md5, post25=True, ) return cdr_info, foffs def _read_cdr2(self, byte_loc: int) -> Tuple[CDRInfo, int]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") cdr = self._f.read(block_size - 4) foffs = self._f.tell() # gdroff = int.from_bytes(cdr[4:8], 'big') # GDR Location version = int.from_bytes(cdr[8:12], "big") release = int.from_bytes(cdr[12:16], "big") encoding = int.from_bytes(cdr[16:20], "big") flag = int.from_bytes(cdr[20:24], "big") flag_bits = f"{flag:032b}" row_majority = flag_bits[31] == "1" single_format = flag_bits[30] == "1" md5 = flag_bits[29] == "1" and flag_bits[28] == "1" increment = int.from_bytes(cdr[32:36], "big") cdfcopyright = cdr[44:].decode(self.string_encoding) cdfcopyright = cdfcopyright.replace("\x00", "") cdr_info = CDRInfo( encoding=encoding, copyright_=cdfcopyright, version=str(version) + "." + str(release) + "." + str(increment), majority=1 if row_majority else 2, format_=single_format, md5=md5, post25=version == 2 and release >= 5, ) return cdr_info, foffs def _read_gdr(self, byte_loc: int) -> GDRInfo: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") # Block Size gdr = self._f.read(block_size - 8) first_rvariable = int.from_bytes(gdr[4:12], "big", signed=True) first_zvariable = int.from_bytes(gdr[12:20], "big", signed=True) first_adr = int.from_bytes(gdr[20:28], "big", signed=True) eof = int.from_bytes(gdr[28:36], "big", signed=True) num_rvariable = int.from_bytes(gdr[36:40], "big", signed=True) num_att = int.from_bytes(gdr[40:44], "big", signed=True) num_rdim = int.from_bytes(gdr[48:52], "big", signed=True) num_zvariable = int.from_bytes(gdr[52:56], "big", signed=True) leapSecondlastUpdated = int.from_bytes(gdr[68:72], "big", signed=True) # rDimSizes, depends on Number of dimensions for r variables # A bunch of 4 byte integers in a row. Length is (size of GDR) - 84 # In this case. there is nothing rdim_sizes = [] for x in range(0, num_rdim): ioff = 76 + x * 4 rdim_sizes.append(int.from_bytes(gdr[ioff : ioff + 4], "big", signed=True)) return GDRInfo( first_zvariable=first_zvariable, first_rvariable=first_rvariable, first_adr=first_adr, num_zvariables=num_zvariable, num_rvariables=num_rvariable, num_attributes=num_att, rvariables_num_dims=num_rdim, rvariables_dim_sizes=rdim_sizes, eof=eof, leapsecond_updated=leapSecondlastUpdated, ) def _read_gdr2(self, byte_loc: int) -> GDRInfo: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") # Block Size gdr = self._f.read(block_size - 4) first_rvariable = int.from_bytes(gdr[4:8], "big", signed=True) first_zvariable = int.from_bytes(gdr[8:12], "big", signed=True) first_adr = int.from_bytes(gdr[12:16], "big", signed=True) eof = int.from_bytes(gdr[16:20], "big", signed=True) num_rvariable = int.from_bytes(gdr[20:24], "big", signed=True) num_att = int.from_bytes(gdr[24:28], "big", signed=True) num_rdim = int.from_bytes(gdr[32:36], "big", signed=True) num_zvariable = int.from_bytes(gdr[36:40], "big", signed=True) rdim_sizes = [] for x in range(0, num_rdim): ioff = 56 + x * 4 rdim_sizes.append(int.from_bytes(gdr[ioff : ioff + 4], "big", signed=True)) return GDRInfo( first_zvariable=first_zvariable, first_rvariable=first_rvariable, first_adr=first_adr, num_zvariables=num_zvariable, num_rvariables=num_rvariable, num_attributes=num_att, rvariables_num_dims=num_rdim, rvariables_dim_sizes=rdim_sizes, eof=eof, ) def _read_varatts(self, var_num: int, zVar: bool) -> Dict[str, Union[None, str, np.ndarray]]: byte_loc = self._first_adr return_dict: Dict[str, Union[None, str, np.ndarray]] = {} for z in range(0, self._num_att): adr_info = self._read_adr(byte_loc) if adr_info.scope == 1: byte_loc = adr_info.next_adr_loc continue if zVar: byte_loc = adr_info.first_z_entry num_entry = adr_info.num_z_entry else: byte_loc = adr_info.first_gr_entry num_entry = adr_info.num_gr_entry for _ in range(0, num_entry): entryNum, byte_next = self._read_aedr_fast(byte_loc) if entryNum != var_num: byte_loc = byte_next continue aedr_info = self._read_aedr(byte_loc) entryData = aedr_info.entry # This exists to get rid of extraneous numpy arrays if isinstance(entryData, np.ndarray): if len(entryData) == 1: entryData = entryData[0] return_dict[adr_info.name] = entryData break byte_loc = adr_info.next_adr_loc return return_dict def _read_adr(self, position: int) -> ADRInfo: """ Read an attribute descriptor record (ADR). """ if self.cdfversion == 3: return self._read_adr3(position) else: return self._read_adr2(position) def _read_adr3(self, byte_loc: int) -> ADRInfo: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") # Block Size adr = self._f.read(block_size - 8) next_adr_loc = int.from_bytes(adr[4:12], "big", signed=True) position_next_gr_entry = int.from_bytes(adr[12:20], "big", signed=True) scope = int.from_bytes(adr[20:24], "big", signed=True) num = int.from_bytes(adr[24:28], "big", signed=True) num_gr_entry = int.from_bytes(adr[28:32], "big", signed=True) MaxEntry = int.from_bytes(adr[32:36], "big", signed=True) position_next_z_entry = int.from_bytes(adr[40:48], "big", signed=True) num_z_entry = int.from_bytes(adr[48:52], "big", signed=True) MaxZEntry = int.from_bytes(adr[52:56], "big", signed=True) name = str(adr[60:315].decode(self.string_encoding)) name = name.replace("\x00", "") return ADRInfo( scope, next_adr_loc, num, num_gr_entry, MaxEntry, num_z_entry, MaxZEntry, position_next_z_entry, position_next_gr_entry, name, ) def _read_adr2(self, byte_loc: int) -> ADRInfo: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") # Block Size adr = self._f.read(block_size - 4) next_adr_loc = int.from_bytes(adr[4:8], "big", signed=True) position_next_gr_entry = int.from_bytes(adr[8:12], "big", signed=True) scope = int.from_bytes(adr[12:16], "big", signed=True) num = int.from_bytes(adr[16:20], "big", signed=True) num_gr_entry = int.from_bytes(adr[20:24], "big", signed=True) MaxEntry = int.from_bytes(adr[24:28], "big", signed=True) position_next_z_entry = int.from_bytes(adr[32:36], "big", signed=True) num_z_entry = int.from_bytes(adr[36:40], "big", signed=True) MaxZEntry = int.from_bytes(adr[40:44], "big", signed=True) name = str(adr[48:112].decode(self.string_encoding)) name = name.replace("\x00", "") return ADRInfo( scope, next_adr_loc, num, num_gr_entry, MaxEntry, num_z_entry, MaxZEntry, position_next_z_entry, position_next_gr_entry, name, ) def _read_adr_fast(self, position: int) -> Tuple[str, int]: """ Read an attribute descriptor record (ADR). """ if self.cdfversion == 3: return self._read_adr_fast3(position) else: return self._read_adr_fast2(position) def _read_adr_fast3(self, byte_loc: int) -> Tuple[str, int]: # Position of next ADR self._f.seek(byte_loc + 12, 0) next_adr_loc = int.from_bytes(self._f.read(8), "big", signed=True) # Name self._f.seek(byte_loc + 68, 0) name = str(self._f.read(256).decode(self.string_encoding)) name = name.replace("\x00", "") return name, next_adr_loc def _read_adr_fast2(self, byte_loc: int) -> Tuple[str, int]: # Position of next ADR self._f.seek(byte_loc + 8, 0) next_adr_loc = int.from_bytes(self._f.read(4), "big", signed=True) # Name self._f.seek(byte_loc + 52, 0) name = str(self._f.read(64).decode(self.string_encoding)) name = name.replace("\x00", "") return name, next_adr_loc def _read_aedr_fast(self, byte_loc: int) -> Tuple[int, int]: if self.cdfversion == 3: return self._read_aedr_fast3(byte_loc) else: return self._read_aedr_fast2(byte_loc) def _read_aedr_fast3(self, byte_loc: int) -> Tuple[int, int]: self._f.seek(byte_loc + 12, 0) next_aedr = int.from_bytes(self._f.read(8), "big", signed=True) # Variable number or global entry number self._f.seek(byte_loc + 28, 0) entry_num = int.from_bytes(self._f.read(4), "big", signed=True) return entry_num, next_aedr def _read_aedr_fast2(self, byte_loc: int) -> Tuple[int, int]: self._f.seek(byte_loc + 8, 0) next_aedr = int.from_bytes(self._f.read(4), "big", signed=True) # Variable number or global entry number self._f.seek(byte_loc + 20, 0) entry_num = int.from_bytes(self._f.read(4), "big", signed=True) return entry_num, next_aedr def _read_aedr(self, byte_loc: int) -> AEDR: if self.cdfversion == 3: return self._read_aedr3(byte_loc) else: return self._read_aedr2(byte_loc) def _read_aedr3(self, byte_loc: int) -> AEDR: """ Reads an Attribute Entry Descriptor Record at a specific byte location. """ self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") aedr = self._f.read(block_size - 8) next_aedr = int.from_bytes(aedr[4:12], "big", signed=True) data_type = int.from_bytes(aedr[16:20], "big", signed=True) # Variable number or global entry number entry_num = int.from_bytes(aedr[20:24], "big", signed=True) # Number of elements # Length of string if string, otherwise its the number of numbers num_elements = int.from_bytes(aedr[24:28], "big", signed=True) # Supposed to be reserved space num_strings = int.from_bytes(aedr[28:32], "big", signed=True) if num_strings < 1: num_strings = 1 # Literally nothing # _ = int.from_bytes(aedr[32:36],'big', signed=True) #Nothing # _ = int.from_bytes(aedr[36:40],'big', signed=True) #Nothing # _ = int.from_bytes(aedr[40:44],'big', signed=True) #Nothing # _ = int.from_bytes(aedr[44:48],'big', signed=True) #Nothing byte_stream = aedr[48:] entry = self._read_data(byte_stream, data_type, 1, num_elements) return AEDR(entry, data_type, num_elements, next_aedr, entry_num, num_strings) def _read_aedr2(self, byte_loc: int) -> AEDR: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") aedr = self._f.read(block_size - 4) next_aedr = int.from_bytes(aedr[4:8], "big", signed=True) data_type = int.from_bytes(aedr[12:16], "big", signed=True) # Variable number or global entry number entry_num = int.from_bytes(aedr[16:20], "big", signed=True) # Number of elements # Length of string if string, otherwise its the number of numbers num_elements = int.from_bytes(aedr[20:24], "big", signed=True) byte_stream = aedr[44:] entry = self._read_data(byte_stream, data_type, 1, num_elements) return AEDR(entry, data_type, num_elements, next_aedr, entry_num) def _read_vdr(self, byte_loc: int) -> VDR: """ Read a variable descriptor record (VDR). """ if self.cdfversion == 3: return self._read_vdr3(byte_loc) else: return self._read_vdr2(byte_loc) def _read_vdr3(self, byte_loc: int) -> VDR: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big") vdr = self._f.read(block_size - 8) # Type of internal record section_type = int.from_bytes(vdr[0:4], "big") next_vdr = int.from_bytes(vdr[4:12], "big", signed=True) data_type = int.from_bytes(vdr[12:16], "big", signed=True) max_rec = int.from_bytes(vdr[16:20], "big", signed=True) head_vxr = int.from_bytes(vdr[20:28], "big", signed=True) last_vxr = int.from_bytes(vdr[28:36], "big", signed=True) flags = int.from_bytes(vdr[36:40], "big", signed=True) flag_bits = f"{flags:032b}" record_variance_bool = flag_bits[31] == "1" pad_bool = flag_bits[30] == "1" compression_bool = flag_bits[29] == "1" sparse = int.from_bytes(vdr[40:44], "big", signed=True) num_elements = int.from_bytes(vdr[56:60], "big", signed=True) var_num = int.from_bytes(vdr[60:64], "big", signed=True) CPRorSPRoffset = int.from_bytes(vdr[64:72], "big", signed=True) blocking_factor = int.from_bytes(vdr[72:76], "big", signed=True) name = str(vdr[76:332].decode(self.string_encoding)) name = name.replace("\x00", "") zdim_sizes = [] dim_sizes = [] dim_varys = [] if section_type == 8: # zvariable num_dims = int.from_bytes(vdr[332:336], "big", signed=True) for x in range(0, num_dims): ioff = 336 + 4 * x zdim_sizes.append(int.from_bytes(vdr[ioff : ioff + 4], "big", signed=True)) coff = 336 + 4 * num_dims for x in range(0, num_dims): dim_varys.append(int.from_bytes(vdr[coff + 4 * x : coff + 4 * x + 4], "big", signed=True)) adj = 0 # Check for "False" dimensions, and delete them for x in range(0, num_dims): y = num_dims - x - 1 if dim_varys[y] == 0: del zdim_sizes[y] del dim_varys[y] adj = adj + 1 num_dims = num_dims - adj coff = 336 + 8 * num_dims else: # rvariable for x in range(0, self._rvariables_num_dims): ioff = 332 + 4 * x dim_varys.append(int.from_bytes(vdr[ioff : ioff + 4], "big", signed=True)) for x in range(0, self._rvariables_num_dims): if dim_varys[x] != 0: dim_sizes.append(self._rvariables_dim_sizes[x]) num_dims = len(dim_sizes) coff = 332 + 4 * self._rvariables_num_dims # Only set if pad value is in the flags if pad_bool: byte_stream = vdr[coff:] pad = self._read_data(byte_stream, data_type, 1, num_elements) else: pad = None if section_type == 8: dim_sizes = zdim_sizes if compression_bool: ctype, cparm = self._read_cpr(CPRorSPRoffset) compression_level = cparm else: compression_level = 0 return VDR( data_type=data_type, section_type=section_type, next_vdr_location=next_vdr, variable_number=var_num, head_vxr=head_vxr, last_vxr=last_vxr, max_rec=max_rec, name=name, num_dims=num_dims, dim_sizes=dim_sizes, compression_bool=compression_bool, compression_level=compression_level, blocking_factor=blocking_factor, dim_vary=dim_varys, record_vary=record_variance_bool, num_elements=num_elements, sparse=sparse, pad=pad, ) def _read_vdr2(self, byte_loc: int) -> VDR: if self._post25 is True: toadd = 0 else: toadd = 128 self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big") vdr = self._f.read(block_size - 4) # Type of internal record section_type = int.from_bytes(vdr[0:4], "big") next_vdr = int.from_bytes(vdr[4:8], "big", signed=True) data_type = int.from_bytes(vdr[8:12], "big", signed=True) max_rec = int.from_bytes(vdr[12:16], "big", signed=True) head_vxr = int.from_bytes(vdr[16:20], "big", signed=True) last_vxr = int.from_bytes(vdr[20:24], "big", signed=True) flags = int.from_bytes(vdr[24:28], "big", signed=True) flag_bits = f"{flags:032b}" record_variance_bool = flag_bits[31] == "1" pad_bool = flag_bits[30] == "1" compression_bool = flag_bits[29] == "1" sparse = int.from_bytes(vdr[28:32], "big", signed=True) num_elements = int.from_bytes(vdr[44 + toadd : 48 + toadd], "big", signed=True) var_num = int.from_bytes(vdr[48 + toadd : 52 + toadd], "big", signed=True) CPRorSPRoffset = int.from_bytes(vdr[52 + toadd : 56 + toadd], "big", signed=True) blocking_factor = int.from_bytes(vdr[56 + toadd : 60 + toadd], "big", signed=True) name = str(vdr[60 + toadd : 124 + toadd].decode(self.string_encoding)) name = name.replace("\x00", "") zdim_sizes = [] dim_sizes = [] dim_varys = [] if section_type == 8: # zvariable num_dims = int.from_bytes(vdr[124 + toadd : 128 + toadd], "big", signed=True) for x in range(0, num_dims): xoff = 128 + toadd + 4 * x zdim_sizes.append(int.from_bytes(vdr[xoff : xoff + 4], "big", signed=True)) coff = 128 + toadd + 4 * num_dims for x in range(0, num_dims): icoff = coff + 4 * x if int.from_bytes(vdr[icoff : icoff + 4], "big", signed=True) == 0: dim_varys.append(False) else: dim_varys.append(True) adj = 0 # Check for "False" dimensions, and delete them for x in range(0, num_dims): y = num_dims - x - 1 if dim_varys[y] == 0 or dim_varys[y] == False: del zdim_sizes[y] del dim_varys[y] adj = adj + 1 num_dims = num_dims - adj coff = 128 + toadd + 8 * num_dims else: # rvariable for x in range(0, self._rvariables_num_dims): ix = 124 + toadd + 4 * x if int.from_bytes(vdr[ix : ix + 4], "big", signed=True) == 0: dim_varys.append(False) else: dim_varys.append(True) for x in range(0, len(dim_varys)): dim_sizes.append(self._rvariables_dim_sizes[x]) num_dims = len(dim_sizes) coff = 124 + toadd + 4 * self._rvariables_num_dims # Only set if pad value is in the flags pad: Union[None, str, np.ndarray] = None if pad_bool: byte_stream = vdr[coff:] try: pad = self._read_data(byte_stream, data_type, 1, num_elements) except Exception: if data_type == 51 or data_type == 52: pad = " " * num_elements if section_type == 8: dim_sizes = zdim_sizes if compression_bool: ctype, cparm = self._read_cpr(CPRorSPRoffset) compression_level = cparm else: compression_level = 0 return VDR( data_type=data_type, section_type=section_type, next_vdr_location=next_vdr, variable_number=var_num, head_vxr=head_vxr, last_vxr=last_vxr, max_rec=max_rec, name=name, num_dims=num_dims, dim_sizes=dim_sizes, compression_bool=compression_bool, compression_level=compression_level, blocking_factor=blocking_factor, dim_vary=dim_varys, record_vary=record_variance_bool, num_elements=num_elements, sparse=sparse, pad=pad, ) def _read_vdr_fast(self, byte_loc: int) -> Tuple[str, int]: if self.cdfversion == 3: return self._read_vdr_fast3(byte_loc) else: return self._read_vdr_fast2(byte_loc) def _read_vdr_fast3(self, byte_loc: int) -> Tuple[str, int]: self._f.seek(byte_loc + 12, 0) next_vdr = int.from_bytes(self._f.read(8), "big", signed=True) self._f.seek(byte_loc + 84, 0) name = str(self._f.read(256).decode(self.string_encoding)) name = name.replace("\x00", "") return name, next_vdr def _read_vdr_fast2(self, byte_loc: int) -> Tuple[str, int]: if self._post25: toadd = 0 else: toadd = 128 self._f.seek(byte_loc + 8, 0) next_vdr = int.from_bytes(self._f.read(4), "big", signed=True) self._f.seek(byte_loc + toadd + 64, 0) name = str(self._f.read(64).decode(self.string_encoding)) name = name.replace("\x00", "") return name, next_vdr def _read_vxrs( self, byte_loc: int, vvr_offsets: List[int] = [], vvr_start: List[int] = [], vvr_end: List[int] = [] ) -> Tuple[List[int], List[int], List[int]]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(8), "big", signed=True) # Block Size vxrs = self._f.read(block_size - 8) next_vxr_pos = int.from_bytes(vxrs[4:12], "big", signed=True) num_ent = int.from_bytes(vxrs[12:16], "big", signed=True) num_ent_used = int.from_bytes(vxrs[16:20], "big", signed=True) # coff = 20 for ix in range(0, num_ent_used): soffset = 20 + 4 * ix num_start = int.from_bytes(vxrs[soffset : soffset + 4], "big", signed=True) eoffset = 20 + 4 * num_ent + 4 * ix num_end = int.from_bytes(vxrs[eoffset : eoffset + 4], "big", signed=True) ooffset = 20 + 2 * 4 * num_ent + 8 * ix rec_offset = int.from_bytes(vxrs[ooffset : ooffset + 8], "big", signed=True) type_offset = 8 + rec_offset self._f.seek(type_offset, 0) next_type = int.from_bytes(self._f.read(4), "big", signed=True) if next_type == 6: vvr_offsets, vvr_start, vvr_end = self._read_vxrs( rec_offset, vvr_offsets=vvr_offsets, vvr_start=vvr_start, vvr_end=vvr_end ) else: vvr_offsets.extend([rec_offset]) vvr_start.extend([num_start]) vvr_end.extend([num_end]) if next_vxr_pos != 0: vvr_offsets, vvr_start, vvr_end = self._read_vxrs( next_vxr_pos, vvr_offsets=vvr_offsets, vvr_start=vvr_start, vvr_end=vvr_end ) return vvr_offsets, vvr_start, vvr_end def _read_vxrs2( self, byte_loc: int, vvr_offsets: List[int] = [], vvr_start: List[int] = [], vvr_end: List[int] = [] ) -> Tuple[List[int], List[int], List[int]]: self._f.seek(byte_loc, 0) block_size = int.from_bytes(self._f.read(4), "big", signed=True) vxrs = self._f.read(block_size - 4) next_vxr_pos = int.from_bytes(vxrs[4:8], "big", signed=True) num_ent = int.from_bytes(vxrs[8:12], "big", signed=True) num_ent_used = int.from_bytes(vxrs[12:16], "big", signed=True) # coff = 16 for ix in range(0, num_ent_used): soffset = 16 + 4 * ix num_start = int.from_bytes(vxrs[soffset : soffset + 4], "big", signed=True) eoffset = 16 + 4 * num_ent + 4 * ix num_end = int.from_bytes(vxrs[eoffset : eoffset + 4], "big", signed=True) ooffset = 16 + 2 * 4 * num_ent + 4 * ix rec_offset = int.from_bytes(vxrs[ooffset : ooffset + 4], "big", signed=True) type_offset = 4 + rec_offset self._f.seek(type_offset, 0) next_type = int.from_bytes(self._f.read(4), "big", signed=True) if next_type == 6: vvr_offsets, vvr_start, vvr_end = self._read_vxrs2( rec_offset, vvr_offsets=vvr_offsets, vvr_start=vvr_start, vvr_end=vvr_end ) else: vvr_offsets.extend([rec_offset]) vvr_start.extend([num_start]) vvr_end.extend([num_end]) if next_vxr_pos != 0: vvr_offsets, vvr_start, vvr_end = self._read_vxrs2( next_vxr_pos, vvr_offsets=vvr_offsets, vvr_start=vvr_start, vvr_end=vvr_end ) return vvr_offsets, vvr_start, vvr_end def _read_vvrs( self, vdr: VDR, vvr_offs: List[int], vvr_start: List[int], vvr_end: List[int], startrec: int, endrec: int ) -> Union[str, np.ndarray]: """ Reads in all VVRS that are pointed to in the VVR_OFFS array. Creates a large byte array of all values called "byte_stream". Decodes the byte_stream, then returns them. """ numBytes = self._type_size(vdr.data_type, vdr.num_elements) numValues = self._num_values(vdr) totalRecs = endrec - startrec + 1 firstBlock = -1 lastBlock = -1 totalBytes = numBytes * numValues * totalRecs byte_stream = bytearray(totalBytes) pos = 0 if vdr.sparse == 0: for vvr_num in range(0, len(vvr_offs)): if vvr_end[vvr_num] >= startrec and firstBlock == -1: firstBlock = vvr_num if vvr_end[vvr_num] >= endrec: lastBlock = vvr_num break for vvr_num in range(firstBlock, (lastBlock + 1)): if self.cdfversion == 3: var_block_data = self._read_vvr_block(vvr_offs[vvr_num]) else: var_block_data = self._read_vvr_block2(vvr_offs[vvr_num]) asize = len(var_block_data) byte_stream[pos : pos + asize] = var_block_data pos = pos + asize startPos = (startrec - vvr_start[firstBlock]) * numBytes * numValues stopOff = (vvr_end[lastBlock] - endrec) * numBytes * numValues byte_stream = byte_stream[startPos : len(byte_stream) - stopOff] else: # with sparse records if vdr.pad is not None: # use default pad value filled_data = self._convert_np_data(vdr.pad, vdr.data_type, vdr.num_elements) else: filled_data = self._convert_np_data( self._default_pad(vdr.data_type, vdr.num_elements), vdr.data_type, vdr.num_elements, ) cur_block = -1 rec_size = numBytes * numValues for rec_num in range(startrec, (endrec + 1)): block, prev_block = self._find_block(vvr_start, vvr_end, cur_block, rec_num) if block > -1: record_off = rec_num - vvr_start[block] if cur_block != block: if self.cdfversion == 3: var_block_data = self._read_vvr_block(vvr_offs[block]) else: var_block_data = self._read_vvr_block2(vvr_offs[block]) cur_block = block xoff = record_off * rec_size byte_stream[pos : pos + rec_size] = var_block_data[xoff : xoff + rec_size] else: if vdr.sparse == 1: # use defined pad or default pad byte_stream[pos : pos + rec_size] = filled_data * numValues else: # use previous physical record if prev_block != -1: if self.cdfversion == 3: var_prev_block_data = self._read_vvr_block(vvr_offs[prev_block]) else: var_prev_block_data = self._read_vvr_block2(vvr_offs[prev_block]) lastRecOff = (vvr_end[prev_block] - vvr_start[prev_block]) * rec_size byte_stream[pos : pos + rec_size] = var_prev_block_data[lastRecOff:] else: byte_stream[pos : pos + rec_size] = filled_data * numValues pos = pos + rec_size if block > -1: cur_block = block dimensions = [] var_vary = vdr.dim_vary var_sizes = vdr.dim_sizes for x in range(0, vdr.num_dims): if var_vary[x] == 0: continue dimensions.append(var_sizes[x]) return self._read_data(byte_stream, vdr.data_type, totalRecs, vdr.num_elements, dimensions) def _convert_option(self) -> str: """ Determines how to convert CDF byte ordering to the system byte ordering. """ if sys.byteorder == "little" and self._endian() == "big-endian": # big->little order = ">" elif sys.byteorder == "big" and self._endian() == "little-endian": # little->big order = "<" else: # no conversion order = "=" return order def _endian(self) -> str: """ Determines endianess of the CDF file Only used in __init__ """ if ( self._encoding == 1 or self._encoding == 2 or self._encoding == 5 or self._encoding == 7 or self._encoding == 9 or self._encoding == 11 or self._encoding == 12 ): return "big-endian" else: return "little-endian" @staticmethod def _type_size(data_type: Union[int, str], num_elms: int) -> int: # DATA TYPES # # 1 - 1 byte signed int # 2 - 2 byte signed int # 4 - 4 byte signed int # 8 - 8 byte signed int # 11 - 1 byte unsigned int # 12 - 2 byte unsigned int # 14 - 4 byte unsigned int # 41 - same as 1 # 21 - 4 byte float # 22 - 8 byte float (double) # 44 - same as 21 # 45 - same as 22 # 31 - double representing milliseconds # 32 - 2 doubles representing milliseconds # 33 - 8 byte signed integer representing nanoseconds from J2000 # 51 - signed character # 52 - unsigned character if isinstance(data_type, int): if (data_type == 1) or (data_type == 11) or (data_type == 41): return 1 elif (data_type == 2) or (data_type == 12): return 2 elif (data_type == 4) or (data_type == 14): return 4 elif (data_type == 8) or (data_type == 33): return 8 elif (data_type == 21) or (data_type == 44): return 4 elif (data_type == 22) or (data_type == 31) or (data_type == 45): return 8 elif data_type == 32: return 16 elif (data_type == 51) or (data_type == 52): return num_elms else: raise TypeError("Unknown data type....") elif isinstance(data_type, str): data_typeU = data_type.upper() if (data_typeU == "CDF_INT1") or (data_typeU == "CDF_UINT1") or (data_typeU == "CDF_BYTE"): return 1 elif (data_typeU == "CDF_INT2") or (data_typeU == "CDF_UINT2"): return 2 elif (data_typeU == "CDF_INT4") or (data_typeU == "CDF_UINT4"): return 4 elif (data_typeU == "CDF_INT8") or (data_typeU == "CDF_TIME_TT2000"): return 8 elif (data_typeU == "CDF_REAL4") or (data_typeU == "CDF_FLOAT"): return 4 elif (data_typeU == "CDF_REAL8") or (data_typeU == "CDF_DOUBLE") or (data_typeU == "CDF_EPOCH"): return 8 elif data_typeU == "CDF_EPOCH16": return 16 elif (data_typeU == "CDF_CHAR") or (data_typeU == "CDF_UCHAR"): return num_elms else: raise TypeError("Unknown data type....") else: raise TypeError("Unknown data type....") def _read_data( self, byte_stream: bytes, data_type: int, num_recs: int, num_elems: int, dimensions: Optional[List[int]] = None ) -> Union[str, np.ndarray]: """ This is the primary routine that converts streams of bytes into usable data. To do so, we need the bytes, the type of data, the number of records, the number of elements in a record, and dimension information. """ squeeze_needed = False # If the dimension is [n], it needs to be [n,1] # for the numpy dtype. This requires us to squeeze # the matrix later, to get rid of this extra dimension. dt_string = self._convert_option() if dimensions is not None: if self._majority == "Column_major": dimensions = list(reversed(dimensions)) if len(dimensions) == 1: dimensions.append(1) squeeze_needed = True dt_string += "(" count = 0 for dim in dimensions: count += 1 dt_string += str(dim) if count < len(dimensions): dt_string += "," dt_string += ")" ret: Union[str, np.ndarray] if data_type == 52 or data_type == 51: # string if dimensions is None: byte_data = bytearray(byte_stream[0 : num_recs * num_elems]) # In each record, check for the first '\x00' (null character). # If found, make all the characters after it null as well. for x in range(0, num_recs): y = x * num_elems z = byte_data[y : y + num_elems].find(b"\x00") if z > -1 and z < (num_elems - 1): byte_data[y + z + 1 : y + num_elems] = b"\x00" * (num_elems - z - 1) ret = byte_data[0 : num_recs * num_elems].decode(self.string_encoding, errors="ignore").replace("\x00", "") else: # Count total number of strings count = 1 for x in range(0, len(dimensions)): count = count * dimensions[x] strings = [] if len(dimensions) == 0: for i in range(0, num_recs * count * num_elems, num_elems): string1 = byte_stream[i : i + num_elems].decode(self.string_encoding, errors="ignore").replace("\x00", "") strings.append(string1) else: for x in range(0, num_recs): onerec = [] for i in range(x * count * num_elems, (x + 1) * count * num_elems, num_elems): string1 = ( byte_stream[i : i + num_elems].decode(self.string_encoding, errors="ignore").replace("\x00", "") ) onerec.append(string1) strings.extend(onerec) ret = np.array(strings).reshape((num_recs,) + tuple(dimensions)) if squeeze_needed: ret = np.squeeze(ret, axis=(ret.ndim - 1)) if dimensions is not None: dimensions.pop() if self._majority == "Column_major": axes = [0] + list(range(len(dimensions), 0, -1)) ret = np.transpose(ret, axes=axes) return ret else: if (data_type == 1) or (data_type == 41): dt_string += "i1" elif data_type == 2: dt_string += "i2" elif data_type == 4: dt_string += "i4" elif (data_type == 8) or (data_type == 33): dt_string += "i8" elif data_type == 11: dt_string += "u1" elif data_type == 12: dt_string += "u2" elif data_type == 14: dt_string += "u4" elif (data_type == 21) or (data_type == 44): dt_string += "f" elif (data_type == 22) or (data_type == 45) or (data_type == 31): dt_string += "d" elif data_type == 32: dt_string += "c16" dt = np.dtype(dt_string) ret = np.frombuffer(byte_stream, dtype=dt, count=num_recs * num_elems) try: ret.setflags(write=True) except ValueError: # If we can't set the writable flag, just continue pass if squeeze_needed: ret = np.squeeze(ret, axis=(ret.ndim - 1)) if dimensions is not None: dimensions.pop() # Put the data into system byte order if self._convert_option() != "=": ret = ret.view(ret.dtype.newbyteorder()).byteswap() if self._majority == "Column_major": if dimensions is not None: axes = [0] + list(range(len(dimensions), 0, -1)) else: axes = None ret = np.transpose(ret, axes=axes) return ret def _num_values(self, vdr: VDR) -> int: """ Returns the number of values in a record, using a given VDR dictionary. Multiplies the dimension sizes of each dimension, if it is varying. """ values = 1 for x in range(0, vdr.num_dims): if vdr.dim_vary[x] != 0: values = values * vdr.dim_sizes[x] return values def _get_attdata(self, adr_info: ADRInfo, entry_num: int, num_entry: int, first_entry: int) -> AttData: position = first_entry for _ in range(0, num_entry): got_entry_num, next_aedr = self._read_aedr_fast(position) if entry_num == got_entry_num: aedr_info = self._read_aedr(position) item_size = self._type_size(aedr_info.data_type, aedr_info.num_elements) data_type = self._datatype_token(aedr_info.data_type) num_items = aedr_info.num_elements data: Union[str, npt.NDArray] = aedr_info.entry if isinstance(data, str): if aedr_info.num_strings is not None: num_strings = aedr_info.num_strings num_items = num_strings if num_strings > 1 and isinstance(aedr_info.entry, str): data = np.array(aedr_info.entry.split("\\N ")) return AttData(item_size, data_type, num_items, data) else: return AttData(item_size, data_type, num_items, _squeeze_or_scalar(data)) else: position = next_aedr raise KeyError("The entry does not exist") def _read_vardata( self, vdr_info: VDR, epoch: Optional[str] = None, starttime: Optional[epoch.epoch_types] = None, endtime: Optional[epoch.epoch_types] = None, startrec: int = 0, endrec: Optional[int] = None, ) -> Optional[Union[str, np.ndarray]]: # Error checking if startrec: if startrec < 0: raise ValueError("Invalid start recond") if not (vdr_info.record_vary): startrec = 0 if not (endrec is None): if (endrec < 0) or (endrec > vdr_info.max_rec) or (endrec < startrec): raise ValueError("Invalid end recond") if not (vdr_info.record_vary): endrec = 0 else: endrec = vdr_info.max_rec if self.cdfversion == 3: vvr_offsets, vvr_start, vvr_end = self._read_vxrs(vdr_info.head_vxr, vvr_offsets=[], vvr_start=[], vvr_end=[]) else: vvr_offsets, vvr_start, vvr_end = self._read_vxrs2(vdr_info.head_vxr, vvr_offsets=[], vvr_start=[], vvr_end=[]) if vdr_info.record_vary: # Record varying if starttime is not None or endtime is not None: recs = self._findtimerecords(vdr_info.name, starttime, endtime, epoch=epoch) if recs is None: return None elif len(recs) == 0: return None else: startrec = recs[0] endrec = recs[-1] else: startrec = 0 endrec = 0 data = self._read_vvrs(vdr_info, vvr_offsets, vvr_start, vvr_end, startrec, endrec) if vdr_info.record_vary: return data else: return data[0] def _findtimerecords( self, var_name: str, starttime: epoch.epoch_types, endtime: epoch.epoch_types, epoch: Optional[str] = None ) -> np.ndarray: if epoch is not None: vdr_info = self.varinq(epoch) if vdr_info is None: raise ValueError("Epoch not found") if vdr_info.Data_Type == 31 or vdr_info.Data_Type == 32 or vdr_info.Data_Type == 33: epochtimes = self.varget(epoch) else: vdr_info = self.varinq(var_name) if vdr_info.Data_Type == 31 or vdr_info.Data_Type == 32 or vdr_info.Data_Type == 33: epochtimes = self.varget(var_name) else: # acquire depend_0 variable dependVar = self.attget("DEPEND_0", var_name) if dependVar is None: raise ValueError( "No corresponding epoch from 'DEPEND_0' attribute " "for variable: {}".format(var_name) + "Use 'epoch' argument to specify its time-based " "variable" ) if not isinstance(dependVar.Data, str): raise ValueError() vdr_info = self.varinq(dependVar.Data) if vdr_info.Data_Type != 31 and vdr_info.Data_Type != 32 and vdr_info.Data_Type != 33: raise ValueError( "Corresponding variable from 'DEPEND_0' attribute " "for variable: {}".format(var_name) + " is not a CDF epoch type" ) epochtimes = self.varget(dependVar.Data) return self._findrangerecords(vdr_info.Data_Type, epochtimes, starttime, endtime) def _findrangerecords( self, data_type: int, epochtimes: epoch.epochs_type, starttime: epoch.epoch_types, endtime: epoch.epoch_types ) -> np.ndarray: if data_type == 31 or data_type == 32 or data_type == 33: # CDF_EPOCH or CDF_EPOCH16 or CDF_TIME_TT2000 recs = epoch.CDFepoch.findepochrange(epochtimes, starttime, endtime) else: raise ValueError("Not a CDF epoch type") return recs def _convert_type(self, data_type: int) -> str: """ CDF data types to python struct data types """ if (data_type == 1) or (data_type == 41): dt_string = "b" elif data_type == 2: dt_string = "h" elif data_type == 4: dt_string = "i" elif (data_type == 8) or (data_type == 33): dt_string = "q" elif data_type == 11: dt_string = "B" elif data_type == 12: dt_string = "H" elif data_type == 14: dt_string = "I" elif (data_type == 21) or (data_type == 44): dt_string = "f" elif (data_type == 22) or (data_type == 45) or (data_type == 31): dt_string = "d" elif data_type == 32: dt_string = "d" elif (data_type == 51) or (data_type == 52): dt_string = "s" return dt_string def _default_pad(self, data_type: int, num_elms: int) -> Union[str, np.ndarray]: """ The default pad values by CDF data type """ order = self._convert_option() if data_type == 51 or data_type == 52: return str(" " * num_elms) if (data_type == 1) or (data_type == 41): pad_value = struct.pack(order + "b", -127) dt_string = "i1" elif data_type == 2: pad_value = struct.pack(order + "h", -32767) dt_string = "i2" elif data_type == 4: pad_value = struct.pack(order + "i", -2147483647) dt_string = "i4" elif (data_type == 8) or (data_type == 33): pad_value = struct.pack(order + "q", -9223372036854775807) dt_string = "i8" elif data_type == 11: pad_value = struct.pack(order + "B", 254) dt_string = "u1" elif data_type == 12: pad_value = struct.pack(order + "H", 65534) dt_string = "u2" elif data_type == 14: pad_value = struct.pack(order + "I", 4294967294) dt_string = "u4" elif (data_type == 21) or (data_type == 44): pad_value = struct.pack(order + "f", -1.0e30) dt_string = "f" elif (data_type == 22) or (data_type == 45) or (data_type == 31): pad_value = struct.pack(order + "d", -1.0e30) dt_string = "d" else: # (data_type == 32): pad_value = struct.pack(order + "2d", *[-1.0e30, -1.0e30]) dt_string = "c16" dt = np.dtype(dt_string) ret = np.frombuffer(pad_value, dtype=dt, count=1) try: ret.setflags(write=True) except Exception: # TODO: Figure out why we need to array set to writeable pass return ret def _convert_np_data(self, data: Union[str, np.ndarray], data_type: int, num_elems: int) -> bytes: """ Converts a single np data into byte stream. """ if isinstance(data, str): if data == "": return ("\x00" * num_elems).encode() else: return data.ljust(num_elems, "\x00").encode(self.string_encoding) elif isinstance(data, np.ndarray): data_stream = data.real.tobytes() data_stream += data.imag.tobytes() return data_stream else: return data.tobytes() def _read_vvr_block(self, offset: int) -> bytes: """ Returns a VVR or decompressed CVVR block """ self._f.seek(offset, 0) block_size = int.from_bytes(self._f.read(8), "big") block = self._f.read(block_size - 8) section_type = int.from_bytes(block[0:4], "big") if section_type == 13: # a CVVR compressed_size = int.from_bytes(block[8:16], "big") return gzip_inflate(block[16 : 16 + compressed_size]) elif section_type == 7: # a VVR return block[4:] else: raise RuntimeError("Unexpected section type") def _read_vvr_block2(self, offset: int) -> bytes: """ Returns a VVR or decompressed CVVR block """ self._f.seek(offset, 0) block_size = int.from_bytes(self._f.read(4), "big") block = self._f.read(block_size - 4) section_type = int.from_bytes(block[0:4], "big") if section_type == 13: # a CVVR compressed_size = int.from_bytes(block[8:12], "big") return gzip_inflate(block[12 : 12 + compressed_size]) elif section_type == 7: # a VVR return block[4:] else: raise RuntimeError("Unexpected section type") @staticmethod def _find_block(starts: List[int], ends: List[int], cur_block: int, rec_num: int) -> Tuple[int, int]: """ Finds the block that rec_num is in if it is found. Otherwise it returns -1. It also returns the block that has the physical data either at or preceeding the rec_num. It could be -1 if the preceeding block does not exists. """ total = len(starts) if cur_block == -1: cur_block = 0 for x in range(cur_block, total): if starts[x] <= rec_num and ends[x] >= rec_num: return x, x if starts[x] > rec_num: break return -1, x - 1 def _file_or_url_or_s3_handler( self, filename: str, filetype: str, s3_read_method: int ) -> Union["S3object", io.BufferedReader, io.BytesIO]: bdata: Union["S3object", io.BufferedReader, io.BytesIO] if filetype == "url": req = urllib.request.Request(filename) response = urllib.request.urlopen(req) bdata = io.BytesIO(response.read()) elif filetype == "s3": try: import boto3 from botocore import UNSIGNED from botocore.client import Config from botocore.handlers import disable_signing except: raise ImportError("boto3/botocore package not installed") s3parts = filename.split("/") # 0-1=s3://, 2=bucket, 3+=key mybucket = s3parts[2] mykey = "/".join(s3parts[3:]) if s3_read_method == 3: # read in-place s3c = boto3.resource("s3") try: obj = s3c.Object(bucket_name=mybucket, key=mykey) except: s3c.meta.client.meta.events.register("choose-signer.s3.*", disable_signing) obj = s3c.Object(bucket_name=mybucket, key=mykey) bdata = S3object(obj) # type: ignore else: # for store in memory or as temp copy s3c = boto3.client("s3") try: obj = s3c.get_object(Bucket=mybucket, Key=mykey) except: s3c = boto3.client("s3", config=Config(signature_version=UNSIGNED)) obj = s3c.get_object(Bucket=mybucket, Key=mykey) bdata = s3_fetchall(obj) return bdata else: bdata = open(filename, "rb") return bdata def _unstream_file(self, f) -> None: # type: ignore """ Typically for S3 or URL, writes the current file stream into a file in the temporary directory. If that doesn't work, create a new file in the CDFs directory. """ raw_data = f.read(-1) self.temp_file = Path(tempfile.NamedTemporaryFile(suffix=".cdf").name) with self.temp_file.open("wb") as g: g.write(raw_data) self.original_stream = self.file self.file = self.temp_file self.file = Path(self.file).expanduser() self.ftype = "file"
class CDF: ''' Read a CDF file into the CDF object. This object contains methods to load the cdf file information, variable names, and values. Example ------- >>> import cdflib >>> cdf_file = cdflib.CDF('/path/to/cdf_file.cdf') >>> cdf_file.cdf_info() >>> x = cdf_file.varget("NameOfVariable", startrec=0, endrec=150) ''' def __init__(self, path: Union[str, Path], validate: bool = False, string_encoding: str = "ascii", s3_read_method: int = 1): ''' Parameters ---------- path : Path, str Path to CDF file. This can be a link to a file in an S3 bucket as well. validate : bool, optional If True, validate the MD5 checksum of the CDF file. string_encoding : str, optional The encoding used to read strings. Defaults to 'ascii', which is what the CDF internal format description prescribes as the encoding for character strings. Other encodings may have been used to create files however, and this keyword argument gives users the flexibility to read those files. s3_read_method: int, optional If the user is specifying a file that lives within an AWS S3 bucket, this variable defines how the file is read in. The choices are: - 1 will read the file into memory to load in memory) - 2 will download the file to a tmp directory - 3 reads the file in chunks directly from S3 over https Notes ----- An open file handle to the CDF file remains whilst a CDF object is live. It is automatically cleaned up with the CDF instance is deleted. ''' pass def __del__(self) -> None: pass def __getitem__(self, variable: str) -> Union[str, np.ndarray]: pass def __enter__(self) -> "CDF": pass def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None: pass def cdf_info(self) -> CDFInfo: ''' Returns basic CDF information. Returns ------- CDFInfo ''' pass def varinq(self, variable: str) -> VDRInfo: ''' Get basic variable information. Returns ------- VDRInfo ''' pass def attinq(self, attribute: Union[str, int]) -> ADRInfo: ''' Get attribute information. Parameters ---------- attribute : str, int Attribute to get information for. Returns ------- ADRInfo ''' pass def attget(self, attribute: Union[str, int], entry: Optional[Union[str, int]] = None) -> AttData: ''' Returns the value of the attribute at the entry number provided. A variable name can be used instead of its corresponding entry number. Parameters ---------- attribute : str, int Attribute name or number to get. entry : int, optional Returns ------- AttData ''' pass def varget( self, variable: Optional[str] = None, epoch: Optional[str] = None, starttime: Optional[epoch.epoch_types] = None, endtime: Optional[epoch.epoch_types] = None, startrec: int = 0, endrec: Optional[int] = None, ) -> Union[str, np.ndarray]: ''' Returns the variable data. Parameters ---------- variable: str Variable name to fetch. startrec: int Index of the first record to get. endrec : int Index of the last record to get. All records from *startrec* to *endrec* inclusive are fetched. Notes ----- Variable can be entered either a name or a variable number. By default, it returns a 'numpy.ndarray' or 'list' class object, depending on the data type, with the variable data and its specification. By default, the full variable data is returned. To acquire only a portion of the data for a record-varying variable, either the time or record (0-based) range can be specified. 'epoch' can be used to specify which time variable this variable depends on and is to be searched for the time range. For the ISTP-compliant CDFs, the time variable will come from the attribute 'DEPEND_0' from this variable. The function will automatically search for it thus no need to specify 'epoch'. If either the start or end time is not specified, the possible minimum or maximum value for the specific epoch data type is assumed. If either the start or end record is not specified, the range starts at 0 or/and ends at the last of the written data. The start (and end) time should be presented in a list as: [year month day hour minute second millisec] for CDF_EPOCH [year month day hour minute second millisec microsec nanosec picosec] for CDF_EPOCH16 [year month day hour minute second millisec microsec nanosec] for CDF_TIME_TT2000 If not enough time components are presented, only the last item can have the floating portion for the sub-time components. Note: CDF's CDF_EPOCH16 data type uses 2 8-byte doubles for each data value. In Python, each value is presented as a complex or numpy.complex128. ''' pass def vdr_info(self, variable: Union[str, int]) -> VDR: pass def globalattsget(self) -> Dict[str, List[Union[str, np.ndarray]]]: ''' Gets all global attributes. This function returns all of the global attribute entries, in a dictionary (in the form of ``'attribute': {entry: value}`` pairs) from a CDF. ''' pass def varattsget(self, variable: Union[str, int]) -> Dict[str, Union[None, str, np.ndarray]]: ''' Gets all variable attributes. Unlike attget, which returns a single attribute entry value, this function returns all of the variable attribute entries, in a dictionary (in the form of 'attribute': value pair) for a variable. ''' pass def _uncompress_rle(self, data: bytes) -> bytearray: pass def _uncompress_file(self) -> None: ''' Writes the current file into a file in the temporary directory. If that doesn't work, create a new file in the CDFs directory. ''' pass def _read_ccr(self, byte_loc: int) -> Tuple[int, int, int, int]: pass def _read_ccr2(self, byte_loc: int) -> Tuple[int, int, int, int]: pass def _read_cpr(self, byte_loc: int) -> Tuple[int, int]: pass def _read_cpr3(self, byte_loc: int) -> Tuple[int, int]: pass def _read_cpr2(self, byte_loc: int) -> Tuple[int, int]: pass def _md5_validation(self) -> bool: ''' Verifies the MD5 checksum. Only used in the __init__() function ''' pass @staticmethod def _encoding_token(encoding: int) -> str: pass @staticmethod def _major_token(major: int) -> str: pass @staticmethod def _scope_token(scope: int) -> str: pass @staticmethod def _variable_token(variable: int) -> str: pass @staticmethod def _datatype_token(datatype: int) -> str: pass @staticmethod def _sparse_token(sparse: int) -> str: pass def _get_varnames(self) -> Tuple[List[str], List[str]]: pass def _get_attnames(self) -> List[Dict[str, str]]: pass def _read_cdr(self, byte_loc: int) -> Tuple[CDRInfo, int]: ''' Read a CDF descriptor record (CDR). ''' pass def _read_cdr2(self, byte_loc: int) -> Tuple[CDRInfo, int]: pass def _read_gdr(self, byte_loc: int) -> GDRInfo: pass def _read_gdr2(self, byte_loc: int) -> GDRInfo: pass def _read_varatts(self, var_num: int, zVar: bool) -> Dict[str, Union[None, str, np.ndarray]]: pass def _read_adr(self, position: int) -> ADRInfo: ''' Read an attribute descriptor record (ADR). ''' pass def _read_adr3(self, byte_loc: int) -> ADRInfo: pass def _read_adr2(self, byte_loc: int) -> ADRInfo: pass def _read_adr_fast(self, position: int) -> Tuple[str, int]: ''' Read an attribute descriptor record (ADR). ''' pass def _read_adr_fast3(self, byte_loc: int) -> Tuple[str, int]: pass def _read_adr_fast2(self, byte_loc: int) -> Tuple[str, int]: pass def _read_aedr_fast(self, byte_loc: int) -> Tuple[int, int]: pass def _read_aedr_fast3(self, byte_loc: int) -> Tuple[int, int]: pass def _read_aedr_fast2(self, byte_loc: int) -> Tuple[int, int]: pass def _read_aedr_fast(self, byte_loc: int) -> Tuple[int, int]: pass def _read_aedr3(self, byte_loc: int) -> AEDR: ''' Reads an Attribute Entry Descriptor Record at a specific byte location. ''' pass def _read_aedr2(self, byte_loc: int) -> AEDR: pass def _read_vdr(self, byte_loc: int) -> VDR: ''' Read a variable descriptor record (VDR). ''' pass def _read_vdr3(self, byte_loc: int) -> VDR: pass def _read_vdr2(self, byte_loc: int) -> VDR: pass def _read_vdr_fast(self, byte_loc: int) -> Tuple[str, int]: pass def _read_vdr_fast3(self, byte_loc: int) -> Tuple[str, int]: pass def _read_vdr_fast2(self, byte_loc: int) -> Tuple[str, int]: pass def _read_vxrs( self, byte_loc: int, vvr_offsets: List[int] = [], vvr_start: List[int] = [], vvr_end: List[int] = [] ) -> Tuple[List[int], List[int], List[int]]: pass def _read_vxrs2( self, byte_loc: int, vvr_offsets: List[int] = [], vvr_start: List[int] = [], vvr_end: List[int] = [] ) -> Tuple[List[int], List[int], List[int]]: pass def _read_vvrs( self, vdr: VDR, vvr_offs: List[int], vvr_start: List[int], vvr_end: List[int], startrec: int, endrec: int ) -> Union[str, np.ndarray]: ''' Reads in all VVRS that are pointed to in the VVR_OFFS array. Creates a large byte array of all values called "byte_stream". Decodes the byte_stream, then returns them. ''' pass def _convert_option(self) -> str: ''' Determines how to convert CDF byte ordering to the system byte ordering. ''' pass def _endian(self) -> str: ''' Determines endianess of the CDF file Only used in __init__ ''' pass @staticmethod def _type_size(data_type: Union[int, str], num_elms: int) -> int: pass def _read_data( self, byte_stream: bytes, data_type: int, num_recs: int, num_elems: int, dimensions: Optional[List[int]] = None ) -> Union[str, np.ndarray]: ''' This is the primary routine that converts streams of bytes into usable data. To do so, we need the bytes, the type of data, the number of records, the number of elements in a record, and dimension information. ''' pass def _num_values(self, vdr: VDR) -> int: ''' Returns the number of values in a record, using a given VDR dictionary. Multiplies the dimension sizes of each dimension, if it is varying. ''' pass def _get_attdata(self, adr_info: ADRInfo, entry_num: int, num_entry: int, first_entry: int) -> AttData: pass def _read_vardata( self, vdr_info: VDR, epoch: Optional[str] = None, starttime: Optional[epoch.epoch_types] = None, endtime: Optional[epoch.epoch_types] = None, startrec: int = 0, endrec: Optional[int] = None, ) -> Optional[Union[str, np.ndarray]]: pass def _findtimerecords( self, var_name: str, starttime: epoch.epoch_types, endtime: epoch.epoch_types, epoch: Optional[str] = None ) -> np.ndarray: pass def _findrangerecords( self, data_type: int, epochtimes: epoch.epochs_type, starttime: epoch.epoch_types, endtime: epoch.epoch_types ) -> np.ndarray: pass def _convert_type(self, data_type: int) -> str: ''' CDF data types to python struct data types ''' pass def _default_pad(self, data_type: int, num_elms: int) -> Union[str, np.ndarray]: ''' The default pad values by CDF data type ''' pass def _convert_np_data(self, data: Union[str, np.ndarray], data_type: int, num_elems: int) -> bytes: ''' Converts a single np data into byte stream. ''' pass def _read_vvr_block(self, offset: int) -> bytes: ''' Returns a VVR or decompressed CVVR block ''' pass def _read_vvr_block2(self, offset: int) -> bytes: ''' Returns a VVR or decompressed CVVR block ''' pass @staticmethod def _find_block(starts: List[int], ends: List[int], cur_block: int, rec_num: int) -> Tuple[int, int]: ''' Finds the block that rec_num is in if it is found. Otherwise it returns -1. It also returns the block that has the physical data either at or preceeding the rec_num. It could be -1 if the preceeding block does not exists. ''' pass def _file_or_url_or_s3_handler( self, filename: str, filetype: str, s3_read_method: int ) -> Union["S3object", io.BufferedReader, io.BytesIO]: pass def _unstream_file(self, f) -> None: ''' Typically for S3 or URL, writes the current file stream into a file in the temporary directory. If that doesn't work, create a new file in the CDFs directory. ''' pass
81
28
27
2
21
4
5
0.21
0
30
10
0
64
26
72
72
2,064
216
1,542
535
1,427
319
1,186
495
1,109
34
0
6
352
147,650
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.AttData
class AttData: """ Attribute data. """ #: Number of bytes for each entry value. Item_Size: int #: CDF data type. Data_Type: str #: Number of values extracted. Num_Items: int #: Data as a scalar value, a numpy array or a string. Data: Union[Number, str, np.ndarray]
class AttData: ''' Attribute data. ''' pass
1
1
0
0
0
0
0
1.4
0
0
0
0
0
0
0
0
13
1
5
1
4
7
5
1
4
0
0
0
0
147,651
MAVENSDC/cdflib
cdflib/epochs.py
cdflib.epochs.CDFepoch
class CDFepoch: """ Convert between CDF-based epochs, np.datetime64, and Unix time. There are three (3) epoch data types in CDF: 1. CDF_EPOCH is milliseconds since Year 0 represented as a single double (float in Python), 2. CDF_EPOCH16 is picoseconds since Year 0 represented as 2-doubles (complex in Python), and 3. CDF_TIME_TT2000 (TT2000 as short) is nanoseconds since J2000 with leap seconds, represented by an 8-byte integer (int in Python). In Numpy, they are np.float64, np.complex128 and np.int64, respectively. All these epoch values can come from from CDF.varget function. Example ------- >>> import cdflib # Convert to an epoch >>> epoch = cdflib.cdfepoch.compute_epoch([2017,1,1,1,1,1,111]) # Convert from an epoch >>> time = cdflib.cdfepoch.to_datetime(epoch) # Or pass epochs via CDF.varget. """ version = 3 release = 7 increment = 0 month_Token = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] JulianDateJ2000_12h = 2451545 J2000Since0AD12h = 730485 J2000Since0AD12hSec = 63113904000.0 J2000Since0AD12hMilsec = 63113904000000.0 J2000LeapSeconds = 32.0 dT = 32.184 dTinNanoSecs = 32184000000 MJDbase = 2400000.5 SECinNanoSecs = 1000000000 SECinNanoSecsD = 1000000000.0 DAYinNanoSecs = int(86400000000000) HOURinNanoSecs = int(3600000000000) MINUTEinNanoSecs = int(60000000000) T12hinNanoSecs = int(43200000000000) # Julian days for 1707-09-22 and 2292-04-11, the valid TT2000 range JDY17070922 = 2344793 JDY22920411 = 2558297 DEFAULT_TT2000_PADVALUE = int(-9223372036854775807) FILLED_TT2000_VALUE = int(-9223372036854775808) NERA1 = 14 LTS = [] with open(LEAPSEC_FILE) as lsfile: lsreader = csv.reader(lsfile, delimiter=" ") for csv_row in lsreader: if csv_row[0] == ";": continue csv_row = list(filter(("").__ne__, csv_row)) row: List[Union[int, float]] = [] for r in csv_row[:3]: row.append(int(r)) for r in csv_row[3:6]: row.append(float(r)) LTS.append(row) NDAT = len(LTS) NST: Optional[List[int]] = None currentDay = -1 currentJDay = -1 currentLeapSeconds: float = -1 @staticmethod def encode(epochs: epoch_types, iso_8601: bool = True) -> encoded_type: """ Converts one or more epochs into UTC strings. The input epoch format is deduced from the argument type. Parameters ---------- epochs: int, float, list, complex One or more ECD epochs in one of three formats: 1. CDF_EPOCH: The input should be either a float or list of floats (in numpy, a np.float64 or a np.ndarray of np.float64) 2. CDF_EPOCH16: The input should be either a complex or list of complex(in numpy, a np.complex128 or a np.ndarray of np.complex128) 3. TT2000: The input should be either a int or list of ints (in numpy, a np.int64 or a np.ndarray of np.int64) iso_8601: bool The return time format. If ISO 8601 is True, the format is, for example, 2008-02-02T06:08:10.10.012014016, otherwise the format is 02-Feb-2008 06:08:10.012.014.016. """ epochs = np.array(epochs) if epochs.dtype == np.int64: return CDFepoch.encode_tt2000(epochs, iso_8601) elif epochs.dtype == np.float64: return CDFepoch.encode_epoch(epochs, iso_8601) elif epochs.dtype == np.complex128: return CDFepoch.encode_epoch16(epochs, iso_8601) else: raise TypeError(f"Not sure how to handle type {epochs.dtype}") @staticmethod def breakdown(epochs: epoch_types) -> np.ndarray: """ Returns ------- np.ndarray 1D if scalar input, 2D otherwise. """ epochs = np.array(epochs) if epochs.dtype.type == np.int64: return CDFepoch.breakdown_tt2000(epochs) elif epochs.dtype.type == np.float64: return CDFepoch.breakdown_epoch(epochs) elif epochs.dtype.type == np.complex128: return CDFepoch.breakdown_epoch16(epochs) else: raise TypeError(f"Not sure how to handle type {epochs.dtype}") @staticmethod def _compose_date( nat_positions: npt.NDArray, years: npt.NDArray, months: npt.NDArray, days: npt.NDArray, hours: Optional[npt.NDArray] = None, minutes: Optional[npt.NDArray] = None, seconds: Optional[npt.NDArray] = None, milliseconds: Optional[npt.NDArray] = None, microseconds: Optional[npt.NDArray] = None, nanoseconds: Optional[npt.NDArray] = None, ) -> npt.NDArray[np.datetime64]: """ Take date components and return a numpy datetime array. """ years = np.asarray(years) - 1970 months = np.asarray(months) - 1 days = np.asarray(days) - 1 types = ("<M8[Y]", "<m8[M]", "<m8[D]", "<m8[h]", "<m8[m]", "<m8[s]", "<m8[ms]", "<m8[us]", "<m8[ns]") vals = (v for v in (years, months, days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) if v is not None) arrays: List[npt.NDArray[np.datetime64]] = [np.array(v, dtype=t) for t, v in zip(types, vals)] total_datetime = np.array(sum(arrays)) total_datetime = np.where(nat_positions, np.datetime64("NaT"), total_datetime) return total_datetime @classmethod def to_datetime(cls, cdf_time: epoch_types) -> npt.NDArray[np.datetime64]: """ Converts CDF epoch argument to numpy.datetime64. Parameters: cdf_time: NumPy scalar/arrays to convert. np.int64 will be converted to cdf_tt2000, np.complex128 will be converted to cdf_epoch16, and floats will be converted to cdf_epoch. Notes: Because of datetime64 limitations, CDF_EPOCH16 precision is only kept to the nearest nanosecond. """ times = cls.breakdown(cdf_time) times = np.atleast_2d(times) fillval_locations = np.all((times[:, 0:7] == [9999, 12, 31, 23, 59, 59, 999]), axis=1) padval_locations = np.all((times[:, 0:7] == [0, 1, 1, 0, 0, 0, 0]), axis=1) nan_locations = np.logical_or(fillval_locations, padval_locations) return cls._compose_date(nan_locations, *times.T[:9]).astype("datetime64[ns]") @staticmethod def unixtime(cdf_time: npt.ArrayLike) -> Union[float, npt.NDArray]: """ Converts CDF epoch argument into seconds after 1970-01-01. This method converts a scalar, or array-like. Precision is only kept to the nearest microsecond. """ cdf_time = np.atleast_1d(cdf_time) time_list = np.atleast_2d(CDFepoch.breakdown(cdf_time)) unixtime = [] utc = datetime.timezone(datetime.timedelta()) for t in time_list: date: List[int] = [0] * 7 for i in range(0, len(t)): if i > 7: continue elif i == 6: date[i] = 1000 * t[i] elif i == 7: date[i - 1] += t[i] else: date[i] = t[i] unixtime.append( datetime.datetime(date[0], date[1], date[2], date[3], date[4], date[5], date[6], tzinfo=utc).timestamp() ) return _squeeze_or_scalar_real(unixtime) @staticmethod def timestamp_to_cdfepoch(unixtime_data: npt.ArrayLike) -> np.ndarray: """ Converts a unix timestamp to CDF_EPOCH, the number of milliseconds since the year 0. """ # Make sure the object is iterable. Sometimes numpy arrays claim to be iterable when they aren't. times = np.atleast_1d(unixtime_data) cdf_time_data = [] for ud in times: if not np.isnan(ud): dt = np.datetime64(int(ud * 1000), "ms") dt_item: datetime.datetime = dt.item() dt_to_convert = [ dt_item.year, dt_item.month, dt_item.day, dt_item.hour, dt_item.minute, dt_item.second, int(dt_item.microsecond / 1000), ] converted_data = CDFepoch.compute(dt_to_convert) else: converted_data = np.nan cdf_time_data.append(converted_data) return np.array(cdf_time_data) @staticmethod def timestamp_to_cdfepoch16(unixtime_data: npt.ArrayLike) -> np.ndarray: """ Converts a unix timestamp to CDF_EPOCH16 """ # Make sure the object is iterable. Sometimes numpy arrays claim to be iterable when they aren't. times = np.atleast_1d(unixtime_data) cdf_time_data = [] for ud in times: if not np.isnan(ud): dt = np.datetime64(int(ud * 1000000), "us") dt_item: datetime.datetime = dt.item() dt_to_convert = [ dt_item.year, dt_item.month, dt_item.day, dt_item.hour, dt_item.minute, dt_item.second, int(dt_item.microsecond / 1000), int(dt_item.microsecond % 1000), 0, 0, ] converted_data = CDFepoch.compute(dt_to_convert) else: converted_data = np.nan cdf_time_data.append(converted_data) return np.array(cdf_time_data) @staticmethod def timestamp_to_tt2000(unixtime_data: npt.ArrayLike) -> np.ndarray: """ Converts a unix timestamp to CDF_TIME_TT2000 """ # Make sure the object is iterable. Sometimes numpy arrays claim to be iterable when they aren't. times = np.atleast_1d(unixtime_data) cdf_time_data = [] for ud in times: if not np.isnan(ud): dt = np.datetime64(int(ud * 1000000), "us") dt_item: datetime.datetime = dt.item() dt_to_convert = [ dt_item.year, dt_item.month, dt_item.day, dt_item.hour, dt_item.minute, dt_item.second, int(dt_item.microsecond / 1000), int(dt_item.microsecond % 1000), 0, ] converted_data = CDFepoch.compute(dt_to_convert) else: converted_data = np.nan cdf_time_data.append(converted_data) return np.array(cdf_time_data) @staticmethod def compute(datetimes: npt.ArrayLike) -> Union[int, float, complex, npt.NDArray]: """ Computes the provided date/time components into CDF epoch value(s). For CDF_EPOCH: For computing into CDF_EPOCH value, each date/time elements should have exactly seven (7) components, as year, month, day, hour, minute, second and millisecond, in a list. For example: [[2017,1,1,1,1,1,111],[2017,2,2,2,2,2,222]] Or, call function compute_epoch directly, instead, with at least three (3) first (up to seven) components. The last component, if not the 7th, can be a float that can have a fraction of the unit. For CDF_EPOCH16: They should have exactly ten (10) components, as year, month, day, hour, minute, second, millisecond, microsecond, nanosecond and picosecond, in a list. For example: [[2017,1,1,1,1,1,123,456,789,999],[2017,2,2,2,2,2,987,654,321,999]] Or, call function compute_epoch directly, instead, with at least three (3) first (up to ten) components. The last component, if not the 10th, can be a float that can have a fraction of the unit. For TT2000: Each TT2000 typed date/time should have exactly nine (9) components, as year, month, day, hour, minute, second, millisecond, microsecond, and nanosecond, in a list. For example: [[2017,1,1,1,1,1,123,456,789],[2017,2,2,2,2,2,987,654,321]] Or, call function compute_tt2000 directly, instead, with at least three (3) first (up to nine) components. The last component, if not the 9th, can be a float that can have a fraction of the unit. """ if not isinstance(datetimes, (list, tuple, np.ndarray)): raise TypeError("datetime must be in list form") datetimes = np.atleast_2d(datetimes) items = datetimes.shape[1] if items == 7: return _squeeze_or_scalar_real(CDFepoch.compute_epoch(datetimes)) elif items == 10: return _squeeze_or_scalar_complex(CDFepoch.compute_epoch16(datetimes)) elif items == 9: return _squeeze_or_scalar_real(CDFepoch.compute_tt2000(datetimes)) else: raise TypeError("Unknown input") @staticmethod def findepochrange( epochs: epochs_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> np.ndarray: """ Finds the record range within the start and end time from values of a CDF epoch data type. It returns a list of record numbers. If the start time is not provided, then it is assumed to be the minimum possible value. If the end time is not provided, then the maximum possible value is assumed. The epoch is assumed to be in the chronological order. The start and end times should have the proper number of date/time components, corresponding to the epoch's data type. The start/end times should be in either be in epoch units, or in the list format described in "compute_epoch/epoch16/tt2000" section. """ epochs = np.array(epochs) if epochs.dtype == np.int64: return CDFepoch.epochrange_tt2000(epochs, starttime, endtime) elif epochs.dtype == np.float64: return CDFepoch.epochrange_epoch(epochs, starttime, endtime) elif epochs.dtype == np.complex128: return CDFepoch.epochrange_epoch16(epochs, starttime, endtime) else: raise TypeError("Bad input") @staticmethod def encode_tt2000(tt2000: cdf_tt2000_type, iso_8601: bool = True) -> encoded_type: new_tt2000 = np.atleast_1d(tt2000) count = len(new_tt2000) encodeds = [] for x in range(count): nanoSecSinceJ2000 = new_tt2000[x] if nanoSecSinceJ2000 == CDFepoch.FILLED_TT2000_VALUE: if iso_8601: return "9999-12-31T23:59:59.999999999" else: return "31-Dec-9999 23:59:59.999.999.999" if nanoSecSinceJ2000 == CDFepoch.DEFAULT_TT2000_PADVALUE: if iso_8601: return "0000-01-01T00:00:00.000000000" else: return "01-Jan-0000 00:00:00.000.000.000" datetime = CDFepoch.breakdown_tt2000(nanoSecSinceJ2000) ly = datetime[0] lm = datetime[1] ld = datetime[2] lh = datetime[3] ln = datetime[4] ls = datetime[5] ll = datetime[6] lu = datetime[7] la = datetime[8] if iso_8601: # yyyy-mm-ddThh:mm:ss.mmmuuunnn encoded = str(ly).zfill(4) encoded += "-" encoded += str(lm).zfill(2) encoded += "-" encoded += str(ld).zfill(2) encoded += "T" encoded += str(lh).zfill(2) encoded += ":" encoded += str(ln).zfill(2) encoded += ":" encoded += str(ls).zfill(2) encoded += "." encoded += str(ll).zfill(3) encoded += str(lu).zfill(3) encoded += str(la).zfill(3) else: # dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn encoded = str(ld).zfill(2) encoded += "-" encoded += CDFepoch.month_Token[lm - 1] encoded += "-" encoded += str(ly).zfill(4) encoded += " " encoded += str(lh).zfill(2) encoded += ":" encoded += str(ln).zfill(2) encoded += ":" encoded += str(ls).zfill(2) encoded += "." encoded += str(ll).zfill(3) encoded += "." encoded += str(lu).zfill(3) encoded += "." encoded += str(la).zfill(3) if count == 1: return encoded else: encodeds.append(encoded) return encodeds @staticmethod def breakdown_tt2000(tt2000: cdf_tt2000_type) -> np.ndarray: """ Breaks down the epoch(s) into UTC components. Calculate date and time from cdf_time_tt2000 integers Parameters ---------- epochs : array-like Single, list, tuple, or np.array of tt2000 values Returns ------- components : ndarray List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, millisecond, microsecond, and nanosecond Notes ----- If a bad epoch is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms, 999 us, and 999 ns is returned. """ new_tt2000 = np.atleast_1d(tt2000).astype(np.int64) count = len(new_tt2000) toutcs = np.zeros((9, count), dtype=int) datxs = CDFepoch._LeapSecondsfromJ2000(new_tt2000) # Do some computations on arrays to speed things up post2000 = new_tt2000 > 0 nanoSecsSinceJ2000 = new_tt2000.copy() nanoSecsSinceJ2000[~post2000] += CDFepoch.T12hinNanoSecs nanoSecsSinceJ2000[~post2000] -= CDFepoch.dTinNanoSecs secsSinceJ2000 = (nanoSecsSinceJ2000 / CDFepoch.SECinNanoSecsD).astype(np.int64) nansecs = (nanoSecsSinceJ2000 - (secsSinceJ2000 * CDFepoch.SECinNanoSecs)).astype(np.int64) # type: ignore posNanoSecs = new_tt2000 > 0 secsSinceJ2000[posNanoSecs] -= 32 secsSinceJ2000[posNanoSecs] += 43200 nansecs[posNanoSecs] -= 184000000 negNanoSecs = nansecs < 0 nansecs[negNanoSecs] += CDFepoch.SECinNanoSecs secsSinceJ2000[negNanoSecs] -= 1 t2s = secsSinceJ2000 * CDFepoch.SECinNanoSecs + nansecs post72: np.ndarray = datxs[:, 0] > 0 secsSinceJ2000[post72] -= datxs[post72, 0].astype(int) epochs = CDFepoch.J2000Since0AD12hSec + secsSinceJ2000 datxzero = datxs[:, 1] == 0.0 epochs[post72 & ~datxzero] -= 1 xdates = CDFepoch._EPOCHbreakdownTT2000(epochs) # If 1 second was subtracted, add 1 second back in # Be careful not to go 60 or above xdates[5, post72 & ~datxzero] += 1 xdates[4, post72 & ~datxzero] += np.floor(xdates[5, post72 & ~datxzero] / 60.0) xdates[5, post72 & ~datxzero] = xdates[5, post72 & ~datxzero] % 60 # Set toutcs, then loop through and correct for pre-1972 toutcs[:6, :] = xdates[:6, :] for x in np.nonzero(~post72)[0]: if datxs[x, 0] <= 0.0: # pre-1972... epoch = epochs[x] t2 = t2s[x] t3 = new_tt2000[x] nansec = nansecs[x] xdate = np.zeros(9) xdate[:6] = xdates[:, x] xdate[8] = nansec tmpNanosecs = CDFepoch.compute_tt2000(xdate) if tmpNanosecs != t3: dat0 = CDFepoch._LeapSecondsfromYMD(xdate[0], xdate[1], xdate[2]) tmpx = t2 - int(dat0 * CDFepoch.SECinNanoSecs) tmpy = int(float(tmpx / CDFepoch.SECinNanoSecsD)) nansec = int(tmpx - tmpy * CDFepoch.SECinNanoSecs) if nansec < 0: nansec = CDFepoch.SECinNanoSecs + nansec tmpy = tmpy - 1 epoch = tmpy + CDFepoch.J2000Since0AD12hSec xdate = np.zeros(9) xdate[:6] = CDFepoch._EPOCHbreakdownTT2000(epoch)[:, 0] xdate[8] = nansec tmpNanosecs = CDFepoch.compute_tt2000(xdate) if tmpNanosecs != t3: dat0 = CDFepoch._LeapSecondsfromYMD(xdate[0], xdate[1], xdate[2]) tmpx = t2 - int(dat0 * CDFepoch.SECinNanoSecs) tmpy = int((1.0 * tmpx) / CDFepoch.SECinNanoSecsD) nansec = int(tmpx - tmpy * CDFepoch.SECinNanoSecs) if nansec < 0: nansec = CDFepoch.SECinNanoSecs + nansec tmpy = tmpy - 1 epoch = tmpy + CDFepoch.J2000Since0AD12hSec xdate = np.zeros(9) xdate[:6] = CDFepoch._EPOCHbreakdownTT2000(epoch)[:, 0] xdate[8] = nansec tmpNanosecs = CDFepoch.compute_tt2000(xdate) if tmpNanosecs != t3: dat0 = CDFepoch._LeapSecondsfromYMD(xdate[0], xdate[1], xdate[2]) tmpx = t2 - int(dat0 * CDFepoch.SECinNanoSecs) tmpy = int((1.0 * tmpx) / CDFepoch.SECinNanoSecsD) nansec = int(tmpx - tmpy * CDFepoch.SECinNanoSecs) if nansec < 0: nansec = CDFepoch.SECinNanoSecs + nansec tmpy = tmpy - 1 epoch = tmpy + CDFepoch.J2000Since0AD12hSec # One more determination xdate = CDFepoch._EPOCHbreakdownTT2000(epoch).ravel() nansecs[x] = nansec toutcs[:6, x] = xdate[:6] # Finished pre-1972 correction ml1 = nansecs // 1000000 tmp1 = nansecs - (1000000 * ml1) overflow = ml1 > 1000 ml1[overflow] -= 1000 toutcs[6, :] = ml1 toutcs[5, overflow] += 1 ma1 = tmp1 // 1000 na1 = tmp1 - 1000 * ma1 toutcs[7, :] = ma1 toutcs[8, :] = na1 # Check standard fill and pad values cdf_epoch_time_tt2000 = np.atleast_2d(toutcs.T) fillval_locations = np.all(cdf_epoch_time_tt2000 == [1707, 9, 22, 12, 12, 10, 961, 224, 192], axis=1) cdf_epoch_time_tt2000[fillval_locations] = [9999, 12, 31, 23, 59, 59, 999, 999, 999] padval_locations = np.all(cdf_epoch_time_tt2000 == [1707, 9, 22, 12, 12, 10, 961, 224, 193], axis=1) cdf_epoch_time_tt2000[padval_locations] = [0, 1, 1, 0, 0, 0, 0, 0, 0] return np.squeeze(cdf_epoch_time_tt2000) @staticmethod def compute_tt2000(datetimes: npt.ArrayLike) -> Union[int, npt.NDArray[np.int64]]: if not isinstance(datetimes, (list, tuple, np.ndarray)): raise TypeError("datetime must be in list form") new_datetimes = np.atleast_2d(datetimes) count = len(new_datetimes) nanoSecSinceJ2000s = [] for x in range(count): datetime = new_datetimes[x] year = int(datetime[0]) month = int(datetime[1]) items = len(datetime) if items > 8: # y m d h m s ms us ns day = int(datetime[2]) hour = int(datetime[3]) minute = int(datetime[4]) second = int(datetime[5]) msec = int(datetime[6]) usec = int(datetime[7]) nsec = int(datetime[8]) elif items > 7: # y m d h m s ms us day = int(datetime[2]) hour = int(datetime[3]) minute = int(datetime[4]) second = int(datetime[5]) msec = int(datetime[6]) usec = int(datetime[7]) nsec = int(1000.0 * (datetime[7] - usec)) elif items > 6: # y m d h m s ms day = int(datetime[2]) hour = int(datetime[3]) minute = int(datetime[4]) second = int(datetime[5]) msec = int(datetime[6]) xxx = float(1000.0 * (datetime[6] - msec)) usec = int(xxx) nsec = int(1000.0 * (xxx - usec)) elif items > 5: # y m d h m s day = int(datetime[2]) hour = int(datetime[3]) minute = int(datetime[4]) second = int(datetime[5]) xxx = float(1000.0 * (datetime[5] - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) nsec = int(1000.0 * (xxx - usec)) elif items > 4: # y m d h m day = int(datetime[2]) hour = int(datetime[3]) minute = int(datetime[4]) xxx = float(60.0 * (datetime[4] - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) nsec = int(1000.0 * (xxx - usec)) elif items > 3: # y m d h day = int(datetime[2]) hour = int(datetime[3]) xxx = float(60.0 * (datetime[3] - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) nsec = int(1000.0 * (xxx - usec)) elif items > 2: # y m d day = int(datetime[2]) xxx = float(24.0 * (datetime[2] - day)) hour = int(xxx) xxx = float(60.0 * (xxx - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) nsec = int(1000.0 * (xxx - usec)) else: raise ValueError("Invalid tt2000 components") if month == 0: month = 1 if ( year == 9999 and month == 12 and day == 31 and hour == 23 and minute == 59 and second == 59 and msec == 999 and usec == 999 and nsec == 999 ): nanoSecSinceJ2000 = CDFepoch.FILLED_TT2000_VALUE elif ( year == 0 and month == 1 and day == 1 and hour == 0 and minute == 0 and second == 0 and msec == 0 and usec == 0 and nsec == 0 ): nanoSecSinceJ2000 = CDFepoch.DEFAULT_TT2000_PADVALUE else: iy = 10000000 * month + 10000 * day + year if iy != CDFepoch.currentDay: CDFepoch.currentDay = iy CDFepoch.currentLeapSeconds = CDFepoch._LeapSecondsfromYMD(year, month, day) CDFepoch.currentJDay = CDFepoch._JulianDay(year, month, day) jd = CDFepoch.currentJDay jd = jd - CDFepoch.JulianDateJ2000_12h subDayinNanoSecs = int( hour * CDFepoch.HOURinNanoSecs + minute * CDFepoch.MINUTEinNanoSecs + second * CDFepoch.SECinNanoSecs + msec * 1000000 + usec * 1000 + nsec ) nanoSecSinceJ2000 = int(jd * CDFepoch.DAYinNanoSecs + subDayinNanoSecs) t2 = int(CDFepoch.currentLeapSeconds * CDFepoch.SECinNanoSecs) if nanoSecSinceJ2000 < 0: nanoSecSinceJ2000 = int(nanoSecSinceJ2000 + t2) nanoSecSinceJ2000 = int(nanoSecSinceJ2000 + CDFepoch.dTinNanoSecs) nanoSecSinceJ2000 = int(nanoSecSinceJ2000 - CDFepoch.T12hinNanoSecs) else: nanoSecSinceJ2000 = int(nanoSecSinceJ2000 - CDFepoch.T12hinNanoSecs) nanoSecSinceJ2000 = int(nanoSecSinceJ2000 + t2) nanoSecSinceJ2000 = int(nanoSecSinceJ2000 + CDFepoch.dTinNanoSecs) nanoSecSinceJ2000s.append(int(nanoSecSinceJ2000)) return np.squeeze(nanoSecSinceJ2000s) @staticmethod def _LeapSecondsfromYMD(year: int, month: int, day: int) -> float: j = -1 m = 12 * year + month for i, _ in reversed(list(enumerate(CDFepoch.LTS))): n = 12 * CDFepoch.LTS[i][0] + CDFepoch.LTS[i][1] if m >= n: j = i break if j == -1: return 0 da = CDFepoch.LTS[j][3] # pre-1972 if j < CDFepoch.NERA1: jda = CDFepoch._JulianDay(year, month, day) da = da + ((jda - CDFepoch.MJDbase) - CDFepoch.LTS[j][4]) * CDFepoch.LTS[j][5] return da @staticmethod def _LeapSecondsfromJ2000(nanosecs: npt.ArrayLike) -> npt.NDArray: nanosecs = np.atleast_1d(nanosecs) da = np.zeros((nanosecs.size, 2)) j = -1 * np.ones(nanosecs.size, dtype=int) if CDFepoch.NST is None: CDFepoch._LoadLeapNanoSecondsTable() for i, _ in reversed(list(enumerate(CDFepoch.NST))): idxs = (j == -1) & (nanosecs >= CDFepoch.NST[i]) j[idxs] = i if i < (CDFepoch.NDAT - 1): overflow = nanosecs + 1000000000 >= CDFepoch.NST[i + 1] da[overflow, 1] = 1.0 if np.all(j > 0): break LTS = np.array(CDFepoch.LTS) da[:, 0] = LTS[j, 3] da[j <= CDFepoch.NERA1, 0] = 0 return da @staticmethod def _LoadLeapNanoSecondsTable() -> None: CDFepoch.NST = [] for ix in range(0, CDFepoch.NERA1): CDFepoch.NST.append(CDFepoch.FILLED_TT2000_VALUE) for ix in range(CDFepoch.NERA1, CDFepoch.NDAT): CDFepoch.NST.append( int( CDFepoch.compute_tt2000( [int(CDFepoch.LTS[ix][0]), int(CDFepoch.LTS[ix][1]), int(CDFepoch.LTS[ix][2]), 0, 0, 0, 0, 0, 0] ) ) ) @staticmethod def _EPOCHbreakdownTT2000(epoch: npt.ArrayLike) -> npt.NDArray: epoch = np.atleast_1d(epoch) minute_AD, second_AD = np.divmod(epoch, 60) hour_AD, minute_AD = np.divmod(minute_AD, 60) day_AD, hour_AD = np.divmod(hour_AD, 24) # minute_AD = second_AD / 60.0 # hour_AD = minute_AD / 60.0 # day_AD = hour_AD / 24.0 l = 1721060 + 68569 + day_AD n = (4 * l / 146097).astype(int) l = l - ((146097 * n + 3) / 4).astype(int) i = (4000 * (l + 1) / 1461001).astype(int) l = l - (1461 * i / 4).astype(int) + 31 j = (80 * l / 2447).astype(int) k = l - (2447 * j / 80).astype(int) l = (j / 11).astype(int) j = j + 2 - 12 * l i = 100 * (n - 49) + i + l date = np.array([i, j, k, hour_AD, minute_AD, second_AD]) return date @staticmethod def epochrange_tt2000( epochs: cdf_tt2000_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> npt.NDArray: if isinstance(epochs, int) or isinstance(epochs, np.int64): pass elif isinstance(epochs, list) or isinstance(epochs, tuple) or isinstance(epochs, np.ndarray): if isinstance(epochs[0], int) or isinstance(epochs[0], np.int64): pass else: raise ValueError("Bad data") else: raise ValueError("Bad data") stime: Union[int, np.int64] if starttime is None: stime = int(-9223372036854775807) else: if isinstance(starttime, int) or isinstance(starttime, np.int64): stime = starttime elif isinstance(starttime, list): stime = int(CDFepoch.compute_tt2000(starttime)) else: raise ValueError("Bad start time") if endtime is not None: if isinstance(endtime, int) or isinstance(endtime, np.int64): etime = endtime elif isinstance(endtime, list) or isinstance(endtime, tuple): etime = int(CDFepoch.compute_tt2000(endtime)) else: raise ValueError("Bad end time") else: etime = int(9223372036854775807) if stime > etime: raise ValueError("Invalid start/end time") new_epochs = np.array(epochs) return np.where(np.logical_and(new_epochs >= stime, new_epochs <= etime))[0] @staticmethod def encode_epoch16(epochs: cdf_epoch16_type, iso_8601: bool = True) -> encoded_type: new_epochs = np.atleast_1d(epochs) count = len(new_epochs) encodeds = [] for x in range(count): # complex if (new_epochs[x].real == -1.0e31) and (new_epochs[x].imag == -1.0e31): if iso_8601: encoded = "9999-12-31T23:59:59.999999999999" else: encoded = "31-Dec-9999 23:59:59.999.999.999.999" else: encoded = CDFepoch._encodex_epoch16(new_epochs[x], iso_8601) if count == 1: return encoded else: encodeds.append(encoded) return encodeds @staticmethod def _encodex_epoch16(epoch16: cdf_epoch16_type, iso_8601: bool = True) -> str: components = CDFepoch.breakdown_epoch16(epoch16) if iso_8601: # year-mm-ddThh:mm:ss.mmmuuunnnppp encoded = str(components[0]).zfill(4) encoded += "-" encoded += str(components[1]).zfill(2) encoded += "-" encoded += str(components[2]).zfill(2) encoded += "T" encoded += str(components[3]).zfill(2) encoded += ":" encoded += str(components[4]).zfill(2) encoded += ":" encoded += str(components[5]).zfill(2) encoded += "." encoded += str(components[6]).zfill(3) encoded += str(components[7]).zfill(3) encoded += str(components[8]).zfill(3) encoded += str(components[9]).zfill(3) else: # dd-mmm-year hh:mm:ss.mmm.uuu.nnn.ppp encoded = str(components[2]).zfill(2) encoded += "-" encoded += CDFepoch.month_Token[components[1] - 1] encoded += "-" encoded += str(components[0]).zfill(4) encoded += " " encoded += str(components[3]).zfill(2) encoded += ":" encoded += str(components[4]).zfill(2) encoded += ":" encoded += str(components[5]).zfill(2) encoded += "." encoded += str(components[6]).zfill(3) encoded += "." encoded += str(components[7]).zfill(3) encoded += "." encoded += str(components[8]).zfill(3) encoded += "." encoded += str(components[9]).zfill(3) return encoded @staticmethod def _JulianDay(y: int, m: int, d: int) -> int: a1 = int(7 * (int(y + int((m + 9) / 12))) / 4) a2 = int(3 * (int(int(y + int((m - 9) / 7)) / 100) + 1) / 4) a3 = int(275 * m / 9) return 367 * y - a1 - a2 + a3 + d + 1721029 @staticmethod def compute_epoch16(datetimes: npt.ArrayLike) -> Union[complex, npt.NDArray[np.complex128]]: new_dates = np.atleast_2d(datetimes) count = len(new_dates) epochs = [] for x in range(count): epoch = [] date = new_dates[x] items = len(date) year = date[0] month = date[1] xxx: Union[float, int] = 0 if items > 9: # y m d h m s ms us ns ps day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(date[6]) usec = int(date[7]) nsec = int(date[8]) psec = int(date[9]) elif items > 8: # y m d h m s ms us ns day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(date[6]) usec = int(date[7]) nsec = int(date[8]) psec = int(1000.0 * (date[8] - nsec)) elif items > 7: # y m d h m s ms us day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(date[6]) usec = int(date[7]) xxx = int(1000.0 * (date[7] - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) elif items > 6: # y m d h m s ms day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(date[6]) xxx = float(1000.0 * (date[6] - msec)) usec = int(xxx) xxx = int(1000.0 * (xxx - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) elif items > 5: # y m d h m s day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) xxx = float(1000.0 * (date[5] - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) xxx = int(1000.0 * (xxx - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) elif items > 4: # y m d h m day = int(date[2]) hour = int(date[3]) minute = int(date[4]) xxx = float(60.0 * (date[4] - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) xxx = int(1000.0 * (xxx - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) elif items > 3: # y m d h day = int(date[2]) hour = int(date[3]) xxx = float(60.0 * (date[3] - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) xxx = int(1000.0 * (xxx - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) elif items > 2: # y m d day = int(date[2]) xxx = float(24.0 * (date[2] - day)) hour = int(xxx) xxx = float(60.0 * (xxx - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) xxx = float(1000.0 * (xxx - second)) msec = int(xxx) xxx = float(1000.0 * (xxx - msec)) usec = int(xxx) xxx = int(1000.0 * (xxx - usec)) nsec = int(xxx) psec = int(1000.0 * (xxx - nsec)) else: raise ValueError("Invalid epoch16 components") if year < 0: raise ValueError("Illegal epoch field") if ( year == 9999 and month == 12 and day == 31 and hour == 23 and minute == 59 and second == 59 and msec == 999 and usec == 999 and nsec == 999 and psec == 999 ): epoch.append(-1.0e31) epoch.append(-1.0e31) elif ( (year > 9999) or (month < 0 or month > 12) or (hour < 0 or hour > 23) or (minute < 0 or minute > 59) or (second < 0 or second > 59) or (msec < 0 or msec > 999) or (usec < 0 or usec > 999) or (nsec < 0 or nsec > 999) or (psec < 0 or psec > 999) ): epoch = CDFepoch._computeEpoch16(year, month, day, hour, minute, second, msec, usec, nsec, psec) else: if month == 0: if day < 1 or day > 366: epoch = CDFepoch._computeEpoch16(year, month, day, hour, minute, second, msec, usec, nsec, psec) else: if day < 1 or day > 31: epoch = CDFepoch._computeEpoch16(year, month, day, hour, minute, second, msec, usec, nsec, psec) if month == 0: daysSince0AD = CDFepoch._JulianDay(year, 1, 1) + (day - 1) - 1721060 else: daysSince0AD = CDFepoch._JulianDay(year, month, day) - 1721060 secInDay = (3600 * hour) + (60 * minute) + second epoch16_0 = float(86400.0 * daysSince0AD) + float(secInDay) epoch16_1 = float(psec) + float(1000.0 * nsec) + float(1000000.0 * usec) + float(1000000000.0 * msec) epoch.append(epoch16_0) epoch.append(epoch16_1) cepoch = complex(epoch[0], epoch[1]) epochs.append(cepoch) return _squeeze_or_scalar_complex(epochs) @staticmethod def _calc_from_julian(epoch0: npt.ArrayLike, epoch1: npt.ArrayLike) -> npt.NDArray: """Calculate the date and time from epoch input Parameters ---------- epoch0 : int, float, array-like First element of an epoch array (epoch time in seconds) epoch1 : float, array-like Second element of an epoch array (epoch time in picoseconds) Returns ------- out : array-like Array of 10 integers (year, month, day, hour, minute, second, millisecond, microsecond, nanosecond, picosecond) if a single value is input. For array input, the shape is altered by adding another axis of length 10 (holding the same values). """ # Cast input as an array for consistent handling of scalars and lists second_ce = np.asarray(epoch0) # Determine epoch minutes, hours, and days minute_ce = second_ce / 60.0 hour_ce = minute_ce / 60.0 day_ce = hour_ce / 24.0 # Calculate the juian day, using integer rounding jd = (1721060 + day_ce).astype(int) l = jd + 68569 n = (4 * l / 146097).astype(int) l = l - ((146097 * n + 3) / 4).astype(int) i = (4000 * (l + 1) / 1461001).astype(int) l += 31 - (1461 * i / 4).astype(int) j = (80 * l / 2447).astype(int) dy = l - (2447 * j / 80).astype(int) # Continue to get month and year l = (j / 11).astype(int) mo = j + 2 - 12 * l yr = 100 * (n - 49) + i + l # Finish calculating the epoch hours, minutes, and seconds hr = (hour_ce % 24.0).astype(int) mn = (minute_ce % 60.0).astype(int) sc = (second_ce % 60.0).astype(int) # Get the fractional seconds msec = np.asarray(epoch1) ps = (msec % 1000.0).astype(int) msec = msec / 1000.0 ns = (msec % 1000.0).astype(int) msec = msec / 1000.0 mus = (msec % 1000.0).astype(int) msec = msec / 1000.0 ms = msec.astype(int) # Recast the output as integers or lists if second_ce.shape == (): out = np.array([int(yr), int(mo), int(dy), int(hr), int(mn), int(sc), int(ms), int(mus), int(ns), int(ps)]) else: out = np.array([yr, mo, dy, hr, mn, sc, ms, mus, ns, ps]).transpose() return out @staticmethod def breakdown_epoch16(epochs: cdf_epoch16_type) -> npt.NDArray: """ Calculate date and time from epochs Parameters ---------- epochs : array-like Single, list, tuple, or np.array of epoch values Returns ------- components : ndarray List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, millisecond, microsecond, nanosecond, and picosecond Notes ----- If a bad epoch (-1.0e31 for the real and imaginary components) is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms, 999 us, 999 ns, and 999 ps is returned """ if isinstance(epochs, (complex, np.complex128)) or isinstance(epochs, (list, tuple, np.ndarray)): new_epochs = np.asarray(epochs) if new_epochs.shape == (): cshape = [] new_epochs = np.array([epochs]) else: cshape = list(new_epochs.shape) else: raise TypeError("Bad data for epochs: {:}".format(type(epochs))) cshape.append(10) components = np.full(shape=cshape, fill_value=[9999, 12, 31, 23, 59, 59, 999, 999, 999, 999]) for i, epoch16 in enumerate(new_epochs): # Ignore fill values if (epoch16.real != -1.0e31) or (epoch16.imag != -1.0e31) or np.isnan(epoch16): if (epoch16.imag == -1.0e30) or (epoch16.imag == -1.0e30): components[i] = [0, 1, 1, 0, 0, 0, 0, 0, 0, 0] continue esec = -epoch16.real if epoch16.real < 0.0 else epoch16.real efra = -epoch16.imag if epoch16.imag < 0.0 else epoch16.imag if len(components.shape) == 1: components = CDFepoch._calc_from_julian(esec, efra) else: components[i] = CDFepoch._calc_from_julian(esec, efra) return components @staticmethod def _computeEpoch16(y: int, m: int, d: int, h: int, mn: int, s: int, ms: int, msu: int, msn: int, msp: int) -> List[float]: if m == 0: daysSince0AD = CDFepoch._JulianDay(y, 1, 1) + (d - 1) - 1721060 else: if m < 0: y = y - 1 m = 13 + m daysSince0AD = CDFepoch._JulianDay(y, m, d) - 1721060 if daysSince0AD < 0: raise ValueError("Illegal epoch") epoch = [] epoch.append(float(86400.0 * daysSince0AD + 3600.0 * h + 60.0 * mn) + float(s)) epoch.append(float(msp) + float(1000.0 * msn) + float(1000000.0 * msu) + math.pow(10.0, 9) * ms) if epoch[1] < 0.0 or epoch[1] >= math.pow(10.0, 12): if epoch[1] < 0.0: sec = int(epoch[1] / math.pow(10.0, 12)) tmp = epoch[1] - sec * math.pow(10.0, 12) if tmp != 0.0 and tmp != -0.0: epoch[0] = epoch[0] + sec - 1 epoch[1] = math.pow(10.0, 12.0) + tmp else: epoch[0] = epoch[0] + sec epoch[1] = 0.0 else: sec = int(epoch[1] / math.pow(10.0, 12)) tmp = epoch[1] - sec * math.pow(10.0, 12) if tmp != 0.0 and tmp != -0.0: epoch[1] = tmp epoch[0] = epoch[0] + sec else: epoch[1] = 0.0 epoch[0] = epoch[0] + sec if epoch[0] < 0.0: raise ValueError("Illegal epoch") else: return epoch @staticmethod def epochrange_epoch16( epochs: cdf_epoch16_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> Optional[np.ndarray]: new_epochs = np.atleast_1d(epochs) stime: Tuple[Union[float, np.float64], Union[float, np.float64]] etime: Tuple[Union[float, np.float64], Union[float, np.float64]] if starttime is None: stime = (-1.0e31, -1.0e31) else: if isinstance(starttime, complex) or isinstance(starttime, np.complex128): stime = (starttime.real, starttime.imag) elif isinstance(starttime, list): sstime = complex(CDFepoch.compute_epoch16(starttime)) stime = (sstime.real, sstime.imag) else: raise ValueError("Bad start time") if endtime is not None: if isinstance(endtime, complex) or isinstance(endtime, np.complex128): etime = (endtime.real, endtime.imag) elif isinstance(endtime, list): eetime = complex(CDFepoch.compute_epoch16(endtime)) etime = (eetime.real, eetime.imag) else: raise ValueError("Bad start time") else: etime = (1.0e31, 1.0e31) if stime[0] > etime[0] or (stime[0] == etime[0] and stime[1] > etime[1]): raise ValueError("Invalid start/end time") count = len(new_epochs) epoch16 = [] for x in range(0, count): epoch16.append(new_epochs[x].real) epoch16.append(new_epochs[x].imag) count = count * 2 indx = [] if epoch16[0] > etime[0] or (epoch16[0] == etime[0] and epoch16[1] > etime[1]): return None if epoch16[count - 2] < stime[0] or (epoch16[count - 2] == stime[0] and epoch16[count - 1] < stime[1]): return None for x in range(0, count, 2): if epoch16[x] < stime[0]: continue elif epoch16[x] == stime[0]: if epoch16[x + 1] < stime[1]: continue else: indx.append(int(x / 2)) break else: indx.append(int(x / 2)) break if len(indx) == 0: indx.append(0) hasadded = False for x in range(0, count, 2): if epoch16[x] < etime[0]: continue elif epoch16[x] == etime[0]: if epoch16[x + 1] > etime[1]: indx.append(int((x - 1) / 2)) hasadded = True break else: indx.append(int((x - 1) / 2)) hasadded = True break if not hasadded: indx.append(int(count / 2) - 1) return np.arange(indx[0], indx[1] + 1, step=1) @staticmethod def encode_epoch(epochs: cdf_epoch_type, iso_8601: bool = True) -> encoded_type: new_epochs = np.atleast_1d(epochs) count = len(new_epochs) encodeds = [] for x in range(0, count): epoch = new_epochs[x] if epoch == -1.0e31: if iso_8601: encoded = "9999-12-31T23:59:59.999" else: encoded = "31-Dec-9999 23:59:59.999" else: encoded = CDFepoch._encodex_epoch(epoch, iso_8601) if count == 1: return encoded encodeds.append(encoded) return encodeds @staticmethod def _encodex_epoch(epoch: cdf_epoch_type, iso_8601: bool = True) -> str: components = CDFepoch.breakdown_epoch(epoch) if iso_8601: # year-mm-ddThh:mm:ss.mmm encoded = str(components[0]).zfill(4) encoded += "-" encoded += str(components[1]).zfill(2) encoded += "-" encoded += str(components[2]).zfill(2) encoded += "T" encoded += str(components[3]).zfill(2) encoded += ":" encoded += str(components[4]).zfill(2) encoded += ":" encoded += str(components[5]).zfill(2) encoded += "." encoded += str(components[6]).zfill(3) else: # dd-mmm-year hh:mm:ss.mmm encoded = str(components[2]).zfill(2) encoded += "-" encoded += CDFepoch.month_Token[components[1] - 1] encoded += "-" encoded += str(components[0]).zfill(4) encoded += " " encoded += str(components[3]).zfill(2) encoded += ":" encoded += str(components[4]).zfill(2) encoded += ":" encoded += str(components[5]).zfill(2) encoded += "." encoded += str(components[6]).zfill(3) return encoded @staticmethod def compute_epoch(dates: npt.ArrayLike) -> Union[float, npt.NDArray]: # TODO Add docstring. What is the output format? new_dates = np.atleast_2d(dates) count = new_dates.shape[0] epochs = [] for x in range(0, count): date = new_dates[x] year = date[0] month = date[1] items = len(date) if items > 6: # y m d h m s ms day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(date[6]) elif items > 5: # y m d h m s day = int(date[2]) hour = int(date[3]) minute = int(date[4]) second = int(date[5]) msec = int(1000.0 * (date[5] - second)) elif items > 4: # y m d h m day = int(date[2]) hour = int(date[3]) minute = int(date[4]) xxx = float(60.0 * (date[4] - minute)) second = int(xxx) msec = int(1000.0 * (xxx - second)) elif items > 3: # y m d h day = int(date[2]) hour = int(date[3]) xxx = float(60.0 * (date[3] - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) msec = int(1000.0 * (xxx - second)) elif items > 2: # y m d day = int(date[2]) xxx = float(24.0 * (date[2] - day)) hour = int(xxx) xxx = float(60.0 * (xxx - hour)) minute = int(xxx) xxx = float(60.0 * (xxx - minute)) second = int(xxx) msec = int(1000.0 * (xxx - second)) else: raise ValueError("Invalid epoch components") if year == 9999 and month == 12 and day == 31 and hour == 23 and minute == 59 and second == 59 and msec == 999: epochs.append(-1.0e31) if year < 0: raise ValueError("ILLEGAL_EPOCH_FIELD") if ( (year > 9999) or (month < 0 or month > 12) or (hour < 0 or hour > 23) or (minute < 0 or minute > 59) or (second < 0 or second > 59) or (msec < 0 or msec > 999) ): epochs.append(CDFepoch._computeEpoch(year, month, day, hour, minute, second, msec)) if month == 0: if day < 1 or day > 366: epochs.append(CDFepoch._computeEpoch(year, month, day, hour, minute, second, msec)) else: if day < 1 or day > 31: epochs.append(CDFepoch._computeEpoch(year, month, day, hour, minute, second, msec)) if hour == 0 and minute == 0 and second == 0: if msec < 0 or msec > 86399999: epochs.append(CDFepoch._computeEpoch(year, month, day, hour, minute, second, msec)) if month == 0: daysSince0AD = CDFepoch._JulianDay(year, 1, 1) + (day - 1) - 1721060 else: daysSince0AD = CDFepoch._JulianDay(year, month, day) - 1721060 if hour == 0 and minute == 0 and second == 0: msecInDay = msec else: msecInDay = (3600000 * hour) + (60000 * minute) + (1000 * second) + msec if count == 1: return np.array(86400000.0 * daysSince0AD + msecInDay) epochs.append(86400000.0 * daysSince0AD + msecInDay) return _squeeze_or_scalar_real(epochs) @staticmethod def _computeEpoch(y: int, m: int, d: int, h: int, mn: int, s: int, ms: int) -> float: if m == 0: daysSince0AD = CDFepoch._JulianDay(y, 1, 1) + (d - 1) - 1721060 else: if m < 0: --y m = 13 + m daysSince0AD = CDFepoch._JulianDay(y, m, d) - 1721060 if daysSince0AD < 1: raise ValueError("ILLEGAL_EPOCH_FIELD") msecInDay = float(3600000.0 * h + 60000.0 * mn + 1000.0 * s) + float(ms) msecFromEpoch = float(86400000.0 * daysSince0AD + msecInDay) if msecFromEpoch < 0.0: return -1.0 else: return msecFromEpoch @staticmethod def breakdown_epoch(epochs: cdf_epoch_type) -> np.ndarray: """Calculate date and time from epochs Parameters ---------- epochs : int, float, or array-like Single, list, tuple, or np.array of epoch values Returns ------- components : list List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, and millisecond Notes ----- If a bad epoch (-1.0e31) is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms is returned. """ # Test input and cast it as an array of floats if ( isinstance(epochs, float) or isinstance(epochs, np.float64) or isinstance(epochs, list) or isinstance(epochs, tuple) or isinstance(epochs, np.ndarray) or isinstance(epochs, int) ): new_epochs = np.asarray(epochs).astype(float) if new_epochs.shape == (): cshape = [] new_epochs = np.array([epochs], dtype=float) else: cshape = list(new_epochs.shape) else: raise TypeError("Bad data for epochs: {:}".format(type(epochs))) # Initialize output to default values cshape.append(7) components = np.full(shape=cshape, fill_value=[9999, 12, 31, 23, 59, 59, 999]) for i, epoch in enumerate(new_epochs): # Ignore fill values and NaNs if (epoch != -1.0e31) and not np.isnan(epoch): esec = -epoch / 1000.0 if epoch < 0.0 else epoch / 1000.0 date_time = CDFepoch._calc_from_julian(esec, 0.0) ms = (epoch % 1000.0).astype(int) date_time[..., 6] = int(ms) if ms.shape == () else ms if len(components.shape) == 1: components = date_time[..., :7] else: components[i] = date_time[..., :7] elif epoch == 0: components[i] = [0, 1, 1, 0, 0, 0, 0] return np.squeeze(components) @staticmethod def epochrange_epoch( epochs: epoch_types, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> np.ndarray: if isinstance(epochs, (float, np.float64)): pass elif isinstance(epochs, (list, tuple, np.ndarray)): if isinstance(epochs[0], (float, np.float64)): pass else: raise TypeError("Bad data") else: raise TypeError("Bad data") stime: Union[float, np.float64] if starttime is None: stime = 0.0 else: if isinstance(starttime, (float, int, np.float64)): stime = starttime elif isinstance(starttime, (list, tuple)): stime = float(CDFepoch.compute_epoch(starttime)) else: raise TypeError("Bad start time") if endtime is not None: if isinstance(endtime, (float, int, np.float64)): etime = endtime elif isinstance(endtime, (list, tuple)): etime = float(CDFepoch.compute_epoch(endtime)) else: raise TypeError("Bad end time") else: etime = 1.0e31 if stime > etime: raise ValueError("Invalid start/end time") new_epochs = np.array(epochs) return np.where(np.logical_and(new_epochs >= stime, new_epochs <= etime))[0] @staticmethod def parse(value: Union[str, Tuple[str, ...], List[str]]) -> np.ndarray: """ Parses the provided date/time string(s) into CDF epoch value(s). For CDF_EPOCH: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.xxx' or 'yyyy-mm-ddThh:mm:ss.xxx' (in iso_8601). The string is the output from encode function. For CDF_EPOCH16: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn.ppp' or 'yyyy-mm-ddThh:mm:ss.mmmuuunnnppp' (in iso_8601). The string is the output from encode function. For TT2000: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn' or 'yyyy-mm-ddThh:mm:ss.mmmuuunnn' (in iso_8601). The string is the output from encode function. """ if isinstance(value, (list, tuple)) and not isinstance(value[0], str): raise TypeError("should be a string or a list of string") elif not isinstance(value, (list, tuple, str)): raise TypeError("Invalid value... should be a string or a list of string") else: if isinstance(value, (list, tuple)): num = len(value) epochs = [] for x in range(num): epochs.append(CDFepoch._parse_epoch(value[x])) return np.squeeze(epochs) else: return np.squeeze(CDFepoch._parse_epoch(value)) @staticmethod def _parse_epoch(value: str) -> Union[int, float, complex]: if len(value) in (23, 24): # CDF_EPOCH if value.lower() in ("31-dec-9999 23:59:59.999", "9999-12-31t23:59:59.999"): return -1.0e31 else: if len(value) == 24: date = re.findall(r"(\d+)\-(.+)\-(\d+) (\d+)\:(\d+)\:(\d+)\.(\d+)", value) dd = int(date[0][0]) mm = CDFepoch._month_index(date[0][1]) yy = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) ms = int(date[0][6]) else: date = re.findall(r"(\d+)\-(\d+)\-(\d+)T(\d+)\:(\d+)\:(\d+)\.(\d+)", value) yy = int(date[0][0]) mm = int(date[0][1]) dd = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) ms = int(date[0][6]) return float(CDFepoch.compute_epoch([yy, mm, dd, hh, mn, ss, ms])) elif len(value) == 36 or (len(value) == 32 and value[10].lower() == "t"): # CDF_EPOCH16 if value.lower() in ("31-dec-9999 23:59:59.999.999.999.999", "9999-12-31t23:59:59.999999999999"): return -1.0e31 - 1.0e31j else: if len(value) == 36: date = re.findall(r"(\d+)\-(.+)\-(\d+) (\d+)\:(\d+)\:(\d+)\.(\d+)\.(\d+)\.(\d+)\.(\d+)", value) dd = int(date[0][0]) mm = CDFepoch._month_index(date[0][1]) yy = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) ms = int(date[0][6]) us = int(date[0][7]) ns = int(date[0][8]) ps = int(date[0][9]) else: date = re.findall(r"(\d+)\-(\d+)\-(\d+)T(\d+)\:(\d+)\:(\d+)\.(\d+)", value) yy = int(date[0][0]) mm = int(date[0][1]) dd = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) subs = int(date[0][6]) ms = int(subs / 1000000000) subms = int(subs % 1000000000) us = int(subms / 1000000) subus = int(subms % 1000000) ns = int(subus / 1000) ps = int(subus % 1000) return complex(CDFepoch.compute_epoch16([yy, mm, dd, hh, mn, ss, ms, us, ns, ps])) elif len(value) == 29 or (len(value) == 32 and value[11] == " "): # CDF_TIME_TT2000 value = value.lower() if value == "9999-12-31t23:59:59.999999999" or value == "31-dec-9999 23:59:59.999.999.999": return -9223372036854775808 elif value == "0000-01-01t00:00.000000000" or value == "01-jan-0000 00:00.000.000.000": return -9223372036854775807 else: if len(value) == 29: date = re.findall(r"(\d+)\-(\d+)\-(\d+)t(\d+)\:(\d+)\:(\d+)\.(\d+)", value) yy = int(date[0][0]) mm = int(date[0][1]) dd = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) subs = int(date[0][6]) ms = int(subs / 1000000) subms = int(subs % 1000000) us = int(subms / 1000) ns = int(subms % 1000) else: date = re.findall(r"(\d+)\-(.+)\-(\d+) (\d+)\:(\d+)\:(\d+)\.(\d+)\.(\d+)\.(\d+)", value) dd = int(date[0][0]) mm = CDFepoch._month_index(date[0][1]) yy = int(date[0][2]) hh = int(date[0][3]) mn = int(date[0][4]) ss = int(date[0][5]) ms = int(date[0][6]) us = int(date[0][7]) ns = int(date[0][8]) return int(CDFepoch.compute_tt2000([yy, mm, dd, hh, mn, ss, ms, us, ns])) else: raise ValueError("Invalid cdf epoch type...") @staticmethod def _month_index(month: str) -> int: if month.lower() == "jan": return 1 elif month.lower() == "feb": return 2 elif month.lower() == "mar": return 3 elif month.lower() == "apr": return 4 elif month.lower() == "may": return 5 elif month.lower() == "jun": return 6 elif month.lower() == "jul": return 7 elif month.lower() == "aug": return 8 elif month.lower() == "sep": return 9 elif month.lower() == "oct": return 10 elif month.lower() == "nov": return 11 elif month.lower() == "dec": return 12 else: return -1
class CDFepoch: ''' Convert between CDF-based epochs, np.datetime64, and Unix time. There are three (3) epoch data types in CDF: 1. CDF_EPOCH is milliseconds since Year 0 represented as a single double (float in Python), 2. CDF_EPOCH16 is picoseconds since Year 0 represented as 2-doubles (complex in Python), and 3. CDF_TIME_TT2000 (TT2000 as short) is nanoseconds since J2000 with leap seconds, represented by an 8-byte integer (int in Python). In Numpy, they are np.float64, np.complex128 and np.int64, respectively. All these epoch values can come from from CDF.varget function. Example ------- >>> import cdflib # Convert to an epoch >>> epoch = cdflib.cdfepoch.compute_epoch([2017,1,1,1,1,1,111]) # Convert from an epoch >>> time = cdflib.cdfepoch.to_datetime(epoch) # Or pass epochs via CDF.varget. ''' @staticmethod def encode(epochs: epoch_types, iso_8601: bool = True) -> encoded_type: ''' Converts one or more epochs into UTC strings. The input epoch format is deduced from the argument type. Parameters ---------- epochs: int, float, list, complex One or more ECD epochs in one of three formats: 1. CDF_EPOCH: The input should be either a float or list of floats (in numpy, a np.float64 or a np.ndarray of np.float64) 2. CDF_EPOCH16: The input should be either a complex or list of complex(in numpy, a np.complex128 or a np.ndarray of np.complex128) 3. TT2000: The input should be either a int or list of ints (in numpy, a np.int64 or a np.ndarray of np.int64) iso_8601: bool The return time format. If ISO 8601 is True, the format is, for example, 2008-02-02T06:08:10.10.012014016, otherwise the format is 02-Feb-2008 06:08:10.012.014.016. ''' pass @staticmethod def breakdown(epochs: epoch_types) -> np.ndarray: ''' Returns ------- np.ndarray 1D if scalar input, 2D otherwise. ''' pass @staticmethod def _compose_date( nat_positions: npt.NDArray, years: npt.NDArray, months: npt.NDArray, days: npt.NDArray, hours: Optional[npt.NDArray] = None, minutes: Optional[npt.NDArray] = None, seconds: Optional[npt.NDArray] = None, milliseconds: Optional[npt.NDArray] = None, microseconds: Optional[npt.NDArray] = None, nanoseconds: Optional[npt.NDArray] = None, ) -> npt.NDArray[np.datetime64]: ''' Take date components and return a numpy datetime array. ''' pass @classmethod def to_datetime(cls, cdf_time: epoch_types) -> npt.NDArray[np.datetime64]: ''' Converts CDF epoch argument to numpy.datetime64. Parameters: cdf_time: NumPy scalar/arrays to convert. np.int64 will be converted to cdf_tt2000, np.complex128 will be converted to cdf_epoch16, and floats will be converted to cdf_epoch. Notes: Because of datetime64 limitations, CDF_EPOCH16 precision is only kept to the nearest nanosecond. ''' pass @staticmethod def unixtime(cdf_time: npt.ArrayLike) -> Union[float, npt.NDArray]: ''' Converts CDF epoch argument into seconds after 1970-01-01. This method converts a scalar, or array-like. Precision is only kept to the nearest microsecond. ''' pass @staticmethod def timestamp_to_cdfepoch(unixtime_data: npt.ArrayLike) -> np.ndarray: ''' Converts a unix timestamp to CDF_EPOCH, the number of milliseconds since the year 0. ''' pass @staticmethod def timestamp_to_cdfepoch16(unixtime_data: npt.ArrayLike) -> np.ndarray: ''' Converts a unix timestamp to CDF_EPOCH16 ''' pass @staticmethod def timestamp_to_tt2000(unixtime_data: npt.ArrayLike) -> np.ndarray: ''' Converts a unix timestamp to CDF_TIME_TT2000 ''' pass @staticmethod def compute(datetimes: npt.ArrayLike) -> Union[int, float, complex, npt.NDArray]: ''' Computes the provided date/time components into CDF epoch value(s). For CDF_EPOCH: For computing into CDF_EPOCH value, each date/time elements should have exactly seven (7) components, as year, month, day, hour, minute, second and millisecond, in a list. For example: [[2017,1,1,1,1,1,111],[2017,2,2,2,2,2,222]] Or, call function compute_epoch directly, instead, with at least three (3) first (up to seven) components. The last component, if not the 7th, can be a float that can have a fraction of the unit. For CDF_EPOCH16: They should have exactly ten (10) components, as year, month, day, hour, minute, second, millisecond, microsecond, nanosecond and picosecond, in a list. For example: [[2017,1,1,1,1,1,123,456,789,999],[2017,2,2,2,2,2,987,654,321,999]] Or, call function compute_epoch directly, instead, with at least three (3) first (up to ten) components. The last component, if not the 10th, can be a float that can have a fraction of the unit. For TT2000: Each TT2000 typed date/time should have exactly nine (9) components, as year, month, day, hour, minute, second, millisecond, microsecond, and nanosecond, in a list. For example: [[2017,1,1,1,1,1,123,456,789],[2017,2,2,2,2,2,987,654,321]] Or, call function compute_tt2000 directly, instead, with at least three (3) first (up to nine) components. The last component, if not the 9th, can be a float that can have a fraction of the unit. ''' pass @staticmethod def findepochrange( epochs: epochs_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> np.ndarray: ''' Finds the record range within the start and end time from values of a CDF epoch data type. It returns a list of record numbers. If the start time is not provided, then it is assumed to be the minimum possible value. If the end time is not provided, then the maximum possible value is assumed. The epoch is assumed to be in the chronological order. The start and end times should have the proper number of date/time components, corresponding to the epoch's data type. The start/end times should be in either be in epoch units, or in the list format described in "compute_epoch/epoch16/tt2000" section. ''' pass @staticmethod def encode_tt2000(tt2000: cdf_tt2000_type, iso_8601: bool = True) -> encoded_type: pass @staticmethod def breakdown_tt2000(tt2000: cdf_tt2000_type) -> np.ndarray: ''' Breaks down the epoch(s) into UTC components. Calculate date and time from cdf_time_tt2000 integers Parameters ---------- epochs : array-like Single, list, tuple, or np.array of tt2000 values Returns ------- components : ndarray List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, millisecond, microsecond, and nanosecond Notes ----- If a bad epoch is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms, 999 us, and 999 ns is returned. ''' pass @staticmethod def compute_tt2000(datetimes: npt.ArrayLike) -> Union[int, npt.NDArray[np.int64]]: pass @staticmethod def _LeapSecondsfromYMD(year: int, month: int, day: int) -> float: pass @staticmethod def _LeapSecondsfromJ2000(nanosecs: npt.ArrayLike) -> npt.NDArray: pass @staticmethod def _LoadLeapNanoSecondsTable() -> None: pass @staticmethod def _EPOCHbreakdownTT2000(epoch: npt.ArrayLike) -> npt.NDArray: pass @staticmethod def epochrange_tt2000( epochs: cdf_tt2000_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> npt.NDArray: pass @staticmethod def encode_epoch16(epochs: cdf_epoch16_type, iso_8601: bool = True) -> encoded_type: pass @staticmethod def _encodex_epoch16(epoch16: cdf_epoch16_type, iso_8601: bool = True) -> str: pass @staticmethod def _JulianDay(y: int, m: int, d: int) -> int: pass @staticmethod def compute_epoch16(datetimes: npt.ArrayLike) -> Union[complex, npt.NDArray[np.complex128]]: pass @staticmethod def _calc_from_julian(epoch0: npt.ArrayLike, epoch1: npt.ArrayLike) -> npt.NDArray: '''Calculate the date and time from epoch input Parameters ---------- epoch0 : int, float, array-like First element of an epoch array (epoch time in seconds) epoch1 : float, array-like Second element of an epoch array (epoch time in picoseconds) Returns ------- out : array-like Array of 10 integers (year, month, day, hour, minute, second, millisecond, microsecond, nanosecond, picosecond) if a single value is input. For array input, the shape is altered by adding another axis of length 10 (holding the same values). ''' pass @staticmethod def breakdown_epoch16(epochs: cdf_epoch16_type) -> npt.NDArray: ''' Calculate date and time from epochs Parameters ---------- epochs : array-like Single, list, tuple, or np.array of epoch values Returns ------- components : ndarray List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, millisecond, microsecond, nanosecond, and picosecond Notes ----- If a bad epoch (-1.0e31 for the real and imaginary components) is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms, 999 us, 999 ns, and 999 ps is returned ''' pass @staticmethod def _computeEpoch16(y: int, m: int, d: int, h: int, mn: int, s: int, ms: int, msu: int, msn: int, msp: int) -> List[float]: pass @staticmethod def epochrange_epoch16( epochs: cdf_epoch16_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> Optional[np.ndarray]: pass @staticmethod def encode_epoch16(epochs: cdf_epoch16_type, iso_8601: bool = True) -> encoded_type: pass @staticmethod def _encodex_epoch16(epoch16: cdf_epoch16_type, iso_8601: bool = True) -> str: pass @staticmethod def compute_epoch16(datetimes: npt.ArrayLike) -> Union[complex, npt.NDArray[np.complex128]]: pass @staticmethod def _computeEpoch16(y: int, m: int, d: int, h: int, mn: int, s: int, ms: int, msu: int, msn: int, msp: int) -> List[float]: pass @staticmethod def breakdown_epoch16(epochs: cdf_epoch16_type) -> npt.NDArray: '''Calculate date and time from epochs Parameters ---------- epochs : int, float, or array-like Single, list, tuple, or np.array of epoch values Returns ------- components : list List or array of date and time values. The last axis contains (in order): year, month, day, hour, minute, second, and millisecond Notes ----- If a bad epoch (-1.0e31) is supplied, a fill date of 9999-12-31 23:59:59 and 999 ms is returned. ''' pass @staticmethod def epochrange_epoch16( epochs: cdf_epoch16_type, starttime: Optional[epoch_types] = None, endtime: Optional[epoch_types] = None ) -> Optional[np.ndarray]: pass @staticmethod def parse(value: Union[str, Tuple[str, ...], List[str]]) -> np.ndarray: ''' Parses the provided date/time string(s) into CDF epoch value(s). For CDF_EPOCH: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.xxx' or 'yyyy-mm-ddThh:mm:ss.xxx' (in iso_8601). The string is the output from encode function. For CDF_EPOCH16: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn.ppp' or 'yyyy-mm-ddThh:mm:ss.mmmuuunnnppp' (in iso_8601). The string is the output from encode function. For TT2000: The string has to be in the form of 'dd-mmm-yyyy hh:mm:ss.mmm.uuu.nnn' or 'yyyy-mm-ddThh:mm:ss.mmmuuunnn' (in iso_8601). The string is the output from encode function. ''' pass @staticmethod def _parse_epoch(value: str) -> Union[int, float, complex]: pass @staticmethod def _month_index(month: str) -> int: pass
71
16
46
3
36
7
7
0.18
0
17
0
0
0
0
35
35
1,742
145
1,350
379
1,260
248
1,069
324
1,033
21
0
5
236
147,652
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.VDRInfo
class VDRInfo: """ Variable data record info. """ #: Name of the variable. Variable: str #: Variable number. Num: int #: Variable type: zVariable or rVariable. Var_Type: str #: Variable CDF data type. Data_Type: int Data_Type_Description: str #: Number of elements of the variable. Num_Elements: int #: Dimensionality of variable record. Num_Dims: int #: Shape of the variable record. Dim_Sizes: List[int] Sparse: str #: Maximum written variable number (0-based). Last_Rec: int #: Record variance. Rec_Vary: int #: Dimensional variance(s). Dim_Vary: Union[List[int], List[bool]] #: a doc Compress: int #: Padded value (if set). Pad: Optional[Union[str, np.ndarray]] = None #: Blocking factor (if variable is compressed). Block_Factor: Optional[int] = None
class VDRInfo: ''' Variable data record info. ''' pass
1
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
32
1
16
3
15
16
16
3
15
0
0
0
0
147,653
MAVENSDC/cdflib
cdflib/cdfwrite.py
cdflib.cdfwrite.CDF
class CDF: """ Creates an empty CDF file. Parameters ---------- path : The path name of the CDF (with or without .cdf extension) cdf_spec : dict The optional specification of the CDF file. The keys for the dictionary are: - ['Majority']: 'row_major' or 'column_major', or its corresponding value. The default is 'column_major'. - ['Encoding']: Data encoding scheme. See the CDF documentation about the valid values. Can be in string or its numeric corresponding value. The default is 'host', which will be determined when the script runs. - ['Checksum']: Whether to set the data validation upon file creation. The default is False. - ['rDim_sizes']: The dimensional sizes, applicable only to rVariables. - ['Compressed']: Whether to compress the CDF at the file level. A value of 0-9 or True/False, the default is 0/False. """ version = 3 release = 9 increment = 0 CDF_VAR_NAME_LEN256 = 256 CDF_ATTR_NAME_LEN256 = 256 CDF_COPYRIGHT_LEN = 256 # CDF_STATUSTEXT_LEN = 200 CDF_PATHNAME_LEN = 512 CDF_INT1 = 1 CDF_INT2 = 2 CDF_INT4 = 4 CDF_INT8 = 8 CDF_UINT1 = 11 CDF_UINT2 = 12 CDF_UINT4 = 14 CDF_REAL4 = 21 CDF_REAL8 = 22 CDF_EPOCH = 31 CDF_EPOCH16 = 32 CDF_TIME_TT2000 = 33 CDF_BYTE = 41 CDF_FLOAT = 44 CDF_DOUBLE = 45 CDF_CHAR = 51 CDF_UCHAR = 52 NETWORK_ENCODING = 1 SUN_ENCODING = 2 VAX_ENCODING = 3 DECSTATION_ENCODING = 4 SGi_ENCODING = 5 IBMPC_ENCODING = 6 IBMRS_ENCODING = 7 HOST_ENCODING = 8 PPC_ENCODING = 9 HP_ENCODING = 11 NeXT_ENCODING = 12 ALPHAOSF1_ENCODING = 13 ALPHAVMSd_ENCODING = 14 ALPHAVMSg_ENCODING = 15 ALPHAVMSi_ENCODING = 16 ARM_LITTLE_ENCODING = 17 ARM_BIG_ENCODING = 18 VARY = -1 NOVARY = 0 ROW_MAJOR = 1 COLUMN_MAJOR = 2 # SINGLE_FILE = 1 # MULTI_FILE = 2 NO_CHECKSUM = 0 MD5_CHECKSUM = 1 OTHER_CHECKSUM = 2 GLOBAL_SCOPE = 1 VARIABLE_SCOPE = 2 # NO_COMPRESSION = 0 # RLE_COMPRESSION = 1 # HUFF_COMPRESSION = 2 # AHUFF_COMPRESSION = 3 GZIP_COMPRESSION = 5 # RLE_OF_ZEROs = 0 # NO_SPARSEARRAYS = 0 NO_SPARSERECORDS = 0 PAD_SPARSERECORDS = 1 PREV_SPARSERECORDS = 2 V3magicNUMBER_1 = "cdf30001" V3magicNUMBER_2 = "0000ffff" V3magicNUMBER_2c = "cccc0001" CDR_ = 1 GDR_ = 2 rVDR_ = 3 ADR_ = 4 AgrEDR_ = 5 VXR_ = 6 VVR_ = 7 zVDR_ = 8 AzEDR_ = 9 CCR_ = 10 CPR_ = 11 SPR_ = 12 CVVR_ = 13 NUM_VXR_ENTRIES = 7 NUM_VXRlvl_ENTRIES = 3 UUIR_BASE_SIZE64 = 12 UIR_BASE_SIZE64 = 28 CDR_BASE_SIZE64 = 56 GDR_BASE_SIZE64 = 84 zVDR_BASE_SIZE64 = 88 + CDF_VAR_NAME_LEN256 rVDR_BASE_SIZE64 = 84 + CDF_VAR_NAME_LEN256 VXR_BASE_SIZE64 = 28 VVR_BASE_SIZE64 = 12 ADR_BASE_SIZE64 = 68 + CDF_ATTR_NAME_LEN256 AEDR_BASE_SIZE64 = 56 CCR_BASE_SIZE64 = 32 CPR_BASE_SIZE64 = 24 SPR_BASE_SIZE64 = 24 CVVR_BASE_SIZE64 = 24 # BLOCKING_BYTES = 131072 BLOCKING_BYTES = 65536 level = 0 def __init__(self, path: Union[str, Path], cdf_spec: Optional[Dict[str, Any]] = None, delete: bool = False): path = pathlib.Path(path).expanduser() major = 1 if cdf_spec is not None: major = cdf_spec.get("Majority", major) if isinstance(major, str): major = self._majority_token(major) encoding = cdf_spec.get("Encoding", 8) # default is host if isinstance(encoding, str): encoding = self._encoding_token(encoding) checksum = cdf_spec.get("Checksum", False) cdf_compression = cdf_spec.get("Compressed", 0) if isinstance(cdf_compression, int): if not 0 <= cdf_compression <= 9: cdf_compression = 0 else: cdf_compression = 6 if cdf_compression else 0 rdim_sizes: Optional[List[int]] = cdf_spec.get("rDim_sizes", None) num_rdim: int = len(rdim_sizes) if rdim_sizes is not None else 0 else: encoding = 8 checksum = False cdf_compression = 0 num_rdim = 0 rdim_sizes = None if major not in [1, 2]: raise RuntimeError(f"Bad major: {major}") osSystem = pf.system() osMachine = pf.uname()[5] if encoding == 8: if osSystem != "SunOS" or osMachine != "sparc": self._encoding = self.IBMPC_ENCODING else: self._encoding = self.SUN_ENCODING else: self._encoding = encoding if self._encoding == -1: raise OSError("Bad encoding.") if not isinstance(checksum, bool): raise ValueError("Bad checksum.") if path.suffix != ".cdf": path = path.with_suffix(".cdf") if len(str(path)) > self.CDF_PATHNAME_LEN: raise OSError("CDF:", path, " longer than allowed length.") if path.is_file(): if not delete: raise OSError("file: ", path, " already exists....\n", "Delete it or specify the 'delete=False' option.") else: path.unlink() self.path = path self.compressed_file = path.with_suffix(".tmp") if cdf_compression > 0 else None # Dictionary objects, these contains name, offset, and dimension information self.zvarsinfo: Dict[int, Tuple[str, int, int, List[int], List[bool]]] = {} self.rvarsinfo: Dict[int, Tuple[str, int, int, List[int], List[bool]]] = {} # Dictionary object, contains name, offset, and scope (global or variable) self.attrsinfo: Dict[int, Tuple[str, int, int]] = {} self.gattrs: List[str] = [] # List of global attributes self.vattrs: List[str] = [] # List of variable attributes self.attrs: List[str] = [] # List of ALL attributes self.zvars: List[str] = [] # List of z variable names self.rvars: List[str] = [] # List of r variable names self.checksum = checksum # Boolean, whether or not to include the checksum at the end self.compression = cdf_compression # Compression level (or True/False) self.num_rdim = num_rdim # Number of r dimensions self.rdim_sizes = rdim_sizes # Size of r dimensions self.majority = major with path.open("wb") as f: f.write(binascii.unhexlify(self.V3magicNUMBER_1)) f.write(binascii.unhexlify(self.V3magicNUMBER_2)) self.cdr_head = self._write_cdr(f, major, self._encoding, checksum) self.gdr_head = self._write_gdr(f) self.offset = f.tell() self.is_closed = False def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() return def close(self) -> None: """ Closes the CDF Class. 1. If compression was set, this is where the compressed file is written. 2. If a checksum is needed, this will place the checksum at the end of the file. """ if self.is_closed: return if self.compressed_file is None: with self.path.open("rb+") as f: f.seek(0, 2) eof = f.tell() self._update_offset_value(f, self.gdr_head + 36, 8, eof) if self.checksum: f.write(self._md5_compute(f)) self.is_closed = True return with self.path.open("rb+") as f: f.seek(0, 2) eof = f.tell() self._update_offset_value(f, self.gdr_head + 36, 8, eof) with self.compressed_file.open("wb+") as g: g.write(bytearray.fromhex(self.V3magicNUMBER_1)) g.write(bytearray.fromhex(self.V3magicNUMBER_2c)) self._write_ccr(f, g, self.compression) if self.checksum: g.seek(0, 2) g.write(self._md5_compute(g)) self.path.unlink() # NOTE: for Windows this is necessary self.compressed_file.rename(self.path) self.is_closed = True @is_open def write_globalattrs(self, globalAttrs): """ Writes the global attributes. Parameters ---------- globalAttrs: dict Global attribute name(s) and their value(s) pair(s). The value(s) is a dictionary of entry number and value pair(s). For example:: globalAttrs={} globalAttrs['Global1']={0: 'Global Value 1'} globalAttrs['Global2']={0: 'Global Value 2'} For a non-string value, use a list with the value and its CDF data type. For example:: globalAttrs['Global3']={0: [12, 'cdf_int4']} globalAttrs['Global4']={0: [12.34, 'cdf_double']} If the data type is not provided, a corresponding CDF data type is assumed:: globalAttrs['Global3']={0: 12} as 'cdf_int4' globalAttrs['Global4']={0: 12.34} as 'cdf_double' CDF allows multi-values for non-string data for an attribute:: globalAttrs['Global5']={0: [[12.34,21.43], 'cdf_double']} For multi-entries from a global variable, they should be presented in this form:: GA6={} GA6[0]='abcd' GA6[1]=[12, 'cdf_int2'] GA6[2]=[12.5, 'cdf_float'] GA6[3]=[[0,1,2], 'cdf_int8'] globalAttrs['Global6']=GA6 .... f.write_globalattrs(globalAttrs) """ if not (isinstance(globalAttrs, dict)): raise ValueError("Global attribute(s) not in dictionary form") dataType = None numElems = None with self.path.open("rb+") as f: f.seek(0, 2) # EOF (appending) for attr, entry in globalAttrs.items(): if attr in self.gattrs: raise ValueError(f"Global attribute: {attr} already exists.") if attr in self.vattrs: logging.warning(f"Attribute: {attr} already defined as a variable attribute.") continue attrNum, offsetADR = self._write_adr(f, True, attr) entries = 0 if entry is None: continue entryNumMaX = -1 poffset = -1 for entryNum, value in entry.items(): if entryNumMaX < entryNum: entryNumMaX = entryNum if hasattr(value, "__len__") and not isinstance(value, str): if len(value) == 2: # Check if the second value is a valid data type value2 = value[1] dataType = self._datatype_token(value2) if dataType > 0: # Data Type found data = value[0] if dataType == self.CDF_CHAR or dataType == self.CDF_UCHAR: if isinstance(data, list) or isinstance(data, tuple): logger.warning("Invalid global attribute value") return numElems = len(data) elif dataType == self.CDF_EPOCH or dataType == self.CDF_EPOCH16 or dataType == self.CDF_TIME_TT2000: cvalue = [] if isinstance(data, list) or isinstance(data, tuple): numElems = len(data) for x in range(0, numElems): if isinstance(data[x], str): cvalue.append(cdfepoch.CDFepoch.parse(data[x])) else: cvalue.append(data[x]) data = cvalue else: if isinstance(data, str): data = cdfepoch.CDFepoch.parse(data) numElems = 1 else: if isinstance(data, list) or isinstance(data, tuple): numElems = len(data) else: numElems = 1 else: # Data type not found, both values are data. data = value numElems, dataType = self._datatype_define(value[0]) numElems = len(value) else: # Length greater than 2, so it is all data. data = value numElems, dataType = self._datatype_define(value[0]) numElems = len(value) else: # Just one value data = value numElems, dataType = self._datatype_define(value) if numElems is None: logger.warning("Unknown data") return offset = self._write_aedr(f, True, attrNum, entryNum, data, dataType, numElems, None) if entries == 0: # ADR's AgrEDRhead self._update_offset_value(f, offsetADR + 20, 8, offset) else: # ADR's ADRnext self._update_offset_value(f, poffset + 12, 8, offset) poffset = offset entries = entries + 1 # ADR's NgrEntries self._update_offset_value(f, offsetADR + 36, 4, entries) # ADR's MAXgrEntry self._update_offset_value(f, offsetADR + 40, 4, entryNumMaX) @is_open def write_variableattrs(self, variableAttrs): """ Writes a variable's attributes, provided the variable already exists. Parameters ---------- variableAttrs : dict Variable attribute name and its entry value pair(s). The entry value is also a dictionary of variable id and value pair(s). Variable id can be the variable name or its id number in the file. Use write_var function if the variable does not exist. For example:: variableAttrs={} entries_1={} entries_1['var_name_1'] = 'abcd' entries_1['var_name_2'] = [12, 'cdf_int4'] .... variableAttrs['attr_name_1']=entries_1 entries_2={} entries_2['var_name_1'] = 'xyz' entries_2['var_name_2'] = [[12, 34], 'cdf_int4'] .... variableAttrs['attr_name_2']=entries_2 .... .... f.write_variableattrs(variableAttrs) """ if not (isinstance(variableAttrs, dict)): raise ValueError("Variable attribute(s) not in dictionary form") dataType = None numElems = None with self.path.open("rb+") as f: f.seek(0, 2) # EOF (appending) for attr, attrs in variableAttrs.items(): if not (isinstance(attr, str)): raise ValueError("Attribute name must be a string") return if attr in self.gattrs: raise ValueError(f"Variable attribute: {attr}" + " is already a global variable") return if attr in self.vattrs: attrNum = self.vattrs.index(attr) offsetA = self.attrsinfo[attrNum][2] else: attrNum, offsetA = self._write_adr(f, False, attr) entries = 0 if attrs is None: continue if not (isinstance(attrs, dict)): raise ValueError("An attribute" "s attribute(s) not in dictionary form") entryNumX = -1 poffset = -1 for entryID, value in attrs.items(): if isinstance(entryID, str) and (not (entryID in self.zvars) and not (entryID in self.rvars)): raise KeyError(f"{entryID} not found in the CDF") if isinstance(entryID, numbers.Number) and (len(self.zvars) > 0 and len(self.rvars) > 0): raise ValueError(f"{entryID} can not be used as the CDF has both zVariables and rVariables") if isinstance(entryID, str): try: entryNum = self.zvars.index(entryID) zVar = True except Exception: try: entryNum = self.rvars.index(entryID) zVar = False except Exception: raise KeyError(f"{entryID} not found") else: entryNum = int(entryID) if len(self.zvars) > 0 and len(self.rvars) > 0: raise ValueError( "Can not use integer form for variable id as there ", "are both zVariables and rVaribales" ) if len(self.zvars) > 0: if entryNum >= len(self.zvars): raise ValueError("Variable id: ", entryID, " not found") else: zVar = True else: if entryNum >= len(self.rvars): raise ValueError("Variable id: ", entryID, " not found") else: zVar = False if entryNum > entryNumX: entryNumX = entryNum if hasattr(value, "__len__") and not isinstance(value, str): if len(value) == 2: value2 = value[1] dataType = self._datatype_token(value2) if dataType > 0: data = value[0] if dataType == self.CDF_CHAR or dataType == self.CDF_UCHAR: if isinstance(data, list) or isinstance(data, tuple): raise ValueError("Invalid variable attribute value") numElems = len(data) elif dataType == self.CDF_EPOCH or dataType == self.CDF_EPOCH16 or dataType == self.CDF_TIME_TT2000: cvalue = [] if isinstance(data, list) or isinstance(data, tuple): numElems = len(data) for x in range(0, numElems): if isinstance(data[x], str): avalue = cdfepoch.CDFepoch.parse(data[x]) else: avalue = data[x] if dataType == self.CDF_EPOCH16: cvalue.append(avalue.real) cvalue.append(avalue.imag) else: cvalue.append(avalue) data = cvalue else: if isinstance(data, str): data = cdfepoch.CDFepoch.parse(data) numElems = 1 else: if isinstance(data, list) or isinstance(data, tuple): numElems = len(data) else: numElems = 1 else: data = value numElems, dataType = self._datatype_define(value[0]) numElems = len(value) else: data = value numElems, dataType = self._datatype_define(value[0]) numElems = len(value) else: data = value numElems, dataType = self._datatype_define(value) if numElems is None: logger.warning("Unknown data") return offset = self._write_aedr(f, False, attrNum, entryNum, data, dataType, numElems, zVar) if entries == 0: if zVar: # ADR's AzEDRhead self._update_offset_value(f, offsetA + 48, 8, offset) else: # ADR's AgrEDRhead self._update_offset_value(f, offsetA + 20, 8, offset) else: # ADR's ADRnext self._update_offset_value(f, poffset + 12, 8, offset) poffset = offset entries = entries + 1 if zVar: # ADR's NzEntries self._update_offset_value(f, offsetA + 56, 4, entries) # ADR's MAXzEntry self._update_offset_value(f, offsetA + 60, 4, entryNumX) else: # ADR's NgrEntries self._update_offset_value(f, offsetA + 36, 4, entries) # ADR's MAXgrEntry self._update_offset_value(f, offsetA + 40, 4, entryNumX) @is_open def write_var(self, var_spec, var_attrs=None, var_data=None): """ Writes a variable, along with variable attributes and data. Parameters ---------- var_spec : dict The specifications of the variable. The required/optional keys for creating a variable: Required keys: - ['Variable']: The name of the variable - ['Data_Type']: the CDF data type - ['Num_Elements']: The number of elements. Always 1 the for numeric type. The char length for string type. - ['Rec_Vary']: Record variance For zVariables: - ['Dim_Sizes']: The dimensional sizes for zVariables only. Use [] for 0-dimension. Each and every dimension is varying for zVariables. For rVariables: - ['Dim_Vary']: The dimensional variances for rVariables only. Optional keys: - ['Var_Type']: Whether the variable is a zVariable or rVariable. Valid values: "zVariable" and "rVariable". The default is "zVariable". - ['Sparse']: Whether the variable has sparse records. Valid values are "no_sparse", "pad_sparse", and "prev_sparse". The default is 'no_sparse'. - ['Compress']: Set the gzip compression level (0 to 9), 0 for no compression. The default is to compress with level 6 (done only if the compressed data is less than the uncompressed data). - ['Block_Factor']: The blocking factor, the number of records in a chunk when the variable is compressed. - ['Pad']: The padded value (in bytes, numpy.ndarray or string) var_attrs : dict {attribute:value} pairs. The attribute is the name of a variable attribute. The value can have its data type specified for the numeric data. If not, based on Python's type, a corresponding CDF type is assumed: CDF_INT4 for int, CDF_DOUBLE for float, CDF_EPOCH16 for complex and and CDF_INT8 for long. For example, the following defined attributes will have the same types in the CDF:: var_attrs= { 'attr1': 'value1', 'attr2': 12.45, 'attr3': [3,4,5], ..... } With data type (in the list form):: var_attrs= { 'attr1': 'value1', 'attr2': [12.45, 'CDF_DOUBLE'], 'attr3': [[3,4,5], 'CDF_INT4'], ..... } var_data : The data for the variable. If the variable is a regular variable without sparse records, it must be in a single structure of bytes, or numpy.ndarray for numeric variable, or str or list of strs for string variable. If the variable has sparse records, var_data should be presented in a list/tuple with two elements, the first being a list/tuple that contains the physical record number(s), the second being the variable data in bytes, numpy.ndarray, or a list of strings. Variable data can have just physical records' data (with the same number of records as the first element) or have data from both physical records and virtual records (which with filled data). The var_data has the form:: [[rec_#1,rec_#2,rec_#3,...], [data_#1,data_#2,data_#3,...]] See the sample for its setup. """ if not isinstance(var_spec, dict): raise TypeError("Variable should be in dictionary form.") # Get variable info from var_spec try: dataType = int(var_spec["Data_Type"]) numElems = int(var_spec["Num_Elements"]) name = var_spec["Variable"] recVary = var_spec["Rec_Vary"] except Exception as e: raise ValueError("Missing/invalid required spec for creating variable.") from e # Get whether or not it is a z variable var_type = var_spec.setdefault("Var_Type", "zvariable") if var_type.lower() == "zvariable": zVar = True else: var_spec["Var_Type"] = "rVariable" zVar = False if dataType == self.CDF_CHAR or dataType == self.CDF_UCHAR: if numElems < 1: raise ValueError("Invalid Num_Elements for string data type variable") else: if numElems != 1: raise ValueError("Invalid Num_Elements for numeric data type variable") # If its a z variable, get the dimension info # Otherwise, use r variable info if zVar: try: dimSizes = var_spec["Dim_Sizes"] numDims = len(dimSizes) dimVary = [] for _ in range(0, numDims): dimVary.append(True) except Exception: raise ValueError("Missing/invalid required spec for creating variable.") else: dimSizes = self.rdim_sizes numDims = self.num_rdim try: dimVary = var_spec["Dim_Vary"] if len(dimVary) != numDims: raise ValueError("Invalid Dim_Vary size for the rVariable.") except Exception: raise ValueError("Missing/invalid required spec for Dim_Vary for rVariable") # Get Sparseness info sparse = self._sparse_token(var_spec.get("Sparse", "no_sparse")) # Get compression info compression = var_spec.get("Compress", 6) if isinstance(compression, int): if not 0 <= compression <= 9: compression = 0 else: compression = 6 if compression else 0 # Get blocking factor blockingfactor = int(var_spec.get("Block_Factor", 1)) # Get pad value pad = var_spec.get("Pad", None) if hasattr(pad, "__len__"): pad = pad[0] if name in self.zvars or name in self.rvars: raise ValueError(f"{name} already exists") with self.path.open("rb+") as f: f.seek(0, 2) # EOF (appending) varNum, offset = self._write_vdr( f, dataType, numElems, numDims, dimSizes, name, dimVary, recVary, sparse, blockingfactor, compression, pad, zVar ) # Update the GDR pointers if needed if zVar: if len(self.zvars) == 1: # GDR's zVDRhead self._update_offset_value(f, self.gdr_head + 20, 8, offset) else: if len(self.rvars) == 1: # GDR's rVDRhead self._update_offset_value(f, self.gdr_head + 12, 8, offset) # Write the variable attributes if var_attrs is not None: self._write_var_attrs(f, varNum, var_attrs, zVar) # Write the actual data to the file if not (var_data is None): if sparse == 0: varMaxRec = self._write_var_data_nonsparse( f, zVar, varNum, dataType, numElems, recVary, compression, blockingfactor, var_data ) else: notsupport = False if not isinstance(var_data, (list, tuple)): notsupport = True if notsupport or len(var_data) != 2: logger.warning( "Sparse record #s and data are not of list/tuple form:\n" " [ [rec_#1, rec_#2, rec_#3, ],\n" " [data_#1, data_#2, data_#3, ....] ]" ) return # Format data into: [[recstart1, recend1, data1], # [recstart2,recend2,data2], ...] var_data = self._make_sparse_blocks(var_spec, var_data[0], var_data[1]) for block in var_data: varMaxRec = self._write_var_data_sparse(f, zVar, varNum, dataType, numElems, recVary, block) # Update GDR MaxRec if writing an r variable if not zVar: # GDR's rMaxRec f.seek(self.gdr_head + 52) maxRec = int.from_bytes(f.read(4), "big", signed=True) if maxRec < varMaxRec: self._update_offset_value(f, self.gdr_head + 52, 4, varMaxRec) def _write_var_attrs(self, f: io.BufferedWriter, varNum: int, var_attrs: Dict[str, Any], zVar: bool) -> None: """ Writes ADRs and AEDRs for variables Parameters: f : file The open CDF file varNum : int The variable number for adding attributes var_attrs : dict A dictionary object full of variable attributes zVar : bool True if varNum is referencing a z variable Returns: None """ if not isinstance(var_attrs, dict): raise TypeError("Variable attribute(s) should be in dictionary form.") for attr, entry in var_attrs.items(): if attr in self.gattrs: logger.warning(f"Attribute: {attr}" + " already defined as a global attribute... Skipping attribute.") continue if not (attr in self.attrs): attrNum, offset = self._write_adr(f, False, attr) if len(self.attrs) == 0: # GDR's ADRhead # TODO: fix this, grid_offset doesn't exsit self._update_offset_value(f, self.grid_offset + 28, 8, offset) # type: ignore else: attrNum = self.attrs.index(attr) offset = self.attrsinfo[attrNum][2] if entry is None: logger.warning( f"Attribute: {attr}" + " is None type, which does not have an equivalent in CDF... Skipping attribute." ) continue # Check if dataType was provided dataType = 0 if hasattr(entry, "__len__") and not isinstance(entry, str): items = len(entry) if items == 2: dataType = self._datatype_token(entry[1]) # Handle user setting datatype if dataType > 0: # CDF data type defined in entry data = entry[0] if self._checklistofNums(data): # Data needs no pre-processing and is good to go if hasattr(data, "__len__") and not isinstance(data, str): numElems = len(data) else: numElems = 1 else: # Data needs some sort of pre-processing to proceed if dataType == self.CDF_CHAR or dataType == self.CDF_UCHAR: if hasattr(data, "__len__") and not isinstance(data, str): # Reformat strings items = len(data) odata = data data = "" for x in range(0, items): if x > 0: data += "\\N " data += str(odata[x]) else: data = str(odata[x]) numElems = len(data) elif dataType == self.CDF_EPOCH or dataType == self.CDF_EPOCH16 or dataType == self.CDF_TIME_TT2000: # Convert data to CDF time cvalue = [] if hasattr(data, "__len__") and not isinstance(data, str): numElems = len(data) for x in range(0, numElems): cvalue.append(cdfepoch.CDFepoch.parse(data[x])) data = cvalue else: data = cdfepoch.CDFepoch.parse(data) numElems = 1 elif isinstance(data, str): # One possibility is that the user wants to convert a string to a number numElems = 1 data = np.array(float(data)) else: # The final possibility I can think of is that the user wants to convert a list of strings to a list of numbers try: numElems = 1 data = np.array([float(item) for item in data]) except: logger.warning( f"Cannot determine how to convert {str(data)} to specified type of {dataType}. Ignoring the specified datatype, and continuing." ) dataType = 0 if dataType == 0: # No data type defined... data = entry if hasattr(data, "__len__") and not isinstance(data, str): numElems, dataType = self._datatype_define(entry[0]) if dataType == self.CDF_CHAR or dataType == self.CDF_UCHAR: data = "" for x in range(0, len(entry)): if x > 0: data += "\\N " data += str(entry[x]) else: data = str(entry[x]) numElems = len(data) else: numElems, dataType = self._datatype_define(entry) offset = self._write_aedr(f, False, attrNum, varNum, data, dataType, numElems, zVar) self._update_aedr_link(f, attrNum, zVar, varNum, offset) def _write_var_data_nonsparse( self, f: io.BufferedWriter, zVar: bool, var: int, dataType: int, numElems: int, recVary: bool, compression: int, blockingfactor: int, indata: Union[np.ndarray, bytearray, Dict[str, np.ndarray]], ) -> int: """ Creates VVRs and the corresponding VXRs full of "indata" data. If there is no compression, creates exactly one VXR and VVR If there is compression Parameters ---------- f : file The open CDF file zVar : bool True if this is z variable data var : str The name of the variable dataType : int the CDF variable type numElems : int number of elements in each record recVary : bool True if each record is unque compression : int The amount of compression blockingfactor: int The size (in number of records) of a VVR data block indata : varies the data to write, should be a numpy or byte array Returns ------- recs : int The number of records """ numValues = self._num_values(zVar, var) dataTypeSize = self._datatype_size(dataType, numElems) if isinstance(indata, dict): indata = indata["Data"] # Deal with EPOCH16 data types if dataType == self.CDF_EPOCH16: epoch16 = [] if hasattr(indata, "__len__") and not isinstance(indata, str): adata = indata[0] if not isinstance(adata, complex): try: indata = np.asarray(indata).astype(np.complex128) except: raise ValueError( f"Data for variable {var} must be castable to a 128-bit complex number when data type is CDF_EPOCH16." ) recs = len(indata) for x in range(0, recs): epoch16.append(indata[x].real) epoch16.append(indata[x].imag) indata = np.array(epoch16) else: if isinstance(indata, complex): epoch16.append(indata.real) epoch16.append(indata.imag) indata = np.array(epoch16) # Convert to byte stream recs, data = self._convert_data(dataType, numElems, numValues, indata) if not recVary and len(data) != 0: recs = 1 if zVar: vdr_offset = self.zvarsinfo[var][1] else: vdr_offset = self.rvarsinfo[var][1] usedEntries = 0 numVXRs = 0 if compression > 0: default_blockingfactor = math.ceil(self.BLOCKING_BYTES / (numValues * dataTypeSize)) # If the given blocking factor is too small, use the default one # Will re-adjust if the records are less than this computed BF. if blockingfactor < default_blockingfactor: blockingfactor = default_blockingfactor if blockingfactor == 0: blockingfactor = 1 # Update the blocking factor f.seek(vdr_offset + 80, 0) # VDR's BlockingFactor self._update_offset_value(f, vdr_offset + 80, 4, blockingfactor) # set blocking factor if recs < blockingfactor: blockingfactor = recs blocks = math.ceil(recs / blockingfactor) nEntries = self.NUM_VXR_ENTRIES VXRhead = None # Loop through blocks, create VVRs/CVVRs for x in range(0, blocks): startrec = x * blockingfactor startloc = startrec * numValues * dataTypeSize endrec = (x + 1) * blockingfactor - 1 if endrec > (recs - 1): endrec = recs - 1 endloc = (endrec + 1) * numValues * dataTypeSize if endloc > len(data): endrec = recs - 1 endloc = len(data) bdata = data[startloc:endloc] cdata = gzip_deflate(bdata, compression) if len(cdata) < len(bdata): n1offset = self._write_cvvr(f, cdata) else: n1offset = self._write_vvr(f, bdata) if x == 0: # Create a VXR VXRoffset = self._write_vxr(f) VXRhead = VXRoffset numVXRs = 1 self._update_vdr_vxrheadtail(f, vdr_offset, VXRoffset) if usedEntries < nEntries: # Use the exisitng VXR usedEntries = self._use_vxrentry(f, VXRoffset, startrec, endrec, n1offset) else: # Create a new VXR and an upper level VXR, if needed. # Two levels of VXRs are the maximum, which is simpler # to implement. savedVXRoffset = VXRoffset VXRoffset = self._write_vxr(f) numVXRs += 1 usedEntries = self._use_vxrentry(f, VXRoffset, startrec, endrec, n1offset) # Edit the VXRnext field of the previous VXR self._update_offset_value(f, savedVXRoffset + 12, 8, VXRoffset) # Edit the VXRtail of the VDR self._update_offset_value(f, vdr_offset + 36, 8, VXRoffset) # After we're done with the blocks, check the way # we have VXRs set up if numVXRs > self.NUM_VXRlvl_ENTRIES: newvxrhead, newvxrtail = self._add_vxr_levels_r(f, VXRhead, numVXRs) self._update_offset_value(f, vdr_offset + 28, 8, newvxrhead) self._update_offset_value(f, vdr_offset + 36, 8, newvxrtail) else: # Create one VVR and VXR, with one VXR entry offset = self._write_vvr(f, data) VXRoffset = self._write_vxr(f) usedEntries = self._use_vxrentry(f, VXRoffset, 0, recs - 1, offset) self._update_vdr_vxrheadtail(f, vdr_offset, VXRoffset) # VDR's MaxRec self._update_offset_value(f, vdr_offset + 24, 4, recs - 1) return recs - 1 def _write_var_data_sparse( self, f: io.BufferedWriter, zVar: bool, var: int, dataType: int, numElems: int, recVary: bool, oneblock: Tuple[int, int, np.ndarray], ) -> int: """ Writes a VVR and a VXR for this block of sparse data Parameters: f : file The open CDF file zVar : bool True if this is for a z variable var : int The variable number dataType : int The CDF data type of this variable numElems : int The number of elements in each record recVary : bool True if the value varies across records oneblock: list A list of data in the form [startrec, endrec, [data]] Returns: recend : int Just the "endrec" value input by the user in "oneblock" """ rec_start = oneblock[0] rec_end = oneblock[1] indata = oneblock[2] numValues = self._num_values(zVar, var) # Convert oneblock[2] into a byte stream _, data = self._convert_data(dataType, numElems, numValues, indata) # Gather dimension information if zVar: vdr_offset = self.zvarsinfo[var][1] else: vdr_offset = self.rvarsinfo[var][1] # Write one VVR offset = self._write_vvr(f, data) f.seek(vdr_offset + 28, 0) # Get first VXR vxrOne = int.from_bytes(f.read(8), "big", signed=True) foundSpot = 0 usedEntries = 0 currentVXR = 0 # Search through VXRs to find an open one while foundSpot == 0 and vxrOne > 0: # have a VXR f.seek(vxrOne, 0) currentVXR = f.tell() f.seek(vxrOne + 12, 0) vxrNext = int.from_bytes(f.read(8), "big", signed=True) nEntries = int.from_bytes(f.read(4), "big", signed=True) usedEntries = int.from_bytes(f.read(4), "big", signed=True) if usedEntries == nEntries: # all entries are used -- check the next vxr in link vxrOne = vxrNext else: # found a vxr with an vailable entry spot foundSpot = 1 # vxrOne == 0 from vdr's vxrhead vxrOne == -1 from a vxr's vxrnext if vxrOne == 0 or vxrOne == -1: # no available vxr... create a new one currentVXR = self._create_vxr(f, rec_start, rec_end, vdr_offset, currentVXR, offset) else: self._use_vxrentry(f, currentVXR, rec_start, rec_end, offset) # Modify the VDR's MaxRec if needed f.seek(vdr_offset + 24, 0) recNumc = int.from_bytes(f.read(4), "big", signed=True) if rec_end > recNumc: self._update_offset_value(f, vdr_offset + 24, 4, rec_end) return rec_end def _create_vxr(self, f: io.BufferedWriter, recStart: int, recEnd: int, currentVDR: int, priorVXR: int, vvrOffset: int) -> int: """ Create a VXR AND use a VXR Parameters: f : file The open CDF file recStart : int The start record of this block recEnd : int The ending record of this block currentVDR : int The byte location of the variables VDR priorVXR : int The byte location of the previous VXR vvrOffset : int The byte location of ther VVR Returns: vxroffset : int The byte location of the created vxr """ # add a VXR, use an entry, and link it to the prior VXR if it exists vxroffset = self._write_vxr(f) self._use_vxrentry(f, vxroffset, recStart, recEnd, vvrOffset) if priorVXR == 0: # VDR's VXRhead self._update_offset_value(f, currentVDR + 28, 8, vxroffset) else: # VXR's next self._update_offset_value(f, priorVXR + 12, 8, vxroffset) # VDR's VXRtail self._update_offset_value(f, currentVDR + 36, 8, vxroffset) return vxroffset def _use_vxrentry(self, f: io.BufferedWriter, VXRoffset: int, recStart: int, recEnd: int, offset: int) -> int: """ Adds a VVR pointer to a VXR """ # Select the next unused entry in a VXR for a VVR/CVVR f.seek(VXRoffset + 20) # num entries numEntries = int.from_bytes(f.read(4), "big", signed=True) # used entries usedEntries = int.from_bytes(f.read(4), "big", signed=True) # VXR's First self._update_offset_value(f, VXRoffset + 28 + 4 * usedEntries, 4, recStart) # VXR's Last self._update_offset_value(f, VXRoffset + 28 + 4 * numEntries + 4 * usedEntries, 4, recEnd) # VXR's Offset self._update_offset_value(f, VXRoffset + 28 + 2 * 4 * numEntries + 8 * usedEntries, 8, offset) # VXR's NusedEntries usedEntries += 1 self._update_offset_value(f, VXRoffset + 24, 4, usedEntries) return usedEntries def _add_vxr_levels_r(self, f: io.BufferedWriter, vxrhead: int, numVXRs: int) -> Tuple[int, int]: """ Build a new level of VXRs... make VXRs more tree-like From: VXR1 -> VXR2 -> VXR3 -> VXR4 -> ... -> VXRn To: new VXR1 / | \ VXR2 VXR3 VXR4 / | \ ... VXR5 .......... VXRn Parameters ---------- f : file The open CDF file vxrhead : int The byte location of the first VXR for a variable numVXRs : int The total number of VXRs Returns ------- newVXRhead : int The byte location of the newest VXR head newvxroff : int The byte location of the last VXR head """ newNumVXRs = int(numVXRs / self.NUM_VXRlvl_ENTRIES) remaining = int(numVXRs % self.NUM_VXRlvl_ENTRIES) vxroff = vxrhead prevxroff = -1 if remaining != 0: newNumVXRs += 1 self.level += 1 for x in range(0, newNumVXRs): newvxroff = self._write_vxr(f, numEntries=self.NUM_VXRlvl_ENTRIES) if x > 0: self._update_offset_value(f, prevxroff + 12, 8, newvxroff) else: newvxrhead = newvxroff prevxroff = newvxroff if x == (newNumVXRs - 1): if remaining == 0: endEntry = self.NUM_VXRlvl_ENTRIES else: endEntry = remaining else: endEntry = self.NUM_VXRlvl_ENTRIES for _ in range(0, endEntry): recFirst, recLast = self._get_recrange(f, vxroff) self._use_vxrentry(f, newvxroff, recFirst, recLast, vxroff) vxroff = self._read_offset_value(f, vxroff + 12, 8) vxroff = vxrhead # Break the horizontal links for x in range(0, numVXRs): nvxroff = self._read_offset_value(f, vxroff + 12, 8) self._update_offset_value(f, vxroff + 12, 8, 0) vxroff = nvxroff # Iterate this process if we're over NUM_VXRlvl_ENTRIES if newNumVXRs > self.NUM_VXRlvl_ENTRIES: return self._add_vxr_levels_r(f, newvxrhead, newNumVXRs) else: return newvxrhead, newvxroff def _update_vdr_vxrheadtail(self, f: io.BufferedWriter, vdr_offset: int, VXRoffset: int) -> None: """ This sets a VXR to be the first and last VXR in the VDR """ # VDR's VXRhead self._update_offset_value(f, vdr_offset + 28, 8, VXRoffset) # VDR's VXRtail self._update_offset_value(f, vdr_offset + 36, 8, VXRoffset) def _get_recrange(self, f: io.BufferedWriter, VXRoffset: int) -> Tuple[int, int]: """ Finds the first and last record numbers pointed by the VXR Assumes the VXRs are in order """ f.seek(VXRoffset + 20) # Num entries numEntries = int.from_bytes(f.read(4), "big", signed=True) # used entries usedEntries = int.from_bytes(f.read(4), "big", signed=True) # VXR's First record firstRec = int.from_bytes(f.read(4), "big", signed=True) # VXR's Last record f.seek(VXRoffset + 28 + (4 * numEntries + 4 * (usedEntries - 1))) lastRec = int.from_bytes(f.read(4), "big", signed=True) return firstRec, lastRec @staticmethod def _majority_token(major: str) -> int: """ Returns the numberical type for a CDF row/column major type """ majors = {"ROW_MAJOR": 1, "COLUMN_MAJOR": 2} try: return majors[major.upper()] except Exception: logger.warning(f"bad major.... {major}") return 0 @staticmethod def _encoding_token(encoding: str) -> int: """ Returns the numberical type for a CDF encoding type """ encodings = { "NETWORK_ENCODING": 1, "SUN_ENCODING": 2, "VAX_ENCODING": 3, "DECSTATION_ENCODING": 4, "SGI_ENCODING": 5, "IBMPC_ENCODING": 6, "IBMRS_ENCODING": 7, "HOST_ENCODING": 8, "PPC_ENCODING": 9, "HP_ENCODING": 11, "NEXT_ENCODING": 12, "ALPHAOSF1_ENCODING": 13, "ALPHAVMSD_ENCODING": 14, "ALPHAVMSG_ENCODING": 15, "ALPHAVMSI_ENCODING": 16, "ARM_LITTLE_ENCODING": 17, "ARM_BIG_ENCODING": 18, } try: return encodings[encoding.upper()] except Exception: logger.warning(f"bad encoding.... {encoding}") return 0 @staticmethod def _datatype_token(datatype: str) -> int: """ Returns the numberical type for a CDF data type """ datatypes = { "CDF_INT1": 1, "CDF_INT2": 2, "CDF_INT4": 4, "CDF_INT8": 8, "CDF_UINT1": 11, "CDF_UINT2": 12, "CDF_UINT4": 14, "CDF_REAL4": 21, "CDF_REAL8": 22, "CDF_EPOCH": 31, "CDF_EPOCH16": 32, "CDF_TIME_TT2000": 33, "CDF_BYTE": 41, "CDF_FLOAT": 44, "CDF_DOUBLE": 45, "CDF_CHAR": 51, "CDF_UCHAR": 52, } try: return datatypes[datatype.upper()] except Exception: return 0 def _datatype_define(self, value: Union[str, int, float, complex, np.ndarray]) -> Tuple[int, int]: if isinstance(value, str): return len(value), self.CDF_CHAR else: numElems = 1 if isinstance(value, int): return numElems, self.CDF_INT8 elif isinstance(value, float): return numElems, self.CDF_DOUBLE elif isinstance(value, complex): return numElems, self.CDF_EPOCH16 elif hasattr(value, "dtype"): # We are likely dealing with a numpy number at this point if value.dtype.type in (np.int8, np.int16, np.int32, np.int64): return numElems, self.CDF_INT8 elif value.dtype.type == np.complex128: return numElems, self.CDF_EPOCH16 elif value.dtype.type in (np.uint8, np.uint16, np.uint32): return numElems, self.CDF_UINT4 elif value.dtype.type in (np.float16, np.float32, np.float64): return numElems, self.CDF_DOUBLE elif value.dtype.type == np.str_: return numElems, self.CDF_CHAR else: logger.warning(f"Invalid data type for data {value.dtype.type}.... Skip") return None, None else: logger.warning("Invalid data type for data.... Skip") return None, None @staticmethod def _datatype_size(datatype: int, numElms: int) -> int: """ Gets datatype size Parameters: datatype : int CDF variable data type numElms : int number of elements Returns: numBytes : int The number of bytes for the data """ sizes = {1: 1, 2: 2, 4: 4, 8: 8, 11: 1, 12: 2, 14: 4, 21: 4, 22: 8, 31: 8, 32: 16, 33: 8, 41: 1, 44: 4, 45: 8, 51: 1, 52: 1} try: if isinstance(datatype, int): if datatype == 51 or datatype == 52: return numElms else: return sizes[datatype] * numElms else: datatype = datatype.upper() if datatype == "CDF_INT1" or datatype == "CDF_UINT1" or datatype == "CDF_BYTE": return 1 * numElms elif datatype == "CDF_INT2" or datatype == "CDF_UINT2": return 2 * numElms elif datatype == "CDF_INT4" or datatype == "CDF_UINT4": return 4 * numElms elif datatype == "CDF_INT8" or datatype == "CDF_TIME_TT2000": return 8 * numElms elif datatype == "CDF_REAL4" or datatype == "CDF_FLOAT": return 4 * numElms elif datatype == "CDF_REAL8" or datatype == "CDF_DOUBLE" or datatype == "CDF_EPOCH": return 8 * numElms elif datatype == "CDF_EPOCH16": return 16 * numElms elif datatype == "CDF_CHAR" or datatype == "CDF_UCHAR": return numElms else: return -1 except Exception: return -1 @staticmethod def _sparse_token(sparse: str) -> int: """ Returns the numerical CDF value for sparseness. """ sparses = {"no_sparse": 0, "pad_sparse": 1, "prev_sparse": 2} try: return sparses[sparse.lower()] except Exception: return 0 def _write_cdr(self, f: io.BufferedWriter, major: int, encoding: int, checksum: int) -> int: f.seek(0, 2) byte_loc = f.tell() block_size = self.CDR_BASE_SIZE64 + self.CDF_COPYRIGHT_LEN section_type = self.CDR_ gdr_loc = block_size + 8 version = self.version release = self.release flag = 0 if major == 1: flag = self._set_bit(flag, 0) flag = self._set_bit(flag, 1) if checksum: flag = self._set_bit(flag, 2) flag = self._set_bit(flag, 3) rfuA = 0 rfuB = 0 increment = self.increment identifier = 2 rfuE = -1 copy_right = ( "\nCommon Data Format (CDF)\nhttps://cdf.gsfc.nasa.gov\n" + "Space Physics Data Facility\n" + "NASA/Goddard Space Flight Center\n" + "Greenbelt, Maryland 20771 USA\n" + "(User support: gsfc-cdf-support@lists.nasa.gov)\n" ) cdr = bytearray(block_size) cdr[0:8] = struct.pack(">q", block_size) cdr[8:12] = struct.pack(">i", section_type) cdr[12:20] = struct.pack(">q", gdr_loc) cdr[20:24] = struct.pack(">i", version) cdr[24:28] = struct.pack(">i", release) cdr[28:32] = struct.pack(">i", encoding) cdr[32:36] = struct.pack(">i", flag) cdr[36:40] = struct.pack(">i", rfuA) cdr[40:44] = struct.pack(">i", rfuB) cdr[44:48] = struct.pack(">i", increment) cdr[48:52] = struct.pack(">i", identifier) cdr[52:56] = struct.pack(">i", rfuE) tofill = self.CDF_COPYRIGHT_LEN - len(copy_right) cdr[56:block_size] = (copy_right + "\0" * tofill).encode() f.write(cdr) return byte_loc def _write_gdr(self, f: io.BufferedWriter) -> int: f.seek(0, 2) byte_loc = f.tell() block_size = self.GDR_BASE_SIZE64 + 4 * self.num_rdim section_type = self.GDR_ first_rvariable = 0 first_zvariable = 0 first_adr = 0 eof = byte_loc + block_size num_rvariable = 0 num_att = 0 rMaxRec = -1 num_rdim = self.num_rdim num_zvariable = 0 UIR_head = 0 rfuC = 0 leapsecondlastupdate = 20170101 rfuE = -1 gdr = bytearray(block_size) gdr[0:8] = struct.pack(">q", block_size) gdr[8:12] = struct.pack(">i", section_type) gdr[12:20] = struct.pack(">q", first_rvariable) gdr[20:28] = struct.pack(">q", first_zvariable) gdr[28:36] = struct.pack(">q", first_adr) gdr[36:44] = struct.pack(">q", eof) gdr[44:48] = struct.pack(">i", num_rvariable) gdr[48:52] = struct.pack(">i", num_att) gdr[52:56] = struct.pack(">i", rMaxRec) gdr[56:60] = struct.pack(">i", num_rdim) gdr[60:64] = struct.pack(">i", num_zvariable) gdr[64:72] = struct.pack(">q", UIR_head) gdr[72:76] = struct.pack(">i", rfuC) gdr[76:80] = struct.pack(">i", leapsecondlastupdate) gdr[80:84] = struct.pack(">i", rfuE) if num_rdim > 0: for i in range(0, num_rdim): gdr[84 + i * 4 : 84 + (i + 1) * 4] = struct.pack(">i", self.rdim_sizes[i]) f.write(gdr) return byte_loc def _write_adr(self, f: io.BufferedWriter, gORv: bool, name: str) -> Tuple[int, int]: """ Writes and ADR to the end of the file. Additionally, it will update the offset values to either the previous ADR or the ADRhead field in the GDR. Parameters ---------- f : file The open CDF file gORv : bool True if a global attribute, False if variable attribute name : str name of the attribute Returns ------- num : int The attribute number byte_loc : int The current location in file f """ f.seek(0, 2) byte_loc = f.tell() block_size = self.ADR_BASE_SIZE64 section_type = self.ADR_ nextADR = 0 headAgrEDR = 0 if gORv: scope = 1 else: scope = 2 num = len(self.attrs) ngrEntries = 0 maxgrEntry = -1 rfuA = 0 headAzEDR = 0 nzEntries = 0 maxzEntry = -1 rfuE = -1 adr = bytearray(block_size) adr[0:8] = struct.pack(">q", block_size) adr[8:12] = struct.pack(">i", section_type) adr[12:20] = struct.pack(">q", nextADR) adr[20:28] = struct.pack(">q", headAgrEDR) adr[28:32] = struct.pack(">i", scope) adr[32:36] = struct.pack(">i", num) adr[36:40] = struct.pack(">i", ngrEntries) adr[40:44] = struct.pack(">i", maxgrEntry) adr[44:48] = struct.pack(">i", rfuA) adr[48:56] = struct.pack(">q", headAzEDR) adr[56:60] = struct.pack(">i", nzEntries) adr[60:64] = struct.pack(">i", maxzEntry) adr[64:68] = struct.pack(">i", rfuE) tofill = 256 - len(name) adr[68:324] = (name + "\0" * tofill).encode() f.write(adr) info = (name, scope, byte_loc) self.attrsinfo[num] = info if scope == 1: self.gattrs.append(name) else: self.vattrs.append(name) self.attrs.append(name) if num > 0: # ADR's ADRnext self._update_offset_value(f, self.attrsinfo[num - 1][2] + 12, 8, byte_loc) else: # GDR's ADRhead self._update_offset_value(f, self.gdr_head + 28, 8, byte_loc) # GDR's NumAttr self._update_offset_value(f, self.gdr_head + 48, 4, num + 1) return num, byte_loc def _write_aedr( self, f: io.BufferedWriter, gORz: bool, attrNum: int, entryNum: int, value: Union[Number, np.ndarray], pdataType: int, pnumElems: int, zVar: bool, ) -> int: """ Writes an aedr into the end of the file. Parameters ---------- f : file The current open CDF file gORz : bool True if this entry is for a global or z variable, False if r variable attrNum : int Number of the attribute this aedr belongs to. entryNum : int Number of the entry value : The value of this entry pdataType : int The CDF data type of the value pnumElems : int Number of elements in the value. zVar : bool True if this entry belongs to a z variable Returns ------- byte_loc : int This current location in the file after writing the aedr. """ f.seek(0, 2) byte_loc = f.tell() if gORz or zVar != True: section_type = self.AgrEDR_ else: section_type = self.AzEDR_ nextAEDR = 0 if pdataType is None: # Figure out Data Type if not supplied if not isinstance(value, Number): avalue = value[0] else: avalue = value if isinstance(avalue, int): pdataType = self.CDF_INT8 elif isinstance(avalue, float): pdataType = self.CDF_FLOAT elif isinstance(avalue, complex): pdataType = self.CDF_EPOCH16 else: # assume a boolean pdataType = self.CDF_INT1 if pnumElems is None: # Figure out number of elements if not supplied if isinstance(value, str): pdataType = self.CDF_CHAR pnumElems = 1 if len(value) == 0 else len(value) else: if hasattr(value, "__len__") and not isinstance(value, str): pnumElems = len(value) else: pnumElems = 1 dataType = pdataType numElems = pnumElems rfuB = 0 rfuC = 0 rfuD = -1 rfuE = -1 if gORz: numStrings = 0 else: if isinstance(value, str): numStrings = value.count("\\N ") + 1 else: numStrings = 0 recs, cdata = self._convert_data(dataType, numElems, 1, value) if dataType == 51: numElems = 1 if len(cdata) == 0 else len(cdata) if len(cdata) == 0: value_size = 1 cdata = "\x00".encode() else: value_size = recs * self._datatype_size(dataType, numElems) block_size = value_size + 56 aedr = bytearray(block_size) aedr[0:8] = struct.pack(">q", block_size) aedr[8:12] = struct.pack(">i", section_type) aedr[12:20] = struct.pack(">q", nextAEDR) aedr[20:24] = struct.pack(">i", attrNum) aedr[24:28] = struct.pack(">i", dataType) aedr[28:32] = struct.pack(">i", entryNum) aedr[32:36] = struct.pack(">i", numElems) aedr[36:40] = struct.pack(">i", numStrings) aedr[40:44] = struct.pack(">i", rfuB) aedr[44:48] = struct.pack(">i", rfuC) aedr[48:52] = struct.pack(">i", rfuD) aedr[52:56] = struct.pack(">i", rfuE) aedr[56:block_size] = cdata f.write(aedr) return byte_loc def _write_vdr( self, f: io.BufferedWriter, cdataType: int, numElems: int, numDims: int, dimSizes: List[int], name: str, dimVary: List[bool], recVary: bool, sparse: int, blockingfactor: int, compression: int, pad: str, zVar: bool, ) -> Tuple[int, int]: """ Writes a VDR block to the end of the file. Parameters ---------- f : file The open CDF file cdataType : int The CDF data type numElems : int The number of elements in the variable numDims : int The number of dimensions in the variable dimSizes : int The size of each dimension name : str The name of the variable dimVary : array of bool Bool array of size numDims. True if a dimension is physical, False if a dimension is not physical recVary : bool True if each record is unique sparse : bool True if using sparse records blockingfactor: int No idea compression : int The level of compression between 0-9 pad : num The pad values to insert zVar : bool True if this variable is a z variable Returns ------- num : int The number of the variable byte_loc : int The current byte location within the file """ if zVar: block_size = self.zVDR_BASE_SIZE64 section_type = self.zVDR_ else: block_size = self.rVDR_BASE_SIZE64 section_type = self.rVDR_ nextVDR = 0 dataType = cdataType if dataType == -1: raise ValueError("Bad data type.") maxRec = -1 headVXR = 0 tailVXR = 0 flags = 0 if recVary: flags = self._set_bit(flags, 0) flags = self._set_bit(flags, 1) sRecords = sparse rfuB = 0 rfuC = -1 rfuF = -1 if zVar: num = len(self.zvars) else: num = len(self.rvars) if compression > 0: offsetCPRorSPR = self._write_cpr(f, self.GZIP_COMPRESSION, compression) flags = self._set_bit(flags, 2) else: offsetCPRorSPR = -1 if blockingfactor is None: blockingFactor = 1 else: blockingFactor = blockingfactor # Increase the block size to account for "zDimSizes" and "DimVarys" fields if numDims > 0: if zVar: block_size = block_size + numDims * 8 else: block_size = block_size + numDims * 4 # Determine pad value if pad is not None: if dataType == 51 or dataType == 52: # pad needs to be the correct number of elements if len(pad) < numElems: pad += "\0" * (numElems - len(pad)) elif len(pad) > numElems: pad = pad[:numElems] pad_bytes = pad.encode() else: dummy, pad_bytes = self._convert_data(dataType, numElems, 1, pad) else: pad_bytes = self._default_pad(dataType, numElems) f.seek(0, 2) byte_loc = f.tell() block_size += len(pad_bytes) vdr = bytearray(block_size) # if (dataType == 51): # numElems = len(pad) vdr[0:8] = struct.pack(">q", block_size) vdr[8:12] = struct.pack(">i", section_type) vdr[12:20] = struct.pack(">q", nextVDR) vdr[20:24] = struct.pack(">i", dataType) vdr[24:28] = struct.pack(">i", maxRec) vdr[28:36] = struct.pack(">q", headVXR) vdr[36:44] = struct.pack(">q", tailVXR) vdr[44:48] = struct.pack(">i", flags) vdr[48:52] = struct.pack(">i", sRecords) vdr[52:56] = struct.pack(">i", rfuB) vdr[56:60] = struct.pack(">i", rfuC) vdr[60:64] = struct.pack(">i", rfuF) vdr[64:68] = struct.pack(">i", numElems) vdr[68:72] = struct.pack(">i", num) vdr[72:80] = struct.pack(">q", offsetCPRorSPR) vdr[80:84] = struct.pack(">i", blockingFactor) tofill = 256 - len(name) vdr[84:340] = (name + "\0" * tofill).encode() if zVar: vdr[340:344] = struct.pack(">i", numDims) if numDims > 0: for i in range(0, numDims): vdr[344 + i * 4 : 344 + (i + 1) * 4] = struct.pack(">i", dimSizes[i]) ist = 344 + numDims * 4 for i in range(0, numDims): vdr[ist + i * 4 : ist + (i + 1) * 4] = struct.pack(">i", self.VARY) ist = 344 + 8 * numDims else: if numDims > 0: for i in range(0, numDims): if dimVary[i] or dimVary[i] != 0: vdr[340 + i * 4 : 344 + i * 4] = struct.pack(">i", self.VARY) else: vdr[340 + i * 4 : 344 + i * 4] = struct.pack(">i", self.NOVARY) ist = 340 + 4 * numDims vdr[ist:block_size] = pad_bytes f.write(vdr) # Set variable info if not zVar: numDims = self.num_rdim dimSizes = self.rdim_sizes info = (name, byte_loc, numDims, dimSizes, dimVary) # Update the pointers from the CDR/previous VDR if zVar: self.zvarsinfo[num] = info self.zvars.append(name) if num > 0: # VDR's VDRnext self._update_offset_value(f, self.zvarsinfo[num - 1][1] + 12, 8, byte_loc) # GDR's NzVars self._update_offset_value(f, self.gdr_head + 60, 4, num + 1) else: self.rvarsinfo[num] = info self.rvars.append(name) if num > 0: # VDR's VDRnext self._update_offset_value(f, self.rvarsinfo[num - 1][1] + 12, 8, byte_loc) # GDR's NrVars self._update_offset_value(f, self.gdr_head + 44, 4, num + 1) return num, byte_loc def _write_vxr(self, f: io.BufferedWriter, numEntries: Optional[int] = None) -> int: """ Creates a VXR at the end of the file. Returns byte location of the VXR The First, Last, and Offset fields will need to be filled in later """ f.seek(0, 2) byte_loc = f.tell() section_type = self.VXR_ nextVXR = 0 if numEntries is None: nEntries = self.NUM_VXR_ENTRIES else: nEntries = int(numEntries) block_size = self.VXR_BASE_SIZE64 + (4 + 4 + 8) * nEntries nUsedEntries = 0 firsts = [-1] * nEntries lasts = [-1] * nEntries offsets = [-1] * nEntries vxr = bytearray(block_size) vxr[0:8] = struct.pack(">q", block_size) vxr[8:12] = struct.pack(">i", section_type) vxr[12:20] = struct.pack(">q", nextVXR) vxr[20:24] = struct.pack(">i", nEntries) vxr[24:28] = struct.pack(">i", nUsedEntries) estart = 28 + 4 * nEntries vxr[28:estart] = struct.pack(">%si" % nEntries, *firsts) eend = estart + 4 * nEntries vxr[estart:eend] = struct.pack(">%si" % nEntries, *lasts) vxr[eend:block_size] = struct.pack(">%sq" % nEntries, *offsets) f.write(vxr) return byte_loc def _write_vvr(self, f: io.BufferedWriter, data: bytes) -> int: """ Writes a vvr to the end of file "f" with the byte stream "data". """ f.seek(0, 2) byte_loc = f.tell() block_size = self.VVR_BASE_SIZE64 + len(data) section_type = self.VVR_ vvr1 = bytearray(12) vvr1[0:8] = struct.pack(">q", block_size) vvr1[8:12] = struct.pack(">i", section_type) f.write(vvr1) f.write(data) return byte_loc def _write_cpr(self, f: io.BufferedWriter, cType: int, parameter: int) -> int: """ Write compression info to the end of the file in a CPR. """ f.seek(0, 2) byte_loc = f.tell() block_size = self.CPR_BASE_SIZE64 + 4 section_type = self.CPR_ rfuA = 0 pCount = 1 cpr = bytearray(block_size) cpr[0:8] = struct.pack(">q", block_size) cpr[8:12] = struct.pack(">i", section_type) cpr[12:16] = struct.pack(">i", cType) cpr[16:20] = struct.pack(">i", rfuA) cpr[20:24] = struct.pack(">i", pCount) cpr[24:28] = struct.pack(">i", parameter) f.write(cpr) return byte_loc def _write_cvvr(self, f: io.BufferedWriter, data: Any) -> int: """ Write compressed "data" variable to the end of the file in a CVVR """ f.seek(0, 2) byte_loc = f.tell() cSize = len(data) block_size = self.CVVR_BASE_SIZE64 + cSize section_type = self.CVVR_ rfuA = 0 cvvr1 = bytearray(24) cvvr1[0:8] = struct.pack(">q", block_size) cvvr1[8:12] = struct.pack(">i", section_type) cvvr1[12:16] = struct.pack(">i", rfuA) cvvr1[16:24] = struct.pack(">q", cSize) f.write(cvvr1) f.write(data) return byte_loc def _write_ccr(self, f: io.BufferedWriter, g: io.BufferedWriter, level: int) -> None: """ Write a CCR to file "g" from file "f" with level "level". Currently, only handles gzip compression. Parameters: f : file Uncompressed file to read from g : file File to read the compressed file into level : int The level of the compression from 0 to 9 Returns: None """ f.seek(8) data = f.read() uSize = len(data) section_type = self.CCR_ rfuA = 0 cData = gzip_deflate(data, level) block_size = self.CCR_BASE_SIZE64 + len(cData) cprOffset = 0 ccr1 = bytearray(32) # ccr1[0:4] = binascii.unhexlify(CDF.V3magicNUMBER_1) # ccr1[4:8] = binascii.unhexlify(CDF.V3magicNUMBER_2c) ccr1[0:8] = struct.pack(">q", block_size) ccr1[8:12] = struct.pack(">i", section_type) ccr1[12:20] = struct.pack(">q", cprOffset) ccr1[20:28] = struct.pack(">q", uSize) ccr1[28:32] = struct.pack(">i", rfuA) g.seek(0, 2) g.write(ccr1) g.write(cData) cprOffset = self._write_cpr(g, self.GZIP_COMPRESSION, level) self._update_offset_value(g, 20, 8, cprOffset) def _convert_option(self) -> str: """ Determines which symbol to use for numpy conversions > : a little endian system to big endian ordering < : a big endian system to little endian ordering = : No conversion """ data_endian = "little" if ( self._encoding == 1 or self._encoding == 2 or self._encoding == 5 or self._encoding == 7 or self._encoding == 9 or self._encoding == 11 or self._encoding == 12 or self._encoding == 18 ): data_endian = "big" if sys.byteorder == "little" and data_endian == "big": # big->little order = ">" elif sys.byteorder == "big" and data_endian == "little": # little->big order = "<" else: # no conversion order = "=" return order @staticmethod def _convert_type(data_type: int) -> str: """ Converts CDF data types into python types """ if data_type in (1, 41): dt_string = "b" elif data_type == 2: dt_string = "h" elif data_type == 4: dt_string = "i" elif data_type in (8, 33): dt_string = "q" elif data_type == 11: dt_string = "B" elif data_type == 12: dt_string = "H" elif data_type == 14: dt_string = "I" elif data_type in (21, 44): dt_string = "f" elif data_type in (22, 45, 31): dt_string = "d" elif data_type == 32: dt_string = "d" elif data_type in (51, 52): dt_string = "s" else: dt_string = "" return dt_string @staticmethod def _convert_nptype(data_type: int, data: Any) -> bytes: """ Converts "data" of CDF type "data_type" into a numpy array """ if data_type in (1, 41): return np.int8(data).tobytes() elif data_type == 2: return np.int16(data).tobytes() elif data_type == 4: return np.int32(data).tobytes() elif (data_type == 8) or (data_type == 33): return np.int64(data).tobytes() elif data_type == 11: return np.uint8(data).tobytes() elif data_type == 12: return np.uint16(data).tobytes() elif data_type == 14: return np.uint32(data).tobytes() elif (data_type == 21) or (data_type == 44): return np.float32(data).tobytes() elif (data_type == 22) or (data_type == 45) or (data_type == 31): return np.float64(data).tobytes() elif data_type == 32: return np.complex128(data).tobytes() elif ((data_type) == 51) or ((data_type) == 52): utf8_bytes = np.asarray(data).astype("U").tobytes() return utf8_bytes.decode().replace("\x00", "").encode("ASCII") else: return data def _default_pad(self, data_type: int, numElems: int) -> bytes: """ Determines the default pad data for a "data_type" """ order = self._convert_option() if (data_type == 1) or (data_type == 41): pad_value = struct.pack(order + "b", -127) elif data_type == 2: pad_value = struct.pack(order + "h", -32767) elif data_type == 4: pad_value = struct.pack(order + "i", -2147483647) elif (data_type == 8) or (data_type == 33): pad_value = struct.pack(order + "q", -9223372036854775807) elif data_type == 11: pad_value = struct.pack(order + "B", 254) elif data_type == 12: pad_value = struct.pack(order + "H", 65534) elif data_type == 14: pad_value = struct.pack(order + "I", 4294967294) elif (data_type == 21) or (data_type == 44): pad_value = struct.pack(order + "f", -1.0e30) elif (data_type == 22) or (data_type == 45): pad_value = struct.pack(order + "d", -1.0e30) elif data_type == 31: pad_value = struct.pack(order + "d", 0.0) elif data_type == 32: pad_value = struct.pack(order + "2d", *[0.0, 0.0]) elif (data_type == 51) or (data_type == 52): tmpPad = str(" " * numElems).encode() form = str(numElems) pad_value = struct.pack(form + "b", *tmpPad) return pad_value def _numpy_to_bytes(self, data_type: int, num_values: int, num_elems: int, indata: npt.NDArray) -> Tuple[int, bytes]: """ Converts a numpy array of numbers into a byte stream Parameters ---------- data_type : int The CDF file data type num_values : int The number of values in each record num_elems: int The number of elements in each value indata : (varies) The data to be converted Returns ------- recs : int The number of records generated by converting indata odata : byte stream The stream of bytes to write to the CDF file """ tofrom = self._convert_option() npdata = self._convert_nptype(data_type, indata) if indata.size == 0: # Check if the data being read in is zero size recs = 0 elif indata.size == num_values * num_elems: # Check if only one record is being read in recs = 1 else: recs = len(indata) dt_string = self._convert_type(data_type) if data_type == self.CDF_EPOCH16: num_elems = 2 * num_elems form = str(recs * num_values * num_elems) + dt_string form2 = tofrom + str(recs * num_values * num_elems) + dt_string datau = struct.unpack(form, npdata) return recs, struct.pack(form2, *datau) def _convert_data(self, data_type: int, num_elems: int, num_values: int, indata: Any) -> Tuple[int, bytes]: """ Converts "indata" into a byte stream Parameters ---------- data_type : int The CDF file data type num_elems : int The number of elements in the data num_values : int The number of values in each record indata : (varies) The data to be converted Returns ------- recs : int The number of records generated by converting indata odata : byte stream The stream of bytes to write to the CDF file """ recSize = self._datatype_size(data_type, num_elems) * num_values # List or Tuple data if isinstance(indata, list) or isinstance(indata, tuple): if (num_values != 1) and (len(indata) != num_values): raise Exception("Use numpy for inputting multidimensional arrays") size = len(indata) if data_type == self.CDF_CHAR or data_type == self.CDF_UCHAR: odata = "" for x in range(0, size): adata = indata[x] if isinstance(adata, list) or isinstance(adata, tuple): size2 = len(adata) for y in range(0, size2): odata += adata[y].ljust(num_elems, "\x00") else: size2 = 1 odata += adata.ljust(num_elems, "\x00") recs = int((size * size2) / num_values) return recs, odata.encode() elif all(isinstance(item, str) for item in indata): # Attempt to convert to a numpy array of numbers try: return self._numpy_to_bytes(data_type, num_values, num_elems, np.array([float(item) for item in indata])) except: # Do the best we can, create bytes from the string. # It will probably come out to be jibberish outdata = ("".join(indata)).ljust(num_elems, "\x00").encode() recs = int(len(outdata) / recSize) return recs, outdata else: try: return self._numpy_to_bytes(data_type, num_values, num_elems, np.array(indata)) except: tofrom = self._convert_option() dt_string = self._convert_type(data_type) recs = int(size / num_values) if data_type == self.CDF_EPOCH16 and isinstance(indata[0], complex): complex_data = [] for x in range(0, recs): complex_data.append(indata[x].real) complex_data.append(indata[x].imag) size = 2 * size indata = complex_data if data_type == self.CDF_EPOCH16 and not isinstance(indata[0], complex): recs = int(recs / 2) form = tofrom + str(size) + dt_string return recs, struct.pack(form, *indata) elif isinstance(indata, bytes): tofrom = self._convert_option() recs = int(len(indata) / recSize) dt_string = self._convert_type(data_type) size = recs * num_values * num_elems if data_type == self.CDF_EPOCH16: size = size * 2 form = str(size) + dt_string form2 = tofrom + form datau = struct.unpack(form, indata) return recs, struct.pack(form2, *datau) elif isinstance(indata, np.ndarray): if data_type == self.CDF_CHAR or data_type == self.CDF_UCHAR: size = len(np.atleast_1d(indata)) odata = "" if size >= 1: for x in range(0, size): if indata.ndim > 0: adata = indata[x] else: adata = indata if isinstance(adata, list) or isinstance(adata, tuple): size2 = len(adata) for y in range(0, size2): odata += str(adata[y]).ljust(num_elems, "\x00") elif isinstance(adata, np.ndarray): size2 = adata.size for y in range(0, size2): if adata.ndim > 0: bdata = adata[y] else: bdata = adata odata += str(bdata).ljust(num_elems, "\x00") else: size2 = 1 odata += str(adata).ljust(num_elems, "\x00") else: adata = "" size2 = 1 odata += str(adata).ljust(num_elems, "\x00") recs = int((size * size2) / num_values) return recs, odata.encode() else: return self._numpy_to_bytes(data_type, num_values, num_elems, indata) elif isinstance(indata, str) and (data_type == self.CDF_CHAR or data_type == self.CDF_UCHAR): # Just convert the string directly to bytes return 1, indata.ljust(num_elems, "\x00").encode() elif isinstance(indata, str) and data_type != self.CDF_CHAR and data_type == self.CDF_UCHAR: # Try to convert the single string to a numerical type. try: return self._numpy_to_bytes(data_type, num_values, num_elems, np.array([float(indata)])) except: # Do the best we can, create bytes from the string. # It will probably come out to be jibberish outdata = indata.ljust(num_elems, "\x00").encode() recs = int(len(outdata) / recSize) return recs, outdata else: try: # Try converting the data to numpy return self._numpy_to_bytes(data_type, num_values, num_elems, np.array(indata)) except: tofrom = self._convert_option() dt_string = self._convert_type(data_type) if data_type == self.CDF_EPOCH16: num_elems = 2 * num_elems try: recs = int(len(indata) / recSize) except Exception: recs = 1 if data_type == self.CDF_EPOCH16: complex_data = [] if recs > 1: for x in range(0, recs): complex_data.append(indata[x].real) complex_data.append(indata[x].imag) else: complex_data.append(indata.real) complex_data.append(indata.imag) indata = complex_data form = tofrom + str(recs * num_values * num_elems) + dt_string try: if recs * num_values * num_elems > 1: return recs, struct.pack(form, *indata) else: return recs, struct.pack(form, indata) except struct.error: raise ValueError("Unable to convert data to CDF format, data object cannot be of type string.") def _num_values(self, zVar: bool, varNum: int) -> int: """ Determines the number of values in a record. Set zVar=True if this is a zvariable. """ values = 1 if zVar: numDims = self.zvarsinfo[varNum][2] dimSizes = self.zvarsinfo[varNum][3] dimVary = self.zvarsinfo[varNum][4] else: numDims = self.rvarsinfo[varNum][2] dimSizes = self.rvarsinfo[varNum][3] dimVary = self.rvarsinfo[varNum][4] if numDims < 1: return values else: for x in range(0, numDims): if zVar: values = values * dimSizes[x] else: if dimVary[x] != 0: values = values * dimSizes[x] return values def _read_offset_value(self, f: io.BufferedWriter, offset: int, size: int) -> int: """ Reads an integer value from file "f" at location "offset". """ f.seek(offset, 0) if size == 8: return int.from_bytes(f.read(8), "big", signed=True) else: return int.from_bytes(f.read(4), "big", signed=True) def _update_offset_value(self, f: io.BufferedWriter, offset: int, size: int, value: Any) -> None: """ Writes "value" into location "offset" in file "f". """ f.seek(offset, 0) if size == 8: f.write(struct.pack(">q", value)) else: f.write(struct.pack(">i", value)) def _update_aedr_link(self, f: io.BufferedWriter, attrNum: int, zVar: bool, varNum: int, offset: int) -> None: """ Updates variable aedr links Parameters ---------- f : file The open CDF file attrNum : int The number of the attribute to change zVar : bool True if we are updating a z variable attribute varNum : int The variable number associated with this aedr offset : int The offset in the file to the AEDR """ # The offset to this AEDR's ADR adr_offset = self.attrsinfo[attrNum][2] # Get the number of entries if zVar: f.seek(adr_offset + 56, 0) # ADR's NzEntries entries = int.from_bytes(f.read(4), "big", signed=True) # ADR's MAXzEntry maxEntry = int.from_bytes(f.read(4), "big", signed=True) else: f.seek(adr_offset + 36, 0) # ADR's NgrEntries entries = int.from_bytes(f.read(4), "big", signed=True) # ADR's MAXgrEntry maxEntry = int.from_bytes(f.read(4), "big", signed=True) if entries == 0: # If this is the first entry, update the ADR to reflect if zVar: # AzEDRhead self._update_offset_value(f, adr_offset + 48, 8, offset) # NzEntries self._update_offset_value(f, adr_offset + 56, 4, 1) # MaxzEntry self._update_offset_value(f, adr_offset + 60, 4, varNum) else: # AgrEDRhead self._update_offset_value(f, adr_offset + 20, 8, offset) # NgrEntries self._update_offset_value(f, adr_offset + 36, 4, 1) # MaxgrEntry self._update_offset_value(f, adr_offset + 40, 4, varNum) else: if zVar: f.seek(adr_offset + 48, 0) head = int.from_bytes(f.read(8), "big", signed=True) else: f.seek(adr_offset + 20, 0) head = int.from_bytes(f.read(8), "big", signed=True) aedr = head previous_aedr = head done = False # For each entry, re-adjust file offsets if needed for _ in range(0, entries): f.seek(aedr + 28, 0) # Get variable number for entry num = int.from_bytes(f.read(4), "big", signed=True) if num > varNum: # insert an aedr to the chain # AEDRnext self._update_offset_value(f, previous_aedr + 12, 8, offset) # AEDRnext self._update_offset_value(f, offset + 12, 8, aedr) done = True break else: # move to the next aedr in chain f.seek(aedr + 12, 0) previous_aedr = aedr aedr = int.from_bytes(f.read(8), "big", signed=True) # If no link was made, update the last found aedr if not done: self._update_offset_value(f, previous_aedr + 12, 8, offset) if zVar: self._update_offset_value(f, adr_offset + 56, 4, entries + 1) if maxEntry < varNum: self._update_offset_value(f, adr_offset + 60, 4, varNum) else: self._update_offset_value(f, adr_offset + 36, 4, entries + 1) if maxEntry < varNum: self._update_offset_value(f, adr_offset + 40, 4, varNum) @staticmethod def _set_bit(value: int, bit: int) -> int: return value | (1 << bit) @staticmethod def _clear_bit(value: int, bit: int) -> int: return value & ~(1 << bit) @staticmethod def _checklistofstrs(obj: Any) -> bool: return bool(obj) and all(isinstance(elem, str) for elem in obj) @staticmethod def _checklistofNums(obj: Any) -> bool: """ This method checks if a list is ready to be immediately converted to binary format, or if any pre-processing needs to occur. Numbers and datetime64 objects can be immediately converted. """ if hasattr(obj, "__len__"): return all((isinstance(elem, numbers.Number) or isinstance(elem, np.datetime64)) for elem in obj) else: return isinstance(obj, numbers.Number) or isinstance(obj, np.datetime64) def _md5_compute(self, f: io.BufferedWriter) -> bytes: """ Computes the checksum of the file """ md5 = hashlib.md5() block_size = 16384 f.seek(0, 2) remaining = f.tell() f.seek(0) while remaining > block_size: data = f.read(block_size) remaining = remaining - block_size md5.update(data) if remaining > 0: data = f.read(remaining) md5.update(data) return md5.digest() @staticmethod def _make_blocks(records) -> List[Tuple[int, int]]: # type: ignore[no-untyped-def] """ Organizes the physical records into blocks in a list by placing consecutive physical records into a single block, so lesser VXRs will be created. [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Parameters ---------- records: list A list of records that there is data for Returns ------- sparse_blocks: list of list A list of ranges we have physical values for. Example: Input: [1,2,3,4,10,11,12,13,50,51,52,53] Output: [[1,4],[10,13],[50,53]] """ sparse_blocks = [] total = len(records) if total == 0: return [] x = 0 while x < total: recstart = records[x] y = x recnum = recstart # Find the location in the records before the next gap # Call this value "y" while (y + 1) < total: y = y + 1 nextnum = records[y] diff = nextnum - recnum if diff == 1: recnum = nextnum else: y = y - 1 break if (y + 1) == total: recend = records[total - 1] else: recend = records[y] x = y + 1 sparse_blocks.append((recstart, recend)) return sparse_blocks def _make_sparse_blocks(self, variable, records, data: List[Tuple[int, int, np.ndarray]]): # type: ignore[no-untyped-def] """ Handles the data for the variable with sparse records. Organizes the physical record numbers into blocks in a list: [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Place consecutive physical records into a single block If all records are physical, this calls _make_sparse_blocks_with_physical If any records are virtual, this calls _make_sparse_blocks_with_virtual Parameters: variable : dict the variable dictionary, with 'Num_Dims', 'Dim_Sizes', 'Data_Type', 'Num_Elements' key words, typically returned from a call to cdf read's varinq('variable', expand=True) records : list a list of physical records data : varies bytes array, numpy.ndarray or list of str form with all physical data or embedded virtual data (returned from call to varget('variable') for a sparse variable) Returns: sparse_blocks: list A list of sparse records/data in the form [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] """ if isinstance(data, dict): try: data = data["Data"] except Exception: logger.warning("Unknown dictionary.... Skip") return None if isinstance(data, np.ndarray): if len(records) == len(data): # All are physical data return self._make_sparse_blocks_with_physical(variable, records, data) elif len(records) < len(data): # There are some virtual data return self._make_sparse_blocks_with_virtual(variable, records, data) else: logger.warning("Invalid sparse data... " "Less data than the specified records... Skip") elif isinstance(data, bytes): record_length = len(records) for z in range(0, variable["Num_Dims"]): record_length = record_length * variable["Dim_Sizes"][z] if record_length == len(data): # All are physical data return self._make_sparse_blocks_with_physical(variable, records, data) elif record_length < len(data): # There are some virtual data return self._make_sparse_blocks_with_virtual(variable, records, data) else: logger.warning("Invalid sparse data... " "Less data than the specified records... Skip") elif isinstance(data, list): if isinstance(data[0], list): if not (all(isinstance(el, str) for el in data[0])): raise RuntimeError("Can not handle list data.... ", "Only support list of str...") else: if not (all(isinstance(el, str) for el in data)): raise RuntimeError("Can not handle list data.... ", "Only support list of str...") record_length = len(records) # for z in range(0, variable['Num_Dims']): # record_length = record_length * variable['Dim_Sizes'][z] if record_length == len(data): # All are physical data return self._make_sparse_blocks_with_physical(variable, records, data) elif record_length < len(data): # There are some virtual data return self._make_sparse_blocks_with_virtual(variable, records, data) else: logger.warning("Invalid sparse data... ", "Less data than the specified records... Skip") else: logger.warning("Invalid sparse data... ", "Less data than the specified records... Skip") return def _make_sparse_blocks_with_virtual(self, variable, records, data) -> List[Tuple[int, int, np.ndarray]]: # type: ignore[no-untyped-def] """ Handles the data for the variable with sparse records. Organizes the physical record numbers into blocks in a list: [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Place consecutive physical records into a single block Parameters: variable: dict the variable, returned from varinq('variable', expand=True) records: list a list of physical records data: varies bytes array, numpy.ndarray or list of str form with vitual data embedded, returned from varget('variable') call """ # Gather the ranges for which we have physical data sparse_blocks = self._make_blocks(records) sparse_data = [] if isinstance(data, np.ndarray): for sblock in sparse_blocks: # each block in this list: [starting_rec#, ending_rec#, data] starting = sblock[0] ending = sblock[1] + 1 sparse_data.append((sblock[0], sblock[1], data[starting:ending])) return sparse_data elif isinstance(data, bytes): y = 1 for z in range(0, variable["Num_Dims"]): y = y * variable["Dim_Sizes"][z] y = y * self._datatype_size(variable["Data_Type"], variable["Num_Elements"]) for x in sparse_blocks: # each block in this list: [starting_rec#, ending_rec#, data] starting = sblock[0] * y ending = (sblock[1] + 1) * y sparse_data.append((sblock[0], sblock[1], np.array(data[starting:ending]))) return sparse_data elif isinstance(data, list): for x in sparse_blocks: # each block in this list: [starting_rec#, ending_rec#, data] asparse = [] asparse.append(sblock[0]) asparse.append(sblock[1]) records = x[1] - x[0] + 1 datax = [] ist = sblock[0] for z in range(0, records): datax.append(data[ist + z]) sparse_data.append((sblock[0], sblock[1], np.array(datax))) return sparse_data else: logger.warning("Can not handle data... Skip") return None def _make_sparse_blocks_with_physical(self, variable, records, data) -> List[Tuple[int, int, np.ndarray]]: # type: ignore[no-untyped-def] # All records are physical... just a single block # [[0,end_rec,data]] # Determine if z variable if variable["Var_Type"].lower() == "zvariable": zVar = True else: zVar = False # Determine dimension information numDims = len(variable["Dim_Sizes"]) if zVar: numValues = 1 for x in range(0, numDims): numValues = numValues * variable["Dim_Sizes"][x] else: for x in range(0, numDims): if variable["Dim_Vary"][x] != 0: numValues = numValues * variable["Dim_Sizes"][x] # Determine blocks sparse_blocks = self._make_blocks(records) # Create a list in the form of [[0,100, [data]], ...] sparse_data = [] recStart = 0 for sblock in sparse_blocks: recs = sblock totalRecs = recs[1] - recs[0] + 1 recEnd = recStart + totalRecs sparse_data.append((recs[0], recs[1], data[recStart:recEnd])) recStart = recStart + totalRecs return sparse_data
class CDF: ''' Creates an empty CDF file. Parameters ---------- path : The path name of the CDF (with or without .cdf extension) cdf_spec : dict The optional specification of the CDF file. The keys for the dictionary are: - ['Majority']: 'row_major' or 'column_major', or its corresponding value. The default is 'column_major'. - ['Encoding']: Data encoding scheme. See the CDF documentation about the valid values. Can be in string or its numeric corresponding value. The default is 'host', which will be determined when the script runs. - ['Checksum']: Whether to set the data validation upon file creation. The default is False. - ['rDim_sizes']: The dimensional sizes, applicable only to rVariables. - ['Compressed']: Whether to compress the CDF at the file level. A value of 0-9 or True/False, the default is 0/False. ''' def __init__(self, path: Union[str, Path], cdf_spec: Optional[Dict[str, Any]] = None, delete: bool = False): pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def close(self) -> None: ''' Closes the CDF Class. 1. If compression was set, this is where the compressed file is written. 2. If a checksum is needed, this will place the checksum at the end of the file. ''' pass @is_open def write_globalattrs(self, globalAttrs): ''' Writes the global attributes. Parameters ---------- globalAttrs: dict Global attribute name(s) and their value(s) pair(s). The value(s) is a dictionary of entry number and value pair(s). For example:: globalAttrs={} globalAttrs['Global1']={0: 'Global Value 1'} globalAttrs['Global2']={0: 'Global Value 2'} For a non-string value, use a list with the value and its CDF data type. For example:: globalAttrs['Global3']={0: [12, 'cdf_int4']} globalAttrs['Global4']={0: [12.34, 'cdf_double']} If the data type is not provided, a corresponding CDF data type is assumed:: globalAttrs['Global3']={0: 12} as 'cdf_int4' globalAttrs['Global4']={0: 12.34} as 'cdf_double' CDF allows multi-values for non-string data for an attribute:: globalAttrs['Global5']={0: [[12.34,21.43], 'cdf_double']} For multi-entries from a global variable, they should be presented in this form:: GA6={} GA6[0]='abcd' GA6[1]=[12, 'cdf_int2'] GA6[2]=[12.5, 'cdf_float'] GA6[3]=[[0,1,2], 'cdf_int8'] globalAttrs['Global6']=GA6 .... f.write_globalattrs(globalAttrs) ''' pass @is_open def write_variableattrs(self, variableAttrs): ''' Writes a variable's attributes, provided the variable already exists. Parameters ---------- variableAttrs : dict Variable attribute name and its entry value pair(s). The entry value is also a dictionary of variable id and value pair(s). Variable id can be the variable name or its id number in the file. Use write_var function if the variable does not exist. For example:: variableAttrs={} entries_1={} entries_1['var_name_1'] = 'abcd' entries_1['var_name_2'] = [12, 'cdf_int4'] .... variableAttrs['attr_name_1']=entries_1 entries_2={} entries_2['var_name_1'] = 'xyz' entries_2['var_name_2'] = [[12, 34], 'cdf_int4'] .... variableAttrs['attr_name_2']=entries_2 .... .... f.write_variableattrs(variableAttrs) ''' pass @is_open def write_variableattrs(self, variableAttrs): ''' Writes a variable, along with variable attributes and data. Parameters ---------- var_spec : dict The specifications of the variable. The required/optional keys for creating a variable: Required keys: - ['Variable']: The name of the variable - ['Data_Type']: the CDF data type - ['Num_Elements']: The number of elements. Always 1 the for numeric type. The char length for string type. - ['Rec_Vary']: Record variance For zVariables: - ['Dim_Sizes']: The dimensional sizes for zVariables only. Use [] for 0-dimension. Each and every dimension is varying for zVariables. For rVariables: - ['Dim_Vary']: The dimensional variances for rVariables only. Optional keys: - ['Var_Type']: Whether the variable is a zVariable or rVariable. Valid values: "zVariable" and "rVariable". The default is "zVariable". - ['Sparse']: Whether the variable has sparse records. Valid values are "no_sparse", "pad_sparse", and "prev_sparse". The default is 'no_sparse'. - ['Compress']: Set the gzip compression level (0 to 9), 0 for no compression. The default is to compress with level 6 (done only if the compressed data is less than the uncompressed data). - ['Block_Factor']: The blocking factor, the number of records in a chunk when the variable is compressed. - ['Pad']: The padded value (in bytes, numpy.ndarray or string) var_attrs : dict {attribute:value} pairs. The attribute is the name of a variable attribute. The value can have its data type specified for the numeric data. If not, based on Python's type, a corresponding CDF type is assumed: CDF_INT4 for int, CDF_DOUBLE for float, CDF_EPOCH16 for complex and and CDF_INT8 for long. For example, the following defined attributes will have the same types in the CDF:: var_attrs= { 'attr1': 'value1', 'attr2': 12.45, 'attr3': [3,4,5], ..... } With data type (in the list form):: var_attrs= { 'attr1': 'value1', 'attr2': [12.45, 'CDF_DOUBLE'], 'attr3': [[3,4,5], 'CDF_INT4'], ..... } var_data : The data for the variable. If the variable is a regular variable without sparse records, it must be in a single structure of bytes, or numpy.ndarray for numeric variable, or str or list of strs for string variable. If the variable has sparse records, var_data should be presented in a list/tuple with two elements, the first being a list/tuple that contains the physical record number(s), the second being the variable data in bytes, numpy.ndarray, or a list of strings. Variable data can have just physical records' data (with the same number of records as the first element) or have data from both physical records and virtual records (which with filled data). The var_data has the form:: [[rec_#1,rec_#2,rec_#3,...], [data_#1,data_#2,data_#3,...]] See the sample for its setup. ''' pass def _write_var_attrs(self, f: io.BufferedWriter, varNum: int, var_attrs: Dict[str, Any], zVar: bool) -> None: ''' Writes ADRs and AEDRs for variables Parameters: f : file The open CDF file varNum : int The variable number for adding attributes var_attrs : dict A dictionary object full of variable attributes zVar : bool True if varNum is referencing a z variable Returns: None ''' pass def _write_var_data_nonsparse( self, f: io.BufferedWriter, zVar: bool, var: int, dataType: int, numElems: int, recVary: bool, compression: int, blockingfactor: int, indata: Union[np.ndarray, bytearray, Dict[str, np.ndarray]], ) -> int: ''' Creates VVRs and the corresponding VXRs full of "indata" data. If there is no compression, creates exactly one VXR and VVR If there is compression Parameters ---------- f : file The open CDF file zVar : bool True if this is z variable data var : str The name of the variable dataType : int the CDF variable type numElems : int number of elements in each record recVary : bool True if each record is unque compression : int The amount of compression blockingfactor: int The size (in number of records) of a VVR data block indata : varies the data to write, should be a numpy or byte array Returns ------- recs : int The number of records ''' pass def _write_var_data_sparse( self, f: io.BufferedWriter, zVar: bool, var: int, dataType: int, numElems: int, recVary: bool, oneblock: Tuple[int, int, np.ndarray], ) -> int: ''' Writes a VVR and a VXR for this block of sparse data Parameters: f : file The open CDF file zVar : bool True if this is for a z variable var : int The variable number dataType : int The CDF data type of this variable numElems : int The number of elements in each record recVary : bool True if the value varies across records oneblock: list A list of data in the form [startrec, endrec, [data]] Returns: recend : int Just the "endrec" value input by the user in "oneblock" ''' pass def _create_vxr(self, f: io.BufferedWriter, recStart: int, recEnd: int, currentVDR: int, priorVXR: int, vvrOffset: int) -> int: ''' Create a VXR AND use a VXR Parameters: f : file The open CDF file recStart : int The start record of this block recEnd : int The ending record of this block currentVDR : int The byte location of the variables VDR priorVXR : int The byte location of the previous VXR vvrOffset : int The byte location of ther VVR Returns: vxroffset : int The byte location of the created vxr ''' pass def _use_vxrentry(self, f: io.BufferedWriter, VXRoffset: int, recStart: int, recEnd: int, offset: int) -> int: ''' Adds a VVR pointer to a VXR ''' pass def _add_vxr_levels_r(self, f: io.BufferedWriter, vxrhead: int, numVXRs: int) -> Tuple[int, int]: ''' Build a new level of VXRs... make VXRs more tree-like From: VXR1 -> VXR2 -> VXR3 -> VXR4 -> ... -> VXRn To: new VXR1 / | VXR2 VXR3 VXR4 / | ... VXR5 .......... VXRn Parameters ---------- f : file The open CDF file vxrhead : int The byte location of the first VXR for a variable numVXRs : int The total number of VXRs Returns ------- newVXRhead : int The byte location of the newest VXR head newvxroff : int The byte location of the last VXR head ''' pass def _update_vdr_vxrheadtail(self, f: io.BufferedWriter, vdr_offset: int, VXRoffset: int) -> None: ''' This sets a VXR to be the first and last VXR in the VDR ''' pass def _get_recrange(self, f: io.BufferedWriter, VXRoffset: int) -> Tuple[int, int]: ''' Finds the first and last record numbers pointed by the VXR Assumes the VXRs are in order ''' pass @staticmethod def _majority_token(major: str) -> int: ''' Returns the numberical type for a CDF row/column major type ''' pass @staticmethod def _encoding_token(encoding: str) -> int: ''' Returns the numberical type for a CDF encoding type ''' pass @staticmethod def _datatype_token(datatype: str) -> int: ''' Returns the numberical type for a CDF data type ''' pass def _datatype_define(self, value: Union[str, int, float, complex, np.ndarray]) -> Tuple[int, int]: pass @staticmethod def _datatype_size(datatype: int, numElms: int) -> int: ''' Gets datatype size Parameters: datatype : int CDF variable data type numElms : int number of elements Returns: numBytes : int The number of bytes for the data ''' pass @staticmethod def _sparse_token(sparse: str) -> int: ''' Returns the numerical CDF value for sparseness. ''' pass def _write_cdr(self, f: io.BufferedWriter, major: int, encoding: int, checksum: int) -> int: pass def _write_gdr(self, f: io.BufferedWriter) -> int: pass def _write_adr(self, f: io.BufferedWriter, gORv: bool, name: str) -> Tuple[int, int]: ''' Writes and ADR to the end of the file. Additionally, it will update the offset values to either the previous ADR or the ADRhead field in the GDR. Parameters ---------- f : file The open CDF file gORv : bool True if a global attribute, False if variable attribute name : str name of the attribute Returns ------- num : int The attribute number byte_loc : int The current location in file f ''' pass def _write_aedr( self, f: io.BufferedWriter, gORz: bool, attrNum: int, entryNum: int, value: Union[Number, np.ndarray], pdataType: int, pnumElems: int, zVar: bool, ) -> int: ''' Writes an aedr into the end of the file. Parameters ---------- f : file The current open CDF file gORz : bool True if this entry is for a global or z variable, False if r variable attrNum : int Number of the attribute this aedr belongs to. entryNum : int Number of the entry value : The value of this entry pdataType : int The CDF data type of the value pnumElems : int Number of elements in the value. zVar : bool True if this entry belongs to a z variable Returns ------- byte_loc : int This current location in the file after writing the aedr. ''' pass def _write_vdr( self, f: io.BufferedWriter, cdataType: int, numElems: int, numDims: int, dimSizes: List[int], name: str, dimVary: List[bool], recVary: bool, sparse: int, blockingfactor: int, compression: int, pad: str, zVar: bool, ) -> Tuple[int, int]: ''' Writes a VDR block to the end of the file. Parameters ---------- f : file The open CDF file cdataType : int The CDF data type numElems : int The number of elements in the variable numDims : int The number of dimensions in the variable dimSizes : int The size of each dimension name : str The name of the variable dimVary : array of bool Bool array of size numDims. True if a dimension is physical, False if a dimension is not physical recVary : bool True if each record is unique sparse : bool True if using sparse records blockingfactor: int No idea compression : int The level of compression between 0-9 pad : num The pad values to insert zVar : bool True if this variable is a z variable Returns ------- num : int The number of the variable byte_loc : int The current byte location within the file ''' pass def _write_vxr(self, f: io.BufferedWriter, numEntries: Optional[int] = None) -> int: ''' Creates a VXR at the end of the file. Returns byte location of the VXR The First, Last, and Offset fields will need to be filled in later ''' pass def _write_vvr(self, f: io.BufferedWriter, data: bytes) -> int: ''' Writes a vvr to the end of file "f" with the byte stream "data". ''' pass def _write_cpr(self, f: io.BufferedWriter, cType: int, parameter: int) -> int: ''' Write compression info to the end of the file in a CPR. ''' pass def _write_cvvr(self, f: io.BufferedWriter, data: Any) -> int: ''' Write compressed "data" variable to the end of the file in a CVVR ''' pass def _write_ccr(self, f: io.BufferedWriter, g: io.BufferedWriter, level: int) -> None: ''' Write a CCR to file "g" from file "f" with level "level". Currently, only handles gzip compression. Parameters: f : file Uncompressed file to read from g : file File to read the compressed file into level : int The level of the compression from 0 to 9 Returns: None ''' pass def _convert_option(self) -> str: ''' Determines which symbol to use for numpy conversions > : a little endian system to big endian ordering < : a big endian system to little endian ordering = : No conversion ''' pass @staticmethod def _convert_type(data_type: int) -> str: ''' Converts CDF data types into python types ''' pass @staticmethod def _convert_nptype(data_type: int, data: Any) -> bytes: ''' Converts "data" of CDF type "data_type" into a numpy array ''' pass def _default_pad(self, data_type: int, numElems: int) -> bytes: ''' Determines the default pad data for a "data_type" ''' pass def _numpy_to_bytes(self, data_type: int, num_values: int, num_elems: int, indata: npt.NDArray) -> Tuple[int, bytes]: ''' Converts a numpy array of numbers into a byte stream Parameters ---------- data_type : int The CDF file data type num_values : int The number of values in each record num_elems: int The number of elements in each value indata : (varies) The data to be converted Returns ------- recs : int The number of records generated by converting indata odata : byte stream The stream of bytes to write to the CDF file ''' pass def _convert_data(self, data_type: int, num_elems: int, num_values: int, indata: Any) -> Tuple[int, bytes]: ''' Converts "indata" into a byte stream Parameters ---------- data_type : int The CDF file data type num_elems : int The number of elements in the data num_values : int The number of values in each record indata : (varies) The data to be converted Returns ------- recs : int The number of records generated by converting indata odata : byte stream The stream of bytes to write to the CDF file ''' pass def _num_values(self, zVar: bool, varNum: int) -> int: ''' Determines the number of values in a record. Set zVar=True if this is a zvariable. ''' pass def _read_offset_value(self, f: io.BufferedWriter, offset: int, size: int) -> int: ''' Reads an integer value from file "f" at location "offset". ''' pass def _update_offset_value(self, f: io.BufferedWriter, offset: int, size: int, value: Any) -> None: ''' Writes "value" into location "offset" in file "f". ''' pass def _update_aedr_link(self, f: io.BufferedWriter, attrNum: int, zVar: bool, varNum: int, offset: int) -> None: ''' Updates variable aedr links Parameters ---------- f : file The open CDF file attrNum : int The number of the attribute to change zVar : bool True if we are updating a z variable attribute varNum : int The variable number associated with this aedr offset : int The offset in the file to the AEDR ''' pass @staticmethod def _set_bit(value: int, bit: int) -> int: pass @staticmethod def _clear_bit(value: int, bit: int) -> int: pass @staticmethod def _checklistofstrs(obj: Any) -> bool: pass @staticmethod def _checklistofNums(obj: Any) -> bool: ''' This method checks if a list is ready to be immediately converted to binary format, or if any pre-processing needs to occur. Numbers and datetime64 objects can be immediately converted. ''' pass def _md5_compute(self, f: io.BufferedWriter) -> bytes: ''' Computes the checksum of the file ''' pass @staticmethod def _make_blocks(records) -> List[Tuple[int, int]]: ''' Organizes the physical records into blocks in a list by placing consecutive physical records into a single block, so lesser VXRs will be created. [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Parameters ---------- records: list A list of records that there is data for Returns ------- sparse_blocks: list of list A list of ranges we have physical values for. Example: Input: [1,2,3,4,10,11,12,13,50,51,52,53] Output: [[1,4],[10,13],[50,53]] ''' pass def _make_sparse_blocks(self, variable, records, data: List[Tuple[int, int, np.ndarray]]): ''' Handles the data for the variable with sparse records. Organizes the physical record numbers into blocks in a list: [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Place consecutive physical records into a single block If all records are physical, this calls _make_sparse_blocks_with_physical If any records are virtual, this calls _make_sparse_blocks_with_virtual Parameters: variable : dict the variable dictionary, with 'Num_Dims', 'Dim_Sizes', 'Data_Type', 'Num_Elements' key words, typically returned from a call to cdf read's varinq('variable', expand=True) records : list a list of physical records data : varies bytes array, numpy.ndarray or list of str form with all physical data or embedded virtual data (returned from call to varget('variable') for a sparse variable) Returns: sparse_blocks: list A list of sparse records/data in the form [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] ''' pass def _make_sparse_blocks_with_virtual(self, variable, records, data) -> List[Tuple[int, int, np.ndarray]]: ''' Handles the data for the variable with sparse records. Organizes the physical record numbers into blocks in a list: [[start_rec1,end_rec1,data_1], [start_rec2,enc_rec2,data_2], ...] Place consecutive physical records into a single block Parameters: variable: dict the variable, returned from varinq('variable', expand=True) records: list a list of physical records data: varies bytes array, numpy.ndarray or list of str form with vitual data embedded, returned from varget('variable') call ''' pass def _make_sparse_blocks_with_physical(self, variable, records, data) -> List[Tuple[int, int, np.ndarray]]: pass
66
41
52
4
34
14
8
0.42
0
21
1
0
38
20
50
50
2,815
280
1,807
562
1,696
752
1,493
495
1,442
36
0
10
411
147,654
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.ADRInfo
class ADRInfo: scope: int next_adr_loc: int attribute_number: int num_gr_entry: int max_gr_entry: int num_z_entry: int max_z_entry: int first_z_entry: int first_gr_entry: int name: str
class ADRInfo: pass
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
11
1
10
0
11
1
10
0
0
0
0
147,655
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.AEDR
class AEDR: entry: Union[str, np.ndarray] data_type: int num_elements: int next_aedr: int entry_num: int num_strings: Optional[int] = None
class AEDR: pass
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7
0
7
2
6
0
7
2
6
0
0
0
0
147,656
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.GDRInfo
class GDRInfo: first_zvariable: int first_rvariable: int first_adr: int num_zvariables: int num_rvariables: int num_attributes: int rvariables_num_dims: int rvariables_dim_sizes: List[int] eof: int leapsecond_updated: Optional[int] = None
class GDRInfo: pass
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0
11
2
10
0
11
2
10
0
0
0
0
147,657
MAVENSDC/cdflib
cdflib/xarray/xarray_to_cdf.py
cdflib.xarray.xarray_to_cdf.ISTPError
class ISTPError(Exception): """ Exception raised for ISTP Compliance Errors """ def __init__(self, message: str = ""): super().__init__(message)
class ISTPError(Exception): ''' Exception raised for ISTP Compliance Errors ''' def __init__(self, message: str = ""): pass
2
1
2
0
2
0
1
1
1
2
0
0
1
0
1
11
7
1
3
2
1
3
3
2
1
1
3
0
1
147,658
MAVENSDC/cdflib
cdflib/s3.py
cdflib.s3.S3object
class S3object: """ Handler for S3 objects so they behave like files. S3 'read' reads specified byte range S3 'seek' sets byte range for subsequent readers """ def __init__(self, fhandle): self.pos = 0 # used to track where in S3 we are self.content_length = fhandle.content_length # size in bytes self.fhandle = fhandle self.temp_file = None def read(self, isize): if isize == -1: isize = self.content_length myrange = "bytes=%d-%d" % (self.pos, (self.pos + isize - 1)) self.pos += isize # advance the pointer stream = self.fhandle.get(Range=myrange)["Body"] rawdata = stream.read() # bdata=io.BytesIO(rawdata) return rawdata def seek(self, offset, from_what=0): if from_what == 2: # offset is from end of file, ugh, used only for checksum self.pos = self.content_length + offset elif from_what == 1: # from current position self.pos = self.pos + offset else: # usual default is 0, from start of file self.pos = offset def tell(self): return self.pos def fetchS3entire(self): obj = self.fhandle.get()["Body"] rawdata = obj["Body"].read() bdata = io.BytesIO(rawdata) return bdata
class S3object: ''' Handler for S3 objects so they behave like files. S3 'read' reads specified byte range S3 'seek' sets byte range for subsequent readers ''' def __init__(self, fhandle): pass def read(self, isize): pass def seek(self, offset, from_what=0): pass def tell(self): pass def fetchS3entire(self): pass
6
1
6
0
5
1
2
0.43
0
0
0
0
5
4
5
5
42
5
28
16
22
12
26
16
20
3
0
1
8
147,659
MAVENSDC/cdflib
cdflib/epochs_astropy.py
cdflib.epochs_astropy.CDFTT2000
class CDFTT2000(TimeFromEpoch): name = "cdf_tt2000" unit = 1.0 / (erfa.DAYSEC * 1e9) # Nanoseconds epoch_val = "2000-01-01 12:00:00" epoch_val2 = None epoch_scale = "tt" epoch_format = "iso"
class CDFTT2000(TimeFromEpoch): pass
1
0
0
0
0
0
0
0.14
1
0
0
0
0
0
0
0
7
0
7
7
6
1
7
7
6
0
1
0
0
147,660
MAVENSDC/cdflib
cdflib/dataclasses.py
cdflib.dataclasses.VDR
class VDR: data_type: int section_type: int next_vdr_location: int variable_number: int head_vxr: int last_vxr: int max_rec: int name: str num_dims: int dim_sizes: List[int] compression_bool: bool compression_level: int blocking_factor: int dim_vary: Union[List[int], List[bool]] record_vary: int num_elements: int sparse: int pad: Optional[Union[str, np.ndarray]] = None
class VDR: pass
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19
0
19
2
18
0
19
2
18
0
0
0
0
147,661
MAVENSDC/cdflib
cdflib/epochs_astropy.py
cdflib.epochs_astropy.CDFEpoch
class CDFEpoch(TimeFromEpoch): name = "cdf_epoch" unit = 1.0 / (erfa.DAYSEC * 1000) # Milliseconds epoch_val = "0000-01-01 00:00:00" epoch_val2 = None epoch_scale = "utc" epoch_format = "iso"
class CDFEpoch(TimeFromEpoch): pass
1
0
0
0
0
0
0
0.14
1
0
0
0
0
0
0
0
7
0
7
7
6
1
7
7
6
0
1
0
0
147,662
MAVENSDC/cdflib
cdflib/epochs_astropy.py
cdflib.epochs_astropy.CDFAstropy
class CDFAstropy: """ Class to encapsulate astropy time routines with CDF class. """ version = 3 release = 7 increment = 0 @staticmethod def convert_to_astropy(epochs: Union[Time, npt.ArrayLike], format: Optional[str] = None) -> Time: """ Convert CDF epochs to astropy time objects. Returns ------- astropy.time.Time """ # If already in Astropy time Units, do nothing if isinstance(epochs, Time): return epochs # If format is specified, then force it to do that if format is not None: return Time(epochs, format=format, precision=9) epochs = np.array(epochs) # Determine best format for the input type if epochs.dtype == np.int64: return Time(epochs, format="cdf_tt2000", precision=9) elif epochs.dtype == np.complex128: return Time(epochs.real, epochs.imag / 1000000000000.0, format="cdf_epoch16", precision=9) elif epochs.dtype == np.float64: return Time(epochs, format="cdf_epoch", precision=9) else: raise TypeError("Not sure how to handle type {}".format(type(epochs))) @staticmethod def encode(epochs: npt.ArrayLike, iso_8601: bool = True) -> npt.NDArray[np.str_]: epochs = CDFAstropy.convert_to_astropy(epochs) if iso_8601: return epochs.iso else: return epochs.strftime("%d-%b-%Y %H:%M:%S.%f") @staticmethod def breakdown(epochs: Union[Time, npt.ArrayLike]) -> npt.NDArray: # Returns either a single array, or a array of arrays depending on the input epochs = CDFAstropy.convert_to_astropy(epochs) if epochs.format == "cdf_tt2000": return CDFAstropy.breakdown_tt2000(epochs) elif epochs.format == "cdf_epoch": return CDFAstropy.breakdown_epoch(epochs) elif epochs.format == "cdf_epoch16": return CDFAstropy.breakdown_epoch16(epochs) raise TypeError("Not sure how to handle type {}".format(type(epochs))) @staticmethod def to_datetime(cdf_time: npt.ArrayLike) -> Time: cdf_time = CDFAstropy.convert_to_astropy(cdf_time) return cdf_time.datetime @staticmethod def unixtime(cdf_time: Union[Time, npt.ArrayLike]) -> npt.NDArray: """ Encodes the epoch(s) into seconds after 1970-01-01. Precision is only kept to the nearest microsecond. """ epochs = CDFAstropy.convert_to_astropy(cdf_time) return epochs.unix @staticmethod def compute(datetimes: npt.ArrayLike) -> npt.NDArray: datetimes = np.atleast_2d(datetimes) cdf_time = [] for d in datetimes: unix_seconds = datetime.datetime(d[0], d[1], d[2], d[3], d[4], d[5]).replace(tzinfo=timezone.utc).timestamp() if len(d) == 7: remainder_seconds = d[6] / 1000.0 astrotime = Time(unix_seconds, remainder_seconds, format="unix", precision=9) cdf_time.append(astrotime.cdf_epoch) if len(d) == 9: remainder_seconds = (d[6] / 1000.0) + (d[7] / 1000000.0) + (d[8] / 1000000000.0) astrotime = Time(unix_seconds, remainder_seconds, format="unix", precision=9) cdf_time.append(astrotime.cdf_tt2000) if len(d) == 10: remainder_seconds = (d[6] / 1000.0) + (d[7] / 1000000.0) + (d[8] / 1000000000.0) + (d[9] / 1000000000000.0) astrotime = Time(unix_seconds, remainder_seconds, format="unix", precision=9) cdf_time.append(astrotime.cdf_epoch16) return np.squeeze(cdf_time) @staticmethod def findepochrange( epochs: Union[Time, npt.ArrayLike], starttime: Optional[npt.ArrayLike] = None, endtime: Optional[npt.ArrayLike] = None ) -> Tuple[int, int]: if isinstance(starttime, list): start = CDFAstropy.compute(starttime) if isinstance(endtime, list): end = CDFAstropy.compute(endtime) epochs = CDFAstropy.convert_to_astropy(epochs) epochs_as_np = epochs.value indices = np.where((epochs_as_np >= start) & (epochs_as_np <= end)) return min(indices[0]), max(indices[0]) @staticmethod def breakdown_tt2000(tt2000: Time) -> npt.NDArray: tt2000strings = np.atleast_1d(tt2000.iso) times = [] for t in tt2000strings: date, time = t.split(" ") yyyy, mon, dd = date.split("-") hhmmss, decimal_seconds = time.split(".") decimal_seconds = "." + decimal_seconds hh, mm, ss = hhmmss.split(":") time_as_list = [] time_as_list.append(int(yyyy)) # year time_as_list.append(int(mon)) # month time_as_list.append(int(dd)) # day time_as_list.append(int(hh)) # hour time_as_list.append(int(mm)) # minute time_as_list.append(int(ss)) # second decimal_seconds = float(decimal_seconds) milliseconds = decimal_seconds * 1000 time_as_list.append(int(milliseconds)) # milliseconds microseconds = (milliseconds % 1) * 1000 time_as_list.append(int(microseconds)) # microseconds nanoseconds = (microseconds % 1) * 1000 time_as_list.append(int(nanoseconds)) # microseconds times.append(time_as_list) return np.squeeze(times) @staticmethod def breakdown_epoch16(epochs: Time) -> npt.NDArray: epoch16strings = np.atleast_1d(epochs.iso) times = [] for t in epoch16strings: time_as_list: List[int] = [] date, time = t.split(" ") yyyy, mon, dd = date.split("-") hhmmss, decimal_seconds = time.split(".") decimal_seconds = "." + decimal_seconds hh, mm, ss = hhmmss.split(":") time_as_list = [] time_as_list.append(int(yyyy)) # year time_as_list.append(int(mon)) # month time_as_list.append(int(dd)) # day time_as_list.append(int(hh)) # hour time_as_list.append(int(mm)) # minute time_as_list.append(int(ss)) # second decimal_seconds = float(decimal_seconds) milliseconds = decimal_seconds * 1000 time_as_list.append(int(milliseconds)) # milliseconds microseconds = (milliseconds % 1) * 1000 time_as_list.append(int(microseconds)) # microseconds nanoseconds = (microseconds % 1) * 1000 time_as_list.append(int(nanoseconds)) # nanoseconds picoseconds = (nanoseconds % 1) * 1000 time_as_list.append(int(picoseconds)) # picoseconds times.append(time_as_list) return np.squeeze(times) @staticmethod def breakdown_epoch(epochs: Time) -> npt.NDArray: epochstrings = np.atleast_1d(epochs.iso) times = [] for t in epochstrings: date, time = t.split(" ") yyyy, mon, dd = date.split("-") hhmmss, decimal_seconds = time.split(".") decimal_seconds = "." + decimal_seconds hh, mm, ss = hhmmss.split(":") time_as_list = [] time_as_list.append(int(yyyy)) # year time_as_list.append(int(mon)) # month time_as_list.append(int(dd)) # day time_as_list.append(int(hh)) # hour time_as_list.append(int(mm)) # minute time_as_list.append(int(ss)) # second decimal_seconds = float(decimal_seconds) milliseconds = decimal_seconds * 1000 time_as_list.append(int(milliseconds)) # milliseconds times.append(time_as_list) return np.squeeze(times) @staticmethod def parse(value: npt.ArrayLike) -> npt.NDArray: """ Parses the provided date/time string(s) into CDF epoch value(s). For CDF_EPOCH: 'yyyy-mm-dd hh:mm:ss.xxx' (in iso_8601). The string is the output from encode function. For CDF_EPOCH16: The string has to be in the form of 'yyyy-mm-dd hh:mm:ss.mmmuuunnnppp' (in iso_8601). The string is the output from encode function. For TT2000: The string has to be in the form of 'yyyy-mm-dd hh:mm:ss.mmmuuunnn' (in iso_8601). The string is the output from encode function. """ value = np.atleast_1d(value) time_list = [] for t in value: date, subs = t.split(".") if len(subs) == 3: time_list.append(Time(t, precision=9).cdf_epoch) if len(subs) == 12: time_list.append(Time(t, precision=9).cdf_epoch16) if len(subs) == 9: time_list.append(int(Time(t, precision=9).cdf_tt2000)) return np.squeeze(time_list)
class CDFAstropy: ''' Class to encapsulate astropy time routines with CDF class. ''' @staticmethod def convert_to_astropy(epochs: Union[Time, npt.ArrayLike], format: Optional[str] = None) -> Time: ''' Convert CDF epochs to astropy time objects. Returns ------- astropy.time.Time ''' pass @staticmethod def encode(epochs: npt.ArrayLike, iso_8601: bool = True) -> npt.NDArray[np.str_]: pass @staticmethod def breakdown(epochs: Union[Time, npt.ArrayLike]) -> npt.NDArray: pass @staticmethod def to_datetime(cdf_time: npt.ArrayLike) -> Time: pass @staticmethod def unixtime(cdf_time: Union[Time, npt.ArrayLike]) -> npt.NDArray: ''' Encodes the epoch(s) into seconds after 1970-01-01. Precision is only kept to the nearest microsecond. ''' pass @staticmethod def compute(datetimes: npt.ArrayLike) -> npt.NDArray: pass @staticmethod def findepochrange( epochs: Union[Time, npt.ArrayLike], starttime: Optional[npt.ArrayLike] = None, endtime: Optional[npt.ArrayLike] = None ) -> Tuple[int, int]: pass @staticmethod def breakdown_tt2000(tt2000: Time) -> npt.NDArray: pass @staticmethod def breakdown_epoch16(epochs: Time) -> npt.NDArray: pass @staticmethod def breakdown_epoch16(epochs: Time) -> npt.NDArray: pass @staticmethod def parse(value: npt.ArrayLike) -> npt.NDArray: ''' Parses the provided date/time string(s) into CDF epoch value(s). For CDF_EPOCH: 'yyyy-mm-dd hh:mm:ss.xxx' (in iso_8601). The string is the output from encode function. For CDF_EPOCH16: The string has to be in the form of 'yyyy-mm-dd hh:mm:ss.mmmuuunnnppp' (in iso_8601). The string is the output from encode function. For TT2000: The string has to be in the form of 'yyyy-mm-dd hh:mm:ss.mmmuuunnn' (in iso_8601). The string is the output from encode function. ''' pass
23
4
18
1
14
5
3
0.35
0
9
0
0
0
0
11
11
223
27
165
73
140
57
146
60
134
6
0
2
33
147,663
MAVENSDC/cdflib
cdflib/epochs_astropy.py
cdflib.epochs_astropy.CDFEpoch16
class CDFEpoch16(TimeFromEpoch): name = "cdf_epoch16" unit = 1.0 / (erfa.DAYSEC) # Seconds epoch_val = "0000-01-01 00:00:00" epoch_val2 = None epoch_scale = "utc" epoch_format = "iso"
class CDFEpoch16(TimeFromEpoch): pass
1
0
0
0
0
0
0
0.14
1
0
0
0
0
0
0
0
7
0
7
7
6
1
7
7
6
0
1
0
0
147,664
MChiciak/django-datatools
MChiciak_django-datatools/django_datatools/data_retriever.py
django_datatools.data_retriever.DataRetriever
class DataRetriever(object): """ This is a helper class for bulk inserts It will automatically retrieve the records desired based off a query set and will create any missing records. It uses a key for record lookup to increase performance dramatically """ def __init__(self, model_cls, query_set, key_parts): self.model_cls = model_cls self.key_parts = key_parts self.query_set = query_set.values(*(["id"] + list(self.key_parts))) self.record_lookup = None def set_record_lookup(self, force=False): if force: self.record_lookup = None self.query_set = self.query_set.all() if not self.record_lookup: self.record_lookup = dict() for record in self.query_set: self.record_lookup[self.get_record_key(record, self.key_parts)] = record['id'] @staticmethod def get_record_key(data_item, key_parts): record_key = '' for key_part in key_parts: key_value = '' if data_item[key_part] is None else str(data_item[key_part]) record_key += key_value return record_key def get_instance(self, record_key): self.set_record_lookup() if record_key in self.record_lookup: return self.record_lookup[record_key] return None def get_records(self): self.set_record_lookup() return self.record_lookup def bulk_get_or_create(self, data_list): """ data_list is the data to get or create We generate the query and set all the record keys based on passed in queryset Then we loop over each item in the data_list, which has the keys already! No need to generate them. Should save a lot of time Use values instead of the whole object, much faster Args: data_list: Returns: """ items_to_create = dict() for record_key, record_config in data_list.items(): if record_key not in items_to_create: record = self.get_instance(record_key) if not record: items_to_create[record_key] = self.model_cls(**record_config) if items_to_create: """ TODO. I think we can optimize this. Switch to values, get the primary id Query set is just select the model with that ID. Return the model object without running the full queryset again. Should be a lot faster. """ self.model_cls.objects.bulk_create(items_to_create.values()) self.set_record_lookup(True) return self.record_lookup
class DataRetriever(object): ''' This is a helper class for bulk inserts It will automatically retrieve the records desired based off a query set and will create any missing records. It uses a key for record lookup to increase performance dramatically ''' def __init__(self, model_cls, query_set, key_parts): pass def set_record_lookup(self, force=False): pass @staticmethod def get_record_key(data_item, key_parts): pass def get_instance(self, record_key): pass def get_records(self): pass def bulk_get_or_create(self, data_list): ''' data_list is the data to get or create We generate the query and set all the record keys based on passed in queryset Then we loop over each item in the data_list, which has the keys already! No need to generate them. Should save a lot of time Use values instead of the whole object, much faster Args: data_list: Returns: ''' pass
8
2
9
1
6
2
3
0.47
1
3
0
0
5
4
6
6
68
9
40
19
32
19
39
18
32
5
1
3
16
147,665
MDAnalysis/GridDataFormats
gridData/gOpenMol.py
gridData.gOpenMol.Plt
class Plt(object): """A class to represent a gOpenMol_ plt file. Only reading is implemented; either supply a filename to the constructor >>> G = Plt(filename) or load the file with the read method >>> G = Plt() >>> G.read(filename) The data is held in :attr:`GOpenMol.array` and all header information is in the dict :attr:`GOpenMol.header`. :attr:`Plt.shape` D-tuplet describing size in each dimension :attr:`Plt.origin` coordinates of the centre of the grid cell with index 0,0,...,0 :attr:`Plt.delta` DxD array describing the deltas """ _header_struct = (Record('rank', 'I', {3:'dimension'}), Record('surface','I', {1: 'VSS surface', 2: 'Orbital/density surface', 3: 'Probe surface', 42: 'gridcount', 100: 'OpenMol', 200: 'Gaussian 94/98', 201: 'Jaguar', 202: 'Gamess', 203: 'AutoDock', 204: 'Delphi/Insight', 205: 'Grid', }), # update in init with all user defined values Record('nz', 'I'), Record('ny', 'I'), Record('nx', 'I'), Record('zmin', 'f'), Record('zmax', 'f'), Record('ymin', 'f'), Record('ymax', 'f'), Record('xmin', 'f'), Record('xmax', 'f')) _data_bintype = 'f' # write(&value,sizeof(float),1L,output); def __init__(self, filename=None): self.filename = str(filename) # fix header_struct because I cannot do {...}.update() rec_surf = [r for r in self._header_struct if r.key == 'surface'][0] rec_surf.values.update(dict((k,'user-defined') for k in range(4,51) if k != 42)) # assemble format self._headerfmt = "".join([r.bintype for r in self._header_struct]) if not filename is None: self.read(filename) def read(self, filename): """Populate the instance from the plt file *filename*.""" from struct import calcsize, unpack if not filename is None: self.filename = str(filename) with open(self.filename, 'rb') as plt: h = self.header = self._read_header(plt) nentries = h['nx'] * h['ny'] * h['nz'] # quick and dirty... slurp it all in one go datafmt = h['bsaflag']+str(nentries)+self._data_bintype a = numpy.array(unpack(datafmt, plt.read(calcsize(datafmt)))) self.header['filename'] = self.filename self.array = a.reshape(h['nz'], h['ny'], h['nx']).transpose() # unpack plt in reverse!! self.delta = self._delta() self.origin = numpy.array([h['xmin'], h['ymin'], h['zmin']]) + 0.5*numpy.diagonal(self.delta) self.rank = h['rank'] @property def shape(self): return self.array.shape @property def edges(self): """Edges of the grid cells, origin at centre of 0,0,..,0 grid cell. Only works for regular, orthonormal grids. """ return [self.delta[d,d] * numpy.arange(self.shape[d]+1) + self.origin[d]\ - 0.5*self.delta[d,d] for d in range(self.rank)] def _delta(self): h = self.header qmin = numpy.array([h['xmin'],h['ymin'],h['zmin']]) qmax = numpy.array([h['xmax'],h['ymax'],h['zmax']]) delta = numpy.abs(qmax - qmin) / self.shape return numpy.diag(delta) def _read_header(self, pltfile): """Read header bytes, try all possibilities for byte order/size/alignment.""" nheader = struct.calcsize(self._headerfmt) names = [r.key for r in self._header_struct] binheader = pltfile.read(nheader) def decode_header(bsaflag='@'): h = dict(zip(names, struct.unpack(bsaflag+self._headerfmt, binheader))) h['bsaflag'] = bsaflag return h for flag in '@=<>': # try all endinaness and alignment options until we find something that looks sensible header = decode_header(flag) if header['rank'] == 3: break # only legal value according to spec header = None if header is None: raise TypeError("Cannot decode header --- corrupted or wrong format?") for rec in self._header_struct: if not rec.is_legal_dict(header): warnings.warn("Key %s: Illegal value %r" % (rec.key, header[rec.key])) return header def histogramdd(self): """Return array data as (edges,grid), i.e. a numpy nD histogram.""" return (self.array, self.edges)
class Plt(object): '''A class to represent a gOpenMol_ plt file. Only reading is implemented; either supply a filename to the constructor >>> G = Plt(filename) or load the file with the read method >>> G = Plt() >>> G.read(filename) The data is held in :attr:`GOpenMol.array` and all header information is in the dict :attr:`GOpenMol.header`. :attr:`Plt.shape` D-tuplet describing size in each dimension :attr:`Plt.origin` coordinates of the centre of the grid cell with index 0,0,...,0 :attr:`Plt.delta` DxD array describing the deltas ''' def __init__(self, filename=None): pass def read(self, filename): '''Populate the instance from the plt file *filename*.''' pass @property def shape(self): pass @property def edges(self): '''Edges of the grid cells, origin at centre of 0,0,..,0 grid cell. Only works for regular, orthonormal grids. ''' pass def _delta(self): pass def _read_header(self, pltfile): '''Read header bytes, try all possibilities for byte order/size/alignment.''' pass def decode_header(bsaflag='@'): pass def histogramdd(self): '''Return array data as (edges,grid), i.e. a numpy nD histogram.''' pass
11
5
9
0
7
2
2
0.37
1
5
0
0
7
7
7
7
118
14
79
37
67
29
55
34
45
6
1
2
15
147,666
MDAnalysis/GridDataFormats
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MDAnalysis_GridDataFormats/gridData/tests/test_grid.py
gridData.tests.test_grid.test_inheritance.DerivedGrid
class DerivedGrid(Grid): pass
class DerivedGrid(Grid): pass
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
43
2
0
2
1
1
0
2
1
1
0
2
0
0
147,667
MDAnalysis/GridDataFormats
gridData/mrc.py
gridData.mrc.MRC
class MRC(object): """Represent a MRC/CCP4 file. Load `MRC/CCP4 2014 <MRC2014 file format>`_ 3D volumetric data with the mrcfile_ library. Parameters ---------- filename : str (optional) input file (or stream), can be compressed Raises ------ ValueError If the unit cell is not orthorhombic or if the data are not volumetric. Attributes ---------- header : numpy.recarray Header data from the MRC file as a numpy record array. array : numpy.ndarray Data as a 3-dimensional array where axis 0 corresponds to X, axis 1 to Y, and axis 2 to Z. This order is always enforced, regardless of the order in the mrc file. delta : numpy.ndarray Diagonal matrix with the voxel size in X, Y, and Z direction (taken from the :attr:`mrcfile.mrcfile.voxel_size` attribute) origin : numpy.ndarray numpy array with coordinates of the coordinate system origin (computed from :attr:`header.origin`, the offsets :attr:`header.origin.nxstart`, :attr:`header.origin.nystart`, :attr:`header.origin.nzstart` and the spacing :attr:`delta`) rank : int The integer 3, denoting that only 3D maps are read. Notes ----- * Only volumetric (3D) densities are read. * Only orthorhombic unitcells supported (other raise :exc:`ValueError`) * Only reading is currently supported. .. versionadded:: 0.7.0 """ def __init__(self, filename=None): self.filename = filename if filename is not None: self.read(filename) def read(self, filename): """Populate the instance from the MRC/CCP4 file *filename*.""" if filename is not None: self.filename = filename with mrcfile.open(filename) as mrc: if not mrc.is_volume(): #pragma: no cover raise ValueError( "MRC file {} is not a volumetric density.".format(filename)) self.header = h = mrc.header.copy() # check for being orthorhombic if not np.allclose([h.cellb.alpha, h.cellb.beta, h.cellb.gamma], [90, 90, 90]): raise ValueError("Only orthorhombic unitcells are currently " "supported, not " "alpha={0}, beta={1}, gamma={2}".format( h.cellb.alpha, h.cellb.beta, h.cellb.gamma)) # mrc.data[z, y, x] indexed: convert to x,y,z as used in GridDataFormats # together with the axes orientation information in mapc/mapr/maps. # mapc, mapr, maps = 1, 2, 3 for Fortran-ordering and 3, 2, 1 for C-ordering. # Other combinations are possible. We reorder the data for the general case # by sorting mapc, mapr, maps in ascending order, i.e., to obtain x,y,z. # mrcfile provides the data in zyx shape (without regard to map*) so we first # transpose it to xyz and then reorient with axes_c_order. # # All other "xyz" quantitities are also reordered. axes_order = np.hstack([h.mapc, h.mapr, h.maps]) axes_c_order = np.argsort(axes_order) transpose_order = np.argsort(axes_order[::-1]) self.array = np.transpose(mrc.data, axes=transpose_order) self.delta = np.diag(np.array([mrc.voxel_size.x, mrc.voxel_size.y, mrc.voxel_size.z])) # the grid is shifted to the MRC origin by offset # (assume orthorhombic) offsets = np.hstack([h.nxstart, h.nystart, h.nzstart])[axes_c_order] * np.diag(self.delta) # GridData origin is centre of cell at x=col=0, y=row=0 z=seg=0 self.origin = np.hstack([h.origin.x, h.origin.y, h.origin.z]) + offsets self.rank = 3 @property def shape(self): """Shape of the :attr:`array`""" return self.array.shape @property def edges(self): """Edges of the grid cells, origin at centre of 0,0,0 grid cell. Only works for regular, orthonormal grids. """ # TODO: Add triclinic cell support. return [self.delta[d, d] * np.arange(self.shape[d] + 1) + self.origin[d] - 0.5 * self.delta[d, d] for d in range(self.rank)] def histogramdd(self): """Return array data as (edges,grid), i.e. a numpy nD histogram.""" return (self.array, self.edges)
class MRC(object): '''Represent a MRC/CCP4 file. Load `MRC/CCP4 2014 <MRC2014 file format>`_ 3D volumetric data with the mrcfile_ library. Parameters ---------- filename : str (optional) input file (or stream), can be compressed Raises ------ ValueError If the unit cell is not orthorhombic or if the data are not volumetric. Attributes ---------- header : numpy.recarray Header data from the MRC file as a numpy record array. array : numpy.ndarray Data as a 3-dimensional array where axis 0 corresponds to X, axis 1 to Y, and axis 2 to Z. This order is always enforced, regardless of the order in the mrc file. delta : numpy.ndarray Diagonal matrix with the voxel size in X, Y, and Z direction (taken from the :attr:`mrcfile.mrcfile.voxel_size` attribute) origin : numpy.ndarray numpy array with coordinates of the coordinate system origin (computed from :attr:`header.origin`, the offsets :attr:`header.origin.nxstart`, :attr:`header.origin.nystart`, :attr:`header.origin.nzstart` and the spacing :attr:`delta`) rank : int The integer 3, denoting that only 3D maps are read. Notes ----- * Only volumetric (3D) densities are read. * Only orthorhombic unitcells supported (other raise :exc:`ValueError`) * Only reading is currently supported. .. versionadded:: 0.7.0 ''' def __init__(self, filename=None): pass def read(self, filename): '''Populate the instance from the MRC/CCP4 file *filename*.''' pass @property def shape(self): '''Shape of the :attr:`array`''' pass @property def edges(self): '''Edges of the grid cells, origin at centre of 0,0,0 grid cell. Only works for regular, orthonormal grids. ''' pass def histogramdd(self): '''Return array data as (edges,grid), i.e. a numpy nD histogram.''' pass
8
5
11
0
7
4
2
1.57
1
2
0
0
5
6
5
5
114
20
37
19
29
58
28
16
22
4
1
2
9
147,668
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.gridconnections
class gridconnections(DXclass): """OpenDX gridconnections class""" def __init__(self,classid,shape=None,**kwargs): if shape is None: raise ValueError('all keyword arguments are required') self.id = classid self.name = 'gridconnections' self.component = 'connections' self.shape = numpy.asarray(shape) # D dimensional shape def write(self, stream): super(gridconnections, self).write( stream, ('counts '+self.ndformat(' %d')) % tuple(self.shape))
class gridconnections(DXclass): '''OpenDX gridconnections class''' def __init__(self,classid,shape=None,**kwargs): pass def write(self, stream): pass
3
1
5
0
5
1
2
0.18
1
3
0
0
2
4
2
8
13
1
11
7
8
2
10
7
7
2
2
1
3
147,669
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.field
class field(DXclass): """OpenDX container class The *field* is the top-level object and represents the whole OpenDX file. It contains a number of other objects. Instantiate a DX object from this class and add subclasses with :meth:`add`. """ # perhaps this should not derive from DXclass as those are # objects in field but a field cannot contain itself def __init__(self,classid='0',components=None,comments=None): """OpenDX object, which is build from a list of components. Parameters ---------- id : str arbitrary string components : dict dictionary of DXclass instances (no sanity check on the individual ids!) which correspond to * positions * connections * data comments : list list of strings; each string becomes a comment line prefixed with '#'. Avoid newlines. A field must have at least the components 'positions', 'connections', and 'data'. Those components are associated with objects belonging to the field. When writing a dx file from the field, only the required objects are dumped to the file. (For a more general class that can use field: Because there could be more objects than components, we keep a separate object list. When dumping the dx file, first all objects are written and then the field object describes its components. Objects are referenced by their unique id.) .. Note:: uniqueness of the *id* is not checked. Example ------- Create a new dx object:: dx = OpenDX.field('density',[gridpoints,gridconnections,array]) """ if components is None: components = dict(positions=None,connections=None,data=None) if comments is None: comments = ['OpenDX written by gridData.OpenDX', 'from https://github.com/MDAnalysis/GridDataFormats'] elif type(comments) is not list: comments = [str(comments)] self.id = classid # can be an arbitrary string self.name = 'field' self.component = None # cannot be a component of a field self.components = components self.comments= comments def _openfile_writing(self, filename): """Returns a regular or gz file stream for writing""" if filename.endswith('.gz'): return gzip.open(filename, 'wb') else: return open(filename, 'w') def write(self, filename): """Write the complete dx object to the file. This is the simple OpenDX format which includes the data into the header via the 'object array ... data follows' statement. Only simple regular arrays are supported. The format should be compatible with VMD's dx reader plugin. """ # comments (VMD chokes on lines of len > 80, so truncate) maxcol = 80 with self._openfile_writing(str(filename)) as outfile: for line in self.comments: comment = '# '+str(line) self._write_line(outfile, comment[:maxcol]+'\n') # each individual object for component, object in self.sorted_components(): object.write(outfile) # the field object itself super(field, self).write(outfile, quote=True) for component, object in self.sorted_components(): self._write_line(outfile, 'component "%s" value %s\n' % ( component, str(object.id))) def read(self, stream): """Read DX field from file. dx = OpenDX.field.read(dxfile) The classid is discarded and replaced with the one from the file. """ DXfield = self p = DXParser(stream) p.parse(DXfield) def add(self,component,DXobj): """add a component to the field""" self[component] = DXobj def add_comment(self,comment): """add comments""" self.comments.append(comment) def sorted_components(self): """iterator that returns (component,object) in id order""" for component, object in \ sorted(self.components.items(), key=lambda comp_obj: comp_obj[1].id): yield component, object def histogramdd(self): """Return array data as (edges,grid), i.e. a numpy nD histogram.""" shape = self.components['positions'].shape edges = self.components['positions'].edges() hist = self.components['data'].array.reshape(shape) return (hist,edges) def __getitem__(self,key): return self.components[key] def __setitem__(self,key,value): self.components[key] = value def __repr__(self): return '<OpenDX.field object, id='+str(self.id)+', with '+\ str(len(self.components))+' components and '+\ str(len(self.components))+' objects>'
class field(DXclass): '''OpenDX container class The *field* is the top-level object and represents the whole OpenDX file. It contains a number of other objects. Instantiate a DX object from this class and add subclasses with :meth:`add`. ''' def __init__(self,classid='0',components=None,comments=None): '''OpenDX object, which is build from a list of components. Parameters ---------- id : str arbitrary string components : dict dictionary of DXclass instances (no sanity check on the individual ids!) which correspond to * positions * connections * data comments : list list of strings; each string becomes a comment line prefixed with '#'. Avoid newlines. A field must have at least the components 'positions', 'connections', and 'data'. Those components are associated with objects belonging to the field. When writing a dx file from the field, only the required objects are dumped to the file. (For a more general class that can use field: Because there could be more objects than components, we keep a separate object list. When dumping the dx file, first all objects are written and then the field object describes its components. Objects are referenced by their unique id.) .. Note:: uniqueness of the *id* is not checked. Example ------- Create a new dx object:: dx = OpenDX.field('density',[gridpoints,gridconnections,array]) ''' pass def _openfile_writing(self, filename): '''Returns a regular or gz file stream for writing''' pass def write(self, filename): '''Write the complete dx object to the file. This is the simple OpenDX format which includes the data into the header via the 'object array ... data follows' statement. Only simple regular arrays are supported. The format should be compatible with VMD's dx reader plugin. ''' pass def read(self, stream): '''Read DX field from file. dx = OpenDX.field.read(dxfile) The classid is discarded and replaced with the one from the file. ''' pass def add(self,component,DXobj): '''add a component to the field''' pass def add_comment(self,comment): '''add comments''' pass def sorted_components(self): '''iterator that returns (component,object) in id order''' pass def histogramdd(self): '''Return array data as (edges,grid), i.e. a numpy nD histogram.''' pass def __getitem__(self,key): pass def __setitem__(self,key,value): pass def __repr__(self): pass
12
9
11
2
5
5
2
1.02
1
6
1
0
11
5
11
17
142
30
57
28
45
58
49
27
37
4
2
2
19
147,670
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.array
class array(DXclass): """OpenDX array class. See `Array Objects`_ for details. .. _Array Objects: https://web.archive.org/web/20080808140524/http://opendx.sdsc.edu/docs/html/pages/usrgu068.htm#Header_440 """ #: conversion from :attr:`numpy.dtype.name` to closest OpenDX array type #: (round-tripping is not guaranteed to produce identical types); not all #: types are supported (e.g., strings are missing) np_types = { "uint8": "byte", # DX "unsigned byte" equivalent "int8": "signed byte", "uint16": "unsigned short", "int16": "short", # DX "signed short" equivalent "uint32": "unsigned int", "int32": "int", # DX "signed int" equivalent "uint64": "unsigned int", # not explicit in DX, for compatibility "int64": "int", # not explicit in DX, for compatibility # "hyper", # ? "float32": "float", # default "float64": "double", "float16": "float", # float16 not available in DX, use float # numpy "float128 not available, raise error # "string" not automatically supported } #: conversion from OpenDX type to closest :class:`numpy.dtype` #: (round-tripping is not guaranteed to produce identical types); not all #: types are supported (e.g., strings and conversion to int64 are missing) dx_types = { "byte": "uint8", "unsigned byte": "uint8", "signed byte": "int8", "unsigned short": "uint16", "short": "int16", "signed short": "int16", "unsigned int": "uint32", "int": "int32", "signed int": "int32", # "hyper", # ? "float": "float32", # default "double": "float64", # "string" not automatically supported } def __init__(self, classid, array=None, type=None, typequote='"', **kwargs): """ Parameters ---------- classid : int array : array_like type : str (optional) Set the DX type in the output file and cast `array` to the closest numpy dtype. `type` must be one of the allowed types in DX files as defined under `Array Objects`_. The default ``None`` tries to set the type from the :class:`numpy.dtype` of `array`. .. versionadded:: 0.4.0 Raises ------ ValueError if `array` is not provided; or if `type` is not of the correct DX type """ if array is None: raise ValueError('array keyword argument is required') self.id = classid self.name = 'array' self.component = 'data' # detect type https://github.com/MDAnalysis/GridDataFormats/issues/35 if type is None: self.array = numpy.asarray(array) try: self.type = self.np_types[self.array.dtype.name] except KeyError: warnings.warn(("array dtype.name = {0} can not be automatically " "converted to a DX array type. Use the 'type' keyword " "to manually specify the correct type.").format( self.array.dtype.name)) self.type = self.array.dtype.name # will raise ValueError on writing else: try: self.array = numpy.asarray(array, dtype=self.dx_types[type]) except KeyError: raise ValueError(("DX type {0} cannot be converted to an " "appropriate numpy dtype. Available " "types are: {1}".format(type, list(self.dx_types.values())))) self.type = type self.typequote = typequote def write(self, stream): """Write the *class array* section. Parameters ---------- stream : stream Raises ------ ValueError If the `dxtype` is not a valid type, :exc:`ValueError` is raised. """ if self.type not in self.dx_types: raise ValueError(("DX type {} is not supported in the DX format. \n" "Supported valus are: {}\n" "Use the type=<type> keyword argument.").format( self.type, list(self.dx_types.keys()))) typelabel = (self.typequote+self.type+self.typequote) super(array, self).write(stream, 'type {0} rank 0 items {1} data follows'.format( typelabel, self.array.size)) # grid data, serialized as a C array (z fastest varying) # (flat iterator is equivalent to: for x: for y: for z: grid[x,y,z]) # VMD's DX reader requires exactly 3 values per line fmt_string = "{:d}" if (self.array.dtype.kind == 'f' or self.array.dtype.kind == 'c'): precision = numpy.finfo(self.array.dtype).precision fmt_string = "{:."+"{:d}".format(precision)+"f}" values_per_line = 3 values = self.array.flat while 1: try: for i in range(values_per_line): self._write_line(stream, fmt_string.format(next(values)) + "\t") self._write_line(stream, '\n') except StopIteration: self._write_line(stream, '\n') break self._write_line(stream, 'attribute "dep" string "positions"\n')
class array(DXclass): '''OpenDX array class. See `Array Objects`_ for details. .. _Array Objects: https://web.archive.org/web/20080808140524/http://opendx.sdsc.edu/docs/html/pages/usrgu068.htm#Header_440 ''' def __init__(self, classid, array=None, type=None, typequote='"', **kwargs): ''' Parameters ---------- classid : int array : array_like type : str (optional) Set the DX type in the output file and cast `array` to the closest numpy dtype. `type` must be one of the allowed types in DX files as defined under `Array Objects`_. The default ``None`` tries to set the type from the :class:`numpy.dtype` of `array`. .. versionadded:: 0.4.0 Raises ------ ValueError if `array` is not provided; or if `type` is not of the correct DX type ''' pass def write(self, stream): '''Write the *class array* section. Parameters ---------- stream : stream Raises ------ ValueError If the `dxtype` is not a valid type, :exc:`ValueError` is raised. ''' pass
3
3
45
3
26
17
6
0.73
1
7
0
0
2
6
2
8
136
10
78
18
74
57
42
17
39
6
2
3
11
147,671
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.Token
class Token: # token categories (values of dx_regex must match up with these categories) category = {'COMMENT': ['COMMENT'], 'WORD': ['WORD'], 'STRING': ['QUOTEDSTRING','BARESTRING','STRING'], 'WHITESPACE': ['WHITESPACE'], 'INTEGER': ['INTEGER'], 'REAL': ['REAL'], 'NUMBER': ['INTEGER','REAL']} # cast functions cast = {'COMMENT': lambda s:re.sub(r'#\s*','',s), 'WORD': str, 'STRING': str, 'QUOTEDSTRING': str, 'BARESTRING': str, 'WHITESPACE': None, 'NUMBER': float, 'INTEGER': int, 'REAL': float} def __init__(self,code,text): self.code = code # store raw code self.text = text def equals(self,v): return self.text == v def iscode(self,code): return self.code in self.category[code] # use many -> 1 mappings def value(self,ascode=None): """Return text cast to the correct type or the selected type""" if ascode is None: ascode = self.code return self.cast[ascode](self.text) def __repr__(self): return '<token '+str(self.code)+','+str(self.value())+'>'
class Token: def __init__(self,code,text): pass def equals(self,v): pass def iscode(self,code): pass def value(self,ascode=None): '''Return text cast to the correct type or the selected type''' pass def __repr__(self): pass
6
1
3
0
3
1
1
0.23
0
1
0
0
5
2
5
5
30
1
26
10
20
6
16
10
10
2
0
1
6
147,672
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.DXParserNoTokens
class DXParserNoTokens(DXParseError): """raised when the token buffer is exhausted""" pass
class DXParserNoTokens(DXParseError): '''raised when the token buffer is exhausted''' pass
1
1
0
0
0
0
0
0.5
1
0
0
0
0
0
0
10
3
0
2
1
1
1
2
1
1
0
4
0
0
147,673
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.DXParseError
class DXParseError(Exception): """general exception for parsing errors in DX files""" pass
class DXParseError(Exception): '''general exception for parsing errors in DX files''' pass
1
1
0
0
0
0
0
0.5
1
0
0
1
0
0
0
10
3
0
2
1
1
1
2
1
1
0
3
0
0
147,674
MDAnalysis/GridDataFormats
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MDAnalysis_GridDataFormats/gridData/tests/test_grid.py
gridData.tests.test_grid.TestGrid
class TestGrid(object): @pytest.fixture def pklfile(self, data, tmpdir): g = data['grid'] fn = tmpdir.mkdir('grid').join('grid.dat') g.save(fn) # always saves as pkl return fn def test_init(self, data): g = Grid(data['griddata'], origin=data['origin'], delta=1) assert_array_equal(g.delta, data['delta']) def test_init_wrong_origin(self, data): with pytest.raises(TypeError): Grid(data['griddata'], origin=np.ones(4), delta=data['delta']) def test_init_wrong_delta(self, data): with pytest.raises(TypeError): Grid(data['griddata'], origin=data['origin'], delta=np.ones(4)) def test_empty_Grid(self): g = Grid() assert isinstance(g, Grid) def test_init_missing_delta_ValueError(self, data): with pytest.raises(ValueError): Grid(data['griddata'], origin=data['origin']) def test_init_missing_origin_ValueError(self, data): with pytest.raises(ValueError): Grid(data['griddata'], delta=data['delta']) def test_init_wrong_data_exception(self): with pytest.raises(IOError): Grid("__does_not_exist__") def test_load_wrong_fileformat_ValueError(self): with pytest.raises(ValueError): Grid(grid=True, file_format="xxx") def test_equality(self, data): assert data['grid'] == data['grid'] assert data['grid'] != 'foo' g = Grid(data['griddata'], origin=data['origin'] + 1, delta=data['delta']) assert data['grid'] != g def test_addition(self, data): g = data['grid'] + data['grid'] assert_array_equal(g.grid.flat, (2 * data['griddata']).flat) g = 2 + data['grid'] assert_array_equal(g.grid.flat, (2 + data['griddata']).flat) g = g + data['grid'] assert_array_equal(g.grid.flat, (2 + (2 * data['griddata'])).flat) def test_subtraction(self, data): g = data['grid'] - data['grid'] assert_array_equal(g.grid.flat, np.zeros(27)) g = 2 - data['grid'] assert_array_equal(g.grid.flat, (2 - data['griddata']).flat) def test_multiplication(self, data): g = data['grid'] * data['grid'] assert_array_equal(g.grid.flat, (data['griddata'] ** 2).flat) g = 2 * data['grid'] assert_array_equal(g.grid.flat, (2 * data['griddata']).flat) def test_division(self, data): g = data['grid'] / data['grid'] assert_array_equal(g.grid.flat, np.ones(27)) g = 2 / data['grid'] assert_array_equal(g.grid.flat, (2 / data['griddata']).flat) def test_floordivision(self, data): g = data['grid'].__floordiv__(data['grid']) assert_array_equal(g.grid.flat, np.ones(27, dtype=np.int64)) g = 2 // data['grid'] assert_array_equal(g.grid.flat, (2 // data['griddata']).flat) def test_power(self, data): g = data['grid'] ** 2 assert_array_equal(g.grid.flat, (data['griddata'] ** 2).flat) g = 2 ** data['grid'] assert_array_equal(g.grid.flat, (2 ** data['griddata']).flat) def test_compatibility_type(self, data): assert data['grid'].check_compatible(data['grid']) assert data['grid'].check_compatible(3) g = Grid(data['griddata'], origin=data['origin'] - 1, delta=data['delta']) assert data['grid'].check_compatible(g) def test_wrong_compatibile_type(self, data): with pytest.raises(TypeError): data['grid'].check_compatible("foo") def test_non_orthonormal_boxes(self, data): delta = np.eye(3) with pytest.raises(NotImplementedError): Grid(data['griddata'], origin=data['origin'], delta=delta) def test_centers(self, data): # this only checks the edges. If you know an alternative # algorithm that isn't an exact duplicate of the one in # g.centers to test this please implement it. g = Grid(data['griddata'], origin=np.ones(3), delta=data['delta']) centers = np.array(list(g.centers())) assert_array_equal(centers[0], g.origin) assert_array_equal(centers[-1] - g.origin, (np.array(g.grid.shape) - 1) * data['delta']) def test_resample_factor_failure(self, data): pytest.importorskip('scipy') with pytest.raises(ValueError): g = data['grid'].resample_factor(0) def test_resample_factor(self, data): pytest.importorskip('scipy') g = data['grid'].resample_factor(2) assert_array_equal(g.delta, np.ones(3) * .5) # zooming in by a factor of 2. Each subinterval is # split in half, so 3 gridpoints (2 subintervals) # becomes 5 gridpoints (4 subintervals) assert_array_equal(g.grid.shape, np.ones(3) * 5) # check that the values are identical with the # correct stride. assert_array_almost_equal(g.grid[::2, ::2, ::2], data['grid'].grid) def test_load_pickle(self, data, tmpdir): g = data['grid'] fn = str(tmpdir.mkdir('grid').join('grid.pkl')) g.save(fn) h = Grid() h.load(fn) assert h == g def test_init_pickle_pathobjects(self, data, tmpdir): g = data['grid'] fn = tmpdir.mkdir('grid').join('grid.pickle') g.save(fn) h = Grid(fn) assert h == g @pytest.mark.parametrize("fileformat", ("pkl", "PKL", "pickle", "python")) def test_load_fileformat(self, data, pklfile, fileformat): h = Grid(pklfile, file_format="pkl") assert h == data['grid'] # At the moment, reading the file with the wrong parser does not give # good error messages. @pytest.mark.xfail @pytest.mark.parametrize("fileformat", ("ccp4", "plt", "dx")) def test_load_wrong_fileformat(self, data, pklfile, fileformat): with pytest.raises('ValueError'): Grid(pklfile, file_format=fileformat) # just check that we can export without stupid failures; detailed # format checks in separate tests @pytest.mark.parametrize("fileformat", ("dx", "pkl")) def test_export(self, data, fileformat, tmpdir): g = data['grid'] fn = tmpdir.mkdir('grid_export').join("grid.{}".format(fileformat)) g.export(fn) # check that path objects work h = Grid(fn) # use format autodetection assert g == h @pytest.mark.parametrize("fileformat", ("ccp4", "plt")) def test_export_not_supported(self, data, fileformat, tmpdir): g = data['grid'] fn = tmpdir.mkdir('grid_export').join("grid.{}".format(fileformat)) with pytest.raises(ValueError): g.export(fn)
class TestGrid(object): @pytest.fixture def pklfile(self, data, tmpdir): pass def test_init(self, data): pass def test_init_wrong_origin(self, data): pass def test_init_wrong_delta(self, data): pass def test_empty_Grid(self): pass def test_init_missing_delta_ValueError(self, data): pass def test_init_missing_origin_ValueError(self, data): pass def test_init_wrong_data_exception(self): pass def test_load_wrong_fileformat_ValueError(self): pass def test_equality(self, data): pass def test_addition(self, data): pass def test_subtraction(self, data): pass def test_multiplication(self, data): pass def test_division(self, data): pass def test_floordivision(self, data): pass def test_power(self, data): pass def test_compatibility_type(self, data): pass def test_wrong_compatibile_type(self, data): pass def test_non_orthonormal_boxes(self, data): pass def test_centers(self, data): pass def test_resample_factor_failure(self, data): pass def test_resample_factor_failure(self, data): pass def test_load_pickle(self, data, tmpdir): pass def test_init_pickle_pathobjects(self, data, tmpdir): pass @pytest.mark.parametrize("fileformat", ("pkl", "PKL", "pickle", "python")) def test_load_fileformat(self, data, pklfile, fileformat): pass @pytest.mark.xfail @pytest.mark.parametrize("fileformat", ("ccp4", "plt", "dx")) def test_load_wrong_fileformat_ValueError(self): pass @pytest.mark.parametrize("fileformat", ("dx", "pkl")) def test_export(self, data, fileformat, tmpdir): pass @pytest.mark.parametrize("fileformat", ("ccp4", "plt")) def test_export_not_supported(self, data, fileformat, tmpdir): pass
35
0
5
0
5
0
1
0.11
1
6
1
0
28
0
28
28
178
33
133
63
98
15
124
58
95
1
1
1
28
147,675
MDAnalysis/GridDataFormats
gridData/OpenDX.py
gridData.OpenDX.DXInitObject
class DXInitObject(object): """Storage class that holds data to initialize one of the 'real' classes such as OpenDX.array, OpenDX.gridconnections, ... All variables are stored in args which will be turned into the arguments for the DX class. """ DXclasses = {'gridpositions':gridpositions, 'gridconnections':gridconnections, 'array':array, 'field':field, } def __init__(self,classtype,classid): self.type = classtype self.id = classid self.args = dict() def initialize(self): """Initialize the corresponding DXclass from the data. class = DXInitObject.initialize() """ return self.DXclasses[self.type](self.id,**self.args) def __getitem__(self,k): return self.args[k] def __setitem__(self,k,v): self.args[k] = v def __repr__(self): return '<DXInitObject instance type='+str(self.type)+', id='+str(self.id)+'>'
class DXInitObject(object): '''Storage class that holds data to initialize one of the 'real' classes such as OpenDX.array, OpenDX.gridconnections, ... All variables are stored in args which will be turned into the arguments for the DX class. ''' def __init__(self,classtype,classid): pass def initialize(self): '''Initialize the corresponding DXclass from the data. class = DXInitObject.initialize() ''' pass def __getitem__(self,k): pass def __setitem__(self,k,v): pass def __repr__(self): pass
6
2
3
0
2
1
1
0.47
1
2
0
0
5
3
5
5
28
3
17
10
11
8
14
10
8
1
1
0
5
147,676
MDAnalysis/GridDataFormats
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MDAnalysis_GridDataFormats/gridData/tests/test_mrc.py
gridData.tests.test_mrc.TestGridMRC
class TestGridMRC(): @pytest.fixture(scope="class") def grid(self): return Grid(datafiles.CCP4_1JZV) def test_shape(self, grid, ccp4data): assert_equal(grid.grid.shape, ccp4data.shape) def test_mrc_header(self, grid, ccp4data): # undocumented MRC header in Grid assert grid._mrc_header == ccp4data.header def test_delta(self, grid, ccp4data): assert_allclose(grid.delta, np.diag(ccp4data.delta)) def test_origin(self, grid, ccp4data): assert_allclose(grid.origin, ccp4data.origin) def test_data(self, grid, ccp4data): assert_allclose(grid.grid, ccp4data.array)
class TestGridMRC(): @pytest.fixture(scope="class") def grid(self): pass def test_shape(self, grid, ccp4data): pass def test_mrc_header(self, grid, ccp4data): pass def test_delta(self, grid, ccp4data): pass def test_origin(self, grid, ccp4data): pass def test_data(self, grid, ccp4data): pass
8
0
2
0
2
0
1
0.07
0
1
1
0
6
0
6
6
20
5
14
8
6
1
13
7
6
1
0
0
6
147,677
MDAnalysis/GridDataFormats
gridData/gOpenMol.py
gridData.gOpenMol.Record
class Record(object): def __init__(self, key, bintype, values=None): self.key = key self.bintype = bintype self.values = values # dict(value='comment', ...) def is_legal(self, value): if self.values is None: return True return value in self.values def is_legal_dict(self, d): return self.is_legal(d[self.key]) def __repr__(self): return "Record(%(key)r,%(bintype)r,...)" % vars(self)
class Record(object): def __init__(self, key, bintype, values=None): pass def is_legal(self, value): pass def is_legal_dict(self, d): pass def __repr__(self): pass
5
0
3
0
3
0
1
0.08
1
0
0
0
4
3
4
4
13
0
13
8
8
1
13
8
8
2
1
1
5
147,678
MFreidank/ARSpy
MFreidank_ARSpy/arspy/hull.py
arspy.hull.HullNode
class HullNode(object): def __init__(self, m, b, left, right, pr=0.0): self.m, self.b = m, b self.left, self.right = left, right self.pr = pr def __eq__(self, other): from math import isclose def close(a, b): if a is b is None: return True if (a is None and b is not None) or (b is None and a is not None): return False return isclose(a, b, abs_tol=1e-02) return all(( close(self.m, other.m), close(self.left, other.left), close(self.right, other.right), close(self.pr, other.pr) )) def __repr__(self): return "HullNode({m}, {b}, {left}, {right}, {pr})".format( m=self.m, b=self.b, left=self.left, right=self.right, pr=self.pr ) def __hash__(self): return hash(str(self))
class HullNode(object): def __init__(self, m, b, left, right, pr=0.0): pass def __eq__(self, other): pass def close(a, b): pass def __repr__(self): pass def __hash__(self): pass
6
0
6
0
6
0
1
0
1
1
0
0
4
5
4
4
29
5
24
10
17
0
18
10
11
3
1
1
7
147,679
MIR-MU/ntcir-math-density
MIR-MU_ntcir-math-density/ntcir_math_density/__main__.py
ntcir_math_density.__main__.LabelledPath
class LabelledPath(object): """This class represents a path labelled with a unique single-letter label. Parameters ---------- label : str A single-letter label. path : Path The labelled-path. Attributes ---------- labels : dict of (str, Path) A mapping between labels, and paths. label : str A single-letter label. path : Path The labelled-path. """ labels = dict() def __init__(self, label, path): assert isinstance(label, str) and len(label) == 1 assert label not in LabelledPath.labels assert isinstance(path, Path) self.label = label self.path = path LabelledPath.labels[self.label] = self.path
class LabelledPath(object): '''This class represents a path labelled with a unique single-letter label. Parameters ---------- label : str A single-letter label. path : Path The labelled-path. Attributes ---------- labels : dict of (str, Path) A mapping between labels, and paths. label : str A single-letter label. path : Path The labelled-path. ''' def __init__(self, label, path): pass
2
1
7
0
7
0
1
1.78
1
2
0
0
1
2
1
1
28
3
9
5
7
16
9
5
7
1
1
0
1
147,680
MIT-LCP/wfdb-python
tests/test_record.py
tests.test_record.TestRecord
class TestRecord(unittest.TestCase): """ Test read and write of single segment WFDB records, including PhysioNet streaming. Target files created using the original WFDB Software Package version 10.5.24 """ wrsamp_params = [ "record_name", "fs", "units", "sig_name", "p_signal", "d_signal", "e_p_signal", "e_d_signal", "samps_per_frame", "fmt", "adc_gain", "baseline", "comments", "base_time", "base_date", "base_datetime", ] # ----------------------- 1. Basic Tests -----------------------# def test_1a(self): """ Format 16, entire signal, digital. Target file created with: rdsamp -r sample-data/test01_00s | cut -f 2- > record-1a """ record = wfdb.rdrecord( "sample-data/test01_00s", physical=False, return_res=16 ) sig = record.d_signal sig_target = np.genfromtxt("tests/target-output/record-1a") # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "test01_00s", pn_dir="macecgdb", physical=False, return_res=16 ) # Test file writing record_2 = wfdb.rdrecord( "sample-data/test01_00s", physical=False, return_res=16 ) record_2.sig_name = ["ECG_1", "ECG_2", "ECG_3", "ECG_4"] record_2.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "test01_00s"), physical=False, return_res=16, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record_2.__eq__(record_write) def test_1b(self): """ Format 16, byte offset, selected duration, selected channels, physical. Target file created with: rdsamp -r sample-data/a103l -f 50 -t 160 -s 2 0 -P | cut -f 2- > record-1b """ sig, fields = wfdb.rdsamp( "sample-data/a103l", sampfrom=12500, sampto=40000, channels=[2, 0] ) sig_round = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-1b") # Compare data streaming from Physionet sig_pn, fields_pn = wfdb.rdsamp( "a103l", pn_dir="challenge-2015/training", sampfrom=12500, sampto=40000, channels=[2, 0], ) # Option of selecting channels by name sig_named, fields_named = wfdb.rdsamp( "sample-data/a103l", sampfrom=12500, sampto=40000, channel_names=["PLETH", "II"], ) assert np.array_equal(sig_round, sig_target) assert np.array_equal(sig, sig_pn) and fields == fields_pn assert np.array_equal(sig, sig_named) and fields == fields_named def test_1c(self): """ Format 16, byte offset, selected duration, selected channels, digital, expanded format. Target file created with: rdsamp -r sample-data/a103l -f 80 -s 0 1 | cut -f 2- > record-1c """ record = wfdb.rdrecord( "sample-data/a103l", sampfrom=20000, channels=[0, 1], physical=False, smooth_frames=False, ) # convert expanded to uniform array sig = np.zeros((record.sig_len, record.n_sig)) for i in range(record.n_sig): sig[:, i] = record.e_d_signal[i] sig_target = np.genfromtxt("tests/target-output/record-1c") # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "a103l", pn_dir="challenge-2015/training", sampfrom=20000, channels=[0, 1], physical=False, smooth_frames=False, ) # Test file writing record.wrsamp(write_dir=self.temp_path, expanded=True) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "a103l"), physical=False, smooth_frames=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record.__eq__(record_write) def test_1d(self): """ Format 80, selected duration, selected channels, physical Target file created with: rdsamp -r sample-data/3000003_0003 -f 1 -t 8 -s 1 -P | cut -f 2- > record-1d """ sig, fields = wfdb.rdsamp( "sample-data/3000003_0003", sampfrom=125, sampto=1000, channels=[1] ) sig_round = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-1d") sig_target = sig_target.reshape(len(sig_target), 1) # Compare data streaming from Physionet sig_pn, fields_pn = wfdb.rdsamp( "3000003_0003", pn_dir="mimic3wdb/30/3000003/", sampfrom=125, sampto=1000, channels=[1], ) assert np.array_equal(sig_round, sig_target) assert np.array_equal(sig, sig_pn) and fields == fields_pn def test_1e(self): """ Format 24, entire signal, digital. Target file created with: rdsamp -r sample-data/n8_evoked_raw_95_F1_R9 | cut -f 2- | gzip -9 -n > record-1e.gz """ record = wfdb.rdrecord( "sample-data/n8_evoked_raw_95_F1_R9", physical=False ) sig = record.d_signal sig_target = np.genfromtxt("tests/target-output/record-1e.gz") sig_target[sig_target == -32768] = -(2**23) # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "n8_evoked_raw_95_F1_R9", physical=False, pn_dir="earndb/raw/N8" ) # Test file writing record_2 = wfdb.rdrecord( "sample-data/n8_evoked_raw_95_F1_R9", physical=False ) record_2.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "n8_evoked_raw_95_F1_R9"), physical=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record_2.__eq__(record_write) def test_1f(self): """ All binary formats, multiple signal files in one record. Target file created with: rdsamp -r sample-data/binformats | cut -f 2- | gzip -9 -n > record-1f.gz """ record = wfdb.rdrecord("sample-data/binformats", physical=False) sig_target = np.genfromtxt("tests/target-output/record-1f.gz") for n, name in enumerate(record.sig_name): np.testing.assert_array_equal( record.d_signal[:, n], sig_target[:, n], "Mismatch in %s" % name ) for sampfrom in range(0, 3): for sampto in range(record.sig_len - 3, record.sig_len): record_2 = wfdb.rdrecord( "sample-data/binformats", physical=False, sampfrom=sampfrom, sampto=sampto, ) for n, name in enumerate(record.sig_name): if record.fmt[n] != "8": np.testing.assert_array_equal( record_2.d_signal[:, n], sig_target[sampfrom:sampto, n], "Mismatch in %s" % name, ) # Test writing all supported formats. (Currently not all signal # formats are supported for output; keep this list in sync with # 'wr_dat_file' in wfdb/io/_signal.py.) OUTPUT_FMTS = ["80", "212", "16", "24", "32"] channels = [] for i, fmt in enumerate(record.fmt): if fmt in OUTPUT_FMTS: channels.append(i) partial_record = wfdb.rdrecord( "sample-data/binformats", physical=False, channels=channels, ) partial_record.wrsamp(write_dir=self.temp_path) converted_record = wfdb.rdrecord( os.path.join(self.temp_path, "binformats"), physical=False, ) assert partial_record == converted_record def test_read_write_flac(self): """ All FLAC formats, multiple signal files in one record. Target file created with: rdsamp -r sample-data/flacformats | cut -f 2- | gzip -9 -n > record-flac.gz """ record = wfdb.rdrecord("sample-data/flacformats", physical=False) sig_target = np.genfromtxt("tests/target-output/record-flac.gz") for n, name in enumerate(record.sig_name): np.testing.assert_array_equal( record.d_signal[:, n], sig_target[:, n], f"Mismatch in {name}" ) for sampfrom in range(0, 3): for sampto in range(record.sig_len - 3, record.sig_len): record_2 = wfdb.rdrecord( "sample-data/flacformats", physical=False, sampfrom=sampfrom, sampto=sampto, ) for n, name in enumerate(record.sig_name): np.testing.assert_array_equal( record_2.d_signal[:, n], sig_target[sampfrom:sampto, n], f"Mismatch in {name}", ) # Test file writing record.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "flacformats"), physical=False, ) assert record == record_write def test_read_write_flac_multifrequency(self): """ Format 516 with multiple signal files and variable samples per frame. """ # Check that we can read a record and write it out again record = wfdb.rdrecord( "sample-data/mixedsignals", physical=False, smooth_frames=False, ) record.wrsamp(write_dir=self.temp_path, expanded=True) # Check that result matches the original record = wfdb.rdrecord("sample-data/mixedsignals", smooth_frames=False) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "mixedsignals"), smooth_frames=False, ) assert record == record_write def test_unique_samps_per_frame_e_p_signal(self): """ Test writing an e_p_signal with wfdb.io.wrsamp where the signals have different samples per frame. All other parameters which overlap between a Record object and wfdb.io.wrsamp are also checked. """ # Read in a record with different samples per frame record = wfdb.rdrecord( "sample-data/mixedsignals", smooth_frames=False, ) # Write the signals wfdb.io.wrsamp( "mixedsignals", fs=record.fs, units=record.units, sig_name=record.sig_name, base_date=record.base_date, base_time=record.base_time, comments=record.comments, p_signal=record.p_signal, d_signal=record.d_signal, e_p_signal=record.e_p_signal, e_d_signal=record.e_d_signal, samps_per_frame=record.samps_per_frame, baseline=record.baseline, adc_gain=record.adc_gain, fmt=record.fmt, write_dir=self.temp_path, ) # Check that the written record matches the original # Read in the original and written records record = wfdb.rdrecord("sample-data/mixedsignals", smooth_frames=False) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "mixedsignals"), smooth_frames=False, ) # Check that the signals match for n, name in enumerate(record.sig_name): np.testing.assert_array_equal( record.e_p_signal[n], record_write.e_p_signal[n], f"Mismatch in {name}", ) # Filter out the signal record_filtered = { k: getattr(record, k) for k in self.wrsamp_params if not ( isinstance(getattr(record, k), np.ndarray) or ( isinstance(getattr(record, k), list) and all( isinstance(item, np.ndarray) for item in getattr(record, k) ) ) ) } record_write_filtered = { k: getattr(record_write, k) for k in self.wrsamp_params if not ( isinstance(getattr(record_write, k), np.ndarray) or ( isinstance(getattr(record_write, k), list) and all( isinstance(item, np.ndarray) for item in getattr(record_write, k) ) ) ) } # Check that the arguments beyond the signals also match assert record_filtered == record_write_filtered def test_unique_samps_per_frame_e_d_signal(self): """ Test writing an e_d_signal with wfdb.io.wrsamp where the signals have different samples per frame. All other parameters which overlap between a Record object and wfdb.io.wrsamp are also checked. """ # Read in a record with different samples per frame record = wfdb.rdrecord( "sample-data/mixedsignals", physical=False, smooth_frames=False, ) # Write the signals wfdb.io.wrsamp( "mixedsignals", fs=record.fs, units=record.units, sig_name=record.sig_name, base_date=record.base_date, base_time=record.base_time, comments=record.comments, p_signal=record.p_signal, d_signal=record.d_signal, e_p_signal=record.e_p_signal, e_d_signal=record.e_d_signal, samps_per_frame=record.samps_per_frame, baseline=record.baseline, adc_gain=record.adc_gain, fmt=record.fmt, write_dir=self.temp_path, ) # Check that the written record matches the original # Read in the original and written records record = wfdb.rdrecord( "sample-data/mixedsignals", physical=False, smooth_frames=False ) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "mixedsignals"), physical=False, smooth_frames=False, ) # Check that the signals match for n, name in enumerate(record.sig_name): np.testing.assert_array_equal( record.e_d_signal[n], record_write.e_d_signal[n], f"Mismatch in {name}", ) # Filter out the signal record_filtered = { k: getattr(record, k) for k in self.wrsamp_params if not ( isinstance(getattr(record, k), np.ndarray) or ( isinstance(getattr(record, k), list) and all( isinstance(item, np.ndarray) for item in getattr(record, k) ) ) ) } record_write_filtered = { k: getattr(record_write, k) for k in self.wrsamp_params if not ( isinstance(getattr(record_write, k), np.ndarray) or ( isinstance(getattr(record_write, k), list) and all( isinstance(item, np.ndarray) for item in getattr(record_write, k) ) ) ) } # Check that the arguments beyond the signals also match assert record_filtered == record_write_filtered def test_read_write_flac_many_channels(self): """ Check we can read and write to format 516 with more than 8 channels. """ # Read in a signal with 12 channels in format 16 record = wfdb.rdrecord("sample-data/s0010_re", physical=False) # Test that we can write out the signal in format 516 wfdb.wrsamp( record_name="s0010_re_fmt516", fs=record.fs, units=record.units, sig_name=record.sig_name, fmt=["516"] * record.n_sig, d_signal=record.d_signal, adc_gain=record.adc_gain, baseline=record.baseline, write_dir=self.temp_path, ) # Check that signal matches the original record_fmt516 = wfdb.rdrecord( os.path.join(self.temp_path, "s0010_re_fmt516"), physical=False, ) assert (record.d_signal == record_fmt516.d_signal).all() def test_read_flac_longduration(self): """ Three signals multiplexed in a FLAC file, over 2**24 samples. Input file created with: yes 25 50 75 | head -5600000 | wrsamp -O 508 -o flac_3_constant 0 1 2 Note that the total number of samples (across the three channels) exceeds 2**24. There is a bug in libsndfile that causes it to break if we try to read more than 2**24 total samples at a time, when the number of channels is not a power of two. """ record = wfdb.rdrecord("sample-data/flac_3_constant") sig_target = np.repeat( np.array([[0.125, 0.25, 0.375]], dtype="float64"), 5600000, axis=0, ) np.testing.assert_array_equal(record.p_signal, sig_target) # ------------------ 2. Special format records ------------------ # def test_2a(self): """ Format 212, entire signal, physical. Target file created with: rdsamp -r sample-data/100 -P | cut -f 2- > record-2a """ sig, fields = wfdb.rdsamp("sample-data/100") sig_round = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-2a") # Compare data streaming from Physionet sig_pn, fields_pn = wfdb.rdsamp("100", pn_dir="mitdb") # This comment line was manually added and is not present in the # original PhysioNet record del fields["comments"][0] assert np.array_equal(sig_round, sig_target) assert np.array_equal(sig, sig_pn) and fields == fields_pn def test_2b(self): """ Format 212, selected duration, selected channel, digital. Target file created with: rdsamp -r sample-data/100 -f 0.002 -t 30 -s 1 | cut -f 2- > record-2b """ record = wfdb.rdrecord( "sample-data/100", sampfrom=1, sampto=10800, channels=[1], physical=False, ) sig = record.d_signal sig_target = np.genfromtxt("tests/target-output/record-2b") sig_target = sig_target.reshape(len(sig_target), 1) # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "100", sampfrom=1, sampto=10800, channels=[1], physical=False, pn_dir="mitdb", ) # This comment line was manually added and is not present in the # original PhysioNet record del record.comments[0] # Option of selecting channels by name record_named = wfdb.rdrecord( "sample-data/100", sampfrom=1, sampto=10800, channel_names=["V5"], physical=False, ) del record_named.comments[0] # Test file writing record.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "100"), physical=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record.__eq__(record_named) assert record.__eq__(record_write) def test_2c(self): """ Format 212, entire signal, physical, odd sampled record. Target file created with: rdsamp -r sample-data/100_3chan -P | cut -f 2- > record-2c """ record = wfdb.rdrecord("sample-data/100_3chan") sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-2c") # Test file writing record.d_signal = record.adc() record.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord(os.path.join(self.temp_path, "100_3chan")) record.d_signal = None assert np.array_equal(sig_round, sig_target) assert record.__eq__(record_write) def test_2d(self): """ Format 310, selected duration, digital Target file created with: rdsamp -r sample-data/3000003_0003 -f 0 -t 8.21 | cut -f 2- | wrsamp -o 310derive -O 310 rdsamp -r 310derive -f 0.007 | cut -f 2- > record-2d """ record = wfdb.rdrecord( "sample-data/310derive", sampfrom=2, physical=False ) sig = record.d_signal sig_target = np.genfromtxt("tests/target-output/record-2d") assert np.array_equal(sig, sig_target) def test_2e(self): """ Format 311, selected duration, physical. Target file created with: rdsamp -r sample-data/3000003_0003 -f 0 -t 8.21 -s 1 | cut -f 2- | wrsamp -o 311derive -O 311 rdsamp -r 311derive -f 0.005 -t 3.91 -P | cut -f 2- > record-2e """ sig, fields = wfdb.rdsamp( "sample-data/311derive", sampfrom=1, sampto=978 ) sig = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-2e") sig_target = sig_target.reshape([977, 1]) assert np.array_equal(sig, sig_target) # --------------------- 3. Multi-dat records --------------------- # def test_3a(self): """ Multi-dat, entire signal, digital Target file created with: rdsamp -r sample-data/s0010_re | cut -f 2- > record-3a """ record = wfdb.rdrecord("sample-data/s0010_re", physical=False) sig = record.d_signal sig_target = np.genfromtxt("tests/target-output/record-3a") # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "s0010_re", physical=False, pn_dir="ptbdb/patient001" ) # Test file writing record.wrsamp(write_dir=self.temp_path) record_write = wfdb.rdrecord( os.path.join(self.temp_path, "s0010_re"), physical=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record.__eq__(record_write) def test_3b(self): """ Multi-dat, selected duration, selected channels, physical. Target file created with: rdsamp -r sample-data/s0010_re -f 5 -t 38 -P -s 13 0 4 8 3 | cut -f 2- > record-3b """ sig, fields = wfdb.rdsamp( "sample-data/s0010_re", sampfrom=5000, sampto=38000, channels=[13, 0, 4, 8, 3], ) sig_round = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-3b") # Compare data streaming from Physionet sig_pn, fields_pn = wfdb.rdsamp( "s0010_re", sampfrom=5000, pn_dir="ptbdb/patient001", sampto=38000, channels=[13, 0, 4, 8, 3], ) assert np.array_equal(sig_round, sig_target) assert np.array_equal(sig, sig_pn) and fields == fields_pn # -------------- 4. Skew and multiple samples/frame -------------- # def test_4a(self): """ Format 16, multi-samples per frame, skew, digital. Target file created with: rdsamp -r sample-data/test01_00s_skewframe | cut -f 2- > record-4a """ record = wfdb.rdrecord( "sample-data/test01_00s_skewframe", physical=False ) sig = record.d_signal # The WFDB library rdsamp does not return the final N samples for all # channels due to the skew. The WFDB python rdsamp does return the final # N samples, filling in NANs for end of skewed channels only. sig = sig[:-3, :] sig_target = np.genfromtxt("tests/target-output/record-4a") # Test file writing. Multiple samples per frame and skew. # Have to read all the samples in the record, ignoring skew record_no_skew = wfdb.rdrecord( "sample-data/test01_00s_skewframe", physical=False, smooth_frames=False, ignore_skew=True, ) record_no_skew.wrsamp(write_dir=self.temp_path, expanded=True) # Read the written record record_write = wfdb.rdrecord( os.path.join(self.temp_path, "test01_00s_skewframe"), physical=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_write) def test_4b(self): """ Format 12, multi-samples per frame, skew, entire signal, digital. Target file created with: rdsamp -r sample-data/03700181 | cut -f 2- > record-4b """ record = wfdb.rdrecord("sample-data/03700181", physical=False) sig = record.d_signal # The WFDB library rdsamp does not return the final N samples for all # channels due to the skew. sig = sig[:-4, :] # The WFDB python rdsamp does return the final N samples, filling in # NANs for end of skewed channels only. sig_target = np.genfromtxt("tests/target-output/record-4b") # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "03700181", physical=False, pn_dir="mimicdb/037" ) # Test file writing. Multiple samples per frame and skew. # Have to read all the samples in the record, ignoring skew record_no_skew = wfdb.rdrecord( "sample-data/03700181", physical=False, smooth_frames=False, ignore_skew=True, ) record_no_skew.wrsamp(write_dir=self.temp_path, expanded=True) # Read the written record record_write = wfdb.rdrecord( os.path.join(self.temp_path, "03700181"), physical=False, ) assert np.array_equal(sig, sig_target) assert record.__eq__(record_pn) assert record.__eq__(record_write) def test_4c(self): """ Format 12, multi-samples per frame, skew, selected suration, selected channels, physical. Target file created with: rdsamp -r sample-data/03700181 -f 8 -t 128 -s 0 2 -P | cut -f 2- > record-4c """ sig, fields = wfdb.rdsamp( "sample-data/03700181", channels=[0, 2], sampfrom=1000, sampto=16000 ) sig_round = np.round(sig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-4c") # Compare data streaming from Physionet sig_pn, fields_pn = wfdb.rdsamp( "03700181", pn_dir="mimicdb/037", channels=[0, 2], sampfrom=1000, sampto=16000, ) # Test file writing. Multiple samples per frame and skew. # Have to read all the samples in the record, ignoring skew record_no_skew = wfdb.rdrecord( "sample-data/03700181", physical=False, smooth_frames=False, ignore_skew=True, ) record_no_skew.wrsamp(write_dir=self.temp_path, expanded=True) # Read the written record writesig, writefields = wfdb.rdsamp( os.path.join(self.temp_path, "03700181"), channels=[0, 2], sampfrom=1000, sampto=16000, ) assert np.array_equal(sig_round, sig_target) assert np.array_equal(sig, sig_pn) and fields == fields_pn assert np.array_equal(sig, writesig) and fields == writefields def test_4d(self): """ Format 16, multi-samples per frame, skew, read expanded signals Target file created with: rdsamp -r sample-data/test01_00s_skewframe -P -H | cut -f 2- > record-4d """ record = wfdb.rdrecord( "sample-data/test01_00s_skewframe", smooth_frames=False ) # Upsample the channels with lower samples/frame expandsig = np.zeros((7994, 3)) expandsig[:, 0] = np.repeat(record.e_p_signal[0][:-3], 2) expandsig[:, 1] = record.e_p_signal[1][:-6] expandsig[:, 2] = np.repeat(record.e_p_signal[2][:-3], 2) sig_round = np.round(expandsig, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-4d") assert np.array_equal(sig_round, sig_target) def test_write_smoothed(self): """ Test writing a record after reading with smooth_frames """ record = wfdb.rdrecord( "sample-data/drive02", physical=False, smooth_frames=True, ) record.wrsamp(write_dir=self.temp_path) record2 = wfdb.rdrecord( os.path.join(self.temp_path, "drive02"), physical=False, ) np.testing.assert_array_equal(record.d_signal, record2.d_signal) def test_to_dataframe(self): record = wfdb.rdrecord("sample-data/test01_00s") df = record.to_dataframe() self.assertEqual(record.sig_name, list(df.columns)) self.assertEqual(len(df), record.sig_len) self.assertEqual(df.index[0], pd.Timedelta(0)) self.assertEqual( df.index[-1], pd.Timedelta(seconds=1 / record.fs * (record.sig_len - 1)), ) assert np.array_equal(record.p_signal, df.values) def test_header_with_non_utf8(self): """ Ignores non-utf8 characters in the header part. """ record = wfdb.rdrecord("sample-data/test_generator_2") sig_units_target = [ "uV", "uV", "uV", "uV", "uV", "uV", "uV", "uV", "mV", "mV", "uV", "mV", ] assert record.units.__eq__(sig_units_target) @classmethod def setUpClass(cls): cls.temp_directory = tempfile.TemporaryDirectory() cls.temp_path = cls.temp_directory.name @classmethod def tearDownClass(cls): cls.temp_directory.cleanup()
class TestRecord(unittest.TestCase): ''' Test read and write of single segment WFDB records, including PhysioNet streaming. Target files created using the original WFDB Software Package version 10.5.24 ''' def test_1a(self): ''' Format 16, entire signal, digital. Target file created with: rdsamp -r sample-data/test01_00s | cut -f 2- > record-1a ''' pass def test_1b(self): ''' Format 16, byte offset, selected duration, selected channels, physical. Target file created with: rdsamp -r sample-data/a103l -f 50 -t 160 -s 2 0 -P | cut -f 2- > record-1b ''' pass def test_1c(self): ''' Format 16, byte offset, selected duration, selected channels, digital, expanded format. Target file created with: rdsamp -r sample-data/a103l -f 80 -s 0 1 | cut -f 2- > record-1c ''' pass def test_1d(self): ''' Format 80, selected duration, selected channels, physical Target file created with: rdsamp -r sample-data/3000003_0003 -f 1 -t 8 -s 1 -P | cut -f 2- > record-1d ''' pass def test_1e(self): ''' Format 24, entire signal, digital. Target file created with: rdsamp -r sample-data/n8_evoked_raw_95_F1_R9 | cut -f 2- | gzip -9 -n > record-1e.gz ''' pass def test_1f(self): ''' All binary formats, multiple signal files in one record. Target file created with: rdsamp -r sample-data/binformats | cut -f 2- | gzip -9 -n > record-1f.gz ''' pass def test_read_write_flac(self): ''' All FLAC formats, multiple signal files in one record. Target file created with: rdsamp -r sample-data/flacformats | cut -f 2- | gzip -9 -n > record-flac.gz ''' pass def test_read_write_flac_multifrequency(self): ''' Format 516 with multiple signal files and variable samples per frame. ''' pass def test_unique_samps_per_frame_e_p_signal(self): ''' Test writing an e_p_signal with wfdb.io.wrsamp where the signals have different samples per frame. All other parameters which overlap between a Record object and wfdb.io.wrsamp are also checked. ''' pass def test_unique_samps_per_frame_e_d_signal(self): ''' Test writing an e_d_signal with wfdb.io.wrsamp where the signals have different samples per frame. All other parameters which overlap between a Record object and wfdb.io.wrsamp are also checked. ''' pass def test_read_write_flac_many_channels(self): ''' Check we can read and write to format 516 with more than 8 channels. ''' pass def test_read_flac_longduration(self): ''' Three signals multiplexed in a FLAC file, over 2**24 samples. Input file created with: yes 25 50 75 | head -5600000 | wrsamp -O 508 -o flac_3_constant 0 1 2 Note that the total number of samples (across the three channels) exceeds 2**24. There is a bug in libsndfile that causes it to break if we try to read more than 2**24 total samples at a time, when the number of channels is not a power of two. ''' pass def test_2a(self): ''' Format 212, entire signal, physical. Target file created with: rdsamp -r sample-data/100 -P | cut -f 2- > record-2a ''' pass def test_2b(self): ''' Format 212, selected duration, selected channel, digital. Target file created with: rdsamp -r sample-data/100 -f 0.002 -t 30 -s 1 | cut -f 2- > record-2b ''' pass def test_2c(self): ''' Format 212, entire signal, physical, odd sampled record. Target file created with: rdsamp -r sample-data/100_3chan -P | cut -f 2- > record-2c ''' pass def test_2d(self): ''' Format 310, selected duration, digital Target file created with: rdsamp -r sample-data/3000003_0003 -f 0 -t 8.21 | cut -f 2- | wrsamp -o 310derive -O 310 rdsamp -r 310derive -f 0.007 | cut -f 2- > record-2d ''' pass def test_2e(self): ''' Format 311, selected duration, physical. Target file created with: rdsamp -r sample-data/3000003_0003 -f 0 -t 8.21 -s 1 | cut -f 2- | wrsamp -o 311derive -O 311 rdsamp -r 311derive -f 0.005 -t 3.91 -P | cut -f 2- > record-2e ''' pass def test_3a(self): ''' Multi-dat, entire signal, digital Target file created with: rdsamp -r sample-data/s0010_re | cut -f 2- > record-3a ''' pass def test_3b(self): ''' Multi-dat, selected duration, selected channels, physical. Target file created with: rdsamp -r sample-data/s0010_re -f 5 -t 38 -P -s 13 0 4 8 3 | cut -f 2- > record-3b ''' pass def test_4a(self): ''' Format 16, multi-samples per frame, skew, digital. Target file created with: rdsamp -r sample-data/test01_00s_skewframe | cut -f 2- > record-4a ''' pass def test_4b(self): ''' Format 12, multi-samples per frame, skew, entire signal, digital. Target file created with: rdsamp -r sample-data/03700181 | cut -f 2- > record-4b ''' pass def test_4c(self): ''' Format 12, multi-samples per frame, skew, selected suration, selected channels, physical. Target file created with: rdsamp -r sample-data/03700181 -f 8 -t 128 -s 0 2 -P | cut -f 2- > record-4c ''' pass def test_4d(self): ''' Format 16, multi-samples per frame, skew, read expanded signals Target file created with: rdsamp -r sample-data/test01_00s_skewframe -P -H | cut -f 2- > record-4d ''' pass def test_write_smoothed(self): ''' Test writing a record after reading with smooth_frames ''' pass def test_to_dataframe(self): pass def test_header_with_non_utf8(self): ''' Ignores non-utf8 characters in the header part. ''' pass @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass
31
26
30
3
21
7
2
0.34
1
4
0
0
26
1
28
100
914
116
595
149
564
203
248
146
219
8
2
4
42
147,681
MIT-LCP/wfdb-python
tests/test_record.py
tests.test_record.TestMultiRecord
class TestMultiRecord(unittest.TestCase): """ Test read and write of multi segment WFDB records, including PhysioNet streaming. Target files created using the original WFDB Software Package version 10.5.24 """ def test_multi_fixed_a(self): """ Multi-segment, fixed layout, read entire signal. Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -P | cut -f 2- > record-multi-fixed-a """ record = wfdb.rdrecord("sample-data/multi-segment/fixed1/v102s") sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-multi-fixed-a") np.testing.assert_equal(sig_round, sig_target) def test_multi_fixed_b(self): """ Multi-segment, fixed layout, selected duration, samples read from one segment. Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -t s75000 -P | cut -f 2- > record-multi-fixed-b """ record = wfdb.rdrecord( "sample-data/multi-segment/fixed1/v102s", sampto=75000 ) sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-multi-fixed-b") np.testing.assert_equal(sig_round, sig_target) def test_multi_fixed_c(self): """ Multi-segment, fixed layout, selected duration and channels, samples read from multiple segments Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -f s70000 -t s80000 -s 1 0 3 -P | cut -f 2- > record-multi-fixed-c """ record = wfdb.rdrecord( "sample-data/multi-segment/fixed1/v102s", sampfrom=70000, sampto=80000, channels=[1, 0, 3], ) sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt("tests/target-output/record-multi-fixed-c") # Option of selecting channels by name record_named = wfdb.rdrecord( "sample-data/multi-segment/fixed1/v102s", sampfrom=70000, sampto=80000, channel_names=["V", "II", "RESP"], ) np.testing.assert_equal(sig_round, sig_target) assert record.__eq__(record_named) def test_multi_fixed_d(self): """ Multi-segment, fixed layout, multi-frequency, selected channels Target file created with: rdsamp -r sample-data/multi-segment/041s/ -s 3 2 1 -H | cut -f 2- | sed s/-32768/-2048/ | gzip -9 -n > tests/target-output/record-multi-fixed-d.gz """ record = wfdb.rdrecord( "sample-data/multi-segment/041s/041s", channels=[3, 2, 1], physical=False, smooth_frames=False, ) # Convert expanded to uniform array (high-resolution) sig = np.zeros((record.sig_len * 4, record.n_sig), dtype=int) for i, s in enumerate(record.e_d_signal): sig[:, i] = np.repeat(s, len(sig[:, i]) // len(s)) sig_target = np.genfromtxt( "tests/target-output/record-multi-fixed-d.gz" ) record_named = wfdb.rdrecord( "sample-data/multi-segment/041s/041s", channel_names=["ABP", "V", "I"], physical=False, smooth_frames=False, ) # Sample values should match the output of rdsamp -H np.testing.assert_array_equal(sig, sig_target) # channel_names=[...] should give the same result as channels=[...] self.assertEqual(record, record_named) def test_multi_variable_a(self): """ Multi-segment, variable layout, selected duration, samples read from one segment only. Target file created with: rdsamp -r sample-data/multi-segment/s00001/s00001-2896-10-10-00-31 -f s14428365 -t s14428375 -P | cut -f 2- > record-multi-variable-a """ record = wfdb.rdrecord( "sample-data/multi-segment/s00001/s00001-2896-10-10-00-31", sampfrom=14428365, sampto=14428375, ) sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt( "tests/target-output/record-multi-variable-a" ) np.testing.assert_equal(sig_round, sig_target) def test_multi_variable_b(self): """ Multi-segment, variable layout, selected duration, samples read from several segments. Target file created with: rdsamp -r sample-data/multi-segment/s00001/s00001-2896-10-10-00-31 -f s14428364 -t s14428375 -P | cut -f 2- > record-multi-variable-b """ record = wfdb.rdrecord( "sample-data/multi-segment/s00001/s00001-2896-10-10-00-31", sampfrom=14428364, sampto=14428375, ) sig_round = np.round(record.p_signal, decimals=8) sig_target = np.genfromtxt( "tests/target-output/record-multi-variable-b" ) np.testing.assert_equal(sig_round, sig_target) def test_multi_variable_c(self): """ Multi-segment, variable layout, entire signal, physical, expanded The reference signal creation cannot be made with rdsamp directly because the WFDB c package (10.5.24) applies the single adcgain and baseline values from the layout specification header, which is undesired in multi-segment signals with different adcgain/baseline values across segments. Target file created with: ``` for i in {01..18} do rdsamp -r sample-data/multi-segment/s25047/3234460_00$i -P | cut -f 2- >> record-multi-variable-c done ``` Entire signal has 543240 samples. - 25740 length empty segment. - First 16 segments have same 2 channels, length 420000 - Last 2 segments have same 3 channels, length 97500 """ record = wfdb.rdrecord( "sample-data/multi-segment/s25047/s25047-2704-05-04-10-44", smooth_frames=False, ) # convert expanded to uniform array and round to 8 digits sig_round = np.zeros((record.sig_len, record.n_sig)) for i in range(record.n_sig): sig_round[:, i] = np.round(record.e_p_signal[i], decimals=8) sig_target_a = np.full((25740, 3), np.nan) sig_target_b = np.concatenate( ( np.genfromtxt( "tests/target-output/record-multi-variable-c", skip_footer=97500, ), np.full((420000, 1), np.nan), ), axis=1, ) sig_target_c = np.genfromtxt( "tests/target-output/record-multi-variable-c", skip_header=420000 ) sig_target = np.concatenate((sig_target_a, sig_target_b, sig_target_c)) np.testing.assert_equal(sig_round, sig_target) def test_multi_variable_d(self): """ Multi-segment, variable layout, selected duration, selected channels, digital. There are two channels: PLETH, and II. Their fmt, adc_gain, and baseline do not change between the segments. Target file created with: rdsamp -r sample-data/multi-segment/p000878/p000878-2137-10-26-16-57 -f s3550 -t s7500 -s 0 1 | cut -f 2- | perl -p -e 's/-32768/ -128/g;' > record-multi-variable-d """ record = wfdb.rdrecord( "sample-data/multi-segment/p000878/p000878-2137-10-26-16-57", sampfrom=3550, sampto=7500, channels=[0, 1], physical=False, ) sig = record.d_signal # Compare data streaming from Physionet record_pn = wfdb.rdrecord( "p000878-2137-10-26-16-57", pn_dir="mimic3wdb/matched/p00/p000878/", sampfrom=3550, sampto=7500, channels=[0, 1], physical=False, ) sig_target = np.genfromtxt( "tests/target-output/record-multi-variable-d" ) # Option of selecting channels by name record_named = wfdb.rdrecord( "sample-data/multi-segment/p000878/p000878-2137-10-26-16-57", sampfrom=3550, sampto=7500, physical=False, channel_names=["PLETH", "II"], ) np.testing.assert_equal(sig, sig_target) assert record.__eq__(record_pn) assert record.__eq__(record_named)
class TestMultiRecord(unittest.TestCase): ''' Test read and write of multi segment WFDB records, including PhysioNet streaming. Target files created using the original WFDB Software Package version 10.5.24 ''' def test_multi_fixed_a(self): ''' Multi-segment, fixed layout, read entire signal. Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -P | cut -f 2- > record-multi-fixed-a ''' pass def test_multi_fixed_b(self): ''' Multi-segment, fixed layout, selected duration, samples read from one segment. Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -t s75000 -P | cut -f 2- > record-multi-fixed-b ''' pass def test_multi_fixed_c(self): ''' Multi-segment, fixed layout, selected duration and channels, samples read from multiple segments Target file created with: rdsamp -r sample-data/multi-segment/fixed1/v102s -f s70000 -t s80000 -s 1 0 3 -P | cut -f 2- > record-multi-fixed-c ''' pass def test_multi_fixed_d(self): ''' Multi-segment, fixed layout, multi-frequency, selected channels Target file created with: rdsamp -r sample-data/multi-segment/041s/ -s 3 2 1 -H | cut -f 2- | sed s/-32768/-2048/ | gzip -9 -n > tests/target-output/record-multi-fixed-d.gz ''' pass def test_multi_variable_a(self): ''' Multi-segment, variable layout, selected duration, samples read from one segment only. Target file created with: rdsamp -r sample-data/multi-segment/s00001/s00001-2896-10-10-00-31 -f s14428365 -t s14428375 -P | cut -f 2- > record-multi-variable-a ''' pass def test_multi_variable_b(self): ''' Multi-segment, variable layout, selected duration, samples read from several segments. Target file created with: rdsamp -r sample-data/multi-segment/s00001/s00001-2896-10-10-00-31 -f s14428364 -t s14428375 -P | cut -f 2- > record-multi-variable-b ''' pass def test_multi_variable_c(self): ''' Multi-segment, variable layout, entire signal, physical, expanded The reference signal creation cannot be made with rdsamp directly because the WFDB c package (10.5.24) applies the single adcgain and baseline values from the layout specification header, which is undesired in multi-segment signals with different adcgain/baseline values across segments. Target file created with: ``` for i in {01..18} do rdsamp -r sample-data/multi-segment/s25047/3234460_00$i -P | cut -f 2- >> record-multi-variable-c done ``` Entire signal has 543240 samples. - 25740 length empty segment. - First 16 segments have same 2 channels, length 420000 - Last 2 segments have same 3 channels, length 97500 ''' pass def test_multi_variable_d(self): ''' Multi-segment, variable layout, selected duration, selected channels, digital. There are two channels: PLETH, and II. Their fmt, adc_gain, and baseline do not change between the segments. Target file created with: rdsamp -r sample-data/multi-segment/p000878/p000878-2137-10-26-16-57 -f s3550 -t s7500 -s 0 1 | cut -f 2- | perl -p -e 's/-32768/ -128/g;' > record-multi-variable-d ''' pass
9
9
28
4
16
9
1
0.59
1
3
0
0
8
0
8
80
240
38
127
42
118
75
56
42
47
2
2
1
10
147,682
MIT-LCP/wfdb-python
tests/test_record.py
tests.test_record.TestDownload
class TestDownload(unittest.TestCase): # Test that we can download records with no "dat" file # Regression test for https://github.com/MIT-LCP/wfdb-python/issues/118 def test_dl_database_no_dat_file(self): wfdb.dl_database("afdb", self.temp_path, ["00735"]) # Test that we can download records that *do* have a "dat" file. def test_dl_database_with_dat_file(self): wfdb.dl_database("afdb", self.temp_path, ["04015"]) @classmethod def setUpClass(cls): cls.temp_directory = tempfile.TemporaryDirectory() cls.temp_path = cls.temp_directory.name @classmethod def tearDownClass(cls): cls.temp_directory.cleanup()
class TestDownload(unittest.TestCase): def test_dl_database_no_dat_file(self): pass def test_dl_database_with_dat_file(self): pass @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass
7
0
2
0
2
0
1
0.25
1
1
0
0
2
0
4
76
18
3
12
7
5
3
10
5
5
1
2
0
4
147,683
MIT-LCP/wfdb-python
tests/test_processing.py
tests.test_processing.test_qrs
class test_qrs: """ Testing QRS detectors """ def test_xqrs(self): """ Run XQRS detector on record 100 and compare to reference annotations """ sig, fields = wfdb.rdsamp("sample-data/100", channels=[0]) ann_ref = wfdb.rdann("sample-data/100", "atr") xqrs = processing.XQRS(sig=sig[:, 0], fs=fields["fs"]) xqrs.detect() comparitor = processing.compare_annotations( ann_ref.sample[1:], xqrs.qrs_inds, int(0.1 * fields["fs"]) ) assert comparitor.sensitivity > 0.99 assert comparitor.positive_predictivity > 0.99
class test_qrs: ''' Testing QRS detectors ''' def test_xqrs(self): ''' Run XQRS detector on record 100 and compare to reference annotations ''' pass
2
2
16
3
10
3
1
0.55
0
2
1
0
1
0
1
1
21
4
11
6
9
6
9
6
7
1
0
0
1
147,684
MIT-LCP/wfdb-python
tests/test_processing.py
tests.test_processing.test_processing
class test_processing: """ Test processing functions """ def test_resample_single(self): sig, fields = wfdb.rdsamp("sample-data/100") ann = wfdb.rdann("sample-data/100", "atr") fs = fields["fs"] fs_target = 50 new_sig, new_ann = processing.resample_singlechan( sig[:, 0], ann, fs, fs_target ) expected_length = int(sig.shape[0] * fs_target / fs) assert new_sig.shape[0] == expected_length def test_resample_multi(self): sig, fields = wfdb.rdsamp("sample-data/100") ann = wfdb.rdann("sample-data/100", "atr") fs = fields["fs"] fs_target = 50 new_sig, new_ann = processing.resample_multichan( sig, ann, fs, fs_target ) expected_length = int(sig.shape[0] * fs_target / fs) assert new_sig.shape[0] == expected_length assert new_sig.shape[1] == sig.shape[1] def test_normalize_bound(self): sig, _ = wfdb.rdsamp("sample-data/100") lb = -5 ub = 15 x = processing.normalize_bound(sig[:, 0], lb, ub) assert x.shape[0] == sig.shape[0] assert np.min(x) >= lb assert np.max(x) <= ub def test_find_peaks(self): x = [0, 2, 1, 0, -10, -15, -15, -15, 9, 8, 0, 0, 1, 2, 10] hp, sp = processing.find_peaks(x) assert np.array_equal(hp, [1, 8]) assert np.array_equal(sp, [6, 10]) def test_find_peaks_empty(self): x = [] hp, sp = processing.find_peaks(x) assert hp.shape == (0,) assert sp.shape == (0,) def test_gqrs(self): record = wfdb.rdrecord( "sample-data/100", channels=[0], sampfrom=9998, sampto=19998, physical=False, ) expected_peaks = [ 271, 580, 884, 1181, 1469, 1770, 2055, 2339, 2634, 2939, 3255, 3551, 3831, 4120, 4412, 4700, 5000, 5299, 5596, 5889, 6172, 6454, 6744, 7047, 7347, 7646, 7936, 8216, 8503, 8785, 9070, 9377, 9682, ] peaks = processing.gqrs_detect( d_sig=record.d_signal[:, 0], fs=record.fs, adc_gain=record.adc_gain[0], adc_zero=record.adc_zero[0], threshold=1.0, ) assert np.array_equal(peaks, expected_peaks) def test_correct_peaks(self): sig, fields = wfdb.rdsamp("sample-data/100") ann = wfdb.rdann("sample-data/100", "atr") fs = fields["fs"] min_bpm = 10 max_bpm = 350 min_gap = fs * 60 / min_bpm max_gap = fs * 60 / max_bpm y_idxs = processing.correct_peaks( sig=sig[:, 0], peak_inds=ann.sample, search_radius=int(max_gap), smooth_window_size=150, ) yz = np.zeros(sig.shape[0]) yz[y_idxs] = 1 yz = np.where(yz[:10000] == 1)[0] expected_peaks = [ 77, 370, 663, 947, 1231, 1515, 1809, 2045, 2403, 2706, 2998, 3283, 3560, 3863, 4171, 4466, 4765, 5061, 5347, 5634, 5919, 6215, 6527, 6824, 7106, 7393, 7670, 7953, 8246, 8539, 8837, 9142, 9432, 9710, 9998, ] assert np.array_equal(yz, expected_peaks)
class test_processing: ''' Test processing functions ''' def test_resample_single(self): pass def test_resample_multi(self): pass def test_normalize_bound(self): pass def test_find_peaks(self): pass def test_find_peaks_empty(self): pass def test_gqrs(self): pass def test_correct_peaks(self): pass
8
1
23
2
21
0
1
0.02
0
1
0
0
7
0
7
7
172
23
146
41
138
3
55
41
47
1
0
0
7
147,685
MIT-LCP/wfdb-python
tests/test_plot.py
tests.test_plot.TestPlotWfdb
class TestPlotWfdb(unittest.TestCase): """ Tests for the wfdb.plot_wfdb function """ def assertAxesMatchSignal(self, axes, signal, t_divisor=1): """ Check that axis limits are reasonable for plotting a signal array. Parameters ---------- axes : matplotlib.axes.Axes An Axes object. signal : numpy.ndarray A one-dimensional array of sample values. t_divisor : float, optional The intended plotting resolution (number of samples of `signal` per unit of the X axis.) """ xmin, xmax = axes.get_xlim() tmin = 0 tmax = (len(signal) - 1) / t_divisor # The range from tmin to tmax should fit within the plot. self.assertLessEqual( xmin, tmin, msg=f"X range is [{xmin}, {xmax}]; expected [{tmin}, {tmax}]", ) self.assertGreaterEqual( xmax, tmax, msg=f"X range is [{xmin}, {xmax}]; expected [{tmin}, {tmax}]", ) # The padding on left and right sides should be approximately equal. self.assertAlmostEqual( xmin - tmin, tmax - xmax, delta=(tmax - tmin) / 10 + 1 / t_divisor, msg=f"X range is [{xmin}, {xmax}]; expected [{tmin}, {tmax}]", ) ymin, ymax = axes.get_ylim() vmin = np.nanmin(signal) vmax = np.nanmax(signal) # The range from vmin to vmax should fit within the plot. self.assertLessEqual( ymin, vmin, msg=f"Y range is [{ymin}, {ymax}]; expected [{vmin}, {vmax}]", ) self.assertGreaterEqual( ymax, vmax, msg=f"Y range is [{ymin}, {ymax}]; expected [{vmin}, {vmax}]", ) # The padding on top and bottom should be approximately equal. self.assertAlmostEqual( ymin - vmin, vmax - ymax, delta=(vmax - vmin) / 10, msg=f"Y range is [{ymin}, {ymax}]; expected [{vmin}, {vmax}]", ) def test_physical_smooth(self): """ Plot a record with physical, single-frequency data """ record = wfdb.rdrecord( "sample-data/100", sampto=1000, physical=True, smooth_frames=True, ) self.assertIsNotNone(record.p_signal) annotation = wfdb.rdann("sample-data/100", "atr", sampto=1000) fig = wfdb.plot_wfdb( record, annotation, time_units="samples", ecg_grids="all", return_fig=True, ) plt.close(fig) self.assertEqual(len(fig.axes), record.n_sig) for ch in range(record.n_sig): self.assertAxesMatchSignal(fig.axes[ch], record.p_signal[:, ch]) def test_digital_smooth(self): """ Plot a record with digital, single-frequency data """ record = wfdb.rdrecord( "sample-data/drive02", sampto=1000, physical=False, smooth_frames=True, ) self.assertIsNotNone(record.d_signal) fig = wfdb.plot_wfdb(record, time_units="seconds", return_fig=True) plt.close(fig) self.assertEqual(len(fig.axes), record.n_sig) for ch in range(record.n_sig): self.assertAxesMatchSignal( fig.axes[ch], record.d_signal[:, ch], record.fs ) def test_physical_multifrequency(self): """ Plot a record with physical, multi-frequency data """ record = wfdb.rdrecord( "sample-data/wave_4", sampto=10, physical=True, smooth_frames=False, ) self.assertIsNotNone(record.e_p_signal) fig = wfdb.plot_wfdb(record, time_units="seconds", return_fig=True) plt.close(fig) self.assertEqual(len(fig.axes), record.n_sig) for ch in range(record.n_sig): self.assertAxesMatchSignal( fig.axes[ch], record.e_p_signal[ch], record.fs * record.samps_per_frame[ch], ) def test_digital_multifrequency(self): """ Plot a record with digital, multi-frequency data """ record = wfdb.rdrecord( "sample-data/multi-segment/041s/041s", sampto=1000, physical=False, smooth_frames=False, ) self.assertIsNotNone(record.e_d_signal) fig = wfdb.plot_wfdb(record, time_units="seconds", return_fig=True) plt.close(fig) self.assertEqual(len(fig.axes), record.n_sig) for ch in range(record.n_sig): self.assertAxesMatchSignal( fig.axes[ch], record.e_d_signal[ch], record.fs * record.samps_per_frame[ch], )
class TestPlotWfdb(unittest.TestCase): ''' Tests for the wfdb.plot_wfdb function ''' def assertAxesMatchSignal(self, axes, signal, t_divisor=1): ''' Check that axis limits are reasonable for plotting a signal array. Parameters ---------- axes : matplotlib.axes.Axes An Axes object. signal : numpy.ndarray A one-dimensional array of sample values. t_divisor : float, optional The intended plotting resolution (number of samples of `signal` per unit of the X axis.) ''' pass def test_physical_smooth(self): ''' Plot a record with physical, single-frequency data ''' pass def test_digital_smooth(self): ''' Plot a record with digital, single-frequency data ''' pass def test_physical_multifrequency(self): ''' Plot a record with physical, multi-frequency data ''' pass def test_digital_multifrequency(self): ''' Plot a record with digital, multi-frequency data ''' pass
6
6
30
2
22
6
2
0.28
1
1
0
0
5
0
5
77
157
17
109
25
103
31
47
25
41
2
2
1
9
147,686
MIT-LCP/wfdb-python
wfdb/io/datasource.py
wfdb.io.datasource.DataSource
class DataSource: def __init__(self, name: str, ds_type: DataSourceType, uri: str): self.name = name self.ds_type = ds_type self.uri = uri def __str__(self): return f"{self.name} : {self.ds_type} : {self.uri}" @property def uri(self): return self._uri @uri.setter def uri(self, value: str): if self.ds_type == DataSourceType.LOCAL: path = Path(value) if not path.is_absolute(): raise ValueError( "uri field for a LOCAL DataSource must be a valid absolute path" ) elif self.ds_type is DataSourceType.HTTP: url = urlparse(value) if not url.netloc: raise ValueError( "uri field for an HTTP DataSource must be a valid URL" ) self._uri = value
class DataSource: def __init__(self, name: str, ds_type: DataSourceType, uri: str): pass def __str__(self): pass @property def uri(self): pass @uri.setter def uri(self): pass
7
0
6
0
6
0
2
0
0
4
1
0
4
3
4
4
28
3
25
12
18
0
18
10
13
5
0
2
8
147,687
MIT-LCP/wfdb-python
tests/io/test_convert.py
test_convert.TestCsvToWfdb
class TestCsvToWfdb(unittest.TestCase): """ Tests for the io.convert.csv module. """ def setUp(self): """ Create a temporary directory containing data for testing. Load 100.dat file for comparison to 100.csv file. """ self.test_dir = "test_output" os.makedirs(self.test_dir, exist_ok=True) self.record_100_csv = "sample-data/100.csv" self.record_100_dat = rdrecord("sample-data/100", physical=True) def tearDown(self): """ Remove the temporary directory after the test. """ if os.path.exists(self.test_dir): shutil.rmtree(self.test_dir) def test_write_dir(self): """ Call the function with the write_dir argument. """ csv_to_wfdb( file_name=self.record_100_csv, fs=360, units="mV", write_dir=self.test_dir, ) # Check if the output files are created in the specified directory base_name = os.path.splitext(os.path.basename(self.record_100_csv))[0] expected_dat_file = os.path.join(self.test_dir, f"{base_name}.dat") expected_hea_file = os.path.join(self.test_dir, f"{base_name}.hea") self.assertTrue(os.path.exists(expected_dat_file)) self.assertTrue(os.path.exists(expected_hea_file)) # Check that newly written file matches the 100.dat file record_write = rdrecord(os.path.join(self.test_dir, base_name)) self.assertEqual(record_write.fs, 360) self.assertEqual(record_write.fs, self.record_100_dat.fs) self.assertEqual(record_write.units, ["mV", "mV"]) self.assertEqual(record_write.units, self.record_100_dat.units) self.assertEqual(record_write.sig_name, ["MLII", "V5"]) self.assertEqual(record_write.sig_name, self.record_100_dat.sig_name) self.assertEqual(record_write.p_signal.size, 1300000) self.assertEqual( record_write.p_signal.size, self.record_100_dat.p_signal.size )
class TestCsvToWfdb(unittest.TestCase): ''' Tests for the io.convert.csv module. ''' def setUp(self): ''' Create a temporary directory containing data for testing. Load 100.dat file for comparison to 100.csv file. ''' pass def tearDown(self): ''' Remove the temporary directory after the test. ''' pass def test_write_dir(self): ''' Call the function with the write_dir argument. ''' pass
4
4
16
2
10
4
1
0.47
1
0
0
0
3
3
3
75
56
9
32
11
28
15
25
11
21
2
2
1
4
147,688
MIT-LCP/wfdb-python
tests/test_multi_record.py
tests.test_multi_record.TestMultiRecordRanges
class TestMultiRecordRanges: """ Test logic that deduces relevant segments/ranges for given signals. """ def test_contained_ranges_simple_cases(self): record = wfdb.MultiRecord( segments=[ wfdb.Record(sig_name=["I", "II"], sig_len=5), wfdb.Record(sig_name=["I", "III"], sig_len=10), ], ) assert record.contained_ranges("I") == [(0, 15)] assert record.contained_ranges("II") == [(0, 5)] assert record.contained_ranges("III") == [(5, 15)] def test_contained_ranges_variable_layout(self): record = wfdb.rdheader( "sample-data/multi-segment/s00001/s00001-2896-10-10-00-31", rd_segments=True, ) assert record.contained_ranges("II") == [ (3261, 10136), (4610865, 10370865), (10528365, 14518365), ] assert record.contained_ranges("V") == [ (3261, 918261), (920865, 4438365), (4610865, 10370865), (10528365, 14518365), ] assert record.contained_ranges("MCL1") == [ (10136, 918261), (920865, 4438365), ] assert record.contained_ranges("ABP") == [ (14428365, 14450865), (14458365, 14495865), ] def test_contained_ranges_fixed_layout(self): record = wfdb.rdheader( "sample-data/multi-segment/041s/041s", rd_segments=True, ) for sig_name in record.sig_name: assert record.contained_ranges(sig_name) == [(0, 2000)] def test_contained_combined_ranges_simple_cases(self): record = wfdb.MultiRecord( segments=[ wfdb.Record(sig_name=["I", "II", "V"], sig_len=5), wfdb.Record(sig_name=["I", "III", "V"], sig_len=10), wfdb.Record(sig_name=["I", "II", "V"], sig_len=20), ], ) assert record.contained_combined_ranges(["I", "II"]) == [ (0, 5), (15, 35), ] assert record.contained_combined_ranges(["II", "III"]) == [] assert record.contained_combined_ranges(["I", "III"]) == [(5, 15)] assert record.contained_combined_ranges(["I", "II", "V"]) == [ (0, 5), (15, 35), ] def test_contained_combined_ranges_variable_layout(self): record = wfdb.rdheader( "sample-data/multi-segment/s00001/s00001-2896-10-10-00-31", rd_segments=True, ) assert record.contained_combined_ranges(["II", "V"]) == [ (3261, 10136), (4610865, 10370865), (10528365, 14518365), ] assert record.contained_combined_ranges(["II", "MCL1"]) == [] assert record.contained_combined_ranges(["II", "ABP"]) == [ (14428365, 14450865), (14458365, 14495865), ] assert record.contained_combined_ranges(["II", "V", "ABP"]) == [ (14428365, 14450865), (14458365, 14495865), ] assert ( record.contained_combined_ranges(["II", "V", "MCL1", "ABP"]) == [] ) def test_contained_combined_ranges_variable_layout(self): record = wfdb.rdheader( "sample-data/multi-segment/041s/041s", rd_segments=True, ) for sig_1 in record.sig_name: for sig_2 in record.sig_name: if sig_1 == sig_2: continue assert record.contained_combined_ranges([sig_1, sig_2]) == [ (0, 2000) ]
class TestMultiRecordRanges: ''' Test logic that deduces relevant segments/ranges for given signals. ''' def test_contained_ranges_simple_cases(self): pass def test_contained_ranges_variable_layout(self): pass def test_contained_ranges_fixed_layout(self): pass def test_contained_combined_ranges_simple_cases(self): pass def test_contained_combined_ranges_variable_layout(self): pass def test_contained_combined_ranges_variable_layout(self): pass
7
1
17
1
16
0
2
0.03
0
2
2
0
6
0
6
6
110
13
94
16
87
3
36
16
29
4
0
3
10
147,689
MIT-LCP/wfdb-python
tests/test_datasource.py
tests.test_datasource.TestDataSource
class TestDataSource: def test_create_valid_local_ds(self): ds = DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) assert ds def test_create_invalid_local_ds(self): with pytest.raises(ValueError): DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri="notabsolute", ) def test_create_valid_http_ds(self): ds = DataSource( name="httpds", ds_type=DataSourceType.HTTP, uri="http://bigdata.com", ) assert ds.uri == "http://bigdata.com" def test_create_invalid_http_ds(self): with pytest.raises(ValueError): DataSource( name="httpds", ds_type=DataSourceType.HTTP, uri="www.bigdata.com", ) def test_add_reset_ds(self): ds = DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) add_data_source(ds) assert len(_data_sources) == 2 assert _data_sources[ds.name] == ds # We rely on reset_data_sources for test cleanup. reset_data_sources(keep_pn=True) assert len(_data_sources) == 1 def test_add_multiple_ds(self): ds1 = DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) add_data_source(ds1) ds2 = DataSource( name="anotherlocalds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) add_data_source(ds2) assert len(_data_sources) == 3 assert _data_sources[ds1.name] == ds1 assert _data_sources[ds2.name] == ds2 reset_data_sources(keep_pn=True) def test_remove_ds(self): ds = DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) add_data_source(ds) remove_data_source("localds") assert len(_data_sources) == 1 def test_unique_ds_names(self): ds = DataSource( name="localds", ds_type=DataSourceType.LOCAL, uri=LOCAL_PATH, ) add_data_source(ds) # Cannot set multiple data sources with the same name with pytest.raises(ValueError): add_data_source(ds) reset_data_sources(keep_pn=True)
class TestDataSource: def test_create_valid_local_ds(self): pass def test_create_invalid_local_ds(self): pass def test_create_valid_http_ds(self): pass def test_create_invalid_http_ds(self): pass def test_add_reset_ds(self): pass def test_add_multiple_ds(self): pass def test_remove_ds(self): pass def test_unique_ds_names(self): pass
9
0
10
0
9
0
1
0.03
0
2
1
0
8
0
8
8
86
8
76
16
67
2
40
16
31
1
0
1
8
147,690
MIT-LCP/wfdb-python
tests/test_annotation.py
tests.test_annotation.TestAnnotation
class TestAnnotation(unittest.TestCase): """ Testing read and write of WFDB annotations, including Physionet streaming. Target files created using the original WFDB Software Package version 10.5.24 """ def test_1(self): """ Target file created with: rdann -r sample-data/100 -a atr > ann-1 """ annotation = wfdb.rdann("sample-data/100", "atr") # This is not the fault of the script. The annotation file specifies a # length 3 annotation.aux_note[0] = "(N" # aux_note field with a null written after '(N' which the script correctly picks up. I am just # getting rid of the null in this unit test to compare with the regexp output below which has # no null to detect in the output text file of rdann. # Target data from WFDB software package with open("tests/target-output/ann-1", "r") as f: lines = tuple(f) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( r"[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "100", "atr", pn_dir="mitdb", return_label_elements=["label_store", "symbol"], ) pn_annotation.aux_note[0] = "(N" pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True, write_dir=self.temp_path) write_annotation = wfdb.rdann( os.path.join(self.temp_path, "100"), "atr", return_label_elements=["label_store", "symbol"], ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_2(self): """ Annotation file with many aux_note strings. Target file created with: rdann -r sample-data/100 -a atr > ann-2 """ annotation = wfdb.rdann("sample-data/12726", "anI") # Target data from WFDB software package with open("tests/target-output/ann-2", "r") as f: lines = tuple(f) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( r"[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "12726", "anI", pn_dir="prcp", return_label_elements=["label_store", "symbol"], ) pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True, write_dir=self.temp_path) write_annotation = wfdb.rdann( os.path.join(self.temp_path, "12726"), "anI", return_label_elements=["label_store", "symbol"], ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_3(self): """ Annotation file with custom annotation types Target file created with: rdann -r sample-data/1003 -a atr > ann-3 """ annotation = wfdb.rdann("sample-data/1003", "atr") # Target data from WFDB software package with open("tests/target-output/ann-3", "r") as f: lines = tuple(f) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( r"[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "1003", "atr", pn_dir="challenge-2014/set-p2", return_label_elements=["label_store", "symbol"], ) pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True, write_dir=self.temp_path) write_annotation = wfdb.rdann( os.path.join(self.temp_path, "1003"), "atr", return_label_elements=["label_store", "symbol"], ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_4(self): """ Read and write annotations with large time skips Annotation file created by: echo "xxxxxxxxx 10000000000 N 0 0 0" | wrann -r huge -a qrs """ annotation = wfdb.rdann("sample-data/huge", "qrs") self.assertEqual(annotation.sample[0], 10000000000) annotation.wrann(write_dir=self.temp_path) annotation1 = wfdb.rdann("sample-data/huge", "qrs") annotation2 = wfdb.rdann(os.path.join(self.temp_path, "huge"), "qrs") self.assertEqual(annotation1, annotation2) def test_5(self): """ Write and read annotations with custom labels. """ ann_idx = np.array([1, 1000, 2000, 3000]) ann_chan = np.array([3, 1, 2, 3]) # write custom labels ann_label_store = np.array([4, 2, 1, 3]) ann_custom_labels = { "label_store": [1, 2, 3, 4], "symbol": ["v", "l", "r", "z"], "description": ["pvc", "lbbb", "rbbb", "pac"], } ann_custom_labels = pd.DataFrame(data=ann_custom_labels) wfdb.wrann( "CustomLabel", "atr", ann_idx, chan=ann_chan, custom_labels=ann_custom_labels, label_store=ann_label_store, write_dir=self.temp_path, ) ann = wfdb.rdann(os.path.join(self.temp_path, "CustomLabel"), "atr") self.assertEqual(ann.symbol, ["z", "l", "v", "r"]) @classmethod def setUpClass(cls): cls.temp_directory = tempfile.TemporaryDirectory() cls.temp_path = cls.temp_directory.name @classmethod def tearDownClass(cls): cls.temp_directory.cleanup()
class TestAnnotation(unittest.TestCase): ''' Testing read and write of WFDB annotations, including Physionet streaming. Target files created using the original WFDB Software Package version 10.5.24 ''' def test_1(self): ''' Target file created with: rdann -r sample-data/100 -a atr > ann-1 ''' pass def test_2(self): ''' Annotation file with many aux_note strings. Target file created with: rdann -r sample-data/100 -a atr > ann-2 ''' pass def test_3(self): ''' Annotation file with custom annotation types Target file created with: rdann -r sample-data/1003 -a atr > ann-3 ''' pass def test_4(self): ''' Read and write annotations with large time skips Annotation file created by: echo "xxxxxxxxx 10000000000 N 0 0 0" | wrann -r huge -a qrs ''' pass def test_5(self): ''' Write and read annotations with custom labels. ''' pass @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass
10
6
39
4
28
6
1
0.24
1
3
0
0
5
1
7
79
288
39
200
67
190
49
108
61
100
2
2
1
10
147,691
MIT-LCP/wfdb-python
wfdb/io/annotation.py
wfdb.io.annotation.AnnotationLabel
class AnnotationLabel(object): """ Describes the individual annotation labels. Attributes ---------- label_store : int The value used to store the labels. symbol : str The shortened version of the annotation label abbreviation. short_description : str The shortened version of the description provided with the annotation. description : str The description provided with the annotation. """ def __init__(self, label_store, symbol, short_description, description): self.label_store = label_store self.symbol = symbol self.short_description = short_description self.description = description def __str__(self): return ( str(self.label_store) + ", " + str(self.symbol) + ", " + str(self.short_description) + ", " + str(self.description) )
class AnnotationLabel(object): ''' Describes the individual annotation labels. Attributes ---------- label_store : int The value used to store the labels. symbol : str The shortened version of the annotation label abbreviation. short_description : str The shortened version of the description provided with the annotation. description : str The description provided with the annotation. ''' def __init__(self, label_store, symbol, short_description, description): pass def __str__(self): pass
3
1
8
0
8
0
1
0.81
1
1
0
0
2
4
2
2
33
4
16
7
13
13
8
7
5
1
1
0
2
147,692
MIT-LCP/wfdb-python
tests/test_record.py
tests.test_record.TestSignal
class TestSignal(unittest.TestCase): """ For lower level signal tests """ def test_infer_sig_len(self): """ Infer the signal length of a record without the sig_len header Read two headers. The records should be the same. """ record = wfdb.rdrecord("sample-data/drive02") record_2 = wfdb.rdrecord("sample-data/drive02-no-len") record_2.record_name = record.record_name assert record_2.__eq__(record) record = wfdb.rdrecord("sample-data/a103l") record_2 = wfdb.rdrecord("sample-data/a103l-no-len") record_2.record_name = record.record_name assert record_2.__eq__(record) def test_physical_conversion(self): n_sig = 3 adc_gain = [1.0, 1234.567, 765.4321] baseline = [10, 20, -30] d_signal = np.repeat(np.arange(-100, 100), 3).reshape(-1, 3) d_signal[5:10, :] = [-32768, -2048, -128] e_d_signal = list(d_signal.transpose()) fmt = ["16", "212", "80"] # Test adding or subtracting a small offset (0.01 ADU) to check # that we correctly round to the nearest integer for offset in (0, -0.01, 0.01): p_signal = (d_signal + offset - baseline) / adc_gain p_signal[5:10, :] = np.nan e_p_signal = list(p_signal.transpose()) # Test converting p_signal to d_signal record = wfdb.Record( p_signal=p_signal.copy(), adc_gain=adc_gain, baseline=baseline, fmt=fmt, ) d_signal_converted = record.adc(expanded=False, inplace=False) np.testing.assert_array_equal(d_signal_converted, d_signal) record.adc(expanded=False, inplace=True) np.testing.assert_array_equal(record.d_signal, d_signal) # Test converting e_p_signal to e_d_signal record = wfdb.Record( e_p_signal=[s.copy() for s in e_p_signal], adc_gain=adc_gain, baseline=baseline, fmt=fmt, ) e_d_signal_converted = record.adc(expanded=True, inplace=False) self.assertEqual(len(e_d_signal_converted), n_sig) for x, y in zip(e_d_signal_converted, e_d_signal): np.testing.assert_array_equal(x, y) record.adc(expanded=True, inplace=True) self.assertEqual(len(record.e_d_signal), n_sig) for x, y in zip(record.e_d_signal, e_d_signal): np.testing.assert_array_equal(x, y) # Test automatic conversion using wfdb.wrsamp() wfdb.wrsamp( "test_physical_conversion", fs=1000, sig_name=["X", "Y", "Z"], units=["mV", "mV", "mV"], p_signal=p_signal, adc_gain=adc_gain, baseline=baseline, fmt=fmt, write_dir=self.temp_path, ) record = wfdb.rdrecord( os.path.join(self.temp_path, "test_physical_conversion"), physical=False, ) np.testing.assert_array_equal(record.d_signal, d_signal) record = wfdb.rdrecord( os.path.join(self.temp_path, "test_physical_conversion"), physical=True, ) for ch, gain in enumerate(adc_gain): np.testing.assert_allclose( record.p_signal[:, ch], p_signal[:, ch], rtol=0.0000001, atol=(0.05 / gain), ) @classmethod def setUpClass(cls): cls.temp_directory = tempfile.TemporaryDirectory() cls.temp_path = cls.temp_directory.name @classmethod def tearDownClass(cls): cls.temp_directory.cleanup()
class TestSignal(unittest.TestCase): ''' For lower level signal tests ''' def test_infer_sig_len(self): ''' Infer the signal length of a record without the sig_len header Read two headers. The records should be the same. ''' pass def test_physical_conversion(self): pass @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass
7
2
26
4
19
2
2
0.15
1
5
1
0
2
1
4
76
113
21
80
24
73
12
47
21
42
5
2
2
8
147,693
MIT-LCP/wfdb-python
tests/test_plot.py
tests.test_plot.TestPlotInternal
class TestPlotInternal(unittest.TestCase): """ Unit tests for internal wfdb.plot.plot functions """ def test_get_plot_dims(self): sampfrom = 0 sampto = 3000 record = wfdb.rdrecord( "sample-data/100", physical=True, sampfrom=sampfrom, sampto=sampto ) ann = wfdb.rdann( "sample-data/100", "atr", sampfrom=sampfrom, sampto=sampto ) sig_len, n_sig, n_annot, n_subplots = plot._get_plot_dims( signal=record.p_signal, ann_samp=[ann.sample] ) assert sig_len == sampto - sampfrom assert n_sig == record.n_sig assert n_annot == 1 assert n_subplots == record.n_sig def test_create_figure_single_subplots(self): n_subplots = 1 fig, axes = plot._create_figure( n_subplots, sharex=True, sharey=True, figsize=None ) assert fig is not None assert axes is not None assert len(axes) == n_subplots def test_create_figure_multiple_subplots(self): n_subplots = 5 fig, axes = plot._create_figure( n_subplots, sharex=True, sharey=True, figsize=None ) assert fig is not None assert axes is not None assert len(axes) == n_subplots
class TestPlotInternal(unittest.TestCase): ''' Unit tests for internal wfdb.plot.plot functions ''' def test_get_plot_dims(self): pass def test_create_figure_single_subplots(self): pass def test_create_figure_multiple_subplots(self): pass
4
1
11
0
11
0
1
0.09
1
0
0
0
3
0
3
75
40
4
33
13
29
3
23
13
19
1
2
0
3
147,694
MIT-LCP/wfdb-python
tests/test_record.py
tests.test_record.TestTimeConversion
class TestTimeConversion(unittest.TestCase): """ Test cases for time conversion """ def test_single(self): """ Time conversion for a single-segment record This checks the get_frame_number, get_elapsed_time, and get_absolute_time methods for a Record object. The example record has no base date defined, so attempting to convert to/from absolute time should raise an exception. """ header = wfdb.rdheader("sample-data/test01_00s") # these time values should be equivalent n = 123 * header.fs t = datetime.timedelta(seconds=123) self.assertEqual(header.get_frame_number(n), n) self.assertEqual(header.get_frame_number(t), n) self.assertEqual(header.get_elapsed_time(n), t) self.assertEqual(header.get_elapsed_time(t), t) # record test01_00s has no base date, so absolute time conversions # should fail self.assertIsNone(header.base_date) d = datetime.datetime(2001, 1, 1, 12, 0, 0) self.assertRaises(ValueError, header.get_frame_number, d) self.assertRaises(ValueError, header.get_absolute_time, n) self.assertRaises(ValueError, header.get_absolute_time, t) def test_multisegment_with_date(self): """ Time conversion for a multi-segment record with base date This checks the get_frame_number, get_elapsed_time, and get_absolute_time methods for a MultiRecord object. The example record has a base date, so we can convert timestamps between all three of the supported representations. """ header = wfdb.rdheader( "sample-data/multi-segment/p000878/p000878-2137-10-26-16-57" ) # these time values should be equivalent n = 123 * header.fs t = datetime.timedelta(seconds=123) d = t + header.base_datetime self.assertEqual(header.get_frame_number(n), n) self.assertEqual(header.get_frame_number(t), n) self.assertEqual(header.get_frame_number(d), n) self.assertEqual(header.get_elapsed_time(n), t) self.assertEqual(header.get_elapsed_time(t), t) self.assertEqual(header.get_elapsed_time(d), t) self.assertEqual(header.get_absolute_time(n), d) self.assertEqual(header.get_absolute_time(t), d) self.assertEqual(header.get_absolute_time(d), d)
class TestTimeConversion(unittest.TestCase): ''' Test cases for time conversion ''' def test_single(self): ''' Time conversion for a single-segment record This checks the get_frame_number, get_elapsed_time, and get_absolute_time methods for a Record object. The example record has no base date defined, so attempting to convert to/from absolute time should raise an exception. ''' pass def test_multisegment_with_date(self): ''' Time conversion for a multi-segment record with base date This checks the get_frame_number, get_elapsed_time, and get_absolute_time methods for a MultiRecord object. The example record has a base date, so we can convert timestamps between all three of the supported representations. ''' pass
3
3
27
4
15
9
1
0.7
1
3
0
0
2
0
2
74
60
9
30
11
27
21
28
11
25
1
2
0
2
147,695
MIT-LCP/wfdb-python
tests/io/test_convert.py
test_convert.TestEdfToWfdb
class TestEdfToWfdb: """ Tests for the io.convert.edf module. """ def test_edf_uniform(self): """ EDF format conversion to MIT for uniform sample rates. """ # Uniform sample rates record_MIT = rdrecord("sample-data/n16").__dict__ record_EDF = read_edf("sample-data/n16.edf").__dict__ fields = list(record_MIT.keys()) # Original MIT format method of checksum is outdated, sometimes # the same value though fields.remove("checksum") # Original MIT format units are less comprehensive since they # default to mV if unknown.. therefore added more default labels fields.remove("units") test_results = [] for field in fields: # Signal value will be slightly off due to C to Python type conversion if field == "p_signal": true_array = np.array(record_MIT[field]).flatten() pred_array = np.array(record_EDF[field]).flatten() # Prevent divide by zero warning for i, v in enumerate(true_array): if v == 0: true_array[i] = 1 pred_array[i] = 1 sig_diff = np.abs((pred_array - true_array) / true_array) sig_diff[sig_diff == -np.inf] = 0 sig_diff[sig_diff == np.inf] = 0 sig_diff = np.nanmean(sig_diff, 0) # 5% tolerance if np.max(sig_diff) <= 5: test_results.append(True) else: test_results.append(False) elif field == "init_value": signal_diff = [ abs(record_MIT[field][i] - record_EDF[field][i]) for i in range(len(record_MIT[field])) ] if abs(max(min(signal_diff), max(signal_diff), key=abs)) <= 2: test_results.append(True) else: test_results.append(False) else: test_results.append(record_MIT[field] == record_MIT[field]) target_results = len(fields) * [True] assert np.array_equal(test_results, target_results) def test_edf_non_uniform(self): """ EDF format conversion to MIT for non-uniform sample rates. """ # Non-uniform sample rates record_MIT = rdrecord("sample-data/wave_4").__dict__ record_EDF = read_edf("sample-data/wave_4.edf").__dict__ fields = list(record_MIT.keys()) # Original MIT format method of checksum is outdated, sometimes # the same value though fields.remove("checksum") # Original MIT format units are less comprehensive since they # default to mV if unknown.. therefore added more default labels fields.remove("units") test_results = [] for field in fields: # Signal value will be slightly off due to C to Python type conversion if field == "p_signal": true_array = np.array(record_MIT[field]).flatten() pred_array = np.array(record_EDF[field]).flatten() # Prevent divide by zero warning for i, v in enumerate(true_array): if v == 0: true_array[i] = 1 pred_array[i] = 1 sig_diff = np.abs((pred_array - true_array) / true_array) sig_diff[sig_diff == -np.inf] = 0 sig_diff[sig_diff == np.inf] = 0 sig_diff = np.nanmean(sig_diff, 0) # 5% tolerance if np.max(sig_diff) <= 5: test_results.append(True) else: test_results.append(False) elif field == "init_value": signal_diff = [ abs(record_MIT[field][i] - record_EDF[field][i]) for i in range(len(record_MIT[field])) ] if abs(max(min(signal_diff), max(signal_diff), key=abs)) <= 2: test_results.append(True) else: test_results.append(False) else: test_results.append(record_MIT[field] == record_MIT[field]) target_results = len(fields) * [True] assert np.array_equal(test_results, target_results)
class TestEdfToWfdb: ''' Tests for the io.convert.edf module. ''' def test_edf_uniform(self): ''' EDF format conversion to MIT for uniform sample rates. ''' pass def test_edf_non_uniform(self): ''' EDF format conversion to MIT for non-uniform sample rates. ''' pass
3
3
50
3
36
11
8
0.34
0
3
0
0
2
0
2
2
106
8
73
25
70
25
59
25
56
8
0
4
16
147,696
MIT-LCP/wfdb-python
tests/test_url.py
tests.test_url.DummyHTTPServer
class DummyHTTPServer(http.server.HTTPServer): """ HTTPServer used to simulate a web server for testing. The server may be used as a context manager (using "with"); during execution of the "with" block, a background thread runs that listens for and handles client requests. Attributes ---------- file_content : dict Dictionary containing the content of each file on the server. The keys are absolute paths (such as "/foo.txt"); the values are the corresponding content (bytes). allow_gzip : bool, optional True if the server should return compressed responses (using "Content-Encoding: gzip") when the client requests them (using "Accept-Encoding: gzip"). allow_range : bool, optional True if the server should return partial responses (using 206 Partial Content and "Content-Range") when the client requests them (using "Range"). server_address : tuple (str, int), optional A tuple specifying the address and port number where the server should listen for connections. If the port is 0, an arbitrary unused port is selected. The default address is "127.0.0.1" and the default port is 0. """ def __init__( self, file_content, allow_gzip=True, allow_range=True, server_address=("127.0.0.1", 0), ): super().__init__(server_address, DummyHTTPRequestHandler) self.file_content = file_content self.allow_gzip = allow_gzip self.allow_range = allow_range def url(self, path="/"): """ Generate a URL that points to a file on this server. Parameters ---------- path : str, optional Path of the file on the server. Returns ------- url : str Absolute URL for the specified file. """ return "http://127.0.0.1:%d/%s" % ( self.server_address[1], path.lstrip("/"), ) def __enter__(self): super().__enter__() self.thread = threading.Thread(target=self.serve_forever) self.thread.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown() self.thread.join() self.thread = None return super().__exit__(exc_type, exc_val, exc_tb)
class DummyHTTPServer(http.server.HTTPServer): ''' HTTPServer used to simulate a web server for testing. The server may be used as a context manager (using "with"); during execution of the "with" block, a background thread runs that listens for and handles client requests. Attributes ---------- file_content : dict Dictionary containing the content of each file on the server. The keys are absolute paths (such as "/foo.txt"); the values are the corresponding content (bytes). allow_gzip : bool, optional True if the server should return compressed responses (using "Content-Encoding: gzip") when the client requests them (using "Accept-Encoding: gzip"). allow_range : bool, optional True if the server should return partial responses (using 206 Partial Content and "Content-Range") when the client requests them (using "Range"). server_address : tuple (str, int), optional A tuple specifying the address and port number where the server should listen for connections. If the port is 0, an arbitrary unused port is selected. The default address is "127.0.0.1" and the default port is 0. ''' def __init__( self, file_content, allow_gzip=True, allow_range=True, server_address=("127.0.0.1", 0), ): pass def url(self, path="/"): ''' Generate a URL that points to a file on this server. Parameters ---------- path : str, optional Path of the file on the server. Returns ------- url : str Absolute URL for the specified file. ''' pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass
5
2
10
1
7
3
1
1.33
1
3
1
0
4
4
4
30
73
10
27
15
16
36
18
9
13
1
3
0
4
147,697
MIT-LCP/wfdb-python
wfdb/io/annotation.py
wfdb.io.annotation.Annotation
class Annotation(object): """ The class representing WFDB annotations. Annotation objects can be created using the initializer, or by reading a WFDB annotation file with `rdann`. The attributes of the Annotation object give information about the annotation as specified by: https://www.physionet.org/physiotools/wag/annot-5.htm Call `show_ann_labels()` to see the list of standard annotation codes. Any text used to label annotations that are not one of these codes should go in the 'aux_note' field rather than the 'sym' field. The current annotation values organized as such: AnnotationLabel(label_store (or subtype), symbol (or aux_note), short_description, description) where the associated values are: ann_labels = [ AnnotationLabel(0, " ", 'NOTANN', 'Not an actual annotation'), AnnotationLabel(1, "N", 'NORMAL', 'Normal beat'), AnnotationLabel(2, "L", 'LBBB', 'Left bundle branch block beat'), AnnotationLabel(3, "R", 'RBBB', 'Right bundle branch block beat'), AnnotationLabel(4, "a", 'ABERR', 'Aberrated atrial premature beat'), AnnotationLabel(5, "V", 'PVC', 'Premature ventricular contraction'), AnnotationLabel(6, "F", 'FUSION', 'Fusion of ventricular and normal beat'), AnnotationLabel(7, "J", 'NPC', 'Nodal (junctional) premature beat'), AnnotationLabel(8, "A", 'APC', 'Atrial premature contraction'), AnnotationLabel(9, "S", 'SVPB', 'Premature or ectopic supraventricular beat'), AnnotationLabel(10, "E", 'VESC', 'Ventricular escape beat'), AnnotationLabel(11, "j", 'NESC', 'Nodal (junctional) escape beat'), AnnotationLabel(12, "/", 'PACE', 'Paced beat'), AnnotationLabel(13, "Q", 'UNKNOWN', 'Unclassifiable beat'), AnnotationLabel(14, "~", 'NOISE', 'Signal quality change'), AnnotationLabel(16, "|", 'ARFCT', 'Isolated QRS-like artifact'), AnnotationLabel(18, "s", 'STCH', 'ST change'), AnnotationLabel(19, "T", 'TCH', 'T-wave change'), AnnotationLabel(20, "*", 'SYSTOLE', 'Systole'), AnnotationLabel(21, "D", 'DIASTOLE', 'Diastole'), AnnotationLabel(22, '"', 'NOTE', 'Comment annotation'), AnnotationLabel(23, "=", 'MEASURE', 'Measurement annotation'), AnnotationLabel(24, "p", 'PWAVE', 'P-wave peak'), AnnotationLabel(25, "B", 'BBB', 'Left or right bundle branch block'), AnnotationLabel(26, "^", 'PACESP', 'Non-conducted pacer spike'), AnnotationLabel(27, "t", 'TWAVE', 'T-wave peak'), AnnotationLabel(28, "+", 'RHYTHM', 'Rhythm change'), AnnotationLabel(29, "u", 'UWAVE', 'U-wave peak'), AnnotationLabel(30, "?", 'LEARN', 'Learning'), AnnotationLabel(31, "!", 'FLWAV', 'Ventricular flutter wave'), AnnotationLabel(32, "[", 'VFON', 'Start of ventricular flutter/fibrillation'), AnnotationLabel(33, "]", 'VFOFF', 'End of ventricular flutter/fibrillation'), AnnotationLabel(34, "e", 'AESC', 'Atrial escape beat'), AnnotationLabel(35, "n", 'SVESC', 'Supraventricular escape beat'), AnnotationLabel(36, "@", 'LINK', 'Link to external data (aux_note contains URL)'), AnnotationLabel(37, "x", 'NAPC', 'Non-conducted P-wave (blocked APB)'), AnnotationLabel(38, "f", 'PFUS', 'Fusion of paced and normal beat'), AnnotationLabel(39, "(", 'WFON', 'Waveform onset'), AnnotationLabel(40, ")", 'WFOFF', 'Waveform end'), AnnotationLabel(41, "r", 'RONT', 'R-on-T premature ventricular contraction') ] The current annotation classes are organized as such: AnnotationClass(extension, description, human_reviewed) where the associated values are: ann_classes = [ AnnotationClass('atr', 'Reference ECG annotations', True), AnnotationClass('blh', 'Human reviewed beat labels', True), AnnotationClass('blm', 'Machine beat labels', False), AnnotationClass('alh', 'Human reviewed alarms', True), AnnotationClass('alm', 'Machine alarms', False), AnnotationClass('qrsc', 'Human reviewed QRS detections', True), AnnotationClass('qrs', 'Machine QRS detections', False), AnnotationClass('bph', 'Human reviewed BP beat detections', True), AnnotationClass('bpm', 'Machine BP beat detections', False) ] Attributes ---------- record_name : str The base file name (without extension) of the record that the annotation is associated with. extension : str The file extension of the file the annotation is stored in. sample : ndarray A numpy array containing the annotation locations in samples relative to the beginning of the record. symbol : list, numpy array, optional The symbols used to display the annotation labels. List or numpy array. If this field is present, `label_store` must not be present. subtype : ndarray, optional A numpy array containing the marked class/category of each annotation. chan : ndarray, optional A numpy array containing the signal channel associated with each annotation. num : ndarray, optional A numpy array containing the labelled annotation number for each annotation. aux_note : list, optional A list containing the auxiliary information string (or None for annotations without notes) for each annotation. fs : int, float, optional The sampling frequency of the record. label_store : ndarray, optional The integer value used to store/encode each annotation label description : list, optional A list containing the descriptive string of each annotation label. custom_labels : pandas dataframe, optional The custom annotation labels defined in the annotation file. Maps the relationship between the three label fields. The data type is a pandas DataFrame with three columns: ['label_store', 'symbol', 'description']. contained_labels : pandas dataframe, optional The unique labels contained in this annotation. Same structure as `custom_labels`. Examples -------- >>> ann1 = wfdb.Annotation(record_name='rec1', extension='atr', sample=[10,20,400], symbol=['N','N','['], aux_note=[None, None, 'Serious Vfib']) """ def __init__( self, record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, fs=None, label_store=None, description=None, custom_labels=None, contained_labels=None, ): self.record_name = record_name self.extension = extension self.sample = sample self.symbol = symbol self.subtype = subtype self.chan = chan self.num = num self.aux_note = aux_note self.fs = fs self.label_store = label_store self.description = description self.custom_labels = custom_labels self.contained_labels = contained_labels self.ann_len = len(self.sample) # __label_map__: (storevalue, symbol, description) hidden attribute def __eq__(self, other): """ Equal comparison operator for objects of this type. Parameters ---------- other : object The object that is being compared to self. Returns ------- bool Determines if the objects are equal (True) or not equal (False). """ att1 = self.__dict__ att2 = other.__dict__ if set(att1.keys()) != set(att2.keys()): print("keyset") return False for k in att1.keys(): v1 = att1[k] v2 = att2[k] if type(v1) != type(v2): print(k) return False if isinstance(v1, np.ndarray): if not np.array_equal(v1, v2): print(k) return False elif isinstance(v1, pd.DataFrame): if not v1.equals(v2): print(k) return False else: if v1 != v2: print(k) return False return True def apply_range(self, sampfrom=0, sampto=None): """ Filter the annotation attributes to keep only items between the desired sample values. Parameters ---------- sampfrom : int, optional The minimum sample number for annotations to be returned. sampto : int, optional The maximum sample number for annotations to be returned. """ sampto = sampto or self.sample[-1] kept_inds = np.intersect1d( np.where(self.sample >= sampfrom), np.where(self.sample <= sampto) ) for field in ["sample", "label_store", "subtype", "chan", "num"]: setattr(self, field, getattr(self, field)[kept_inds]) self.aux_note = [self.aux_note[i] for i in kept_inds] self.ann_len = len(self.sample) def wrann(self, write_fs=False, write_dir=""): """ Write a WFDB annotation file from this object. Parameters ---------- write_fs : bool, optional Whether to write the `fs` attribute to the file. write_dir : str, optional The output directory in which the header is written. Returns ------- N/A """ for field in ["record_name", "extension"]: if getattr(self, field) is None: raise Exception( "Missing required field for writing annotation file: ", field, ) present_label_fields = self.get_label_fields() if not present_label_fields: raise Exception( "At least one annotation label field is required to write the annotation: ", ann_label_fields, ) # Check the validity of individual fields self.check_fields() # Standardize the format of the custom_labels field self.standardize_custom_labels() # Create the label map used in this annotaion self.create_label_map() # Check the cohesion of fields self.check_field_cohesion(present_label_fields) # Calculate the label_store field if necessary if "label_store" not in present_label_fields: self.convert_label_attribute( source_field=present_label_fields[0], target_field="label_store" ) # Calculate the symbol field if necessary if "symbol" not in present_label_fields: self.convert_label_attribute( source_field=present_label_fields[0], target_field="symbol" ) # Write the header file using the specified fields self.wr_ann_file(write_fs=write_fs, write_dir=write_dir) return def get_label_fields(self): """ Get the present label fields in the object. Parameters ---------- N/A Returns ------- present_label_fields : list All of the present label fields in the object. """ present_label_fields = [] for field in ann_label_fields: if getattr(self, field) is not None: present_label_fields.append(field) return present_label_fields def check_fields(self): """ Check the set fields of the annotation object. Parameters ---------- N/A Returns ------- N/A """ # Check all set fields for field in ALLOWED_TYPES: if getattr(self, field) is not None: # Check the type of the field's elements self.check_field(field) return def check_field(self, field): """ Check a particular annotation field. Parameters ---------- field : str The annotation field to be checked. Returns ------- N/A """ item = getattr(self, field) if not isinstance(item, ALLOWED_TYPES[field]): raise TypeError( "The " + field + " field must be one of the following types:", ALLOWED_TYPES[field], ) # Numerical integer annotation fields: sample, label_store, sub, # chan, num if ALLOWED_TYPES[field] == (np.ndarray): record.check_np_array( item=item, field_name=field, ndim=1, parent_class=np.integer, channel_num=None, ) # Field specific checks if field == "record_name": if bool(re.search(r"[^-\w]", self.record_name)): raise ValueError( "record_name must only comprise of letters, digits, hyphens, and underscores." ) elif field == "extension": if bool(re.search("[^a-zA-Z]", self.extension)): raise ValueError("extension must only comprise of letters.") elif field == "fs": if self.fs <= 0: raise ValueError("The fs field must be a non-negative number") elif field == "custom_labels": # The role of this section is just to check the # elements of this item, without utilizing # any other fields. No format conversion # or free value looksups etc are done. # Check the structure of the subelements if isinstance(item, pd.DataFrame): column_names = list(item) if "symbol" in column_names and "description" in column_names: if "label_store" in column_names: label_store = list(item["label_store"].values) else: label_store = None symbol = item["symbol"].values description = item["description"].values else: raise ValueError( "".join( [ "If the " + field + " field is pandas dataframe, its columns", " must be one of the following:\n-[label_store, symbol, description]", "\n-[symbol, description]", ] ) ) else: if set([len(i) for i in item]) == {2}: label_store = None symbol = [i[0] for i in item] description = [i[1] for i in item] elif set([len(i) for i in item]) == {3}: label_store = [i[0] for i in item] symbol = [i[1] for i in item] description = [i[2] for i in item] else: raise ValueError( "".join( [ "If the " + field + " field is an array-like object, its subelements", " must be one of the following:\n- tuple triplets storing: ", "(label_store, symbol, description)\n- tuple pairs storing: ", "(symbol, description)", ] ) ) # Check the values of the subelements if label_store: if len(item) != len(set(label_store)): raise ValueError( "The label_store values of the " + field + " field must be unique" ) if min(label_store) < 1 or max(label_store) > 49: raise ValueError( "The label_store values of the custom_labels field must be between 1 and 49" ) if len(item) != len(set(symbol)): raise ValueError( "The symbol values of the " + field + " field must be unique" ) for i in range(len(item)): if label_store: if not hasattr(label_store[i], "__index__"): raise TypeError( "The label_store values of the " + field + " field must be integer-like" ) if not isinstance(symbol[i], str_types) or len( symbol[i] ) not in [ 1, 2, 3, ]: raise ValueError( "The symbol values of the " + field + " field must be strings of length 1 to 3" ) if bool(re.search("[ \t\n\r\f\v]", symbol[i])): raise ValueError( "The symbol values of the " + field + " field must not contain whitespace characters" ) if not isinstance(description[i], str_types): raise TypeError( "The description values of the " + field + " field must be strings" ) # Would be good to enfore this but existing garbage annotations have tabs and newlines... # if bool(re.search('[\t\n\r\f\v]', description[i])): # raise ValueError('The description values of the '+field+' field must not contain tabs or newlines') # The string fields elif field in ["symbol", "description", "aux_note"]: uniq_elements = set(item) for e in uniq_elements: if not isinstance(e, str_types): raise TypeError( "Subelements of the " + field + " field must be strings" ) if field == "symbol": for e in uniq_elements: if len(e) not in [1, 2, 3]: raise ValueError( "Subelements of the " + field + " field must be strings of length 1 to 3" ) if bool(re.search("[ \t\n\r\f\v]", e)): raise ValueError( "Subelements of the " + field + " field may not contain whitespace characters" ) else: for e in uniq_elements: if bool(re.search("[\t\n\r\f\v]", e)): raise ValueError( "Subelements of the " + field + " field must not contain tabs or newlines" ) elif field == "sample": if len(self.sample) == 1: sampdiffs = np.array([self.sample[0]]) elif len(self.sample) > 1: sampdiffs = np.concatenate( ([self.sample[0]], np.diff(self.sample)) ) else: raise ValueError( "The 'sample' field must be a numpy array with length greater than 0" ) if min(self.sample) < 0: raise ValueError( "The 'sample' field must only contain non-negative integers" ) if min(sampdiffs) < 0: raise ValueError( "The 'sample' field must contain monotonically increasing sample numbers" ) elif field == "label_store": if min(item) < 1 or max(item) > 49: raise ValueError( "The label_store values must be between 1 and 49" ) # The C WFDB library stores num/sub/chan as chars. elif field == "subtype": # signed character if min(self.subtype) < -128 or max(self.subtype) > 127: raise ValueError( "The 'subtype' field must only contain integers from -128 to 127" ) elif field == "chan": # un_signed character if min(self.chan) < 0 or max(self.chan) > 255: raise ValueError( "The 'chan' field must only contain non-negative integers up to 255" ) elif field == "num": # signed character if min(self.num) < 0 or max(self.num) > 127: raise ValueError( "The 'num' field must only contain non-negative integers up to 127" ) return def check_field_cohesion(self, present_label_fields): """ Check that the content and structure of different fields are consistent with one another. Parameters ---------- present_label_fields : list All of the present label fields in the object. Returns ------- N/A """ # Ensure all written annotation fields have the same length nannots = len(self.sample) for field in [ "sample", "num", "subtype", "chan", "aux_note", ] + present_label_fields: if getattr(self, field) is not None: if len(getattr(self, field)) != nannots: raise ValueError( "The lengths of the 'sample' and '" + field + "' fields do not match" ) # Ensure all label fields are defined by the label map. This has to be checked because # it is possible the user defined (or lack of) custom_labels does not capture all the # labels present. for field in present_label_fields: defined_values = self.__label_map__[field].values if set(getattr(self, field)) - set(defined_values) != set(): raise ValueError( "\n".join( [ "\nThe " + field + " field contains elements not encoded in the stardard WFDB annotation labels, or this object's custom_labels field", "- To see the standard WFDB annotation labels, call: show_ann_labels()", "- To transfer non-encoded symbol items into the aux_note field, call: self.sym_to_aux()", "- To define custom labels, set the custom_labels field as a list of tuple triplets with format: (label_store, symbol, description)", ] ) ) return def standardize_custom_labels(self): """ Set the custom_labels field of the object to a standardized format: 3 column pandas df with ann_label_fields as columns. Does nothing if there are no custom labels defined. Does nothing if custom_labels is already a df with all 3 columns. If custom_labels is an iterable of pairs/triplets, this function will convert it into a df. If the label_store attribute is not already defined, this function will automatically choose values by trying to use: 1. The undefined store values from the standard WFDB annotation label map. 2. The unused label store values. This is extracted by finding the set of all labels contained in this annotation object and seeing which symbols/descriptions are not used. If there are more custom labels defined than there are enough spaces, even in condition 2 from above, this function will raise an error. This function must work when called as a standalone. Parameters ---------- N/A Returns ------- N/A """ custom_labels = self.custom_labels if custom_labels is None: return self.check_field("custom_labels") # Convert to dataframe if not already if not isinstance(custom_labels, pd.DataFrame): if len(self.custom_labels[0]) == 2: symbol = self.get_custom_label_attribute("symbol") description = self.get_custom_label_attribute("description") custom_labels = pd.DataFrame( {"symbol": symbol, "description": description} ) else: label_store = self.get_custom_label_attribute("label_store") symbol = self.get_custom_label_attribute("symbol") description = self.get_custom_label_attribute("description") custom_labels = pd.DataFrame( { "label_store": label_store, "symbol": symbol, "description": description, } ) # Assign label_store values to the custom labels if not defined if "label_store" not in list(custom_labels): undefined_label_stores = self.get_undefined_label_stores() if len(custom_labels) > len(undefined_label_stores): available_label_stores = self.get_available_label_stores() else: available_label_stores = undefined_label_stores n_custom_labels = custom_labels.shape[0] if n_custom_labels > len(available_label_stores): raise ValueError( "There are more custom_label definitions than storage values available for them." ) custom_labels["label_store"] = available_label_stores[ :n_custom_labels ] custom_labels.set_index( custom_labels["label_store"].values, inplace=True ) custom_labels = custom_labels[list(ann_label_fields)] self.custom_labels = custom_labels return def get_undefined_label_stores(self): """ Get the label_store values not defined in the standard WFDB annotation labels. Parameters ---------- N/A Returns ------- list The label_store values not found in WFDB annotation labels. """ return list(set(range(50)) - set(ann_label_table["label_store"])) def get_available_label_stores(self, usefield="tryall"): """ Get the label store values that may be used for writing this annotation. Available store values include: - the undefined values in the standard WFDB labels - the store values not used in the current annotation object. - the store values whose standard WFDB symbols/descriptions match those of the custom labels (if custom_labels exists) Parameters ---------- usefield : str, optional If 'usefield' is explicitly specified, the function will use that field to figure out available label stores. If 'usefield' is set to 'tryall', the function will choose one of the contained attributes by checking availability in the order: label_store, symbol, description. Returns ------- available_label_stores : set The available store values used for writing the annotation. """ # Figure out which field to use to get available labels stores. if usefield == "tryall": if self.label_store is not None: usefield = "label_store" elif self.symbol is not None: usefield = "symbol" elif self.description is not None: usefield = "description" else: raise ValueError( "No label fields are defined. At least one of the following is required: ", ann_label_fields, ) return self.get_available_label_stores(usefield=usefield) # Use the explicitly stated field to get available stores. else: # If usefield == 'label_store', there are slightly fewer/different steps # compared to if it were another option contained_field = getattr(self, usefield) # Get the unused label_store values if usefield == "label_store": unused_label_stores = ( set(ann_label_table["label_store"].values) - contained_field ) else: # the label_store values from the standard WFDB annotation labels # whose symbols are not contained in this annotation unused_field = ( set(ann_label_table[usefield].values) - contained_field ) unused_label_stores = ann_label_table.loc[ ann_label_table[usefield] in unused_field, "label_store" ].values # Get the standard WFDB label_store values overwritten by the # custom_labels if any if self.custom_symbols is not None: custom_field = set(self.get_custom_label_attribute(usefield)) if usefield == "label_store": overwritten_label_stores = set(custom_field).intersection( set(ann_label_table["label_store"]) ) else: overwritten_fields = set(custom_field).intersection( set(ann_label_table[usefield]) ) overwritten_label_stores = ann_label_table.loc[ ann_label_table[usefield] in overwritten_fields, "label_store", ].values else: overwritten_label_stores = set() # The undefined values in the standard WFDB labels undefined_label_stores = self.get_undefined_label_stores() # Final available label stores = undefined + unused + overwritten available_label_stores = ( set(undefined_label_stores) .union(set(unused_label_stores)) .union(overwritten_label_stores) ) return available_label_stores def get_custom_label_attribute(self, attribute): """ Get a list of the custom_labels attribute i.e. label_store, symbol, or description. The custom_labels variable could be in a number of formats. Parameters ---------- attribute : str The selected attribute to generate the list. Returns ------- a : list All of the custom_labels attributes. """ if attribute not in ann_label_fields: raise ValueError("Invalid attribute specified") if isinstance(self.custom_labels, pd.DataFrame): if "label_store" not in list(self.custom_labels): raise ValueError("label_store not defined in custom_labels") a = list(self.custom_labels[attribute].values) else: if len(self.custom_labels[0]) == 2: if attribute == "label_store": raise ValueError("label_store not defined in custom_labels") elif attribute == "symbol": a = [l[0] for l in self.custom_labels] elif attribute == "description": a = [l[1] for l in self.custom_labels] else: if attribute == "label_store": a = [l[0] for l in self.custom_labels] elif attribute == "symbol": a = [l[1] for l in self.custom_labels] elif attribute == "description": a = [l[2] for l in self.custom_labels] return a def create_label_map(self, inplace=True): """ Creates mapping df based on ann_label_table and self.custom_labels. Table composed of entire WFDB standard annotation table, overwritten/appended with custom_labels if any. Sets __label_map__ attribute, or returns value. Parameters ---------- inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). Returns ------- label_map : pandas DataFrame Mapping based on ann_label_table and self.custom_labels. """ label_map = ann_label_table.copy() if self.custom_labels is not None: self.standardize_custom_labels() for i in self.custom_labels.index: label_map.loc[i] = self.custom_labels.loc[i] if inplace: self.__label_map__ = label_map else: return label_map def wr_ann_file(self, write_fs, write_dir=""): """ Calculate the bytes used to encode an annotation set and write them to an annotation file. Parameters ---------- write_fs : bool Whether to write the `fs` attribute to the file. write_dir : str, optional The output directory in which the header is written. Returns ------- N/A """ # Calculate the fs bytes to write if present and desired to write if write_fs: fs_bytes = self.calc_fs_bytes() else: fs_bytes = [] # Calculate the custom_labels bytes to write if present cl_bytes = self.calc_cl_bytes() # Calculate the core field bytes to write core_bytes = self.calc_core_bytes() # Mark the end of the special annotation types if needed if len(fs_bytes) or len(cl_bytes): end_special_bytes = [0, 236, 255, 255, 255, 255, 1, 0] else: end_special_bytes = [] # Write the file with open( os.path.join(write_dir, self.record_name + "." + self.extension), "wb", ) as f: # Combine all bytes to write: fs (if any), custom annotations (if any), main content, file terminator np.concatenate( ( fs_bytes, cl_bytes, end_special_bytes, core_bytes, np.array([0, 0]), ) ).astype("u1").tofile(f) return def calc_fs_bytes(self): """ Calculate the bytes written to the annotation file for the fs field. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. """ if self.fs is None: return [] # Initial indicators of encoding fs data_bytes = [ 0, 88, 0, 252, 35, 35, 32, 116, 105, 109, 101, 32, 114, 101, 115, 111, 108, 117, 116, 105, 111, 110, 58, 32, ] # Check if fs is close enough to int if isinstance(self.fs, float): if round(self.fs, 8) == float(int(self.fs)): self.fs = int(self.fs) fschars = str(self.fs) ndigits = len(fschars) for i in range(ndigits): data_bytes.append(ord(fschars[i])) # Fill in the aux_note length data_bytes[2] = ndigits + 20 # odd number of digits if ndigits % 2: data_bytes.append(0) return np.array(data_bytes).astype("u1") def calc_cl_bytes(self): """ Calculate the bytes written to the annotation file for the custom_labels field. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. """ if self.custom_labels is None: return [] # The start wrapper: '0 NOTE length aux_note ## annotation type definitions' headbytes = [ 0, 88, 30, 252, 35, 35, 32, 97, 110, 110, 111, 116, 97, 116, 105, 111, 110, 32, 116, 121, 112, 101, 32, 100, 101, 102, 105, 110, 105, 116, 105, 111, 110, 115, ] # The end wrapper: '0 NOTE length aux_note ## end of definitions' followed by SKIP -1, +1 tailbytes = [ 0, 88, 21, 252, 35, 35, 32, 101, 110, 100, 32, 111, 102, 32, 100, 101, 102, 105, 110, 105, 116, 105, 111, 110, 115, 0, ] custom_bytes = [] for i in self.custom_labels.index: custom_bytes += custom_triplet_bytes( list(self.custom_labels.loc[i, list(ann_label_fields)]) ) # writecontent = [] # for i in range(len(self.custom_labels)): # writecontent.append([freenumbers[i],list(custom_labels.keys())[i],list(custom_labels.values())[i]]) # custombytes = [customcode2bytes(triplet) for triplet in writecontent] # custombytes = [item for sublist in custombytes for item in sublist] return np.array(headbytes + custom_bytes + tailbytes).astype("u1") def calc_core_bytes(self): """ Convert all used annotation fields into bytes to write. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. """ # The difference sample to write if len(self.sample) == 1: sampdiff = np.array([self.sample[0]]) else: sampdiff = np.concatenate(([self.sample[0]], np.diff(self.sample))) # Create a copy of the annotation object with a # compact version of fields to write compact_annotation = copy.deepcopy(self) compact_annotation.compact_fields() # The optional fields to be written. Write if they are not None or all empty extra_write_fields = [] for field in ["num", "subtype", "chan", "aux_note"]: if not isblank(getattr(compact_annotation, field)): extra_write_fields.append(field) data_bytes = [] # Allow use of custom labels label_table = ann_label_table if self.custom_labels is not None: label_table = pd.concat( [label_table, self.custom_labels], ignore_index=True ) # Generate typecodes from annotation label table typecodes = { label_table.iloc[i]["symbol"]: label_table.iloc[i]["label_store"] for i in range(len(label_table)) } # Iterate across all fields one index at a time for i in range(len(sampdiff)): # Process the samp (difference) and sym items data_bytes.append( field2bytes( "samptype", [sampdiff[i], self.symbol[i]], typecodes ) ) # Process the extra optional fields for field in extra_write_fields: value = getattr(compact_annotation, field)[i] if value is not None: data_bytes.append(field2bytes(field, value, typecodes)) # Flatten and convert to correct format data_bytes = np.array( [item for sublist in data_bytes for item in sublist] ).astype("u1") return data_bytes def compact_fields(self): """ Compact all of the object's fields so that the output writing annotation file writes as few bytes as possible. Parameters ---------- N/A Returns ------- N/A """ # Number of annotations nannots = len(self.sample) # Chan and num carry over previous fields. Get lists of as few # elements to write as possible self.chan = compact_carry_field(self.chan) self.num = compact_carry_field(self.num) # Elements of 0 (default) do not need to be written for subtype. # num and sub are signed in original c package... if self.subtype is not None: if isinstance(self.subtype, list): for i in range(nannots): if self.subtype[i] == 0: self.subtype[i] = None if np.array_equal(self.subtype, [None] * nannots): self.subtype = None else: zero_inds = np.where(self.subtype == 0)[0] if len(zero_inds) == nannots: self.subtype = None else: self.subtype = list(self.subtype) for i in zero_inds: self.subtype[i] = None # Empty aux_note strings are not written if self.aux_note is not None: for i in range(nannots): if self.aux_note[i] == "": self.aux_note[i] = None if np.array_equal(self.aux_note, [None] * nannots): self.aux_note = None def sym_to_aux(self): """ Move non-encoded symbol elements into the aux_note field. Parameters ---------- N/A Returns ------- N/A """ self.check_field("symbol") # Non-encoded symbols label_table_map = self.create_label_map(inplace=False) external_syms = set(self.symbol) - set(label_table_map["symbol"].values) if external_syms == set(): return if self.aux_note is None: self.aux_note = [""] * len(self.sample) for ext in external_syms: for i in [i for i, x in enumerate(self.symbol) if x == ext]: if not self.aux_note[i]: self.aux_note[i] = self.symbol[i] else: self.aux_note[i] = self.symbol[i] + " " + self.aux_note[i] self.symbol[i] = '"' return def get_contained_labels(self, inplace=True): """ Get the set of unique labels contained in this annotation. Returns a pandas dataframe or sets the contained_labels attribute of the object. Requires the label_store field to be set. Function will try to use attributes contained in the order: 1. label_store 2. symbol 3. description This function should also be called to summarize information about an annotation after it has been read. Should not be a helper function to others except rdann. Parameters ---------- inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). Returns ------- contained_labels : pandas DataFrame Mapping based on ann_label_table and self.custom_labels. """ if self.custom_labels is not None: self.check_field("custom_labels") # Create the label map label_map = ann_label_table.copy() # Convert the tuple triplets into a pandas dataframe if needed if isinstance(self.custom_labels, (list, tuple)): custom_labels = label_triplets_to_df(self.custom_labels) elif isinstance(self.custom_labels, pd.DataFrame): # Set the index just in case it doesn't already match the label_store self.custom_labels.set_index( self.custom_labels["label_store"].values, inplace=True ) custom_labels = self.custom_labels else: custom_labels = None # Merge the standard WFDB labels with the custom labels. # custom labels values overwrite standard WFDB if overlap. if custom_labels is not None: for i in custom_labels.index: label_map.loc[i] = custom_labels.loc[i] # This doesn't work... # label_map.loc[custom_labels.index] = custom_labels.loc[custom_labels.index] # Get the labels using one of the features if self.label_store is not None: index_vals = set(self.label_store) reset_index = False counts = np.unique(self.label_store, return_counts=True) elif self.symbol is not None: index_vals = set(self.symbol) label_map.set_index(label_map["symbol"].values, inplace=True) reset_index = True counts = np.unique(self.symbol, return_counts=True) elif self.description is not None: index_vals = set(self.description) label_map.set_index(label_map["description"].values, inplace=True) reset_index = True counts = np.unique(self.description, return_counts=True) else: raise Exception("No annotation labels contained in object") contained_labels = label_map.loc[list(index_vals), :] # Add the counts for i in range(len(counts[0])): contained_labels.loc[counts[0][i], "n_occurrences"] = counts[1][i] contained_labels["n_occurrences"] = pd.to_numeric( contained_labels["n_occurrences"], downcast="integer" ) if reset_index: contained_labels.set_index( contained_labels["label_store"].values, inplace=True ) if inplace: self.contained_labels = contained_labels return else: return contained_labels def set_label_elements(self, wanted_label_elements): """ Set one or more label elements based on at least one of the others. Parameters ---------- wanted_label_elements : list All of the desired label elements. Returns ------- N/A """ if isinstance(wanted_label_elements, str): wanted_label_elements = [wanted_label_elements] # Figure out which desired label elements are missing missing_elements = [ e for e in wanted_label_elements if getattr(self, e) is None ] contained_elements = [ e for e in ann_label_fields if getattr(self, e) is not None ] if not contained_elements: raise Exception("No annotation labels contained in object") for e in missing_elements: self.convert_label_attribute(contained_elements[0], e) unwanted_label_elements = list( set(ann_label_fields) - set(wanted_label_elements) ) self.rm_attributes(unwanted_label_elements) return def rm_attributes(self, attributes): """ Remove attributes from object. Parameters ---------- attributes : list All of the desired attributes to remove. Returns ------- N/A """ if isinstance(attributes, str): attributes = [attributes] for a in attributes: setattr(self, a, None) return def convert_label_attribute( self, source_field, target_field, inplace=True, overwrite=True ): """ Convert one label attribute (label_store, symbol, or description) to another. Creates mapping df on the fly based on ann_label_table and self.custom_labels. Parameters ---------- source_field : str The label attribute to be converted. target_field : str The label attribute that will be converted to. inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). overwrite : bool, optional If True, performs conversion and replaces target field attribute even if the target attribute already has a value. If False, does not perform conversion in the aforementioned case. Set to True (do conversion) if inplace=False. Returns ------- target_item : list All of the desired target fields. """ if inplace and not overwrite: if getattr(self, target_field) is not None: return label_map = self.create_label_map(inplace=False) label_map.set_index(label_map[source_field].values, inplace=True) try: target_item = label_map.loc[ getattr(self, source_field), target_field ].values except KeyError: target_item = label_map.reindex( index=getattr(self, source_field), columns=[target_field] ).values.flatten() if target_field != "label_store": # Should already be int64 dtype if target is label_store target_item = list(target_item) if inplace: setattr(self, target_field, target_item) else: return target_item
class Annotation(object): ''' The class representing WFDB annotations. Annotation objects can be created using the initializer, or by reading a WFDB annotation file with `rdann`. The attributes of the Annotation object give information about the annotation as specified by: https://www.physionet.org/physiotools/wag/annot-5.htm Call `show_ann_labels()` to see the list of standard annotation codes. Any text used to label annotations that are not one of these codes should go in the 'aux_note' field rather than the 'sym' field. The current annotation values organized as such: AnnotationLabel(label_store (or subtype), symbol (or aux_note), short_description, description) where the associated values are: ann_labels = [ AnnotationLabel(0, " ", 'NOTANN', 'Not an actual annotation'), AnnotationLabel(1, "N", 'NORMAL', 'Normal beat'), AnnotationLabel(2, "L", 'LBBB', 'Left bundle branch block beat'), AnnotationLabel(3, "R", 'RBBB', 'Right bundle branch block beat'), AnnotationLabel(4, "a", 'ABERR', 'Aberrated atrial premature beat'), AnnotationLabel(5, "V", 'PVC', 'Premature ventricular contraction'), AnnotationLabel(6, "F", 'FUSION', 'Fusion of ventricular and normal beat'), AnnotationLabel(7, "J", 'NPC', 'Nodal (junctional) premature beat'), AnnotationLabel(8, "A", 'APC', 'Atrial premature contraction'), AnnotationLabel(9, "S", 'SVPB', 'Premature or ectopic supraventricular beat'), AnnotationLabel(10, "E", 'VESC', 'Ventricular escape beat'), AnnotationLabel(11, "j", 'NESC', 'Nodal (junctional) escape beat'), AnnotationLabel(12, "/", 'PACE', 'Paced beat'), AnnotationLabel(13, "Q", 'UNKNOWN', 'Unclassifiable beat'), AnnotationLabel(14, "~", 'NOISE', 'Signal quality change'), AnnotationLabel(16, "|", 'ARFCT', 'Isolated QRS-like artifact'), AnnotationLabel(18, "s", 'STCH', 'ST change'), AnnotationLabel(19, "T", 'TCH', 'T-wave change'), AnnotationLabel(20, "*", 'SYSTOLE', 'Systole'), AnnotationLabel(21, "D", 'DIASTOLE', 'Diastole'), AnnotationLabel(22, '"', 'NOTE', 'Comment annotation'), AnnotationLabel(23, "=", 'MEASURE', 'Measurement annotation'), AnnotationLabel(24, "p", 'PWAVE', 'P-wave peak'), AnnotationLabel(25, "B", 'BBB', 'Left or right bundle branch block'), AnnotationLabel(26, "^", 'PACESP', 'Non-conducted pacer spike'), AnnotationLabel(27, "t", 'TWAVE', 'T-wave peak'), AnnotationLabel(28, "+", 'RHYTHM', 'Rhythm change'), AnnotationLabel(29, "u", 'UWAVE', 'U-wave peak'), AnnotationLabel(30, "?", 'LEARN', 'Learning'), AnnotationLabel(31, "!", 'FLWAV', 'Ventricular flutter wave'), AnnotationLabel(32, "[", 'VFON', 'Start of ventricular flutter/fibrillation'), AnnotationLabel(33, "]", 'VFOFF', 'End of ventricular flutter/fibrillation'), AnnotationLabel(34, "e", 'AESC', 'Atrial escape beat'), AnnotationLabel(35, "n", 'SVESC', 'Supraventricular escape beat'), AnnotationLabel(36, "@", 'LINK', 'Link to external data (aux_note contains URL)'), AnnotationLabel(37, "x", 'NAPC', 'Non-conducted P-wave (blocked APB)'), AnnotationLabel(38, "f", 'PFUS', 'Fusion of paced and normal beat'), AnnotationLabel(39, "(", 'WFON', 'Waveform onset'), AnnotationLabel(40, ")", 'WFOFF', 'Waveform end'), AnnotationLabel(41, "r", 'RONT', 'R-on-T premature ventricular contraction') ] The current annotation classes are organized as such: AnnotationClass(extension, description, human_reviewed) where the associated values are: ann_classes = [ AnnotationClass('atr', 'Reference ECG annotations', True), AnnotationClass('blh', 'Human reviewed beat labels', True), AnnotationClass('blm', 'Machine beat labels', False), AnnotationClass('alh', 'Human reviewed alarms', True), AnnotationClass('alm', 'Machine alarms', False), AnnotationClass('qrsc', 'Human reviewed QRS detections', True), AnnotationClass('qrs', 'Machine QRS detections', False), AnnotationClass('bph', 'Human reviewed BP beat detections', True), AnnotationClass('bpm', 'Machine BP beat detections', False) ] Attributes ---------- record_name : str The base file name (without extension) of the record that the annotation is associated with. extension : str The file extension of the file the annotation is stored in. sample : ndarray A numpy array containing the annotation locations in samples relative to the beginning of the record. symbol : list, numpy array, optional The symbols used to display the annotation labels. List or numpy array. If this field is present, `label_store` must not be present. subtype : ndarray, optional A numpy array containing the marked class/category of each annotation. chan : ndarray, optional A numpy array containing the signal channel associated with each annotation. num : ndarray, optional A numpy array containing the labelled annotation number for each annotation. aux_note : list, optional A list containing the auxiliary information string (or None for annotations without notes) for each annotation. fs : int, float, optional The sampling frequency of the record. label_store : ndarray, optional The integer value used to store/encode each annotation label description : list, optional A list containing the descriptive string of each annotation label. custom_labels : pandas dataframe, optional The custom annotation labels defined in the annotation file. Maps the relationship between the three label fields. The data type is a pandas DataFrame with three columns: ['label_store', 'symbol', 'description']. contained_labels : pandas dataframe, optional The unique labels contained in this annotation. Same structure as `custom_labels`. Examples -------- >>> ann1 = wfdb.Annotation(record_name='rec1', extension='atr', sample=[10,20,400], symbol=['N','N','['], aux_note=[None, None, 'Serious Vfib']) ''' def __init__( self, record_name, extension, sample, symbol=None, subtype=None, chan=None, num=None, aux_note=None, fs=None, label_store=None, description=None, custom_labels=None, contained_labels=None, ): pass def __eq__(self, other): ''' Equal comparison operator for objects of this type. Parameters ---------- other : object The object that is being compared to self. Returns ------- bool Determines if the objects are equal (True) or not equal (False). ''' pass def apply_range(self, sampfrom=0, sampto=None): ''' Filter the annotation attributes to keep only items between the desired sample values. Parameters ---------- sampfrom : int, optional The minimum sample number for annotations to be returned. sampto : int, optional The maximum sample number for annotations to be returned. ''' pass def wrann(self, write_fs=False, write_dir=""): ''' Write a WFDB annotation file from this object. Parameters ---------- write_fs : bool, optional Whether to write the `fs` attribute to the file. write_dir : str, optional The output directory in which the header is written. Returns ------- N/A ''' pass def get_label_fields(self): ''' Get the present label fields in the object. Parameters ---------- N/A Returns ------- present_label_fields : list All of the present label fields in the object. ''' pass def check_fields(self): ''' Check the set fields of the annotation object. Parameters ---------- N/A Returns ------- N/A ''' pass def check_fields(self): ''' Check a particular annotation field. Parameters ---------- field : str The annotation field to be checked. Returns ------- N/A ''' pass def check_field_cohesion(self, present_label_fields): ''' Check that the content and structure of different fields are consistent with one another. Parameters ---------- present_label_fields : list All of the present label fields in the object. Returns ------- N/A ''' pass def standardize_custom_labels(self): ''' Set the custom_labels field of the object to a standardized format: 3 column pandas df with ann_label_fields as columns. Does nothing if there are no custom labels defined. Does nothing if custom_labels is already a df with all 3 columns. If custom_labels is an iterable of pairs/triplets, this function will convert it into a df. If the label_store attribute is not already defined, this function will automatically choose values by trying to use: 1. The undefined store values from the standard WFDB annotation label map. 2. The unused label store values. This is extracted by finding the set of all labels contained in this annotation object and seeing which symbols/descriptions are not used. If there are more custom labels defined than there are enough spaces, even in condition 2 from above, this function will raise an error. This function must work when called as a standalone. Parameters ---------- N/A Returns ------- N/A ''' pass def get_undefined_label_stores(self): ''' Get the label_store values not defined in the standard WFDB annotation labels. Parameters ---------- N/A Returns ------- list The label_store values not found in WFDB annotation labels. ''' pass def get_available_label_stores(self, usefield="tryall"): ''' Get the label store values that may be used for writing this annotation. Available store values include: - the undefined values in the standard WFDB labels - the store values not used in the current annotation object. - the store values whose standard WFDB symbols/descriptions match those of the custom labels (if custom_labels exists) Parameters ---------- usefield : str, optional If 'usefield' is explicitly specified, the function will use that field to figure out available label stores. If 'usefield' is set to 'tryall', the function will choose one of the contained attributes by checking availability in the order: label_store, symbol, description. Returns ------- available_label_stores : set The available store values used for writing the annotation. ''' pass def get_custom_label_attribute(self, attribute): ''' Get a list of the custom_labels attribute i.e. label_store, symbol, or description. The custom_labels variable could be in a number of formats. Parameters ---------- attribute : str The selected attribute to generate the list. Returns ------- a : list All of the custom_labels attributes. ''' pass def create_label_map(self, inplace=True): ''' Creates mapping df based on ann_label_table and self.custom_labels. Table composed of entire WFDB standard annotation table, overwritten/appended with custom_labels if any. Sets __label_map__ attribute, or returns value. Parameters ---------- inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). Returns ------- label_map : pandas DataFrame Mapping based on ann_label_table and self.custom_labels. ''' pass def wr_ann_file(self, write_fs, write_dir=""): ''' Calculate the bytes used to encode an annotation set and write them to an annotation file. Parameters ---------- write_fs : bool Whether to write the `fs` attribute to the file. write_dir : str, optional The output directory in which the header is written. Returns ------- N/A ''' pass def calc_fs_bytes(self): ''' Calculate the bytes written to the annotation file for the fs field. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. ''' pass def calc_cl_bytes(self): ''' Calculate the bytes written to the annotation file for the custom_labels field. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. ''' pass def calc_core_bytes(self): ''' Convert all used annotation fields into bytes to write. Parameters ---------- N/A Returns ------- list, ndarray All of the bytes to be written to the annotation file. ''' pass def compact_fields(self): ''' Compact all of the object's fields so that the output writing annotation file writes as few bytes as possible. Parameters ---------- N/A Returns ------- N/A ''' pass def sym_to_aux(self): ''' Move non-encoded symbol elements into the aux_note field. Parameters ---------- N/A Returns ------- N/A ''' pass def get_contained_labels(self, inplace=True): ''' Get the set of unique labels contained in this annotation. Returns a pandas dataframe or sets the contained_labels attribute of the object. Requires the label_store field to be set. Function will try to use attributes contained in the order: 1. label_store 2. symbol 3. description This function should also be called to summarize information about an annotation after it has been read. Should not be a helper function to others except rdann. Parameters ---------- inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). Returns ------- contained_labels : pandas DataFrame Mapping based on ann_label_table and self.custom_labels. ''' pass def set_label_elements(self, wanted_label_elements): ''' Set one or more label elements based on at least one of the others. Parameters ---------- wanted_label_elements : list All of the desired label elements. Returns ------- N/A ''' pass def rm_attributes(self, attributes): ''' Remove attributes from object. Parameters ---------- attributes : list All of the desired attributes to remove. Returns ------- N/A ''' pass def convert_label_attribute( self, source_field, target_field, inplace=True, overwrite=True ): ''' Convert one label attribute (label_store, symbol, or description) to another. Creates mapping df on the fly based on ann_label_table and self.custom_labels. Parameters ---------- source_field : str The label attribute to be converted. target_field : str The label attribute that will be converted to. inplace : bool, optional Determines whether to add the label map to the current object (True) or as a return variable (False). overwrite : bool, optional If True, performs conversion and replaces target field attribute even if the target attribute already has a value. If False, does not perform conversion in the aforementioned case. Set to True (do conversion) if inplace=False. Returns ------- target_item : list All of the desired target fields. ''' pass
24
23
57
8
33
16
7
0.64
1
14
0
0
23
15
23
23
1,474
231
758
139
717
485
405
120
381
47
1
4
171
147,698
MIT-LCP/wfdb-python
wfdb/io/annotation.py
wfdb.io.annotation.AnnotationClass
class AnnotationClass(object): """ Describes the annotations. Attributes ---------- extension : str The file extension of the annotation. description : str The description provided with the annotation. human_reviewed : bool Whether the annotation was human-reviewed (True) or not (False). """ def __init__(self, extension, description, human_reviewed): self.extension = extension self.description = description self.human_reviewed = human_reviewed
class AnnotationClass(object): ''' Describes the annotations. Attributes ---------- extension : str The file extension of the annotation. description : str The description provided with the annotation. human_reviewed : bool Whether the annotation was human-reviewed (True) or not (False). ''' def __init__(self, extension, description, human_reviewed): pass
2
1
4
0
4
0
1
2.2
1
0
0
0
1
3
1
1
19
3
5
5
3
11
5
5
3
1
1
0
1
147,699
MIT-LCP/wfdb-python
wfdb/processing/qrs.py
wfdb.processing.qrs.XQRS
class XQRS(object): """ The QRS detector class for the XQRS algorithm. The `XQRS.Conf` class is the configuration class that stores initial parameters for the detection. The `XQRS.detect` method runs the detection algorithm. The process works as follows: - Load the signal and configuration parameters. - Bandpass filter the signal between 5 and 20 Hz, to get the filtered signal. - Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. - Conduct learning if specified, to initialize running parameters of noise and QRS amplitudes, the QRS detection threshold, and recent R-R intervals. If learning is unspecified or fails, use default parameters. See the docstring for the `_learn_init_params` method of this class for details. - Run the main detection. Iterate through the local maxima of the MWI signal. For each local maxima: - Check if it is a QRS complex. To be classified as a QRS, it must come after the refractory period, cross the QRS detection threshold, and not be classified as a T-wave if it comes close enough to the previous QRS. If successfully classified, update running detection threshold and heart rate parameters. - If not a QRS, classify it as a noise peak and update running parameters. - Before continuing to the next local maxima, if no QRS was detected within 1.66 times the recent R-R interval, perform backsearch QRS detection. This checks previous peaks using a lower QRS detection threshold. Attributes ---------- sig : 1d ndarray The input ECG signal to apply the QRS detection on. fs : int, float The sampling frequency of the input signal. conf : XQRS.Conf object, optional The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds]) """ def __init__(self, sig, fs, conf=None): if sig.ndim != 1: raise ValueError("sig must be a 1d numpy array") self.sig = sig self.fs = fs self.sig_len = len(sig) self.conf = conf or XQRS.Conf() self._set_conf() class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per minute. Used for calculating recent R-R intervals. hr_max : int, float, optional Hard maximum heart rate between two beats, in beats per minute. Used for refractory period. hr_min : int, float, optional Hard minimum heart rate between two beats, in beats per minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_min : int, float, string, optional Hard minimum detection threshold of QRS wave. Leave as 0 for no minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. Leave as 0 for no T-wave inspection. """ def __init__( self, hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2, t_inspect_period=0, ): if hr_min < 0: raise ValueError("'hr_min' must be >= 0") if not hr_min < hr_init < hr_max: raise ValueError("'hr_min' < 'hr_init' < 'hr_max' must be True") if qrs_thr_init < qrs_thr_min: raise ValueError("qrs_thr_min must be <= qrs_thr_init") self.hr_init = hr_init self.hr_max = hr_max self.hr_min = hr_min self.qrs_width = qrs_width self.qrs_radius = self.qrs_width / 2 self.qrs_thr_init = qrs_thr_init self.qrs_thr_min = qrs_thr_min self.ref_period = ref_period self.t_inspect_period = t_inspect_period def _set_conf(self): """ Set configuration parameters from the Conf object into the detector object. Time values are converted to samples, and amplitude values are in mV. Parameters ---------- N/A Returns ------- N/A """ self.rr_init = 60 * self.fs / self.conf.hr_init self.rr_max = 60 * self.fs / self.conf.hr_min self.rr_min = 60 * self.fs / self.conf.hr_max # Note: if qrs_width is odd, qrs_width == qrs_radius*2 + 1 self.qrs_width = int(self.conf.qrs_width * self.fs) self.qrs_radius = int(self.conf.qrs_radius * self.fs) self.qrs_thr_init = self.conf.qrs_thr_init self.qrs_thr_min = self.conf.qrs_thr_min self.ref_period = int(self.conf.ref_period * self.fs) self.t_inspect_period = int(self.conf.t_inspect_period * self.fs) def _bandpass(self, fc_low=5, fc_high=20): """ Apply a bandpass filter onto the signal, and save the filtered signal. Parameters ---------- fc_low : int, float The low frequency cutoff for the filter. fc_high : int, float The high frequency cutoff for the filter. Returns ------- N/A """ self.fc_low = fc_low self.fc_high = fc_high b, a = signal.butter( 2, [float(fc_low) * 2 / self.fs, float(fc_high) * 2 / self.fs], "pass", ) self.sig_f = signal.filtfilt( b, a, self.sig[self.sampfrom : self.sampto], axis=0 ) # Save the passband gain (x2 due to double filtering) self.filter_gain = ( get_filter_gain(b, a, np.mean([fc_low, fc_high]), self.fs) * 2 ) def _mwi(self): """ Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. The width of the hat is equal to the QRS width. After integration, find all local peaks in the MWI signal. Parameters ---------- N/A Returns ------- N/A """ wavelet_filter = ricker(self.qrs_width, 4) self.sig_i = ( signal.filtfilt(wavelet_filter, [1], self.sig_f, axis=0) ** 2 ) # Save the MWI gain (x2 due to double filtering) and the total # gain from raw to MWI self.mwi_gain = ( get_filter_gain( wavelet_filter, [1], np.mean([self.fc_low, self.fc_high]), self.fs, ) * 2 ) self.transform_gain = self.filter_gain * self.mwi_gain self.peak_inds_i = find_local_peaks(self.sig_i, radius=self.qrs_radius) self.n_peaks_i = len(self.peak_inds_i) def _learn_init_params(self, n_calib_beats=8): """ Find a number of consecutive beats and use them to initialize: - recent QRS amplitude - recent noise amplitude - recent R-R interval - QRS detection threshold The learning works as follows: - Find all local maxima (largest sample within `qrs_radius` samples) of the filtered signal. - Inspect the local maxima until `n_calib_beats` beats are found: - Calculate the cross-correlation between a Ricker wavelet of length `qrs_width`, and the filtered signal segment centered around the local maximum. - If the cross-correlation exceeds 0.6, classify it as a beat. - Use the beats to initialize the previously described parameters. - If the system fails to find enough beats, the default parameters will be used instead. See the docstring of `XQRS._set_default_init_params` for details. Parameters ---------- n_calib_beats : int, optional Number of calibration beats to detect for learning Returns ------- N/A """ if self.verbose: print("Learning initial signal parameters...") last_qrs_ind = -self.rr_max qrs_inds = [] qrs_amps = [] noise_amps = [] ricker_wavelet = ricker(self.qrs_radius * 2, 4).reshape(-1, 1) # Find the local peaks of the signal. peak_inds_f = find_local_peaks(self.sig_f, self.qrs_radius) # Peak numbers at least qrs_width away from signal boundaries peak_nums_r = np.where(peak_inds_f > self.qrs_width)[0] peak_nums_l = np.where(peak_inds_f <= self.sig_len - self.qrs_width)[0] # Skip if no peaks in range if not peak_inds_f.size or not peak_nums_r.size or not peak_nums_l.size: if self.verbose: print( "Failed to find %d beats during learning." % n_calib_beats ) self._set_default_init_params() return # Go through the peaks and find QRS peaks and noise peaks. # only inspect peaks with at least qrs_radius around either side for peak_num in range(peak_nums_r[0], peak_nums_l[-1]): i = peak_inds_f[peak_num] # Calculate cross-correlation between the filtered signal # segment and a Ricker wavelet # Question: should the signal be squared? Case for inverse QRS # complexes sig_segment = normalize( self.sig_f[i - self.qrs_radius : i + self.qrs_radius] ) xcorr = np.correlate(sig_segment, ricker_wavelet[:, 0]) # Classify as QRS if xcorr is large enough if xcorr > 0.6 and i - last_qrs_ind > self.rr_min: last_qrs_ind = i qrs_inds.append(i) qrs_amps.append(self.sig_i[i]) else: noise_amps.append(self.sig_i[i]) if len(qrs_inds) == n_calib_beats: break # Found enough calibration beats to initialize parameters if len(qrs_inds) == n_calib_beats: if self.verbose: print( "Found %d beats during learning." % n_calib_beats + " Initializing using learned parameters" ) # QRS amplitude is most important. qrs_amp = np.mean(qrs_amps) # Set noise amplitude if found if noise_amps: noise_amp = np.mean(noise_amps) else: # Set default of 1/10 of QRS amplitude noise_amp = qrs_amp / 10 # Get R-R intervals of consecutive beats, if any. rr_intervals = np.diff(qrs_inds) rr_intervals = rr_intervals[rr_intervals < self.rr_max] if rr_intervals.any(): rr_recent = np.mean(rr_intervals) else: rr_recent = self.rr_init # If an early QRS was detected, set last_qrs_ind so that it can be # picked up. last_qrs_ind = min(0, qrs_inds[0] - self.rr_min - 1) self._set_init_params( qrs_amp_recent=qrs_amp, noise_amp_recent=noise_amp, rr_recent=rr_recent, last_qrs_ind=last_qrs_ind, ) self.learned_init_params = True # Failed to find enough calibration beats. Use default values. else: if self.verbose: print( "Failed to find %d beats during learning." % n_calib_beats ) self._set_default_init_params() def _set_init_params( self, qrs_amp_recent, noise_amp_recent, rr_recent, last_qrs_ind ): """ Set initial online parameters. Parameters ---------- qrs_amp_recent : int, float The mean of the signal QRS amplitudes. noise_amp_recent : int, float The mean of the signal noise amplitudes. rr_recent : int The mean of the signal R-R interval values. last_qrs_ind : int The index of the signal's early QRS detected. Returns ------- N/A """ self.qrs_amp_recent = qrs_amp_recent self.noise_amp_recent = noise_amp_recent # What happens if qrs_thr is calculated to be less than the explicit # min threshold? Should print warning? self.qrs_thr = max( 0.25 * self.qrs_amp_recent + 0.75 * self.noise_amp_recent, self.qrs_thr_min * self.transform_gain, ) self.rr_recent = rr_recent self.last_qrs_ind = last_qrs_ind # No QRS detected initially self.last_qrs_peak_num = None def _set_default_init_params(self): """ Set initial running parameters using default values. The steady state equation is: `qrs_thr = 0.25*qrs_amp + 0.75*noise_amp` Estimate that QRS amp is 10x noise amp, giving: `qrs_thr = 0.325 * qrs_amp or 13/40 * qrs_amp` Parameters ---------- N/A Returns ------- N/A """ if self.verbose: print("Initializing using default parameters") # Multiply the specified ECG thresholds by the filter and MWI gain # factors qrs_thr_init = self.qrs_thr_init * self.transform_gain qrs_thr_min = self.qrs_thr_min * self.transform_gain qrs_amp = 27 / 40 * qrs_thr_init noise_amp = qrs_amp / 10 rr_recent = self.rr_init last_qrs_ind = 0 self._set_init_params( qrs_amp_recent=qrs_amp, noise_amp_recent=noise_amp, rr_recent=rr_recent, last_qrs_ind=last_qrs_ind, ) self.learned_init_params = False def _is_qrs(self, peak_num, backsearch=False): """ Check whether a peak is a QRS complex. It is classified as QRS if it: - Comes after the refractory period. - Passes QRS threshold. - Is not a T-wave (check it if the peak is close to the previous QRS). Parameters ---------- peak_num : int The peak number of the MWI signal to be inspected. backsearch: bool, optional Whether the peak is being inspected during backsearch. Returns ------- bool Whether the peak is QRS (True) or not (False). """ i = self.peak_inds_i[peak_num] if backsearch: qrs_thr = self.qrs_thr / 2 else: qrs_thr = self.qrs_thr if i - self.last_qrs_ind > self.ref_period and self.sig_i[i] > qrs_thr: if i - self.last_qrs_ind < self.t_inspect_period: if self._is_twave(peak_num): return False return True return False def _update_qrs(self, peak_num, backsearch=False): """ Update live QRS parameters. Adjust the recent R-R intervals and QRS amplitudes, and the QRS threshold. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. backsearch: bool, optional Whether the QRS was found via backsearch. Returns ------- N/A """ i = self.peak_inds_i[peak_num] # Update recent R-R interval if the beat is consecutive (do this # before updating self.last_qrs_ind) rr_new = i - self.last_qrs_ind if rr_new < self.rr_max: self.rr_recent = 0.875 * self.rr_recent + 0.125 * rr_new self.qrs_inds.append(i) self.last_qrs_ind = i # Peak number corresponding to last QRS self.last_qrs_peak_num = self.peak_num # QRS recent amplitude is adjusted twice as quickly if the peak # was found via backsearch if backsearch: self.backsearch_qrs_inds.append(i) self.qrs_amp_recent = ( 0.75 * self.qrs_amp_recent + 0.25 * self.sig_i[i] ) else: self.qrs_amp_recent = ( 0.875 * self.qrs_amp_recent + 0.125 * self.sig_i[i] ) self.qrs_thr = max( (0.25 * self.qrs_amp_recent + 0.75 * self.noise_amp_recent), self.qrs_thr_min, ) return def _is_twave(self, peak_num): """ Check whether a segment is a T-wave. Compare the maximum gradient of the filtered signal segment with that of the previous QRS segment. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. Returns ------- bool Whether a segment is a T-wave (True) or not (False). """ i = self.peak_inds_i[peak_num] # Due to initialization parameters, last_qrs_ind may be negative. # No way to check in this instance. if self.last_qrs_ind - self.qrs_radius < 0: return False # Get half the QRS width of the signal to the left. # Should this be squared? sig_segment = normalize(self.sig_f[i - self.qrs_radius : i]) last_qrs_segment = self.sig_f[ self.last_qrs_ind - self.qrs_radius : self.last_qrs_ind ] segment_slope = np.diff(sig_segment) last_qrs_slope = np.diff(last_qrs_segment) # Should we be using absolute values? if max(segment_slope) < 0.5 * max(abs(last_qrs_slope)): return True else: return False def _update_noise(self, peak_num): """ Update live noise parameters. Parameters ---------- peak_num : int The peak number. Returns ------- N/A """ i = self.peak_inds_i[peak_num] self.noise_amp_recent = ( 0.875 * self.noise_amp_recent + 0.125 * self.sig_i[i] ) return def _require_backsearch(self): """ Determine whether a backsearch should be performed on prior peaks. Parameters ---------- N/A Returns ------- bool Whether to require backsearch (True) or not (False). """ if self.peak_num == self.n_peaks_i - 1: # If we just return false, we may miss a chance to backsearch. # Update this? return False next_peak_ind = self.peak_inds_i[self.peak_num + 1] if next_peak_ind - self.last_qrs_ind > self.rr_recent * 1.66: return True else: return False def _backsearch(self): """ Inspect previous peaks from the last detected QRS peak (if any), using a lower threshold. Parameters ---------- N/A Returns ------- N/A """ if self.last_qrs_peak_num is not None: for peak_num in range( self.last_qrs_peak_num + 1, self.peak_num + 1 ): if self._is_qrs(peak_num=peak_num, backsearch=True): self._update_qrs(peak_num=peak_num, backsearch=True) # No need to update noise parameters if it was classified as # noise. It would have already been updated. def _run_detection(self): """ Run the QRS detection after all signals and parameters have been configured and set. Parameters ---------- N/A Returns ------- N/A """ if self.verbose: print("Running QRS detection...") # Detected QRS indices self.qrs_inds = [] # QRS indices found via backsearch self.backsearch_qrs_inds = [] # Iterate through MWI signal peak indices for self.peak_num in range(self.n_peaks_i): if self._is_qrs(self.peak_num): self._update_qrs(self.peak_num) else: self._update_noise(self.peak_num) # Before continuing to the next peak, do backsearch if # necessary if self._require_backsearch(): self._backsearch() # Detected indices are relative to starting sample if self.qrs_inds: self.qrs_inds = np.array(self.qrs_inds) + self.sampfrom else: self.qrs_inds = np.array(self.qrs_inds) if self.verbose: print("QRS detection complete.") def detect(self, sampfrom=0, sampto="end", learn=True, verbose=True): """ Detect QRS locations between two samples. Parameters ---------- sampfrom : int, optional The starting sample number to run the detection on. sampto : int, optional The final sample number to run the detection on. Set as 'end' to run on the entire signal. learn : bool, optional Whether to apply learning on the signal before running the main detection. If learning fails or is not conducted, the default configuration parameters will be used to initialize these variables. See the `XQRS._learn_init_params` docstring for details. verbose : bool, optional Whether to display the stages and outcomes of the detection process. Returns ------- N/A """ if sampfrom < 0: raise ValueError("'sampfrom' cannot be negative") self.sampfrom = sampfrom if sampto == "end": sampto = self.sig_len elif sampto > self.sig_len: raise ValueError("'sampto' cannot exceed the signal length") self.sampto = sampto self.verbose = verbose # Don't attempt to run on a flat signal if np.max(self.sig) == np.min(self.sig): self.qrs_inds = np.empty(0) if self.verbose: print("Flat signal. Detection skipped.") return # Get/set signal configuration fields from Conf object self._set_conf() # Bandpass filter the signal self._bandpass() # Compute moving wave integration of filtered signal self._mwi() # Initialize the running parameters if learn: self._learn_init_params() else: self._set_default_init_params() # Run the detection self._run_detection()
class XQRS(object): ''' The QRS detector class for the XQRS algorithm. The `XQRS.Conf` class is the configuration class that stores initial parameters for the detection. The `XQRS.detect` method runs the detection algorithm. The process works as follows: - Load the signal and configuration parameters. - Bandpass filter the signal between 5 and 20 Hz, to get the filtered signal. - Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. - Conduct learning if specified, to initialize running parameters of noise and QRS amplitudes, the QRS detection threshold, and recent R-R intervals. If learning is unspecified or fails, use default parameters. See the docstring for the `_learn_init_params` method of this class for details. - Run the main detection. Iterate through the local maxima of the MWI signal. For each local maxima: - Check if it is a QRS complex. To be classified as a QRS, it must come after the refractory period, cross the QRS detection threshold, and not be classified as a T-wave if it comes close enough to the previous QRS. If successfully classified, update running detection threshold and heart rate parameters. - If not a QRS, classify it as a noise peak and update running parameters. - Before continuing to the next local maxima, if no QRS was detected within 1.66 times the recent R-R interval, perform backsearch QRS detection. This checks previous peaks using a lower QRS detection threshold. Attributes ---------- sig : 1d ndarray The input ECG signal to apply the QRS detection on. fs : int, float The sampling frequency of the input signal. conf : XQRS.Conf object, optional The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> wfdb.plot_items(signal=sig, ann_samp=[xqrs.qrs_inds]) ''' def __init__(self, sig, fs, conf=None): pass class Conf(object): ''' Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per minute. Used for calculating recent R-R intervals. hr_max : int, float, optional Hard maximum heart rate between two beats, in beats per minute. Used for refractory period. hr_min : int, float, optional Hard minimum heart rate between two beats, in beats per minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_min : int, float, string, optional Hard minimum detection threshold of QRS wave. Leave as 0 for no minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. Leave as 0 for no T-wave inspection. ''' def __init__(self, sig, fs, conf=None): pass def _set_conf(self): ''' Set configuration parameters from the Conf object into the detector object. Time values are converted to samples, and amplitude values are in mV. Parameters ---------- N/A Returns ------- N/A ''' pass def _bandpass(self, fc_low=5, fc_high=20): ''' Apply a bandpass filter onto the signal, and save the filtered signal. Parameters ---------- fc_low : int, float The low frequency cutoff for the filter. fc_high : int, float The high frequency cutoff for the filter. Returns ------- N/A ''' pass def _mwi(self): ''' Apply moving wave integration (MWI) with a Ricker (Mexican hat) wavelet onto the filtered signal, and save the square of the integrated signal. The width of the hat is equal to the QRS width. After integration, find all local peaks in the MWI signal. Parameters ---------- N/A Returns ------- N/A ''' pass def _learn_init_params(self, n_calib_beats=8): ''' Find a number of consecutive beats and use them to initialize: - recent QRS amplitude - recent noise amplitude - recent R-R interval - QRS detection threshold The learning works as follows: - Find all local maxima (largest sample within `qrs_radius` samples) of the filtered signal. - Inspect the local maxima until `n_calib_beats` beats are found: - Calculate the cross-correlation between a Ricker wavelet of length `qrs_width`, and the filtered signal segment centered around the local maximum. - If the cross-correlation exceeds 0.6, classify it as a beat. - Use the beats to initialize the previously described parameters. - If the system fails to find enough beats, the default parameters will be used instead. See the docstring of `XQRS._set_default_init_params` for details. Parameters ---------- n_calib_beats : int, optional Number of calibration beats to detect for learning Returns ------- N/A ''' pass def _set_init_params( self, qrs_amp_recent, noise_amp_recent, rr_recent, last_qrs_ind ): ''' Set initial online parameters. Parameters ---------- qrs_amp_recent : int, float The mean of the signal QRS amplitudes. noise_amp_recent : int, float The mean of the signal noise amplitudes. rr_recent : int The mean of the signal R-R interval values. last_qrs_ind : int The index of the signal's early QRS detected. Returns ------- N/A ''' pass def _set_default_init_params(self): ''' Set initial running parameters using default values. The steady state equation is: `qrs_thr = 0.25*qrs_amp + 0.75*noise_amp` Estimate that QRS amp is 10x noise amp, giving: `qrs_thr = 0.325 * qrs_amp or 13/40 * qrs_amp` Parameters ---------- N/A Returns ------- N/A ''' pass def _is_qrs(self, peak_num, backsearch=False): ''' Check whether a peak is a QRS complex. It is classified as QRS if it: - Comes after the refractory period. - Passes QRS threshold. - Is not a T-wave (check it if the peak is close to the previous QRS). Parameters ---------- peak_num : int The peak number of the MWI signal to be inspected. backsearch: bool, optional Whether the peak is being inspected during backsearch. Returns ------- bool Whether the peak is QRS (True) or not (False). ''' pass def _update_qrs(self, peak_num, backsearch=False): ''' Update live QRS parameters. Adjust the recent R-R intervals and QRS amplitudes, and the QRS threshold. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. backsearch: bool, optional Whether the QRS was found via backsearch. Returns ------- N/A ''' pass def _is_twave(self, peak_num): ''' Check whether a segment is a T-wave. Compare the maximum gradient of the filtered signal segment with that of the previous QRS segment. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. Returns ------- bool Whether a segment is a T-wave (True) or not (False). ''' pass def _update_noise(self, peak_num): ''' Update live noise parameters. Parameters ---------- peak_num : int The peak number. Returns ------- N/A ''' pass def _require_backsearch(self): ''' Determine whether a backsearch should be performed on prior peaks. Parameters ---------- N/A Returns ------- bool Whether to require backsearch (True) or not (False). ''' pass def _backsearch(self): ''' Inspect previous peaks from the last detected QRS peak (if any), using a lower threshold. Parameters ---------- N/A Returns ------- N/A ''' pass def _run_detection(self): ''' Run the QRS detection after all signals and parameters have been configured and set. Parameters ---------- N/A Returns ------- N/A ''' pass def detect(self, sampfrom=0, sampto="end", learn=True, verbose=True): ''' Detect QRS locations between two samples. Parameters ---------- sampfrom : int, optional The starting sample number to run the detection on. sampto : int, optional The final sample number to run the detection on. Set as 'end' to run on the entire signal. learn : bool, optional Whether to apply learning on the signal before running the main detection. If learning fails or is not conducted, the default configuration parameters will be used to initialize these variables. See the `XQRS._learn_init_params` docstring for details. verbose : bool, optional Whether to display the stages and outcomes of the detection process. Returns ------- N/A ''' pass
18
16
39
6
17
16
4
1.17
1
5
1
0
15
35
15
15
730
126
278
110
248
326
201
97
183
12
1
3
57
147,700
MIT-LCP/wfdb-python
wfdb/processing/qrs.py
wfdb.processing.qrs.GQRS
class GQRS(object): """ GQRS detection class. Attributes ---------- N/A """ class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- fs : int, float The sampling frequency of the input signal. adc_gain : int, float The analogue to digital gain of the signal (the number of adus per physical unit). hr : int, float, optional Typical heart rate, in beats per minute. RRdelta : int, float, optional Typical difference between successive RR intervals in seconds. RRmin : int, float, optional Minimum RR interval ("refractory period"), in seconds. RRmax : int, float, optional Maximum RR interval, in seconds. Thresholds will be adjusted if no peaks are detected within this interval. QS : int, float, optional Typical QRS duration, in seconds. QT : int, float, optional Typical QT interval, in seconds. RTmin : int, float, optional Minimum interval between R and T peaks, in seconds. RTmax : int, float, optional Maximum interval between R and T peaks, in seconds. QRSa : int, float, optional Typical QRS peak-to-peak amplitude, in microvolts. QRSamin : int, float, optional Minimum QRS peak-to-peak amplitude, in microvolts. thresh : int, float, optional The relative amplitude detection threshold. Used to initialize the peak and QRS detection threshold. """ def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): self.fs = fs self.sps = int(time_to_sample_number(1, fs)) self.spm = int(time_to_sample_number(60, fs)) self.hr = hr self.RR = 60.0 / self.hr self.RRdelta = RRdelta self.RRmin = RRmin self.RRmax = RRmax self.QS = QS self.QT = QT self.RTmin = RTmin self.RTmax = RTmax self.QRSa = QRSa self.QRSamin = QRSamin self.thresh = thresh self._NORMAL = 1 # normal beat self._ARFCT = 16 # isolated QRS-like artifact self._NOTE = 22 # comment annotation self._TWAVE = 27 # T-wave peak self._NPEAKS = 64 # number of peaks buffered (per signal) self._BUFLN = 32768 # must be a power of 2, see qf() self.rrmean = int(self.RR * self.sps) self.rrdev = int(self.RRdelta * self.sps) self.rrmin = int(self.RRmin * self.sps) self.rrmax = int(self.RRmax * self.sps) self.rrinc = int(self.rrmean / 40) if self.rrinc < 1: self.rrinc = 1 self.dt = int(self.QS * self.sps / 4) if self.dt < 1: raise Exception( "Sampling rate is too low. Unable to use signal." ) self.rtmin = int(self.RTmin * self.sps) self.rtmean = int(0.75 * self.QT * self.sps) self.rtmax = int(self.RTmax * self.sps) dv = adc_gain * self.QRSamin * 0.001 self.pthr = int((self.thresh * dv * dv) / 6) self.qthr = self.pthr << 1 self.pthmin = self.pthr >> 2 self.qthmin = int((self.pthmin << 2) / 3) self.tamean = self.qthr # initial value for mean T-wave amplitude # Filter constants and thresholds. self.dt2 = 2 * self.dt self.dt3 = 3 * self.dt self.dt4 = 4 * self.dt self.smdt = self.dt self.v1norm = self.smdt * self.dt * 64 self.smt = 0 self.smt0 = 0 + self.smdt class Peak(object): """ Holds all of the peak information for the QRS object. Attributes ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : str The type of the peak. """ def __init__(self, peak_time, peak_amp, peak_type): self.time = peak_time self.amp = peak_amp self.type = peak_type self.next_peak = None self.prev_peak = None class Annotation(object): """ Holds all of the annotation information for the QRS object. Attributes ---------- ann_time : int, float The time of the annotation. ann_type : str The type of the annotation. ann_subtype : int The subtype of the annotation. ann_num : int The number of the annotation. """ def __init__(self, ann_time, ann_type, ann_subtype, ann_num): self.time = ann_time self.type = ann_type self.subtype = ann_subtype self.num = ann_num def putann(self, annotation): """ Add an annotation to the object. Parameters ---------- annotation : Annotation object The annotation to be added. Returns ------- N/A """ self.annotations.append(copy.deepcopy(annotation)) def detect(self, x, conf, adc_zero): """ Run detection. Parameters ---------- x : ndarray Array containing the digital signal. conf : XQRS.Conf object The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. adc_zero : int The value produced by the ADC given a 0 Volt input. Returns ------- QRS object The annotations that have been detected. """ self.c = conf self.annotations = [] self.sample_valid = False if len(x) < 1: return [] self.x = x self.adc_zero = adc_zero self.qfv = np.zeros((self.c._BUFLN), dtype="int64") self.smv = np.zeros((self.c._BUFLN), dtype="int64") self.v1 = 0 t0 = 0 self.tf = len(x) - 1 self.t = 0 - self.c.dt4 self.annot = GQRS.Annotation(0, "NOTE", 0, 0) # Cicular buffer of Peaks first_peak = GQRS.Peak(0, 0, 0) tmp = first_peak for _ in range(1, self.c._NPEAKS): tmp.next_peak = GQRS.Peak(0, 0, 0) tmp.next_peak.prev_peak = tmp tmp = tmp.next_peak tmp.next_peak = first_peak first_peak.prev_peak = tmp self.current_peak = first_peak if self.c.spm > self.c._BUFLN: if self.tf - t0 > self.c._BUFLN: tf_learn = t0 + self.c._BUFLN - self.c.dt4 else: tf_learn = self.tf - self.c.dt4 else: if self.tf - t0 > self.c.spm: tf_learn = t0 + self.c.spm - self.c.dt4 else: tf_learn = self.tf - self.c.dt4 self.countdown = -1 self.state = "LEARNING" self.gqrs(t0, tf_learn) self.rewind_gqrs() self.state = "RUNNING" self.t = t0 - self.c.dt4 self.gqrs(t0, self.tf) return self.annotations def rewind_gqrs(self): """ Rewind the gqrs. Parameters ---------- N/A Returns ------- N/A """ self.countdown = -1 self.at(self.t) self.annot.time = 0 self.annot.type = "NORMAL" self.annot.subtype = 0 self.annot.num = 0 p = self.current_peak for _ in range(self.c._NPEAKS): p.time = 0 p.type = 0 p.amp = 0 p = p.next_peak def at(self, t): """ Determine the value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample value. Returns ------- N/A """ if t < 0: self.sample_valid = True return self.x[0] if t > len(self.x) - 1: self.sample_valid = False return self.x[-1] self.sample_valid = True return self.x[t] def smv_at(self, t): """ Determine the SMV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample SMV value. Returns ------- N/A """ return self.smv[t & (self.c._BUFLN - 1)] def smv_put(self, t, v): """ Put the SMV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample value. v : int The value of the SMV. Returns ------- N/A """ self.smv[t & (self.c._BUFLN - 1)] = v def qfv_at(self, t): """ Determine the QFV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample QFV value. Returns ------- N/A """ return self.qfv[t & (self.c._BUFLN - 1)] def qfv_put(self, t, v): """ Put the QFV value of the sample at the specified time. Parameters ---------- t : int The time with which to start the analysis. v : int The value of the QFV. Returns ------- N/A """ self.qfv[t & (self.c._BUFLN - 1)] = v def sm(self, at_t): """ Implements a trapezoidal low pass (smoothing) filter (with a gain of 4*smdt) applied to input signal sig before the QRS matched filter qf(). Before attempting to 'rewind' by more than BUFLN-smdt samples, reset smt and smt0. Parameters ---------- at_t : int The time where the filter will be implemented. Returns ------- smv_at : ndarray The smoothed signal. """ # Calculate samp values from self.smt to at_t. smt = self.c.smt smdt = int(self.c.smdt) v = 0 while at_t > smt: smt += 1 # from dt+1 onwards if smt > int(self.c.smt0): tmp = int( self.smv_at(smt - 1) + self.at(smt + smdt) + self.at(smt + smdt - 1) - self.at(smt - smdt) - self.at(smt - smdt - 1) ) self.smv_put(smt, tmp) self.SIG_SMOOTH.append(tmp) # from 1 to dt. 0 is never calculated. else: v = int(self.at(smt)) for j in range(1, smdt): smtpj = self.at(smt + j) smtlj = self.at(smt - j) v += int(smtpj + smtlj) self.smv_put( smt, (v << 1) + self.at(smt + j + 1) + self.at(smt - j - 1) - self.adc_zero * (smdt << 2), ) self.SIG_SMOOTH.append( (v << 1) + self.at(smt + j + 1) + self.at(smt - j - 1) - self.adc_zero * (smdt << 2) ) self.c.smt = smt return self.smv_at(at_t) def qf(self): """ Evaluate the QRS detector filter for the next sample. Parameters ---------- N/A Returns ------- N/A """ # Do this first, to ensure that all of the other smoothed values # needed below are in the buffer dv2 = self.sm(self.t + self.c.dt4) dv2 -= self.smv_at(self.t - self.c.dt4) dv1 = int( self.smv_at(self.t + self.c.dt) - self.smv_at(self.t - self.c.dt) ) dv = dv1 << 1 dv -= int( self.smv_at(self.t + self.c.dt2) - self.smv_at(self.t - self.c.dt2) ) dv = dv << 1 dv += dv1 dv -= int( self.smv_at(self.t + self.c.dt3) - self.smv_at(self.t - self.c.dt3) ) dv = dv << 1 dv += dv2 self.v1 += dv v0 = int(self.v1 / self.c.v1norm) self.qfv_put(self.t, v0 * v0) self.SIG_QRS.append(v0**2) def gqrs(self, from_sample, to_sample): """ The GQRS algorithm. Parameters ---------- from_sample : int The sample to start at. to_sample : int The sample to end at. Returns ------- N/A """ q0 = None q1 = 0 q2 = 0 rr = None rrd = None rt = None rtd = None rtdmin = None p = None # (Peak) q = None # (Peak) r = None # (Peak) tw = None # (Peak) last_peak = from_sample last_qrs = from_sample self.SIG_SMOOTH = [] self.SIG_QRS = [] def add_peak(peak_time, peak_amp, peak_type): """ Add a peak. Parameters ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : int The type of peak. Returns ------- N/A """ p = self.current_peak.next_peak p.time = peak_time p.amp = peak_amp p.type = peak_type self.current_peak = p p.next_peak.amp = 0 def peaktype(p): """ The neighborhood consists of all other peaks within rrmin. Normally, "most prominent" is equivalent to "largest in amplitude", but this is not always true. For example, consider three consecutive peaks a, b, c such that a and b share a neighborhood, b and c share a neighborhood, but a and c do not; and suppose that amp(a) > amp(b) > amp(c). In this case, if there are no other peaks, a is the most prominent peak in the (a, b) neighborhood. Since b is thus identified as a non-prominent peak, c becomes the most prominent peak in the (b, c) neighborhood. This is necessary to permit detection of low-amplitude beats that closely precede or follow beats with large secondary peaks (as, for example, in R-on-T PVCs). Parameters ---------- p : Peak object The peak to be analyzed. Returns ------- int Whether the input peak is the most prominent peak in its neighborhood (1) or not (2). """ if p.type: return p.type else: a = p.amp t0 = p.time - self.c.rrmin t1 = p.time + self.c.rrmin if t0 < 0: t0 = 0 pp = p.prev_peak while t0 < pp.time and pp.time < pp.next_peak.time: if pp.amp == 0: break if a < pp.amp and peaktype(pp) == 1: p.type = 2 return p.type # end: pp = pp.prev_peak pp = p.next_peak while pp.time < t1 and pp.time > pp.prev_peak.time: if pp.amp == 0: break if a < pp.amp and peaktype(pp) == 1: p.type = 2 return p.type # end: pp = pp.next_peak p.type = 1 return p.type def find_missing(r, p): """ Find the missing peaks. Parameters ---------- r : Peak object The real peak. p : Peak object The peak to be analyzed. Returns ------- s : Peak object The missing peak. """ if r is None or p is None: return None minrrerr = p.time - r.time s = None q = r.next_peak while q.time < p.time: if peaktype(q) == 1: rrtmp = q.time - r.time rrerr = rrtmp - self.c.rrmean if rrerr < 0: rrerr = -rrerr if rrerr < minrrerr: minrrerr = rrerr s = q # end: q = q.next_peak return s r = None next_minute = 0 minutes = 0 while self.t <= to_sample + self.c.sps: if self.countdown < 0: if self.sample_valid: self.qf() else: self.countdown = int(time_to_sample_number(1, self.c.fs)) self.state = "CLEANUP" else: self.countdown -= 1 if self.countdown < 0: break q0 = self.qfv_at(self.t) q1 = self.qfv_at(self.t - 1) q2 = self.qfv_at(self.t - 2) # state == RUNNING only if ( q1 > self.c.pthr and q2 < q1 and q1 >= q0 and self.t > self.c.dt4 ): add_peak(self.t - 1, q1, 0) last_peak = self.t - 1 p = self.current_peak.next_peak while p.time < self.t - self.c.rtmax: if ( p.time >= self.annot.time + self.c.rrmin and peaktype(p) == 1 ): if p.amp > self.c.qthr: rr = p.time - self.annot.time q = find_missing(r, p) if ( rr > self.c.rrmean + 2 * self.c.rrdev and rr > 2 * (self.c.rrmean - self.c.rrdev) and q is not None ): p = q rr = p.time - self.annot.time self.annot.subtype = 1 rrd = rr - self.c.rrmean if rrd < 0: rrd = -rrd self.c.rrdev += (rrd - self.c.rrdev) >> 3 if rrd > self.c.rrinc: rrd = self.c.rrinc if rr > self.c.rrmean: self.c.rrmean += rrd else: self.c.rrmean -= rrd if p.amp > self.c.qthr * 4: self.c.qthr += 1 elif p.amp < self.c.qthr: self.c.qthr -= 1 if self.c.qthr > self.c.pthr * 20: self.c.qthr = self.c.pthr * 20 last_qrs = p.time if self.state == "RUNNING": self.annot.time = p.time - self.c.dt2 self.annot.type = "NORMAL" qsize = int(p.amp * 10.0 / self.c.qthr) if qsize > 127: qsize = 127 self.annot.num = qsize self.putann(self.annot) self.annot.time += self.c.dt2 # look for this beat's T-wave tw = None rtdmin = self.c.rtmean q = p.next_peak while q.time > self.annot.time: rt = q.time - self.annot.time - self.c.dt2 if rt < self.c.rtmin: # end: q = q.next_peak continue if rt > self.c.rtmax: break rtd = rt - self.c.rtmean if rtd < 0: rtd = -rtd if rtd < rtdmin: rtdmin = rtd tw = q # end: q = q.next_peak if tw is not None: tmp_time = tw.time - self.c.dt2 tann = GQRS.Annotation( tmp_time, "TWAVE", ( 1 if tmp_time > self.annot.time + self.c.rtmean else 0 ), rtdmin, ) # if self.state == "RUNNING": # self.putann(tann) rt = tann.time - self.annot.time self.c.rtmean += (rt - self.c.rtmean) >> 4 if self.c.rtmean > self.c.rtmax: self.c.rtmean = self.c.rtmax elif self.c.rtmean < self.c.rtmin: self.c.rtmean = self.c.rrmin tw.type = 2 # mark T-wave as secondary r = p q = None self.annot.subtype = 0 elif ( self.t - last_qrs > self.c.rrmax and self.c.qthr > self.c.qthmin ): self.c.qthr -= self.c.qthr >> 4 # end: p = p.next_peak elif ( self.t - last_peak > self.c.rrmax and self.c.pthr > self.c.pthmin ): self.c.pthr -= self.c.pthr >> 4 self.t += 1 if self.t >= next_minute: next_minute += self.c.spm minutes += 1 if minutes >= 60: minutes = 0 if self.state == "LEARNING": return # Mark the last beat or two. p = self.current_peak.next_peak while p.time < p.next_peak.time: if ( p.time >= self.annot.time + self.c.rrmin and p.time < self.tf and peaktype(p) == 1 ): self.annot.type = "NORMAL" self.annot.time = p.time self.putann(self.annot) # end: p = p.next_peak
class GQRS(object): ''' GQRS detection class. Attributes ---------- N/A ''' class Conf(object): ''' Initial signal configuration object for this QRS detector. Attributes ---------- fs : int, float The sampling frequency of the input signal. adc_gain : int, float The analogue to digital gain of the signal (the number of adus per physical unit). hr : int, float, optional Typical heart rate, in beats per minute. RRdelta : int, float, optional Typical difference between successive RR intervals in seconds. RRmin : int, float, optional Minimum RR interval ("refractory period"), in seconds. RRmax : int, float, optional Maximum RR interval, in seconds. Thresholds will be adjusted if no peaks are detected within this interval. QS : int, float, optional Typical QRS duration, in seconds. QT : int, float, optional Typical QT interval, in seconds. RTmin : int, float, optional Minimum interval between R and T peaks, in seconds. RTmax : int, float, optional Maximum interval between R and T peaks, in seconds. QRSa : int, float, optional Typical QRS peak-to-peak amplitude, in microvolts. QRSamin : int, float, optional Minimum QRS peak-to-peak amplitude, in microvolts. thresh : int, float, optional The relative amplitude detection threshold. Used to initialize the peak and QRS detection threshold. ''' def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): pass class Peak(object): ''' Holds all of the peak information for the QRS object. Attributes ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : str The type of the peak. ''' def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): pass class Annotation(object): ''' Holds all of the annotation information for the QRS object. Attributes ---------- ann_time : int, float The time of the annotation. ann_type : str The type of the annotation. ann_subtype : int The subtype of the annotation. ann_num : int The number of the annotation. ''' def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): pass def putann(self, annotation): ''' Add an annotation to the object. Parameters ---------- annotation : Annotation object The annotation to be added. Returns ------- N/A ''' pass def detect(self, x, conf, adc_zero): ''' Run detection. Parameters ---------- x : ndarray Array containing the digital signal. conf : XQRS.Conf object The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. adc_zero : int The value produced by the ADC given a 0 Volt input. Returns ------- QRS object The annotations that have been detected. ''' pass def rewind_gqrs(self): ''' Rewind the gqrs. Parameters ---------- N/A Returns ------- N/A ''' pass def at(self, t): ''' Determine the value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample value. Returns ------- N/A ''' pass def smv_at(self, t): ''' Determine the SMV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample SMV value. Returns ------- N/A ''' pass def smv_put(self, t, v): ''' Put the SMV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample value. v : int The value of the SMV. Returns ------- N/A ''' pass def qfv_at(self, t): ''' Determine the QFV value of the sample at the specified time. Parameters ---------- t : int The time to search for the sample QFV value. Returns ------- N/A ''' pass def qfv_put(self, t, v): ''' Put the QFV value of the sample at the specified time. Parameters ---------- t : int The time with which to start the analysis. v : int The value of the QFV. Returns ------- N/A ''' pass def smv_at(self, t): ''' Implements a trapezoidal low pass (smoothing) filter (with a gain of 4*smdt) applied to input signal sig before the QRS matched filter qf(). Before attempting to 'rewind' by more than BUFLN-smdt samples, reset smt and smt0. Parameters ---------- at_t : int The time where the filter will be implemented. Returns ------- smv_at : ndarray The smoothed signal. ''' pass def qfv_at(self, t): ''' Evaluate the QRS detector filter for the next sample. Parameters ---------- N/A Returns ------- N/A ''' pass def gqrs(self, from_sample, to_sample): ''' The GQRS algorithm. Parameters ---------- from_sample : int The sample to start at. to_sample : int The sample to end at. Returns ------- N/A ''' pass def add_peak(peak_time, peak_amp, peak_type): ''' Add a peak. Parameters ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : int The type of peak. Returns ------- N/A ''' pass def peaktype(p): ''' The neighborhood consists of all other peaks within rrmin. Normally, "most prominent" is equivalent to "largest in amplitude", but this is not always true. For example, consider three consecutive peaks a, b, c such that a and b share a neighborhood, b and c share a neighborhood, but a and c do not; and suppose that amp(a) > amp(b) > amp(c). In this case, if there are no other peaks, a is the most prominent peak in the (a, b) neighborhood. Since b is thus identified as a non-prominent peak, c becomes the most prominent peak in the (b, c) neighborhood. This is necessary to permit detection of low-amplitude beats that closely precede or follow beats with large secondary peaks (as, for example, in R-on-T PVCs). Parameters ---------- p : Peak object The peak to be analyzed. Returns ------- int Whether the input peak is the most prominent peak in its neighborhood (1) or not (2). ''' pass def find_missing(r, p): ''' Find the missing peaks. Parameters ---------- r : Peak object The real peak. p : Peak object The peak to be analyzed. Returns ------- s : Peak object The missing peak. ''' pass
21
18
48
6
27
15
4
0.64
1
4
2
0
11
16
11
11
787
112
418
151
382
269
334
136
313
34
1
7
76
147,701
MIT-LCP/wfdb-python
wfdb/processing/evaluate.py
wfdb.processing.evaluate.Comparitor
class Comparitor(object): """ The class to implement and hold comparisons between two sets of annotations. See methods `compare`, `print_summary` and `plot`. Attributes ---------- ref_sample : ndarray An array of the reference sample locations. test_sample : ndarray An array of the comparison sample locations. window_width : int The width of the window. signal : 1d numpy array, optional The signal array the annotation samples are labelling. Only used for plotting. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> ann_ref = wfdb.rdann('sample-data/100','atr') >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> comparitor = processing.Comparitor(ann_ref.sample[1:], xqrs.qrs_inds, int(0.1 * fields['fs']), sig[:,0]) >>> comparitor.compare() >>> comparitor.print_summary() >>> comparitor.plot() """ def __init__(self, ref_sample, test_sample, window_width, signal=None): if len(ref_sample) > 1 and len(test_sample) > 1: if min(np.diff(ref_sample)) < 0 or min(np.diff(test_sample)) < 0: raise ValueError( ( "The sample locations must be monotonically" + " increasing" ) ) self.ref_sample = ref_sample self.test_sample = test_sample self.n_ref = len(ref_sample) self.n_test = len(test_sample) self.window_width = window_width # The matching test sample number for each reference annotation. # -1 for indices with no match self.matching_sample_nums = np.full(self.n_ref, -1, dtype="int") self.signal = signal # TODO: rdann return annotations.where def _calc_stats(self): """ Calculate performance statistics after the two sets of annotations are compared. Parameters ---------- N/A Returns ------- N/A Example: ------------------- ref=500 test=480 { 30 { 470 } 10 } ------------------- tp = 470 fp = 10 fn = 30 sensitivity = 470 / 500 positive_predictivity = 470 / 480 """ # Reference annotation indices that were detected self.matched_ref_inds = np.where(self.matching_sample_nums != -1)[0] # Reference annotation indices that were missed self.unmatched_ref_inds = np.where(self.matching_sample_nums == -1)[0] # Test annotation indices that were matched to a reference annotation self.matched_test_inds = self.matching_sample_nums[ self.matching_sample_nums != -1 ] # Test annotation indices that were unmatched to a reference annotation self.unmatched_test_inds = np.setdiff1d( np.array(range(self.n_test)), self.matched_test_inds, assume_unique=True, ) # Sample numbers that were matched and unmatched self.matched_ref_sample = self.ref_sample[self.matched_ref_inds] self.unmatched_ref_sample = self.ref_sample[self.unmatched_ref_inds] self.matched_test_sample = self.test_sample[self.matched_test_inds] self.unmatched_test_sample = self.test_sample[self.unmatched_test_inds] # True positives = matched reference samples self.tp = len(self.matched_ref_inds) # False positives = extra test samples not matched self.fp = self.n_test - self.tp # False negatives = undetected reference samples self.fn = self.n_ref - self.tp # No tn attribute self.sensitivity = float(self.tp) / float(self.tp + self.fn) self.positive_predictivity = float(self.tp) / self.n_test def compare(self): """ Main comparison function. Note: Make sure to be able to handle these ref/test scenarios: Parameters ------- N/A Returns ------- N/A Example ------- A: o----o---o---o x-------x----x B: o----o-----o---o x--------x--x--x C: o------o-----o---o x-x--------x--x--x D: o------o-----o---o x-x--------x-----x """ test_samp_num = 0 ref_samp_num = 0 # Iterate through the reference sample numbers while ref_samp_num < self.n_ref and test_samp_num < self.n_test: # Get the closest testing sample number for this reference sample closest_samp_num, smallest_samp_diff = self._get_closest_samp_num( ref_samp_num, test_samp_num ) # Get the closest testing sample number for the next reference # sample. This doesn't need to be called for the last index. if ref_samp_num < self.n_ref - 1: ( closest_samp_num_next, smallest_samp_diff_next, ) = self._get_closest_samp_num(ref_samp_num + 1, test_samp_num) else: # Set non-matching value if there is no next reference sample # to compete for the test sample closest_samp_num_next = -1 # Found a contested test sample number. Decide which # reference sample it belongs to. If the sample is closer to # the next reference sample, leave it to the next reference # sample and label this reference sample as unmatched. if ( closest_samp_num == closest_samp_num_next and smallest_samp_diff_next < smallest_samp_diff ): # Get the next closest sample for this reference sample, # if not already assigned to a previous sample. # It will be the previous testing sample number in any # possible case (scenario D below), or nothing. if closest_samp_num and ( not ref_samp_num or closest_samp_num - 1 != self.matching_sample_nums[ref_samp_num - 1] ): # The previous test annotation is inspected closest_samp_num = closest_samp_num - 1 smallest_samp_diff = abs( self.ref_sample[ref_samp_num] - self.test_sample[closest_samp_num] ) # Assign the reference-test pair if close enough if smallest_samp_diff < self.window_width: self.matching_sample_nums[ref_samp_num] = ( closest_samp_num ) # Set the starting test sample number to inspect # for the next reference sample. test_samp_num = closest_samp_num + 1 # Otherwise there is no matching test annotation # If there is no clash, or the contested test sample is # closer to the current reference, keep the test sample # for this reference sample. else: # Assign the reference-test pair if close enough if smallest_samp_diff < self.window_width: self.matching_sample_nums[ref_samp_num] = closest_samp_num # Increment the starting test sample number to inspect # for the next reference sample. test_samp_num = closest_samp_num + 1 ref_samp_num += 1 self._calc_stats() def _get_closest_samp_num(self, ref_samp_num, start_test_samp_num): """ Return the closest testing sample number for the given reference sample number. Limit the search from start_test_samp_num. Parameters ---------- ref_samp_num : int The desired reference sample number to get the closest result. start_test_samp_num The desired testing reference sample number to get the closest result. Returns ------- closest_samp_num : int The closest sample number to the reference sample number. smallest_samp_diff : int The smallest difference between the reference sample and the testing sample. """ if start_test_samp_num >= self.n_test: raise ValueError("Invalid starting test sample number.") ref_samp = self.ref_sample[ref_samp_num] test_samp = self.test_sample[start_test_samp_num] samp_diff = ref_samp - test_samp # Initialize running parameters closest_samp_num = start_test_samp_num smallest_samp_diff = abs(samp_diff) # Iterate through the testing samples for test_samp_num in range(start_test_samp_num, self.n_test): test_samp = self.test_sample[test_samp_num] samp_diff = ref_samp - test_samp abs_samp_diff = abs(samp_diff) # Found a better match if abs_samp_diff < smallest_samp_diff: closest_samp_num = test_samp_num smallest_samp_diff = abs_samp_diff # Stop iterating when the ref sample is first passed or reached if samp_diff <= 0: break return closest_samp_num, smallest_samp_diff def print_summary(self): """ Print summary metrics of the annotation comparisons. Parameters ---------- N/A Returns ------- N/A """ if not hasattr(self, "sensitivity"): self._calc_stats() print( "%d reference annotations, %d test annotations\n" % (self.n_ref, self.n_test) ) print("True Positives (matched samples): %d" % self.tp) print("False Positives (unmatched test samples): %d" % self.fp) print("False Negatives (unmatched reference samples): %d\n" % self.fn) print( "Sensitivity: %.4f (%d/%d)" % (self.sensitivity, self.tp, self.n_ref) ) print( "Positive Predictivity: %.4f (%d/%d)" % (self.positive_predictivity, self.tp, self.n_test) ) def plot(self, sig_style="", title=None, figsize=None, return_fig=False): """ Plot the comparison of two sets of annotations, possibly overlaid on their original signal. Parameters ---------- sig_style : str, optional The matplotlib style of the signal title : str, optional The title of the plot figsize: tuple, optional Tuple pair specifying the width, and height of the figure. It is the'figsize' argument passed into matplotlib.pyplot's `figure` function. return_fig : bool, optional Whether the figure is to be returned as an output argument. Returns ------- fig : matplotlib figure object The figure information for the plot. ax : matplotlib axes object The axes information for the plot. """ import matplotlib.pyplot as plt fig = plt.figure(figsize=figsize) ax = fig.add_subplot(1, 1, 1) legend = [ "Signal", "Matched Reference Annotations (%d/%d)" % (self.tp, self.n_ref), "Unmatched Reference Annotations (%d/%d)" % (self.fn, self.n_ref), "Matched Test Annotations (%d/%d)" % (self.tp, self.n_test), "Unmatched Test Annotations (%d/%d)" % (self.fp, self.n_test), ] # Plot the signal if any if self.signal is not None: ax.plot(self.signal, sig_style) # Plot reference annotations ax.plot( self.matched_ref_sample, self.signal[self.matched_ref_sample], "ko", ) ax.plot( self.unmatched_ref_sample, self.signal[self.unmatched_ref_sample], "ko", fillstyle="none", ) # Plot test annotations ax.plot( self.matched_test_sample, self.signal[self.matched_test_sample], "g+", ) ax.plot( self.unmatched_test_sample, self.signal[self.unmatched_test_sample], "rx", ) ax.legend(legend) # Just plot annotations else: # Plot reference annotations ax.plot(self.matched_ref_sample, np.ones(self.tp), "ko") ax.plot( self.unmatched_ref_sample, np.ones(self.fn), "ko", fillstyle="none", ) # Plot test annotations ax.plot(self.matched_test_sample, 0.5 * np.ones(self.tp), "g+") ax.plot(self.unmatched_test_sample, 0.5 * np.ones(self.fp), "rx") ax.legend(legend[1:]) if title: ax.set_title(title) ax.set_xlabel("time/sample") fig.show() if return_fig: return fig, ax
class Comparitor(object): ''' The class to implement and hold comparisons between two sets of annotations. See methods `compare`, `print_summary` and `plot`. Attributes ---------- ref_sample : ndarray An array of the reference sample locations. test_sample : ndarray An array of the comparison sample locations. window_width : int The width of the window. signal : 1d numpy array, optional The signal array the annotation samples are labelling. Only used for plotting. Examples -------- >>> import wfdb >>> from wfdb import processing >>> sig, fields = wfdb.rdsamp('sample-data/100', channels=[0]) >>> ann_ref = wfdb.rdann('sample-data/100','atr') >>> xqrs = processing.XQRS(sig=sig[:,0], fs=fields['fs']) >>> xqrs.detect() >>> comparitor = processing.Comparitor(ann_ref.sample[1:], xqrs.qrs_inds, int(0.1 * fields['fs']), sig[:,0]) >>> comparitor.compare() >>> comparitor.print_summary() >>> comparitor.plot() ''' def __init__(self, ref_sample, test_sample, window_width, signal=None): pass def _calc_stats(self): ''' Calculate performance statistics after the two sets of annotations are compared. Parameters ---------- N/A Returns ------- N/A Example: ------------------- ref=500 test=480 { 30 { 470 } 10 } ------------------- tp = 470 fp = 10 fn = 30 sensitivity = 470 / 500 positive_predictivity = 470 / 480 ''' pass def compare(self): ''' Main comparison function. Note: Make sure to be able to handle these ref/test scenarios: Parameters ------- N/A Returns ------- N/A Example ------- A: o----o---o---o x-------x----x B: o----o-----o---o x--------x--x--x C: o------o-----o---o x-x--------x--x--x D: o------o-----o---o x-x--------x-----x ''' pass def _get_closest_samp_num(self, ref_samp_num, start_test_samp_num): ''' Return the closest testing sample number for the given reference sample number. Limit the search from start_test_samp_num. Parameters ---------- ref_samp_num : int The desired reference sample number to get the closest result. start_test_samp_num The desired testing reference sample number to get the closest result. Returns ------- closest_samp_num : int The closest sample number to the reference sample number. smallest_samp_diff : int The smallest difference between the reference sample and the testing sample. ''' pass def print_summary(self): ''' Print summary metrics of the annotation comparisons. Parameters ---------- N/A Returns ------- N/A ''' pass def plot(self, sig_style="", title=None, figsize=None, return_fig=False): ''' Plot the comparison of two sets of annotations, possibly overlaid on their original signal. Parameters ---------- sig_style : str, optional The matplotlib style of the signal title : str, optional The title of the plot figsize: tuple, optional Tuple pair specifying the width, and height of the figure. It is the'figsize' argument passed into matplotlib.pyplot's `figure` function. return_fig : bool, optional Whether the figure is to be returned as an output argument. Returns ------- fig : matplotlib figure object The figure information for the plot. ax : matplotlib axes object The axes information for the plot. ''' pass
7
6
59
9
27
23
4
1.04
1
3
0
0
6
20
6
6
397
63
164
43
156
170
96
42
88
7
1
4
22
147,702
MIT-LCP/wfdb-python
wfdb/io/record.py
wfdb.io.record.Record
class Record(BaseRecord, _header.HeaderMixin, _signal.SignalMixin): """ The class representing single segment WFDB records. Record objects can be created using the initializer, by reading a WFDB header with `rdheader`, or a WFDB record (header and associated dat files) with `rdrecord`. The attributes of the Record object give information about the record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm In addition, the d_signal and p_signal attributes store the digital and physical signals of WFDB records with at least one channel. Attributes ---------- p_signal : ndarray, optional An (MxN) 2d numpy array, where M is the signal length. Gives the physical signal values intended to be written. Either p_signal or d_signal must be set, but not both. If p_signal is set, this method will use it to perform analogue-digital conversion, writing the resultant digital values to the dat file(s). If fmt is set, gain and baseline must be set or unset together. If fmt is unset, gain and baseline must both be unset. d_signal : ndarray, optional An (MxN) 2d numpy array, where M is the signal length. Gives the digital signal values intended to be directly written to the dat file(s). The dtype must be an integer type. Either p_signal or d_signal must be set, but not both. In addition, if d_signal is set, fmt, gain and baseline must also all be set. e_p_signal : ndarray, optional The expanded physical conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. e_d_signal : ndarray, optional The expanded digital conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. file_name : str, optional The name of the file used for analysis. fmt : list, optional A list of strings giving the WFDB format of each file used to store each channel. Accepted formats are: '80','212','16','24', and '32'. There are other WFDB formats as specified by: https://www.physionet.org/physiotools/wag/signal-5.htm but this library will not write (though it will read) those file types. samps_per_frame : int, optional The total number of samples per frame. skew : float, optional The offset used to allign signals. byte_offset : int, optional The byte offset used to allign signals. adc_gain : list, optional A list of numbers specifying the ADC gain. baseline : list, optional A list of integers specifying the digital baseline. units : list, optional A list of strings giving the units of each signal channel. adc_res: int, optional The value produced by the ADC given a given Volt input. adc_zero: int, optional The value produced by the ADC given a 0 Volt input. init_value : list, optional The initial value of the signal. checksum : list, int, optional The checksum of the signal. block_size : str, optional The dimensions of the field data. sig_name : list, optional A list of strings giving the signal name of each signal channel. comments : list, optional A list of string comments to be written to the header file. Examples -------- >>> record = wfdb.Record(record_name='r1', fs=250, n_sig=2, sig_len=1000, file_name=['r1.dat','r1.dat']) """ def __init__( self, p_signal=None, d_signal=None, e_p_signal=None, e_d_signal=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, file_name=None, fmt=None, samps_per_frame=None, skew=None, byte_offset=None, adc_gain=None, baseline=None, units=None, adc_res=None, adc_zero=None, init_value=None, checksum=None, block_size=None, sig_name=None, comments=None, ): # Note the lack of the 'n_seg' field. Single segment records cannot # have this field. Even n_seg = 1 makes the header a multi-segment # header. super(Record, self).__init__( record_name=record_name, n_sig=n_sig, fs=fs, counter_freq=counter_freq, base_counter=base_counter, sig_len=sig_len, base_time=base_time, base_date=base_date, base_datetime=base_datetime, comments=comments, sig_name=sig_name, ) self.p_signal = p_signal self.d_signal = d_signal self.e_p_signal = e_p_signal self.e_d_signal = e_d_signal self.file_name = file_name self.fmt = fmt self.samps_per_frame = samps_per_frame self.skew = skew self.byte_offset = byte_offset self.adc_gain = adc_gain self.baseline = baseline self.units = units self.adc_res = adc_res self.adc_zero = adc_zero self.init_value = init_value self.checksum = checksum self.block_size = block_size # Equal comparison operator for objects of this type def __eq__(self, other, verbose=False): """ Equal comparison operator for objects of this type. Parameters ---------- other : object The object that is being compared to self. verbose : bool, optional Whether to print details about equality (True) or not (False). Returns ------- bool Determines if the objects are equal (True) or not equal (False). """ att1 = self.__dict__ att2 = other.__dict__ if set(att1.keys()) != set(att2.keys()): if verbose: print("Attributes members mismatch.") return False for k in att1.keys(): v1 = att1[k] v2 = att2[k] if type(v1) != type(v2): if verbose: print("Mismatch in attribute: %s" % k, v1, v2) return False if isinstance(v1, np.ndarray): # Necessary for nans np.testing.assert_array_equal(v1, v2) elif ( isinstance(v1, list) and len(v1) == len(v2) and all(isinstance(e, np.ndarray) for e in v1) ): for e1, e2 in zip(v1, v2): np.testing.assert_array_equal(e1, e2) else: if v1 != v2: if verbose: print("Mismatch in attribute: %s" % k, v1, v2) return False return True def wrsamp(self, expanded=False, write_dir=""): """ Write a WFDB header file and any associated dat files from this object. Parameters ---------- expanded : bool, optional Whether to write the expanded signal (e_d_signal) instead of the uniform signal (d_signal). write_dir : str, optional The directory in which to write the files. Returns ------- N/A """ # Update the checksum field (except for channels that did not have # a checksum to begin with, or where the checksum was already # valid.) if self.checksum is not None: checksums = self.calc_checksum(expanded=expanded) for ch, old_val in enumerate(self.checksum): if old_val is None or (checksums[ch] - old_val) % 65536 == 0: checksums[ch] = old_val self.checksum = checksums # Perform field validity and cohesion checks, and write the # header file. self.wrheader(write_dir=write_dir, expanded=expanded) if self.n_sig > 0: # Perform signal validity and cohesion checks, and write the # associated dat files. self.wr_dats(expanded=expanded, write_dir=write_dir) def _arrange_fields(self, channels, sampfrom, smooth_frames): """ Arrange/edit object fields to reflect user channel and/or signal range input. Parameters ---------- channels : list List of channel numbers specified. sampfrom : int Starting sample number read. smooth_frames : bool Whether to convert the expanded signal array (e_d_signal) into a smooth signal array (d_signal). Returns ------- N/A """ # Rearrange signal specification fields for field in _header.SIGNAL_SPECS.index: item = getattr(self, field) setattr(self, field, [item[c] for c in channels]) # Expanded signals - multiple samples per frame. if not smooth_frames: # Checksum and init_value to be updated if present # unless the whole signal length was input if self.sig_len != int( len(self.e_d_signal[0]) / self.samps_per_frame[0] ): self.checksum = self.calc_checksum(True) self.init_value = [s[0] for s in self.e_d_signal] self.n_sig = len(channels) self.sig_len = int( len(self.e_d_signal[0]) / self.samps_per_frame[0] ) # MxN numpy array d_signal else: self.d_signal = self.smooth_frames("digital") self.e_d_signal = None # Checksum and init_value to be updated if present # unless the whole signal length was input if self.sig_len != self.d_signal.shape[0]: if self.checksum is not None: self.checksum = self.calc_checksum() if self.init_value is not None: ival = list(self.d_signal[0, :]) self.init_value = [int(i) for i in ival] # Update record specification parameters # Important that these get updated after^^ self.n_sig = len(channels) self.sig_len = self.d_signal.shape[0] # Adjust date and time if necessary self._adjust_datetime(sampfrom=sampfrom) def to_dataframe(self) -> pd.DataFrame: """ Create a dataframe containing the data from this record. Returns ------- A dataframe, with sig_name in the columns. The index is a DatetimeIndex if both base_date and base_time were set, otherwise a TimedeltaIndex. """ if self.base_datetime is not None: index = pd.date_range( start=self.base_datetime, periods=self.sig_len, freq=pd.Timedelta(seconds=1 / self.fs), ) else: index = pd.timedelta_range( start=pd.Timedelta(0), periods=self.sig_len, freq=pd.Timedelta(seconds=1 / self.fs), ) if self.p_signal is not None: data = self.p_signal elif self.d_signal is not None: data = self.d_signal elif self.e_p_signal is not None: data = np.array(self.e_p_signal).T elif self.e_d_signal is not None: data = np.array(self.e_d_signal).T else: raise ValueError("No signal in record.") return pd.DataFrame(data=data, index=index, columns=self.sig_name)
class Record(BaseRecord, _header.HeaderMixin, _signal.SignalMixin): ''' The class representing single segment WFDB records. Record objects can be created using the initializer, by reading a WFDB header with `rdheader`, or a WFDB record (header and associated dat files) with `rdrecord`. The attributes of the Record object give information about the record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm In addition, the d_signal and p_signal attributes store the digital and physical signals of WFDB records with at least one channel. Attributes ---------- p_signal : ndarray, optional An (MxN) 2d numpy array, where M is the signal length. Gives the physical signal values intended to be written. Either p_signal or d_signal must be set, but not both. If p_signal is set, this method will use it to perform analogue-digital conversion, writing the resultant digital values to the dat file(s). If fmt is set, gain and baseline must be set or unset together. If fmt is unset, gain and baseline must both be unset. d_signal : ndarray, optional An (MxN) 2d numpy array, where M is the signal length. Gives the digital signal values intended to be directly written to the dat file(s). The dtype must be an integer type. Either p_signal or d_signal must be set, but not both. In addition, if d_signal is set, fmt, gain and baseline must also all be set. e_p_signal : ndarray, optional The expanded physical conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. e_d_signal : ndarray, optional The expanded digital conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. file_name : str, optional The name of the file used for analysis. fmt : list, optional A list of strings giving the WFDB format of each file used to store each channel. Accepted formats are: '80','212','16','24', and '32'. There are other WFDB formats as specified by: https://www.physionet.org/physiotools/wag/signal-5.htm but this library will not write (though it will read) those file types. samps_per_frame : int, optional The total number of samples per frame. skew : float, optional The offset used to allign signals. byte_offset : int, optional The byte offset used to allign signals. adc_gain : list, optional A list of numbers specifying the ADC gain. baseline : list, optional A list of integers specifying the digital baseline. units : list, optional A list of strings giving the units of each signal channel. adc_res: int, optional The value produced by the ADC given a given Volt input. adc_zero: int, optional The value produced by the ADC given a 0 Volt input. init_value : list, optional The initial value of the signal. checksum : list, int, optional The checksum of the signal. block_size : str, optional The dimensions of the field data. sig_name : list, optional A list of strings giving the signal name of each signal channel. comments : list, optional A list of string comments to be written to the header file. Examples -------- >>> record = wfdb.Record(record_name='r1', fs=250, n_sig=2, sig_len=1000, file_name=['r1.dat','r1.dat']) ''' def __init__( self, p_signal=None, d_signal=None, e_p_signal=None, e_d_signal=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, file_name=None, fmt=None, samps_per_frame=None, skew=None, byte_offset=None, adc_gain=None, baseline=None, units=None, adc_res=None, adc_zero=None, init_value=None, checksum=None, block_size=None, sig_name=None, comments=None, ): pass def __eq__(self, other, verbose=False): ''' Equal comparison operator for objects of this type. Parameters ---------- other : object The object that is being compared to self. verbose : bool, optional Whether to print details about equality (True) or not (False). Returns ------- bool Determines if the objects are equal (True) or not equal (False). ''' pass def wrsamp(self, expanded=False, write_dir=""): ''' Write a WFDB header file and any associated dat files from this object. Parameters ---------- expanded : bool, optional Whether to write the expanded signal (e_d_signal) instead of the uniform signal (d_signal). write_dir : str, optional The directory in which to write the files. Returns ------- N/A ''' pass def _arrange_fields(self, channels, sampfrom, smooth_frames): ''' Arrange/edit object fields to reflect user channel and/or signal range input. Parameters ---------- channels : list List of channel numbers specified. sampfrom : int Starting sample number read. smooth_frames : bool Whether to convert the expanded signal array (e_d_signal) into a smooth signal array (d_signal). Returns ------- N/A ''' pass def to_dataframe(self) -> pd.DataFrame: ''' Create a dataframe containing the data from this record. Returns ------- A dataframe, with sig_name in the columns. The index is a DatetimeIndex if both base_date and base_time were set, otherwise a TimedeltaIndex. ''' pass
6
5
50
5
30
14
6
1.11
3
8
0
0
5
20
5
22
356
38
151
69
115
167
85
38
79
11
3
4
30
147,703
MIT-LCP/wfdb-python
wfdb/io/record.py
wfdb.io.record.MultiRecord
class MultiRecord(BaseRecord, _header.MultiHeaderMixin): """ The class representing multi-segment WFDB records. MultiRecord objects can be created using the initializer, or by reading a multi-segment WFDB record using 'rdrecord' with the `m2s` (multi to single) input parameter set to False. The attributes of the MultiRecord object give information about the entire record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm In addition, the `segments` parameter is a list of Record objects representing each individual segment, or None representing empty segments, of the entire multi-segment record. Notably, this class has no attribute representing the signals as a whole. The 'multi_to_single' instance method can be called on MultiRecord objects to return a single segment representation of the record as a Record object. The resulting Record object will have its 'p_signal' field set. Attributes ---------- segments : list, optional The segments to be read. layout : str, optional Whether the record will be 'fixed' or 'variable'. record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : int, float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. seg_name : str, optional The name of the segment. seg_len : List[int], optional The length of each segment. comments : list, optional A list of string comments to be written to the header file. sig_name : str, optional A list of strings giving the signal name of each signal channel. sig_segments : list, optional The signal segments to be read. Examples -------- >>> record_m = wfdb.MultiRecord(record_name='rm', fs=50, n_sig=8, sig_len=9999, seg_name=['rm_1', '~', rm_2'], seg_len=[800, 200, 900]) >>> # Get a MultiRecord object >>> record_s = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s=False) >>> # Turn it into a single record >>> record_s = record_s.multi_to_single() record_s initially stores a `MultiRecord` object, and is then converted into a `Record` object. """ def __init__( self, segments=None, layout=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, seg_name=None, seg_len=None, comments=None, sig_name=None, sig_segments=None, ): super(MultiRecord, self).__init__( record_name=record_name, n_sig=n_sig, fs=fs, counter_freq=counter_freq, base_counter=base_counter, sig_len=sig_len, base_time=base_time, base_date=base_date, base_datetime=base_datetime, comments=comments, sig_name=sig_name, ) self.layout = layout self.segments = segments self.seg_name = seg_name self.seg_len = seg_len self.sig_segments = sig_segments if segments: self.n_seg = len(segments) if not seg_len: self.seg_len = [segment.sig_len for segment in segments] def wrsamp(self, write_dir=""): """ Write a multi-segment header, along with headers and dat files for all segments, from this object. Parameters ---------- write_dir : str, optional The directory in which to write the files. Returns ------- N/A """ # Perform field validity and cohesion checks, and write the # header file. self.wrheader(write_dir=write_dir) # Perform record validity and cohesion checks, and write the # associated segments. for seg in self.segments: seg.wrsamp(write_dir=write_dir) def _check_segment_cohesion(self): """ Check the cohesion of the segments field with other fields used to write the record. Parameters ---------- N/A Returns ------- N/A """ if self.n_seg != len(self.segments): raise ValueError("Length of segments must match the 'n_seg' field") for seg_num, segment in enumerate(self.segments): # If segment 0 is a layout specification record, check that its file names are all == '~'' if seg_num == 0 and self.seg_len[0] == 0: for file_name in segment.file_name: if file_name != "~": raise ValueError( "Layout specification records must have all file_names named '~'" ) # Sampling frequencies must all match the one in the master header if segment.fs != self.fs: raise ValueError( "The 'fs' in each segment must match the overall record's 'fs'" ) # Check the signal length of the segment against the corresponding seg_len field if segment.sig_len != self.seg_len[seg_num]: raise ValueError( f"The signal length of segment {seg_num} does not match the corresponding segment length" ) # No need to check the sum of sig_lens from each segment object against sig_len # Already effectively done it when checking sum(seg_len) against sig_len def _required_segments(self, sampfrom, sampto): """ Determine the segments and the samples within each segment in a multi-segment record, that lie within a sample range. Parameters ---------- sampfrom : int The starting sample number to read for each channel. sampto : int The sample number at which to stop reading for each channel. Returns ------- seg_numbers : list List of segment numbers to read. readsamps : list List of sample numbers to be read. """ # The starting segment with actual samples if self.layout == "fixed": startseg = 0 else: startseg = 1 # Cumulative sum of segment lengths (ignoring layout segment) cumsumlengths = list(np.cumsum(self.seg_len[startseg:])) # Get first segment seg_numbers = [[sampfrom < cs for cs in cumsumlengths].index(True)] # Get final segment if sampto == cumsumlengths[len(cumsumlengths) - 1]: seg_numbers.append(len(cumsumlengths) - 1) else: seg_numbers.append( [sampto <= cs for cs in cumsumlengths].index(True) ) # Add 1 for variable layout records seg_numbers = list(np.add(seg_numbers, startseg)) # Obtain the sampfrom and sampto to read for each segment if seg_numbers[1] == seg_numbers[0]: # Only one segment to read seg_numbers = [seg_numbers[0]] # The segment's first sample number relative to the entire record segstartsamp = sum(self.seg_len[0 : seg_numbers[0]]) readsamps = [[sampfrom - segstartsamp, sampto - segstartsamp]] else: # More than one segment to read seg_numbers = list(range(seg_numbers[0], seg_numbers[1] + 1)) readsamps = [[0, self.seg_len[s]] for s in seg_numbers] # Starting sample for first segment. readsamps[0][0] = ( sampfrom - ([0] + cumsumlengths)[seg_numbers[0] - startseg] ) # End sample for last segment readsamps[-1][1] = ( sampto - ([0] + cumsumlengths)[seg_numbers[-1] - startseg] ) return (seg_numbers, readsamps) def _required_channels(self, seg_numbers, channels, dir_name, pn_dir): """ Get the channel numbers to be read from each specified segment, given the channel numbers specified for the entire record. Parameters ---------- seg_numbers : list List of segment numbers to read. channels : list The channel indices to read for the whole record. Same one specified by user input. dir_name : str The local directory location of the header file. This parameter is ignored if `pn_dir` is set. pn_dir : str Option used to stream data from Physionet. The Physionet database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/content/mitdb' pn_dir='mitdb'. Returns ------- required_channels : list List of lists, containing channel indices to read for each desired segment. """ # Fixed layout. All channels are the same. if self.layout == "fixed": required_channels = [channels] * len(seg_numbers) # Variable layout: figure out channels by matching record names else: required_channels = [] # The overall layout signal names l_sig_names = self.segments[0].sig_name # The wanted signals w_sig_names = [l_sig_names[c] for c in channels] # For each segment for i in range(len(seg_numbers)): # Skip empty segments if self.seg_name[seg_numbers[i]] == "~": required_channels.append([]) else: # Get the signal names of the current segment s_sig_names = rdheader( os.path.join(dir_name, self.seg_name[seg_numbers[i]]), pn_dir=pn_dir, ).sig_name required_channels.append( _get_wanted_channels(w_sig_names, s_sig_names) ) return required_channels def _arrange_fields( self, seg_numbers, seg_ranges, channels, sampfrom=0, force_channels=True ): """ Arrange/edit object fields to reflect user channel and/or signal range inputs. Updates layout specification header if necessary. Parameters ---------- seg_numbers : list List of integer segment numbers read. seg_ranges: list List of integer pairs, giving the sample ranges for each segment number read. channels : list List of channel numbers specified sampfrom : int Starting sample read. force_channels : bool, optional Used when reading multi-segment variable layout records. Whether to update the layout specification record to match the input `channels` argument, or to omit channels in which no read segment contains the signals. Returns ------- N/A """ # Update seg_len values for relevant segments for i in range(len(seg_numbers)): self.seg_len[seg_numbers[i]] = seg_ranges[i][1] - seg_ranges[i][0] # Get rid of the segments and segment line parameters # outside the desired segment range if self.layout == "fixed": self.n_sig = len(channels) self.segments = self.segments[seg_numbers[0] : seg_numbers[-1] + 1] self.seg_name = self.seg_name[seg_numbers[0] : seg_numbers[-1] + 1] self.seg_len = self.seg_len[seg_numbers[0] : seg_numbers[-1] + 1] else: self.segments = [self.segments[0]] + self.segments[ seg_numbers[0] : seg_numbers[-1] + 1 ] self.seg_name = [self.seg_name[0]] + self.seg_name[ seg_numbers[0] : seg_numbers[-1] + 1 ] self.seg_len = [self.seg_len[0]] + self.seg_len[ seg_numbers[0] : seg_numbers[-1] + 1 ] # Update the layout specification segment. At this point it # should match the full original header # Have to inspect existing channels of segments; requested # input channels will not be enough on its own because not # all signals may be present, depending on which section of # the signal was read. if not force_channels: # The desired signal names. desired_sig_names = [ self.segments[0].sig_name[ch] for ch in channels ] # Actual contained signal names of individual segments # contained_sig_names = [seg.sig_name for seg in self.segments[1:]] contained_sig_names = set( [ name for seg in self.segments[1:] if seg is not None for name in seg.sig_name ] ) # Remove non-present names. Keep the order. sig_name = [ name for name in desired_sig_names if name in contained_sig_names ] # Channel indices to keep for signal specification fields channels = [ self.segments[0].sig_name.index(name) for name in sig_name ] # Rearrange signal specification fields for field in _header.SIGNAL_SPECS.index: item = getattr(self.segments[0], field) setattr(self.segments[0], field, [item[c] for c in channels]) self.segments[0].n_sig = self.n_sig = len(channels) if self.n_sig == 0: print( "No signals of the desired channels are contained in the specified sample range." ) # Update record specification parameters self.sig_len = sum([sr[1] - sr[0] for sr in seg_ranges]) self.n_seg = len(self.segments) self._adjust_datetime(sampfrom=sampfrom) def multi_to_single(self, physical, return_res=64, expanded=False): """ Create a Record object from the MultiRecord object. All signal segments will be combined into the new object's `p_signal` or `d_signal` field. For digital format, the signals must have the same storage format, baseline, and adc_gain in all segments. Parameters ---------- physical : bool Whether to convert the physical or digital signal. return_res : int, optional The return resolution of the `p_signal` field. Options are: 64, 32, and 16. expanded : bool, optional If false, combine the sample data from `p_signal` or `d_signal` into a single two-dimensional array. If true, combine the sample data from `e_p_signal` or `e_d_signal` into a list of one-dimensional arrays. Returns ------- record : WFDB Record The single segment record created. """ # The fields to transfer to the new object fields = self.__dict__.copy() # Remove multirecord fields for attr in ["segments", "seg_name", "seg_len", "n_seg"]: del fields[attr] # Figure out single segment fields to set for the new Record if self.layout == "fixed": # Get the fields from the first segment for attr in [ "fmt", "adc_gain", "baseline", "units", "sig_name", "samps_per_frame", ]: fields[attr] = getattr(self.segments[0], attr) else: # For variable layout records, inspect the segments for the # attribute values. # Coincidentally, if physical=False, figure out if this # conversion can be performed. All signals of the same name # must have the same fmt, gain, baseline, and units for all # segments. # For either physical or digital conversion, all signals # of the same name must have the same samps_per_frame, # which must match the value in the layout header. # The layout header should be updated at this point to # reflect channels. We can depend on it for sig_name and # samps_per_frame, but not for fmt, adc_gain, units, and # baseline. # These signal names will be the key signal_names = self.segments[0].sig_name n_sig = len(signal_names) # This will be the field dictionary to copy over. reference_fields = { "fmt": n_sig * [None], "adc_gain": n_sig * [None], "baseline": n_sig * [None], "units": n_sig * [None], "samps_per_frame": self.segments[0].samps_per_frame, } # For physical signals, mismatched fields will not be copied # over. For digital, mismatches will cause an exception. mismatched_fields = [] for seg in self.segments[1:]: if seg is None: continue # For each signal, check fmt, adc_gain, baseline, and # units of each signal for seg_ch in range(seg.n_sig): sig_name = seg.sig_name[seg_ch] # The overall channel ch = signal_names.index(sig_name) for field in reference_fields: item_ch = getattr(seg, field)[seg_ch] if reference_fields[field][ch] is None: reference_fields[field][ch] = item_ch # mismatch case elif reference_fields[field][ch] != item_ch: if field == "samps_per_frame": expected = reference_fields[field][ch] raise ValueError( f"Incorrect samples per frame " f"({item_ch} != {expected}) " f"for signal {signal_names[ch]} " f"in segment {seg.record_name} " f"of {self.record_name}" ) elif physical: mismatched_fields.append(field) else: raise Exception( "This variable layout multi-segment record cannot be converted to single segment, in digital format." ) # Remove mismatched signal fields for physical signals for field in set(mismatched_fields): del reference_fields[field] # At this point, the fields should be set for all channels fields.update(reference_fields) fields["sig_name"] = signal_names # Figure out signal attribute to set, and its dtype. if physical: if expanded: sig_attr = "e_p_signal" else: sig_attr = "p_signal" # Figure out the largest required dtype dtype = _signal._np_dtype(return_res, discrete=False) nan_vals = np.array([self.n_sig * [np.nan]], dtype=dtype) else: if expanded: sig_attr = "e_d_signal" else: sig_attr = "d_signal" # Figure out the largest required dtype dtype = _signal._np_dtype(return_res, discrete=True) nan_vals = np.array([_signal._digi_nan(fields["fmt"])], dtype=dtype) samps_per_frame = fields["samps_per_frame"] # Initialize the full signal array if expanded: combined_signal = [] for nan_val, spf in zip(nan_vals[0], samps_per_frame): combined_signal.append(np.repeat(nan_val, spf * self.sig_len)) else: combined_signal = np.repeat(nan_vals, self.sig_len, axis=0) # Start and end samples in the overall array to place the # segment samples into start_samps = [0] + list(np.cumsum(self.seg_len)[0:-1]) end_samps = list(np.cumsum(self.seg_len)) if self.layout == "fixed": # Copy over the signals directly. Recall there are no # empty segments in fixed layout records. for i in range(self.n_seg): signals = getattr(self.segments[i], sig_attr) if expanded: for ch in range(self.n_sig): start = start_samps[i] * samps_per_frame[ch] end = end_samps[i] * samps_per_frame[ch] combined_signal[ch][start:end] = signals[ch] else: start = start_samps[i] end = end_samps[i] combined_signal[start:end, :] = signals else: # Copy over the signals into the matching channels for i in range(1, self.n_seg): seg = self.segments[i] if seg is not None: # Get the segment channels to copy over for each # overall channel segment_channels = _get_wanted_channels( fields["sig_name"], seg.sig_name, pad=True ) signals = getattr(seg, sig_attr) for ch in range(self.n_sig): # Copy over relevant signal if segment_channels[ch] is not None: if expanded: signal = signals[segment_channels[ch]] start = start_samps[i] * samps_per_frame[ch] end = end_samps[i] * samps_per_frame[ch] combined_signal[ch][start:end] = signal else: signal = signals[:, segment_channels[ch]] start = start_samps[i] end = end_samps[i] combined_signal[start:end, ch] = signal # Create the single segment Record object and set attributes record = Record() for field in fields: setattr(record, field, fields[field]) setattr(record, sig_attr, combined_signal) # Use the signal to set record features if physical: record.set_p_features(expanded=expanded) else: record.set_d_features(expanded=expanded) return record
class MultiRecord(BaseRecord, _header.MultiHeaderMixin): ''' The class representing multi-segment WFDB records. MultiRecord objects can be created using the initializer, or by reading a multi-segment WFDB record using 'rdrecord' with the `m2s` (multi to single) input parameter set to False. The attributes of the MultiRecord object give information about the entire record as specified by: https://www.physionet.org/physiotools/wag/header-5.htm In addition, the `segments` parameter is a list of Record objects representing each individual segment, or None representing empty segments, of the entire multi-segment record. Notably, this class has no attribute representing the signals as a whole. The 'multi_to_single' instance method can be called on MultiRecord objects to return a single segment representation of the record as a Record object. The resulting Record object will have its 'p_signal' field set. Attributes ---------- segments : list, optional The segments to be read. layout : str, optional Whether the record will be 'fixed' or 'variable'. record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : int, float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. seg_name : str, optional The name of the segment. seg_len : List[int], optional The length of each segment. comments : list, optional A list of string comments to be written to the header file. sig_name : str, optional A list of strings giving the signal name of each signal channel. sig_segments : list, optional The signal segments to be read. Examples -------- >>> record_m = wfdb.MultiRecord(record_name='rm', fs=50, n_sig=8, sig_len=9999, seg_name=['rm_1', '~', rm_2'], seg_len=[800, 200, 900]) >>> # Get a MultiRecord object >>> record_s = wfdb.rdsamp('s00001-2896-10-10-00-31', m2s=False) >>> # Turn it into a single record >>> record_s = record_s.multi_to_single() record_s initially stores a `MultiRecord` object, and is then converted into a `Record` object. ''' def __init__( self, segments=None, layout=None, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, seg_name=None, seg_len=None, comments=None, sig_name=None, sig_segments=None, ): pass def wrsamp(self, write_dir=""): ''' Write a multi-segment header, along with headers and dat files for all segments, from this object. Parameters ---------- write_dir : str, optional The directory in which to write the files. Returns ------- N/A ''' pass def _check_segment_cohesion(self): ''' Check the cohesion of the segments field with other fields used to write the record. Parameters ---------- N/A Returns ------- N/A ''' pass def _required_segments(self, sampfrom, sampto): ''' Determine the segments and the samples within each segment in a multi-segment record, that lie within a sample range. Parameters ---------- sampfrom : int The starting sample number to read for each channel. sampto : int The sample number at which to stop reading for each channel. Returns ------- seg_numbers : list List of segment numbers to read. readsamps : list List of sample numbers to be read. ''' pass def _required_channels(self, seg_numbers, channels, dir_name, pn_dir): ''' Get the channel numbers to be read from each specified segment, given the channel numbers specified for the entire record. Parameters ---------- seg_numbers : list List of segment numbers to read. channels : list The channel indices to read for the whole record. Same one specified by user input. dir_name : str The local directory location of the header file. This parameter is ignored if `pn_dir` is set. pn_dir : str Option used to stream data from Physionet. The Physionet database directory from which to find the required record files. eg. For record '100' in 'http://physionet.org/content/mitdb' pn_dir='mitdb'. Returns ------- required_channels : list List of lists, containing channel indices to read for each desired segment. ''' pass def _arrange_fields( self, seg_numbers, seg_ranges, channels, sampfrom=0, force_channels=True ): ''' Arrange/edit object fields to reflect user channel and/or signal range inputs. Updates layout specification header if necessary. Parameters ---------- seg_numbers : list List of integer segment numbers read. seg_ranges: list List of integer pairs, giving the sample ranges for each segment number read. channels : list List of channel numbers specified sampfrom : int Starting sample read. force_channels : bool, optional Used when reading multi-segment variable layout records. Whether to update the layout specification record to match the input `channels` argument, or to omit channels in which no read segment contains the signals. Returns ------- N/A ''' pass def multi_to_single(self, physical, return_res=64, expanded=False): ''' Create a Record object from the MultiRecord object. All signal segments will be combined into the new object's `p_signal` or `d_signal` field. For digital format, the signals must have the same storage format, baseline, and adc_gain in all segments. Parameters ---------- physical : bool Whether to convert the physical or digital signal. return_res : int, optional The return resolution of the `p_signal` field. Options are: 64, 32, and 16. expanded : bool, optional If false, combine the sample data from `p_signal` or `d_signal` into a single two-dimensional array. If true, combine the sample data from `e_p_signal` or `e_d_signal` into a list of one-dimensional arrays. Returns ------- record : WFDB Record The single segment record created. ''' pass
8
7
75
8
40
27
8
0.92
2
9
1
0
7
8
7
27
610
71
281
84
253
258
168
63
160
29
3
6
56
147,704
MIT-LCP/wfdb-python
wfdb/io/_url.py
wfdb.io._url.NetFilePermissionError
class NetFilePermissionError(NetFileError, PermissionError): """The client does not have permission to access a remote file."""
class NetFilePermissionError(NetFileError, PermissionError): '''The client does not have permission to access a remote file.''' pass
1
1
0
0
0
0
0
1
2
0
0
0
0
0
0
15
2
0
1
1
0
1
1
1
0
0
5
0
0
147,705
MIT-LCP/wfdb-python
wfdb/io/record.py
wfdb.io.record.BaseRecord
class BaseRecord(object): """ The base WFDB class extended by the Record and MultiRecord classes. Attributes ---------- record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : int, float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. comments : list, optional A list of string comments to be written to the header file. sig_name : str, optional A list of strings giving the signal name of each signal channel. """ # The base WFDB class extended by the Record and MultiRecord classes. def __init__( self, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, comments=None, sig_name=None, ): self.record_name = record_name self.n_sig = n_sig self.fs = fs self.counter_freq = counter_freq self.base_counter = base_counter self.sig_len = sig_len if base_datetime is not None: if base_time is not None: raise TypeError( "cannot specify both base_time and base_datetime" ) if base_date is not None: raise TypeError( "cannot specify both base_date and base_datetime" ) self.base_datetime = base_datetime else: self.base_time = base_time self.base_date = base_date self.comments = comments self.sig_name = sig_name @property def base_datetime(self): if self.base_date is None or self.base_time is None: return None else: return datetime.datetime.combine( date=self.base_date, time=self.base_time ) @base_datetime.setter def base_datetime(self, value): if value is None: self.base_date = None self.base_time = None elif isinstance(value, datetime.datetime) and value.tzinfo is None: self.base_date = value.date() self.base_time = value.time() else: raise TypeError(f"invalid base_datetime value: {value!r}") def get_frame_number(self, time_value): """ Convert a time value to a frame number. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Note that this function may return a value that is less than zero or greater than the actual length of the record. Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- frame_number : float Frame number (possibly a fractional frame number). """ if hasattr(time_value, "__float__"): return float(time_value) if isinstance(time_value, datetime.datetime): if not self.base_datetime: raise ValueError( "base_datetime is unknown; cannot convert absolute " "date/time to a frame number" ) time_value -= self.base_datetime if isinstance(time_value, datetime.timedelta): return time_value.total_seconds() * self.fs raise TypeError(f"invalid time value: {time_value!r}") def get_elapsed_time(self, time_value): """ Convert a time value to an elapsed time in seconds. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- elapsed_time : timedelta Elapsed time from the start of the record. """ time_value = self.get_frame_number(time_value) return datetime.timedelta(seconds=time_value / self.fs) def get_absolute_time(self, time_value): """ Convert a time value to an absolute date and time. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- absolute_time : datetime Absolute date and time. """ time_value = self.get_elapsed_time(time_value) if not self.base_datetime: raise ValueError( "base_datetime is unknown; cannot convert frame number " "to an absolute date/time" ) return time_value + self.base_datetime def check_field(self, field, required_channels="all"): """ Check whether a single field is valid in its basic form. Does not check compatibility with other fields. Parameters ---------- field : str The field name. required_channels : list, optional Used for signal specification fields. All channels are checked for their integrity if present, but channels that do not lie in this field may be None. Returns ------- N/A Notes ----- This function is called from wrheader to check fields before writing. It is also supposed to be usable at any point to check a specific field. """ item = getattr(self, field) if item is None: raise Exception("Missing field required: %s" % field) # We should have a list specifying these automatically. # Whether the item should be a list. Watch out for required_channels for `segments` expect_list = True if field in LIST_FIELDS else False # Check the type of the field (and of its elements if it should # be a list) _check_item_type( item, field_name=field, allowed_types=ALLOWED_TYPES[field], expect_list=expect_list, required_channels=required_channels, ) # Individual specific field checks if field in ["d_signal", "p_signal"]: check_np_array( item=item, field_name=field, ndim=2, parent_class=( lambda f: np.integer if f == "d_signal" else np.floating )(field), ) elif field in ["e_d_signal", "e_p_signal"]: for ch in range(len(item)): check_np_array( item=item[ch], field_name=field, ndim=1, parent_class=( lambda f: ( np.integer if f == "e_d_signal" else np.floating ) )(field), channel_num=ch, ) # Record specification fields elif field == "record_name": # Allow letters, digits, hyphens, and underscores. accepted_string = re.match(r"[-\w]+", self.record_name) if ( not accepted_string or accepted_string.string != self.record_name ): raise ValueError( "record_name must only comprise of letters, digits, hyphens, and underscores." ) elif field == "n_seg": if self.n_seg <= 0: raise ValueError("n_seg must be a positive integer") elif field == "n_sig": if self.n_sig <= 0: raise ValueError("n_sig must be a positive integer") elif field == "fs": if self.fs <= 0: raise ValueError("fs must be a positive number") elif field == "counter_freq": if self.counter_freq <= 0: raise ValueError("counter_freq must be a positive number") elif field == "base_counter": if self.base_counter <= 0: raise ValueError("base_counter must be a positive number") elif field == "sig_len": if self.sig_len < 0: raise ValueError("sig_len must be a non-negative integer") # Signal specification fields elif field in _header.SIGNAL_SPECS.index: if required_channels == "all": required_channels = range(len(item)) for ch in range(len(item)): # If the element is allowed to be None if ch not in required_channels: if item[ch] is None: continue if field == "file_name": # Check for file_name characters accepted_string = re.match(r"[-\w]+\.?[\w]+", item[ch]) if ( not accepted_string or accepted_string.string != item[ch] ): raise ValueError( "File names should only contain alphanumerics, hyphens, and an extension. eg. record-100.dat" ) # Check that dat files are grouped together if not util.is_monotonic(self.file_name): raise ValueError( "Signals in a record that share a given file must be consecutive." ) elif field == "fmt": if item[ch] not in _signal.DAT_FMTS: raise ValueError( "File formats must be valid WFDB dat formats:", _signal.DAT_FMTS, ) elif field == "samps_per_frame": if item[ch] < 1: raise ValueError( "samps_per_frame values must be positive integers" ) elif field == "skew": if item[ch] < 0: raise ValueError( "skew values must be non-negative integers" ) elif field == "byte_offset": if item[ch] < 0: raise ValueError( "byte_offset values must be non-negative integers" ) elif field == "adc_gain": if item[ch] <= 0: raise ValueError("adc_gain values must be positive") elif field == "baseline": # Original WFDB library 10.5.24 only has 4 bytes for baseline. if item[ch] < -2147483648 or item[ch] > 2147483648: raise ValueError( "baseline values must be between -2147483648 (-2^31) and 2147483647 (2^31 -1)" ) elif field == "units": if re.search(r"\s", item[ch]): raise ValueError( "units strings may not contain whitespaces." ) elif field == "adc_res": if item[ch] < 0: raise ValueError( "adc_res values must be non-negative integers" ) elif field == "block_size": if item[ch] < 0: raise ValueError( "block_size values must be non-negative integers" ) elif field == "sig_name": if item[ch][:1].isspace() or item[ch][-1:].isspace(): raise ValueError( "sig_name strings may not begin or end with " "whitespace." ) if re.search(r"[\x00-\x1f\x7f-\x9f]", item[ch]): raise ValueError( "sig_name strings may not contain " "control characters." ) if len(set(item)) != len(item): raise ValueError("sig_name strings must be unique.") # Segment specification fields and comments elif field in _header.SEGMENT_SPECS.index: for ch in range(len(item)): if field == "seg_name": # Segment names must be alphanumerics or just a single '~' if item[ch] == "~": continue accepted_string = re.match(r"[-\w]+", item[ch]) if ( not accepted_string or accepted_string.string != item[ch] ): raise ValueError( "Non-null segment names may only contain alphanumerics and dashes. Null segment names must be set to '~'" ) elif field == "seg_len": # For records with more than 1 segment, the first # segment may be the layout specification segment # with a length of 0 min_len = 0 if ch == 0 else 1 if item[ch] < min_len: raise ValueError( "seg_len values must be positive integers. Only seg_len[0] may be 0 to indicate a layout segment" ) # Comment field elif field == "comments": if item[ch].startswith("#"): print( "Note: comment strings do not need to begin with '#'. This library adds them automatically." ) if re.search("[\t\n\r\f\v]", item[ch]): raise ValueError( "comments may not contain tabs or newlines (they may contain spaces and underscores)." ) def check_read_inputs( self, sampfrom, sampto, channels, physical, smooth_frames, return_res ): """ Ensure that input read parameters (from rdsamp) are valid for the record. Parameters ---------- sampfrom : int The starting sample number to read for all channels. sampto : int, 'end' The sample number at which to stop reading for all channels. Reads the entire duration by default. channels : list List of integer indices specifying the channels to be read. Reads all channels by default. physical : bool Specifies whether to return signals in physical units in the `p_signal` field (True), or digital units in the `d_signal` field (False). smooth_frames : bool Used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an (MxN) uniform numpy array as the `d_signal` or `p_signal` field (True), or to return a list of 1d numpy arrays containing every expanded sample as the `e_d_signal` or `e_p_signal` field (False). return_res : int The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. Returns ------- N/A """ # Data Type Check if not hasattr(sampfrom, "__index__"): raise TypeError("sampfrom must be an integer") if not hasattr(sampto, "__index__"): raise TypeError("sampto must be an integer") if not isinstance(channels, list): raise TypeError("channels must be a list of integers") # Duration Ranges if sampfrom < 0: raise ValueError("sampfrom must be a non-negative integer") if sampfrom > self.sig_len: raise ValueError("sampfrom must be shorter than the signal length") if sampto < 0: raise ValueError("sampto must be a non-negative integer") if sampto > self.sig_len: raise ValueError("sampto must be shorter than the signal length") if sampto <= sampfrom: raise ValueError("sampto must be greater than sampfrom") # Channel Ranges if len(channels): if min(channels) < 0: raise ValueError( "Input channels must all be non-negative integers" ) if max(channels) > self.n_sig - 1: raise ValueError( "Input channels must all be lower than the total number of channels" ) if return_res not in [64, 32, 16, 8]: raise ValueError( "return_res must be one of the following: 64, 32, 16, 8" ) if physical and return_res == 8: raise ValueError( "return_res must be one of the following when physical is True: 64, 32, 16" ) def _adjust_datetime(self, sampfrom: int): """ Adjust date and time fields to reflect user input if possible. Helper function for the `_arrange_fields` of both Record and MultiRecord objects. Parameters ---------- sampfrom : int The starting sample number to read for all channels. Returns ------- N/A """ if sampfrom: dt_seconds = sampfrom / self.fs if self.base_date and self.base_time: self.base_datetime += datetime.timedelta(seconds=dt_seconds) # We can calculate the time even if there is no date elif self.base_time: tmp_datetime = datetime.datetime.combine( datetime.datetime.today().date(), self.base_time ) self.base_time = ( tmp_datetime + datetime.timedelta(seconds=dt_seconds) ).time()
class BaseRecord(object): ''' The base WFDB class extended by the Record and MultiRecord classes. Attributes ---------- record_name : str, optional The name of the WFDB record to be read, without any file extensions. If the argument contains any path delimiter characters, the argument will be interpreted as PATH/BASE_RECORD. Both relative and absolute paths are accepted. If the `pn_dir` parameter is set, this parameter should contain just the base record name, and the files fill be searched for remotely. Otherwise, the data files will be searched for in the local path. n_sig : int, optional Total number of signals. fs : int, float, optional The sampling frequency of the record. counter_freq : float, optional The frequency used to start counting. base_counter : float, optional The counter used at the start of the file. sig_len : int, optional The total length of the signal. base_time : datetime.time, optional The time of day at the beginning of the record. base_date : datetime.date, optional The date at the beginning of the record. base_datetime : datetime.datetime, optional The date and time at the beginning of the record, equivalent to `datetime.combine(base_date, base_time)`. comments : list, optional A list of string comments to be written to the header file. sig_name : str, optional A list of strings giving the signal name of each signal channel. ''' def __init__( self, record_name=None, n_sig=None, fs=None, counter_freq=None, base_counter=None, sig_len=None, base_time=None, base_date=None, base_datetime=None, comments=None, sig_name=None, ): pass @property def base_datetime(self): pass @base_datetime.setter def base_datetime(self): pass def get_frame_number(self, time_value): ''' Convert a time value to a frame number. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Note that this function may return a value that is less than zero or greater than the actual length of the record. Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- frame_number : float Frame number (possibly a fractional frame number). ''' pass def get_elapsed_time(self, time_value): ''' Convert a time value to an elapsed time in seconds. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- elapsed_time : timedelta Elapsed time from the start of the record. ''' pass def get_absolute_time(self, time_value): ''' Convert a time value to an absolute date and time. A time value may be specified as: - An integer or floating-point number, representing the number of WFDB frames elapsed from the start of the record. - A `datetime.timedelta` object, representing elapsed time from the start of the record. - A `datetime.datetime` object, representing an absolute date and time (if the record starting time is known.) Parameters ---------- time_value : number or timedelta or datetime A time value. Returns ------- absolute_time : datetime Absolute date and time. ''' pass def check_field(self, field, required_channels="all"): ''' Check whether a single field is valid in its basic form. Does not check compatibility with other fields. Parameters ---------- field : str The field name. required_channels : list, optional Used for signal specification fields. All channels are checked for their integrity if present, but channels that do not lie in this field may be None. Returns ------- N/A Notes ----- This function is called from wrheader to check fields before writing. It is also supposed to be usable at any point to check a specific field. ''' pass def check_read_inputs( self, sampfrom, sampto, channels, physical, smooth_frames, return_res ): ''' Ensure that input read parameters (from rdsamp) are valid for the record. Parameters ---------- sampfrom : int The starting sample number to read for all channels. sampto : int, 'end' The sample number at which to stop reading for all channels. Reads the entire duration by default. channels : list List of integer indices specifying the channels to be read. Reads all channels by default. physical : bool Specifies whether to return signals in physical units in the `p_signal` field (True), or digital units in the `d_signal` field (False). smooth_frames : bool Used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an (MxN) uniform numpy array as the `d_signal` or `p_signal` field (True), or to return a list of 1d numpy arrays containing every expanded sample as the `e_d_signal` or `e_p_signal` field (False). return_res : int The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. Returns ------- N/A ''' pass def _adjust_datetime(self, sampfrom: int): ''' Adjust date and time fields to reflect user input if possible. Helper function for the `_arrange_fields` of both Record and MultiRecord objects. Parameters ---------- sampfrom : int The starting sample number to read for all channels. Returns ------- N/A ''' pass
12
7
52
4
32
16
11
0.62
1
10
0
2
9
10
9
9
520
50
292
44
265
180
155
27
145
61
1
4
96
147,706
MIT-LCP/wfdb-python
wfdb/io/header.py
wfdb.io.header.HeaderSyntaxError
class HeaderSyntaxError(ValueError): """Invalid syntax found in a WFDB header file."""
class HeaderSyntaxError(ValueError): '''Invalid syntax found in a WFDB header file.''' pass
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
11
2
0
1
1
0
1
1
1
0
0
4
0
0
147,707
MIT-LCP/wfdb-python
tests/test_url.py
tests.test_url.DummyHTTPRequestHandler
class DummyHTTPRequestHandler(http.server.BaseHTTPRequestHandler): """ HTTPRequestHandler used to simulate a web server for testing. """ def do_HEAD(self): self.send_head() def do_GET(self): body = self.send_head() self.wfile.write(body) def log_message(self, message, *args): pass def send_head(self): content = self.server.file_content.get(self.path) if content is None: self.send_error(404) return b"" headers = {"Content-Type": "text/plain"} status = 200 if self.server.allow_gzip: headers["Vary"] = "Accept-Encoding" if "gzip" in self.headers.get("Accept-Encoding", ""): content = gzip.compress(content) headers["Content-Encoding"] = "gzip" if self.server.allow_range: headers["Accept-Ranges"] = "bytes" req_range = self.headers.get("Range", "") if req_range.startswith("bytes="): start, end = req_range.split("=")[1].split("-") start = int(start) if end == "": end = len(content) else: end = min(len(content), int(end) + 1) if start < end: status = 206 resp_range = "bytes %d-%d/%d" % ( start, end - 1, len(content), ) content = content[start:end] else: status = 416 resp_range = "bytes */%d" % len(content) content = b"" headers["Content-Range"] = resp_range headers["Content-Length"] = len(content) self.send_response(status) for h, v in sorted(headers.items()): self.send_header(h, v) self.end_headers() return content
class DummyHTTPRequestHandler(http.server.BaseHTTPRequestHandler): ''' HTTPRequestHandler used to simulate a web server for testing. ''' def do_HEAD(self): pass def do_GET(self): pass def log_message(self, message, *args): pass def send_head(self): pass
5
1
13
1
12
0
3
0.06
1
1
0
0
4
0
4
27
60
8
49
13
44
3
43
13
38
9
3
3
12
147,708
MIT-LCP/wfdb-python
wfdb/io/_url.py
wfdb.io._url.NetFileError
class NetFileError(OSError): """An error occurred while reading a remote file.""" def __init__(self, message, url=None, status_code=None): super().__init__(message) self.url = url self.status_code = status_code
class NetFileError(OSError): '''An error occurred while reading a remote file.''' def __init__(self, message, url=None, status_code=None): pass
2
1
4
0
4
0
1
0.2
1
1
0
2
1
2
1
14
7
1
5
4
3
1
5
4
3
1
4
0
1
147,709
MIT-LCP/wfdb-python
wfdb/io/_url.py
wfdb.io._url.NetFileNotFoundError
class NetFileNotFoundError(NetFileError, FileNotFoundError): """A remote file does not exist."""
class NetFileNotFoundError(NetFileError, FileNotFoundError): '''A remote file does not exist.''' pass
1
1
0
0
0
0
0
1
2
0
0
0
0
0
0
15
2
0
1
1
0
1
1
1
0
0
5
0
0
147,710
MIT-LCP/wfdb-python
wfdb/io/_signal.py
wfdb.io._signal.SignalMixin
class SignalMixin(object): """ Mixin class with signal methods. Inherited by Record class. Attributes ---------- N/A """ def wr_dats(self, expanded, write_dir): """ Write all dat files associated with a record expanded=True to use e_d_signal instead of d_signal. Parameters ---------- expanded : bool Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). write_dir : str The directory to write the output file to. Returns ------- N/A """ if not self.n_sig: return # Get all the fields used to write the header # Assuming this method was called through wrsamp, # these will have already been checked in wrheader() _, _ = self.get_write_fields() if expanded: # Using list of arrays e_d_signal self.check_field("e_d_signal") else: # Check the validity of the d_signal field self.check_field("d_signal") # Check the cohesion of the d_signal field against the other # fields used to write the header. (Note that for historical # reasons, this doesn't actually check any of the optional # header fields.) self.check_sig_cohesion([], expanded) # Write each of the specified dat files self.wr_dat_files(expanded=expanded, write_dir=write_dir) def check_sig_cohesion(self, write_fields, expanded): """ Check the cohesion of the d_signal/e_d_signal field with the other fields used to write the record. Parameters ---------- write_fields : list All the fields used to write the header. expanded : bool Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). Returns ------- N/A """ # Using list of arrays e_d_signal if expanded: # Set default samps_per_frame spf = self.samps_per_frame for ch in range(len(spf)): if spf[ch] is None: spf[ch] = 1 # Match the actual signal shape against stated length and number of channels if self.n_sig != len(self.e_d_signal): raise ValueError( "n_sig does not match the length of e_d_signal" ) for ch in range(self.n_sig): if len(self.e_d_signal[ch]) != spf[ch] * self.sig_len: raise ValueError( f"Length of channel {ch} does not match " f"samps_per_frame[{ch}]*sig_len" ) # For each channel (if any), make sure the digital format has no values out of bounds for ch in range(self.n_sig): fmt = self.fmt[ch] dmin, dmax = _digi_bounds(self.fmt[ch]) chmin = min(self.e_d_signal[ch]) chmax = max(self.e_d_signal[ch]) if (chmin < dmin) or (chmax > dmax): raise IndexError( "Channel " + str(ch) + " contain values outside allowed range [" + str(dmin) + ", " + str(dmax) + "] for fmt " + str(fmt) ) # Ensure that the checksums and initial value fields match the digital signal (if the fields are present) if self.n_sig > 0: if "checksum" in write_fields: realchecksum = self.calc_checksum(expanded) if self.checksum != realchecksum: print( "The actual checksum of e_d_signal is: ", realchecksum, ) raise ValueError( "checksum field does not match actual checksum of e_d_signal" ) if "init_value" in write_fields: realinit_value = [ self.e_d_signal[ch][0] for ch in range(self.n_sig) ] if self.init_value != realinit_value: print( "The actual init_value of e_d_signal is: ", realinit_value, ) raise ValueError( "init_value field does not match actual init_value of e_d_signal" ) # Using uniform d_signal else: # Match the actual signal shape against stated length and number of channels if (self.sig_len, self.n_sig) != self.d_signal.shape: print("sig_len: ", self.sig_len) print("n_sig: ", self.n_sig) print("d_signal.shape: ", self.d_signal.shape) raise ValueError( "sig_len and n_sig do not match shape of d_signal" ) # For each channel (if any), make sure the digital format has no values out of bounds for ch in range(self.n_sig): fmt = self.fmt[ch] dmin, dmax = _digi_bounds(self.fmt[ch]) chmin = min(self.d_signal[:, ch]) chmax = max(self.d_signal[:, ch]) if (chmin < dmin) or (chmax > dmax): raise IndexError( "Channel " + str(ch) + " contain values outside allowed range [" + str(dmin) + ", " + str(dmax) + "] for fmt " + str(fmt) ) # Ensure that the checksums and initial value fields match the digital signal (if the fields are present) if self.n_sig > 0: if "checksum" in write_fields: realchecksum = self.calc_checksum() if self.checksum != realchecksum: print( "The actual checksum of d_signal is: ", realchecksum ) raise ValueError( "checksum field does not match actual checksum of d_signal" ) if "init_value" in write_fields: realinit_value = list(self.d_signal[0, :]) if self.init_value != realinit_value: print( "The actual init_value of d_signal is: ", realinit_value, ) raise ValueError( "init_value field does not match actual init_value of d_signal" ) def set_p_features(self, do_dac=False, expanded=False): """ Use properties of the physical signal field to set the following features: n_sig, sig_len. Parameters ---------- do_dac : bool, optional Whether to use the digital signal field to perform dac conversion to get the physical signal field beforehand. expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). If True, the `samps_per_frame` attribute is also required. Returns ------- N/A Notes ----- Regarding dac conversion: - fmt, gain, and baseline must all be set in order to perform dac. - Unlike with adc, there is no way to infer these fields. - Using the fmt, gain and baseline fields, dac is performed, and (e_)p_signal is set. *Developer note: Seems this function will be very infrequently used. The set_d_features function seems far more useful. """ if expanded: if do_dac: self.check_field("e_d_signal") self.check_field("fmt", "all") self.check_field("adc_gain", "all") self.check_field("baseline", "all") self.check_field("samps_per_frame", "all") # All required fields are present and valid. Perform DAC self.e_p_signal = self.dac(expanded) # Use e_p_signal to set fields self.check_field("e_p_signal", "all") self.sig_len = int( len(self.e_p_signal[0]) / self.samps_per_frame[0] ) self.n_sig = len(self.e_p_signal) else: if do_dac: self.check_field("d_signal") self.check_field("fmt", "all") self.check_field("adc_gain", "all") self.check_field("baseline", "all") # All required fields are present and valid. Perform DAC self.p_signal = self.dac() # Use p_signal to set fields self.check_field("p_signal") self.sig_len = self.p_signal.shape[0] self.n_sig = self.p_signal.shape[1] def set_d_features(self, do_adc=False, single_fmt=True, expanded=False): """ Use properties of the digital signal field to set the following features: n_sig, sig_len, init_value, checksum, and possibly *(fmt, adc_gain, baseline). Parameters ---------- do_adc : bools, optional Whether to use the physical signal field to perform adc conversion to get the digital signal field beforehand. single_fmt : bool, optional Whether to use a single digital format during adc, if it is performed. expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). Returns ------- N/A Notes ----- Regarding adc conversion: - If fmt is unset: - Neither adc_gain nor baseline may be set. If the digital values used to store the signal are known, then the file format should also be known. - The most appropriate fmt for the signals will be calculated and the `fmt` attribute will be set. Given that neither `adc_gain` nor `baseline` is allowed to be set, optimal values for those fields will then be calculated and set as well. - If fmt is set: - If both adc_gain and baseline are unset, optimal values for those fields will be calculated the fields will be set. - If both adc_gain and baseline are set, the function will continue. - If only one of adc_gain and baseline are set, this function will raise an error. It makes no sense to know only one of those fields. - ADC will occur after valid values for fmt, adc_gain, and baseline are present, using all three fields. """ if expanded: # adc is performed. if do_adc: self.check_field("e_p_signal", "all") # If there is no fmt set it, adc_gain, and baseline if self.fmt is None: # Make sure that neither adc_gain nor baseline are set if self.adc_gain is not None or self.baseline is not None: raise Exception( "If fmt is not set, gain and baseline may not be set either." ) # Choose appropriate fmts based on estimated signal resolutions. res = est_res(self.e_p_signal) self.fmt = _wfdb_fmt(res, single_fmt) # If there is a fmt set else: self.check_field("fmt", "all") # Neither field set if self.adc_gain is None and self.baseline is None: # Calculate and set optimal gain and baseline values to convert physical signals self.adc_gain, self.baseline = self.calc_adc_params() # Exactly one field set elif (self.adc_gain is None) ^ (self.baseline is None): raise Exception( "If fmt is set, gain and baseline should both be set or not set." ) self.check_field("adc_gain", "all") self.check_field("baseline", "all") # All required fields are present and valid. Perform ADC self.e_d_signal = self.adc(expanded) # Use e_d_signal to set fields self.check_field("e_d_signal", "all") self.sig_len = int( len(self.e_d_signal[0]) / self.samps_per_frame[0] ) self.n_sig = len(self.e_d_signal) self.init_value = [sig[0] for sig in self.e_d_signal] self.checksum = self.calc_checksum(expanded) else: # adc is performed. if do_adc: self.check_field("p_signal") # If there is no fmt set if self.fmt is None: # Make sure that neither adc_gain nor baseline are set if self.adc_gain is not None or self.baseline is not None: raise Exception( "If fmt is not set, gain and baseline may not be set either." ) # Choose appropriate fmts based on estimated signal resolutions. res = est_res(self.p_signal) self.fmt = _wfdb_fmt(res, single_fmt) # Calculate and set optimal gain and baseline values to convert physical signals self.adc_gain, self.baseline = self.calc_adc_params() # If there is a fmt set else: self.check_field("fmt", "all") # Neither field set if self.adc_gain is None and self.baseline is None: # Calculate and set optimal gain and baseline values to convert physical signals self.adc_gain, self.baseline = self.calc_adc_params() # Exactly one field set elif (self.adc_gain is None) ^ (self.baseline is None): raise Exception( "If fmt is set, gain and baseline should both be set or not set." ) self.check_field("adc_gain", "all") self.check_field("baseline", "all") # All required fields are present and valid. Perform ADC self.d_signal = self.adc() # Use d_signal to set fields self.check_field("d_signal") self.sig_len = self.d_signal.shape[0] self.n_sig = self.d_signal.shape[1] self.init_value = list(self.d_signal[0, :]) self.checksum = self.calc_checksum() def adc(self, expanded=False, inplace=False): """ Performs analogue to digital conversion of the physical signal stored in p_signal if expanded is False, or e_p_signal if expanded is True. The p_signal/e_p_signal, fmt, gain, and baseline fields must all be valid. If inplace is True, the adc will be performed inplace on the variable, the d_signal/e_d_signal attribute will be set, and the p_signal/e_p_signal field will be set to None. Parameters ---------- expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). inplace : bool, optional Whether to automatically set the object's corresponding digital signal attribute and set the physical signal attribute to None (True), or to return the converted signal as a separate variable without changing the original physical signal attribute (False). Returns ------- d_signal : ndarray, optional The digital conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. Examples: --------- >>> import wfdb >>> record = wfdb.rdsamp('sample-data/100') >>> d_signal = record.adc() >>> record.adc(inplace=True) >>> record.dac(inplace=True) """ # The digital NAN values for each channel d_nans = _digi_nan(self.fmt) # To do: choose the minimum return res needed intdtype = "int64" # Convert a physical (1D or 2D) signal array to digital. Note that # the input array is modified! def adc_inplace(p_signal, adc_gain, baseline, d_nan): nanlocs = np.isnan(p_signal) np.multiply(p_signal, adc_gain, p_signal) np.add(p_signal, baseline, p_signal) np.round(p_signal, 0, p_signal) np.copyto(p_signal, d_nan, where=nanlocs) d_signal = p_signal.astype(intdtype, copy=False) return d_signal # Do inplace conversion and set relevant variables. if inplace: if expanded: for ch, ch_p_signal in enumerate(self.e_p_signal): ch_d_signal = adc_inplace( ch_p_signal, self.adc_gain[ch], self.baseline[ch], d_nans[ch], ) self.e_p_signal[ch] = ch_d_signal self.e_d_signal = self.e_p_signal self.e_p_signal = None else: self.d_signal = adc_inplace( self.p_signal, self.adc_gain, self.baseline, d_nans, ) self.p_signal = None # Return the variable else: if expanded: e_d_signal = [] for ch, ch_p_signal in enumerate(self.e_p_signal): ch_d_signal = adc_inplace( ch_p_signal.copy(), self.adc_gain[ch], self.baseline[ch], d_nans[ch], ) e_d_signal.append(ch_d_signal) return e_d_signal else: return adc_inplace( self.p_signal.copy(), self.adc_gain, self.baseline, d_nans, ) def dac(self, expanded=False, return_res=64, inplace=False): """ Performs the digital to analogue conversion of the signal stored in `d_signal` if expanded is False, or `e_d_signal` if expanded is True. The d_signal/e_d_signal, fmt, gain, and baseline fields must all be valid. If inplace is True, the dac will be performed inplace on the variable, the p_signal/e_p_signal attribute will be set, and the d_signal/e_d_signal field will be set to None. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal attribute` (True) or the `d_signal` attribute (False). return_res : int, optional The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. inplace : bool, optional Whether to automatically set the object's corresponding physical signal attribute and set the digital signal attribute to None (True), or to return the converted signal as a separate variable without changing the original digital signal attribute (False). Returns ------- p_signal : ndarray, optional The physical conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. Examples -------- >>> import wfdb >>> record = wfdb.rdsamp('sample-data/100', physical=False) >>> p_signal = record.dac() >>> record.dac(inplace=True) >>> record.adc(inplace=True) """ # The digital NAN values for each channel d_nans = _digi_nan(self.fmt) # Get the appropriate float dtype if return_res == 64: floatdtype = "float64" elif return_res == 32: floatdtype = "float32" else: floatdtype = "float16" # Do inplace conversion and set relevant variables. if inplace: if expanded: for ch in range(self.n_sig): # NAN locations for the channel ch_nanlocs = self.e_d_signal[ch] == d_nans[ch] self.e_d_signal[ch] = self.e_d_signal[ch].astype( floatdtype, copy=False ) np.subtract( self.e_d_signal[ch], self.baseline[ch], self.e_d_signal[ch], ) np.divide( self.e_d_signal[ch], self.adc_gain[ch], self.e_d_signal[ch], ) self.e_d_signal[ch][ch_nanlocs] = np.nan self.e_p_signal = self.e_d_signal self.e_d_signal = None else: nanlocs = self.d_signal == d_nans # Do float conversion immediately to avoid potential under/overflow # of efficient int dtype self.d_signal = self.d_signal.astype(floatdtype, copy=False) np.subtract(self.d_signal, self.baseline, self.d_signal) np.divide(self.d_signal, self.adc_gain, self.d_signal) self.d_signal[nanlocs] = np.nan self.p_signal = self.d_signal self.d_signal = None # Return the variable else: if expanded: p_signal = [] for ch in range(self.n_sig): # NAN locations for the channel ch_nanlocs = self.e_d_signal[ch] == d_nans[ch] ch_p_signal = self.e_d_signal[ch].astype( floatdtype, copy=False ) np.subtract(ch_p_signal, self.baseline[ch], ch_p_signal) np.divide(ch_p_signal, self.adc_gain[ch], ch_p_signal) ch_p_signal[ch_nanlocs] = np.nan p_signal.append(ch_p_signal) else: nanlocs = self.d_signal == d_nans p_signal = self.d_signal.astype(floatdtype, copy=False) np.subtract(p_signal, self.baseline, p_signal) np.divide(p_signal, self.adc_gain, p_signal) p_signal[nanlocs] = np.nan return p_signal def calc_adc_gain_baseline(self, ch, minvals, maxvals): """ Compute adc_gain and baseline parameters for a given channel. Parameters ---------- ch: int The channel that the adc_gain and baseline are being computed for. minvals: list The minimum values for each channel. maxvals: list The maximum values for each channel. Returns ------- adc_gain : float Calculated `adc_gain` value for a given channel. baseline : int Calculated `baseline` value for a given channel. Notes ----- This is the mapping equation: `digital - baseline / adc_gain = physical` `physical * adc_gain + baseline = digital` The original WFDB library stores `baseline` as int32. Constrain abs(adc_gain) <= 2**31 == 2147483648. This function does carefully deal with overflow for calculated int32 `baseline` values, but does not consider over/underflow for calculated float `adc_gain` values. """ # Get the minimum and maximum (valid) storage values dmin, dmax = _digi_bounds(self.fmt[ch]) # add 1 because the lowest value is used to store nans dmin = dmin + 1 pmin = minvals[ch] pmax = maxvals[ch] # Figure out digital samples used to store physical samples # If the entire signal is NAN, gain/baseline won't be used if pmin == np.nan: adc_gain = 1 baseline = 1 # If the signal is just one value, store one digital value. elif pmin == pmax: if pmin == 0: adc_gain = 1 baseline = 1 else: # All digital values are +1 or -1. Keep adc_gain > 0 adc_gain = abs(1 / pmin) baseline = 0 # Regular varied signal case. else: # The equation is: p = (d - b) / g # Approximately, pmax maps to dmax, and pmin maps to # dmin. Gradient will be equal to, or close to # delta(d) / delta(p), since intercept baseline has # to be an integer. # Constraint: baseline must be between +/- 2**31 adc_gain = (dmax - dmin) / (pmax - pmin) baseline = dmin - adc_gain * pmin # Make adjustments for baseline to be an integer # This up/down round logic of baseline is to ensure # there is no overshoot of dmax. Now pmax will map # to dmax or dmax-1 which is also fine. if pmin > 0: baseline = int(np.ceil(baseline)) else: baseline = int(np.floor(baseline)) # After baseline is set, adjust gain correspondingly.Set # the gain to map pmin to dmin, and p==0 to baseline. # In the case where pmin == 0 and dmin == baseline, # adc_gain is already correct. Avoid dividing by 0. if dmin != baseline: adc_gain = (dmin - baseline) / pmin # Remap signal if baseline exceeds boundaries. # This may happen if pmax < 0 if baseline > MAX_I32: # pmin maps to dmin, baseline maps to 2**31 - 1 # pmax will map to a lower value than before adc_gain = (MAX_I32) - dmin / abs(pmin) baseline = MAX_I32 # This may happen if pmin > 0 elif baseline < MIN_I32: # pmax maps to dmax, baseline maps to -2**31 + 1 adc_gain = (dmax - MIN_I32) / pmax baseline = MIN_I32 return adc_gain, baseline def calc_adc_params(self): """ Compute appropriate adc_gain and baseline parameters for adc conversion, given the physical signal and the fmts. Parameters ---------- N/A Returns ------- adc_gains : list List of calculated `adc_gain` values for each channel. baselines : list List of calculated `baseline` values for each channel """ adc_gains = [] baselines = [] if self.p_signal is not None: if np.where(np.isinf(self.p_signal))[0].size: raise ValueError("Signal contains inf. Cannot perform adc.") # min and max ignoring nans, unless whole channel is NAN. # Should suppress warning message. minvals = np.nanmin(self.p_signal, axis=0) maxvals = np.nanmax(self.p_signal, axis=0) for ch in range(np.shape(self.p_signal)[1]): adc_gain, baseline = self.calc_adc_gain_baseline( ch, minvals, maxvals ) adc_gains.append(adc_gain) baselines.append(baseline) elif self.e_p_signal is not None: minvals = [] maxvals = [] for ch in self.e_p_signal: minvals.append(np.nanmin(ch)) maxvals.append(np.nanmax(ch)) if any(x == math.inf for x in minvals) or any( x == math.inf for x in maxvals ): raise ValueError("Signal contains inf. Cannot perform adc.") for ch, _ in enumerate(self.e_p_signal): adc_gain, baseline = self.calc_adc_gain_baseline( ch, minvals, maxvals ) adc_gains.append(adc_gain) baselines.append(baseline) else: raise Exception( "Must supply p_signal or e_p_signal to calc_adc_params" ) return (adc_gains, baselines) def convert_dtype(self, physical, return_res, smooth_frames): """ Convert the dtype of the signal. Parameters ---------- physical : bool Specifies whether to return dtype in physical (float) units in the `p_signal` field (True), or digital (int) units in the `d_signal` field (False). return_res : int The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. smooth_frames : bool Used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an (MxN) uniform numpy array as the `d_signal` or `p_signal` field (True), or to return a list of 1d numpy arrays containing every expanded sample as the `e_d_signal` or `e_p_signal` field (False). Returns ------- N/A """ if physical: return_dtype = "float" + str(return_res) if smooth_frames: current_dtype = self.p_signal.dtype if current_dtype != return_dtype: self.p_signal = self.p_signal.astype( return_dtype, copy=False ) else: for ch in range(self.n_sig): if self.e_p_signal[ch].dtype != return_dtype: self.e_p_signal[ch] = self.e_p_signal[ch].astype( return_dtype, copy=False ) else: return_dtype = "int" + str(return_res) if smooth_frames: current_dtype = self.d_signal.dtype if current_dtype != return_dtype: # Do not allow changing integer dtype to lower value due to over/underflow if int(str(current_dtype)[3:]) > int(str(return_dtype)[3:]): raise Exception( "Cannot convert digital samples to lower dtype. Risk of overflow/underflow." ) self.d_signal = self.d_signal.astype( return_dtype, copy=False ) else: for ch in range(self.n_sig): current_dtype = self.e_d_signal[ch].dtype if current_dtype != return_dtype: # Do not allow changing integer dtype to lower value due to over/underflow if int(str(current_dtype)[3:]) > int( str(return_dtype)[3:] ): raise Exception( "Cannot convert digital samples to lower dtype. Risk of overflow/underflow." ) self.e_d_signal[ch] = self.e_d_signal[ch].astype( return_dtype, copy=False ) return def calc_checksum(self, expanded=False): """ Calculate the checksum(s) of the input signal. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). Returns ------- cs : list The resulting checksum-ed signal. """ if expanded: cs = [int(np.sum(s) % 65536) for s in self.e_d_signal] else: cs = np.sum(self.d_signal, 0) % 65536 cs = [int(c) for c in cs] return cs def wr_dat_files(self, expanded=False, write_dir=""): """ Write each of the specified dat files. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). write_dir : str, optional The directory to write the output file to. Returns ------- N/A """ # Get the set of dat files to be written, and # the channels to be written to each file. file_names, dat_channels = describe_list_indices(self.file_name) # Get the fmt and byte offset corresponding to each dat file DAT_FMTS = {} dat_offsets = {} for fn in file_names: DAT_FMTS[fn] = self.fmt[dat_channels[fn][0]] # byte_offset may not be present if self.byte_offset is None: dat_offsets[fn] = 0 else: dat_offsets[fn] = self.byte_offset[dat_channels[fn][0]] # Write the dat files if expanded: for fn in file_names: wr_dat_file( fn, DAT_FMTS[fn], None, dat_offsets[fn], True, [self.e_d_signal[ch] for ch in dat_channels[fn]], [self.samps_per_frame[ch] for ch in dat_channels[fn]], write_dir=write_dir, ) else: dsig = self.d_signal for fn in file_names: wr_dat_file( fn, DAT_FMTS[fn], dsig[:, dat_channels[fn][0] : dat_channels[fn][-1] + 1], dat_offsets[fn], write_dir=write_dir, ) def smooth_frames(self, sigtype="physical"): """ Convert expanded signals with different samples/frame into a uniform numpy array. Parameters ---------- sigtype (default='physical') : str Specifies whether to mooth the e_p_signal field ('physical'), or the e_d_signal field ('digital'). Returns ------- signal : ndarray Tranformed expanded signal into uniform signal. """ spf = self.samps_per_frame[:] for ch in range(len(spf)): if spf[ch] is None: spf[ch] = 1 # The output data type should be the smallest type that can # represent any input sample value. The intermediate data type # must be able to represent the sum of spf[ch] sample values. if sigtype == "physical": expanded_signal = self.e_p_signal intermediate_dtype = np.dtype("float64") allowed_dtypes = [ np.dtype("float32"), np.dtype("float64"), ] elif sigtype == "digital": expanded_signal = self.e_d_signal intermediate_dtype = np.dtype("int64") allowed_dtypes = [ np.dtype("int8"), np.dtype("int16"), np.dtype("int32"), np.dtype("int64"), ] else: raise ValueError("sigtype must be 'physical' or 'digital'") n_sig = len(expanded_signal) sig_len = len(expanded_signal[0]) // spf[0] input_dtypes = set() for ch in range(n_sig): if len(expanded_signal[ch]) != sig_len * spf[ch]: raise ValueError( "length mismatch: signal %d has %d samples," " expected %dx%d" % (ch, len(expanded_signal), sig_len, spf[ch]) ) input_dtypes.add(expanded_signal[ch].dtype) for output_dtype in allowed_dtypes: if all(dt <= output_dtype for dt in input_dtypes): break signal = np.empty((sig_len, n_sig), dtype=output_dtype) # Large input arrays will be processed in chunks to avoid the need # to allocate a single huge temporary array. CHUNK_SIZE = 65536 for ch in range(n_sig): if spf[ch] == 1: signal[:, ch] = expanded_signal[ch] else: frames = expanded_signal[ch].reshape(-1, spf[ch]) for chunk_start in range(0, sig_len, CHUNK_SIZE): chunk_end = chunk_start + CHUNK_SIZE signal_sum = np.sum( frames[chunk_start:chunk_end, :], axis=1, dtype=intermediate_dtype, ) signal[chunk_start:chunk_end, ch] = signal_sum / spf[ch] return signal
class SignalMixin(object): ''' Mixin class with signal methods. Inherited by Record class. Attributes ---------- N/A ''' def wr_dats(self, expanded, write_dir): ''' Write all dat files associated with a record expanded=True to use e_d_signal instead of d_signal. Parameters ---------- expanded : bool Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). write_dir : str The directory to write the output file to. Returns ------- N/A ''' pass def check_sig_cohesion(self, write_fields, expanded): ''' Check the cohesion of the d_signal/e_d_signal field with the other fields used to write the record. Parameters ---------- write_fields : list All the fields used to write the header. expanded : bool Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). Returns ------- N/A ''' pass def set_p_features(self, do_dac=False, expanded=False): ''' Use properties of the physical signal field to set the following features: n_sig, sig_len. Parameters ---------- do_dac : bool, optional Whether to use the digital signal field to perform dac conversion to get the physical signal field beforehand. expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). If True, the `samps_per_frame` attribute is also required. Returns ------- N/A Notes ----- Regarding dac conversion: - fmt, gain, and baseline must all be set in order to perform dac. - Unlike with adc, there is no way to infer these fields. - Using the fmt, gain and baseline fields, dac is performed, and (e_)p_signal is set. *Developer note: Seems this function will be very infrequently used. The set_d_features function seems far more useful. ''' pass def set_d_features(self, do_adc=False, single_fmt=True, expanded=False): ''' Use properties of the digital signal field to set the following features: n_sig, sig_len, init_value, checksum, and possibly *(fmt, adc_gain, baseline). Parameters ---------- do_adc : bools, optional Whether to use the physical signal field to perform adc conversion to get the digital signal field beforehand. single_fmt : bool, optional Whether to use a single digital format during adc, if it is performed. expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). Returns ------- N/A Notes ----- Regarding adc conversion: - If fmt is unset: - Neither adc_gain nor baseline may be set. If the digital values used to store the signal are known, then the file format should also be known. - The most appropriate fmt for the signals will be calculated and the `fmt` attribute will be set. Given that neither `adc_gain` nor `baseline` is allowed to be set, optimal values for those fields will then be calculated and set as well. - If fmt is set: - If both adc_gain and baseline are unset, optimal values for those fields will be calculated the fields will be set. - If both adc_gain and baseline are set, the function will continue. - If only one of adc_gain and baseline are set, this function will raise an error. It makes no sense to know only one of those fields. - ADC will occur after valid values for fmt, adc_gain, and baseline are present, using all three fields. ''' pass def adc(self, expanded=False, inplace=False): ''' Performs analogue to digital conversion of the physical signal stored in p_signal if expanded is False, or e_p_signal if expanded is True. The p_signal/e_p_signal, fmt, gain, and baseline fields must all be valid. If inplace is True, the adc will be performed inplace on the variable, the d_signal/e_d_signal attribute will be set, and the p_signal/e_p_signal field will be set to None. Parameters ---------- expanded : bool, optional Whether to transform the `e_p_signal` attribute (True) or the `p_signal` attribute (False). inplace : bool, optional Whether to automatically set the object's corresponding digital signal attribute and set the physical signal attribute to None (True), or to return the converted signal as a separate variable without changing the original physical signal attribute (False). Returns ------- d_signal : ndarray, optional The digital conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. Examples: --------- >>> import wfdb >>> record = wfdb.rdsamp('sample-data/100') >>> d_signal = record.adc() >>> record.adc(inplace=True) >>> record.dac(inplace=True) ''' pass def adc_inplace(p_signal, adc_gain, baseline, d_nan): pass def dac(self, expanded=False, return_res=64, inplace=False): ''' Performs the digital to analogue conversion of the signal stored in `d_signal` if expanded is False, or `e_d_signal` if expanded is True. The d_signal/e_d_signal, fmt, gain, and baseline fields must all be valid. If inplace is True, the dac will be performed inplace on the variable, the p_signal/e_p_signal attribute will be set, and the d_signal/e_d_signal field will be set to None. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal attribute` (True) or the `d_signal` attribute (False). return_res : int, optional The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. inplace : bool, optional Whether to automatically set the object's corresponding physical signal attribute and set the digital signal attribute to None (True), or to return the converted signal as a separate variable without changing the original digital signal attribute (False). Returns ------- p_signal : ndarray, optional The physical conversion of the signal. Either a 2d numpy array or a list of 1d numpy arrays. Examples -------- >>> import wfdb >>> record = wfdb.rdsamp('sample-data/100', physical=False) >>> p_signal = record.dac() >>> record.dac(inplace=True) >>> record.adc(inplace=True) ''' pass def calc_adc_gain_baseline(self, ch, minvals, maxvals): ''' Compute adc_gain and baseline parameters for a given channel. Parameters ---------- ch: int The channel that the adc_gain and baseline are being computed for. minvals: list The minimum values for each channel. maxvals: list The maximum values for each channel. Returns ------- adc_gain : float Calculated `adc_gain` value for a given channel. baseline : int Calculated `baseline` value for a given channel. Notes ----- This is the mapping equation: `digital - baseline / adc_gain = physical` `physical * adc_gain + baseline = digital` The original WFDB library stores `baseline` as int32. Constrain abs(adc_gain) <= 2**31 == 2147483648. This function does carefully deal with overflow for calculated int32 `baseline` values, but does not consider over/underflow for calculated float `adc_gain` values. ''' pass def calc_adc_params(self): ''' Compute appropriate adc_gain and baseline parameters for adc conversion, given the physical signal and the fmts. Parameters ---------- N/A Returns ------- adc_gains : list List of calculated `adc_gain` values for each channel. baselines : list List of calculated `baseline` values for each channel ''' pass def convert_dtype(self, physical, return_res, smooth_frames): ''' Convert the dtype of the signal. Parameters ---------- physical : bool Specifies whether to return dtype in physical (float) units in the `p_signal` field (True), or digital (int) units in the `d_signal` field (False). return_res : int The numpy array dtype of the returned signals. Options are: 64, 32, 16, and 8, where the value represents the numpy int or float dtype. Note that the value cannot be 8 when physical is True since there is no float8 format. smooth_frames : bool Used when reading records with signals having multiple samples per frame. Specifies whether to smooth the samples in signals with more than one sample per frame and return an (MxN) uniform numpy array as the `d_signal` or `p_signal` field (True), or to return a list of 1d numpy arrays containing every expanded sample as the `e_d_signal` or `e_p_signal` field (False). Returns ------- N/A ''' pass def calc_checksum(self, expanded=False): ''' Calculate the checksum(s) of the input signal. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). Returns ------- cs : list The resulting checksum-ed signal. ''' pass def wr_dat_files(self, expanded=False, write_dir=""): ''' Write each of the specified dat files. Parameters ---------- expanded : bool, optional Whether to transform the `e_d_signal` attribute (True) or the `d_signal` attribute (False). write_dir : str, optional The directory to write the output file to. Returns ------- N/A ''' pass def smooth_frames(self, sigtype="physical"): ''' Convert expanded signals with different samples/frame into a uniform numpy array. Parameters ---------- sigtype (default='physical') : str Specifies whether to mooth the e_p_signal field ('physical'), or the e_d_signal field ('digital'). Returns ------- signal : ndarray Tranformed expanded signal into uniform signal. ''' pass
14
13
75
8
39
28
8
0.75
1
9
0
0
12
11
12
12
988
125
494
84
480
369
319
84
305
22
1
5
104
147,711
MIT-LCP/wfdb-python
wfdb/io/_header.py
wfdb.io._header.MultiHeaderMixin
class MultiHeaderMixin(BaseHeaderMixin): """ Mixin class with multi-segment header methods. Inherited by MultiRecord class. Attributes ---------- N/A """ n_seg: int seg_len: Sequence[int] segments: Optional[Sequence] def set_defaults(self): """ Set defaults for fields needed to write the header if they have defaults. This is NOT called by rdheader. It is only called by the gateway wrsamp for convenience. It is also not called by wrheader since it is supposed to be an explicit function. Not responsible for initializing the attributes. That is done by the constructor. Parameters ---------- N/A Returns ------- N/A """ for field in self.get_write_fields(): self.set_default(field) def wrheader(self, write_dir=""): """ Write a multi-segment WFDB header file. The signals or segments are not used. Before writing: - Get the fields used to write the header for this instance. - Check each required field. - Check that the fields are cohesive with one another. Parameters ---------- write_dir : str, optional The output directory in which the header is written. Returns ------- N/A Notes ----- This function does NOT call `set_defaults`. Essential fields must be set beforehand. """ # Get all the fields used to write the header write_fields = self.get_write_fields() # Check the validity of individual fields used to write the header for field in write_fields: self.check_field(field) # Check the cohesion of fields used to write the header self.check_field_cohesion() # Write the header file using the specified fields self.wr_header_file(write_fields, write_dir) def get_write_fields(self): """ Get the list of fields used to write the multi-segment header. Parameters ---------- N/A Returns ------- write_fields : list All the default required fields, the user defined fields, and their dependencies. """ # Record specification fields write_fields = self.get_write_subset("record") # Segment specification fields are all mandatory write_fields = write_fields + ["seg_name", "seg_len"] # Comments if self.comments != None: write_fields.append("comments") return write_fields def set_default(self, field): """ Set a field to its default value if there is a default. Parameters ---------- field : str The desired attribute of the object. Returns ------- N/A """ # Record specification fields if field in RECORD_SPECS: # Return if no default to set, or if the field is already present. if ( RECORD_SPECS[field].write_def is None or getattr(self, field) is not None ): return setattr(self, field, RECORD_SPECS[field].write_def) def check_field_cohesion(self): """ Check the cohesion of fields used to write the header. Parameters ---------- N/A Returns ------- N/A """ # The length of seg_name and seg_len must match n_seg for f in ["seg_name", "seg_len"]: if len(getattr(self, f)) != self.n_seg: raise ValueError( "The length of field: " + f + " does not match field n_seg." ) # Check the sum of the 'seg_len' fields against 'sig_len' if np.sum(self.seg_len) != self.sig_len: raise ValueError( "The sum of the 'seg_len' fields do not match the 'sig_len' field" ) def wr_header_file(self, write_fields, write_dir): """ Write a header file using the specified fields. Parameters ---------- write_fields : list All the default required fields, the user defined fields, and their dependencies. write_dir : str The output directory in which the header is written. Returns ------- N/A """ # Create record specification line record_line = "" # Traverse the ordered dictionary for field in RECORD_SPECS.index: # If the field is being used, add it with its delimiter if field in write_fields: record_line += RECORD_SPECS.loc[field, "delimiter"] + str( getattr(self, field) ) header_lines = [record_line] # Create segment specification lines segment_lines = self.n_seg * [""] # For both fields, add each of its elements with the delimiter # to the appropriate line for field in SEGMENT_SPECS.index: for seg_num in range(self.n_seg): segment_lines[seg_num] += SEGMENT_SPECS.loc[ field, "delimiter" ] + str(getattr(self, field)[seg_num]) header_lines = header_lines + segment_lines # Create comment lines (if any) if "comments" in write_fields: comment_lines = ["# " + comment for comment in self.comments] header_lines += comment_lines util.lines_to_file(self.record_name + ".hea", write_dir, header_lines) def get_sig_segments(self, sig_name=None): """ Get a list of the segment numbers that contain a particular signal (or a dictionary of segment numbers for a list of signals). Only works if information about the segments has been read in. Parameters ---------- sig_name : str, list The name of the signals to be segmented. Returns ------- sig_dict : dict Segments for each desired signal. sig_segs : list Segments for the desired signal. """ if self.segments is None: raise Exception( "The MultiRecord's segments must be read in before this method is called. ie. Call rdheader() with rsegment_fieldsments=True" ) # Default value = all signal names. if sig_name is None: sig_name = self.get_sig_name() if isinstance(sig_name, list): sig_dict = {} for sig in sig_name: sig_dict[sig] = self.get_sig_segments(sig) return sig_dict elif isinstance(sig_name, str): sig_segs = [] for i in range(self.n_seg): if ( self.seg_name[i] != "~" and sig_name in self.segments[i].sig_name ): sig_segs.append(i) return sig_segs else: raise TypeError("sig_name must be a string or a list of strings") def get_sig_name(self): """ Get the signal names for the entire record. Parameters ---------- N/A Returns ------- sig_name : str, list The name of the signals to be segmented. """ if self.segments is None: raise Exception( "The MultiRecord's segments must be read in before this method is called. ie. Call rdheader() with rd_segments=True" ) if self.layout == "fixed": for i in range(self.n_seg): if self.seg_name[i] != "~": sig_name = self.segments[i].sig_name break else: sig_name = self.segments[0].sig_name return sig_name def contained_ranges(self, sig_name: str) -> List[Tuple[int, int]]: """ Given a signal name, return the sample ranges that contain signal values, relative to the start of the full record. Does not account for NaNs/missing values. This function is mainly useful for variable layout records, but can also be used for fixed-layout records. Only works if the headers from the individual segment records have already been read in. Parameters ---------- sig_name : str The name of the signal to query. Returns ------- ranges : List[Tuple[int, int]] Tuple pairs which specify thee sample ranges in which the signal is contained. The second value of each tuple pair will be one beyond the signal index. eg. A length 1000 signal would generate a tuple of: (0, 1000), allowing selection using signal[0:1000]. """ if self.segments is None: raise Exception( "The MultiRecord's segments must be read in before this method is called. ie. Call rdheader() with rd_segments=True" ) ranges = [] seg_start = 0 range_start = None # TODO: Add shortcut for fixed-layout records # Cannot process segments only because missing segments are None # and do not contain length information. for seg_num in range(self.n_seg): seg_len = self.seg_len[seg_num] segment = self.segments[seg_num] if seg_len == 0: continue # Open signal range if ( range_start is None and segment is not None and sig_name in segment.sig_name ): range_start = seg_start # Close signal range elif range_start is not None and ( segment is None or sig_name not in segment.sig_name ): ranges.append((range_start, seg_start)) range_start = None seg_start += seg_len # Account for final segment if range_start is not None: ranges.append((range_start, seg_start)) return ranges def contained_combined_ranges( self, sig_names: Sequence[str], ) -> List[Tuple[int, int]]: """ Given a collection of signal name, return the sample ranges that contain all of the specified signals, relative to the start of the full record. Does not account for NaNs/missing values. This function is mainly useful for variable layout records, but can also be used for fixed-layout records. Only works if the headers from the individual segment records have already been read in. Parameters ---------- sig_names : List[str] The names of the signals to query. Returns ------- ranges : List[Tuple[int, int]] Tuple pairs which specify thee sample ranges in which the signal is contained. The second value of each tuple pair will be one beyond the signal index. eg. A length 1000 signal would generate a tuple of: (0, 1000), allowing selection using signal[0:1000]. """ # TODO: Add shortcut for fixed-layout records if len(sig_names) == 0: return [] combined_ranges = self.contained_ranges(sig_names[0]) if len(sig_names) > 1: for name in sig_names[1:]: combined_ranges = util.overlapping_ranges( combined_ranges, self.contained_ranges(name) ) return combined_ranges
class MultiHeaderMixin(BaseHeaderMixin): ''' Mixin class with multi-segment header methods. Inherited by MultiRecord class. Attributes ---------- N/A ''' def set_defaults(self): ''' Set defaults for fields needed to write the header if they have defaults. This is NOT called by rdheader. It is only called by the gateway wrsamp for convenience. It is also not called by wrheader since it is supposed to be an explicit function. Not responsible for initializing the attributes. That is done by the constructor. Parameters ---------- N/A Returns ------- N/A ''' pass def wrheader(self, write_dir=""): ''' Write a multi-segment WFDB header file. The signals or segments are not used. Before writing: - Get the fields used to write the header for this instance. - Check each required field. - Check that the fields are cohesive with one another. Parameters ---------- write_dir : str, optional The output directory in which the header is written. Returns ------- N/A Notes ----- This function does NOT call `set_defaults`. Essential fields must be set beforehand. ''' pass def get_write_fields(self): ''' Get the list of fields used to write the multi-segment header. Parameters ---------- N/A Returns ------- write_fields : list All the default required fields, the user defined fields, and their dependencies. ''' pass def set_defaults(self): ''' Set a field to its default value if there is a default. Parameters ---------- field : str The desired attribute of the object. Returns ------- N/A ''' pass def check_field_cohesion(self): ''' Check the cohesion of fields used to write the header. Parameters ---------- N/A Returns ------- N/A ''' pass def wr_header_file(self, write_fields, write_dir): ''' Write a header file using the specified fields. Parameters ---------- write_fields : list All the default required fields, the user defined fields, and their dependencies. write_dir : str The output directory in which the header is written. Returns ------- N/A ''' pass def get_sig_segments(self, sig_name=None): ''' Get a list of the segment numbers that contain a particular signal (or a dictionary of segment numbers for a list of signals). Only works if information about the segments has been read in. Parameters ---------- sig_name : str, list The name of the signals to be segmented. Returns ------- sig_dict : dict Segments for each desired signal. sig_segs : list Segments for the desired signal. ''' pass def get_sig_name(self): ''' Get the signal names for the entire record. Parameters ---------- N/A Returns ------- sig_name : str, list The name of the signals to be segmented. ''' pass def contained_ranges(self, sig_name: str) -> List[Tuple[int, int]]: ''' Given a signal name, return the sample ranges that contain signal values, relative to the start of the full record. Does not account for NaNs/missing values. This function is mainly useful for variable layout records, but can also be used for fixed-layout records. Only works if the headers from the individual segment records have already been read in. Parameters ---------- sig_name : str The name of the signal to query. Returns ------- ranges : List[Tuple[int, int]] Tuple pairs which specify thee sample ranges in which the signal is contained. The second value of each tuple pair will be one beyond the signal index. eg. A length 1000 signal would generate a tuple of: (0, 1000), allowing selection using signal[0:1000]. ''' pass def contained_combined_ranges( self, sig_names: Sequence[str], ) -> List[Tuple[int, int]]: ''' Given a collection of signal name, return the sample ranges that contain all of the specified signals, relative to the start of the full record. Does not account for NaNs/missing values. This function is mainly useful for variable layout records, but can also be used for fixed-layout records. Only works if the headers from the individual segment records have already been read in. Parameters ---------- sig_names : List[str] The names of the signals to query. Returns ------- ranges : List[Tuple[int, int]] Tuple pairs which specify thee sample ranges in which the signal is contained. The second value of each tuple pair will be one beyond the signal index. eg. A length 1000 signal would generate a tuple of: (0, 1000), allowing selection using signal[0:1000]. ''' pass
11
11
35
6
13
16
4
1.29
1
7
0
1
10
0
10
11
376
73
133
39
119
171
98
36
87
8
2
3
43
147,712
MIT-LCP/wfdb-python
wfdb/io/_header.py
wfdb.io._header.HeaderMixin
class HeaderMixin(BaseHeaderMixin): """ Mixin class with single-segment header methods. Inherited by Record class. Attributes ---------- N/A """ def set_defaults(self): """ Set defaults for fields needed to write the header if they have defaults. Parameters ---------- N/A Returns ------- N/A Notes ----- - This is NOT called by `rdheader`. It is only automatically called by the gateway `wrsamp` for convenience. - This is also not called by `wrheader` since it is supposed to be an explicit function. - This is not responsible for initializing the attributes. That is done by the constructor. See also `set_p_features` and `set_d_features`. """ rfields, sfields = self.get_write_fields() for f in rfields: self.set_default(f) for f in sfields: self.set_default(f) def wrheader(self, write_dir="", expanded=True): """ Write a WFDB header file. The signals are not used. Before writing: - Get the fields used to write the header for this instance. - Check each required field. - Check that the fields are cohesive with one another. Parameters ---------- write_dir : str, optional The output directory in which the header is written. expanded : bool, optional Whether the header file should include `samps_per_frame` (this should only be true if the signal files are written using `expanded=True`). Returns ------- N/A Notes ----- This function does NOT call `set_defaults`. Essential fields must be set beforehand. """ # Get all the fields used to write the header # sig_write_fields is a dictionary of # {field_name:required_channels} rec_write_fields, sig_write_fields = self.get_write_fields() if not expanded: sig_write_fields.pop("samps_per_frame", None) # Check the validity of individual fields used to write the header # Record specification fields (and comments) for field in rec_write_fields: self.check_field(field) # Signal specification fields. for field in sig_write_fields: self.check_field(field, required_channels=sig_write_fields[field]) # Check the cohesion of fields used to write the header self.check_field_cohesion(rec_write_fields, list(sig_write_fields)) # Write the header file using the specified fields self.wr_header_file(rec_write_fields, sig_write_fields, write_dir) def get_write_fields(self): """ Get the list of fields used to write the header, separating record and signal specification fields. Returns the default required fields, the user defined fields, and their dependencies. Does NOT include `d_signal` or `e_d_signal`. Parameters ---------- N/A Returns ------- rec_write_fields : list Record specification fields to be written. Includes 'comment' if present. sig_write_fields : dict Dictionary of signal specification fields to be written, with values equal to the channels that need to be present for each field. """ # Record specification fields rec_write_fields = self.get_write_subset("record") # Add comments if any if self.comments != None: rec_write_fields.append("comments") # Get required signal fields if signals are present. self.check_field("n_sig") if self.n_sig > 0: sig_write_fields = self.get_write_subset("signal") else: sig_write_fields = None return rec_write_fields, sig_write_fields def _auto_signal_file_names(self): fmt = self.fmt or [None] * self.n_sig spf = self.samps_per_frame or [None] * self.n_sig num_groups = 0 group_number = [] prev_fmt = prev_spf = None channels_in_group = 0 for ch_fmt, ch_spf in zip(fmt, spf): if ch_fmt != prev_fmt: num_groups += 1 channels_in_group = 0 elif ch_fmt in ("508", "516", "524"): if channels_in_group >= 8 or ch_spf != prev_spf: num_groups += 1 channels_in_group = 0 group_number.append(num_groups) channels_in_group += 1 prev_fmt = ch_fmt prev_spf = ch_spf if num_groups < 2: return [self.record_name + ".dat"] * self.n_sig else: digits = len(str(group_number[-1])) return [ self.record_name + "_" + str(g).rjust(digits, "0") + ".dat" for g in group_number ] def set_default(self, field): """ Set the object's attribute to its default value if it is missing and there is a default. Not responsible for initializing the attribute. That is done by the constructor. Parameters ---------- field : str The desired attribute of the object. Returns ------- N/A """ # Record specification fields if field in RECORD_SPECS.index: # Return if no default to set, or if the field is already # present. if ( RECORD_SPECS.loc[field, "write_default"] is None or getattr(self, field) is not None ): return setattr(self, field, RECORD_SPECS.loc[field, "write_default"]) # Signal specification fields # Setting entire list default, not filling in blanks in lists. elif field in SIGNAL_SPECS.index: # Specific dynamic case if field == "file_name" and self.file_name is None: self.file_name = self._auto_signal_file_names() return item = getattr(self, field) # Return if no default to set, or if the field is already # present. if ( SIGNAL_SPECS.loc[field, "write_default"] is None or item is not None ): return # Set more specific defaults if possible if field == "adc_res" and self.fmt is not None: self.adc_res = _signal._fmt_res(self.fmt) return setattr( self, field, [SIGNAL_SPECS.loc[field, "write_default"]] * self.n_sig, ) def check_field_cohesion(self, rec_write_fields, sig_write_fields): """ Check the cohesion of fields used to write the header. Parameters ---------- rec_write_fields : list List of record specification fields to write. sig_write_fields : dict Dictionary of signal specification fields to write, values being equal to a list of channels to write for each field. Returns ------- N/A """ # If there are no signal specification fields, there is nothing to check. if self.n_sig > 0: # The length of all signal specification fields must match n_sig # even if some of its elements are None. for f in sig_write_fields: if len(getattr(self, f)) != self.n_sig: raise ValueError( "The length of field: " + f + " must match field n_sig." ) # Each file_name must correspond to only one fmt, (and only one byte offset if defined). datfmts = {} for ch in range(self.n_sig): if self.file_name[ch] not in datfmts: datfmts[self.file_name[ch]] = self.fmt[ch] else: if datfmts[self.file_name[ch]] != self.fmt[ch]: raise ValueError( "Each file_name (dat file) specified must have the same fmt" ) datoffsets = {} if self.byte_offset is not None: # At least one byte offset value exists for ch in range(self.n_sig): if self.byte_offset[ch] is None: continue if self.file_name[ch] not in datoffsets: datoffsets[self.file_name[ch]] = self.byte_offset[ch] else: if ( datoffsets[self.file_name[ch]] != self.byte_offset[ch] ): raise ValueError( "Each file_name (dat file) specified must have the same byte offset" ) def wr_header_file(self, rec_write_fields, sig_write_fields, write_dir): """ Write a header file using the specified fields. Converts Record attributes into appropriate WFDB format strings. Parameters ---------- rec_write_fields : list List of record specification fields to write. sig_write_fields : dict Dictionary of signal specification fields to write, values being equal to a list of channels to write for each field. write_dir : str The directory in which to write the header file. Returns ------- N/A """ # Create record specification line record_line = "" # Traverse the ordered dictionary for field in RECORD_SPECS.index: # If the field is being used, add it with its delimiter if field in rec_write_fields: string_field = str(getattr(self, field)) # Certain fields need extra processing if field == "fs" and isinstance(self.fs, float): if round(self.fs, 8) == float(int(self.fs)): string_field = str(int(self.fs)) elif field == "base_time" and "." in string_field: string_field = string_field.rstrip("0") elif field == "base_date": string_field = "/".join( (string_field[8:], string_field[5:7], string_field[:4]) ) record_line += ( RECORD_SPECS.loc[field, "delimiter"] + string_field ) # The 'base_counter' field needs to be closed with ')' if field == "base_counter": record_line += ")" header_lines = [record_line] # Create signal specification lines (if any) one channel at a time if self.n_sig > 0: signal_lines = self.n_sig * [""] for ch in range(self.n_sig): # Traverse the signal fields for field in SIGNAL_SPECS.index: # If the field is being used, add each of its # elements with the delimiter to the appropriate # line if ( field in sig_write_fields and ch in sig_write_fields[field] ): signal_lines[ch] += SIGNAL_SPECS.loc[ field, "delimiter" ] + str(getattr(self, field)[ch]) # The 'baseline' field needs to be closed with ')' if field == "baseline": signal_lines[ch] += ")" header_lines += signal_lines # Create comment lines (if any) if "comments" in rec_write_fields: comment_lines = ["# " + comment for comment in self.comments] header_lines += comment_lines util.lines_to_file(self.record_name + ".hea", write_dir, header_lines)
class HeaderMixin(BaseHeaderMixin): ''' Mixin class with single-segment header methods. Inherited by Record class. Attributes ---------- N/A ''' def set_defaults(self): ''' Set defaults for fields needed to write the header if they have defaults. Parameters ---------- N/A Returns ------- N/A Notes ----- - This is NOT called by `rdheader`. It is only automatically called by the gateway `wrsamp` for convenience. - This is also not called by `wrheader` since it is supposed to be an explicit function. - This is not responsible for initializing the attributes. That is done by the constructor. See also `set_p_features` and `set_d_features`. ''' pass def wrheader(self, write_dir="", expanded=True): ''' Write a WFDB header file. The signals are not used. Before writing: - Get the fields used to write the header for this instance. - Check each required field. - Check that the fields are cohesive with one another. Parameters ---------- write_dir : str, optional The output directory in which the header is written. expanded : bool, optional Whether the header file should include `samps_per_frame` (this should only be true if the signal files are written using `expanded=True`). Returns ------- N/A Notes ----- This function does NOT call `set_defaults`. Essential fields must be set beforehand. ''' pass def get_write_fields(self): ''' Get the list of fields used to write the header, separating record and signal specification fields. Returns the default required fields, the user defined fields, and their dependencies. Does NOT include `d_signal` or `e_d_signal`. Parameters ---------- N/A Returns ------- rec_write_fields : list Record specification fields to be written. Includes 'comment' if present. sig_write_fields : dict Dictionary of signal specification fields to be written, with values equal to the channels that need to be present for each field. ''' pass def _auto_signal_file_names(self): pass def set_defaults(self): ''' Set the object's attribute to its default value if it is missing and there is a default. Not responsible for initializing the attribute. That is done by the constructor. Parameters ---------- field : str The desired attribute of the object. Returns ------- N/A ''' pass def check_field_cohesion(self, rec_write_fields, sig_write_fields): ''' Check the cohesion of fields used to write the header. Parameters ---------- rec_write_fields : list List of record specification fields to write. sig_write_fields : dict Dictionary of signal specification fields to write, values being equal to a list of channels to write for each field. Returns ------- N/A ''' pass def wr_header_file(self, rec_write_fields, sig_write_fields, write_dir): ''' Write a header file using the specified fields. Converts Record attributes into appropriate WFDB format strings. Parameters ---------- rec_write_fields : list List of record specification fields to write. sig_write_fields : dict Dictionary of signal specification fields to write, values being equal to a list of channels to write for each field. write_dir : str The directory in which to write the header file. Returns ------- N/A ''' pass
8
7
47
7
21
20
7
0.97
1
7
0
1
7
2
7
8
347
55
149
36
141
144
110
36
102
14
2
5
49
147,713
MIT-LCP/wfdb-python
wfdb/io/_header.py
wfdb.io._header.BaseHeaderMixin
class BaseHeaderMixin(object): """ Mixin class with multi-segment header methods. Inherited by Record and MultiRecord classes. Attributes ---------- N/A """ def get_write_subset(self, spec_type): """ Get a set of fields used to write the header; either 'record' or 'signal' specification fields. Helper function for `get_write_fields`. Gets the default required fields, the user defined fields, and their dependencies. Parameters ---------- spec_type : str The set of specification fields desired. Either 'record' or 'signal'. Returns ------- write_fields : list or dict For record fields, returns a list of all fields needed. For signal fields, it returns a dictionary of all fields needed, with keys = field and value = list of channels that must be present for the field. """ if spec_type == "record": write_fields = [] record_specs = RECORD_SPECS.copy() # Remove the n_seg requirement for single segment items if not hasattr(self, "n_seg"): record_specs.drop("n_seg", inplace=True) for field in record_specs.index[-1::-1]: # Continue if the field has already been included if field in write_fields: continue # If the field is required by default or has been # defined by the user if ( record_specs.loc[field, "write_required"] or getattr(self, field) is not None ): req_field = field # Add the field and its recursive dependencies while req_field is not None: write_fields.append(req_field) req_field = record_specs.loc[req_field, "dependency"] # Add comments if any if getattr(self, "comments") is not None: write_fields.append("comments") # signal spec field. Need to return a potentially different list for each channel. elif spec_type == "signal": # List of lists for each channel write_fields = [] signal_specs = SIGNAL_SPECS.copy() for ch in range(self.n_sig): # The fields needed for this channel write_fields_ch = [] for field in signal_specs.index[-1::-1]: if field in write_fields_ch: continue item = getattr(self, field) # If the field is required by default or has been defined by the user if signal_specs.loc[field, "write_required"] or ( item is not None and item[ch] is not None ): req_field = field # Add the field and its recursive dependencies while req_field is not None: write_fields_ch.append(req_field) req_field = signal_specs.loc[ req_field, "dependency" ] write_fields.append(write_fields_ch) # Convert the list of lists to a single dictionary. # keys = field and value = list of channels in which the # field is required. dict_write_fields = {} # For fields present in any channel: for field in set( [i for write_fields_ch in write_fields for i in write_fields_ch] ): dict_write_fields[field] = [] for ch in range(self.n_sig): if field in write_fields[ch]: dict_write_fields[field].append(ch) write_fields = dict_write_fields return write_fields
class BaseHeaderMixin(object): ''' Mixin class with multi-segment header methods. Inherited by Record and MultiRecord classes. Attributes ---------- N/A ''' def get_write_subset(self, spec_type): ''' Get a set of fields used to write the header; either 'record' or 'signal' specification fields. Helper function for `get_write_fields`. Gets the default required fields, the user defined fields, and their dependencies. Parameters ---------- spec_type : str The set of specification fields desired. Either 'record' or 'signal'. Returns ------- write_fields : list or dict For record fields, returns a list of all fields needed. For signal fields, it returns a dictionary of all fields needed, with keys = field and value = list of channels that must be present for the field. ''' pass
2
2
95
14
48
33
17
0.82
1
2
0
2
1
0
1
1
106
17
49
11
47
40
39
11
37
17
1
5
17
147,714
MIT-LCP/wfdb-python
tests/test_url.py
tests.test_url.TestRemoteFLACFiles
class TestRemoteFLACFiles(unittest.TestCase): """ Test reading FLAC files over HTTP. """ def test_whole_file(self): """ Test reading a complete FLAC file using local and HTTP APIs. This tests that we can read the file 'sample-data/flacformats.d2' (a 24-bit FLAC stream) using the soundfile library, first by reading the file from the local filesystem, and then using wfdb.io._url.openurl() to access it through a simulated web server. This is meant to verify that the soundfile library works using only the standard Python file object API (as implemented by wfdb.io._url.NetFile), and doesn't require the input file to be an actual io.FileIO object. Parameters ---------- N/A Returns ------- N/A """ import soundfile import numpy as np data_file_path = "sample-data/flacformats.d2" expected_format = "FLAC" expected_subtype = "PCM_24" # Read the file using standard file I/O sf1 = soundfile.SoundFile(data_file_path) self.assertEqual(sf1.format, expected_format) self.assertEqual(sf1.subtype, expected_subtype) data1 = sf1.read() # Read the file using HTTP with open(data_file_path, "rb") as f: file_content = {"/foo.dat": f.read()} with DummyHTTPServer(file_content) as server: url = server.url("/foo.dat") file2 = wfdb.io._url.openurl(url, "rb") sf2 = soundfile.SoundFile(file2) self.assertEqual(sf2.format, expected_format) self.assertEqual(sf2.subtype, expected_subtype) data2 = sf2.read() # Check that results are equal np.testing.assert_array_equal(data1, data2)
class TestRemoteFLACFiles(unittest.TestCase): ''' Test reading FLAC files over HTTP. ''' def test_whole_file(self): ''' Test reading a complete FLAC file using local and HTTP APIs. This tests that we can read the file 'sample-data/flacformats.d2' (a 24-bit FLAC stream) using the soundfile library, first by reading the file from the local filesystem, and then using wfdb.io._url.openurl() to access it through a simulated web server. This is meant to verify that the soundfile library works using only the standard Python file object API (as implemented by wfdb.io._url.NetFile), and doesn't require the input file to be an actual io.FileIO object. Parameters ---------- N/A Returns ------- N/A ''' pass
2
2
49
9
20
20
1
1.1
1
1
1
0
1
0
1
73
54
10
21
16
17
23
21
14
17
1
2
1
1
147,715
MIT-LCP/wfdb-python
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MIT-LCP_wfdb-python/wfdb/processing/qrs.py
wfdb.processing.qrs.XQRS.Conf
class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per minute. Used for calculating recent R-R intervals. hr_max : int, float, optional Hard maximum heart rate between two beats, in beats per minute. Used for refractory period. hr_min : int, float, optional Hard minimum heart rate between two beats, in beats per minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_min : int, float, string, optional Hard minimum detection threshold of QRS wave. Leave as 0 for no minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. Leave as 0 for no T-wave inspection. """ def __init__( self, hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2, t_inspect_period=0, ): if hr_min < 0: raise ValueError("'hr_min' must be >= 0") if not hr_min < hr_init < hr_max: raise ValueError( "'hr_min' < 'hr_init' < 'hr_max' must be True") if qrs_thr_init < qrs_thr_min: raise ValueError("qrs_thr_min must be <= qrs_thr_init") self.hr_init = hr_init self.hr_max = hr_max self.hr_min = hr_min self.qrs_width = qrs_width self.qrs_radius = self.qrs_width / 2 self.qrs_thr_init = qrs_thr_init self.qrs_thr_min = qrs_thr_min self.ref_period = ref_period self.t_inspect_period = t_inspect_period
class Conf(object): ''' Initial signal configuration object for this QRS detector. Attributes ---------- hr_init : int, float, optional Initial heart rate in beats per minute. Used for calculating recent R-R intervals. hr_max : int, float, optional Hard maximum heart rate between two beats, in beats per minute. Used for refractory period. hr_min : int, float, optional Hard minimum heart rate between two beats, in beats per minute. Used for calculating recent R-R intervals. qrs_width : int, float, optional Expected QRS width in seconds. Used for filter widths indirect refractory period. qrs_thr_init : int, float, optional Initial QRS detection threshold in mV. Use when learning is False, or learning fails. qrs_thr_min : int, float, string, optional Hard minimum detection threshold of QRS wave. Leave as 0 for no minimum. ref_period : int, float, optional The QRS refractory period. t_inspect_period : int, float, optional The period below which a potential QRS complex is inspected to see if it is a T-wave. Leave as 0 for no T-wave inspection. ''' def __init__( self, hr_init=75, hr_max=200, hr_min=25, qrs_width=0.1, qrs_thr_init=0.13, qrs_thr_min=0, ref_period=0.2, t_inspect_period=0, ): pass
2
1
29
3
26
0
4
1.04
1
1
0
0
1
9
1
1
61
6
27
21
15
28
17
11
15
4
1
1
4
147,716
MIT-LCP/wfdb-python
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MIT-LCP_wfdb-python/wfdb/processing/qrs.py
wfdb.processing.qrs.GQRS.Peak
class Peak(object): """ Holds all of the peak information for the QRS object. Attributes ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : str The type of the peak. """ def __init__(self, peak_time, peak_amp, peak_type): self.time = peak_time self.amp = peak_amp self.type = peak_type self.next_peak = None self.prev_peak = None
class Peak(object): ''' Holds all of the peak information for the QRS object. Attributes ---------- peak_time : int, float The time of the peak. peak_amp : int, float The amplitude of the peak. peak_type : str The type of the peak. ''' def __init__(self, peak_time, peak_amp, peak_type): pass
2
1
6
0
6
0
1
1.57
1
0
0
0
1
5
1
1
21
3
7
7
5
11
7
7
5
1
1
0
1
147,717
MIT-LCP/wfdb-python
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MIT-LCP_wfdb-python/wfdb/processing/qrs.py
wfdb.processing.qrs.GQRS.Conf
class Conf(object): """ Initial signal configuration object for this QRS detector. Attributes ---------- fs : int, float The sampling frequency of the input signal. adc_gain : int, float The analogue to digital gain of the signal (the number of adus per physical unit). hr : int, float, optional Typical heart rate, in beats per minute. RRdelta : int, float, optional Typical difference between successive RR intervals in seconds. RRmin : int, float, optional Minimum RR interval ("refractory period"), in seconds. RRmax : int, float, optional Maximum RR interval, in seconds. Thresholds will be adjusted if no peaks are detected within this interval. QS : int, float, optional Typical QRS duration, in seconds. QT : int, float, optional Typical QT interval, in seconds. RTmin : int, float, optional Minimum interval between R and T peaks, in seconds. RTmax : int, float, optional Maximum interval between R and T peaks, in seconds. QRSa : int, float, optional Typical QRS peak-to-peak amplitude, in microvolts. QRSamin : int, float, optional Minimum QRS peak-to-peak amplitude, in microvolts. thresh : int, float, optional The relative amplitude detection threshold. Used to initialize the peak and QRS detection threshold. """ def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): self.fs = fs self.sps = int(time_to_sample_number(1, fs)) self.spm = int(time_to_sample_number(60, fs)) self.hr = hr self.RR = 60.0 / self.hr self.RRdelta = RRdelta self.RRmin = RRmin self.RRmax = RRmax self.QS = QS self.QT = QT self.RTmin = RTmin self.RTmax = RTmax self.QRSa = QRSa self.QRSamin = QRSamin self.thresh = thresh self._NORMAL = 1 # normal beat self._ARFCT = 16 # isolated QRS-like artifact self._NOTE = 22 # comment annotation self._TWAVE = 27 # T-wave peak self._NPEAKS = 64 # number of peaks buffered (per signal) self._BUFLN = 32768 # must be a power of 2, see qf() self.rrmean = int(self.RR * self.sps) self.rrdev = int(self.RRdelta * self.sps) self.rrmin = int(self.RRmin * self.sps) self.rrmax = int(self.RRmax * self.sps) self.rrinc = int(self.rrmean / 40) if self.rrinc < 1: self.rrinc = 1 self.dt = int(self.QS * self.sps / 4) if self.dt < 1: raise Exception( "Sampling rate is too low. Unable to use signal." ) self.rtmin = int(self.RTmin * self.sps) self.rtmean = int(0.75 * self.QT * self.sps) self.rtmax = int(self.RTmax * self.sps) dv = adc_gain * self.QRSamin * 0.001 self.pthr = int((self.thresh * dv * dv) / 6) self.qthr = self.pthr << 1 self.pthmin = self.pthr >> 2 self.qthmin = int((self.pthmin << 2) / 3) self.tamean = self.qthr # initial value for mean T-wave amplitude # Filter constants and thresholds. self.dt2 = 2 * self.dt self.dt3 = 3 * self.dt self.dt4 = 4 * self.dt self.smdt = self.dt self.v1norm = self.smdt * self.dt * 64 self.smt = 0 self.smt0 = 0 + self.smdt
class Conf(object): ''' Initial signal configuration object for this QRS detector. Attributes ---------- fs : int, float The sampling frequency of the input signal. adc_gain : int, float The analogue to digital gain of the signal (the number of adus per physical unit). hr : int, float, optional Typical heart rate, in beats per minute. RRdelta : int, float, optional Typical difference between successive RR intervals in seconds. RRmin : int, float, optional Minimum RR interval ("refractory period"), in seconds. RRmax : int, float, optional Maximum RR interval, in seconds. Thresholds will be adjusted if no peaks are detected within this interval. QS : int, float, optional Typical QRS duration, in seconds. QT : int, float, optional Typical QT interval, in seconds. RTmin : int, float, optional Minimum interval between R and T peaks, in seconds. RTmax : int, float, optional Maximum interval between R and T peaks, in seconds. QRSa : int, float, optional Typical QRS peak-to-peak amplitude, in microvolts. QRSamin : int, float, optional Minimum QRS peak-to-peak amplitude, in microvolts. thresh : int, float, optional The relative amplitude detection threshold. Used to initialize the peak and QRS detection threshold. ''' def __init__( self, fs, adc_gain, hr=75, RRdelta=0.2, RRmin=0.28, RRmax=2.4, QS=0.07, QT=0.35, RTmin=0.25, RTmax=0.33, QRSa=750, QRSamin=130, thresh=1.0, ): pass
2
1
77
11
65
8
3
0.64
1
2
0
0
1
42
1
1
115
14
66
60
49
42
49
45
47
3
1
1
3
147,718
MIT-LCP/wfdb-python
wfdb/io/datasource.py
wfdb.io.datasource.DataSourceType
class DataSourceType(Enum): LOCAL = auto() HTTP = auto()
class DataSourceType(Enum): pass
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
49
3
0
3
3
2
0
3
3
2
0
4
0
0
147,719
MIT-LCP/wfdb-python
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MIT-LCP_wfdb-python/wfdb/processing/qrs.py
wfdb.processing.qrs.GQRS.Annotation
class Annotation(object): """ Holds all of the annotation information for the QRS object. Attributes ---------- ann_time : int, float The time of the annotation. ann_type : str The type of the annotation. ann_subtype : int The subtype of the annotation. ann_num : int The number of the annotation. """ def __init__(self, ann_time, ann_type, ann_subtype, ann_num): self.time = ann_time self.type = ann_type self.subtype = ann_subtype self.num = ann_num
class Annotation(object): ''' Holds all of the annotation information for the QRS object. Attributes ---------- ann_time : int, float The time of the annotation. ann_type : str The type of the annotation. ann_subtype : int The subtype of the annotation. ann_num : int The number of the annotation. ''' def __init__(self, ann_time, ann_type, ann_subtype, ann_num): pass
2
1
5
0
5
0
1
2.17
1
0
0
0
1
4
1
1
22
3
6
6
4
13
6
6
4
1
1
0
1
147,720
MIT-LCP/wfdb-python
tests/test_url.py
tests.test_url.TestNetFiles
class TestNetFiles(unittest.TestCase): """ Test accessing remote files. """ def test_requests(self): """ Test reading a remote file using various APIs. This tests that we can create a file object using wfdb.io._url.openurl(), and tests that the object implements the standard Python API functions for a file of the appropriate type. Parameters ---------- N/A Returns ------- N/A """ text_data = """ BERNARDO: Who's there? FRANCISCO: Nay, answer me: stand, and unfold yourself. BERNARDO: Long live the king! FRANCISCO: Bernardo? BERNARDO: He. FRANCISCO: You come most carefully upon your hour. BERNARDO: 'Tis now struck twelve; get thee to bed, Francisco. """ binary_data = text_data.encode() file_content = {"/foo.txt": binary_data} # Test all possible combinations of: # - whether or not the server supports compression # - whether or not the server supports random access # - chosen buffering policy for allow_gzip in (False, True): for allow_range in (False, True): with DummyHTTPServer( file_content=file_content, allow_gzip=allow_gzip, allow_range=allow_range, ) as server: url = server.url("/foo.txt") for buffering in (-2, -1, 0, 20): self._test_text(url, text_data, buffering) self._test_binary(url, binary_data, buffering) def _test_text(self, url, content, buffering): """ Test reading a URL using text-mode file APIs. Parameters ---------- url : str URL of the remote resource. content : str Expected content of the resource. buffering : int Buffering policy for openurl(). Returns ------- N/A """ # read(-1), readable(), seekable() with wfdb.io._url.openurl(url, "r", buffering=buffering) as tf: self.assertTrue(tf.readable()) self.assertTrue(tf.seekable()) self.assertEqual(tf.read(), content) self.assertEqual(tf.read(), "") # read(10) with wfdb.io._url.openurl(url, "r", buffering=buffering) as tf: result = "" while True: chunk = tf.read(10) result += chunk if len(chunk) < 10: break self.assertEqual(result, content) # readline(), seek(), tell() with wfdb.io._url.openurl(url, "r", buffering=buffering) as tf: result = "" while True: rpos = tf.tell() tf.seek(0) tf.seek(rpos) chunk = tf.readline() result += chunk if len(chunk) == 0: break self.assertEqual(result, content) def _test_binary(self, url, content, buffering): """ Test reading a URL using binary-mode file APIs. Parameters ---------- url : str URL of the remote resource. content : bytes Expected content of the resource. buffering : int Buffering policy for openurl(). Returns ------- N/A """ # read(-1), readable(), seekable() with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: self.assertTrue(bf.readable()) self.assertTrue(bf.seekable()) self.assertEqual(bf.read(), content) self.assertEqual(bf.read(), b"") self.assertEqual(bf.tell(), len(content)) # read(10) with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: result = b"" while True: chunk = bf.read(10) result += chunk if len(chunk) < 10: break self.assertEqual(result, content) self.assertEqual(bf.tell(), len(content)) # readline() with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: result = b"" while True: chunk = bf.readline() result += chunk if len(chunk) == 0: break self.assertEqual(result, content) self.assertEqual(bf.tell(), len(content)) # read1(10), seek(), tell() with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: bf.seek(0, 2) self.assertEqual(bf.tell(), len(content)) bf.seek(0) result = b"" while True: rpos = bf.tell() bf.seek(0) bf.seek(rpos) chunk = bf.read1(10) result += chunk if len(chunk) == 0: break self.assertEqual(result, content) self.assertEqual(bf.tell(), len(content)) # readinto(bytearray(10)) with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: result = b"" chunk = bytearray(10) while True: count = bf.readinto(chunk) result += chunk[:count] if count < 10: break self.assertEqual(result, content) self.assertEqual(bf.tell(), len(content)) # readinto1(bytearray(10)) with wfdb.io._url.openurl(url, "rb", buffering=buffering) as bf: result = b"" chunk = bytearray(10) while True: count = bf.readinto1(chunk) result += chunk[:count] if count == 0: break self.assertEqual(result, content) self.assertEqual(bf.tell(), len(content))
class TestNetFiles(unittest.TestCase): ''' Test accessing remote files. ''' def test_requests(self): ''' Test reading a remote file using various APIs. This tests that we can create a file object using wfdb.io._url.openurl(), and tests that the object implements the standard Python API functions for a file of the appropriate type. Parameters ---------- N/A Returns ------- N/A ''' pass def _test_text(self, url, content, buffering): ''' Test reading a URL using text-mode file APIs. Parameters ---------- url : str URL of the remote resource. content : str Expected content of the resource. buffering : int Buffering policy for openurl(). Returns ------- N/A ''' pass def _test_binary(self, url, content, buffering): ''' Test reading a URL using binary-mode file APIs. Parameters ---------- url : str URL of the remote resource. content : bytes Expected content of the resource. buffering : int Buffering policy for openurl(). Returns ------- N/A ''' pass
4
4
60
6
36
18
7
0.52
1
2
1
0
3
0
3
75
188
22
109
21
105
57
97
18
93
11
2
4
20
147,721
MIT-LCP/wfdb-python
wfdb/io/_url.py
wfdb.io._url.NetFile
class NetFile(io.BufferedIOBase): """ File object providing random access to a remote file over HTTP. Attributes ---------- url : str URL of the remote file. buffering : int, optional Buffering policy. If buffering = 0, internal buffering is disabled; each operation on the stream requires a separate request to the server. If buffering = -2, the entire file is downloaded in a single request. If buffering > 0, it specifies the minimum size of the internal buffer. If buffering = -1, the default buffer size is used. """ def __init__(self, url, buffering=-1): self.url = url self.name = url self.buffering = buffering self._pos = 0 self._file_size = None self._buffer = b"" self._buffer_start = 0 self._buffer_end = 0 self._current_url = self.url def _read_buffered_range(self, start, end): """ Read a range of bytes from the internal buffer. Parameters ---------- start : int Starting byte offset of the desired range. end : int Ending byte offset of the desired range. Returns ------- data : memoryview A memoryview of the given byte range. """ bstart = start - self._buffer_start bend = end - self._buffer_start if 0 <= bstart <= bend: return memoryview(self._buffer)[bstart:bend] else: return memoryview(b"") def _read_range(self, start, end): """ Read a range of bytes from the remote file. The result is returned as a sequence of chunks; the sizes of the individual chunks are unspecified. The total size may be less than requested if the end of the file is reached. Parameters ---------- start : int Starting byte offset of the desired range. end : int or None Ending byte offset of the desired range, or None to read all data up to the end of the file. Yields ------ data : memoryview A memoryview containing a chunk of the desired range. """ # Read buffered data if available. if self._buffer_start <= start < self._buffer_end: if end is None: range_end = self._buffer_end else: range_end = min(end, self._buffer_end) yield self._read_buffered_range(start, range_end) start = range_end if end is not None and start >= end: return if self._file_size is not None and start >= self._file_size: return buffer_store = False if self.buffering == BUFFER_WHOLE_FILE: # Request entire file and save it in the internal buffer. req_start = 0 req_end = None buffer_store = True elif end is None: # Request range from start to EOF and don't save it in the # buffer (since the result will be immediately consumed.) req_start = start req_end = None else: # Request a fixed range of bytes. Save it in the buffer # if it is smaller than the maximum buffer size. buffer_size = self.buffering if buffer_size < 0: buffer_size = DEFAULT_BUFFER_SIZE req_start = start req_end = end if req_end < req_start + buffer_size: req_end = req_start + buffer_size buffer_store = True with RangeTransfer(self._current_url, req_start, req_end) as xfer: # Update current file URL. self._current_url = xfer.response_url # If we requested a range but the server doesn't support # random access, then unless buffering is disabled, save # entire file in the buffer. if self.buffering == 0: buffer_store = False elif xfer.is_complete and (start, end) != (0, None): buffer_store = True if buffer_store: # Load data into buffer and then return a copy to the # caller. (start, data) = xfer.content() self._buffer = data self._buffer_start = start self._buffer_end = start + len(data) if end is None: end = self._buffer_end yield self._read_buffered_range(start, end) else: # Return requested data to caller without buffering. for chunk_start, chunk_data in xfer.iter_chunks(): rel_start = start - chunk_start if 0 <= rel_start < len(chunk_data): if end is None: rel_end = len(chunk_data) else: rel_end = min(end - chunk_start, len(chunk_data)) yield memoryview(chunk_data)[rel_start:rel_end] start = chunk_start + rel_end # Update file size. if self.buffering != 0: self._file_size = xfer.file_size def _get_size(self): """ Determine the size of the remote file. Parameters ---------- N/A Returns ------- size : int or None Size of the remote file, if known. """ size = self._file_size if size is None: if self.buffering == BUFFER_WHOLE_FILE: for _ in self._read_range(0, None): pass else: with RangeTransfer(self._current_url, 0, 0) as xfer: self._current_url = xfer.response_url self._file_size = xfer.file_size size = self._file_size if self.buffering == 0: self._file_size = None return size def readable(self): """ Determine whether the file supports read() and read1() operations. Parameters ---------- N/A Returns ------- True """ return True def read(self, size=-1): """ Read bytes from the file. Parameters ---------- size : int Number of bytes to read, or -1 to read as many bytes as possible. Returns ------- data : bytes Bytes retrieved from the file. When the end of the file is reached, the length will be less than the requested size. """ start = self._pos if size in (-1, None): end = None elif size >= 0: end = start + size else: raise ValueError("invalid size: %r" % (size,)) result = b"".join(self._read_range(start, end)) self._pos += len(result) return result def read1(self, size=-1): """ Read bytes from the file. Parameters ---------- size : int Maximum number of bytes to read, or -1 to read as many bytes as possible. Returns ------- data : bytes Bytes retrieved from the file. When the end of the file is reached, the length will be zero. """ return self.read(size) def readinto(self, b): """ Read bytes from the file. Parameters ---------- b : writable bytes-like object Buffer in which to store the retrieved bytes. Returns ------- count : int Number of bytes retrieved from the file and stored in b. When the end of the file is reached, the count will be less than the requested size. """ b = memoryview(b).cast("B") start = self._pos end = start + len(b) count = 0 for chunk in self._read_range(start, end): b[count : count + len(chunk)] = chunk count += len(chunk) self._pos += count return count def readinto1(self, b): """ Read bytes from the file. Parameters ---------- b : writable bytes-like object Buffer in which to store the retrieved bytes. Returns ------- count : int Number of bytes retrieved from the file and stored in b. When the end of the file is reached, the count will be zero. """ return self.readinto(b) def seekable(self): """ Determine whether the file supports seek() and tell() operations. Parameters ---------- N/A Returns ------- True """ return True def seek(self, offset, whence=os.SEEK_SET): """ Set the current file position. Parameters ---------- offset : int Byte offset of the new file position, relative to the base position specified by whence. whence : int, optional SEEK_SET (0, default) if offset is relative to the start of the file; SEEK_CUR (1) if offset is relative to the current file position; SEEK_END (2) if offset is relative to the end of the file. Returns ------- offset : int Byte offset of the new file position. """ if whence == os.SEEK_SET: pos = offset elif whence == os.SEEK_CUR: pos = self._pos + offset elif whence == os.SEEK_END: size = self._get_size() if size is None: raise NetFileError( "size of remote file is unknown", url=self._current_url ) pos = size + offset else: raise ValueError("invalid whence: %r" % (whence,)) if pos < 0: raise ValueError("pos < 0") self._pos = pos return pos def tell(self): """ Retrieve the current file position. Parameters ---------- N/A Returns ------- offset : int Byte offset of the current file position. """ return self._pos
class NetFile(io.BufferedIOBase): ''' File object providing random access to a remote file over HTTP. Attributes ---------- url : str URL of the remote file. buffering : int, optional Buffering policy. If buffering = 0, internal buffering is disabled; each operation on the stream requires a separate request to the server. If buffering = -2, the entire file is downloaded in a single request. If buffering > 0, it specifies the minimum size of the internal buffer. If buffering = -1, the default buffer size is used. ''' def __init__(self, url, buffering=-1): pass def _read_buffered_range(self, start, end): ''' Read a range of bytes from the internal buffer. Parameters ---------- start : int Starting byte offset of the desired range. end : int Ending byte offset of the desired range. Returns ------- data : memoryview A memoryview of the given byte range. ''' pass def _read_range(self, start, end): ''' Read a range of bytes from the remote file. The result is returned as a sequence of chunks; the sizes of the individual chunks are unspecified. The total size may be less than requested if the end of the file is reached. Parameters ---------- start : int Starting byte offset of the desired range. end : int or None Ending byte offset of the desired range, or None to read all data up to the end of the file. Yields ------ data : memoryview A memoryview containing a chunk of the desired range. ''' pass def _get_size(self): ''' Determine the size of the remote file. Parameters ---------- N/A Returns ------- size : int or None Size of the remote file, if known. ''' pass def readable(self): ''' Determine whether the file supports read() and read1() operations. Parameters ---------- N/A Returns ------- True ''' pass def readable(self): ''' Read bytes from the file. Parameters ---------- size : int Number of bytes to read, or -1 to read as many bytes as possible. Returns ------- data : bytes Bytes retrieved from the file. When the end of the file is reached, the length will be less than the requested size. ''' pass def read1(self, size=-1): ''' Read bytes from the file. Parameters ---------- size : int Maximum number of bytes to read, or -1 to read as many bytes as possible. Returns ------- data : bytes Bytes retrieved from the file. When the end of the file is reached, the length will be zero. ''' pass def readinto(self, b): ''' Read bytes from the file. Parameters ---------- b : writable bytes-like object Buffer in which to store the retrieved bytes. Returns ------- count : int Number of bytes retrieved from the file and stored in b. When the end of the file is reached, the count will be less than the requested size. ''' pass def readinto1(self, b): ''' Read bytes from the file. Parameters ---------- b : writable bytes-like object Buffer in which to store the retrieved bytes. Returns ------- count : int Number of bytes retrieved from the file and stored in b. When the end of the file is reached, the count will be zero. ''' pass def seekable(self): ''' Determine whether the file supports seek() and tell() operations. Parameters ---------- N/A Returns ------- True ''' pass def seekable(self): ''' Set the current file position. Parameters ---------- offset : int Byte offset of the new file position, relative to the base position specified by whence. whence : int, optional SEEK_SET (0, default) if offset is relative to the start of the file; SEEK_CUR (1) if offset is relative to the current file position; SEEK_END (2) if offset is relative to the end of the file. Returns ------- offset : int Byte offset of the new file position. ''' pass def tell(self): ''' Retrieve the current file position. Parameters ---------- N/A Returns ------- offset : int Byte offset of the current file position. ''' pass
13
12
27
4
11
13
3
1.22
1
4
2
0
12
9
12
32
358
56
136
46
123
166
121
44
108
17
5
5
41
147,722
MIT-LCP/wfdb-python
wfdb/io/_url.py
wfdb.io._url.RangeTransfer
class RangeTransfer: """ A single HTTP transfer representing a range of bytes. Parameters ---------- url : str URL of the remote file. start : int, optional Start of the byte range to download, as an offset from the beginning of the file (inclusive, 0-based.) end : int or None End of the byte range to download, as an offset from the beginning of the file (exclusive, 0-based.) If None, request all data until the end of the file. Attributes ---------- request_url : str Original URL that was requested. response_url : str URL that was actually retrieved (after following redirections.) is_complete : bool True if the response contains the entire file; False if the response contains a byte range. file_size : int or None Total size of the remote file. This may be None if the length is unknown. Notes ----- The start and end parameters are requests that the server may or may not honor. After creating a RangeTransfer object, call content() or iter_chunks() to retrieve the actual response data, which may be a subset or a superset of the requested range. """ def __init__(self, url, start, end): self.request_url = url if start == 0 and end is None: method = "GET" headers = {} elif end is None: method = "GET" headers = { "Range": "bytes=%d-" % start, "Accept-Encoding": None, } elif end > start: method = "GET" headers = { "Range": "bytes=%d-%d" % (start, end - 1), "Accept-Encoding": None, } else: method = "HEAD" headers = { "Accept-Encoding": None, } session = _get_session() self._response = session.request( method, url, headers=headers, stream=True ) self._content_iter = self._response.iter_content(4096) try: self._parse_headers(method, self._response) except Exception: self.close() raise def _parse_headers(self, method, response): """ Parse the headers of the response object. Parameters ---------- method : str The HTTP method used for the request. response : requests.Response The resulting response object. Returns ------- N/A Notes ----- - response_url is set to the URL of the response - file_size is set to the total file size - is_complete is set to true if the response is complete - _current_pos is set to the starting position - _expected_end_pos is set to the expected end position """ self.response_url = response.url self.file_size = None self.is_complete = False self._current_pos = 0 self._expected_end_pos = None # Raise an exception if an error occurs. if response.status_code >= 400 and response.status_code != 416: _LOGGER.info( "%s %s: %s", method, response.url, response.status_code ) if response.status_code in (401, 403): cls = NetFilePermissionError elif response.status_code == 404: cls = NetFileNotFoundError else: cls = NetFileError raise cls( "%s Error: %s for url: %s" % (response.status_code, response.reason, response.url), url=response.url, status_code=response.status_code, ) # Parse the Content-Range if this is a partial response. elif response.status_code in (206, 416): content_range = response.headers.get("Content-Range") if content_range: match = _CONTENT_RANGE_PATTERN.fullmatch(content_range) if not match: raise NetFileError( "Invalid Content-Range: %s" % content_range, url=response.url, ) if match.group(1): self._current_pos = int(match.group(1)) self._expected_end_pos = int(match.group(2)) + 1 if match.group(3): self.file_size = int(match.group(3)) elif response.status_code == 206: raise NetFileError( "Missing Content-Range in partial response", url=response.url, ) # Parse the Content-Length if this is a complete and # uncompressed response. elif 200 <= response.status_code < 300: self.is_complete = True content_encoding = response.headers.get("Content-Encoding") content_length = response.headers.get("Content-Length") if content_length and not content_encoding: try: self.file_size = int(content_length) self._expected_end_pos = self.file_size except ValueError: raise NetFileError( "Invalid Content-Length: %s" % content_length, url=response.url, ) _LOGGER.info( "%s %s: %s %s-%s/%s", method, response.url, response.status_code, self._current_pos, self._expected_end_pos, self.file_size, ) # If the response is an error (or an unhandled redirection) # then discard the body. if response.status_code >= 300: self.close() def close(self): """ Finish reading data from the response. Any leftover data in the response body will be discarded and the underlying HTTP connection will be returned to the pool. Parameters ---------- N/A Returns ------- N/A """ try: for data in self._content_iter: pass except Exception: pass self._response.close() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): # When exiting with a normal exception, shut down cleanly by # reading leftover response data. When exiting abnormally # (SystemExit, KeyboardInterrupt), do nothing. if not exc_type or issubclass(exc_type, Exception): self.close() def __del__(self): # If the object is deleted without calling close(), forcibly # close the existing connection. response = getattr(self, "_response", None) if response: response.close() def iter_chunks(self): """ Iterate over the response body as a sequence of chunks. Parameters ---------- N/A Yields ------ chunk_start : int Byte offset within the remote file corresponding to the start of this chunk. chunk_data : bytes Contents of the chunk. """ for chunk_data in self._content_iter: chunk_start = self._current_pos self._current_pos += len(chunk_data) yield chunk_start, chunk_data if self.is_complete: self.file_size = self._current_pos def content(self): """ Read the complete response. Parameters ---------- N/A Returns ------- start : int Byte offset within the remote file corresponding to the start of the response. data : bytes Contents of the response. """ start = self._current_pos chunks = [] for _, chunk_data in self.iter_chunks(): chunks.append(chunk_data) return start, b"".join(chunks)
class RangeTransfer: ''' A single HTTP transfer representing a range of bytes. Parameters ---------- url : str URL of the remote file. start : int, optional Start of the byte range to download, as an offset from the beginning of the file (inclusive, 0-based.) end : int or None End of the byte range to download, as an offset from the beginning of the file (exclusive, 0-based.) If None, request all data until the end of the file. Attributes ---------- request_url : str Original URL that was requested. response_url : str URL that was actually retrieved (after following redirections.) is_complete : bool True if the response contains the entire file; False if the response contains a byte range. file_size : int or None Total size of the remote file. This may be None if the length is unknown. Notes ----- The start and end parameters are requests that the server may or may not honor. After creating a RangeTransfer object, call content() or iter_chunks() to retrieve the actual response data, which may be a subset or a superset of the requested range. ''' def __init__(self, url, start, end): pass def _parse_headers(self, method, response): ''' Parse the headers of the response object. Parameters ---------- method : str The HTTP method used for the request. response : requests.Response The resulting response object. Returns ------- N/A Notes ----- - response_url is set to the URL of the response - file_size is set to the total file size - is_complete is set to true if the response is complete - _current_pos is set to the starting position - _expected_end_pos is set to the expected end position ''' pass def close(self): ''' Finish reading data from the response. Any leftover data in the response body will be discarded and the underlying HTTP connection will be returned to the pool. Parameters ---------- N/A Returns ------- N/A ''' pass def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def __del__(self): pass def iter_chunks(self): ''' Iterate over the response body as a sequence of chunks. Parameters ---------- N/A Yields ------ chunk_start : int Byte offset within the remote file corresponding to the start of this chunk. chunk_data : bytes Contents of the chunk. ''' pass def content(self): ''' Read the complete response. Parameters ---------- N/A Returns ------- start : int Byte offset within the remote file corresponding to the start of the response. data : bytes Contents of the response. ''' pass
9
5
27
3
16
8
4
0.78
0
6
3
0
8
8
8
8
259
33
127
32
118
99
85
32
76
14
0
3
32
147,723
MJL85/natlas
MJL85_natlas/natlas/config.py
natlas.config.natlas_config
class natlas_config: def __init__(self): self.host_domains = [] self.snmp_creds = [] self.discover_acl = [] self.diagram = natlas_config_diagram() def load(self, filename): # load config json_data = self.__load_json_conf(filename) if (json_data == None): return 0 self.host_domains = json_data['domains'] self.snmp_creds = json_data['snmp'] # parse 'discover' block ACL entries for acl in json_data['discover']: try: entry = natlas_discover_acl(acl) except Exception as e: print(e) return 0 self.discover_acl.append(entry) json_diagram = json_data.get('diagram', None) if (json_diagram != None): self.diagram.node_text_size = json_diagram.get('node_text_size', 8) self.diagram.link_text_size = json_diagram.get('link_text_size', 7) self.diagram.title_text_size = json_diagram.get('title_text_size', 15) self.diagram.get_stack_members = json_diagram.get('get_stack_members', False) self.diagram.get_vss_members = json_diagram.get('get_vss_members', False) self.diagram.expand_stackwise = json_diagram.get('expand_stackwise', False) self.diagram.expand_vss = json_diagram.get('expand_vss', False) self.diagram.expand_lag = json_diagram.get('expand_lag', True) self.diagram.group_vpc = json_diagram.get('group_vpc', False) self.diagram.node_text = json_diagram.get('node_text', self.diagram.node_text) return 1 def __load_json_conf(self, json_file): json_data = None fd = open(json_file) json_data = fd.read() fd.close() json_data = json.loads(json_data) return json_data def generate_new(self): return '{\n' \ ' "snmp" : [\n' \ ' { "community":"private", "ver":2 },\n' \ ' { "community":"public", "ver":2 }\n' \ ' ],\n' \ ' "domains" : [\n' \ ' ".company.net",\n' \ ' ".company.com"\n' \ ' ],\n' \ ' "discover" : [\n' \ ' "permit ip 10.0.0.0/8",\n' \ ' "permit ip 192.168.1.0/24",\n' \ ' "permit ip 0.0.0.0/32"\n' \ ' ],\n' \ ' "diagram" : {\n' \ ' "node_text_size" : 10,\n' \ ' "link_text_size" : 9,\n' \ ' "title_text_size" : 15,\n' \ ' "get_stack_members" : 0,\n' \ ' "get_vss_members" : 0,\n' \ ' "expand_stackwise" : 0,\n' \ ' "expand_vss" : 0,\n' \ ' "expand_lag" : 1,\n' \ ' "group_vpc" : 0\n' \ ' }\n' \ '}' def validate_config(self, filename): print('Validating config...') json_data = self.__load_json_conf(filename) if (json_data == None): print('Could not load config.') return 0 ret = 0 ret += self.__validate_config_snmp(json_data) ret += self.__validate_config_domains(json_data) ret += self.__validate_config_discover(json_data) ret += self.__validate_config_diagram(json_data) if (ret < 4): print('FAILED') else: print('PASSED') def __validate_config_snmp(self, data): sys.stdout.write('Checking snmp...') obj = None try: obj = data['snmp'] except: print('does not exist') return 0 if (type(obj) != list): print('not a list') return 0 for cred in obj: if (type(cred) != dict): print('list contains a non-dict (%s)' % type(cred)) return 0 try: c = cred['community'] if (type(c) != str): print('community is not a string') return 0 except KeyError as e: print('one or more entries does not include %s' % e) return 0 try: c = cred['ver'] if (type(c) != int): print('version is not an int') return 0 else: if (c != 2): print('version for \'%s\' is not supported' % cred['community']) return 0 except KeyError as e: print('one or more entries does not include %s' % e) return 0 print('ok') return 1 def __validate_config_domains(self, data): sys.stdout.write('Checking domains...') obj = None try: obj = data['domains'] except: print('does not exist') return 0 if (type(obj) != list): print('not a list') return 0 for d in obj: if (type(d) != str): print('domain is not a string') return 0 print('ok') return 1 def __validate_config_discover(self, data): sys.stdout.write('Checking discover...') obj = None try: obj = data['discover'] except: print('does not exist') return 0 if (type(obj) != list): print('not a list') return 0 for d in obj: if (type(d) != str): print('ACL is not a string') return 0 ace = d.split(' ') if (len(ace) < 3): print('ACE not enough params \'%s\'' % d) return 0 if (ace[0] not in natlas_discover_acl.all_actions): print('ACE op \'%s\' not valid' % ace[0]) return 0 if (ace[1] not in natlas_discover_acl.all_types): print('ACE cond \'%s\' not valid' % ace[1]) return 0 print('ok') return 1 def __validate_config_diagram(self, data): sys.stdout.write('Checking diagram...') obj = None try: obj = data['diagram'] except: print('does not exist') return 0 if (type(obj) != dict): print('not a dict') return 0 for nv in obj: if (nv not in ['node_text_size', 'link_text_size', 'title_text_size', 'get_stack_members', 'get_vss_members', 'expand_stackwise', 'expand_vss', 'expand_lag', 'group_vpc']): print('invalid value \'%s\'' % nv) return 0 print('ok') return 1
class natlas_config: def __init__(self): pass def load(self, filename): pass def __load_json_conf(self, json_file): pass def generate_new(self): pass def validate_config(self, filename): pass def __validate_config_snmp(self, data): pass def __validate_config_domains(self, data): pass def __validate_config_discover(self, data): pass def __validate_config_diagram(self, data): pass
10
0
22
2
21
0
4
0.01
0
9
2
0
9
4
9
9
212
23
187
34
177
2
152
32
142
10
0
4
39
147,724
MJL85/natlas
MJL85_natlas/natlas/config.py
natlas.config.natlas_config_diagram
class natlas_config_diagram: node_text_size = 8 link_text_size = 7 title_text_size = 15 get_stack_members = False get_vss_members = False expand_stackwise = False expand_vss = False expand_lag = True group_vpc = False node_text = '<font point-size="10"><b>{node.name}</b></font><br />' \ '{node.ip}<br />' \ '<%if {node.ios}: {node.ios}<br />%>' \ '<%if {node.plat}: {node.plat}<br />%>' \ '<%if ("{node.serial}"!=None)&({node.vss.enabled}==0)&({node.stack.enabled}==0): {node.serial}<br />%>' \ '<%if ({node.stack.enabled}==1)&({config.diagram.expand_stackwise}==1): {stack.serial}<br />%>' \ '<%if {node.vss.enabled}&({config.diagram.expand_vss}==1): {vss.serial}<br />%>' \ '<%if ({node.vss.enabled}==1)&({config.diagram.expand_vss}==0): VSS {node.vss.domain}<br />%>' \ '<%if {node.vss.enabled}&({config.diagram.expand_vss}==0): VSS 0 - {node.vss.members[0].plat} - {node.vss.members[0].serial}<br />VSS 1 - {node.vss.members[1].plat} - {node.vss.members[1].serial}<br />%>' \ '<%if {node.bgp_las}: BGP {node.bgp_las}<br />%>' \ '<%if {node.ospf_id}: OSPF {node.ospf_id}<br />%>' \ '<%if {node.hsrp_pri}: HSRP VIP {node.hsrp_vip}<br />HSRP Pri {node.hsrp_pri}<br />%>' \ '<%if {node.stack.enabled}: Stackwise {node.stack.count}<br />%>' \ '<%stack SW {stack.num} - {stack.plat} {stack.serial} ({stack.role})<br />%>' \ '<%loopback {lo.name} - {lo.ip}<br />%>' \ '<%svi VLAN {svi.vlan} - {svi.ip}<br />%>'
class natlas_config_diagram: pass
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
26
11
25
0
11
11
10
0
0
0
0
147,725
MJL85/natlas
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MJL85_natlas/natlas/mac.py
natlas.mac.natlas_mac.mac_object
class mac_object: def __init__(self, _host, _ip, _vlan, _mac, _port): self.node_host = _host self.node_ip = _ip self.vlan = int(_vlan) self.mac = _mac self.port = _port def __str__(self): return ('<node_host="%s", node_ip="%s", vlan="%s", mac="%s", port="%s">' % (self.node_host, self.node_ip, self.vlan, self.mac, self.port)) def __repr__(self): return self.__str__()
class mac_object: def __init__(self, _host, _ip, _vlan, _mac, _port): pass def __str__(self): pass def __repr__(self): pass
4
0
4
0
4
0
1
0
0
1
0
0
3
5
3
3
13
1
12
9
8
0
11
9
7
1
0
0
3
147,726
MJL85/natlas
/Users/umroot/Documents/PhD_works/PhD-Core-Contents/Class-level-dataset-curation/data/git_repos_for_analysis/MJL85_natlas/natlas/node.py
natlas.node.natlas_node._node_opts
class _node_opts: def __init__(self): self.reset() def reset(self, setting=False): self.get_name = setting self.get_ip = setting self.get_plat = setting self.get_ios = setting self.get_router = setting self.get_ospf_id = setting self.get_bgp_las = setting self.get_hsrp_pri = setting self.get_hsrp_vip = setting self.get_serial = setting self.get_stack = setting self.get_stack_details = setting self.get_vss = setting self.get_vss_details = setting self.get_svi = setting self.get_lo = setting self.get_bootf = setting self.get_chassis_info = setting self.get_vpc = setting
class _node_opts: def __init__(self): pass def reset(self, setting=False): pass
3
0
11
0
11
0
1
0
0
0
0
0
2
19
2
2
24
1
23
22
20
0
23
22
20
1
0
0
2
147,727
MJL85/natlas
MJL85_natlas/natlas-cli.py
natlas-cli.natlas_mod
class natlas_mod: def __init__(self): self.filename = '' self.name = '' self.version = '' self.author = '' self.authoremail = '' self.syntax = None self.about = None self.help = None self.example = None self.entryfunc = None self.notimer = 0 self.require_api = None self.preload_conf = 1 def __str__(self): return ('<name="%s", version="%s", author="%s">' % (self.name, self.version, self.author)) def __repr__(self): return self.__str__()
class natlas_mod: def __init__(self): pass def __str__(self): pass def __repr__(self): pass
4
0
6
0
6
0
1
0
0
0
0
0
3
13
3
3
19
0
19
17
15
0
19
17
15
1
0
0
3
147,728
MJL85/natlas
MJL85_natlas/natlas/config.py
natlas.config.natlas_discover_acl
class natlas_discover_acl: ''' Define an ACL entry for the 'discover' config block. Defined in the form: <action> <type> <str> Where <action> = permit, deny, leaf, nop <type> = ip, host <str> = string ''' all_actions = [ ';', 'permit', 'deny', 'leaf', 'include' ] all_types = [ ';', 'ip', 'host', 'software', 'platform', 'serial' ] def __init__(self, str): self.action = "nop" self.type = "nop" self.str = "nop" t = list(filter(None, str.split())) if (len(t) < 3): raise Exception('Invalid ACL entry: "%s"' % str) self.action = t[0] self.type = t[1] self.str = t[2] if (self.action not in self.all_actions): raise Exception('Invalid ACL entry: "%s"; %s' % (str, self.action)) if (self.type not in self.all_types): raise Exception('Invalid ACL entry: "%s"; %s' % (str, self.type)) def __repr__(self): return '<%s %s %s>' % (self.action, self.type, self.str)
class natlas_discover_acl: ''' Define an ACL entry for the 'discover' config block. Defined in the form: <action> <type> <str> Where <action> = permit, deny, leaf, nop <type> = ip, host <str> = string ''' def __init__(self, str): pass def __repr__(self): pass
3
1
10
2
8
0
3
0.47
0
3
0
0
2
3
2
2
33
5
19
9
16
9
19
9
16
4
0
1
5
147,729
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_node_lo
class natlas_node_lo: def __init__(self, name, ips): self.name = name.replace('Loopback', 'lo') self.ips = ips def __str__(self): return ('Name = %s\nIPs = %s' % (self.name, self.ips)) def __repr__(self): return ('<name="%s",ips=%s>' % (self.name, self.ips))
class natlas_node_lo: def __init__(self, name, ips): pass def __str__(self): pass def __repr__(self): pass
4
0
2
0
2
0
1
0
0
0
0
0
3
2
3
3
8
0
8
6
4
0
8
6
4
1
0
0
3
147,730
MJL85/natlas
MJL85_natlas/natlas/natlas.py
natlas.natlas.natlas
class natlas: def __init__(self): if (sys.version_info < REQUIRES_PYTHON): raise Exception('Requires Python %i.%i' % (REQUIRES_PYTHON[0], REQUIRES_PYTHON[1])) return self.config_file = None self.config = None self.network = None self.diagram = None self.catalog = None def __try_snmp(self, node): if (node == None): return 0 if (node.snmpobj == None): return 0 if (node.snmpobj.success == 1): return 1 if (node.try_snmp_creds(self.config.snmp_creds) == 0): raise Exception('No valid SNMP credentials for %s' % node.ip) return 1 def config_generate(self): return natlas_config().generate_new() def config_validate(self, conf_file): return natlas_config().validate_config(conf_file) def config_load(self, conf_file): self.config = None c = natlas_config() c.load(conf_file) self.config = c self.config_file = conf_file # initalize objects self.network = natlas_network(self.config) def snmp_add_credential(self, snmp_ver, snmp_community): if (self.config == None): self.config = natlas_config() if (snmp_ver != 2): raise ValueError('snmp_ver is not valid') return cred = {} cred['ver'] = snmp_ver cred['community'] = snmp_community self.config.snmp_creds.append(cred) def set_discover_maxdepth(self, depth): self.network.set_max_depth(int(depth)) def set_verbose(self, verbose): self.network.set_verbose(verbose) def discover_network(self, root_ip, details): self.network.discover(root_ip) if (details == 1): self.network.discover_details() # initalize the output objects self.diagram = natlas_output_diagram(self.network) self.catalog = natlas_output_catalog(self.network) def new_node(self, node_ip): node = natlas_node(ip=node_ip) self.__try_snmp(node) return node def query_node(self, node, **get_values): # see natlas_node._node_opts in node.py for what get_values are available self.__try_snmp(node) node.opts.reset(False) for getv in get_values: setattr(node.opts, getv, get_values[getv]) node.query_node() return def write_diagram(self, output_file, diagram_title): self.diagram.generate(output_file, diagram_title) def write_catalog(self, output_file): self.catalog.generate(output_file) def get_switch_vlans(self, switch_ip): node = natlas_node(switch_ip) if (node.try_snmp_creds(self.config.snmp_creds) == 0): return [] return node.get_vlans() def get_switch_macs(self, switch_ip=None, node=None, vlan=None, mac=None, port=None, verbose=0): ''' Get the CAM table from a switch. Args: switch_ip IP address of the device node natlas_node from new_node() vlan Filter results by VLAN MAC Filter results by MAC address (regex) port Filter results by port (regex) verbose Display progress to stdout switch_ip or node is required Return: Array of natlas_mac objects ''' if (switch_ip == None): if (node == None): raise Exception('get_switch_macs() requires switch_ip or node parameter') return None switch_ip = node.get_ipaddr() mac_obj = natlas_mac(self.config) if (vlan == None): # get all MACs macs = mac_obj.get_macs(switch_ip, verbose) else: # get MACs only for one VLAN macs = mac_obj.get_macs_for_vlan(switch_ip, vlan, verbose) if ((mac == None) & (port == None)): return macs if macs else [] # filter results ret = [] for m in macs: if (mac != None): if (re.match(mac, m.mac) == None): continue if (port != None): if (re.match(port, m.port) == None): continue ret.append(m) return ret def get_discovered_nodes(self): return self.network.nodes def get_node_ip(self, node): return node.get_ipaddr() def get_arp_table(self, switch_ip, ip=None, mac=None, interf=None, arp_type=None): ''' Get the ARP table from a switch. Args: switch_ip IP address of the device ip Filter results by IP (regex) mac Filter results by MAC (regex) interf Filter results by INTERFACE (regex) arp_type Filter results by ARP Type Return: Array of natlas_arp objects ''' node = natlas_node(switch_ip) if (node.try_snmp_creds(self.config.snmp_creds) == 0): return [] arp = node.get_arp_table() if (arp == None): return [] if ((ip == None) & (mac == None) & (interf == None) & (arp_type == None)): # no filtering return arp interf = str(interf) if vlan else None # filter the result table ret = [] for a in arp: if (ip != None): if (re.match(ip, a.ip) == None): continue if (mac != None): if (re.match(mac, a.mac) == None): continue if (interf != None): if (re.match(interf, str(a.interf)) == None): continue if (arp_type != None): if (re.match(arp_type, a.arp_type) == None): continue ret.append(a) return ret def get_neighbors(self, node): self.__try_snmp(node) cdp = node.get_cdp_neighbors() lldp = node.get_lldp_neighbors() return cdp+lldp
class natlas: def __init__(self): pass def __try_snmp(self, node): pass def config_generate(self): pass def config_validate(self, conf_file): pass def config_load(self, conf_file): pass def snmp_add_credential(self, snmp_ver, snmp_community): pass def set_discover_maxdepth(self, depth): pass def set_verbose(self, verbose): pass def discover_network(self, root_ip, details): pass def new_node(self, node_ip): pass def query_node(self, node, **get_values): pass def write_diagram(self, output_file, diagram_title): pass def write_catalog(self, output_file): pass def get_switch_vlans(self, switch_ip): pass def get_switch_macs(self, switch_ip=None, node=None, vlan=None, mac=None, port=None, verbose=0): ''' Get the CAM table from a switch. Args: switch_ip IP address of the device node natlas_node from new_node() vlan Filter results by VLAN MAC Filter results by MAC address (regex) port Filter results by port (regex) verbose Display progress to stdout switch_ip or node is required Return: Array of natlas_mac objects ''' pass def get_discovered_nodes(self): pass def get_node_ip(self, node): pass def get_arp_table(self, switch_ip, ip=None, mac=None, interf=None, arp_type=None): ''' Get the ARP table from a switch. Args: switch_ip IP address of the device ip Filter results by IP (regex) mac Filter results by MAC (regex) interf Filter results by INTERFACE (regex) arp_type Filter results by ARP Type Return: Array of natlas_arp objects ''' pass def get_neighbors(self, node): pass
20
2
9
1
7
2
3
0.25
0
10
6
0
19
5
19
19
190
32
126
40
106
32
128
40
108
14
0
3
52
147,731
MJL85/natlas
MJL85_natlas/natlas/util.py
natlas.util.util
class util: def get_net_bits_from_mask(netm): cidr = 0 mt = netm.split('.') for b in range(0, 4): v = int(mt[b]) while (v > 0): if (v & 0x01): cidr += 1 v = v >> 1 return cidr # # Return 1 if IP is in the CIDR range. # def is_ipv4_in_cidr(ip, cidr): t = cidr.split('/') cidr_ip = t[0] cidr_m = t[1] o = cidr_ip.split('.') cidr_ip = ((int(o[0])<<24) + (int(o[1]) << 16) + (int(o[2]) << 8) + (int(o[3]))) cidr_mb = 0 zeros = 32 - int(cidr_m) for b in range(0, zeros): cidr_mb = (cidr_mb << 1) | 0x01 cidr_mb = 0xFFFFFFFF & ~cidr_mb o = ip.split('.') ip = ((int(o[0])<<24) + (int(o[1]) << 16) + (int(o[2]) << 8) + (int(o[3]))) return ((cidr_ip & cidr_mb) == (ip & cidr_mb)) # # Shorten the hostname by removing any defined domain suffixes. # def shorten_host_name(_host, domains): host = _host if (_host == None): return 'UNKNOWN' # some devices (eg Motorola) report as hex strings if (_host.startswith('0x')): try: host = binascii.unhexlify(_host[2:]).decode('utf-8') except: # this can fail if the node gives us bad data - revert to original # ex, lldp can advertise MAC as hostname, and it might not convert # to ascii host = _host # Nexus appends (SERIAL) to hosts host = re.sub('\([^\(]*\)$', '', host) for domain in domains: host = host.replace(domain, '') # fix some stuff that can break Dot host = re.sub('-', '_', host) host = host.rstrip(' \r\n\0') return host # # Return a string representation of an IPv4 address # def convert_ip_int_str(iip): if ((iip != None) & (iip != '')): ip = int(iip, 0) ip = '%i.%i.%i.%i' % (((ip >> 24) & 0xFF), ((ip >> 16) & 0xFF), ((ip >> 8) & 0xFF), (ip & 0xFF)) return ip return 'UNKNOWN' def get_module_from_interf(port): try: s = re.search('[^\d]*(\d*)/\d*/\d*', port) if (s): return s.group(1) except: pass return '1' def strip_slash_masklen(cidr): try: s = re.search('^(.*)/[0-9]{1,2}$', cidr) if (s): return s.group(1) except: pass return cidr def expand_path_pattern(str): try: match = re.search('{([^\}]*)}', str) tokens = match[1].split('|') except: return [str] ret = [] for token in tokens: s = str.replace(match[0], token) ret.append(s) return ret
class util: def get_net_bits_from_mask(netm): pass def is_ipv4_in_cidr(ip, cidr): pass def shorten_host_name(_host, domains): pass def convert_ip_int_str(iip): pass def get_module_from_interf(port): pass def strip_slash_masklen(cidr): pass def expand_path_pattern(str): pass
8
0
13
2
10
1
3
0.21
0
2
0
0
7
0
7
7
113
25
73
29
65
15
73
29
65
5
0
3
22
147,732
MJL85/natlas
MJL85_natlas/natlas/snmp.py
natlas.snmp.natlas_snmp
class natlas_snmp: def __init__(self, ip='0.0.0.0'): self.success = 0 self.ver = 0 self.v2_community = None self._ip = ip # # Try to find valid SNMP credentials in the provided list. # Returns 1 if success, 0 if failed. # def get_cred(self, snmp_creds): for cred in snmp_creds: # we don't currently support anything other than SNMPv2 if (cred['ver'] != 2): continue community = cred['community'] cmdGen = cmdgen.CommandGenerator() errIndication, errStatus, errIndex, varBinds = cmdGen.getCmd( cmdgen.CommunityData(community), cmdgen.UdpTransportTarget((self._ip, SNMP_PORT)), '1.3.6.1.2.1.1.5.0', lookupNames = False, lookupValues = False ) if errIndication: continue else: self.ver = 2 self.success = 1 self.v2_community = community return 1 return 0 # # Get single SNMP value at OID. # def get_val(self, oid): cmdGen = cmdgen.CommandGenerator() errIndication, errStatus, errIndex, varBinds = cmdGen.getCmd( cmdgen.CommunityData(self.v2_community), cmdgen.UdpTransportTarget((self._ip, SNMP_PORT), retries=2), oid, lookupNames = False, lookupValues = False ) if errIndication: print('[E] get_snmp_val(%s): %s' % (self.v2_community, errIndication)) else: r = varBinds[0][1].prettyPrint() if ((r == OID_ERR) | (r == OID_ERR_INST)): return None return r return None # # Get bulk SNMP value at OID. # # Returns 1 on success, 0 on failure. # def get_bulk(self, oid): cmdGen = cmdgen.CommandGenerator() errIndication, errStatus, errIndex, varBindTable = cmdGen.bulkCmd( cmdgen.CommunityData(self.v2_community), cmdgen.UdpTransportTarget((self._ip, SNMP_PORT), timeout=30, retries=2), 0, 50, oid, lookupNames = False, lookupValues = False ) if errIndication: print('[E] get_snmp_bulk(%s): %s' % (self.v2_community, errIndication)) else: ret = [] for r in varBindTable: for n, v in r: n = str(n) if (n.startswith(oid) == 0): return ret ret.append(r) return ret return None # # Lookup a value from the return table of get_bulk() # def cache_lookup(self, varBindTable, name): if (varBindTable == None): return None for r in varBindTable: for n, v in r: n = str(n) if (n == name): return v.prettyPrint() return None # # Given an OID 1.2.3.4...x.y.z return z # def get_last_oid_token(oid): _oid = oid.getOid() ts = len(_oid) return _oid[ts-1]
class natlas_snmp: def __init__(self, ip='0.0.0.0'): pass def get_cred(self, snmp_creds): pass def get_val(self, oid): pass def get_bulk(self, oid): pass def cache_lookup(self, varBindTable, name): pass def get_last_oid_token(oid): pass
7
0
14
2
12
0
3
0.25
0
1
0
0
6
4
6
6
111
17
75
27
68
19
57
27
50
5
0
4
19
147,733
MJL85/natlas
MJL85_natlas/natlas/output_diagram.py
natlas.output_diagram.natlas_output_diagram
class natlas_output_diagram: def __init__(self, network): natlas_output.__init__(self) self.network = network self.config = network.config def generate(self, dot_file, title): self.network.reset_discovered() title_text_size = self.config.diagram.title_text_size credits = '<table border="0">' \ '<tr>' \ '<td balign="right">' \ '<font point-size="%i"><b>$title$</b></font><br />' \ '<font point-size="%i">$date$</font><br />' \ '<font point-size="7">' \ 'Generated by natlas $ver$<br />' \ 'Michael Laforest</font><br />' \ '</td>' \ '</tr>' \ '</table>' % (title_text_size, title_text_size-2) today = datetime.datetime.now() today = today.strftime('%Y-%m-%d %H:%M') credits = credits.replace('$ver$', __version__) credits = credits.replace('$date$', today) credits = credits.replace('$title$', title) node_text_size = self.config.diagram.node_text_size link_text_size = self.config.diagram.link_text_size diagram = pydot.Dot( graph_type = 'graph', labelloc = 'b', labeljust = 'r', fontsize = node_text_size, label = '<%s>' % credits ) diagram.set_node_defaults( fontsize = link_text_size ) diagram.set_edge_defaults( fontsize = link_text_size, labeljust = 'l' ) # add all of the nodes and links self.__generate(diagram, self.network.root_node) # expand output string files = util.expand_path_pattern(dot_file) for f in files: # get file extension file_name, file_ext = os.path.splitext(f) output_func = getattr(diagram, 'write_' + file_ext.lstrip('.'), None) if (output_func == None): print('Error: Output type "%s" does not exist.' % file_ext) else: output_func(f) print('Created diagram: %s' % f) def __generate(self, diagram, node): if (node == None): return (0, 0) if (node.discovered > 0): return (0, 0) node.discovered = 1 dot_node = self.__get_node(diagram, node) if (dot_node.ntype == 'single'): diagram.add_node( pydot.Node( name = node.name, label = '<%s>' % dot_node.label, style = dot_node.style, shape = dot_node.shape, peripheries = dot_node.peripheries ) ) elif (dot_node.ntype == 'vss'): cluster = pydot.Cluster( graph_name = node.name, suppress_disconnected = False, labelloc = 't', labeljust = 'c', fontsize = self.config.diagram.node_text_size, label = '<<br /><b>VSS %s</b>>' % node.vss.domain ) for i in range(0, 2): # {vss.} vars nlabel = dot_node.label.format(vss=node.vss.members[i]) cluster.add_node( pydot.Node( name = '%s[natlasVSS%i]' % (node.name, i+1), label = '<%s>' % nlabel, style = dot_node.style, shape = dot_node.shape, peripheries = dot_node.peripheries ) ) diagram.add_subgraph(cluster) elif (dot_node.ntype == 'vpc'): cluster = pydot.Cluster( graph_name = node.name, suppress_disconnected = False, labelloc = 't', labeljust = 'c', fontsize = self.config.diagram.node_text_size, label = '<<br /><b>VPC %s</b>>' % node.vpc_domain ) cluster.add_node( pydot.Node( name = node.name, label = '<%s>' % dot_node.label, style = dot_node.style, shape = dot_node.shape, peripheries = dot_node.peripheries ) ) if (node.vpc_peerlink_node != None): node2 = node.vpc_peerlink_node node2.discovered = 1 dot_node2 = self.__get_node(diagram, node2) cluster.add_node( pydot.Node( name = node2.name, label = '<%s>' % dot_node2.label, style = dot_node2.style, shape = dot_node2.shape, peripheries = dot_node2.peripheries ) ) diagram.add_subgraph(cluster) elif (dot_node.ntype == 'stackwise'): cluster = pydot.Cluster( graph_name = node.name, suppress_disconnected = False, labelloc = 't', labeljust = 'c', fontsize = self.config.diagram.node_text_size, label = '<<br /><b>Stackwise</b>>' ) for i in range(0, node.stack.count): # {stack.} vars if (len(node.stack.members) == 0): nlabel = dot_node.label else: nlabel = dot_node.label.format(stack=node.stack.members[i]) cluster.add_node( pydot.Node( name = '%s[natlasSW%i]' % (node.name, i+1), label = '<%s>' % nlabel, style = dot_node.style, shape = dot_node.shape, peripheries = dot_node.peripheries ) ) diagram.add_subgraph(cluster) lags = [] for link in node.links: self.__generate(diagram, link.node) # determine if this link should be broken out or not expand_lag = 0 if (self.config.diagram.expand_lag == 1): expand_lag = 1 elif (link.local_lag == 'UNKNOWN'): expand_lag = 1 elif (self.__does_lag_span_devs(link.local_lag, node.links) > 1): # a LAG could span different devices, eg Nexus. # in this case we should always break it out, otherwise we could # get an unlinked node in the diagram. expand_lag = 1 if (expand_lag == 1): self.__create_link(diagram, node, link, 0) else: found = 0 for lag in lags: if (link.local_lag == lag): found = 1 break if (found == 0): lags.append(link.local_lag) self.__create_link(diagram, node, link, 1) def __get_node(self, diagram, node): dot_node = natlas_diagram_dot_node() dot_node.ntype = 'single' dot_node.shape = 'ellipse' dot_node.style = 'solid' dot_node.peripheries = 1 dot_node.label = '' # get the node text dot_node.label = self.__get_node_text(diagram, node, self.config.diagram.node_text) # set the node properties if (node.vss.enabled == 1): if (self.config.diagram.expand_vss == 1): dot_node.ntype = 'vss' else: # group VSS into one diagram node dot_node.peripheries = 2 if (node.stack.count > 0): if (self.config.diagram.expand_stackwise == 1): dot_node.ntype = 'stackwise' else: # group Stackwise into one diagram node dot_node.peripheries = node.stack.count if (node.vpc_domain != None): if (self.config.diagram.group_vpc == 1): dot_node.ntype = 'vpc' if (node.router == 1): dot_node.shape = 'diamond' return dot_node def __create_link(self, diagram, node, link, draw_as_lag): link_color = 'black' link_style = 'solid' link_label = '' if ((link.local_port == node.vpc_peerlink_if) | (link.local_lag == node.vpc_peerlink_if)): link_label += 'VPC ' if (draw_as_lag): link_label += 'LAG' members = 0 for l in node.links: if (l.local_lag == link.local_lag): members += 1 link_label += '\n%i Members' % members else: link_label += 'P:%s\nC:%s' % (link.local_port, link.remote_port) is_lag = 1 if (link.local_lag != 'UNKNOWN') else 0 if (draw_as_lag == 0): # LAG as member if (is_lag): local_lag_ip = '' remote_lag_ip = '' if (len(link.local_lag_ips)): local_lag_ip = ' - %s' % link.local_lag_ips[0] if (len(link.remote_lag_ips)): remote_lag_ip = ' - %s' % link.remote_lag_ips[0] link_label += '\nLAG Member' if ((local_lag_ip == '') & (remote_lag_ip == '')): link_label += '\nP:%s | C:%s' % (link.local_lag, link.remote_lag) else: link_label += '\nP:%s%s' % (link.local_lag, local_lag_ip) link_label += '\nC:%s%s' % (link.remote_lag, remote_lag_ip) # IP Addresses if ((link.local_if_ip != 'UNKNOWN') & (link.local_if_ip != None)): link_label += '\nP:%s' % link.local_if_ip if ((link.remote_if_ip != 'UNKNOWN') & (link.remote_if_ip != None)): link_label += '\nC:%s' % link.remote_if_ip else: # LAG as grouping for l in node.links: if (l.local_lag == link.local_lag): link_label += '\nP:%s | C:%s' % (l.local_port, l.remote_port) local_lag_ip = '' remote_lag_ip = '' if (len(link.local_lag_ips)): local_lag_ip = ' - %s' % link.local_lag_ips[0] if (len(link.remote_lag_ips)): remote_lag_ip = ' - %s' % link.remote_lag_ips[0] if ((local_lag_ip == '') & (remote_lag_ip == '')): link_label += '\nP:%s | C:%s' % (link.local_lag, link.remote_lag) else: link_label += '\nP:%s%s' % (link.local_lag, local_lag_ip) link_label += '\nC:%s%s' % (link.remote_lag, remote_lag_ip) if (link.link_type == '1'): # Trunk = Bold/Blue link_color = 'blue' link_style = 'bold' if ((link.local_native_vlan == link.remote_native_vlan) | (link.remote_native_vlan == None)): link_label += '\nNative %s' % link.local_native_vlan else: link_label += '\nNative P:%s C:%s' % (link.local_native_vlan, link.remote_native_vlan) if (link.local_allowed_vlans == link.remote_allowed_vlans): link_label += '\nAllowed %s' % link.local_allowed_vlans else: link_label += '\nAllowed P:%s' % link.local_allowed_vlans if (link.remote_allowed_vlans != None): link_label += '\nAllowed C:%s' % link.remote_allowed_vlans elif (link.link_type is None): # Routed = Bold/Red link_color = 'red' link_style = 'bold' else: # Switched access, include VLAN ID in label if (link.vlan != None): link_label += '\nVLAN %s' % link.vlan edge_src = node.name edge_dst = link.node.name lmod = util.get_module_from_interf(link.local_port) rmod = util.get_module_from_interf(link.remote_port) if (self.config.diagram.expand_vss == 1): if (node.vss.enabled == 1): edge_src = '%s[natlasVSS%s]' % (node.name, lmod) if (link.node.vss.enabled == 1): edge_dst = '%s[natlasVSS%s]' % (link.node.name, rmod) if (self.config.diagram.expand_stackwise == 1): if (node.stack.count > 0): edge_src = '%s[natlasSW%s]' % (node.name, lmod) if (link.node.stack.count > 0): edge_dst = '%s[natlasSW%s]' % (link.node.name, rmod) edge = pydot.Edge( edge_src, edge_dst, dir = 'forward', label = link_label, color = link_color, style = link_style ) diagram.add_edge(edge) def __does_lag_span_devs(self, lag_name, links): if (lag_name == None): return 0 devs = [] for link in links: if (link.local_lag == lag_name): if (link.node.name not in devs): devs.append(link.node.name) return len(devs) def __eval_if_block(self, if_cond, node): # evaluate condition if_cond_eval = if_cond.format(node=node, config=self.config).strip() try: if eval(if_cond_eval): return 1 except: if ((if_cond_eval != '0') & (if_cond_eval != 'None') & (if_cond_eval != '')): return 1 else: return 0 return 0 def __get_node_text(self, diagram, node, fmt): ''' Generate the node text given the format string 'fmt' ''' fmt_proc = fmt # IF blocks while (1): if_block = re.search('<%if ([^%]*): ([^%]*)%>', fmt_proc) if (if_block == None): break # evaluate condition if_cond = if_block[1] if_val = if_block[2] if (self.__eval_if_block(if_cond, node) == 0): if_val = '' fmt_proc = fmt_proc[:if_block.span()[0]] + if_val + fmt_proc[if_block.span()[1]:] # {node.ip} = best IP ip = node.get_ipaddr() fmt_proc = fmt_proc.replace('{node.ip}', ip) # stackwise stack_block = re.search('<%stack ([^%]*)%>', fmt_proc) if (stack_block != None): if (node.stack.count == 0): # no stackwise, remove this fmt_proc = fmt_proc[:stack_block.span()[0]] + fmt_proc[stack_block.span()[1]:] else: val = '' if (self.config.diagram.expand_stackwise == 0): if (self.config.diagram.get_stack_members): for smem in node.stack.members: nval = stack_block[1] nval = nval.replace('{stack.num}', str(smem.num)) nval = nval.replace('{stack.plat}', smem.plat) nval = nval.replace('{stack.serial}', smem.serial) nval = nval.replace('{stack.role}', smem.role) val += nval fmt_proc = fmt_proc[:stack_block.span()[0]] + val + fmt_proc[stack_block.span()[1]:] # loopbacks loopback_block = re.search('<%loopback ([^%]*)%>', fmt_proc) if (loopback_block != None): val = '' for lo in node.loopbacks: for lo_ip in lo.ips: nval = loopback_block[1] nval = nval.replace('{lo.name}', lo.name) nval = nval.replace('{lo.ip}', lo_ip) val += nval fmt_proc = fmt_proc[:loopback_block.span()[0]] + val + fmt_proc[loopback_block.span()[1]:] # SVIs svi_block = re.search('<%svi ([^%]*)%>', fmt_proc) if (svi_block != None): val = '' for svi in node.svis: for svi_ip in svi.ip: nval = svi_block[1] nval = nval.replace('{svi.vlan}', svi.vlan) nval = nval.replace('{svi.ip}', svi_ip) val += nval fmt_proc = fmt_proc[:svi_block.span()[0]] + val + fmt_proc[svi_block.span()[1]:] # replace {stack.} with magic fmt_proc = re.sub('{stack\.(([a-zA-Z])*)}', '$stack2354$\g<1>$stack2354$', fmt_proc) fmt_proc = re.sub('{vss\.(([a-zA-Z])*)}', '$vss2354$\g<1>$vss2354$', fmt_proc) # {node.} variables fmt_proc = fmt_proc.format(node=node) # replace magics fmt_proc = re.sub('\$stack2354\$(([a-zA-Z])*)\$stack2354\$', '{stack.\g<1>}', fmt_proc) fmt_proc = re.sub('\$vss2354\$(([a-zA-Z])*)\$vss2354\$', '{vss.\g<1>}', fmt_proc) return fmt_proc
class natlas_output_diagram: def __init__(self, network): pass def generate(self, dot_file, title): pass def __generate(self, diagram, node): pass def __get_node(self, diagram, node): pass def __create_link(self, diagram, node, link, draw_as_lag): pass def __does_lag_span_devs(self, lag_name, links): pass def __eval_if_block(self, if_cond, node): pass def __get_node_text(self, diagram, node, fmt): ''' Generate the node text given the format string 'fmt' ''' pass
9
1
55
6
44
4
11
0.09
0
6
3
0
8
2
8
8
451
64
354
64
345
33
246
64
237
30
0
5
85
147,734
MJL85/natlas
MJL85_natlas/natlas/output_diagram.py
natlas.output_diagram.natlas_diagram_dot_node
class natlas_diagram_dot_node: def __init__(self): self.ntype = 'single' self.shape = 'ellipse' self.style = 'solid' self.peripheries = 1 self.label = '' self.vss_label = ''
class natlas_diagram_dot_node: def __init__(self): pass
2
0
7
0
7
0
1
0
0
0
0
0
1
6
1
1
8
0
8
8
6
0
8
8
6
1
0
0
1
147,735
MJL85/natlas
MJL85_natlas/natlas/output.py
natlas.output.natlas_output
class natlas_output: def __init__(self): self.type = 'base' def generate(self): raise Exception('natlas_output.generate() called direct')
class natlas_output: def __init__(self): pass def generate(self): pass
3
0
2
0
2
0
1
0
0
1
0
0
2
1
2
2
7
2
5
4
2
0
5
4
2
1
0
0
2
147,736
MJL85/natlas
MJL85_natlas/natlas/node_vss.py
natlas.node_vss.natlas_node_vss_member
class natlas_node_vss_member: def __init__(self): self.opts = None self.ios = None self.serial = None self.plat = None def __str__(self): return ('<serial=%s,plat=%s>' % (self.serial, self.plat)) def __repr__(self): return self.__str__()
class natlas_node_vss_member: def __init__(self): pass def __str__(self): pass def __repr__(self): pass
4
0
3
0
3
0
1
0
0
0
0
0
3
4
3
3
11
1
10
8
6
0
10
8
6
1
0
0
3
147,737
MJL85/natlas
MJL85_natlas/natlas/mac.py
natlas.mac.natlas_mac
class natlas_mac: class mac_object: def __init__(self, _host, _ip, _vlan, _mac, _port): self.node_host = _host self.node_ip = _ip self.vlan = int(_vlan) self.mac = _mac self.port = _port def __str__(self): return ('<node_host="%s", node_ip="%s", vlan="%s", mac="%s", port="%s">' % (self.node_host, self.node_ip, self.vlan, self.mac, self.port)) def __repr__(self): return self.__str__() def __init__(self, conf): self.config = conf def __str__(self): return ('<macs=%i>' % len(self.macs)) def __repr__(self): return self.__str__() def get_macs(self, ip, display_progress): ''' Return array of MAC addresses from single node at IP ''' if (ip == '0.0.0.0'): return None ret_macs = [] snmpobj = natlas_snmp(ip) # find valid credentials for this node if (snmpobj.get_cred(self.config.snmp_creds) == 0): return None system_name = util.shorten_host_name(snmpobj.get_val(OID_SYSNAME), self.config.host_domains) # cache some common MIB trees vlan_vbtbl = snmpobj.get_bulk(OID_VLANS) ifname_vbtbl = snmpobj.get_bulk(OID_IFNAME) for vlan_row in vlan_vbtbl: for vlan_n, vlan_v in vlan_row: # get VLAN ID from OID vlan = natlas_snmp.get_last_oid_token(vlan_n) if (vlan >= 1002): continue vmacs = self.get_macs_for_vlan(ip, vlan, display_progress, snmpobj, system_name, ifname_vbtbl) if (vmacs != None): ret_macs.extend(vmacs) if (display_progress == 1): print('') return ret_macs def get_macs_for_vlan(self, ip, vlan, display_progress=0, snmpobj=None, system_name=None, ifname_vbtbl=None): ''' Return array of MAC addresses for a single VLAN from a single node at an IP ''' ret_macs = [] if (snmpobj == None): snmpobj = natlas_snmp(ip) if (snmpobj.get_cred(self.config.snmp_creds) == 0): return None if (ifname_vbtbl == None): ifname_vbtbl = snmpobj.get_bulk(OID_IFNAME) if (system_name == None): system_name = util.shorten_host_name(snmpobj.get_val(OID_SYSNAME), self.config.host_domains) # change our SNMP credentials old_cred = snmpobj.v2_community snmpobj.v2_community = old_cred + '@' + str(vlan) if (display_progress == 1): sys.stdout.write(str(vlan)) # found VLAN sys.stdout.flush() # get CAM table for this VLAN cam_vbtbl = snmpobj.get_bulk(OID_VLAN_CAM) portnum_vbtbl = snmpobj.get_bulk(OID_BRIDGE_PORTNUMS) ifindex_vbtbl = snmpobj.get_bulk(OID_IFINDEX) cam_match = None if (cam_vbtbl == None): # error getting CAM for VLAN return None for cam_row in cam_vbtbl: for cam_n, cam_v in cam_row: cam_entry = natlas_mac.mac_format_ascii(cam_v, 0) # find the interface index p = cam_n.getOid() portnum_oid = '%s.%i.%i.%i.%i.%i.%i' % (OID_BRIDGE_PORTNUMS, p[11], p[12], p[13], p[14], p[15], p[16]) bridge_portnum = snmpobj.cache_lookup(portnum_vbtbl, portnum_oid) # get the interface index and description try: ifidx = snmpobj.cache_lookup(ifindex_vbtbl, OID_IFINDEX + '.' + bridge_portnum) port = snmpobj.cache_lookup(ifname_vbtbl, OID_IFNAME + '.' + ifidx) except TypeError: port = 'None' mac_addr = natlas_mac.mac_format_ascii(cam_v, 1) if (display_progress == 1): sys.stdout.write('.') # found CAM entry sys.stdout.flush() entry = natlas_mac.mac_object(system_name, ip, vlan, mac_addr, port) ret_macs.append(entry) # restore SNMP credentials snmpobj.v2_community = old_cred return ret_macs # # Parse an ASCII MAC address string to a hex string. # def mac_ascii_to_hex(mac_str): mac_str = re.sub('[\.:]', '', mac_str) if (len(mac_str) != 12): return None mac_hex = '' for i in range(0, len(mac_str), 2): mac_hex += chr(int(mac_str[i:i+2], 16)) return mac_hex def mac_format_ascii(mac_hex, inc_dots): v = mac_hex.prettyPrint() return natlas_mac.mac_hex_to_ascii(v, inc_dots) def mac_hex_to_ascii(mac_hex, inc_dots): ''' Format a hex MAC string to ASCII Args: mac_hex: Value from SNMP inc_dots: 1 to format as aabb.ccdd.eeff, 0 to format aabbccddeeff Returns: String representation of the mac_hex ''' v = mac_hex[2:] ret = '' for i in range(0, len(v), 4): ret += v[i:i+4] if ((inc_dots) & ((i+4) < len(v))): ret += '.' return ret
class natlas_mac: class mac_object: def __init__(self, _host, _ip, _vlan, _mac, _port): pass def __str__(self): pass def __repr__(self): pass def __init__(self, _host, _ip, _vlan, _mac, _port): pass def __str__(self): pass def __repr__(self): pass def get_macs(self, ip, display_progress): ''' Return array of MAC addresses from single node at IP ''' pass def get_macs_for_vlan(self, ip, vlan, display_progress=0, snmpobj=None, system_name=None, ifname_vbtbl=None): ''' Return array of MAC addresses for a single VLAN from a single node at an IP ''' pass def mac_ascii_to_hex(mac_str): pass def mac_format_ascii(mac_hex, inc_dots): pass def mac_hex_to_ascii(mac_hex, inc_dots): ''' Format a hex MAC string to ASCII Args: mac_hex: Value from SNMP inc_dots: 1 to format as aabb.ccdd.eeff, 0 to format aabbccddeeff Returns: String representation of the mac_hex ''' pass
13
3
13
2
9
2
3
0.28
0
7
3
0
8
1
8
8
161
36
99
50
86
28
98
50
85
11
0
3
32
147,738
MJL85/natlas
MJL85_natlas/natlas/node_vss.py
natlas.node_vss.natlas_node_vss
class natlas_node_vss: def __init__(self, snmpobj = None, opts = None): self.members = [ natlas_node_vss_member(), natlas_node_vss_member() ] self.enabled = 0 self.domain = None self.opts = opts if (snmpobj != None): self.get_members(snmpobj) def __str__(self): return ('<enabled=%s,domain=%s,members=%s>' % (self.enabled, self.domain, self.members)) def __repr__(self): return self.__str__() def get_members(self, snmpobj): # check if VSS is enabled self.enabled = 1 if (snmpobj.get_val(OID_VSS_MODE) == '2') else 0 if (self.enabled == 0): return if (self.opts == None): return self.domain = snmpobj.get_val(OID_VSS_DOMAIN) if (self.opts.get_vss_details == 0): return # pull some VSS-related info module_vbtbl = snmpobj.get_bulk(OID_VSS_MODULES) if (self.opts.get_ios): ios_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_SOFTWARE) if (self.opts.get_serial): serial_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_SERIAL) if (self.opts.get_plat): plat_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_PLAT) chassis = 0 # enumerate VSS modules and find chassis info for row in module_vbtbl: for n,v in row: if (v == 1): modidx = str(n).split('.')[14] # we want only chassis - line card module have no software ios = snmpobj.cache_lookup(ios_vbtbl, OID_ENTPHYENTRY_SOFTWARE + '.' + modidx) if (ios != ''): if (self.opts.get_ios): self.members[chassis].ios = ios if (self.opts.get_plat): self.members[chassis].plat = snmpobj.cache_lookup(plat_vbtbl, OID_ENTPHYENTRY_PLAT + '.' + modidx) if (self.opts.get_serial): self.members[chassis].serial = snmpobj.cache_lookup(serial_vbtbl, OID_ENTPHYENTRY_SERIAL + '.' + modidx) chassis += 1 if (chassis > 1): return
class natlas_node_vss: def __init__(self, snmpobj = None, opts = None): pass def __str__(self): pass def __repr__(self): pass def get_members(self, snmpobj): pass
5
0
13
3
9
1
5
0.11
0
2
1
0
4
4
4
4
54
12
38
18
33
4
44
18
39
16
0
5
20
147,739
MJL85/natlas
MJL85_natlas/natlas/output_catalog.py
natlas.output_catalog.natlas_output_catalog
class natlas_output_catalog: def __init__(self, network): natlas_output.__init__(self) self.network = network self.config = network.config def generate(self, filename): try: f = open(filename, 'w') except: print('Unable to open catalog file "%s"' % filename) return for n in self.network.nodes: # get info that we may not have yet n.opts.get_serial = True n.opts.get_plat = True n.opts.get_bootf = True n.query_node() if (n.stack.count > 0): # stackwise for smem in n.stack.members: serial = smem.serial or 'NOT CONFIGURED TO POLL' plat = smem.plat or 'NOT CONFIGURED TO POLL' f.write('"%s","%s","%s","%s","%s","STACK","%s"\n' % (n.name, n.ip[0], plat, n.ios, serial, n.bootfile)) elif (n.vss.enabled != 0): #vss for i in range(0, 2): serial = n.vss.members[i].serial plat = n.vss.members[i].plat ios = n.vss.members[i].ios f.write('"%s","%s","%s","%s","%s","VSS","%s"\n' % (n.name, n.ip[0], plat, ios, serial, n.bootfile)) else: # stand alone f.write('"%s","%s","%s","%s","%s","","%s"\n' % (n.name, n.ip[0], n.plat, n.ios, n.serial, n.bootfile)) f.close()
class natlas_output_catalog: def __init__(self, network): pass def generate(self, filename): pass
3
0
18
2
15
2
4
0.13
0
2
1
0
2
2
2
2
39
5
30
12
27
4
28
12
25
7
0
3
8
147,740
MJL85/natlas
MJL85_natlas/natlas/node_stack.py
natlas.node_stack.natlas_node_stack
class natlas_node_stack: def __init__(self, snmpobj = None, opts = None): self.members = [] self.count = 0 self.enabled = 0 self.opts = opts if (snmpobj != None): self.get_members(snmpobj) def __str__(self): return ('<enabled=%s,count=%s,members=%s>' % (self.enabled, self.count, self.members)) def __repr__(self): return self.__str__() def get_members(self, snmpobj): if (self.opts == None): return vbtbl = snmpobj.get_bulk(OID_STACK) if (vbtbl == None): return None if (self.opts.get_stack_details == 0): self.count = 0 for row in vbtbl: for n, v in row: n = str(n) if (n.startswith(OID_STACK_NUM + '.')): self.count += 1 if (self.count == 1): self.count = 0 return if (self.opts.get_serial): serial_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_SERIAL) if (self.opts.get_plat): platf_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_PLAT) for row in vbtbl: for n, v in row: n = str(n) if (n.startswith(OID_STACK_NUM + '.')): # Get info on this stack member and add to the list m = natlas_node_stack_member() t = n.split('.') idx = t[14] m.num = v m.role = snmpobj.cache_lookup(vbtbl, OID_STACK_ROLE + '.' + idx) m.pri = snmpobj.cache_lookup(vbtbl, OID_STACK_PRI + '.' + idx) m.mac = snmpobj.cache_lookup(vbtbl, OID_STACK_MAC + '.' + idx) m.img = snmpobj.cache_lookup(vbtbl, OID_STACK_IMG + '.' + idx) if (self.opts.get_serial): m.serial = snmpobj.cache_lookup(serial_vbtbl, OID_ENTPHYENTRY_SERIAL + '.' + idx) if (self.opts.get_plat): m.plat = snmpobj.cache_lookup(platf_vbtbl, OID_ENTPHYENTRY_PLAT + '.' + idx) if (m.role == '1'): m.role = 'master' elif (m.role == '2'): m.role = 'member' elif (m.role == '3'): m.role = 'notMember' elif (m.role == '4'): m.role = 'standby' mac_seg = [m.mac[x:x+4] for x in range(2, len(m.mac), 4)] m.mac = '.'.join(mac_seg) self.members.append(m) self.count = len(self.members) if (self.count == 1): self.count = 0 if (self.count > 0): self.enabled = 1
class natlas_node_stack: def __init__(self, snmpobj = None, opts = None): pass def __str__(self): pass def __repr__(self): pass def get_members(self, snmpobj): pass
5
0
18
3
15
0
6
0.02
0
3
1
0
4
4
4
4
77
16
60
18
55
1
61
18
56
21
0
4
25
147,741
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_vlan
class natlas_vlan: def __init__(self, vid, name): self.id = vid self.name = name def __str__(self): return ('<vid=%s,name="%s">' % (self.id, self.name)) def __repr__(self): return self.__str__()
class natlas_vlan: def __init__(self, vid, name): pass def __str__(self): pass def __repr__(self): pass
4
0
2
0
2
0
1
0
0
0
0
0
3
2
3
3
8
0
8
6
4
0
8
6
4
1
0
0
3
147,742
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_node_svi
class natlas_node_svi: def __init__(self, vlan): self.vlan = vlan self.ip = [] def __str__(self): return ('VLAN = %s\nIP = %s' % (self.vlan, self.ip)) def __repr__(self): return ('<vlan=%s,ip="%s">' % (self.vlan, self.ip))
class natlas_node_svi: def __init__(self, vlan): pass def __str__(self): pass def __repr__(self): pass
4
0
2
0
2
0
1
0
0
0
0
0
3
2
3
3
8
0
8
6
4
0
8
6
4
1
0
0
3
147,743
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_node_link
class natlas_node_link: ''' Generic link to another node. CDP and LLDP neighbors are discovered and returned as natlas_node_link objects. ''' def __init__(self): # the linked node self.node = None # details about the link self.link_type = None self.remote_ip = None self.remote_name = None self.vlan = None self.local_native_vlan = None self.local_allowed_vlans = None self.remote_native_vlan = None self.remote_allowed_vlans = None self.local_port = None self.remote_port = None self.local_lag = None self.remote_lag = None self.local_lag_ips = None self.remote_lag_ips = None self.local_if_ip = None self.remote_if_ip = None self.remote_platform = None self.remote_ios = None self.remote_mac = None self.discovered_proto = None def __str__(self): return ( 'link_type = %s\n' \ 'remote_ip = %s\n' \ 'remote_name = %s\n' \ 'vlan = %s\n' \ 'local_native_vlan = %s\n' \ 'local_allowed_vlans = %s\n' \ 'remote_native_vlan = %s\n' \ 'remote_allowed_vlans = %s\n' \ 'local_port = %s\n' \ 'remote_port = %s\n' \ 'local_lag = %s\n' \ 'remote_lag = %s\n' \ 'local_lag_ips = %s\n' \ 'remote_lag_ips = %s\n' \ 'local_if_ip = %s\n' \ 'remote_if_ip = %s\n' \ 'remote_platform = %s\n' \ 'remote_ios = %s\n' \ 'remote_mac = %s\n' \ 'discovered_proto = %s\n' \ % (self.link_type, self.remote_ip, self.remote_name, self.vlan, self.local_native_vlan, self.local_allowed_vlans, self.remote_native_vlan, self.remote_allowed_vlans, self.local_port, self.remote_port, self.local_lag, self.remote_lag, self.local_lag_ips, self.remote_lag_ips, self.local_if_ip, self.remote_if_ip, self.remote_platform, self.remote_ios, self.remote_mac, self.discovered_proto)) def __repr__(self): return ('<local_port="%s",remote_name="%s",remote_port="%s">' % (self.local_port, self.remote_name, self.remote_port))
class natlas_node_link: ''' Generic link to another node. CDP and LLDP neighbors are discovered and returned as natlas_node_link objects. ''' def __init__(self): pass def __str__(self): pass def __repr__(self): pass
4
1
18
0
17
1
1
0.13
0
0
0
0
3
21
3
3
62
3
52
25
48
7
27
25
23
1
0
0
3
147,744
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_node
class natlas_node: class _node_opts: def __init__(self): self.reset() def reset(self, setting=False): self.get_name = setting self.get_ip = setting self.get_plat = setting self.get_ios = setting self.get_router = setting self.get_ospf_id = setting self.get_bgp_las = setting self.get_hsrp_pri = setting self.get_hsrp_vip = setting self.get_serial = setting self.get_stack = setting self.get_stack_details = setting self.get_vss = setting self.get_vss_details = setting self.get_svi = setting self.get_lo = setting self.get_bootf = setting self.get_chassis_info = setting self.get_vpc = setting def __init__(self, ip=None): self.opts = natlas_node._node_opts() self.snmpobj = natlas_snmp() self.links = [] self.discovered = 0 self.name = None self.ip = [ip] self.plat = None self.ios = None self.router = None self.ospf_id = None self.bgp_las = None self.hsrp_pri = None self.hsrp_vip = None self.serial = None self.bootfile = None self.svis = [] self.loopbacks = [] self.vpc_peerlink_if = None self.vpc_peerlink_node = None self.vpc_domain = None self.stack = natlas_node_stack() self.vss = natlas_node_vss() self.cdp_vbtbl = None self.ldp_vbtbl = None self.link_type_vbtbl = None self.lag_vbtbl = None self.vlan_vbtbl = None self.ifname_vbtbl = None self.ifip_vbtbl = None self.svi_vbtbl = None self.ethif_vbtbl = None self.trk_allowed_vbtbl = None self.trk_native_vbtbl = None self.vpc_vbtbl = None self.vlan_vbtbl = None self.vlandesc_vbtbl = None self.arp_vbtbl = None def __str__(self): return ( 'Name = %s\n' \ 'IP = %s\n' \ 'Platform = %s\n' \ 'IOS = %s\n' \ 'Router = %s\n' \ 'OSPF_ID = %s\n' \ 'BGP_LAS = %s\n' \ 'HSRP_PRI = %s\n' \ 'HSRP_VIP = %s\n' \ 'Serials = %s\n' \ 'Bootfile = %s\n' \ 'SVIs = %s\n' \ 'Loopbacks = %s\n' \ 'VPC_Peerlink_If = %s\n' \ 'VPC_Peerlink_Node = %s\n' \ 'VPC_Domain = %s\n' \ 'Stack = %s\n' \ 'VSS = %s\n' 'Links = %s\n' % (self.name, self.ip, self.plat, self.ios, self.router, self.ospf_id, self.bgp_las, self.hsrp_pri, self.hsrp_vip, self.serial, self.bootfile, self.svis, self.loopbacks, self.vpc_peerlink_if, self.vpc_peerlink_node, self.vpc_domain, self.stack, self.vss, self.links) ) def __repr__(self): return ('<name=%s, ip=%s, plat=%s, ios=%s, serial=%s, router=%s, vss=%s, stack=%s>' % (self.name, self.ip, self.plat, self.ios, self.serial, self.router, self.vss, self.stack)) def add_link(self, link): self.links.append(link) # find valid credentials for this node. # try each known IP until one works def try_snmp_creds(self, snmp_creds): if (self.snmpobj.success == 0): for ipaddr in self.ip: if ((ipaddr == '0.0.0.0') | (ipaddr == 'UNKNOWN') | (ipaddr == '')): continue self.snmpobj._ip = ipaddr if (self.snmpobj.get_cred(snmp_creds) == 1): return 1 return 0 # Query this node. # Set .opts and .snmp_creds before calling. def query_node(self): if (self.snmpobj.ver == 0): # call try_snmp_creds() first or it failed to find good creds return 0 snmpobj = self.snmpobj if (self.opts.get_name == True): self.name = self.get_system_name([]) # router if (self.opts.get_router == True): if (self.router == None): self.router = 1 if (snmpobj.get_val(OID_IP_ROUTING) == '1') else 0 if (self.router == 1): # OSPF if (self.opts.get_ospf_id == True): self.ospf_id = snmpobj.get_val(OID_OSPF) if (self.ospf_id != None): self.ospf_id = snmpobj.get_val(OID_OSPF_ID) # BGP if (self.opts.get_bgp_las == True): self.bgp_las = snmpobj.get_val(OID_BGP_LAS) if (self.bgp_las == '0'): # 4500x is reporting 0 with disabled self.bgp_las = None # HSRP if (self.opts.get_hsrp_pri == True): self.hsrp_pri = snmpobj.get_val(OID_HSRP_PRI) if (self.hsrp_pri != None): self.hsrp_vip = snmpobj.get_val(OID_HSRP_VIP) # stack if (self.opts.get_stack): self.stack = natlas_node_stack(snmpobj, self.opts) # vss if (self.opts.get_vss): self.vss = natlas_node_vss(snmpobj, self.opts) # serial if ((self.opts.get_serial == 1) & (self.stack.count == 0) & (self.vss.enabled == 0)): self.serial = snmpobj.get_val(OID_SYS_SERIAL) # SVI if (self.opts.get_svi == True): if (self.svi_vbtbl == None): self.svi_vbtbl = snmpobj.get_bulk(OID_SVI_VLANIF) if (self.ifip_vbtbl == None): self.ifip_vbtbl = snmpobj.get_bulk(OID_IF_IP) for row in self.svi_vbtbl: for n, v in row: n = str(n) vlan = n.split('.')[14] svi = natlas_node_svi(vlan) svi_ips = self.__get_cidrs_from_ifidx(v) svi.ip.extend(svi_ips) self.svis.append(svi) # loopback if (self.opts.get_lo == True): self.ethif_vbtbl = snmpobj.get_bulk(OID_ETH_IF) if (self.ifip_vbtbl == None): self.ifip_vbtbl = snmpobj.get_bulk(OID_IF_IP) for row in self.ethif_vbtbl: for n, v in row: n = str(n) if (n.startswith(OID_ETH_IF_TYPE) & (v == 24)): ifidx = n.split('.')[10] lo_name = snmpobj.cache_lookup(self.ethif_vbtbl, OID_ETH_IF_DESC + '.' + ifidx) lo_ips = self.__get_cidrs_from_ifidx(ifidx) lo = natlas_node_lo(lo_name, lo_ips) self.loopbacks.append(lo) # bootfile if (self.opts.get_bootf): self.bootfile = snmpobj.get_val(OID_SYS_BOOT) # chassis info (serial, IOS, platform) if (self.opts.get_chassis_info): self.__get_chassis_info() # VPC peerlink if (self.opts.get_vpc): self.vpc_domain, self.vpc_peerlink_if = self.__get_vpc_info(self.ethif_vbtbl) # reset the get options self.opts.reset() return 1 def __get_cidrs_from_ifidx(self, ifidx): ips = [] for ifrow in self.ifip_vbtbl: for ifn, ifv in ifrow: ifn = str(ifn) if (ifn.startswith(OID_IF_IP_ADDR)): if (str(ifv) == str(ifidx)): t = ifn.split('.') ip = ".".join(t[10:]) mask = self.snmpobj.cache_lookup(self.ifip_vbtbl, OID_IF_IP_NETM + ip) nbits = util.get_net_bits_from_mask(mask) cidr = '%s/%i' % (ip, nbits) ips.append(cidr) return ips def __cache_common_mibs(self): if (self.link_type_vbtbl == None): self.link_type_vbtbl = self.snmpobj.get_bulk(OID_TRUNK_VTP) if (self.lag_vbtbl == None): self.lag_vbtbl = self.snmpobj.get_bulk(OID_LAG_LACP) if (self.vlan_vbtbl == None): self.vlan_vbtbl = self.snmpobj.get_bulk(OID_IF_VLAN) if (self.ifname_vbtbl == None): self.ifname_vbtbl = self.snmpobj.get_bulk(OID_IFNAME) if (self.trk_allowed_vbtbl == None): self.trk_allowed_vbtbl = self.snmpobj.get_bulk(OID_TRUNK_ALLOW) if (self.trk_native_vbtbl == None): self.trk_native_vbtbl = self.snmpobj.get_bulk(OID_TRUNK_NATIVE) if (self.ifip_vbtbl == None): self.ifip_vbtbl = self.snmpobj.get_bulk(OID_IF_IP) # # Get a list of CDP neighbors. # Returns a list of natlas_node_link's. # Will always return an array. # def get_cdp_neighbors(self): neighbors = [] snmpobj = self.snmpobj # get list of CDP neighbors self.cdp_vbtbl = snmpobj.get_bulk(OID_CDP) if (self.cdp_vbtbl == None): print('No CDP Neighbors Found.') return [] # cache some common MIB trees self.__cache_common_mibs() for row in self.cdp_vbtbl: for name, val in row: name = str(name) # process only if this row is a CDP_DEVID if (name.startswith(OID_CDP_DEVID) == 0): continue t = name.split('.') ifidx = t[14] ifidx2 = t[15] # get remote IP rip = snmpobj.cache_lookup(self.cdp_vbtbl, OID_CDP_IPADDR + '.' + ifidx + '.' + ifidx2) rip = util.convert_ip_int_str(rip) # get local port lport = self.__get_ifname(ifidx) # get remote port rport = snmpobj.cache_lookup(self.cdp_vbtbl, OID_CDP_DEVPORT + '.' + ifidx + '.' + ifidx2) rport = self.shorten_port_name(rport) # get remote platform rplat = snmpobj.cache_lookup(self.cdp_vbtbl, OID_CDP_DEVPLAT + '.' + ifidx + '.' + ifidx2) # get IOS version rios = snmpobj.cache_lookup(self.cdp_vbtbl, OID_CDP_IOS + '.' + ifidx + '.' + ifidx2) if (rios != None): try: rios = binascii.unhexlify(rios[2:]) except: pass rios = self.__format_ios_ver(rios) link = self.__get_node_link_info(ifidx, ifidx2) link.remote_name = val.prettyPrint() link.remote_ip = rip link.discovered_proto = 'cdp' link.local_port = lport link.remote_port = rport link.remote_plat = rplat link.remote_ios = rios neighbors.append(link) return neighbors # # Get a list of LLDP neighbors. # Returns a list of natlas_node_link's # Will always return an array. # def get_lldp_neighbors(self): neighbors = [] snmpobj = self.snmpobj self.lldp_vbtbl = snmpobj.get_bulk(OID_LLDP) if (self.lldp_vbtbl == None): print('No LLDP Neighbors Found.') return [] self.__cache_common_mibs() for row in self.lldp_vbtbl: for name, val in row: name = str(name) if (name.startswith(OID_LLDP_TYPE) == 0): continue t = name.split('.') ifidx = t[12] ifidx2 = t[13] rip = '' for r in self.lldp_vbtbl: for n, v in r: n = str(n) if (n.startswith(OID_LLDP_DEVADDR + '.' + ifidx + '.' + ifidx2)): t2 = n.split('.') rip = '.'.join(t2[16:]) lport = self.__get_ifname(ifidx) rport = snmpobj.cache_lookup(self.lldp_vbtbl, OID_LLDP_DEVPORT + '.' + ifidx + '.' + ifidx2) rport = self.shorten_port_name(rport) devid = snmpobj.cache_lookup(self.lldp_vbtbl, OID_LLDP_DEVID + '.' + ifidx + '.' + ifidx2) try: mac_seg = [devid[x:x+4] for x in xrange(2, len(devid), 4)] devid = '.'.join(mac_seg) except: pass rimg = snmpobj.cache_lookup(self.lldp_vbtbl, OID_LLDP_DEVDESC + '.' + ifidx + '.' + ifidx2) if (rimg != None): try: rimg = binascii.unhexlify(rimg[2:]) except: pass rimg = self.__format_ios_ver(rimg) name = snmpobj.cache_lookup(self.lldp_vbtbl, OID_LLDP_DEVNAME + '.' + ifidx + '.' + ifidx2) if ((name == None) | (name == '')): name = devid link = self.__get_node_link_info(ifidx, ifidx2) link.remote_ip = rip link.remote_name = name link.discovered_proto = 'lldp' link.local_port = lport link.remote_port = rport link.remote_plat = None link.remote_ios = rimg link.remote_mac = devid neighbors.append(link) return neighbors def __get_node_link_info(self, ifidx, ifidx2): snmpobj = self.snmpobj # get link type (trunk ?) link_type = snmpobj.cache_lookup(self.link_type_vbtbl, OID_TRUNK_VTP + '.' + ifidx) native_vlan = None allowed_vlans = 'All' if (link_type == '1'): native_vlan = snmpobj.cache_lookup(self.trk_native_vbtbl, OID_TRUNK_NATIVE + '.' + ifidx) allowed_vlans = snmpobj.cache_lookup(self.trk_allowed_vbtbl, OID_TRUNK_ALLOW + '.' + ifidx) allowed_vlans = self.__parse_allowed_vlans(allowed_vlans) # get LAG membership lag = snmpobj.cache_lookup(self.lag_vbtbl, OID_LAG_LACP + '.' + ifidx) lag_ifname = self.__get_ifname(lag) lag_ips = self.__get_cidrs_from_ifidx(lag) # get VLAN info vlan = snmpobj.cache_lookup(self.vlan_vbtbl, OID_IF_VLAN + '.' + ifidx) # get IP address lifips = self.__get_cidrs_from_ifidx(ifidx) link = natlas_node_link() link.link_type = link_type link.vlan = vlan link.local_native_vlan = native_vlan link.local_allowed_vlans = allowed_vlans link.local_lag = lag_ifname link.local_lag_ips = lag_ips link.remote_lag_ips = [] link.local_if_ip = lifips[0] if len(lifips) else None return link def __parse_allowed_vlans(self, allowed_vlans): if (allowed_vlans.startswith('0x') == False): return 'All' ret = '' group = 0 op = 0 for i in range(2, len(allowed_vlans)): v = int(allowed_vlans[i], 16) for b in range(0, 4): a = v & (0x1 << (3 - b)) vlan = ((i-2)*4)+b if (a): if (op == 1): group += 1 else: if (len(ret)): if (group > 1): ret += '-' ret += str(vlan - 1) if vlan else '1' else: ret += ',%i' % vlan else: ret += str(vlan) group = 0 op = 1 else: if (op == 1): if (len(ret)): if (group > 1): ret += '-%i' % (vlan - 1) op = 0 group = 0 if (op): if (ret == '1'): return 'All' if (group): ret += '-1001' else: ret += ',1001' return ret if len(ret) else 'All' def __get_chassis_info(self): # Get: # Serial number # Platform # IOS # Slow but reliable method by using SNMP directly. # Usually we will get this via CDP. snmpobj = self.snmpobj if ((self.stack.count > 0) | (self.vss.enabled == 1)): # Use opts.get_stack_details # or opts.get_vss_details # for this. return class_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_CLASS) if (self.opts.get_serial): serial_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_SERIAL) if (self.opts.get_plat): platf_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_PLAT) if (self.opts.get_ios): ios_vbtbl = snmpobj.get_bulk(OID_ENTPHYENTRY_SOFTWARE) if (class_vbtbl == None): return for row in class_vbtbl: for n, v in row: n = str(n) if (v != ENTPHYCLASS_CHASSIS): continue t = n.split('.') idx = t[12] if (self.opts.get_serial): self.serial = snmpobj.cache_lookup(serial_vbtbl, OID_ENTPHYENTRY_SERIAL + '.' + idx) if (self.opts.get_plat): self.plat = snmpobj.cache_lookup(platf_vbtbl, OID_ENTPHYENTRY_PLAT + '.' + idx) if (self.opts.get_ios): self.ios = snmpobj.cache_lookup(ios_vbtbl, OID_ENTPHYENTRY_SOFTWARE + '.' + idx) if (self.opts.get_ios): # modular switches might have IOS on a module rather than chassis if (self.ios == ''): for row in class_vbtbl: for n, v in row: n = str(n) if (v != ENTPHYCLASS_MODULE): continue t = n.split('.') idx = t[12] self.ios = snmpobj.cache_lookup(ios_vbtbl, OID_ENTPHYENTRY_SOFTWARE + '.' + idx) if (self.ios != ''): break if (self.ios != ''): break self.ios = self.__format_ios_ver(self.ios) return # # Lookup and format an interface name from a cache table of indexes. # def __get_ifname(self, ifidx): if ((ifidx == None) | (ifidx == OID_ERR)): return 'UNKNOWN' if (self.ifname_vbtbl == None): self.ifname_vbtbl = self.snmpobj.get_bulk(OID_IFNAME) str = self.snmpobj.cache_lookup(self.ifname_vbtbl, OID_IFNAME + '.' + ifidx) str = self.shorten_port_name(str) return str or 'UNKNOWN' def get_system_name(self, domains): return util.shorten_host_name(self.snmpobj.get_val(OID_SYSNAME), domains) # # Normalize a reporeted software vesion string. # def __format_ios_ver(self, img): x = img if (type(img) == bytes): x = img.decode("utf-8") try: img_s = re.search('(Version:? |CCM:)([^ ,$]*)', x) except: return img if (img_s): if (img_s.group(1) == 'CCM:'): return 'CCM %s' % img_s.group(2) return img_s.group(2) return img def get_ipaddr(self): ''' Return the best IP address for this device. Returns the first matching IP: - Lowest Loopback interface - Lowest SVI address/known IP ''' # Loopbacks - first interface if (len(self.loopbacks)): ips = self.loopbacks[0].ips if (len(ips)): ips.sort() return util.strip_slash_masklen(ips[0]) # SVIs + all known - lowest address ips = [] for svi in self.svis: ips.extend(svi.ip) ips.extend(self.ip) if (len(ips)): ips.sort() return util.strip_slash_masklen(ips[0]) return '' def __get_vpc_info(self, ifarr): ''' If VPC is enabled, Return the VPC domain and interface name of the VPC peerlink. ''' if (self.vpc_vbtbl == None): self.vpc_vbtbl = self.snmpobj.get_bulk(OID_VPC_PEERLINK_IF) if ((self.vpc_vbtbl == None) | (len(self.vpc_vbtbl) == 0)): return (None, None) domain = natlas_snmp.get_last_oid_token(self.vpc_vbtbl[0][0][0]) ifidx = str(self.vpc_vbtbl[0][0][1]) ifname = self.snmpobj.cache_lookup(ifarr, OID_ETH_IF_DESC + '.' + ifidx) ifname = self.shorten_port_name(ifname) return (domain, ifname) def get_vlans(self): # use cache if possible if (self.vlan_vbtbl == None): self.vlan_vbtbl = self.snmpobj.get_bulk(OID_VLANS) if (self.vlandesc_vbtbl == None): self.vlandesc_vbtbl = self.snmpobj.get_bulk(OID_VLAN_DESC) arr = [] i = 0 for vlan_row in self.vlan_vbtbl: for vlan_n, vlan_v in vlan_row: # get VLAN ID from OID vlan = natlas_snmp.get_last_oid_token(vlan_n) if (vlan >= 1002): continue arr.append(natlas_vlan(vlan, str(self.vlandesc_vbtbl[i][0][1]))) i = i + 1 return arr def get_arp_table(self): # use cache if possible if (self.arp_vbtbl == None): self.arp_vbtbl = self.snmpobj.get_bulk(OID_ARP) arr = [] for r in self.arp_vbtbl: for n, v in r: n = str(n) if (n.startswith(OID_ARP_VLAN)): tok = n.split('.') ip = '.'.join(tok[11:]) interf = self.__get_ifname(str(v)) mach = self.snmpobj.cache_lookup(self.arp_vbtbl, OID_ARP_MAC+'.'+str(v)+'.'+ip) mac = natlas_mac.mac_hex_to_ascii(mach, 1) atype = self.snmpobj.cache_lookup(self.arp_vbtbl, OID_ARP_TYPE+'.'+str(v)+'.'+ip) atype = int(atype) type_str = 'unknown' if (atype == ARP_TYPE_OTHER): type_str = 'other' elif (atype == ARP_TYPE_INVALID): type_str = 'invalid' elif (atype == ARP_TYPE_DYNAMIC): type_str = 'dynamic' elif (atype == ARP_TYPE_STATIC): type_str = 'static' arr.append(natlas_arp(ip, mac, interf, type_str)) return arr if arr else [] def shorten_port_name(self, port): if (port == OID_ERR): return 'UNKNOWN' if (port != None): port = port.replace('TenGigabitEthernet', 'te') port = port.replace('GigabitEthernet', 'gi') port = port.replace('FastEthernet', 'fa') port = port.replace('port-channel', 'po') port = port.replace('Te', 'te') port = port.replace('Gi', 'gi') port = port.replace('Fa', 'fa') port = port.replace('Po', 'po') return port
class natlas_node: class _node_opts: def __init__(self): pass def reset(self, setting=False): pass def __init__(self): pass def __str__(self): pass def __repr__(self): pass def add_link(self, link): pass def try_snmp_creds(self, snmp_creds): pass def query_node(self): pass def __get_cidrs_from_ifidx(self, ifidx): pass def __cache_common_mibs(self): pass def get_cdp_neighbors(self): pass def get_lldp_neighbors(self): pass def __get_node_link_info(self, ifidx, ifidx2): pass def __parse_allowed_vlans(self, allowed_vlans): pass def __get_chassis_info(self): pass def __get_ifname(self, ifidx): pass def get_system_name(self, domains): pass def __format_ios_ver(self, img): pass def get_ipaddr(self): ''' Return the best IP address for this device. Returns the first matching IP: - Lowest Loopback interface - Lowest SVI address/known IP ''' pass def __get_vpc_info(self, ifarr): ''' If VPC is enabled, Return the VPC domain and interface name of the VPC peerlink. ''' pass def get_vlans(self): pass def get_arp_table(self): pass def shorten_port_name(self, port): pass
25
2
27
4
21
2
6
0.15
0
16
11
0
21
37
21
21
675
121
483
180
458
72
459
180
434
29
0
6
146
147,745
MJL85/natlas
MJL85_natlas/natlas/node.py
natlas.node.natlas_arp
class natlas_arp: def __init__(self, ip, mac, interf, arp_type): self.ip = ip self.mac = mac self.interf = interf self.arp_type = arp_type def __str__(self): return ('<ip="%s",mac="%s",interf="%s",arp_type="%s">' % (self.ip, self.mac, self.interf, self.arp_type)) def __repr__(self): return self.__str__()
class natlas_arp: def __init__(self, ip, mac, interf, arp_type): pass def __str__(self): pass def __repr__(self): pass
4
0
3
0
3
0
1
0
0
0
0
0
3
4
3
3
10
0
10
8
6
0
10
8
6
1
0
0
3
147,746
MJL85/natlas
MJL85_natlas/natlas/network.py
natlas.network.natlas_network
class natlas_network: def __init__(self, conf): self.root_node = None self.nodes = [] self.max_depth = 0 self.config = conf self.verbose = 1 def __str__(self): return ('<root_node="%s", num_nodes=%i>' % (self.root_node.name, len(self.nodes))) def __repr__(self): return self.__str__() def set_max_depth(self, depth): self.max_depth = depth def reset_discovered(self): for n in self.nodes: n.discovered = 0 def set_verbose(self, level): ''' Set the verbose output level for discovery output. Args: Level 0 = no output 1 = normal output ''' self.verbose = level def discover(self, ip): ''' Discover the network starting at the defined root node IP. Recursively enumerate the network tree up to self.depth. Populates self.nodes[] as a list of discovered nodes in the network with self.root_node being the root. This function will discover the network with minimal information. It is enough to define the structure of the network but will not include much data on each node. Call discover_details() after this to update the self.nodes[] array with more info. ''' if (self.verbose > 0): print('Discovery codes:\n' \ ' . depth %s connection error\n' \ ' %s discovering node %s numerating adjacencies\n' \ ' %s include node %s leaf node\n' % (DCODE_ERR_SNMP_STR, DCODE_DISCOVERED_STR, DCODE_STEP_INTO_STR, DCODE_INCLUDE_STR, DCODE_LEAF_STR) ) print('Discovering network...') # Start the process of querying this node and recursing adjacencies. node, new_node = self.__query_node(ip, 'UNKNOWN') self.root_node = node if (node != None): self.nodes.append(node) self.__print_step(node.ip[0], node.name, 0, DCODE_ROOT|DCODE_DISCOVERED) self.__discover_node(node, 0) else: return # we may have missed chassis info for n in self.nodes: if ((n.serial == None) | (n.plat == None) | (n.ios == None)): n.opts.get_chassis_info = True if (n.serial == None): n.opts.get_serial = True if (n.ios == None): n.opts.get_ios = True if (n.plat == None): n.opts.get_plat = True n.query_node() def discover_details(self): ''' Enumerate the discovered nodes from discover() and update the nodes in the array with additional info. ''' if (self.root_node == None): return if (self.verbose > 0): print('\nCollecting node details...') ni = 0 for n in self.nodes: ni = ni + 1 indicator = '+' if (n.snmpobj.success == 0): indicator = '!' if (self.verbose > 0): sys.stdout.write('[%i/%i]%s %s (%s)' % (ni, len(self.nodes), indicator, n.name, n.snmpobj._ip)) sys.stdout.flush() # set what details to discover for this node n.opts.get_router = True n.opts.get_ospf_id = True n.opts.get_bgp_las = True n.opts.get_hsrp_pri = True n.opts.get_hsrp_vip = True n.opts.get_serial = True n.opts.get_stack = True n.opts.get_stack_details = self.config.diagram.get_stack_members n.opts.get_vss = True n.opts.get_vss_details = self.config.diagram.get_vss_members n.opts.get_svi = True n.opts.get_lo = True n.opts.get_vpc = True n.opts.get_ios = True n.opts.get_plat = True start = timer() n.query_node() end = timer() if (self.verbose > 0): print(' %.2f sec' % (end - start)) # There is some back fill information we can populate now that # we know all there is to know. if (self.verbose > 0): print('\nBack filling node details...') for n in self.nodes: # Find and link VPC nodes together for easy reference later if ((n.vpc_domain != None) & (n.vpc_peerlink_node == None)): for link in n.links: if ((link.local_port == n.vpc_peerlink_if) | (link.local_lag == n.vpc_peerlink_if)): n.vpc_peerlink_node = link.node link.node.vpc_peerlink_node = n break def __print_step(self, ip, name, depth, dcodes): if (self.verbose == 0): return if (dcodes & DCODE_DISCOVERED): sys.stdout.write('%-3i' % len(self.nodes)) else: sys.stdout.write(' ') if (dcodes & DCODE_INCLUDE): # flip this off cause we didn't even try dcodes = dcodes & ~DCODE_ERR_SNMP if (dcodes & DCODE_ROOT): sys.stdout.write( DCODE_ROOT_STR ) elif (dcodes & DCODE_CDP): sys.stdout.write( DCODE_CDP_STR ) elif (dcodes & DCODE_LLDP): sys.stdout.write( DCODE_LLDP_STR ) else: sys.stdout.write(' ') status = '' if (dcodes & DCODE_ERR_SNMP): status += DCODE_ERR_SNMP_STR if (dcodes & DCODE_LEAF): status += DCODE_LEAF_STR elif (dcodes & DCODE_INCLUDE): status += DCODE_INCLUDE_STR if (dcodes & DCODE_DISCOVERED): status += DCODE_DISCOVERED_STR elif (dcodes & DCODE_STEP_INTO): status += DCODE_STEP_INTO_STR sys.stdout.write('%3s' % status) for i in range(0, depth): sys.stdout.write('.') name = util.shorten_host_name(name, self.config.host_domains) if (self.verbose > 0): print('%s (%s)' % (name, ip)) def __query_node(self, ip, host): ''' Query this node. Return node details and if we already knew about it or if this is a new node. Don't save the node to the known list, just return info about it. Args: ip: IP Address of the node. host: Hostname of this known (if known from CDP/LLDP) Returns: natlas_node: Node of this object int: NODE_NEW = Newly discovered node NODE_NEWIP = Already knew about this node but not by this IP NODE_KNOWN = Already knew about this node ''' host = util.shorten_host_name(host, self.config.host_domains) node, node_updated = self.__get_known_node(ip, host) if (node == None): # new node node = natlas_node() node.name = host node.ip = [ip] state = NODE_NEW else: # existing node if (node.snmpobj.success == 1): # we already queried this node successfully - return it return (node, NODE_KNOWN) # existing node but we couldn't connect before if (node_updated == 1): state = NODE_NEWIP else: state = NODE_KNOWN node.name = host if (ip == 'UNKNOWN'): return (node, state) # vmware ESX reports the IP as 0.0.0.0 # LLDP can return an empty string for IPs. if ((ip == '0.0.0.0') | (ip == '')): return (node, state) # find valid credentials for this node if (node.try_snmp_creds(self.config.snmp_creds) == 0): return (node, state) node.name = node.get_system_name(self.config.host_domains) if (node.name != host): # the hostname changed (cdp/lldp vs snmp)! # double check we don't already know about this node if (state == NODE_NEW): node2, node_updated2 = self.__get_known_node(ip, host) if ((node2 != None) & (node_updated2 == 0)): return (node, NODE_KNOWN) if (node_updated2 == 1): state = NODE_NEWIP # Finally, if we still don't have a name, use the IP. # e.g. Maybe CDP/LLDP was empty and we dont have good credentials # for this device. A blank name can break Dot. if ((node.name == None) | (node.name == '')): node.name = node.get_ipaddr() node.opts.get_serial = True # CDP/LLDP does not report, need for extended ACL node.query_node() return (node, state) def __get_known_node(self, ip, host): ''' Look for known nodes by IP and HOST. If found by HOST, add the IP if not already known. Return: node: Node, if found. Otherwise None. updated: 1=updated, 0=not updated ''' # already known by IP ? for ex in self.nodes: for exip in ex.ip: if (exip == '0.0.0.0'): continue if (exip == ip): return (ex, 0) # already known by HOST ? node = self.__get_known_node_by_host(host) if (node != None): # node already known if (ip not in node.ip): node.ip.append(ip) return (node, 1) return (node, 0) return (None, 0) def __discover_node(self, node, depth): ''' Given a node, recursively enumerate its adjacencies until we reach the specified depth (>0). Args: node: natlas_node object to enumerate. depth: The depth left that we can go further away from the root. ''' if (node == None): return if (depth >= self.max_depth): return if (node.discovered > 0): return node.discovered = 1 # vmware ESX can report IP as 0.0.0.0 # If we are allowing 0.0.0.0/32 in the config, # then we added it as a leaf, but don't discover it if (node.ip[0] == '0.0.0.0'): return # may be a leaf we couldn't connect to previously if (node.snmpobj.success == 0): return # print some info to stdout dcodes = DCODE_STEP_INTO if (depth == 0): dcodes |= DCODE_ROOT self.__print_step(node.ip[0], node.name, depth, dcodes) # get the cached snmp credentials snmpobj = node.snmpobj # list of valid neighbors to discover next valid_neighbors = [] # get list of neighbors cdp_neighbors = node.get_cdp_neighbors() lldp_neighbors = node.get_lldp_neighbors() neighbors = cdp_neighbors + lldp_neighbors if (len(neighbors) == 0): return for n in neighbors: # some neighbors may not advertise IP addresses - default them to 0.0.0.0 if (n.remote_ip == None): n.remote_ip = '0.0.0.0' # check the ACL acl_action = self.__match_node_acl(n.remote_ip, n.remote_name) if (acl_action == 'deny'): # deny inclusion of this node continue dcodes = DCODE_DISCOVERED child = None if (acl_action == 'include'): # include this node but do not discover it child = natlas_node() child.ip = [n.remote_ip] dcodes |= DCODE_INCLUDE else: # discover this node child, query_result = self.__query_node(n.remote_ip, n.remote_name) # if we couldn't pull info from SNMP fill in what we know if (child.snmpobj.success == 0): child.name = util.shorten_host_name(n.remote_name, self.config.host_domains) dcodes |= DCODE_ERR_SNMP # need to check the ACL again for extended ops (we have more info) acl_action = self.__match_node_acl(n.remote_ip, n.remote_name, n.remote_plat, n.remote_ios, child.serial) if (acl_action == 'deny'): continue if (query_result == NODE_NEW): self.nodes.append(child) if (acl_action == 'leaf'): dcodes |= DCODE_LEAF if (n.discovered_proto == 'cdp'): dcodes |= DCODE_CDP if (n.discovered_proto == 'lldp'): dcodes |= DCODE_LLDP self.__print_step(n.remote_ip, n.remote_name, depth+1, dcodes) # CDP/LLDP advertises the platform child.plat = n.remote_plat child.ios = n.remote_ios # add the discovered node to the link object and link to the parent n.node = child self.__add_link(node, n) # if we need to discover this node then add it to the list if ((query_result == NODE_NEW) & (acl_action != 'leaf') & (acl_action != 'include')): valid_neighbors.append(child) # discover the valid neighbors for n in valid_neighbors: self.__discover_node(n, depth+1) def __match_node_acl(self, ip, host, platform=None, software=None, serial=None): for acl in self.config.discover_acl: if (acl.type == 'ip'): if (self.__match_ip(ip, acl.str)): return acl.action elif (acl.type == 'host'): if (self.__match_strpattern(host, acl.str)): return acl.action elif (acl.type == 'platform'): if ((platform != None) and self.__match_strpattern(platform, acl.str)): return acl.action elif (acl.type == 'software'): if ((software != None) and self.__match_strpattern(software, acl.str)): return acl.action elif (acl.type == 'serial'): if ((serial != None) and self.__match_strpattern(serial, acl.str)): return acl.action return 'deny' def __match_ip(self, ip, cidr): if (cidr == 'any'): return 1 validate = re.match('^([0-2]?[0-9]?[0-9]\.){3}[0-2]?[0-9]?[0-9]$', ip) if (validate == None): return 0 if (USE_NETADDR): if (ip in IPNetwork(cidr)): return 1 else: if (util.is_ipv4_in_cidr(ip, cidr)): return 1 return 0 def __match_strpattern(self, str, pattern): if (str == '*'): return 1 if (re.search(pattern, str)): return 1 return 0 # # Add or update a link. # Return # 0 - Found an existing link and updated it # 1 - Added as a new link # def __add_link(self, node, link): if (link.node.discovered == 1): # both nodes have been discovered, # so try to update existing reverse link info # instead of adding a new link for n in self.nodes: # find the child, which was the original parent if (n.name == link.node.name): # find the existing link for ex_link in n.links: if ((ex_link.node.name == node.name) & (ex_link.local_port == link.remote_port)): if ((link.local_if_ip != 'UNKNOWN') & (ex_link.remote_if_ip == None)): ex_link.remote_if_ip = link.local_if_ip if ((link.local_lag != 'UNKNOWN') & (ex_link.remote_lag == None)): ex_link.remote_lag = link.local_lag if ((len(link.local_lag_ips) == 0) & len(ex_link.remote_lag_ips)): ex_link.remote_lag_ips = link.local_lag_ips if ((link.local_native_vlan != None) & (ex_link.remote_native_vlan == None)): ex_link.remote_native_vlan = link.local_native_vlan if ((link.local_allowed_vlans != None) & (ex_link.remote_allowed_vlans == None)): ex_link.remote_allowed_vlans = link.local_allowed_vlans return 0 else: for ex_link in node.links: if ((ex_link.node.name == link.node.name) & (ex_link.local_port == link.local_port)): # haven't discovered yet but somehow we have this link twice. # maybe from different discovery processes? return 0 node.add_link(link) return 1 def __get_known_node_by_host(self, hostname): ''' Determine if the node is already known by hostname. If it is, return it. ''' for n in self.nodes: if (n.name == hostname): return n return None
class natlas_network: def __init__(self, conf): pass def __str__(self): pass def __repr__(self): pass def set_max_depth(self, depth): pass def reset_discovered(self): pass def set_verbose(self, level): ''' Set the verbose output level for discovery output. Args: Level 0 = no output 1 = normal output ''' pass def discover(self, ip): ''' Discover the network starting at the defined root node IP. Recursively enumerate the network tree up to self.depth. Populates self.nodes[] as a list of discovered nodes in the network with self.root_node being the root. This function will discover the network with minimal information. It is enough to define the structure of the network but will not include much data on each node. Call discover_details() after this to update the self.nodes[] array with more info. ''' pass def discover_details(self): ''' Enumerate the discovered nodes from discover() and update the nodes in the array with additional info. ''' pass def __print_step(self, ip, name, depth, dcodes): pass def __query_node(self, ip, host): ''' Query this node. Return node details and if we already knew about it or if this is a new node. Don't save the node to the known list, just return info about it. Args: ip: IP Address of the node. host: Hostname of this known (if known from CDP/LLDP) Returns: natlas_node: Node of this object int: NODE_NEW = Newly discovered node NODE_NEWIP = Already knew about this node but not by this IP NODE_KNOWN = Already knew about this node ''' pass def __get_known_node(self, ip, host): ''' Look for known nodes by IP and HOST. If found by HOST, add the IP if not already known. Return: node: Node, if found. Otherwise None. updated: 1=updated, 0=not updated ''' pass def __discover_node(self, node, depth): ''' Given a node, recursively enumerate its adjacencies until we reach the specified depth (>0). Args: node: natlas_node object to enumerate. depth: The depth left that we can go further away from the root. ''' pass def __match_node_acl(self, ip, host, platform=None, software=None, serial=None): pass def __match_ip(self, ip, cidr): pass def __match_strpattern(self, str, pattern): pass def __add_link(self, node, link): pass def __get_known_node_by_host(self, hostname): ''' Determine if the node is already known by hostname. If it is, return it. ''' pass
18
7
26
4
17
6
7
0.37
0
3
2
0
17
5
17
17
476
85
286
55
268
106
275
55
257
20
0
6
117
147,747
MJL85/natlas
MJL85_natlas/natlas/node_stack.py
natlas.node_stack.natlas_node_stack_member
class natlas_node_stack_member: def __init__(self): self.opts = None self.num = 0 self.role = 0 self.pri = 0 self.mac = None self.img = None self.serial = None self.plat = None def __str__(self): return ('<num=%s,role=%s,serial=%s>' % (self.num, self.role, self.serial)) def __repr__(self): return self.__str__()
class natlas_node_stack_member: def __init__(self): pass def __str__(self): pass def __repr__(self): pass
4
0
4
0
4
0
1
0
0
0
0
0
3
8
3
3
16
2
14
12
10
0
14
12
10
1
0
0
3