Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
topic-classification
Size:
10K - 100K
ArXiv:
License:
metadata
annotations_creators:
- human-annotated
language:
- bbc
- bew
- bug
- jav
- mad
- mak
- min
- mui
- rej
- sun
license: apache-2.0
multilinguality: multilingual
task_categories:
- text-classification
task_ids:
- topic-classification
dataset_info:
- config_name: bew
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2220747
num_examples: 2650
- name: validation
num_bytes: 362685
num_examples: 435
- name: test
num_bytes: 672817
num_examples: 800
download_size: 2004559
dataset_size: 3256249
- config_name: btk
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 944040
num_examples: 1350
- name: validation
num_bytes: 195369
num_examples: 275
- name: test
num_bytes: 347847
num_examples: 500
download_size: 900271
dataset_size: 1487256
- config_name: bug
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 70660
num_examples: 93
- name: validation
num_bytes: 38034
num_examples: 50
- name: test
num_bytes: 229420
num_examples: 300
download_size: 211189
dataset_size: 338114
- config_name: jav
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1874481
num_examples: 2650
- name: validation
num_bytes: 316470
num_examples: 448
- name: test
num_bytes: 570020
num_examples: 800
download_size: 1656133
dataset_size: 2760971
- config_name: mad
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1317275
num_examples: 1800
- name: validation
num_bytes: 267502
num_examples: 367
- name: test
num_bytes: 513718
num_examples: 700
download_size: 1305204
dataset_size: 2098495
- config_name: mak
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1108367
num_examples: 1500
- name: validation
num_bytes: 277160
num_examples: 376
- name: test
num_bytes: 517192
num_examples: 700
download_size: 1145982
dataset_size: 1902719
- config_name: min
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 1795445
num_examples: 2400
- name: validation
num_bytes: 301552
num_examples: 399
- name: test
num_bytes: 599119
num_examples: 800
download_size: 1582344
dataset_size: 2696116
- config_name: mui
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 135609
num_examples: 168
- name: validation
num_bytes: 65749
num_examples: 80
- name: test
num_bytes: 324566
num_examples: 400
download_size: 318343
dataset_size: 525924
- config_name: rej
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 79235
num_examples: 105
- name: validation
num_bytes: 38275
num_examples: 50
- name: test
num_bytes: 266553
num_examples: 350
download_size: 219840
dataset_size: 384063
- config_name: sun
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 2191367
num_examples: 2800
- name: validation
num_bytes: 369686
num_examples: 468
- name: test
num_bytes: 701832
num_examples: 900
download_size: 1965937
dataset_size: 3262885
configs:
- config_name: bew
data_files:
- split: train
path: bew/train-*
- split: validation
path: bew/validation-*
- split: test
path: bew/test-*
- config_name: btk
data_files:
- split: train
path: btk/train-*
- split: validation
path: btk/validation-*
- split: test
path: btk/test-*
- config_name: bug
data_files:
- split: train
path: bug/train-*
- split: validation
path: bug/validation-*
- split: test
path: bug/test-*
- config_name: jav
data_files:
- split: train
path: jav/train-*
- split: validation
path: jav/validation-*
- split: test
path: jav/test-*
- config_name: mad
data_files:
- split: train
path: mad/train-*
- split: validation
path: mad/validation-*
- split: test
path: mad/test-*
- config_name: mak
data_files:
- split: train
path: mak/train-*
- split: validation
path: mak/validation-*
- split: test
path: mak/test-*
- config_name: min
data_files:
- split: train
path: min/train-*
- split: validation
path: min/validation-*
- split: test
path: min/test-*
- config_name: mui
data_files:
- split: train
path: mui/train-*
- split: validation
path: mui/validation-*
- split: test
path: mui/test-*
- config_name: rej
data_files:
- split: train
path: rej/train-*
- split: validation
path: rej/validation-*
- split: test
path: rej/test-*
- config_name: sun
data_files:
- split: train
path: sun/train-*
- split: validation
path: sun/validation-*
- split: test
path: sun/test-*
tags:
- mteb
- text
NusaParagraphTopicClassification is a multi-class topic classification on 10 Indonesian languages.
Task category | t2c |
Domains | Non-fiction, Fiction, Written |
Reference | https://github.com/IndoNLP/nusa-writes |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["NusaParagraphTopicClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{cahyawijaya-etal-2023-nusawrites,
address = {Nusa Dua, Bali},
author = {Cahyawijaya, Samuel and Lovenia, Holy and Koto, Fajri and Adhista, Dea and Dave, Emmanuel and Oktavianti, Sarah and Akbar, Salsabil and Lee, Jhonson and Shadieq, Nuur and Cenggoro, Tjeng Wawan and Linuwih, Hanung and Wilie, Bryan and Muridan, Galih and Winata, Genta and Moeljadi, David and Aji, Alham Fikri and Purwarianti, Ayu and Fung, Pascale},
booktitle = {Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)},
editor = {Park, Jong C. and Arase, Yuki and Hu, Baotian and Lu, Wei and Wijaya, Derry and Purwarianti, Ayu and Krisnadhi, Adila Alfa},
month = nov,
pages = {921--945},
publisher = {Association for Computational Linguistics},
title = {NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages},
url = {https://aclanthology.org/2023.ijcnlp-main.60},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("NusaParagraphTopicClassification")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 6250,
"number_of_characters": 4629468,
"number_texts_intersect_with_train": 1,
"min_text_length": 502,
"average_text_length": 740.71488,
"max_text_length": 1849,
"unique_text": 6250,
"unique_labels": 8,
"labels": {
"0": {
"count": 1198
},
"3": {
"count": 778
},
"1": {
"count": 851
},
"7": {
"count": 440
},
"5": {
"count": 580
},
"2": {
"count": 928
},
"6": {
"count": 819
},
"4": {
"count": 656
}
},
"hf_subset_descriptive_stats": {
"btk": {
"num_samples": 500,
"number_of_characters": 341829,
"number_texts_intersect_with_train": 0,
"min_text_length": 530,
"average_text_length": 683.658,
"max_text_length": 1777,
"unique_text": 500,
"unique_labels": 8,
"labels": {
"0": {
"count": 110
},
"3": {
"count": 64
},
"1": {
"count": 49
},
"7": {
"count": 31
},
"5": {
"count": 53
},
"2": {
"count": 84
},
"6": {
"count": 48
},
"4": {
"count": 61
}
}
},
"bew": {
"num_samples": 800,
"number_of_characters": 648577,
"number_texts_intersect_with_train": 0,
"min_text_length": 561,
"average_text_length": 810.72125,
"max_text_length": 1849,
"unique_text": 800,
"unique_labels": 8,
"labels": {
"6": {
"count": 119
},
"4": {
"count": 71
},
"0": {
"count": 143
},
"7": {
"count": 71
},
"1": {
"count": 122
},
"3": {
"count": 100
},
"5": {
"count": 74
},
"2": {
"count": 100
}
}
},
"bug": {
"num_samples": 300,
"number_of_characters": 225792,
"number_texts_intersect_with_train": 0,
"min_text_length": 594,
"average_text_length": 752.64,
"max_text_length": 1159,
"unique_text": 300,
"unique_labels": 8,
"labels": {
"7": {
"count": 33
},
"4": {
"count": 13
},
"1": {
"count": 33
},
"5": {
"count": 37
},
"0": {
"count": 65
},
"3": {
"count": 71
},
"2": {
"count": 33
},
"6": {
"count": 15
}
}
},
"jav": {
"num_samples": 800,
"number_of_characters": 560251,
"number_texts_intersect_with_train": 0,
"min_text_length": 578,
"average_text_length": 700.31375,
"max_text_length": 1190,
"unique_text": 800,
"unique_labels": 8,
"labels": {
"4": {
"count": 101
},
"6": {
"count": 125
},
"1": {
"count": 112
},
"3": {
"count": 94
},
"7": {
"count": 36
},
"2": {
"count": 106
},
"5": {
"count": 113
},
"0": {
"count": 113
}
}
},
"mad": {
"num_samples": 700,
"number_of_characters": 504078,
"number_texts_intersect_with_train": 0,
"min_text_length": 583,
"average_text_length": 720.1114285714285,
"max_text_length": 1128,
"unique_text": 700,
"unique_labels": 8,
"labels": {
"1": {
"count": 107
},
"7": {
"count": 53
},
"6": {
"count": 94
},
"0": {
"count": 187
},
"3": {
"count": 61
},
"5": {
"count": 16
},
"4": {
"count": 59
},
"2": {
"count": 123
}
}
},
"mak": {
"num_samples": 700,
"number_of_characters": 506143,
"number_texts_intersect_with_train": 0,
"min_text_length": 526,
"average_text_length": 723.0614285714286,
"max_text_length": 1153,
"unique_text": 700,
"unique_labels": 8,
"labels": {
"0": {
"count": 166
},
"4": {
"count": 69
},
"6": {
"count": 82
},
"1": {
"count": 96
},
"7": {
"count": 53
},
"2": {
"count": 108
},
"3": {
"count": 94
},
"5": {
"count": 32
}
}
},
"min": {
"num_samples": 800,
"number_of_characters": 589491,
"number_texts_intersect_with_train": 1,
"min_text_length": 541,
"average_text_length": 736.86375,
"max_text_length": 1571,
"unique_text": 800,
"unique_labels": 8,
"labels": {
"6": {
"count": 93
},
"3": {
"count": 78
},
"0": {
"count": 156
},
"4": {
"count": 73
},
"5": {
"count": 101
},
"7": {
"count": 59
},
"2": {
"count": 128
},
"1": {
"count": 112
}
}
},
"mui": {
"num_samples": 400,
"number_of_characters": 319747,
"number_texts_intersect_with_train": 0,
"min_text_length": 593,
"average_text_length": 799.3675,
"max_text_length": 1524,
"unique_text": 400,
"unique_labels": 7,
"labels": {
"6": {
"count": 65
},
"1": {
"count": 65
},
"4": {
"count": 65
},
"7": {
"count": 30
},
"3": {
"count": 55
},
"0": {
"count": 60
},
"2": {
"count": 60
}
}
},
"rej": {
"num_samples": 350,
"number_of_characters": 245109,
"number_texts_intersect_with_train": 0,
"min_text_length": 502,
"average_text_length": 700.3114285714286,
"max_text_length": 1067,
"unique_text": 350,
"unique_labels": 8,
"labels": {
"0": {
"count": 65
},
"5": {
"count": 33
},
"1": {
"count": 31
},
"6": {
"count": 37
},
"4": {
"count": 46
},
"2": {
"count": 71
},
"7": {
"count": 15
},
"3": {
"count": 52
}
}
},
"sun": {
"num_samples": 900,
"number_of_characters": 688451,
"number_texts_intersect_with_train": 0,
"min_text_length": 543,
"average_text_length": 764.9455555555555,
"max_text_length": 1425,
"unique_text": 900,
"unique_labels": 8,
"labels": {
"5": {
"count": 121
},
"4": {
"count": 98
},
"6": {
"count": 141
},
"3": {
"count": 109
},
"7": {
"count": 59
},
"1": {
"count": 124
},
"2": {
"count": 115
},
"0": {
"count": 133
}
}
}
}
},
"train": {
"num_samples": 15516,
"number_of_characters": 11485555,
"number_texts_intersect_with_train": null,
"min_text_length": 504,
"average_text_length": 740.2394302655324,
"max_text_length": 2300,
"unique_text": 15514,
"unique_labels": 8,
"labels": {
"3": {
"count": 1890
},
"4": {
"count": 1664
},
"0": {
"count": 2997
},
"5": {
"count": 1511
},
"6": {
"count": 1765
},
"2": {
"count": 2350
},
"1": {
"count": 2233
},
"7": {
"count": 1106
}
},
"hf_subset_descriptive_stats": {
"btk": {
"num_samples": 1350,
"number_of_characters": 927651,
"number_texts_intersect_with_train": null,
"min_text_length": 504,
"average_text_length": 687.1488888888889,
"max_text_length": 2267,
"unique_text": 1350,
"unique_labels": 8,
"labels": {
"3": {
"count": 176
},
"4": {
"count": 152
},
"0": {
"count": 288
},
"5": {
"count": 129
},
"6": {
"count": 124
},
"2": {
"count": 209
},
"1": {
"count": 184
},
"7": {
"count": 88
}
}
},
"bew": {
"num_samples": 2650,
"number_of_characters": 2145717,
"number_texts_intersect_with_train": null,
"min_text_length": 565,
"average_text_length": 809.7045283018867,
"max_text_length": 2300,
"unique_text": 2650,
"unique_labels": 8,
"labels": {
"5": {
"count": 308
},
"7": {
"count": 178
},
"0": {
"count": 482
},
"3": {
"count": 331
},
"1": {
"count": 399
},
"6": {
"count": 299
},
"2": {
"count": 341
},
"4": {
"count": 312
}
}
},
"bug": {
"num_samples": 93,
"number_of_characters": 69528,
"number_texts_intersect_with_train": null,
"min_text_length": 608,
"average_text_length": 747.6129032258065,
"max_text_length": 965,
"unique_text": 93,
"unique_labels": 8,
"labels": {
"2": {
"count": 7
},
"4": {
"count": 5
},
"7": {
"count": 10
},
"1": {
"count": 12
},
"6": {
"count": 4
},
"3": {
"count": 20
},
"5": {
"count": 15
},
"0": {
"count": 20
}
}
},
"jav": {
"num_samples": 2650,
"number_of_characters": 1841858,
"number_texts_intersect_with_train": null,
"min_text_length": 556,
"average_text_length": 695.0407547169812,
"max_text_length": 1354,
"unique_text": 2650,
"unique_labels": 8,
"labels": {
"5": {
"count": 337
},
"0": {
"count": 416
},
"1": {
"count": 338
},
"3": {
"count": 337
},
"4": {
"count": 343
},
"6": {
"count": 328
},
"2": {
"count": 372
},
"7": {
"count": 179
}
}
},
"mad": {
"num_samples": 1800,
"number_of_characters": 1293049,
"number_texts_intersect_with_train": null,
"min_text_length": 566,
"average_text_length": 718.3605555555556,
"max_text_length": 1157,
"unique_text": 1800,
"unique_labels": 8,
"labels": {
"0": {
"count": 483
},
"3": {
"count": 182
},
"2": {
"count": 303
},
"1": {
"count": 303
},
"6": {
"count": 204
},
"5": {
"count": 67
},
"4": {
"count": 130
},
"7": {
"count": 128
}
}
},
"mak": {
"num_samples": 1500,
"number_of_characters": 1084894,
"number_texts_intersect_with_train": null,
"min_text_length": 504,
"average_text_length": 723.2626666666666,
"max_text_length": 1187,
"unique_text": 1500,
"unique_labels": 8,
"labels": {
"0": {
"count": 332
},
"7": {
"count": 111
},
"3": {
"count": 223
},
"2": {
"count": 247
},
"1": {
"count": 226
},
"4": {
"count": 159
},
"6": {
"count": 146
},
"5": {
"count": 56
}
}
},
"min": {
"num_samples": 2400,
"number_of_characters": 1766506,
"number_texts_intersect_with_train": null,
"min_text_length": 520,
"average_text_length": 736.0441666666667,
"max_text_length": 1300,
"unique_text": 2398,
"unique_labels": 8,
"labels": {
"1": {
"count": 361
},
"4": {
"count": 193
},
"7": {
"count": 169
},
"2": {
"count": 415
},
"6": {
"count": 238
},
"0": {
"count": 540
},
"3": {
"count": 231
},
"5": {
"count": 253
}
}
},
"mui": {
"num_samples": 168,
"number_of_characters": 133585,
"number_texts_intersect_with_train": null,
"min_text_length": 616,
"average_text_length": 795.1488095238095,
"max_text_length": 1663,
"unique_text": 168,
"unique_labels": 7,
"labels": {
"3": {
"count": 36
},
"0": {
"count": 29
},
"6": {
"count": 27
},
"2": {
"count": 26
},
"1": {
"count": 20
},
"4": {
"count": 21
},
"7": {
"count": 9
}
}
},
"rej": {
"num_samples": 105,
"number_of_characters": 72800,
"number_texts_intersect_with_train": null,
"min_text_length": 539,
"average_text_length": 693.3333333333334,
"max_text_length": 935,
"unique_text": 105,
"unique_labels": 8,
"labels": {
"3": {
"count": 14
},
"0": {
"count": 19
},
"5": {
"count": 13
},
"4": {
"count": 13
},
"1": {
"count": 12
},
"2": {
"count": 21
},
"6": {
"count": 8
},
"7": {
"count": 5
}
}
},
"sun": {
"num_samples": 2800,
"number_of_characters": 2149967,
"number_texts_intersect_with_train": null,
"min_text_length": 562,
"average_text_length": 767.8453571428571,
"max_text_length": 1764,
"unique_text": 2800,
"unique_labels": 8,
"labels": {
"0": {
"count": 388
},
"7": {
"count": 229
},
"4": {
"count": 336
},
"3": {
"count": 340
},
"1": {
"count": 378
},
"5": {
"count": 333
},
"6": {
"count": 387
},
"2": {
"count": 409
}
}
}
}
}
}
This dataset card was automatically generated using MTEB