Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
vatolinalex's picture
Upload dataset
1f958ea verified
metadata
annotations_creators:
  - human-annotated
language:
  - deu
  - eng
  - jpn
license: cc-by-4.0
multilinguality: multilingual
task_categories:
  - text-classification
task_ids: []
dataset_info:
  - config_name: de
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 837406.4973214286
        num_examples: 5587
      - name: validation
        num_bytes: 72051
        num_examples: 466
      - name: test
        num_bytes: 71587.15236051503
        num_examples: 463
    download_size: 564711
    dataset_size: 981044.6496819437
  - config_name: en
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 548743
        num_examples: 4018
      - name: validation
        num_bytes: 46405
        num_examples: 335
      - name: test
        num_bytes: 46405
        num_examples: 335
    download_size: 354903
    dataset_size: 641553
  - config_name: en-ext
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 1053303.862875
        num_examples: 7997
      - name: validation
        num_bytes: 87748
        num_examples: 666
      - name: test
        num_bytes: 87748
        num_examples: 666
    download_size: 677217
    dataset_size: 1228799.862875
  - config_name: ja
    features:
      - name: text
        dtype: string
      - name: label
        dtype: int32
      - name: label_text
        dtype: string
    splits:
      - name: train
        num_bytes: 22487.858571428573
        num_examples: 146
      - name: validation
        num_bytes: 1723.6244635193134
        num_examples: 11
      - name: test
        num_bytes: 1723.6244635193134
        num_examples: 11
    download_size: 32658
    dataset_size: 25935.1074984672
configs:
  - config_name: de
    data_files:
      - split: train
        path: de/train-*
      - split: validation
        path: de/validation-*
      - split: test
        path: de/test-*
  - config_name: en
    data_files:
      - split: train
        path: en/train-*
      - split: validation
        path: en/validation-*
      - split: test
        path: en/test-*
  - config_name: en-ext
    data_files:
      - split: train
        path: en-ext/train-*
      - split: validation
        path: en-ext/validation-*
      - split: test
        path: en-ext/test-*
  - config_name: ja
    data_files:
      - split: train
        path: ja/train-*
      - split: validation
        path: ja/validation-*
      - split: test
        path: ja/test-*
tags:
  - mteb
  - text

AmazonCounterfactualClassification

An MTEB dataset
Massive Text Embedding Benchmark

A collection of Amazon customer reviews annotated for counterfactual detection pair classification.

Task category t2c
Domains Reviews, Written
Reference https://arxiv.org/abs/2104.06893

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["AmazonCounterfactualClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{oneill-etal-2021-wish,
  abstract = {Counterfactual statements describe events that did not or cannot take place. We consider the problem of counterfactual detection (CFD) in product reviews. For this purpose, we annotate a multilingual CFD dataset from Amazon product reviews covering counterfactual statements written in English, German, and Japanese languages. The dataset is unique as it contains counterfactuals in multiple languages, covers a new application area of e-commerce reviews, and provides high quality professional annotations. We train CFD models using different text representation methods and classifiers. We find that these models are robust against the selectional biases introduced due to cue phrase-based sentence selection. Moreover, our CFD dataset is compatible with prior datasets and can be merged to learn accurate CFD models. Applying machine translation on English counterfactual examples to create multilingual data performs poorly, demonstrating the language-specificity of this problem, which has been ignored so far.},
  address = {Online and Punta Cana, Dominican Republic},
  author = {O{'}Neill, James  and
Rozenshtein, Polina  and
Kiryo, Ryuichi  and
Kubota, Motoko  and
Bollegala, Danushka},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
  doi = {10.18653/v1/2021.emnlp-main.568},
  editor = {Moens, Marie-Francine  and
Huang, Xuanjing  and
Specia, Lucia  and
Yih, Scott Wen-tau},
  month = nov,
  pages = {7092--7108},
  publisher = {Association for Computational Linguistics},
  title = {{I} Wish {I} Would Have Loved This One, But {I} Didn{'}t {--} A Multilingual Dataset for Counterfactual Detection in Product Review},
  url = {https://aclanthology.org/2021.emnlp-main.568},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("AmazonCounterfactualClassification")

desc_stats = task.metadata.descriptive_stats
{
    "validation": {
        "num_samples": 1933,
        "number_of_characters": 183142,
        "number_texts_intersect_with_train": 552,
        "min_text_length": 9,
        "average_text_length": 94.74495602690119,
        "max_text_length": 525,
        "unique_texts": 1903,
        "min_labels_per_text": 1,
        "average_label_per_text": 1.0,
        "max_labels_per_text": 1,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 1437
            },
            "1": {
                "count": 496
            }
        },
        "hf_subset_descriptive_stats": {
            "en-ext": {
                "num_samples": 666,
                "number_of_characters": 68028,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 31,
                "average_text_length": 102.14414414414415,
                "max_text_length": 370,
                "unique_texts": 666,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 599
                    },
                    "1": {
                        "count": 67
                    }
                }
            },
            "en": {
                "num_samples": 335,
                "number_of_characters": 36583,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 36,
                "average_text_length": 109.20298507462687,
                "max_text_length": 470,
                "unique_texts": 335,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 277
                    },
                    "1": {
                        "count": 58
                    }
                }
            },
            "de": {
                "num_samples": 466,
                "number_of_characters": 58251,
                "number_texts_intersect_with_train": 3,
                "min_text_length": 22,
                "average_text_length": 125.00214592274678,
                "max_text_length": 525,
                "unique_texts": 466,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 141
                    },
                    "1": {
                        "count": 325
                    }
                }
            },
            "ja": {
                "num_samples": 466,
                "number_of_characters": 20280,
                "number_texts_intersect_with_train": 13,
                "min_text_length": 9,
                "average_text_length": 43.51931330472103,
                "max_text_length": 191,
                "unique_texts": 464,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 420
                    },
                    "1": {
                        "count": 46
                    }
                }
            }
        }
    },
    "test": {
        "num_samples": 3872,
        "number_of_characters": 361556,
        "number_texts_intersect_with_train": 1128,
        "min_text_length": 6,
        "average_text_length": 93.37706611570248,
        "max_text_length": 568,
        "unique_texts": 3779,
        "min_labels_per_text": 1,
        "average_label_per_text": 1.0,
        "max_labels_per_text": 1,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 1016
            },
            "0": {
                "count": 2856
            }
        },
        "hf_subset_descriptive_stats": {
            "en-ext": {
                "num_samples": 1334,
                "number_of_characters": 135364,
                "number_texts_intersect_with_train": 1,
                "min_text_length": 6,
                "average_text_length": 101.47226386806597,
                "max_text_length": 420,
                "unique_texts": 1333,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 139
                    },
                    "0": {
                        "count": 1195
                    }
                }
            },
            "en": {
                "num_samples": 670,
                "number_of_characters": 71118,
                "number_texts_intersect_with_train": 0,
                "min_text_length": 32,
                "average_text_length": 106.14626865671642,
                "max_text_length": 541,
                "unique_texts": 670,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 539
                    },
                    "1": {
                        "count": 131
                    }
                }
            },
            "de": {
                "num_samples": 934,
                "number_of_characters": 115432,
                "number_texts_intersect_with_train": 3,
                "min_text_length": 23,
                "average_text_length": 123.58886509635974,
                "max_text_length": 568,
                "unique_texts": 933,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 284
                    },
                    "1": {
                        "count": 650
                    }
                }
            },
            "ja": {
                "num_samples": 934,
                "number_of_characters": 39642,
                "number_texts_intersect_with_train": 27,
                "min_text_length": 6,
                "average_text_length": 42.44325481798715,
                "max_text_length": 165,
                "unique_texts": 934,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 838
                    },
                    "1": {
                        "count": 96
                    }
                }
            }
        }
    },
    "train": {
        "num_samples": 23218,
        "number_of_characters": 2161346,
        "number_texts_intersect_with_train": null,
        "min_text_length": 6,
        "average_text_length": 93.08924110603841,
        "max_text_length": 572,
        "unique_texts": 19945,
        "min_labels_per_text": 1,
        "average_label_per_text": 1.0,
        "max_labels_per_text": 1,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 17239
            },
            "1": {
                "count": 5979
            }
        },
        "hf_subset_descriptive_stats": {
            "en-ext": {
                "num_samples": 8000,
                "number_of_characters": 816814,
                "number_texts_intersect_with_train": null,
                "min_text_length": 6,
                "average_text_length": 102.10175,
                "max_text_length": 541,
                "unique_texts": 7998,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 7176
                    },
                    "1": {
                        "count": 824
                    }
                }
            },
            "en": {
                "num_samples": 4018,
                "number_of_characters": 431133,
                "number_texts_intersect_with_train": null,
                "min_text_length": 33,
                "average_text_length": 107.30039820806371,
                "max_text_length": 514,
                "unique_texts": 4018,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 765
                    },
                    "0": {
                        "count": 3253
                    }
                }
            },
            "de": {
                "num_samples": 5600,
                "number_of_characters": 674491,
                "number_texts_intersect_with_train": null,
                "min_text_length": 19,
                "average_text_length": 120.44482142857143,
                "max_text_length": 572,
                "unique_texts": 5587,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "1": {
                        "count": 3865
                    },
                    "0": {
                        "count": 1735
                    }
                }
            },
            "ja": {
                "num_samples": 5600,
                "number_of_characters": 238908,
                "number_texts_intersect_with_train": null,
                "min_text_length": 8,
                "average_text_length": 42.662142857142854,
                "max_text_length": 190,
                "unique_texts": 5530,
                "min_labels_per_text": 1,
                "average_label_per_text": 1.0,
                "max_labels_per_text": 1,
                "unique_labels": 2,
                "labels": {
                    "0": {
                        "count": 5075
                    },
                    "1": {
                        "count": 525
                    }
                }
            }
        }
    }
}

This dataset card was automatically generated using MTEB