metadata
task_categories:
- image-classification
language:
- en
pretty_name: >-
CelebA dataset mirrored from torchvision: identity, bbox, landmarks,
attributes (0,1)
size_categories:
- 100K<n<1M
CelebA Dataset from Torchvision
CelebA dataset: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
Torchvision documentation: https://docs.pytorch.org/vision/main/generated/torchvision.datasets.CelebA.html
Features
Features include identity
(id of the celeb in the image), bbox
, landmarks
and the 40 binary attributes
Attributes are (0,1) as in the torchvision dataset, not (-1,1) as in the original format
Script generation
traindataset = torchvision.datasets.CelebA(
root='./datasets', split='train', download=True, transform=None, target_type=['attr', 'identity','bbox','landmarks']
)
with open("celeba/list_attr_celeba.txt", 'r') as file:
lines = file.readlines()
# Get the second line (index 1) and split by spaces
attr_names = lines[1].strip().split()
data = []
for i in range(len(traindataset)):
img, label = traindataset[i]
attr, identity,bbox,landmarks = label
sample_dict = {
"image": img,
"identity": identity,
"bbox":bbox,
"landmarks":landmarks
}
for k,v in zip(attr_names,attr):
sample_dict[k] = v
data.append(sample_dict)
hf_dataset = HFDataset.from_list(data)
hf_dataset.save_to_disk(path)
Steps to make the saved arrow
formats compatible with HF Hub DataViewer:
- Save a
dataset_info.json
from the generated files and place in the root folder of the repo. - Remove generated files that are not the
arrow
format. - Place all
arrow
files into the same folder, rename to start with the name of the split.
Citation information
@inproceedings{liu2015faceattributes,
title = {Deep Learning Face Attributes in the Wild},
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}
License
Follow original license from https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html