instruction
stringclasses
1 value
output
stringclasses
2 values
input
stringlengths
21
96.3k
negative
bool block_job_is_paused(BlockJob *job){ return job->paused;}
negative
int qemu_register_machine(QEMUMachine *m){ char *name = g_strconcat(m->name, TYPE_MACHINE_SUFFIX, NULL); TypeInfo ti = { .name = name, .parent = TYPE_MACHINE, .class_init = machine_class_init, .class_data = (void *)m, }; type_register(&ti); g_free(name); return 0;}
negative
static int tosa_dac_event(I2CSlave *i2c, enum i2c_event event){ TosaDACState *s = TOSA_DAC(i2c); s->len = 0; switch (event) { case I2C_START_SEND: break; case I2C_START_RECV: printf("%s: recv not supported!!!\n", __FUNCTION__); break; case I2C_FINISH:#ifdef VERBOSE if (s->len < 2) printf("%s: message too short (%i bytes)\n", __FUNCTION__, s->len); if (s->len > 2) printf("%s: message too long\n", __FUNCTION__);#endif break; default: break; } return 0;}
negative
av_cold void ff_vp8dsp_init_neon(VP8DSPContext *dsp){ dsp->vp8_luma_dc_wht = ff_vp8_luma_dc_wht_neon; dsp->vp8_idct_add = ff_vp8_idct_add_neon; dsp->vp8_idct_dc_add = ff_vp8_idct_dc_add_neon; dsp->vp8_idct_dc_add4y = ff_vp8_idct_dc_add4y_neon; dsp->vp8_idct_dc_add4uv = ff_vp8_idct_dc_add4uv_neon; dsp->vp8_v_loop_filter16y = ff_vp8_v_loop_filter16_neon; dsp->vp8_h_loop_filter16y = ff_vp8_h_loop_filter16_neon; dsp->vp8_v_loop_filter8uv = ff_vp8_v_loop_filter8uv_neon; dsp->vp8_h_loop_filter8uv = ff_vp8_h_loop_filter8uv_neon; dsp->vp8_v_loop_filter16y_inner = ff_vp8_v_loop_filter16_inner_neon; dsp->vp8_h_loop_filter16y_inner = ff_vp8_h_loop_filter16_inner_neon; dsp->vp8_v_loop_filter8uv_inner = ff_vp8_v_loop_filter8uv_inner_neon; dsp->vp8_h_loop_filter8uv_inner = ff_vp8_h_loop_filter8uv_inner_neon; dsp->vp8_v_loop_filter_simple = ff_vp8_v_loop_filter16_simple_neon; dsp->vp8_h_loop_filter_simple = ff_vp8_h_loop_filter16_simple_neon; dsp->put_vp8_epel_pixels_tab[0][0][0] = ff_put_vp8_pixels16_neon; dsp->put_vp8_epel_pixels_tab[0][0][2] = ff_put_vp8_epel16_h6_neon; dsp->put_vp8_epel_pixels_tab[0][2][0] = ff_put_vp8_epel16_v6_neon; dsp->put_vp8_epel_pixels_tab[0][2][2] = ff_put_vp8_epel16_h6v6_neon; dsp->put_vp8_epel_pixels_tab[1][0][0] = ff_put_vp8_pixels8_neon; dsp->put_vp8_epel_pixels_tab[1][0][1] = ff_put_vp8_epel8_h4_neon; dsp->put_vp8_epel_pixels_tab[1][0][2] = ff_put_vp8_epel8_h6_neon; dsp->put_vp8_epel_pixels_tab[1][1][0] = ff_put_vp8_epel8_v4_neon; dsp->put_vp8_epel_pixels_tab[1][1][1] = ff_put_vp8_epel8_h4v4_neon; dsp->put_vp8_epel_pixels_tab[1][1][2] = ff_put_vp8_epel8_h6v4_neon; dsp->put_vp8_epel_pixels_tab[1][2][0] = ff_put_vp8_epel8_v6_neon; dsp->put_vp8_epel_pixels_tab[1][2][1] = ff_put_vp8_epel8_h4v6_neon; dsp->put_vp8_epel_pixels_tab[1][2][2] = ff_put_vp8_epel8_h6v6_neon; dsp->put_vp8_epel_pixels_tab[2][0][1] = ff_put_vp8_epel4_h4_neon; dsp->put_vp8_epel_pixels_tab[2][0][2] = ff_put_vp8_epel4_h6_neon; dsp->put_vp8_epel_pixels_tab[2][1][0] = ff_put_vp8_epel4_v4_neon; dsp->put_vp8_epel_pixels_tab[2][1][1] = ff_put_vp8_epel4_h4v4_neon; dsp->put_vp8_epel_pixels_tab[2][1][2] = ff_put_vp8_epel4_h6v4_neon; dsp->put_vp8_epel_pixels_tab[2][2][0] = ff_put_vp8_epel4_v6_neon; dsp->put_vp8_epel_pixels_tab[2][2][1] = ff_put_vp8_epel4_h4v6_neon; dsp->put_vp8_epel_pixels_tab[2][2][2] = ff_put_vp8_epel4_h6v6_neon; dsp->put_vp8_bilinear_pixels_tab[0][0][0] = ff_put_vp8_pixels16_neon; dsp->put_vp8_bilinear_pixels_tab[0][0][1] = ff_put_vp8_bilin16_h_neon; dsp->put_vp8_bilinear_pixels_tab[0][0][2] = ff_put_vp8_bilin16_h_neon; dsp->put_vp8_bilinear_pixels_tab[0][1][0] = ff_put_vp8_bilin16_v_neon; dsp->put_vp8_bilinear_pixels_tab[0][1][1] = ff_put_vp8_bilin16_hv_neon; dsp->put_vp8_bilinear_pixels_tab[0][1][2] = ff_put_vp8_bilin16_hv_neon; dsp->put_vp8_bilinear_pixels_tab[0][2][0] = ff_put_vp8_bilin16_v_neon; dsp->put_vp8_bilinear_pixels_tab[0][2][1] = ff_put_vp8_bilin16_hv_neon; dsp->put_vp8_bilinear_pixels_tab[0][2][2] = ff_put_vp8_bilin16_hv_neon; dsp->put_vp8_bilinear_pixels_tab[1][0][0] = ff_put_vp8_pixels8_neon; dsp->put_vp8_bilinear_pixels_tab[1][0][1] = ff_put_vp8_bilin8_h_neon; dsp->put_vp8_bilinear_pixels_tab[1][0][2] = ff_put_vp8_bilin8_h_neon; dsp->put_vp8_bilinear_pixels_tab[1][1][0] = ff_put_vp8_bilin8_v_neon; dsp->put_vp8_bilinear_pixels_tab[1][1][1] = ff_put_vp8_bilin8_hv_neon; dsp->put_vp8_bilinear_pixels_tab[1][1][2] = ff_put_vp8_bilin8_hv_neon; dsp->put_vp8_bilinear_pixels_tab[1][2][0] = ff_put_vp8_bilin8_v_neon; dsp->put_vp8_bilinear_pixels_tab[1][2][1] = ff_put_vp8_bilin8_hv_neon; dsp->put_vp8_bilinear_pixels_tab[1][2][2] = ff_put_vp8_bilin8_hv_neon; dsp->put_vp8_bilinear_pixels_tab[2][0][1] = ff_put_vp8_bilin4_h_neon; dsp->put_vp8_bilinear_pixels_tab[2][0][2] = ff_put_vp8_bilin4_h_neon; dsp->put_vp8_bilinear_pixels_tab[2][1][0] = ff_put_vp8_bilin4_v_neon; dsp->put_vp8_bilinear_pixels_tab[2][1][1] = ff_put_vp8_bilin4_hv_neon; dsp->put_vp8_bilinear_pixels_tab[2][1][2] = ff_put_vp8_bilin4_hv_neon; dsp->put_vp8_bilinear_pixels_tab[2][2][0] = ff_put_vp8_bilin4_v_neon; dsp->put_vp8_bilinear_pixels_tab[2][2][1] = ff_put_vp8_bilin4_hv_neon; dsp->put_vp8_bilinear_pixels_tab[2][2][2] = ff_put_vp8_bilin4_hv_neon;}
negative
static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, uint32_t *byte_len){ int num_cq_events = 0, ret = 0; struct ibv_cq *cq; void *cq_ctx; uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; if (ibv_req_notify_cq(rdma->cq, 0)) { return -1; } /* poll cq first */ while (wr_id != wrid_requested) { ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); if (ret < 0) { return ret; } wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; if (wr_id == RDMA_WRID_NONE) { break; } if (wr_id != wrid_requested) { trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), wrid_requested, print_wrid(wr_id), wr_id); } } if (wr_id == wrid_requested) { return 0; } while (1) { /* * Coroutine doesn't start until migration_fd_process_incoming() * so don't yield unless we know we're running inside of a coroutine. */ if (rdma->migration_started_on_destination) { yield_until_fd_readable(rdma->comp_channel->fd); } ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx); if (ret) { perror("ibv_get_cq_event"); goto err_block_for_wrid; } num_cq_events++; ret = -ibv_req_notify_cq(cq, 0); if (ret) { goto err_block_for_wrid; } while (wr_id != wrid_requested) { ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); if (ret < 0) { goto err_block_for_wrid; } wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; if (wr_id == RDMA_WRID_NONE) { break; } if (wr_id != wrid_requested) { trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), wrid_requested, print_wrid(wr_id), wr_id); } } if (wr_id == wrid_requested) { goto success_block_for_wrid; } }success_block_for_wrid: if (num_cq_events) { ibv_ack_cq_events(cq, num_cq_events); } return 0;err_block_for_wrid: if (num_cq_events) { ibv_ack_cq_events(cq, num_cq_events); } rdma->error_state = ret; return ret;}
negative
static void mmio_ide_cmd_write(void *opaque, target_phys_addr_t addr, uint64_t val, unsigned size){ MMIOState *s = opaque; ide_cmd_write(&s->bus, 0, val);}
negative
static void xenfb_copy_mfns(int mode, int count, unsigned long *dst, void *src){ uint32_t *src32 = src; uint64_t *src64 = src; int i; for (i = 0; i < count; i++)dst[i] = (mode == 32) ? src32[i] : src64[i];}
negative
void memory_region_unregister_iommu_notifier(MemoryRegion *mr, Notifier *n){ notifier_remove(n); if (mr->iommu_ops->notify_stopped && QLIST_EMPTY(&mr->iommu_notify.notifiers)) { mr->iommu_ops->notify_stopped(mr); }}
negative
int inet_connect(const char *str, bool block, Error **errp){ QemuOpts *opts; int sock = -1; opts = qemu_opts_create(&dummy_opts, NULL, 0, NULL); if (inet_parse(opts, str) == 0) { if (block) { qemu_opt_set(opts, "block", "on"); } sock = inet_connect_opts(opts, errp); } else { error_set(errp, QERR_SOCKET_CREATE_FAILED); } qemu_opts_del(opts); return sock;}
negative
static void eth_send(mv88w8618_eth_state *s, int queue_index){ uint32_t desc_addr = s->tx_queue[queue_index]; mv88w8618_tx_desc desc; uint8_t buf[2048]; int len; do { eth_tx_desc_get(desc_addr, &desc); if (desc.cmdstat & MP_ETH_TX_OWN) { len = desc.bytes; if (len < 2048) { cpu_physical_memory_read(desc.buffer, buf, len); qemu_send_packet(s->vc, buf, len); } desc.cmdstat &= ~MP_ETH_TX_OWN; s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index); eth_tx_desc_put(desc_addr, &desc); } desc_addr = desc.next; } while (desc_addr != s->tx_queue[queue_index]);}
negative
static void test_submit_aio(void){ WorkerTestData data = { .n = 0, .ret = -EINPROGRESS }; data.aiocb = thread_pool_submit_aio(worker_cb, &data, done_cb, &data); /* The callbacks are not called until after the first wait. */ active = 1; g_assert_cmpint(data.ret, ==, -EINPROGRESS); qemu_aio_flush(); g_assert_cmpint(active, ==, 0); g_assert_cmpint(data.n, ==, 1); g_assert_cmpint(data.ret, ==, 0);}
negative
static int hls_start(AVFormatContext *s){ HLSContext *c = s->priv_data; AVFormatContext *oc = c->avf; int err = 0; if (c->wrap) c->number %= c->wrap; if (av_get_frame_filename(oc->filename, sizeof(oc->filename), c->basename, c->number++) < 0) return AVERROR(EINVAL); if ((err = avio_open2(&oc->pb, oc->filename, AVIO_FLAG_WRITE, &s->interrupt_callback, NULL)) < 0) return err; if (oc->oformat->priv_class && oc->priv_data) av_opt_set(oc->priv_data, "mpegts_flags", "resend_headers", 0); return 0;}
negative
void migrate_decompress_threads_create(void){ int i, thread_count; thread_count = migrate_decompress_threads(); decompress_threads = g_new0(QemuThread, thread_count); decomp_param = g_new0(DecompressParam, thread_count); quit_decomp_thread = false; qemu_mutex_init(&decomp_done_lock); qemu_cond_init(&decomp_done_cond); for (i = 0; i < thread_count; i++) { qemu_mutex_init(&decomp_param[i].mutex); qemu_cond_init(&decomp_param[i].cond); decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); decomp_param[i].done = true; qemu_thread_create(decompress_threads + i, "decompress", do_data_decompress, decomp_param + i, QEMU_THREAD_JOINABLE); }}
negative
void qdev_prop_set_drive(DeviceState *dev, const char *name, DriveInfo *value){ qdev_prop_set(dev, name, &value, PROP_TYPE_DRIVE);}
negative
static void ppc_spapr_reset(void){ sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); PowerPCCPU *first_ppc_cpu; uint32_t rtas_limit; /* Check for unknown sysbus devices */ foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL); /* Reset the hash table & recalc the RMA */ spapr_reset_htab(spapr); qemu_devices_reset(); /* * We place the device tree and RTAS just below either the top of the RMA, * or just below 2GB, whichever is lowere, so that it can be * processed with 32-bit real mode code if necessary */ rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; /* Load the fdt */ spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, spapr->rtas_size); /* Copy RTAS over */ cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob, spapr->rtas_size); /* Set up the entry state */ first_ppc_cpu = POWERPC_CPU(first_cpu); first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; first_ppc_cpu->env.gpr[5] = 0; first_cpu->halted = 0; first_ppc_cpu->env.nip = spapr->entry_point;}
negative
static void create_one_flash(const char *name, hwaddr flashbase, hwaddr flashsize){ /* Create and map a single flash device. We use the same * parameters as the flash devices on the Versatile Express board. */ DriveInfo *dinfo = drive_get_next(IF_PFLASH); DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); const uint64_t sectorlength = 256 * 1024; if (dinfo && qdev_prop_set_drive(dev, "drive", blk_bs(blk_by_legacy_dinfo(dinfo)))) { abort(); } qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength); qdev_prop_set_uint64(dev, "sector-length", sectorlength); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_uint8(dev, "big-endian", 0); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);}
negative
gdb_handlesig (CPUState *env, int sig){ GDBState *s; char buf[256]; int n; s = &gdbserver_state; if (gdbserver_fd < 0 || s->fd < 0) return sig; /* disable single step if it was enabled */ cpu_single_step(env, 0); tb_flush(env); if (sig != 0) { snprintf(buf, sizeof(buf), "S%02x", sig); put_packet(s, buf); } /* put_packet() might have detected that the peer terminated the connection. */ if (s->fd < 0) return sig; sig = 0; s->state = RS_IDLE; s->running_state = 0; while (s->running_state == 0) { n = read (s->fd, buf, 256); if (n > 0) { int i; for (i = 0; i < n; i++) gdb_read_byte (s, buf[i]); } else if (n == 0 || errno != EAGAIN) { /* XXX: Connection closed. Should probably wait for annother connection before continuing. */ return sig; } } sig = s->signal; s->signal = 0; return sig;}
negative
uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2){#if !defined(CONFIG_USER_ONLY) || defined(CONFIG_ATOMIC128) uint32_t mem_idx = cpu_mmu_index(env, false);#endif uintptr_t ra = GETPC(); uint32_t fc = extract32(env->regs[0], 0, 8); uint32_t sc = extract32(env->regs[0], 8, 8); uint64_t pl = get_address(env, 1) & -16; uint64_t svh, svl; uint32_t cc; /* Sanity check the function code and storage characteristic. */ if (fc > 1 || sc > 3) { if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) { goto spec_exception; } if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) { goto spec_exception; } } /* Sanity check the alignments. */ if (extract32(a1, 0, 4 << fc) || extract32(a2, 0, 1 << sc)) { goto spec_exception; } /* Sanity check writability of the store address. */#ifndef CONFIG_USER_ONLY probe_write(env, a2, mem_idx, ra);#endif /* Note that the compare-and-swap is atomic, and the store is atomic, but the complete operation is not. Therefore we do not need to assert serial context in order to implement this. That said, restart early if we can't support either operation that is supposed to be atomic. */ if (parallel_cpus) { int mask = 0;#if !defined(CONFIG_ATOMIC64) mask = -8;#elif !defined(CONFIG_ATOMIC128) mask = -16;#endif if (((4 << fc) | (1 << sc)) & mask) { cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); } } /* All loads happen before all stores. For simplicity, load the entire store value area from the parameter list. */ svh = cpu_ldq_data_ra(env, pl + 16, ra); svl = cpu_ldq_data_ra(env, pl + 24, ra); switch (fc) { case 0: { uint32_t nv = cpu_ldl_data_ra(env, pl, ra); uint32_t cv = env->regs[r3]; uint32_t ov; if (parallel_cpus) {#ifdef CONFIG_USER_ONLY uint32_t *haddr = g2h(a1); ov = atomic_cmpxchg__nocheck(haddr, cv, nv);#else TCGMemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx); ov = helper_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);#endif } else { ov = cpu_ldl_data_ra(env, a1, ra); cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra); } cc = (ov != cv); env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov); } break; case 1: { uint64_t nv = cpu_ldq_data_ra(env, pl, ra); uint64_t cv = env->regs[r3]; uint64_t ov; if (parallel_cpus) {#ifdef CONFIG_ATOMIC64# ifdef CONFIG_USER_ONLY uint64_t *haddr = g2h(a1); ov = atomic_cmpxchg__nocheck(haddr, cv, nv);# else TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN, mem_idx); ov = helper_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);# endif#else /* Note that we asserted !parallel_cpus above. */ g_assert_not_reached();#endif } else { ov = cpu_ldq_data_ra(env, a1, ra); cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra); } cc = (ov != cv); env->regs[r3] = ov; } break; case 2: { uint64_t nvh = cpu_ldq_data_ra(env, pl, ra); uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra); Int128 nv = int128_make128(nvl, nvh); Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]); Int128 ov; if (parallel_cpus) {#ifdef CONFIG_ATOMIC128 TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx); ov = helper_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra); cc = !int128_eq(ov, cv);#else /* Note that we asserted !parallel_cpus above. */ g_assert_not_reached();#endif } else { uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra); uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra); ov = int128_make128(ol, oh); cc = !int128_eq(ov, cv); if (cc) { nv = ov; } cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra); cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra); } env->regs[r3 + 0] = int128_gethi(ov); env->regs[r3 + 1] = int128_getlo(ov); } break; default: g_assert_not_reached(); } /* Store only if the comparison succeeded. Note that above we use a pair of 64-bit big-endian loads, so for sc < 3 we must extract the value from the most-significant bits of svh. */ if (cc == 0) { switch (sc) { case 0: cpu_stb_data_ra(env, a2, svh >> 56, ra); break; case 1: cpu_stw_data_ra(env, a2, svh >> 48, ra); break; case 2: cpu_stl_data_ra(env, a2, svh >> 32, ra); break; case 3: cpu_stq_data_ra(env, a2, svh, ra); break; case 4: if (parallel_cpus) {#ifdef CONFIG_ATOMIC128 TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx); Int128 sv = int128_make128(svl, svh); helper_atomic_sto_be_mmu(env, a2, sv, oi, ra);#else /* Note that we asserted !parallel_cpus above. */ g_assert_not_reached();#endif } else { cpu_stq_data_ra(env, a2 + 0, svh, ra); cpu_stq_data_ra(env, a2 + 8, svl, ra); } break; default: g_assert_not_reached(); } } return cc; spec_exception: cpu_restore_state(ENV_GET_CPU(env), ra); program_interrupt(env, PGM_SPECIFICATION, 6); g_assert_not_reached();}
negative
static void nbd_request_put(NBDRequest *req){ NBDClient *client = req->client; if (req->data) { qemu_vfree(req->data); } g_slice_free(NBDRequest, req); if (client->nb_requests-- == MAX_NBD_REQUESTS) { qemu_notify_event(); } nbd_client_put(client);}
negative
void timerlistgroup_deinit(QEMUTimerListGroup *tlg){ QEMUClockType type; for (type = 0; type < QEMU_CLOCK_MAX; type++) { timerlist_free(tlg->tl[type]); }}
negative
static int nbd_receive_options(NBDClient *client){ int csock = client->sock; uint32_t flags; /* Client sends: [ 0 .. 3] client flags [ 0 .. 7] NBD_OPTS_MAGIC [ 8 .. 11] NBD option [12 .. 15] Data length ... Rest of request [ 0 .. 7] NBD_OPTS_MAGIC [ 8 .. 11] Second NBD option [12 .. 15] Data length ... Rest of request */ if (read_sync(csock, &flags, sizeof(flags)) != sizeof(flags)) { LOG("read failed"); return -EIO; } TRACE("Checking client flags"); be32_to_cpus(&flags); if (flags != 0 && flags != NBD_FLAG_C_FIXED_NEWSTYLE) { LOG("Bad client flags received"); return -EIO; } while (1) { int ret; uint32_t tmp, length; uint64_t magic; if (read_sync(csock, &magic, sizeof(magic)) != sizeof(magic)) { LOG("read failed"); return -EINVAL; } TRACE("Checking opts magic"); if (magic != be64_to_cpu(NBD_OPTS_MAGIC)) { LOG("Bad magic received"); return -EINVAL; } if (read_sync(csock, &tmp, sizeof(tmp)) != sizeof(tmp)) { LOG("read failed"); return -EINVAL; } if (read_sync(csock, &length, sizeof(length)) != sizeof(length)) { LOG("read failed"); return -EINVAL; } length = be32_to_cpu(length); TRACE("Checking option"); switch (be32_to_cpu(tmp)) { case NBD_OPT_LIST: ret = nbd_handle_list(client, length); if (ret < 0) { return ret; } break; case NBD_OPT_ABORT: return -EINVAL; case NBD_OPT_EXPORT_NAME: return nbd_handle_export_name(client, length); default: tmp = be32_to_cpu(tmp); LOG("Unsupported option 0x%x", tmp); nbd_send_rep(client->sock, NBD_REP_ERR_UNSUP, tmp); return -EINVAL; } }}
negative
void xtensa_breakpoint_handler(CPUState *cs){ XtensaCPU *cpu = XTENSA_CPU(cs); CPUXtensaState *env = &cpu->env; if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { uint32_t cause; cs->watchpoint_hit = NULL; cause = check_hw_breakpoints(env); if (cause) { debug_exception_env(env, cause); } cpu_resume_from_signal(cs, NULL); } }}
negative
static int qcow2_probe(const uint8_t *buf, int buf_size, const char *filename){ const QCowHeader *cow_header = (const void *)buf; if (buf_size >= sizeof(QCowHeader) && be32_to_cpu(cow_header->magic) == QCOW_MAGIC && be32_to_cpu(cow_header->version) >= QCOW_VERSION) return 100; else return 0;}
negative
static int read_header(AVFormatContext *s, AVFormatParameters *ap){ BinkDemuxContext *bink = s->priv_data; AVIOContext *pb = s->pb; uint32_t fps_num, fps_den; AVStream *vst, *ast; unsigned int i; uint32_t pos, next_pos; uint16_t flags; int keyframe; vst = av_new_stream(s, 0); if (!vst) return AVERROR(ENOMEM); vst->codec->codec_tag = avio_rl32(pb); bink->file_size = avio_rl32(pb) + 8; vst->duration = avio_rl32(pb); if (vst->duration > 1000000) { av_log(s, AV_LOG_ERROR, "invalid header: more than 1000000 frames\n"); return AVERROR(EIO); } if (avio_rl32(pb) > bink->file_size) { av_log(s, AV_LOG_ERROR, "invalid header: largest frame size greater than file size\n"); return AVERROR(EIO); } avio_skip(pb, 4); vst->codec->width = avio_rl32(pb); vst->codec->height = avio_rl32(pb); fps_num = avio_rl32(pb); fps_den = avio_rl32(pb); if (fps_num == 0 || fps_den == 0) { av_log(s, AV_LOG_ERROR, "invalid header: invalid fps (%d/%d)\n", fps_num, fps_den); return AVERROR(EIO); } av_set_pts_info(vst, 64, fps_den, fps_num); vst->codec->codec_type = AVMEDIA_TYPE_VIDEO; vst->codec->codec_id = CODEC_ID_BINKVIDEO; vst->codec->extradata = av_mallocz(4 + FF_INPUT_BUFFER_PADDING_SIZE); vst->codec->extradata_size = 4; avio_read(pb, vst->codec->extradata, 4); bink->num_audio_tracks = avio_rl32(pb); if (bink->num_audio_tracks > BINK_MAX_AUDIO_TRACKS) { av_log(s, AV_LOG_ERROR, "invalid header: more than "AV_STRINGIFY(BINK_MAX_AUDIO_TRACKS)" audio tracks (%d)\n", bink->num_audio_tracks); return AVERROR(EIO); } if (bink->num_audio_tracks) { avio_skip(pb, 4 * bink->num_audio_tracks); for (i = 0; i < bink->num_audio_tracks; i++) { ast = av_new_stream(s, 1); if (!ast) return AVERROR(ENOMEM); ast->codec->codec_type = AVMEDIA_TYPE_AUDIO; ast->codec->codec_tag = vst->codec->codec_tag; ast->codec->sample_rate = avio_rl16(pb); av_set_pts_info(ast, 64, 1, ast->codec->sample_rate); flags = avio_rl16(pb); ast->codec->codec_id = flags & BINK_AUD_USEDCT ? CODEC_ID_BINKAUDIO_DCT : CODEC_ID_BINKAUDIO_RDFT; ast->codec->channels = flags & BINK_AUD_STEREO ? 2 : 1; } for (i = 0; i < bink->num_audio_tracks; i++) s->streams[i + 1]->id = avio_rl32(pb); } /* frame index table */ next_pos = avio_rl32(pb); for (i = 0; i < vst->duration; i++) { pos = next_pos; if (i == vst->duration - 1) { next_pos = bink->file_size; keyframe = 0; } else { next_pos = avio_rl32(pb); keyframe = pos & 1; } pos &= ~1; next_pos &= ~1; if (next_pos <= pos) { av_log(s, AV_LOG_ERROR, "invalid frame index table\n"); return AVERROR(EIO); } av_add_index_entry(vst, pos, i, next_pos - pos, 0, keyframe ? AVINDEX_KEYFRAME : 0); } avio_skip(pb, 4); bink->current_track = -1; return 0;}
negative
static int ftp_status(FTPContext *s, char **line, const int response_codes[]){ int err, i, result = 0, pref_code_found = 0, wait_count = 100; char buf[CONTROL_BUFFER_SIZE]; /* Set blocking mode */ s->conn_control_block_flag = 0; for (;;) { if ((err = ftp_get_line(s, buf, sizeof(buf))) < 0) { if (err == AVERROR_EXIT) { if (!pref_code_found && wait_count--) { av_usleep(10000); continue; } } return result; } av_log(s, AV_LOG_DEBUG, "%s\n", buf); if (!pref_code_found) { if (strlen(buf) < 3) continue; err = 0; for (i = 0; i < 3; ++i) { if (buf[i] < '0' || buf[i] > '9') continue; err *= 10; err += buf[i] - '0'; } for (i = 0; response_codes[i]; ++i) { if (err == response_codes[i]) { /* first code received. Now get all lines in non blocking mode */ s->conn_control_block_flag = 1; pref_code_found = 1; result = err; if (line) *line = av_strdup(buf); break; } } } } return result;}
negative
static void unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb){ int i, j, k; int coding_mode; int motion_x[6]; int motion_y[6]; int last_motion_x = 0; int last_motion_y = 0; int prior_last_motion_x = 0; int prior_last_motion_y = 0; int current_macroblock; int current_fragment; debug_vp3(" vp3: unpacking motion vectors\n"); if (s->keyframe) { debug_vp3(" keyframe-- there are no motion vectors\n"); } else { memset(motion_x, 0, 6 * sizeof(int)); memset(motion_y, 0, 6 * sizeof(int)); /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ coding_mode = get_bits(gb, 1); debug_vectors(" using %s scheme for unpacking motion vectors\n", (coding_mode == 0) ? "VLC" : "fixed-length"); /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (i = 0; i < s->u_superblock_start; i++) { for (j = 0; j < 4; j++) { current_macroblock = s->superblock_macroblocks[i * 4 + j]; if ((current_macroblock == -1) || (!s->macroblock_coded[current_macroblock])) continue; current_fragment = s->macroblock_fragments[current_macroblock * 6]; switch (s->all_fragments[current_fragment].coding_method) { case MODE_INTER_PLUS_MV: case MODE_GOLDEN_MV: /* all 6 fragments use the same motion vector */ if (coding_mode == 0) { motion_x[0] = get_motion_vector_vlc(gb); motion_y[0] = get_motion_vector_vlc(gb); } else { motion_x[0] = get_motion_vector_fixed(gb); motion_y[0] = get_motion_vector_fixed(gb); } for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* vector maintenance, only on MODE_INTER_PLUS_MV */ if (s->all_fragments[current_fragment].coding_method == MODE_INTER_PLUS_MV) { prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; } break; case MODE_INTER_FOURMV: /* fetch 4 vectors from the bitstream, one for each * Y fragment, then average for the C fragment vectors */ motion_x[4] = motion_y[4] = 0; for (k = 0; k < 4; k++) { if (coding_mode == 0) { motion_x[k] = get_motion_vector_vlc(gb); motion_y[k] = get_motion_vector_vlc(gb); } else { motion_x[k] = get_motion_vector_fixed(gb); motion_y[k] = get_motion_vector_fixed(gb); } motion_x[4] += motion_x[k]; motion_y[4] += motion_y[k]; } if (motion_x[4] >= 0) motion_x[4] = (motion_x[4] + 2) / 4; else motion_x[4] = (motion_x[4] - 2) / 4; motion_x[5] = motion_x[4]; if (motion_y[4] >= 0) motion_y[4] = (motion_y[4] + 2) / 4; else motion_y[4] = (motion_y[4] - 2) / 4; motion_y[5] = motion_y[4]; /* vector maintenance; vector[3] is treated as the * last vector in this case */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[3]; last_motion_y = motion_y[3]; break; case MODE_INTER_LAST_MV: /* all 6 fragments use the last motion vector */ motion_x[0] = last_motion_x; motion_y[0] = last_motion_y; for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* no vector maintenance (last vector remains the * last vector) */ break; case MODE_INTER_PRIOR_LAST: /* all 6 fragments use the motion vector prior to the * last motion vector */ motion_x[0] = prior_last_motion_x; motion_y[0] = prior_last_motion_y; for (k = 1; k < 6; k++) { motion_x[k] = motion_x[0]; motion_y[k] = motion_y[0]; } /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; break; default: /* covers intra, inter without MV, golden without MV */ memset(motion_x, 0, 6 * sizeof(int)); memset(motion_y, 0, 6 * sizeof(int)); /* no vector maintenance */ break; } /* assign the motion vectors to the correct fragments */ debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n", current_fragment, s->all_fragments[current_fragment].coding_method); for (k = 0; k < 6; k++) { current_fragment = s->macroblock_fragments[current_macroblock * 6 + k]; s->all_fragments[current_fragment].motion_halfpel_index = adjust_vector(&motion_x[k], &motion_y[k], ((k == 4) || (k == 5))); s->all_fragments[current_fragment].motion_x = motion_x[k]; s->all_fragments[current_fragment].motion_y = motion_y[k]; debug_vectors(" vector %d: fragment %d = (%d, %d), index %d\n", k, current_fragment, motion_x[k], motion_y[k], s->all_fragments[current_fragment].motion_halfpel_index); } } } }}
negative
static void ipvideo_decode_opcodes(IpvideoContext *s, AVFrame *frame){ int x, y; unsigned char opcode; int ret; GetBitContext gb; bytestream2_skip(&s->stream_ptr, 14); /* data starts 14 bytes in */ if (!s->is_16bpp) { /* this is PAL8, so make the palette available */ memcpy(frame->data[1], s->pal, AVPALETTE_SIZE); s->stride = frame->linesize[0]; } else { s->stride = frame->linesize[0] >> 1; s->mv_ptr = s->stream_ptr; bytestream2_skip(&s->mv_ptr, bytestream2_get_le16(&s->stream_ptr)); } s->line_inc = s->stride - 8; s->upper_motion_limit_offset = (s->avctx->height - 8) * frame->linesize[0] + (s->avctx->width - 8) * (1 + s->is_16bpp); init_get_bits(&gb, s->decoding_map, s->decoding_map_size * 8); for (y = 0; y < s->avctx->height; y += 8) { for (x = 0; x < s->avctx->width; x += 8) { if (get_bits_left(&gb) < 4) return; opcode = get_bits(&gb, 4); ff_tlog(s->avctx, " block @ (%3d, %3d): encoding 0x%X, data ptr offset %d\n", x, y, opcode, bytestream2_tell(&s->stream_ptr)); if (!s->is_16bpp) { s->pixel_ptr = frame->data[0] + x + y*frame->linesize[0]; ret = ipvideo_decode_block[opcode](s, frame); } else { s->pixel_ptr = frame->data[0] + x*2 + y*frame->linesize[0]; ret = ipvideo_decode_block16[opcode](s, frame); } if (ret != 0) { av_log(s->avctx, AV_LOG_ERROR, "decode problem on frame %d, @ block (%d, %d)\n", s->avctx->frame_number, x, y); return; } } } if (bytestream2_get_bytes_left(&s->stream_ptr) > 1) { av_log(s->avctx, AV_LOG_DEBUG, "decode finished with %d bytes left over\n", bytestream2_get_bytes_left(&s->stream_ptr)); }}
negative
static int cinvideo_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){ const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; CinVideoContext *cin = avctx->priv_data; int i, y, palette_type, palette_colors_count, bitmap_frame_type, bitmap_frame_size, res = 0; palette_type = buf[0]; palette_colors_count = AV_RL16(buf+1); bitmap_frame_type = buf[3]; buf += 4; bitmap_frame_size = buf_size - 4; /* handle palette */ if (bitmap_frame_size < palette_colors_count * (3 + (palette_type != 0))) return AVERROR_INVALIDDATA; if (palette_type == 0) { if (palette_colors_count > 256) return AVERROR_INVALIDDATA; for (i = 0; i < palette_colors_count; ++i) { cin->palette[i] = 0xFFU << 24 | bytestream_get_le24(&buf); bitmap_frame_size -= 3; } } else { for (i = 0; i < palette_colors_count; ++i) { cin->palette[buf[0]] = 0xFFU << 24 | AV_RL24(buf+1); buf += 4; bitmap_frame_size -= 4; } } /* note: the decoding routines below assumes that surface.width = surface.pitch */ switch (bitmap_frame_type) { case 9: cin_decode_rle(buf, bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; case 34: cin_decode_rle(buf, bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); cin_apply_delta_data(cin->bitmap_table[CIN_PRE_BMP], cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; case 35: cin_decode_huffman(buf, bitmap_frame_size, cin->bitmap_table[CIN_INT_BMP], cin->bitmap_size); cin_decode_rle(cin->bitmap_table[CIN_INT_BMP], bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; case 36: bitmap_frame_size = cin_decode_huffman(buf, bitmap_frame_size, cin->bitmap_table[CIN_INT_BMP], cin->bitmap_size); cin_decode_rle(cin->bitmap_table[CIN_INT_BMP], bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); cin_apply_delta_data(cin->bitmap_table[CIN_PRE_BMP], cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; case 37: cin_decode_huffman(buf, bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; case 38: res = cin_decode_lzss(buf, bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); if (res < 0) return res; break; case 39: res = cin_decode_lzss(buf, bitmap_frame_size, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); if (res < 0) return res; cin_apply_delta_data(cin->bitmap_table[CIN_PRE_BMP], cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_size); break; } cin->frame.buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; if ((res = avctx->reget_buffer(avctx, &cin->frame))) { av_log(cin->avctx, AV_LOG_ERROR, "failed to allocate a frame\n"); return res; } memcpy(cin->frame.data[1], cin->palette, sizeof(cin->palette)); cin->frame.palette_has_changed = 1; for (y = 0; y < cin->avctx->height; ++y) memcpy(cin->frame.data[0] + (cin->avctx->height - 1 - y) * cin->frame.linesize[0], cin->bitmap_table[CIN_CUR_BMP] + y * cin->avctx->width, cin->avctx->width); FFSWAP(uint8_t *, cin->bitmap_table[CIN_CUR_BMP], cin->bitmap_table[CIN_PRE_BMP]); *data_size = sizeof(AVFrame); *(AVFrame *)data = cin->frame; return buf_size;}
negative
static void check_threshold_8(void){ LOCAL_ALIGNED_32(uint8_t, in , [WIDTH_PADDED]); LOCAL_ALIGNED_32(uint8_t, threshold, [WIDTH_PADDED]); LOCAL_ALIGNED_32(uint8_t, min , [WIDTH_PADDED]); LOCAL_ALIGNED_32(uint8_t, max , [WIDTH_PADDED]); LOCAL_ALIGNED_32(uint8_t, out_ref , [WIDTH_PADDED]); LOCAL_ALIGNED_32(uint8_t, out_new , [WIDTH_PADDED]); ptrdiff_t line_size = WIDTH_PADDED; int w = WIDTH; ThresholdContext s; s.depth = 8; ff_threshold_init(&s); declare_func(void, const uint8_t *in, const uint8_t *threshold, const uint8_t *min, const uint8_t *max, uint8_t *out, ptrdiff_t ilinesize, ptrdiff_t tlinesize, ptrdiff_t flinesize, ptrdiff_t slinesize, ptrdiff_t olinesize, int w, int h); memset(in, 0, WIDTH_PADDED); memset(threshold, 0, WIDTH_PADDED); memset(min, 0, WIDTH_PADDED); memset(max, 0, WIDTH_PADDED); memset(out_ref, 0, WIDTH_PADDED); memset(out_new, 0, WIDTH_PADDED); randomize_buffers(in, WIDTH); randomize_buffers(threshold, WIDTH); randomize_buffers(min, WIDTH); randomize_buffers(max, WIDTH); if (check_func(s.threshold, "threshold8")) { call_ref(in, threshold, min, max, out_ref, line_size, line_size, line_size, line_size, line_size, w, 1); call_new(in, threshold, min, max, out_new, line_size, line_size, line_size, line_size, line_size, w, 1); if (memcmp(out_ref, out_new, w)) fail(); bench_new(in, threshold, min, max, out_new, line_size, line_size, line_size, line_size, line_size, w, 1); }}
positive
static void gen_rp_realize(DeviceState *dev, Error **errp){ PCIDevice *d = PCI_DEVICE(dev); GenPCIERootPort *grp = GEN_PCIE_ROOT_PORT(d); PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(d); rpc->parent_realize(dev, errp); int rc = pci_bridge_qemu_reserve_cap_init(d, 0, grp->bus_reserve, grp->io_reserve, grp->mem_reserve, grp->pref32_reserve, grp->pref64_reserve, errp); if (rc < 0) { rpc->parent_class.exit(d); return; } if (!grp->io_reserve) { pci_word_test_and_clear_mask(d->wmask + PCI_COMMAND, PCI_COMMAND_IO); d->wmask[PCI_IO_BASE] = 0; d->wmask[PCI_IO_LIMIT] = 0; }}
positive
static bool megasas_use_msi(MegasasState *s){ return s->msi != ON_OFF_AUTO_OFF;}
positive
int32_t scsi_send_command(SCSIDevice *s, uint32_t tag, uint8_t *buf, int lun){ int64_t nb_sectors; uint32_t lba; uint32_t len; int cmdlen; int is_write; s->command = buf[0]; s->tag = tag; s->sector_count = 0; s->buf_pos = 0; s->buf_len = 0; is_write = 0; DPRINTF("Command: 0x%02x", buf[0]); switch (s->command >> 5) { case 0: lba = buf[3] | (buf[2] << 8) | ((buf[1] & 0x1f) << 16); len = buf[4]; cmdlen = 6; break; case 1: case 2: lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24); len = buf[8] | (buf[7] << 8); cmdlen = 10; break; case 4: lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24); len = buf[13] | (buf[12] << 8) | (buf[11] << 16) | (buf[10] << 24); cmdlen = 16; break; case 5: lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24); len = buf[9] | (buf[8] << 8) | (buf[7] << 16) | (buf[6] << 24); cmdlen = 12; break; default: BADF("Unsupported command length, command %x\n", s->command); goto fail; }#ifdef DEBUG_SCSI { int i; for (i = 1; i < cmdlen; i++) { printf(" 0x%02x", buf[i]); } printf("\n"); }#endif if (lun || buf[1] >> 5) { /* Only LUN 0 supported. */ DPRINTF("Unimplemented LUN %d\n", lun ? lun : buf[1] >> 5); goto fail; } switch (s->command) { case 0x0:DPRINTF("Test Unit Ready\n");break; case 0x03: DPRINTF("Request Sense (len %d)\n", len); if (len < 4) goto fail; memset(buf, 0, 4); s->buf[0] = 0xf0; s->buf[1] = 0; s->buf[2] = s->sense; s->buf_len = 4; break; case 0x12: DPRINTF("Inquiry (len %d)\n", len); if (len < 36) { BADF("Inquiry buffer too small (%d)\n", len); }memset(s->buf, 0, 36);if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) { s->buf[0] = 5; s->buf[1] = 0x80; memcpy(&s->buf[16], "QEMU CD-ROM ", 16);} else { s->buf[0] = 0; memcpy(&s->buf[16], "QEMU HARDDISK ", 16);}memcpy(&s->buf[8], "QEMU ", 8); memcpy(&s->buf[32], QEMU_VERSION, 4); /* Identify device as SCSI-3 rev 1. Some later commands are also implemented. */s->buf[2] = 3;s->buf[3] = 2; /* Format 2 */s->buf[4] = 32;s->buf_len = 36;break; case 0x16: DPRINTF("Reserve(6)\n"); if (buf[1] & 1) goto fail; break; case 0x17: DPRINTF("Release(6)\n"); if (buf[1] & 1) goto fail; break; case 0x1a: case 0x5a: { char *p; int page; page = buf[2] & 0x3f; DPRINTF("Mode Sense (page %d, len %d)\n", page, len); p = s->buf; memset(p, 0, 4); s->buf[1] = 0; /* Default media type. */ s->buf[3] = 0; /* Block descriptor length. */ if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) { s->buf[2] = 0x80; /* Readonly. */ } p += 4; if ((page == 8 || page == 0x3f)) { /* Caching page. */ p[0] = 8; p[1] = 0x12; p[2] = 4; /* WCE */ p += 19; } if ((page == 0x3f || page == 0x2a) && (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM)) { /* CD Capabilities and Mechanical Status page. */ p[0] = 0x2a; p[1] = 0x14; p[2] = 3; // CD-R & CD-RW read p[3] = 0; // Writing not supported p[4] = 0x7f; /* Audio, composite, digital out, mode 2 form 1&2, multi session */ p[5] = 0xff; /* CD DA, DA accurate, RW supported, RW corrected, C2 errors, ISRC, UPC, Bar code */ p[6] = 0x2d | (bdrv_is_locked(s->bdrv)? 2 : 0); /* Locking supported, jumper present, eject, tray */ p[7] = 0; /* no volume & mute control, no changer */ p[8] = (50 * 176) >> 8; // 50x read speed p[9] = (50 * 176) & 0xff; p[10] = 0 >> 8; // No volume p[11] = 0 & 0xff; p[12] = 2048 >> 8; // 2M buffer p[13] = 2048 & 0xff; p[14] = (16 * 176) >> 8; // 16x read speed current p[15] = (16 * 176) & 0xff; p[18] = (16 * 176) >> 8; // 16x write speed p[19] = (16 * 176) & 0xff; p[20] = (16 * 176) >> 8; // 16x write speed current p[21] = (16 * 176) & 0xff; p += 21; } s->buf_len = p - s->buf; s->buf[0] = s->buf_len - 4; if (s->buf_len > len) s->buf_len = len; } break; case 0x1b: DPRINTF("Start Stop Unit\n");break; case 0x1e: DPRINTF("Prevent Allow Medium Removal (prevent = %d)\n", buf[4] & 3); bdrv_set_locked(s->bdrv, buf[4] & 1);break; case 0x25:DPRINTF("Read Capacity\n"); /* The normal LEN field for this command is zero. */memset(s->buf, 0, 8);bdrv_get_geometry(s->bdrv, &nb_sectors);s->buf[0] = (nb_sectors >> 24) & 0xff;s->buf[1] = (nb_sectors >> 16) & 0xff;s->buf[2] = (nb_sectors >> 8) & 0xff;s->buf[3] = nb_sectors & 0xff;s->buf[4] = 0;s->buf[5] = 0; s->buf[6] = s->cluster_size * 2;s->buf[7] = 0;s->buf_len = 8;break; case 0x08: case 0x28: DPRINTF("Read (sector %d, count %d)\n", lba, len); s->sector = lba * s->cluster_size; s->sector_count = len * s->cluster_size; break; case 0x0a: case 0x2a: DPRINTF("Write (sector %d, count %d)\n", lba, len); s->sector = lba * s->cluster_size; s->sector_count = len * s->cluster_size; is_write = 1; break; case 0x35: DPRINTF("Syncronise cache (sector %d, count %d)\n", lba, len); bdrv_flush(s->bdrv); break; case 0x43: { int start_track, format, msf, toclen; msf = buf[1] & 2; format = buf[2] & 0xf; start_track = buf[6]; bdrv_get_geometry(s->bdrv, &nb_sectors); DPRINTF("Read TOC (track %d format %d msf %d)\n", start_track, format, msf >> 1); switch(format) { case 0: toclen = cdrom_read_toc(nb_sectors, s->buf, msf, start_track); break; case 1: /* multi session : only a single session defined */ toclen = 12; memset(s->buf, 0, 12); s->buf[1] = 0x0a; s->buf[2] = 0x01; s->buf[3] = 0x01; break; case 2: toclen = cdrom_read_toc_raw(nb_sectors, s->buf, msf, start_track); break; default: goto error_cmd; } if (toclen > 0) { if (len > toclen) len = toclen; s->buf_len = len; break; } error_cmd: DPRINTF("Read TOC error\n"); goto fail; } case 0x46: DPRINTF("Get Configuration (rt %d, maxlen %d)\n", buf[1] & 3, len); memset(s->buf, 0, 8); /* ??? This shoud probably return much more information. For now just return the basic header indicating the CD-ROM profile. */ s->buf[7] = 8; // CD-ROM s->buf_len = 8; break; case 0x56: DPRINTF("Reserve(10)\n"); if (buf[1] & 3) goto fail; break; case 0x57: DPRINTF("Release(10)\n"); if (buf[1] & 3) goto fail; break; case 0xa0: DPRINTF("Report LUNs (len %d)\n", len); if (len < 16) goto fail; memset(s->buf, 0, 16); s->buf[3] = 8; s->buf_len = 16; break; default:DPRINTF("Unknown SCSI command (%2.2x)\n", buf[0]); fail: scsi_command_complete(s, SENSE_ILLEGAL_REQUEST);return 0; } if (s->sector_count == 0 && s->buf_len == 0) { scsi_command_complete(s, SENSE_NO_SENSE); } len = s->sector_count * 512 + s->buf_len; return is_write ? -len : len;}
positive
static int vda_h264_uninit(AVCodecContext *avctx){ VDAContext *vda = avctx->internal->hwaccel_priv_data; av_freep(&vda->bitstream); if (vda->frame) CVPixelBufferRelease(vda->frame); return 0;}
positive
static void usb_mtp_handle_data(USBDevice *dev, USBPacket *p){ MTPState *s = USB_MTP(dev); MTPControl cmd; mtp_container container; uint32_t params[5]; int i, rc; switch (p->ep->nr) { case EP_DATA_IN: if (s->data_out != NULL) { /* guest bug */ trace_usb_mtp_stall(s->dev.addr, "awaiting data-out"); p->status = USB_RET_STALL; return; } if (p->iov.size < sizeof(container)) { trace_usb_mtp_stall(s->dev.addr, "packet too small"); p->status = USB_RET_STALL; return; } if (s->data_in != NULL) { MTPData *d = s->data_in; int dlen = d->length - d->offset; if (d->first) { trace_usb_mtp_data_in(s->dev.addr, d->trans, d->length); container.length = cpu_to_le32(d->length + sizeof(container)); container.type = cpu_to_le16(TYPE_DATA); container.code = cpu_to_le16(d->code); container.trans = cpu_to_le32(d->trans); usb_packet_copy(p, &container, sizeof(container)); d->first = false; if (dlen > p->iov.size - sizeof(container)) { dlen = p->iov.size - sizeof(container); } } else { if (dlen > p->iov.size) { dlen = p->iov.size; } } if (d->fd == -1) { usb_packet_copy(p, d->data + d->offset, dlen); } else { if (d->alloc < p->iov.size) { d->alloc = p->iov.size; d->data = g_realloc(d->data, d->alloc); } rc = read(d->fd, d->data, dlen); if (rc != dlen) { memset(d->data, 0, dlen); s->result->code = RES_INCOMPLETE_TRANSFER; } usb_packet_copy(p, d->data, dlen); } d->offset += dlen; if (d->offset == d->length) { usb_mtp_data_free(s->data_in); s->data_in = NULL; } } else if (s->result != NULL) { MTPControl *r = s->result; int length = sizeof(container) + r->argc * sizeof(uint32_t); if (r->code == RES_OK) { trace_usb_mtp_success(s->dev.addr, r->trans, (r->argc > 0) ? r->argv[0] : 0, (r->argc > 1) ? r->argv[1] : 0); } else { trace_usb_mtp_error(s->dev.addr, r->code, r->trans, (r->argc > 0) ? r->argv[0] : 0, (r->argc > 1) ? r->argv[1] : 0); } container.length = cpu_to_le32(length); container.type = cpu_to_le16(TYPE_RESPONSE); container.code = cpu_to_le16(r->code); container.trans = cpu_to_le32(r->trans); for (i = 0; i < r->argc; i++) { params[i] = cpu_to_le32(r->argv[i]); } usb_packet_copy(p, &container, sizeof(container)); usb_packet_copy(p, &params, length - sizeof(container)); g_free(s->result); s->result = NULL; } break; case EP_DATA_OUT: if (p->iov.size < sizeof(container)) { trace_usb_mtp_stall(s->dev.addr, "packet too small"); p->status = USB_RET_STALL; return; } usb_packet_copy(p, &container, sizeof(container)); switch (le16_to_cpu(container.type)) { case TYPE_COMMAND: if (s->data_in || s->data_out || s->result) { trace_usb_mtp_stall(s->dev.addr, "transaction inflight"); p->status = USB_RET_STALL; return; } cmd.code = le16_to_cpu(container.code); cmd.argc = (le32_to_cpu(container.length) - sizeof(container)) / sizeof(uint32_t); cmd.trans = le32_to_cpu(container.trans); if (cmd.argc > ARRAY_SIZE(cmd.argv)) { cmd.argc = ARRAY_SIZE(cmd.argv); } if (p->iov.size < sizeof(container) + cmd.argc * sizeof(uint32_t)) { trace_usb_mtp_stall(s->dev.addr, "packet too small"); p->status = USB_RET_STALL; return; } usb_packet_copy(p, &params, cmd.argc * sizeof(uint32_t)); for (i = 0; i < cmd.argc; i++) { cmd.argv[i] = le32_to_cpu(params[i]); } trace_usb_mtp_command(s->dev.addr, cmd.code, cmd.trans, (cmd.argc > 0) ? cmd.argv[0] : 0, (cmd.argc > 1) ? cmd.argv[1] : 0, (cmd.argc > 2) ? cmd.argv[2] : 0, (cmd.argc > 3) ? cmd.argv[3] : 0, (cmd.argc > 4) ? cmd.argv[4] : 0); usb_mtp_command(s, &cmd); break; default: /* not needed as long as the mtp device is read-only */ p->status = USB_RET_STALL; return; } break; case EP_EVENT:#ifdef __linux__ if (!QTAILQ_EMPTY(&s->events)) { struct MTPMonEntry *e = QTAILQ_LAST(&s->events, events); uint32_t handle; int len = sizeof(container) + sizeof(uint32_t); if (p->iov.size < len) { trace_usb_mtp_stall(s->dev.addr, "packet too small to send event"); p->status = USB_RET_STALL; return; } QTAILQ_REMOVE(&s->events, e, next); container.length = cpu_to_le32(len); container.type = cpu_to_le32(TYPE_EVENT); container.code = cpu_to_le16(e->event); container.trans = 0; /* no trans specific events */ handle = cpu_to_le32(e->handle); usb_packet_copy(p, &container, sizeof(container)); usb_packet_copy(p, &handle, sizeof(uint32_t)); g_free(e); return; }#endif p->status = USB_RET_NAK; return; default: trace_usb_mtp_stall(s->dev.addr, "invalid endpoint"); p->status = USB_RET_STALL; return; } if (p->actual_length == 0) { trace_usb_mtp_nak(s->dev.addr, p->ep->nr); p->status = USB_RET_NAK; return; } else { trace_usb_mtp_xfer(s->dev.addr, p->ep->nr, p->actual_length, p->iov.size); return; }}
positive
ReadLineState *readline_init(ReadLinePrintfFunc *printf_func, ReadLineFlushFunc *flush_func, void *opaque, ReadLineCompletionFunc *completion_finder){ ReadLineState *rs = g_malloc0(sizeof(*rs)); rs->hist_entry = -1; rs->opaque = opaque; rs->printf_func = printf_func; rs->flush_func = flush_func; rs->completion_finder = completion_finder; return rs;}
positive
static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, int32_t offset){ AHCICmdHdr *cmd = ad->cur_cmd; uint16_t opts = le16_to_cpu(cmd->opts); uint16_t prdtl = le16_to_cpu(cmd->prdtl); uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); uint64_t prdt_addr = cfis_addr + 0x80; dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); dma_addr_t real_prdt_len = prdt_len; uint8_t *prdt; int i; int r = 0; uint64_t sum = 0; int off_idx = -1; int64_t off_pos = -1; int tbl_entry_size; IDEBus *bus = &ad->port; BusState *qbus = BUS(bus); /* * Note: AHCI PRDT can describe up to 256GiB. SATA/ATA only support * transactions of up to 32MiB as of ATA8-ACS3 rev 1b, assuming a * 512 byte sector size. We limit the PRDT in this implementation to * a reasonably large 2GiB, which can accommodate the maximum transfer * request for sector sizes up to 32K. */ if (!prdtl) { DPRINTF(ad->port_no, "no sg list given by guest: 0x%08x\n", opts); return -1; } /* map PRDT */ if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, DMA_DIRECTION_TO_DEVICE))){ DPRINTF(ad->port_no, "map failed\n"); return -1; } if (prdt_len < real_prdt_len) { DPRINTF(ad->port_no, "mapped less than expected\n"); r = -1; goto out; } /* Get entries in the PRDT, init a qemu sglist accordingly */ if (prdtl > 0) { AHCI_SG *tbl = (AHCI_SG *)prdt; sum = 0; for (i = 0; i < prdtl; i++) { /* flags_size is zero-based */ tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); if (offset <= (sum + tbl_entry_size)) { off_idx = i; off_pos = offset - sum; break; } sum += tbl_entry_size; } if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { DPRINTF(ad->port_no, "%s: Incorrect offset! " "off_idx: %d, off_pos: %"PRId64"\n", __func__, off_idx, off_pos); r = -1; goto out; } qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), ad->hba->as); qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, prdt_tbl_entry_size(&tbl[off_idx]) - off_pos); for (i = off_idx + 1; i < prdtl; i++) { /* flags_size is zero-based */ qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), prdt_tbl_entry_size(&tbl[i])); if (sglist->size > INT32_MAX) { error_report("AHCI Physical Region Descriptor Table describes " "more than 2 GiB.\n"); qemu_sglist_destroy(sglist); r = -1; goto out; } } }out: dma_memory_unmap(ad->hba->as, prdt, prdt_len, DMA_DIRECTION_TO_DEVICE, prdt_len); return r;}
positive
static void simple_varargs(void){ QObject *embedded_obj; QObject *obj; LiteralQObject decoded = QLIT_QLIST(((LiteralQObject[]){ QLIT_QINT(1), QLIT_QINT(2), QLIT_QLIST(((LiteralQObject[]){ QLIT_QINT(32), QLIT_QINT(42), {}})), {}})); embedded_obj = qobject_from_json("[32, 42]", NULL); g_assert(embedded_obj != NULL); obj = qobject_from_jsonf("[%d, 2, %p]", 1, embedded_obj); g_assert(compare_litqobj_to_qobj(&decoded, obj) == 1); qobject_decref(obj);}
positive
static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp){ RAMBlock *block; RAMBlock *last_block = NULL; ram_addr_t old_ram_size, new_ram_size; old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; qemu_mutex_lock_ramlist(); new_block->offset = find_ram_offset(new_block->max_length); if (!new_block->host) { if (xen_enabled()) { xen_ram_alloc(new_block->offset, new_block->max_length, new_block->mr); } else { new_block->host = phys_mem_alloc(new_block->max_length, &new_block->mr->align); if (!new_block->host) { error_setg_errno(errp, errno, "cannot set up guest memory '%s'", memory_region_name(new_block->mr)); qemu_mutex_unlock_ramlist(); return -1; memory_try_enable_merging(new_block->host, new_block->max_length); /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, * QLIST (which has an RCU-friendly variant) does not have insertion at * tail, so save the last element in last_block. */ QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { last_block = block; if (block->max_length < new_block->max_length) { break; if (block) { QLIST_INSERT_BEFORE_RCU(block, new_block, next); } else if (last_block) { QLIST_INSERT_AFTER_RCU(last_block, new_block, next); } else { /* list is empty */ QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); ram_list.mru_block = NULL; /* Write list before version */ smp_wmb(); ram_list.version++; qemu_mutex_unlock_ramlist(); new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS; int i; /* ram_list.dirty_memory[] is protected by the iothread lock. */ for (i = 0; i < DIRTY_MEMORY_NUM; i++) { ram_list.dirty_memory[i] = bitmap_zero_extend(ram_list.dirty_memory[i], old_ram_size, new_ram_size); cpu_physical_memory_set_dirty_range(new_block->offset, new_block->used_length, DIRTY_CLIENTS_ALL); if (new_block->host) { qemu_ram_setup_dump(new_block->host, new_block->max_length); qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); if (kvm_enabled()) { kvm_setup_guest_memory(new_block->host, new_block->max_length); return new_block->offset;
positive
void qemu_set_log(int log_flags, bool use_own_buffers){ qemu_loglevel = log_flags; if (qemu_loglevel && !qemu_logfile) { qemu_logfile = fopen(logfilename, log_append ? "a" : "w"); if (!qemu_logfile) { perror(logfilename); _exit(1); } /* must avoid mmap() usage of glibc by setting a buffer "by hand" */ if (use_own_buffers) { static char logfile_buf[4096]; setvbuf(qemu_logfile, logfile_buf, _IOLBF, sizeof(logfile_buf)); } else {#if defined(_WIN32) /* Win32 doesn't support line-buffering, so use unbuffered output. */ setvbuf(qemu_logfile, NULL, _IONBF, 0);#else setvbuf(qemu_logfile, NULL, _IOLBF, 0);#endif log_append = 1; } } if (!qemu_loglevel && qemu_logfile) { fclose(qemu_logfile); qemu_logfile = NULL; }}
positive
static int mov_read_ddts(MOVContext *c, AVIOContext *pb, MOVAtom atom){ const uint32_t ddts_size = 20; AVStream *st = NULL; uint8_t *buf = NULL; uint32_t frame_duration_code = 0; uint32_t channel_layout_code = 0; GetBitContext gb; buf = av_malloc(ddts_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!buf) { return AVERROR(ENOMEM); } if (avio_read(pb, buf, ddts_size) < ddts_size) { return AVERROR_INVALIDDATA; } init_get_bits(&gb, buf, 8*ddts_size); if (c->fc->nb_streams < 1) { return 0; } st = c->fc->streams[c->fc->nb_streams-1]; st->codecpar->sample_rate = get_bits_long(&gb, 32); if (st->codecpar->sample_rate <= 0) { av_log(c->fc, AV_LOG_ERROR, "Invalid sample rate %d\n", st->codecpar->sample_rate); return AVERROR_INVALIDDATA; } skip_bits_long(&gb, 32); /* max bitrate */ st->codecpar->bit_rate = get_bits_long(&gb, 32); st->codecpar->bits_per_coded_sample = get_bits(&gb, 8); frame_duration_code = get_bits(&gb, 2); skip_bits(&gb, 30); /* various fields */ channel_layout_code = get_bits(&gb, 16); st->codecpar->frame_size = (frame_duration_code == 0) ? 512 : (frame_duration_code == 1) ? 1024 : (frame_duration_code == 2) ? 2048 : (frame_duration_code == 3) ? 4096 : 0; if (channel_layout_code > 0xff) { av_log(c->fc, AV_LOG_WARNING, "Unsupported DTS audio channel layout"); } st->codecpar->channel_layout = ((channel_layout_code & 0x1) ? AV_CH_FRONT_CENTER : 0) | ((channel_layout_code & 0x2) ? AV_CH_FRONT_LEFT : 0) | ((channel_layout_code & 0x2) ? AV_CH_FRONT_RIGHT : 0) | ((channel_layout_code & 0x4) ? AV_CH_SIDE_LEFT : 0) | ((channel_layout_code & 0x4) ? AV_CH_SIDE_RIGHT : 0) | ((channel_layout_code & 0x8) ? AV_CH_LOW_FREQUENCY : 0); st->codecpar->channels = av_get_channel_layout_nb_channels(st->codecpar->channel_layout); return 0;}
positive
void OPPROTO op_check_subfo_64 (void){ if (likely(!(((uint64_t)(~T2) ^ (uint64_t)T1 ^ UINT64_MAX) & ((uint64_t)(~T2) ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } RETURN();}
positive
void pci_data_write(PCIBus *s, uint32_t addr, uint32_t val, int len){ PCIDevice *pci_dev = pci_dev_find_by_addr(s, addr); uint32_t config_addr = addr & (PCI_CONFIG_SPACE_SIZE - 1); if (!pci_dev) return; PCI_DPRINTF("%s: %s: addr=%02" PRIx32 " val=%08" PRIx32 " len=%d\n", __func__, pci_dev->name, config_addr, val, len); pci_dev->config_write(pci_dev, config_addr, val, len);}
negative
static int mkv_write_tags(AVFormatContext *s){ ebml_master tags = {0}; int i, ret; ff_metadata_conv_ctx(s, ff_mkv_metadata_conv, NULL); if (av_dict_get(s->metadata, "", NULL, AV_DICT_IGNORE_SUFFIX)) { ret = mkv_write_tag(s, s->metadata, 0, 0, &tags); if (ret < 0) return ret; } for (i = 0; i < s->nb_streams; i++) { AVStream *st = s->streams[i]; if (!av_dict_get(st->metadata, "", 0, AV_DICT_IGNORE_SUFFIX)) continue; ret = mkv_write_tag(s, st->metadata, MATROSKA_ID_TAGTARGETS_TRACKUID, i + 1, &tags); if (ret < 0) return ret; } for (i = 0; i < s->nb_chapters; i++) { AVChapter *ch = s->chapters[i]; if (!av_dict_get(ch->metadata, "", NULL, AV_DICT_IGNORE_SUFFIX)) continue; ret = mkv_write_tag(s, ch->metadata, MATROSKA_ID_TAGTARGETS_CHAPTERUID, ch->id, &tags); if (ret < 0) return ret; } if (tags.pos) end_ebml_master(s->pb, tags); return 0;}
positive
static av_always_inline void mc_chroma_dir(VP9Context *s, vp9_mc_func(*mc)[2], uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP56mv *mv, int bw, int bh, int w, int h){ int mx = mv->x, my = mv->y; int th; y += my >> 4; x += mx >> 4; ref_u += y * src_stride_u + x; ref_v += y * src_stride_v + x; mx &= 15; my &= 15; // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + bh + 4 * !!my + 7) >> 5; ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); // FIXME bilinear filter only needs 0/1 pixels, not 3/4 if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) { s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_u - !!my * 3 * src_stride_u - !!mx * 3, 80, src_stride_u, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_u = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3; mc[!!mx][!!my](dst_u, dst_stride, ref_u, 80, bh, mx, my); s->vdsp.emulated_edge_mc(s->edge_emu_buffer, ref_v - !!my * 3 * src_stride_v - !!mx * 3, 80, src_stride_v, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_v = s->edge_emu_buffer + !!my * 3 * 80 + !!mx * 3; mc[!!mx][!!my](dst_v, dst_stride, ref_v, 80, bh, mx, my); } else { mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my); mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my); }}
positive
void qmp_drive_mirror(DriveMirror *arg, Error **errp){ BlockDriverState *bs; BlockDriverState *source, *target_bs; AioContext *aio_context; BlockMirrorBackingMode backing_mode; Error *local_err = NULL; QDict *options = NULL; int flags; int64_t size; const char *format = arg->format; bs = qmp_get_root_bs(arg->device, errp); if (!bs) { return; } aio_context = bdrv_get_aio_context(bs); aio_context_acquire(aio_context); if (!arg->has_mode) { arg->mode = NEW_IMAGE_MODE_ABSOLUTE_PATHS; } if (!arg->has_format) { format = (arg->mode == NEW_IMAGE_MODE_EXISTING ? NULL : bs->drv->format_name); } flags = bs->open_flags | BDRV_O_RDWR; source = backing_bs(bs); if (!source && arg->sync == MIRROR_SYNC_MODE_TOP) { arg->sync = MIRROR_SYNC_MODE_FULL; } if (arg->sync == MIRROR_SYNC_MODE_NONE) { source = bs; } size = bdrv_getlength(bs); if (size < 0) { error_setg_errno(errp, -size, "bdrv_getlength failed"); goto out; } if (arg->has_replaces) { BlockDriverState *to_replace_bs; AioContext *replace_aio_context; int64_t replace_size; if (!arg->has_node_name) { error_setg(errp, "a node-name must be provided when replacing a" " named node of the graph"); goto out; } to_replace_bs = check_to_replace_node(bs, arg->replaces, &local_err); if (!to_replace_bs) { error_propagate(errp, local_err); goto out; } replace_aio_context = bdrv_get_aio_context(to_replace_bs); aio_context_acquire(replace_aio_context); replace_size = bdrv_getlength(to_replace_bs); aio_context_release(replace_aio_context); if (size != replace_size) { error_setg(errp, "cannot replace image with a mirror image of " "different size"); goto out; } } if (arg->mode == NEW_IMAGE_MODE_ABSOLUTE_PATHS) { backing_mode = MIRROR_SOURCE_BACKING_CHAIN; } else { backing_mode = MIRROR_OPEN_BACKING_CHAIN; } if ((arg->sync == MIRROR_SYNC_MODE_FULL || !source) && arg->mode != NEW_IMAGE_MODE_EXISTING) { /* create new image w/o backing file */ assert(format); bdrv_img_create(arg->target, format, NULL, NULL, NULL, size, flags, false, &local_err); } else { switch (arg->mode) { case NEW_IMAGE_MODE_EXISTING: break; case NEW_IMAGE_MODE_ABSOLUTE_PATHS: /* create new image with backing file */ bdrv_img_create(arg->target, format, source->filename, source->drv->format_name, NULL, size, flags, false, &local_err); break; default: abort(); } } if (local_err) { error_propagate(errp, local_err); goto out; } options = qdict_new(); if (arg->has_node_name) { qdict_put_str(options, "node-name", arg->node_name); } if (format) { qdict_put_str(options, "driver", format); } /* Mirroring takes care of copy-on-write using the source's backing * file. */ target_bs = bdrv_open(arg->target, NULL, options, flags | BDRV_O_NO_BACKING, errp); if (!target_bs) { goto out; } bdrv_set_aio_context(target_bs, aio_context); blockdev_mirror_common(arg->has_job_id ? arg->job_id : NULL, bs, target_bs, arg->has_replaces, arg->replaces, arg->sync, backing_mode, arg->has_speed, arg->speed, arg->has_granularity, arg->granularity, arg->has_buf_size, arg->buf_size, arg->has_on_source_error, arg->on_source_error, arg->has_on_target_error, arg->on_target_error, arg->has_unmap, arg->unmap, false, NULL, &local_err); bdrv_unref(target_bs); error_propagate(errp, local_err);out: aio_context_release(aio_context);}
positive
void ff_thread_report_progress(ThreadFrame *f, int n, int field){ PerThreadContext *p; atomic_int *progress = f->progress ? (atomic_int*)f->progress->data : NULL; if (!progress || atomic_load_explicit(&progress[field], memory_order_relaxed) >= n) return; p = f->owner[field]->internal->thread_ctx; if (f->owner[field]->debug&FF_DEBUG_THREADS) av_log(f->owner[field], AV_LOG_DEBUG, "%p finished %d field %d\n", progress, n, field); pthread_mutex_lock(&p->progress_mutex); atomic_store_explicit(&progress[field], n, memory_order_release); pthread_cond_broadcast(&p->progress_cond); pthread_mutex_unlock(&p->progress_mutex);}
positive
static inline int64_t bs_get_v(const uint8_t **bs){ int64_t v = 0; int br = 0; int c; do { c = **bs; (*bs)++; v <<= 7; v |= c & 0x7F; br++; if (br > 10) return -1; } while (c & 0x80); return v - br;}
positive
static int nbd_receive_request(int csock, struct nbd_request *request){ uint8_t buf[4 + 4 + 8 + 8 + 4]; uint32_t magic; if (read_sync(csock, buf, sizeof(buf)) != sizeof(buf)) { LOG("read failed"); errno = EINVAL; return -1; } /* Request [ 0 .. 3] magic (NBD_REQUEST_MAGIC) [ 4 .. 7] type (0 == READ, 1 == WRITE) [ 8 .. 15] handle [16 .. 23] from [24 .. 27] len */ magic = be32_to_cpup((uint32_t*)buf); request->type = be32_to_cpup((uint32_t*)(buf + 4)); request->handle = be64_to_cpup((uint64_t*)(buf + 8)); request->from = be64_to_cpup((uint64_t*)(buf + 16)); request->len = be32_to_cpup((uint32_t*)(buf + 24)); TRACE("Got request: " "{ magic = 0x%x, .type = %d, from = %" PRIu64" , len = %u }", magic, request->type, request->from, request->len); if (magic != NBD_REQUEST_MAGIC) { LOG("invalid magic (got 0x%x)", magic); errno = EINVAL; return -1; } return 0;}
positive
static int vp6_parse_header(VP56Context *s, const uint8_t *buf, int buf_size){ VP56RangeCoder *c = &s->c; int parse_filter_info = 0; int coeff_offset = 0; int vrt_shift = 0; int sub_version; int rows, cols; int res = 0; int ret; int separated_coeff = buf[0] & 1; s->frames[VP56_FRAME_CURRENT]->key_frame = !(buf[0] & 0x80); ff_vp56_init_dequant(s, (buf[0] >> 1) & 0x3F); if (s->frames[VP56_FRAME_CURRENT]->key_frame) { sub_version = buf[1] >> 3; if (sub_version > 8) return AVERROR_INVALIDDATA; s->filter_header = buf[1] & 0x06; if (buf[1] & 1) { avpriv_report_missing_feature(s->avctx, "Interlacing"); return AVERROR_PATCHWELCOME; } if (separated_coeff || !s->filter_header) { coeff_offset = AV_RB16(buf+2) - 2; buf += 2; buf_size -= 2; } rows = buf[2]; /* number of stored macroblock rows */ cols = buf[3]; /* number of stored macroblock cols */ /* buf[4] is number of displayed macroblock rows */ /* buf[5] is number of displayed macroblock cols */ if (!rows || !cols) { av_log(s->avctx, AV_LOG_ERROR, "Invalid size %dx%d\n", cols << 4, rows << 4); return AVERROR_INVALIDDATA; } if (!s->macroblocks || /* first frame */ 16*cols != s->avctx->coded_width || 16*rows != s->avctx->coded_height) { if (s->avctx->extradata_size == 0 && FFALIGN(s->avctx->width, 16) == 16 * cols && FFALIGN(s->avctx->height, 16) == 16 * rows) { // We assume this is properly signalled container cropping, // in an F4V file. Just set the coded_width/height, don't // touch the cropped ones. s->avctx->coded_width = 16 * cols; s->avctx->coded_height = 16 * rows; } else { ret = ff_set_dimensions(s->avctx, 16 * cols, 16 * rows); if (ret < 0) return ret; if (s->avctx->extradata_size == 1) { s->avctx->width -= s->avctx->extradata[0] >> 4; s->avctx->height -= s->avctx->extradata[0] & 0x0F; } } res = VP56_SIZE_CHANGE; } ret = ff_vp56_init_range_decoder(c, buf+6, buf_size-6); if (ret < 0) return ret; vp56_rac_gets(c, 2); parse_filter_info = s->filter_header; if (sub_version < 8) vrt_shift = 5; s->sub_version = sub_version; s->golden_frame = 0; } else { if (!s->sub_version || !s->avctx->coded_width || !s->avctx->coded_height) return AVERROR_INVALIDDATA; if (separated_coeff || !s->filter_header) { coeff_offset = AV_RB16(buf+1) - 2; buf += 2; buf_size -= 2; } ret = ff_vp56_init_range_decoder(c, buf+1, buf_size-1); if (ret < 0) return ret; s->golden_frame = vp56_rac_get(c); if (s->filter_header) { s->deblock_filtering = vp56_rac_get(c); if (s->deblock_filtering) vp56_rac_get(c); if (s->sub_version > 7) parse_filter_info = vp56_rac_get(c); } } if (parse_filter_info) { if (vp56_rac_get(c)) { s->filter_mode = 2; s->sample_variance_threshold = vp56_rac_gets(c, 5) << vrt_shift; s->max_vector_length = 2 << vp56_rac_gets(c, 3); } else if (vp56_rac_get(c)) { s->filter_mode = 1; } else { s->filter_mode = 0; } if (s->sub_version > 7) s->filter_selection = vp56_rac_gets(c, 4); else s->filter_selection = 16; } s->use_huffman = vp56_rac_get(c); s->parse_coeff = vp6_parse_coeff; if (coeff_offset) { buf += coeff_offset; buf_size -= coeff_offset; if (buf_size < 0) { if (s->frames[VP56_FRAME_CURRENT]->key_frame) ff_set_dimensions(s->avctx, 0, 0); return AVERROR_INVALIDDATA; } if (s->use_huffman) { s->parse_coeff = vp6_parse_coeff_huffman; init_get_bits(&s->gb, buf, buf_size<<3); } else { ret = ff_vp56_init_range_decoder(&s->cc, buf, buf_size); if (ret < 0) return ret; s->ccp = &s->cc; } } else { s->ccp = &s->c; } return res;}
positive
static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){ int i, j, k, m; double l2tab[256]; for (i = 1; i < 256; i++) l2tab[i] = log2(i / 256.0); for (i = 0; i < 256; i++) { double best_len[256]; double p = i / 256.0; for (j = 0; j < 256; j++) best_len[j] = 1 << 30; for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) { double occ[256] = { 0 }; double len = 0; occ[j] = 1.0; for (k = 0; k < 256; k++) { double newocc[256] = { 0 }; for (m = 1; m < 256; m++) if (occ[m]) { len -= occ[m] * (p * l2tab[m] + (1 - p) * l2tab[256 - m]); } if (len < best_len[k]) { best_len[k] = len; best_state[i][k] = j; } for (m = 0; m < 256; m++) if (occ[m]) { newocc[one_state[m]] += occ[m] * p; newocc[256 - one_state[256 - m]] += occ[m] * (1 - p); } memcpy(occ, newocc, sizeof(occ)); } } }}
positive
static ExitStatus gen_bcond(DisasContext *ctx, TCGCond cond, int ra, int32_t disp, int mask){ TCGv cmp_tmp; if (mask) { cmp_tmp = tcg_temp_new(); tcg_gen_andi_i64(cmp_tmp, load_gpr(ctx, ra), 1); } else { cmp_tmp = load_gpr(ctx, ra); } return gen_bcond_internal(ctx, cond, cmp_tmp, disp);}
positive
static void tcg_out_qemu_st (TCGContext *s, const TCGArg *args, int opc){ int addr_reg, r0, r1, data_reg, data_reg2, bswap, rbase;#ifdef CONFIG_SOFTMMU int mem_index, r2, addr_reg2; uint8_t *label_ptr;#endif data_reg = *args++; if (opc == 3) data_reg2 = *args++; else data_reg2 = 0; addr_reg = *args++;#ifdef CONFIG_SOFTMMU#if TARGET_LONG_BITS == 64 addr_reg2 = *args++;#else addr_reg2 = 0;#endif mem_index = *args; r0 = 3; r1 = 4; r2 = 0; rbase = 0; tcg_out_tlb_check ( s, r0, r1, r2, addr_reg, addr_reg2, opc & 3, offsetof (CPUArchState, tlb_table[mem_index][0].addr_write), offsetof (CPUTLBEntry, addend) - offsetof (CPUTLBEntry, addr_write), &label_ptr );#else /* !CONFIG_SOFTMMU */ r0 = addr_reg; r1 = 3; rbase = GUEST_BASE ? TCG_GUEST_BASE_REG : 0;#endif#ifdef TARGET_WORDS_BIGENDIAN bswap = 0;#else bswap = 1;#endif switch (opc) { case 0: tcg_out32 (s, STBX | SAB (data_reg, rbase, r0)); break; case 1: if (bswap) tcg_out32 (s, STHBRX | SAB (data_reg, rbase, r0)); else tcg_out32 (s, STHX | SAB (data_reg, rbase, r0)); break; case 2: if (bswap) tcg_out32 (s, STWBRX | SAB (data_reg, rbase, r0)); else tcg_out32 (s, STWX | SAB (data_reg, rbase, r0)); break; case 3: if (bswap) { tcg_out32 (s, ADDI | RT (r1) | RA (r0) | 4); tcg_out32 (s, STWBRX | SAB (data_reg, rbase, r0)); tcg_out32 (s, STWBRX | SAB (data_reg2, rbase, r1)); } else {#ifdef CONFIG_USE_GUEST_BASE tcg_out32 (s, STWX | SAB (data_reg2, rbase, r0)); tcg_out32 (s, ADDI | RT (r1) | RA (r0) | 4); tcg_out32 (s, STWX | SAB (data_reg, rbase, r1));#else tcg_out32 (s, STW | RS (data_reg2) | RA (r0)); tcg_out32 (s, STW | RS (data_reg) | RA (r0) | 4);#endif } break; }#ifdef CONFIG_SOFTMMU add_qemu_ldst_label (s, 0, opc, data_reg, data_reg2, addr_reg, addr_reg2, mem_index, s->code_ptr, label_ptr);#endif}
positive
int qemu_opts_foreach(QemuOptsList *list, qemu_opts_loopfunc func, void *opaque, int abort_on_failure){ QemuOpts *opts; int rc = 0; QTAILQ_FOREACH(opts, &list->head, next) { rc = func(opts, opaque); if (abort_on_failure && rc != 0) break; } return rc;}
positive
static void gen_tlbsx_booke206(DisasContext *ctx){#if defined(CONFIG_USER_ONLY) gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC);#else TCGv t0; if (unlikely(!ctx->mem_idx)) { gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); return; } if (rA(ctx->opcode)) { t0 = tcg_temp_new(); tcg_gen_mov_tl(t0, cpu_gpr[rD(ctx->opcode)]); } else { t0 = tcg_const_tl(0); } tcg_gen_add_tl(t0, t0, cpu_gpr[rB(ctx->opcode)]); gen_helper_booke206_tlbsx(cpu_env, t0);#endif}
positive
static inline int parse_nal_units(AVCodecParserContext *s, const uint8_t *buf, int buf_size, AVCodecContext *avctx){ HEVCParserContext *ctx = s->priv_data; HEVCContext *h = &ctx->h; GetBitContext *gb; SliceHeader *sh = &h->sh; HEVCParamSets *ps = &h->ps; H2645Packet *pkt = &ctx->pkt; const uint8_t *buf_end = buf + buf_size; int state = -1, i; H2645NAL *nal; int is_global = buf == avctx->extradata; if (!h->HEVClc) h->HEVClc = av_mallocz(sizeof(HEVCLocalContext)); if (!h->HEVClc) return AVERROR(ENOMEM); gb = &h->HEVClc->gb; /* set some sane default values */ s->pict_type = AV_PICTURE_TYPE_I; s->key_frame = 0; s->picture_structure = AV_PICTURE_STRUCTURE_UNKNOWN; h->avctx = avctx; if (!buf_size) return 0; if (pkt->nals_allocated < 1) { H2645NAL *tmp = av_realloc_array(pkt->nals, 1, sizeof(*tmp)); if (!tmp) return AVERROR(ENOMEM); pkt->nals = tmp; memset(pkt->nals, 0, sizeof(*tmp)); pkt->nals_allocated = 1; } nal = &pkt->nals[0]; for (;;) { int src_length, consumed; int ret; buf = avpriv_find_start_code(buf, buf_end, &state); if (--buf + 2 >= buf_end) break; src_length = buf_end - buf; h->nal_unit_type = (*buf >> 1) & 0x3f; h->temporal_id = (*(buf + 1) & 0x07) - 1; if (h->nal_unit_type <= NAL_CRA_NUT) { // Do not walk the whole buffer just to decode slice segment header if (src_length > 20) src_length = 20; } consumed = ff_h2645_extract_rbsp(buf, src_length, nal); if (consumed < 0) return consumed; ret = init_get_bits8(gb, nal->data + 2, nal->size); if (ret < 0) return ret; switch (h->nal_unit_type) { case NAL_VPS: ff_hevc_decode_nal_vps(gb, avctx, ps); break; case NAL_SPS: ff_hevc_decode_nal_sps(gb, avctx, ps, 1); break; case NAL_PPS: ff_hevc_decode_nal_pps(gb, avctx, ps); break; case NAL_SEI_PREFIX: case NAL_SEI_SUFFIX: ff_hevc_decode_nal_sei(h); break; case NAL_TRAIL_N: case NAL_TRAIL_R: case NAL_TSA_N: case NAL_TSA_R: case NAL_STSA_N: case NAL_STSA_R: case NAL_RADL_N: case NAL_RADL_R: case NAL_RASL_N: case NAL_RASL_R: case NAL_BLA_W_LP: case NAL_BLA_W_RADL: case NAL_BLA_N_LP: case NAL_IDR_W_RADL: case NAL_IDR_N_LP: case NAL_CRA_NUT: if (is_global) { av_log(avctx, AV_LOG_ERROR, "Invalid NAL unit: %d\n", h->nal_unit_type); return AVERROR_INVALIDDATA; } sh->first_slice_in_pic_flag = get_bits1(gb); s->picture_structure = h->picture_struct; s->field_order = h->picture_struct; if (IS_IRAP(h)) { s->key_frame = 1; sh->no_output_of_prior_pics_flag = get_bits1(gb); } sh->pps_id = get_ue_golomb(gb); if (sh->pps_id >= MAX_PPS_COUNT || !ps->pps_list[sh->pps_id]) { av_log(avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id); return AVERROR_INVALIDDATA; } ps->pps = (HEVCPPS*)ps->pps_list[sh->pps_id]->data; if (ps->pps->sps_id >= MAX_SPS_COUNT || !ps->sps_list[ps->pps->sps_id]) { av_log(avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", ps->pps->sps_id); return AVERROR_INVALIDDATA; } if (ps->sps != (HEVCSPS*)ps->sps_list[ps->pps->sps_id]->data) { ps->sps = (HEVCSPS*)ps->sps_list[ps->pps->sps_id]->data; ps->vps = (HEVCVPS*)ps->vps_list[ps->sps->vps_id]->data; } if (!sh->first_slice_in_pic_flag) { int slice_address_length; if (ps->pps->dependent_slice_segments_enabled_flag) sh->dependent_slice_segment_flag = get_bits1(gb); else sh->dependent_slice_segment_flag = 0; slice_address_length = av_ceil_log2_c(ps->sps->ctb_width * ps->sps->ctb_height); sh->slice_segment_addr = get_bitsz(gb, slice_address_length); if (sh->slice_segment_addr >= ps->sps->ctb_width * ps->sps->ctb_height) { av_log(avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n", sh->slice_segment_addr); return AVERROR_INVALIDDATA; } } else sh->dependent_slice_segment_flag = 0; if (sh->dependent_slice_segment_flag) break; for (i = 0; i < ps->pps->num_extra_slice_header_bits; i++) skip_bits(gb, 1); // slice_reserved_undetermined_flag[] sh->slice_type = get_ue_golomb(gb); if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE || sh->slice_type == B_SLICE)) { av_log(avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n", sh->slice_type); return AVERROR_INVALIDDATA; } s->pict_type = sh->slice_type == B_SLICE ? AV_PICTURE_TYPE_B : sh->slice_type == P_SLICE ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I; if (ps->pps->output_flag_present_flag) sh->pic_output_flag = get_bits1(gb); if (ps->sps->separate_colour_plane_flag) sh->colour_plane_id = get_bits(gb, 2); if (!IS_IDR(h)) { sh->pic_order_cnt_lsb = get_bits(gb, ps->sps->log2_max_poc_lsb); s->output_picture_number = h->poc = ff_hevc_compute_poc(h, sh->pic_order_cnt_lsb); } else s->output_picture_number = h->poc = 0; if (h->temporal_id == 0 && h->nal_unit_type != NAL_TRAIL_N && h->nal_unit_type != NAL_TSA_N && h->nal_unit_type != NAL_STSA_N && h->nal_unit_type != NAL_RADL_N && h->nal_unit_type != NAL_RASL_N && h->nal_unit_type != NAL_RADL_R && h->nal_unit_type != NAL_RASL_R) h->pocTid0 = h->poc; return 0; /* no need to evaluate the rest */ } buf += consumed; } /* didn't find a picture! */ if (!is_global) av_log(h->avctx, AV_LOG_ERROR, "missing picture in access unit\n"); return -1;}
positive
static int afx_init1(SysBusDevice *dev){ AFXState *s = TCX_AFX(dev); memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_abort); vmstate_register_ram_global(&s->mem); sysbus_init_mmio(dev, &s->mem); return 0;}
negative
static float ssim_end4(int sum0[5][4], int sum1[5][4], int width){ float ssim = 0.0; int i; for (i = 0; i < width; i++) ssim += ssim_end1(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0], sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1], sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2], sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]); return ssim;}
negative
static void avc_loopfilter_luma_intra_edge_hor_msa(uint8_t *data, uint8_t alpha_in, uint8_t beta_in, uint32_t img_width){ v16u8 p2_asub_p0, q2_asub_q0, p0_asub_q0; v16u8 alpha, beta; v16u8 is_less_than, is_less_than_beta, negate_is_less_than_beta; v16u8 p2, p1, p0, q0, q1, q2; v16u8 p3_org, p2_org, p1_org, p0_org, q0_org, q1_org, q2_org, q3_org; v8i16 p1_org_r, p0_org_r, q0_org_r, q1_org_r; v8i16 p1_org_l, p0_org_l, q0_org_l, q1_org_l; v8i16 p2_r = { 0 }; v8i16 p1_r = { 0 }; v8i16 p0_r = { 0 }; v8i16 q0_r = { 0 }; v8i16 q1_r = { 0 }; v8i16 q2_r = { 0 }; v8i16 p2_l = { 0 }; v8i16 p1_l = { 0 }; v8i16 p0_l = { 0 }; v8i16 q0_l = { 0 }; v8i16 q1_l = { 0 }; v8i16 q2_l = { 0 }; v16u8 tmp_flag; v16i8 zero = { 0 }; alpha = (v16u8) __msa_fill_b(alpha_in); beta = (v16u8) __msa_fill_b(beta_in); p1_org = LOAD_UB(data - (img_width << 1)); p0_org = LOAD_UB(data - img_width); q0_org = LOAD_UB(data); q1_org = LOAD_UB(data + img_width); { v16u8 p1_asub_p0, q1_asub_q0, is_less_than_alpha; p0_asub_q0 = __msa_asub_u_b(p0_org, q0_org); p1_asub_p0 = __msa_asub_u_b(p1_org, p0_org); q1_asub_q0 = __msa_asub_u_b(q1_org, q0_org); is_less_than_alpha = (p0_asub_q0 < alpha); is_less_than_beta = (p1_asub_p0 < beta); is_less_than = is_less_than_beta & is_less_than_alpha; is_less_than_beta = (q1_asub_q0 < beta); is_less_than = is_less_than_beta & is_less_than; } if (!__msa_test_bz_v(is_less_than)) { q2_org = LOAD_UB(data + (2 * img_width)); p3_org = LOAD_UB(data - (img_width << 2)); p2_org = LOAD_UB(data - (3 * img_width)); p1_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p1_org); p0_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p0_org); q0_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q0_org); p1_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p1_org); p0_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p0_org); q0_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q0_org); tmp_flag = alpha >> 2; tmp_flag = tmp_flag + 2; tmp_flag = (p0_asub_q0 < tmp_flag); p2_asub_p0 = __msa_asub_u_b(p2_org, p0_org); is_less_than_beta = (p2_asub_p0 < beta); is_less_than_beta = is_less_than_beta & tmp_flag; negate_is_less_than_beta = __msa_xori_b(is_less_than_beta, 0xff); is_less_than_beta = is_less_than_beta & is_less_than; negate_is_less_than_beta = negate_is_less_than_beta & is_less_than; { v8u16 is_less_than_beta_l, is_less_than_beta_r; q1_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q1_org); is_less_than_beta_r = (v8u16) __msa_sldi_b((v16i8) is_less_than_beta, zero, 8); if (!__msa_test_bz_v((v16u8) is_less_than_beta_r)) { v8i16 p3_org_r; p3_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p3_org); p2_r = (v8i16) __msa_ilvr_b(zero, (v16i8) p2_org); AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(p3_org_r, p0_org_r, q0_org_r, p1_org_r, p2_r, q1_org_r, p0_r, p1_r, p2_r); } q1_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q1_org); is_less_than_beta_l = (v8u16) __msa_sldi_b(zero, (v16i8) is_less_than_beta, 8); if (!__msa_test_bz_v((v16u8) is_less_than_beta_l)) { v8i16 p3_org_l; p3_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p3_org); p2_l = (v8i16) __msa_ilvl_b(zero, (v16i8) p2_org); AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(p3_org_l, p0_org_l, q0_org_l, p1_org_l, p2_l, q1_org_l, p0_l, p1_l, p2_l); } } /* combine and store */ if (!__msa_test_bz_v(is_less_than_beta)) { p0 = (v16u8) __msa_pckev_b((v16i8) p0_l, (v16i8) p0_r); p1 = (v16u8) __msa_pckev_b((v16i8) p1_l, (v16i8) p1_r); p2 = (v16u8) __msa_pckev_b((v16i8) p2_l, (v16i8) p2_r); p0_org = __msa_bmnz_v(p0_org, p0, is_less_than_beta); p1_org = __msa_bmnz_v(p1_org, p1, is_less_than_beta); p2_org = __msa_bmnz_v(p2_org, p2, is_less_than_beta); STORE_UB(p1_org, data - (2 * img_width)); STORE_UB(p2_org, data - (3 * img_width)); } { v8u16 negate_is_less_than_beta_r, negate_is_less_than_beta_l; negate_is_less_than_beta_r = (v8u16) __msa_sldi_b((v16i8) negate_is_less_than_beta, zero, 8); if (!__msa_test_bz_v((v16u8) negate_is_less_than_beta_r)) { AVC_LOOP_FILTER_P0_OR_Q0(p0_org_r, q1_org_r, p1_org_r, p0_r); } negate_is_less_than_beta_l = (v8u16) __msa_sldi_b(zero, (v16i8) negate_is_less_than_beta, 8); if (!__msa_test_bz_v((v16u8) negate_is_less_than_beta_l)) { AVC_LOOP_FILTER_P0_OR_Q0(p0_org_l, q1_org_l, p1_org_l, p0_l); } } /* combine */ if (!__msa_test_bz_v(negate_is_less_than_beta)) { p0 = (v16u8) __msa_pckev_b((v16i8) p0_l, (v16i8) p0_r); p0_org = __msa_bmnz_v(p0_org, p0, negate_is_less_than_beta); } STORE_UB(p0_org, data - img_width); /* if (tmpFlag && (unsigned)ABS(q2-q0) < thresholds->beta_in) */ q3_org = LOAD_UB(data + (3 * img_width)); q2_asub_q0 = __msa_asub_u_b(q2_org, q0_org); is_less_than_beta = (q2_asub_q0 < beta); is_less_than_beta = is_less_than_beta & tmp_flag; negate_is_less_than_beta = __msa_xori_b(is_less_than_beta, 0xff); is_less_than_beta = is_less_than_beta & is_less_than; negate_is_less_than_beta = negate_is_less_than_beta & is_less_than; { v8u16 is_less_than_beta_l, is_less_than_beta_r; is_less_than_beta_r = (v8u16) __msa_sldi_b((v16i8) is_less_than_beta, zero, 8); if (!__msa_test_bz_v((v16u8) is_less_than_beta_r)) { v8i16 q3_org_r; q3_org_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q3_org); q2_r = (v8i16) __msa_ilvr_b(zero, (v16i8) q2_org); AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(q3_org_r, q0_org_r, p0_org_r, q1_org_r, q2_r, p1_org_r, q0_r, q1_r, q2_r); } is_less_than_beta_l = (v8u16) __msa_sldi_b(zero, (v16i8) is_less_than_beta, 8); if (!__msa_test_bz_v((v16u8) is_less_than_beta_l)) { v8i16 q3_org_l; q3_org_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q3_org); q2_l = (v8i16) __msa_ilvl_b(zero, (v16i8) q2_org); AVC_LOOP_FILTER_P0P1P2_OR_Q0Q1Q2(q3_org_l, q0_org_l, p0_org_l, q1_org_l, q2_l, p1_org_l, q0_l, q1_l, q2_l); } } /* combine and store */ if (!__msa_test_bz_v(is_less_than_beta)) { q0 = (v16u8) __msa_pckev_b((v16i8) q0_l, (v16i8) q0_r); q1 = (v16u8) __msa_pckev_b((v16i8) q1_l, (v16i8) q1_r); q2 = (v16u8) __msa_pckev_b((v16i8) q2_l, (v16i8) q2_r); q0_org = __msa_bmnz_v(q0_org, q0, is_less_than_beta); q1_org = __msa_bmnz_v(q1_org, q1, is_less_than_beta); q2_org = __msa_bmnz_v(q2_org, q2, is_less_than_beta); STORE_UB(q1_org, data + img_width); STORE_UB(q2_org, data + 2 * img_width); } { v8u16 negate_is_less_than_beta_r, negate_is_less_than_beta_l; negate_is_less_than_beta_r = (v8u16) __msa_sldi_b((v16i8) negate_is_less_than_beta, zero, 8); if (!__msa_test_bz_v((v16u8) negate_is_less_than_beta_r)) { AVC_LOOP_FILTER_P0_OR_Q0(q0_org_r, p1_org_r, q1_org_r, q0_r); } negate_is_less_than_beta_l = (v8u16) __msa_sldi_b(zero, (v16i8) negate_is_less_than_beta, 8); if (!__msa_test_bz_v((v16u8) negate_is_less_than_beta_l)) { AVC_LOOP_FILTER_P0_OR_Q0(q0_org_l, p1_org_l, q1_org_l, q0_l); } } /* combine */ if (!__msa_test_bz_v(negate_is_less_than_beta)) { q0 = (v16u8) __msa_pckev_b((v16i8) q0_l, (v16i8) q0_r); q0_org = __msa_bmnz_v(q0_org, q0, negate_is_less_than_beta); } STORE_UB(q0_org, data); }}
negative
struct omap_mpu_state_s *omap2420_mpu_init(MemoryRegion *sysmem, unsigned long sdram_size, const char *core){ struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) g_malloc0(sizeof(struct omap_mpu_state_s)); qemu_irq dma_irqs[4]; DriveInfo *dinfo; int i; SysBusDevice *busdev; struct omap_target_agent_s *ta; /* Core */ s->mpu_model = omap2420; s->cpu = cpu_arm_init(core ?: "arm1136-r2"); if (s->cpu == NULL) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } s->sdram_size = sdram_size; s->sram_size = OMAP242X_SRAM_SIZE; s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0); /* Clocks */ omap_clk_init(s); /* Memory-mapped stuff */ memory_region_init_ram(&s->sdram, NULL, "omap2.dram", s->sdram_size, &error_abort); vmstate_register_ram_global(&s->sdram); memory_region_add_subregion(sysmem, OMAP2_Q2_BASE, &s->sdram); memory_region_init_ram(&s->sram, NULL, "omap2.sram", s->sram_size, &error_abort); vmstate_register_ram_global(&s->sram); memory_region_add_subregion(sysmem, OMAP2_SRAM_BASE, &s->sram); s->l4 = omap_l4_init(sysmem, OMAP2_L4_BASE, 54); /* Actually mapped at any 2K boundary in the ARM11 private-peripheral if */ s->ih[0] = qdev_create(NULL, "omap2-intc"); qdev_prop_set_uint8(s->ih[0], "revision", 0x21); qdev_prop_set_ptr(s->ih[0], "fclk", omap_findclk(s, "mpu_intc_fclk")); qdev_prop_set_ptr(s->ih[0], "iclk", omap_findclk(s, "mpu_intc_iclk")); qdev_init_nofail(s->ih[0]); busdev = SYS_BUS_DEVICE(s->ih[0]); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ)); sysbus_mmio_map(busdev, 0, 0x480fe000); s->prcm = omap_prcm_init(omap_l4tao(s->l4, 3), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_PRCM_MPU_IRQ), NULL, NULL, s); s->sysc = omap_sysctl_init(omap_l4tao(s->l4, 1), omap_findclk(s, "omapctrl_iclk"), s); for (i = 0; i < 4; i++) { dma_irqs[i] = qdev_get_gpio_in(s->ih[omap2_dma_irq_map[i].ih], omap2_dma_irq_map[i].intr); } s->dma = omap_dma4_init(0x48056000, dma_irqs, sysmem, s, 256, 32, omap_findclk(s, "sdma_iclk"), omap_findclk(s, "sdma_fclk")); s->port->addr_valid = omap2_validate_addr; /* Register SDRAM and SRAM ports for fast DMA transfers. */ soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->sdram), OMAP2_Q2_BASE, s->sdram_size); soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->sram), OMAP2_SRAM_BASE, s->sram_size); s->uart[0] = omap2_uart_init(sysmem, omap_l4ta(s->l4, 19), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_UART1_IRQ), omap_findclk(s, "uart1_fclk"), omap_findclk(s, "uart1_iclk"), s->drq[OMAP24XX_DMA_UART1_TX], s->drq[OMAP24XX_DMA_UART1_RX], "uart1", serial_hds[0]); s->uart[1] = omap2_uart_init(sysmem, omap_l4ta(s->l4, 20), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_UART2_IRQ), omap_findclk(s, "uart2_fclk"), omap_findclk(s, "uart2_iclk"), s->drq[OMAP24XX_DMA_UART2_TX], s->drq[OMAP24XX_DMA_UART2_RX], "uart2", serial_hds[0] ? serial_hds[1] : NULL); s->uart[2] = omap2_uart_init(sysmem, omap_l4ta(s->l4, 21), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_UART3_IRQ), omap_findclk(s, "uart3_fclk"), omap_findclk(s, "uart3_iclk"), s->drq[OMAP24XX_DMA_UART3_TX], s->drq[OMAP24XX_DMA_UART3_RX], "uart3", serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL); s->gptimer[0] = omap_gp_timer_init(omap_l4ta(s->l4, 7), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER1), omap_findclk(s, "wu_gpt1_clk"), omap_findclk(s, "wu_l4_iclk")); s->gptimer[1] = omap_gp_timer_init(omap_l4ta(s->l4, 8), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER2), omap_findclk(s, "core_gpt2_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[2] = omap_gp_timer_init(omap_l4ta(s->l4, 22), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER3), omap_findclk(s, "core_gpt3_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[3] = omap_gp_timer_init(omap_l4ta(s->l4, 23), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER4), omap_findclk(s, "core_gpt4_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[4] = omap_gp_timer_init(omap_l4ta(s->l4, 24), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER5), omap_findclk(s, "core_gpt5_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[5] = omap_gp_timer_init(omap_l4ta(s->l4, 25), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER6), omap_findclk(s, "core_gpt6_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[6] = omap_gp_timer_init(omap_l4ta(s->l4, 26), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER7), omap_findclk(s, "core_gpt7_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[7] = omap_gp_timer_init(omap_l4ta(s->l4, 27), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER8), omap_findclk(s, "core_gpt8_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[8] = omap_gp_timer_init(omap_l4ta(s->l4, 28), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER9), omap_findclk(s, "core_gpt9_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[9] = omap_gp_timer_init(omap_l4ta(s->l4, 29), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER10), omap_findclk(s, "core_gpt10_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[10] = omap_gp_timer_init(omap_l4ta(s->l4, 30), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER11), omap_findclk(s, "core_gpt11_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[11] = omap_gp_timer_init(omap_l4ta(s->l4, 31), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPTIMER12), omap_findclk(s, "core_gpt12_clk"), omap_findclk(s, "core_l4_iclk")); omap_tap_init(omap_l4ta(s->l4, 2), s); s->synctimer = omap_synctimer_init(omap_l4tao(s->l4, 2), s, omap_findclk(s, "clk32-kHz"), omap_findclk(s, "core_l4_iclk")); s->i2c[0] = qdev_create(NULL, "omap_i2c"); qdev_prop_set_uint8(s->i2c[0], "revision", 0x34); qdev_prop_set_ptr(s->i2c[0], "iclk", omap_findclk(s, "i2c1.iclk")); qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "i2c1.fclk")); qdev_init_nofail(s->i2c[0]); busdev = SYS_BUS_DEVICE(s->i2c[0]); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_I2C1_IRQ)); sysbus_connect_irq(busdev, 1, s->drq[OMAP24XX_DMA_I2C1_TX]); sysbus_connect_irq(busdev, 2, s->drq[OMAP24XX_DMA_I2C1_RX]); sysbus_mmio_map(busdev, 0, omap_l4_region_base(omap_l4tao(s->l4, 5), 0)); s->i2c[1] = qdev_create(NULL, "omap_i2c"); qdev_prop_set_uint8(s->i2c[1], "revision", 0x34); qdev_prop_set_ptr(s->i2c[1], "iclk", omap_findclk(s, "i2c2.iclk")); qdev_prop_set_ptr(s->i2c[1], "fclk", omap_findclk(s, "i2c2.fclk")); qdev_init_nofail(s->i2c[1]); busdev = SYS_BUS_DEVICE(s->i2c[1]); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_I2C2_IRQ)); sysbus_connect_irq(busdev, 1, s->drq[OMAP24XX_DMA_I2C2_TX]); sysbus_connect_irq(busdev, 2, s->drq[OMAP24XX_DMA_I2C2_RX]); sysbus_mmio_map(busdev, 0, omap_l4_region_base(omap_l4tao(s->l4, 6), 0)); s->gpio = qdev_create(NULL, "omap2-gpio"); qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model); qdev_prop_set_ptr(s->gpio, "iclk", omap_findclk(s, "gpio_iclk")); qdev_prop_set_ptr(s->gpio, "fclk0", omap_findclk(s, "gpio1_dbclk")); qdev_prop_set_ptr(s->gpio, "fclk1", omap_findclk(s, "gpio2_dbclk")); qdev_prop_set_ptr(s->gpio, "fclk2", omap_findclk(s, "gpio3_dbclk")); qdev_prop_set_ptr(s->gpio, "fclk3", omap_findclk(s, "gpio4_dbclk")); if (s->mpu_model == omap2430) { qdev_prop_set_ptr(s->gpio, "fclk4", omap_findclk(s, "gpio5_dbclk")); } qdev_init_nofail(s->gpio); busdev = SYS_BUS_DEVICE(s->gpio); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPIO_BANK1)); sysbus_connect_irq(busdev, 3, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPIO_BANK2)); sysbus_connect_irq(busdev, 6, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPIO_BANK3)); sysbus_connect_irq(busdev, 9, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPIO_BANK4)); if (s->mpu_model == omap2430) { sysbus_connect_irq(busdev, 12, qdev_get_gpio_in(s->ih[0], OMAP_INT_243X_GPIO_BANK5)); } ta = omap_l4ta(s->l4, 3); sysbus_mmio_map(busdev, 0, omap_l4_region_base(ta, 1)); sysbus_mmio_map(busdev, 1, omap_l4_region_base(ta, 0)); sysbus_mmio_map(busdev, 2, omap_l4_region_base(ta, 2)); sysbus_mmio_map(busdev, 3, omap_l4_region_base(ta, 4)); sysbus_mmio_map(busdev, 4, omap_l4_region_base(ta, 5)); s->sdrc = omap_sdrc_init(sysmem, 0x68009000); s->gpmc = omap_gpmc_init(s, 0x6800a000, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_GPMC_IRQ), s->drq[OMAP24XX_DMA_GPMC]); dinfo = drive_get(IF_SD, 0, 0); if (!dinfo) { fprintf(stderr, "qemu: missing SecureDigital device\n"); exit(1); } s->mmc = omap2_mmc_init(omap_l4tao(s->l4, 9), blk_bs(blk_by_legacy_dinfo(dinfo)), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_MMC_IRQ), &s->drq[OMAP24XX_DMA_MMC1_TX], omap_findclk(s, "mmc_fclk"), omap_findclk(s, "mmc_iclk")); s->mcspi[0] = omap_mcspi_init(omap_l4ta(s->l4, 35), 4, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_MCSPI1_IRQ), &s->drq[OMAP24XX_DMA_SPI1_TX0], omap_findclk(s, "spi1_fclk"), omap_findclk(s, "spi1_iclk")); s->mcspi[1] = omap_mcspi_init(omap_l4ta(s->l4, 36), 2, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_MCSPI2_IRQ), &s->drq[OMAP24XX_DMA_SPI2_TX0], omap_findclk(s, "spi2_fclk"), omap_findclk(s, "spi2_iclk")); s->dss = omap_dss_init(omap_l4ta(s->l4, 10), sysmem, 0x68000800, /* XXX wire M_IRQ_25, D_L2_IRQ_30 and I_IRQ_13 together */ qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_DSS_IRQ), s->drq[OMAP24XX_DMA_DSS], omap_findclk(s, "dss_clk1"), omap_findclk(s, "dss_clk2"), omap_findclk(s, "dss_54m_clk"), omap_findclk(s, "dss_l3_iclk"), omap_findclk(s, "dss_l4_iclk")); omap_sti_init(omap_l4ta(s->l4, 18), sysmem, 0x54000000, qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_STI), omap_findclk(s, "emul_ck"), serial_hds[0] && serial_hds[1] && serial_hds[2] ? serial_hds[3] : NULL); s->eac = omap_eac_init(omap_l4ta(s->l4, 32), qdev_get_gpio_in(s->ih[0], OMAP_INT_24XX_EAC_IRQ), /* Ten consecutive lines */ &s->drq[OMAP24XX_DMA_EAC_AC_RD], omap_findclk(s, "func_96m_clk"), omap_findclk(s, "core_l4_iclk")); /* All register mappings (includin those not currenlty implemented): * SystemControlMod48000000 - 48000fff * SystemControlL448001000 - 48001fff * 32kHz Timer Mod48004000 - 48004fff * 32kHz Timer L448005000 - 48005fff * PRCM ModA48008000 - 480087ff * PRCM ModB48008800 - 48008fff * PRCM L448009000 - 48009fff * TEST-BCM Mod48012000 - 48012fff * TEST-BCM L448013000 - 48013fff * TEST-TAP Mod48014000 - 48014fff * TEST-TAP L448015000 - 48015fff * GPIO1 Mod48018000 - 48018fff * GPIO Top48019000 - 48019fff * GPIO2 Mod4801a000 - 4801afff * GPIO L44801b000 - 4801bfff * GPIO3 Mod4801c000 - 4801cfff * GPIO4 Mod4801e000 - 4801efff * WDTIMER1 Mod48020000 - 48010fff * WDTIMER Top48021000 - 48011fff * WDTIMER2 Mod48022000 - 48012fff * WDTIMER L448023000 - 48013fff * WDTIMER3 Mod48024000 - 48014fff * WDTIMER3 L448025000 - 48015fff * WDTIMER4 Mod48026000 - 48016fff * WDTIMER4 L448027000 - 48017fff * GPTIMER1 Mod48028000 - 48018fff * GPTIMER1 L448029000 - 48019fff * GPTIMER2 Mod4802a000 - 4801afff * GPTIMER2 L44802b000 - 4801bfff * L4-Config AP48040000 - 480407ff * L4-Config IP48040800 - 48040fff * L4-Config LA48041000 - 48041fff * ARM11ETB Mod48048000 - 48049fff * ARM11ETB L44804a000 - 4804afff * DISPLAY Top48050000 - 480503ff * DISPLAY DISPC48050400 - 480507ff * DISPLAY RFBI48050800 - 48050bff * DISPLAY VENC48050c00 - 48050fff * DISPLAY L448051000 - 48051fff * CAMERA Top48052000 - 480523ff * CAMERA core48052400 - 480527ff * CAMERA DMA48052800 - 48052bff * CAMERA MMU48052c00 - 48052fff * CAMERA L448053000 - 48053fff * SDMA Mod48056000 - 48056fff * SDMA L448057000 - 48057fff * SSI Top48058000 - 48058fff * SSI GDD48059000 - 48059fff * SSI Port14805a000 - 4805afff * SSI Port24805b000 - 4805bfff * SSI L44805c000 - 4805cfff * USB Mod4805e000 - 480fefff * USB L44805f000 - 480fffff * WIN_TRACER1 Mod48060000 - 48060fff * WIN_TRACER1 L448061000 - 48061fff * WIN_TRACER2 Mod48062000 - 48062fff * WIN_TRACER2 L448063000 - 48063fff * WIN_TRACER3 Mod48064000 - 48064fff * WIN_TRACER3 L448065000 - 48065fff * WIN_TRACER4 Top48066000 - 480660ff * WIN_TRACER4 ETT48066100 - 480661ff * WIN_TRACER4 WT48066200 - 480662ff * WIN_TRACER4 L448067000 - 48067fff * XTI Mod48068000 - 48068fff * XTI L448069000 - 48069fff * UART1 Mod4806a000 - 4806afff * UART1 L44806b000 - 4806bfff * UART2 Mod4806c000 - 4806cfff * UART2 L44806d000 - 4806dfff * UART3 Mod4806e000 - 4806efff * UART3 L44806f000 - 4806ffff * I2C1 Mod48070000 - 48070fff * I2C1 L448071000 - 48071fff * I2C2 Mod48072000 - 48072fff * I2C2 L448073000 - 48073fff * McBSP1 Mod48074000 - 48074fff * McBSP1 L448075000 - 48075fff * McBSP2 Mod48076000 - 48076fff * McBSP2 L448077000 - 48077fff * GPTIMER3 Mod48078000 - 48078fff * GPTIMER3 L448079000 - 48079fff * GPTIMER4 Mod4807a000 - 4807afff * GPTIMER4 L44807b000 - 4807bfff * GPTIMER5 Mod4807c000 - 4807cfff * GPTIMER5 L44807d000 - 4807dfff * GPTIMER6 Mod4807e000 - 4807efff * GPTIMER6 L44807f000 - 4807ffff * GPTIMER7 Mod48080000 - 48080fff * GPTIMER7 L448081000 - 48081fff * GPTIMER8 Mod48082000 - 48082fff * GPTIMER8 L448083000 - 48083fff * GPTIMER9 Mod48084000 - 48084fff * GPTIMER9 L448085000 - 48085fff * GPTIMER10 Mod48086000 - 48086fff * GPTIMER10 L448087000 - 48087fff * GPTIMER11 Mod48088000 - 48088fff * GPTIMER11 L448089000 - 48089fff * GPTIMER12 Mod4808a000 - 4808afff * GPTIMER12 L44808b000 - 4808bfff * EAC Mod48090000 - 48090fff * EAC L448091000 - 48091fff * FAC Mod48092000 - 48092fff * FAC L448093000 - 48093fff * MAILBOX Mod48094000 - 48094fff * MAILBOX L448095000 - 48095fff * SPI1 Mod48098000 - 48098fff * SPI1 L448099000 - 48099fff * SPI2 Mod4809a000 - 4809afff * SPI2 L44809b000 - 4809bfff * MMC/SDIO Mod4809c000 - 4809cfff * MMC/SDIO L44809d000 - 4809dfff * MS_PRO Mod4809e000 - 4809efff * MS_PRO L44809f000 - 4809ffff * RNG Mod480a0000 - 480a0fff * RNG L4480a1000 - 480a1fff * DES3DES Mod480a2000 - 480a2fff * DES3DES L4480a3000 - 480a3fff * SHA1MD5 Mod480a4000 - 480a4fff * SHA1MD5 L4480a5000 - 480a5fff * AES Mod480a6000 - 480a6fff * AES L4480a7000 - 480a7fff * PKA Mod480a8000 - 480a9fff * PKA L4480aa000 - 480aafff * MG Mod480b0000 - 480b0fff * MG L4480b1000 - 480b1fff * HDQ/1-wire Mod480b2000 - 480b2fff * HDQ/1-wire L4480b3000 - 480b3fff * MPU interrupt480fe000 - 480fefff * STI channel base54000000 - 5400ffff * IVA RAM5c000000 - 5c01ffff * IVA ROM5c020000 - 5c027fff * IMG_BUF_A5c040000 - 5c040fff * IMG_BUF_B5c042000 - 5c042fff * VLCDS5c048000 - 5c0487ff * IMX_COEF5c049000 - 5c04afff * IMX_CMD5c051000 - 5c051fff * VLCDQ5c053000 - 5c0533ff * VLCDH5c054000 - 5c054fff * SEQ_CMD5c055000 - 5c055fff * IMX_REG5c056000 - 5c0560ff * VLCD_REG5c056100 - 5c0561ff * SEQ_REG5c056200 - 5c0562ff * IMG_BUF_REG5c056300 - 5c0563ff * SEQIRQ_REG5c056400 - 5c0564ff * OCP_REG5c060000 - 5c060fff * SYSC_REG5c070000 - 5c070fff * MMU_REG5d000000 - 5d000fff * sDMA R68000400 - 680005ff * sDMA W68000600 - 680007ff * Display Control68000800 - 680009ff * DSP subsystem68000a00 - 68000bff * MPU subsystem68000c00 - 68000dff * IVA subsystem68001000 - 680011ff * USB68001200 - 680013ff * Camera68001400 - 680015ff * VLYNQ (firewall)68001800 - 68001bff * VLYNQ68001e00 - 68001fff * SSI68002000 - 680021ff * L468002400 - 680025ff * DSP (firewall)68002800 - 68002bff * DSP subsystem68002e00 - 68002fff * IVA (firewall)68003000 - 680033ff * IVA68003600 - 680037ff * GFX68003a00 - 68003bff * CMDWR emulation68003c00 - 68003dff * SMS68004000 - 680041ff * OCM68004200 - 680043ff * GPMC68004400 - 680045ff * RAM (firewall)68005000 - 680053ff * RAM (err login)68005400 - 680057ff * ROM (firewall)68005800 - 68005bff * ROM (err login)68005c00 - 68005fff * GPMC (firewall)68006000 - 680063ff * GPMC (err login)68006400 - 680067ff * SMS (err login)68006c00 - 68006fff * SMS registers68008000 - 68008fff * SDRC registers68009000 - 68009fff * GPMC registers6800a000 6800afff */ qemu_register_reset(omap2_mpu_reset, s); return s;}
negative
static void vfio_unmap_bars(VFIOPCIDevice *vdev){ int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_unmap_bar(vdev, i); } if (vdev->has_vga) { vfio_vga_quirk_teardown(vdev); pci_unregister_vga(&vdev->pdev); }}
negative
static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent){ PCIDevice *d = (PCIDevice *)dev; const pci_class_desc *desc; char ctxt[64]; PCIIORegion *r; int i, class; class = pci_get_word(d->config + PCI_CLASS_DEVICE); desc = pci_class_descriptions; while (desc->desc && class != desc->class) desc++; if (desc->desc) { snprintf(ctxt, sizeof(ctxt), "%s", desc->desc); } else { snprintf(ctxt, sizeof(ctxt), "Class %04x", class); } monitor_printf(mon, "%*sclass %s, addr %02x:%02x.%x, " "pci id %04x:%04x (sub %04x:%04x)\n", indent, "", ctxt, pci_bus_num(d->bus), PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), pci_get_word(d->config + PCI_VENDOR_ID), pci_get_word(d->config + PCI_DEVICE_ID), pci_get_word(d->config + PCI_SUBSYSTEM_VENDOR_ID), pci_get_word(d->config + PCI_SUBSYSTEM_ID)); for (i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (!r->size) continue; monitor_printf(mon, "%*sbar %d: %s at 0x%"FMT_PCIBUS " [0x%"FMT_PCIBUS"]\n", indent, "", i, r->type & PCI_BASE_ADDRESS_SPACE_IO ? "i/o" : "mem", r->addr, r->addr + r->size - 1); }}
negative
ObjectClass *object_class_dynamic_cast_assert(ObjectClass *class, const char *typename, const char *file, int line, const char *func){ ObjectClass *ret; trace_object_class_dynamic_cast_assert(class ? class->type->name : "(null)", typename, file, line, func);#ifdef CONFIG_QOM_CAST_DEBUG int i; for (i = 0; i < OBJECT_CLASS_CAST_CACHE; i++) { if (class->cast_cache[i] == typename) { ret = class; goto out; } }#else if (!class->interfaces) { return class; }#endif ret = object_class_dynamic_cast(class, typename); if (!ret && class) { fprintf(stderr, "%s:%d:%s: Object %p is not an instance of type %s\n", file, line, func, class, typename); abort(); }#ifdef CONFIG_QOM_CAST_DEBUG if (ret == class) { for (i = 1; i < OBJECT_CLASS_CAST_CACHE; i++) { class->cast_cache[i - 1] = class->cast_cache[i]; } class->cast_cache[i - 1] = typename; }out:#endif return ret;}
negative
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback){#define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \ CONFIG_H264_D3D11VA_HWACCEL + \ CONFIG_H264_VAAPI_HWACCEL + \ (CONFIG_H264_VDA_HWACCEL * 2) + \ CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \ CONFIG_H264_VDPAU_HWACCEL) enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts; const enum AVPixelFormat *choices = pix_fmts; int i; switch (h->ps.sps->bit_depth_luma) { case 9: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP9; } else *fmt++ = AV_PIX_FMT_YUV444P9; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P9; else *fmt++ = AV_PIX_FMT_YUV420P9; break; case 10: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP10; } else *fmt++ = AV_PIX_FMT_YUV444P10; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P10; else *fmt++ = AV_PIX_FMT_YUV420P10; break; case 12: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP12; } else *fmt++ = AV_PIX_FMT_YUV444P12; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P12; else *fmt++ = AV_PIX_FMT_YUV420P12; break; case 14: if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { *fmt++ = AV_PIX_FMT_GBRP14; } else *fmt++ = AV_PIX_FMT_YUV444P14; } else if (CHROMA422(h)) *fmt++ = AV_PIX_FMT_YUV422P14; else *fmt++ = AV_PIX_FMT_YUV420P14; break; case 8:#if CONFIG_H264_VDPAU_HWACCEL *fmt++ = AV_PIX_FMT_VDPAU;#endif if (CHROMA444(h)) { if (h->avctx->colorspace == AVCOL_SPC_RGB) *fmt++ = AV_PIX_FMT_GBRP; else if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ444P; else *fmt++ = AV_PIX_FMT_YUV444P; } else if (CHROMA422(h)) { if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ422P; else *fmt++ = AV_PIX_FMT_YUV422P; } else {#if CONFIG_H264_DXVA2_HWACCEL *fmt++ = AV_PIX_FMT_DXVA2_VLD;#endif#if CONFIG_H264_D3D11VA_HWACCEL *fmt++ = AV_PIX_FMT_D3D11VA_VLD;#endif#if CONFIG_H264_VAAPI_HWACCEL *fmt++ = AV_PIX_FMT_VAAPI;#endif#if CONFIG_H264_VDA_HWACCEL *fmt++ = AV_PIX_FMT_VDA_VLD; *fmt++ = AV_PIX_FMT_VDA;#endif#if CONFIG_H264_VIDEOTOOLBOX_HWACCEL *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;#endif if (h->avctx->codec->pix_fmts) choices = h->avctx->codec->pix_fmts; else if (h->avctx->color_range == AVCOL_RANGE_JPEG) *fmt++ = AV_PIX_FMT_YUVJ420P; else *fmt++ = AV_PIX_FMT_YUV420P; } break; default: av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma); return AVERROR_INVALIDDATA; } *fmt = AV_PIX_FMT_NONE; for (i=0; choices[i] != AV_PIX_FMT_NONE; i++) if (choices[i] == h->avctx->pix_fmt && !force_callback) return choices[i]; return ff_thread_get_format(h->avctx, choices);}
negative
void msix_load(PCIDevice *dev, QEMUFile *f){ unsigned n = dev->msix_entries_nr; unsigned int vector; if (!(dev->cap_present & QEMU_PCI_CAP_MSIX)) { return; } msix_free_irq_entries(dev); qemu_get_buffer(f, dev->msix_table_page, n * PCI_MSIX_ENTRY_SIZE); qemu_get_buffer(f, dev->msix_table_page + MSIX_PAGE_PENDING, (n + 7) / 8); msix_update_function_masked(dev); for (vector = 0; vector < n; vector++) { msix_handle_mask_update(dev, vector, true); }}
negative
static void vga_update_display(void *opaque){ VGACommonState *s = opaque; int full_update, graphic_mode; qemu_flush_coalesced_mmio_buffer(); if (ds_get_bits_per_pixel(s->ds) == 0) { /* nothing to do */ } else { full_update = 0; if (!(s->ar_index & 0x20) && /* extra CGA compatibility hacks (not in standard VGA */ (!(vga_cga_hacks & VGA_CGA_HACK_PALETTE_BLANKING) || (s->ar_index != 0 && s->ar_flip_flop))) { graphic_mode = GMODE_BLANK; } else { graphic_mode = s->gr[VGA_GFX_MISC] & VGA_GR06_GRAPHICS_MODE; } if (graphic_mode != s->graphic_mode) { s->graphic_mode = graphic_mode; s->cursor_blink_time = qemu_get_clock_ms(vm_clock); full_update = 1; } switch(graphic_mode) { case GMODE_TEXT: vga_draw_text(s, full_update); break; case GMODE_GRAPH: vga_draw_graphic(s, full_update); break; case GMODE_BLANK: default: vga_draw_blank(s, full_update); break; } }}
negative
static bool eckd_valid_address(BootMapPointer *p){ const uint64_t cylinder = p->eckd.cylinder + ((p->eckd.head & 0xfff0) << 12); const uint64_t head = p->eckd.head & 0x000f; if (head >= virtio_get_heads() || p->eckd.sector > virtio_get_sectors() || p->eckd.sector <= 0) { return false; } if (!virtio_guessed_disk_nature() && cylinder >= virtio_get_cylinders()) { return false; } return true;}
negative
static void test_bh_delete_from_cb(void){ BHTestData data1 = { .n = 0, .max = 1 }; data1.bh = aio_bh_new(ctx, bh_delete_cb, &data1); qemu_bh_schedule(data1.bh); g_assert_cmpint(data1.n, ==, 0); wait_for_aio(); g_assert_cmpint(data1.n, ==, data1.max); g_assert(data1.bh == NULL); g_assert(!aio_poll(ctx, false));}
negative
static void v9fs_create(void *opaque){ int32_t fid; int err = 0; size_t offset = 7; V9fsFidState *fidp; V9fsQID qid; int32_t perm; int8_t mode; V9fsPath path; struct stat stbuf; V9fsString name; V9fsString extension; int iounit; V9fsPDU *pdu = opaque; v9fs_path_init(&path); pdu_unmarshal(pdu, offset, "dsdbs", &fid, &name, &perm, &mode, &extension); trace_v9fs_create(pdu->tag, pdu->id, fid, name.data, perm, mode); fidp = get_fid(pdu, fid); if (fidp == NULL) { err = -EINVAL; goto out_nofid; } if (perm & P9_STAT_MODE_DIR) { err = v9fs_co_mkdir(pdu, fidp, &name, perm & 0777, fidp->uid, -1, &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); err = v9fs_co_opendir(pdu, fidp); if (err < 0) { goto out; } fidp->fid_type = P9_FID_DIR; } else if (perm & P9_STAT_MODE_SYMLINK) { err = v9fs_co_symlink(pdu, fidp, &name, extension.data, -1 , &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_LINK) { int32_t ofid = atoi(extension.data); V9fsFidState *ofidp = get_fid(pdu, ofid); if (ofidp == NULL) { err = -EINVAL; goto out; } err = v9fs_co_link(pdu, ofidp, fidp, &name); put_fid(pdu, ofidp); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { fidp->fid_type = P9_FID_NONE; goto out; } v9fs_path_copy(&fidp->path, &path); err = v9fs_co_lstat(pdu, &fidp->path, &stbuf); if (err < 0) { fidp->fid_type = P9_FID_NONE; goto out; } } else if (perm & P9_STAT_MODE_DEVICE) { char ctype; uint32_t major, minor; mode_t nmode = 0; if (sscanf(extension.data, "%c %u %u", &ctype, &major, &minor) != 3) { err = -errno; goto out; } switch (ctype) { case 'c': nmode = S_IFCHR; break; case 'b': nmode = S_IFBLK; break; default: err = -EIO; goto out; } nmode |= perm & 0777; err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, makedev(major, minor), nmode, &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_NAMED_PIPE) { err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, 0, S_IFIFO | (perm & 0777), &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else if (perm & P9_STAT_MODE_SOCKET) { err = v9fs_co_mknod(pdu, fidp, &name, fidp->uid, -1, 0, S_IFSOCK | (perm & 0777), &stbuf); if (err < 0) { goto out; } err = v9fs_co_name_to_path(pdu, &fidp->path, name.data, &path); if (err < 0) { goto out; } v9fs_path_copy(&fidp->path, &path); } else { err = v9fs_co_open2(pdu, fidp, &name, -1, omode_to_uflags(mode)|O_CREAT, perm, &stbuf); if (err < 0) { goto out; } fidp->fid_type = P9_FID_FILE; fidp->open_flags = omode_to_uflags(mode); if (fidp->open_flags & O_EXCL) { /* * We let the host file system do O_EXCL check * We should not reclaim such fd */ fidp->flags |= FID_NON_RECLAIMABLE; } } iounit = get_iounit(pdu, &fidp->path); stat_to_qid(&stbuf, &qid); offset += pdu_marshal(pdu, offset, "Qd", &qid, iounit); err = offset; trace_v9fs_create_return(pdu->tag, pdu->id, qid.type, qid.version, qid.path, iounit);out: put_fid(pdu, fidp);out_nofid: complete_pdu(pdu->s, pdu, err); v9fs_string_free(&name); v9fs_string_free(&extension); v9fs_path_free(&path);}
negative
static void dma_bdrv_cb(void *opaque, int ret){ DMAAIOCB *dbs = (DMAAIOCB *)opaque; dma_addr_t cur_addr, cur_len; void *mem; trace_dma_bdrv_cb(dbs, ret); dbs->acb = NULL; dbs->sector_num += dbs->iov.size / 512; if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) { dma_complete(dbs, ret); return; } dma_bdrv_unmap(dbs); while (dbs->sg_cur_index < dbs->sg->nsg) { cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte; cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte; mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir); if (!mem) break; qemu_iovec_add(&dbs->iov, mem, cur_len); dbs->sg_cur_byte += cur_len; if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) { dbs->sg_cur_byte = 0; ++dbs->sg_cur_index; } } if (dbs->iov.size == 0) { trace_dma_map_wait(dbs); cpu_register_map_client(dbs, continue_after_map_failure); return; } if (dbs->iov.size & ~BDRV_SECTOR_MASK) { qemu_iovec_discard_back(&dbs->iov, dbs->iov.size & ~BDRV_SECTOR_MASK); } dbs->acb = dbs->io_func(dbs->bs, dbs->sector_num, &dbs->iov, dbs->iov.size / 512, dma_bdrv_cb, dbs); assert(dbs->acb);}
negative
static void vtd_root_table_setup(IntelIOMMUState *s){ s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); s->root_extended = s->root & VTD_RTADDR_RTT; s->root &= VTD_RTADDR_ADDR_MASK(VTD_HOST_ADDRESS_WIDTH); trace_vtd_reg_dmar_root(s->root, s->root_extended);}
negative
CharDriverState *qemu_chr_new_from_opts(QemuOpts *opts, void (*init)(struct CharDriverState *s), Error **errp){ Error *local_err = NULL; CharDriver *cd; CharDriverState *chr; GSList *i; ChardevReturn *ret = NULL; ChardevBackend *backend; const char *id = qemu_opts_id(opts); char *bid = NULL; if (id == NULL) { error_setg(errp, "chardev: no id specified"); goto err; } if (qemu_opt_get(opts, "backend") == NULL) { error_setg(errp, "chardev: \"%s\" missing backend", qemu_opts_id(opts)); goto err; } for (i = backends; i; i = i->next) { cd = i->data; if (strcmp(cd->name, qemu_opt_get(opts, "backend")) == 0) { break; } } if (i == NULL) { error_setg(errp, "chardev: backend \"%s\" not found", qemu_opt_get(opts, "backend")); goto err; } backend = g_new0(ChardevBackend, 1); if (qemu_opt_get_bool(opts, "mux", 0)) { bid = g_strdup_printf("%s-base", id); } chr = NULL; backend->kind = cd->kind; if (cd->parse) { cd->parse(opts, backend, &local_err); if (local_err) { error_propagate(errp, local_err); goto qapi_out; } } ret = qmp_chardev_add(bid ? bid : id, backend, errp); if (!ret) { goto qapi_out; } if (bid) { qapi_free_ChardevBackend(backend); qapi_free_ChardevReturn(ret); backend = g_new0(ChardevBackend, 1); backend->mux = g_new0(ChardevMux, 1); backend->kind = CHARDEV_BACKEND_KIND_MUX; backend->mux->chardev = g_strdup(bid); ret = qmp_chardev_add(id, backend, errp); if (!ret) { chr = qemu_chr_find(bid); qemu_chr_delete(chr); chr = NULL; goto qapi_out; } } chr = qemu_chr_find(id); chr->opts = opts;qapi_out: qapi_free_ChardevBackend(backend); qapi_free_ChardevReturn(ret); g_free(bid); return chr;err: qemu_opts_del(opts); return NULL;}
negative
void hmp_cont(Monitor *mon, const QDict *qdict){ Error *errp = NULL; qmp_cont(&errp); if (error_is_set(&errp)) { if (error_is_type(errp, QERR_DEVICE_ENCRYPTED)) { const char *device; /* The device is encrypted. Ask the user for the password and retry */ device = error_get_field(errp, "device"); assert(device != NULL); monitor_read_block_device_key(mon, device, hmp_cont_cb, mon); error_free(errp); return; } hmp_handle_error(mon, &errp); }}
negative
static int smka_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt){ SmackerAudioContext *s = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; GetBitContext gb; HuffContext h[4] = { { 0 } }; VLC vlc[4] = { { 0 } }; int16_t *samples; uint8_t *samples8; int val; int i, res, ret; int unp_size; int bits, stereo; int pred[2] = {0, 0}; if (buf_size <= 4) { av_log(avctx, AV_LOG_ERROR, "packet is too small\n"); return AVERROR(EINVAL); } unp_size = AV_RL32(buf); if (unp_size > (1U<<24)) { av_log(avctx, AV_LOG_ERROR, "packet is too big\n"); return AVERROR_INVALIDDATA; } init_get_bits(&gb, buf + 4, (buf_size - 4) * 8); if(!get_bits1(&gb)){ av_log(avctx, AV_LOG_INFO, "Sound: no data\n"); *got_frame_ptr = 0; return 1; } stereo = get_bits1(&gb); bits = get_bits1(&gb); if (stereo ^ (avctx->channels != 1)) { av_log(avctx, AV_LOG_ERROR, "channels mismatch\n"); return AVERROR(EINVAL); } if (bits && avctx->sample_fmt == AV_SAMPLE_FMT_U8) { av_log(avctx, AV_LOG_ERROR, "sample format mismatch\n"); return AVERROR(EINVAL); } /* get output buffer */ s->frame.nb_samples = unp_size / (avctx->channels * (bits + 1)); if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } samples = (int16_t *)s->frame.data[0]; samples8 = s->frame.data[0]; // Initialize for(i = 0; i < (1 << (bits + stereo)); i++) { h[i].length = 256; h[i].maxlength = 0; h[i].current = 0; h[i].bits = av_mallocz(256 * 4); h[i].lengths = av_mallocz(256 * sizeof(int)); h[i].values = av_mallocz(256 * sizeof(int)); skip_bits1(&gb); smacker_decode_tree(&gb, &h[i], 0, 0); skip_bits1(&gb); if(h[i].current > 1) { res = init_vlc(&vlc[i], SMKTREE_BITS, h[i].length, h[i].lengths, sizeof(int), sizeof(int), h[i].bits, sizeof(uint32_t), sizeof(uint32_t), INIT_VLC_LE); if(res < 0) { av_log(avctx, AV_LOG_ERROR, "Cannot build VLC table\n"); return AVERROR_INVALIDDATA; } } } if(bits) { //decode 16-bit data for(i = stereo; i >= 0; i--) pred[i] = sign_extend(av_bswap16(get_bits(&gb, 16)), 16); for(i = 0; i <= stereo; i++) *samples++ = pred[i]; for(; i < unp_size / 2; i++) { if(get_bits_left(&gb)<0) return AVERROR_INVALIDDATA; if(i & stereo) { if(vlc[2].table) res = get_vlc2(&gb, vlc[2].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } val = h[2].values[res]; if(vlc[3].table) res = get_vlc2(&gb, vlc[3].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } val |= h[3].values[res] << 8; pred[1] += sign_extend(val, 16); *samples++ = av_clip_int16(pred[1]); } else { if(vlc[0].table) res = get_vlc2(&gb, vlc[0].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } val = h[0].values[res]; if(vlc[1].table) res = get_vlc2(&gb, vlc[1].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } val |= h[1].values[res] << 8; pred[0] += sign_extend(val, 16); *samples++ = av_clip_int16(pred[0]); } } } else { //8-bit data for(i = stereo; i >= 0; i--) pred[i] = get_bits(&gb, 8); for(i = 0; i <= stereo; i++) *samples8++ = pred[i]; for(; i < unp_size; i++) { if(get_bits_left(&gb)<0) return AVERROR_INVALIDDATA; if(i & stereo){ if(vlc[1].table) res = get_vlc2(&gb, vlc[1].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } pred[1] += sign_extend(h[1].values[res], 8); *samples8++ = av_clip_uint8(pred[1]); } else { if(vlc[0].table) res = get_vlc2(&gb, vlc[0].table, SMKTREE_BITS, 3); else res = 0; if (res < 0) { av_log(avctx, AV_LOG_ERROR, "invalid vlc\n"); return AVERROR_INVALIDDATA; } pred[0] += sign_extend(h[0].values[res], 8); *samples8++ = av_clip_uint8(pred[0]); } } } for(i = 0; i < 4; i++) { if(vlc[i].table) ff_free_vlc(&vlc[i]); av_free(h[i].bits); av_free(h[i].lengths); av_free(h[i].values); } *got_frame_ptr = 1; *(AVFrame *)data = s->frame; return buf_size;}
negative
CharDriverState *qemu_chr_open(const char *filename){ const char *p; if (!strcmp(filename, "vc")) { return text_console_init(&display_state); } else if (!strcmp(filename, "null")) { return qemu_chr_open_null(); } else if (strstart(filename, "tcp:", &p)) { return qemu_chr_open_tcp(p, 0, 0); } else if (strstart(filename, "telnet:", &p)) { return qemu_chr_open_tcp(p, 1, 0); } else if (strstart(filename, "udp:", &p)) { return qemu_chr_open_udp(p); } else if (strstart(filename, "mon:", &p)) { CharDriverState *drv = qemu_chr_open(p); if (drv) { drv = qemu_chr_open_mux(drv); monitor_init(drv, !nographic); return drv; } printf("Unable to open driver: %s\n", p); return 0; } else#ifndef _WIN32 if (strstart(filename, "unix:", &p)) {return qemu_chr_open_tcp(p, 0, 1); } else if (strstart(filename, "file:", &p)) { return qemu_chr_open_file_out(p); } else if (strstart(filename, "pipe:", &p)) { return qemu_chr_open_pipe(p); } else if (!strcmp(filename, "pty")) { return qemu_chr_open_pty(); } else if (!strcmp(filename, "stdio")) { return qemu_chr_open_stdio(); } else #if defined(__linux__) if (strstart(filename, "/dev/parport", NULL)) { return qemu_chr_open_pp(filename); } else #endif if (strstart(filename, "/dev/", NULL)) { return qemu_chr_open_tty(filename); } else #else /* !_WIN32 */ if (strstart(filename, "COM", NULL)) { return qemu_chr_open_win(filename); } else if (strstart(filename, "pipe:", &p)) { return qemu_chr_open_win_pipe(p); } else if (strstart(filename, "con:", NULL)) { return qemu_chr_open_win_con(filename); } else if (strstart(filename, "file:", &p)) { return qemu_chr_open_win_file_out(p); }#endif { return NULL; }}
negative
void spapr_events_init(sPAPREnvironment *spapr){ spapr->epow_irq = xics_alloc(spapr->icp, 0, 0, false); spapr->epow_notifier.notify = spapr_powerdown_req; qemu_register_powerdown_notifier(&spapr->epow_notifier); spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception", check_exception);}
negative
GuestFileWrite *qmp_guest_file_write(int64_t handle, const char *buf_b64, bool has_count, int64_t count, Error **errp){ GuestFileWrite *write_data = NULL; guchar *buf; gsize buf_len; bool is_ok; DWORD write_count; GuestFileHandle *gfh = guest_file_handle_find(handle, errp); HANDLE fh; if (!gfh) { return NULL; } fh = gfh->fh; buf = g_base64_decode(buf_b64, &buf_len); if (!has_count) { count = buf_len; } else if (count < 0 || count > buf_len) { error_setg(errp, "value '%" PRId64 "' is invalid for argument count", count); goto done; } is_ok = WriteFile(fh, buf, count, &write_count, NULL); if (!is_ok) { error_setg_win32(errp, GetLastError(), "failed to write to file"); slog("guest-file-write-failed, handle: %" PRId64, handle); } else { write_data = g_new0(GuestFileWrite, 1); write_data->count = (size_t) write_count; }done: g_free(buf); return write_data;}
negative
static int nbd_config(BDRVNBDState *s, QDict *options, char **export){ Error *local_err = NULL; if (qdict_haskey(options, "path") == qdict_haskey(options, "host")) { if (qdict_haskey(options, "path")) { qerror_report(ERROR_CLASS_GENERIC_ERROR, "path and host may not " "be used at the same time."); } else { qerror_report(ERROR_CLASS_GENERIC_ERROR, "one of path and host " "must be specified."); } return -EINVAL; } s->client.is_unix = qdict_haskey(options, "path"); s->socket_opts = qemu_opts_create(&socket_optslist, NULL, 0, &error_abort); qemu_opts_absorb_qdict(s->socket_opts, options, &local_err); if (local_err) { qerror_report_err(local_err); error_free(local_err); return -EINVAL; } if (!qemu_opt_get(s->socket_opts, "port")) { qemu_opt_set_number(s->socket_opts, "port", NBD_DEFAULT_PORT); } *export = g_strdup(qdict_get_try_str(options, "export")); if (*export) { qdict_del(options, "export"); } return 0;}
negative
int qemu_loadvm_state(QEMUFile *f){ LIST_HEAD(, LoadStateEntry) loadvm_handlers = LIST_HEAD_INITIALIZER(loadvm_handlers); LoadStateEntry *le, *new_le; uint8_t section_type; unsigned int v; int ret; v = qemu_get_be32(f); if (v != QEMU_VM_FILE_MAGIC) return -EINVAL; v = qemu_get_be32(f); if (v == QEMU_VM_FILE_VERSION_COMPAT) { fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n"); return -ENOTSUP; } if (v != QEMU_VM_FILE_VERSION) return -ENOTSUP; while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { uint32_t instance_id, version_id, section_id; SaveStateEntry *se; char idstr[257]; int len; switch (section_type) { case QEMU_VM_SECTION_START: case QEMU_VM_SECTION_FULL: /* Read section start */ section_id = qemu_get_be32(f); len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)idstr, len); idstr[len] = 0; instance_id = qemu_get_be32(f); version_id = qemu_get_be32(f); /* Find savevm section */ se = find_se(idstr, instance_id); if (se == NULL) { fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id); ret = -EINVAL; goto out; } /* Validate version */ if (version_id > se->version_id) { fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n", version_id, idstr, se->version_id); ret = -EINVAL; goto out; } /* Add entry */ le = qemu_mallocz(sizeof(*le)); le->se = se; le->section_id = section_id; le->version_id = version_id; LIST_INSERT_HEAD(&loadvm_handlers, le, entry); ret = vmstate_load(f, le->se, le->version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", instance_id, idstr); goto out; } break; case QEMU_VM_SECTION_PART: case QEMU_VM_SECTION_END: section_id = qemu_get_be32(f); LIST_FOREACH(le, &loadvm_handlers, entry) { if (le->section_id == section_id) { break; } } if (le == NULL) { fprintf(stderr, "Unknown savevm section %d\n", section_id); ret = -EINVAL; goto out; } ret = vmstate_load(f, le->se, le->version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state section id %d\n", section_id); goto out; } break; default: fprintf(stderr, "Unknown savevm section type %d\n", section_type); ret = -EINVAL; goto out; } } ret = 0;out: LIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) { LIST_REMOVE(le, entry); qemu_free(le); } if (qemu_file_has_error(f)) ret = -EIO; return ret;}
negative
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags){#if defined(TARGET_HAS_ICE) CPUBreakpoint *bp; QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { if (bp->pc == pc && bp->flags == flags) { cpu_breakpoint_remove_by_ref(cpu, bp); return 0; } } return -ENOENT;#else return -ENOSYS;#endif}
negative
void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code){ kvm_s390_interrupt_internal(cpu, type, code, 0, 0);}
negative
static int device_init(AVFormatContext *ctx, int *width, int *height, uint32_t pix_fmt){ struct video_data *s = ctx->priv_data; int fd = s->fd; struct v4l2_format fmt; struct v4l2_pix_format *pix = &fmt.fmt.pix; int res; memset(&fmt, 0, sizeof(struct v4l2_format)); fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; pix->width = *width; pix->height = *height; pix->pixelformat = pix_fmt; pix->field = V4L2_FIELD_ANY; res = ioctl(fd, VIDIOC_S_FMT, &fmt); if ((*width != fmt.fmt.pix.width) || (*height != fmt.fmt.pix.height)) { av_log(ctx, AV_LOG_INFO, "The V4L2 driver changed the video from %dx%d to %dx%d\n", *width, *height, fmt.fmt.pix.width, fmt.fmt.pix.height); *width = fmt.fmt.pix.width; *height = fmt.fmt.pix.height; } if (pix_fmt != fmt.fmt.pix.pixelformat) { av_log(ctx, AV_LOG_DEBUG, "The V4L2 driver changed the pixel format " "from 0x%08X to 0x%08X\n", pix_fmt, fmt.fmt.pix.pixelformat); res = -1; } if (fmt.fmt.pix.field == V4L2_FIELD_INTERLACED) { av_log(ctx, AV_LOG_DEBUG, "The V4L2 driver using the interlaced mode"); s->interlaced = 1; } return res;}
negative
static void arm1026_initfn(Object *obj){ ARMCPU *cpu = ARM_CPU(obj); cpu->dtb_compatible = "arm,arm1026"; set_feature(&cpu->env, ARM_FEATURE_V5); set_feature(&cpu->env, ARM_FEATURE_VFP); set_feature(&cpu->env, ARM_FEATURE_AUXCR); set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS); set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN); cpu->midr = 0x4106a262; cpu->reset_fpsid = 0x410110a0; cpu->ctr = 0x1dd20d2; cpu->reset_sctlr = 0x00090078; cpu->reset_auxcr = 1; { /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */ ARMCPRegInfo ifar = { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]), .resetvalue = 0 }; define_one_arm_cp_reg(cpu, &ifar); }}
negative
void msi_uninit(struct PCIDevice *dev){ uint16_t flags; uint8_t cap_size; if (!(dev->cap_present & QEMU_PCI_CAP_MSI)) { return; } flags = pci_get_word(dev->config + msi_flags_off(dev)); cap_size = msi_cap_sizeof(flags); pci_del_capability(dev, PCI_CAP_ID_MSI, cap_size); dev->cap_present &= ~QEMU_PCI_CAP_MSI; MSI_DEV_PRINTF(dev, "uninit\n");}
negative
static uint64_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset, unsigned size){ mv88w8618_pic_state *s = opaque; switch (offset) { case MP_PIC_STATUS: return s->level & s->enabled; default: return 0; }}
negative
static int nic_can_receive(void *opaque){ dp8393xState *s = opaque; if (!(s->regs[SONIC_CR] & SONIC_CR_RXEN)) return 0; if (s->regs[SONIC_ISR] & SONIC_ISR_RBE) return 0; return 1;}
negative
void sm501_init(MemoryRegion *address_space_mem, uint32_t base, uint32_t local_mem_bytes, qemu_irq irq, CharDriverState *chr){ SM501State * s; DeviceState *dev; MemoryRegion *sm501_system_config = g_new(MemoryRegion, 1); MemoryRegion *sm501_disp_ctrl = g_new(MemoryRegion, 1); MemoryRegion *sm501_2d_engine = g_new(MemoryRegion, 1); /* allocate management data region */ s = (SM501State *)g_malloc0(sizeof(SM501State)); s->base = base; s->local_mem_size_index= get_local_mem_size_index(local_mem_bytes); SM501_DPRINTF("local mem size=%x. index=%d\n", get_local_mem_size(s), s->local_mem_size_index); s->system_control = 0x00100000; s->misc_control = 0x00001000; /* assumes SH, active=low */ s->dc_panel_control = 0x00010000; s->dc_crt_control = 0x00010000; /* allocate local memory */ memory_region_init_ram(&s->local_mem_region, "sm501.local", local_mem_bytes); vmstate_register_ram_global(&s->local_mem_region); s->local_mem = memory_region_get_ram_ptr(&s->local_mem_region); memory_region_add_subregion(address_space_mem, base, &s->local_mem_region); /* map mmio */ memory_region_init_io(sm501_system_config, &sm501_system_config_ops, s, "sm501-system-config", 0x6c); memory_region_add_subregion(address_space_mem, base + MMIO_BASE_OFFSET, sm501_system_config); memory_region_init_io(sm501_disp_ctrl, &sm501_disp_ctrl_ops, s, "sm501-disp-ctrl", 0x1000); memory_region_add_subregion(address_space_mem, base + MMIO_BASE_OFFSET + SM501_DC, sm501_disp_ctrl); memory_region_init_io(sm501_2d_engine, &sm501_2d_engine_ops, s, "sm501-2d-engine", 0x54); memory_region_add_subregion(address_space_mem, base + MMIO_BASE_OFFSET + SM501_2D_ENGINE, sm501_2d_engine); /* bridge to usb host emulation module */ dev = qdev_create(NULL, "sysbus-ohci"); qdev_prop_set_uint32(dev, "num-ports", 2); qdev_prop_set_taddr(dev, "dma-offset", base); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base + MMIO_BASE_OFFSET + SM501_USB_HOST); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq); /* bridge to serial emulation module */ if (chr) { serial_mm_init(address_space_mem, base + MMIO_BASE_OFFSET + SM501_UART0, 2, NULL, /* TODO : chain irq to IRL */ 115200, chr, DEVICE_NATIVE_ENDIAN); } /* create qemu graphic console */ s->con = graphic_console_init(sm501_update_display, NULL, NULL, NULL, s);}
negative
static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp){ int idx = -1; HotplugHandlerClass *hhc; Error *local_err = NULL; PCMachineState *pcms = PC_MACHINE(hotplug_dev); pc_find_cpu_slot(pcms, CPU(dev), &idx); assert(idx != -1); if (idx == 0) { error_setg(&local_err, "Boot CPU is unpluggable"); goto out; } if (idx < pcms->possible_cpus->len - 1 && pcms->possible_cpus->cpus[idx + 1].cpu != NULL) { X86CPU *cpu; for (idx = pcms->possible_cpus->len - 1; pcms->possible_cpus->cpus[idx].cpu == NULL; idx--) { ;; } cpu = X86_CPU(pcms->possible_cpus->cpus[idx].cpu); error_setg(&local_err, "CPU [socket-id: %u, core-id: %u," " thread-id: %u] should be removed first", cpu->socket_id, cpu->core_id, cpu->thread_id); goto out; } hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); if (local_err) { goto out; } out: error_propagate(errp, local_err);}
negative
static int smc91c111_can_receive(void *opaque){ smc91c111_state *s = (smc91c111_state *)opaque; if ((s->rcr & RCR_RXEN) == 0 || (s->rcr & RCR_SOFT_RST)) return 1; if (s->allocated == (1 << NUM_PACKETS) - 1) return 0; return 1;}
negative
static void sigchld_bh_handler(void *opaque){ ChildProcessRecord *rec, *next; QLIST_FOREACH_SAFE(rec, &child_watches, next, next) { if (waitpid(rec->pid, NULL, WNOHANG) == rec->pid) { QLIST_REMOVE(rec, next); g_free(rec); } }}
negative
static PCIIDEState *pci_from_bm(BMDMAState *bm){ return bm->pci_dev;}
negative
static int local_set_mapped_file_attrat(int dirfd, const char *name, FsCred *credp){ FILE *fp; int ret; char buf[ATTR_MAX]; int uid = -1, gid = -1, mode = -1, rdev = -1; int map_dirfd; ret = mkdirat(dirfd, VIRTFS_META_DIR, 0700); if (ret < 0 && errno != EEXIST) { return -1; } map_dirfd = openat_dir(dirfd, VIRTFS_META_DIR); if (map_dirfd == -1) { return -1; } fp = local_fopenat(map_dirfd, name, "r"); if (!fp) { if (errno == ENOENT) { goto update_map_file; } else { close_preserve_errno(map_dirfd); return -1; } } memset(buf, 0, ATTR_MAX); while (fgets(buf, ATTR_MAX, fp)) { if (!strncmp(buf, "virtfs.uid", 10)) { uid = atoi(buf + 11); } else if (!strncmp(buf, "virtfs.gid", 10)) { gid = atoi(buf + 11); } else if (!strncmp(buf, "virtfs.mode", 11)) { mode = atoi(buf + 12); } else if (!strncmp(buf, "virtfs.rdev", 11)) { rdev = atoi(buf + 12); } memset(buf, 0, ATTR_MAX); } fclose(fp);update_map_file: fp = local_fopenat(map_dirfd, name, "w"); close_preserve_errno(map_dirfd); if (!fp) { return -1; } if (credp->fc_uid != -1) { uid = credp->fc_uid; } if (credp->fc_gid != -1) { gid = credp->fc_gid; } if (credp->fc_mode != -1) { mode = credp->fc_mode; } if (credp->fc_rdev != -1) { rdev = credp->fc_rdev; } if (uid != -1) { fprintf(fp, "virtfs.uid=%d\n", uid); } if (gid != -1) { fprintf(fp, "virtfs.gid=%d\n", gid); } if (mode != -1) { fprintf(fp, "virtfs.mode=%d\n", mode); } if (rdev != -1) { fprintf(fp, "virtfs.rdev=%d\n", rdev); } fclose(fp); return 0;}
negative
static void check_ieee_exceptions(CPUSPARCState *env){ target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) { env->fsr |= FSR_NVC; } if (status & float_flag_overflow) { env->fsr |= FSR_OFC; } if (status & float_flag_underflow) { env->fsr |= FSR_UFC; } if (status & float_flag_divbyzero) { env->fsr |= FSR_DZC; } if (status & float_flag_inexact) { env->fsr |= FSR_NXC; } if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; helper_raise_exception(env, TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } }}
negative
static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, ppc_slb_t *slb, target_ulong eaddr, ppc_hash_pte64_t *pte, unsigned *pshift){ CPUPPCState *env = &cpu->env; hwaddr hash, ptex; uint64_t vsid, epnmask, epn, ptem; const struct ppc_one_seg_page_size *sps = slb->sps; /* The SLB store path should prevent any bad page size encodings * getting in there, so: */ assert(sps); /* If ISL is set in LPCR we need to clamp the page size to 4K */ if (env->spr[SPR_LPCR] & LPCR_ISL) { /* We assume that when using TCG, 4k is first entry of SPS */ sps = &env->sps.sps[0]; assert(sps->page_shift == 12); } epnmask = ~((1ULL << sps->page_shift) - 1); if (slb->vsid & SLB_VSID_B) { /* 1TB segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); } else { /* 256M segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; hash = vsid ^ (epn >> sps->page_shift); } ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); ptem |= HPTE64_V_VALID; /* Page address translation */ qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx " hash " TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, hash); /* Primary PTEG lookup */ qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, hash); ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); if (ptex == -1) { /* Secondary PTEG lookup */ ptem |= HPTE64_V_SECONDARY; qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, ~hash); ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); } return ptex;}
negative
QemuOpts *qemu_opts_create(QemuOptsList *list, const char *id, int fail_if_exists, Error **errp){ QemuOpts *opts = NULL; if (id) { if (!id_wellformed(id)) { error_set(errp,QERR_INVALID_PARAMETER_VALUE, "id", "an identifier");#if 0 /* conversion from qerror_report() to error_set() broke this: */ error_printf_unless_qmp("Identifiers consist of letters, digits, '-', '.', '_', starting with a letter.\n");#endif return NULL; } opts = qemu_opts_find(list, id); if (opts != NULL) { if (fail_if_exists && !list->merge_lists) { error_setg(errp, "Duplicate ID '%s' for %s", id, list->name); return NULL; } else { return opts; } } } else if (list->merge_lists) { opts = qemu_opts_find(list, NULL); if (opts) { return opts; } } opts = g_malloc0(sizeof(*opts)); opts->id = g_strdup(id); opts->list = list; loc_save(&opts->loc); QTAILQ_INIT(&opts->head); QTAILQ_INSERT_TAIL(&list->head, opts, next); return opts;}
negative
static int coroutine_fn backup_run_incremental(BackupBlockJob *job){ bool error_is_read; int ret = 0; int clusters_per_iter; uint32_t granularity; int64_t sector; int64_t cluster; int64_t end; int64_t last_cluster = -1; int64_t sectors_per_cluster = cluster_size_sectors(job); BdrvDirtyBitmapIter *dbi; granularity = bdrv_dirty_bitmap_granularity(job->sync_bitmap); clusters_per_iter = MAX((granularity / job->cluster_size), 1); dbi = bdrv_dirty_iter_new(job->sync_bitmap, 0); /* Find the next dirty sector(s) */ while ((sector = bdrv_dirty_iter_next(dbi)) != -1) { cluster = sector / sectors_per_cluster; /* Fake progress updates for any clusters we skipped */ if (cluster != last_cluster + 1) { job->common.offset += ((cluster - last_cluster - 1) * job->cluster_size); } for (end = cluster + clusters_per_iter; cluster < end; cluster++) { do { if (yield_and_check(job)) { goto out; } ret = backup_do_cow(job, cluster * job->cluster_size, job->cluster_size, &error_is_read, false); if ((ret < 0) && backup_error_action(job, error_is_read, -ret) == BLOCK_ERROR_ACTION_REPORT) { goto out; } } while (ret < 0); } /* If the bitmap granularity is smaller than the backup granularity, * we need to advance the iterator pointer to the next cluster. */ if (granularity < job->cluster_size) { bdrv_set_dirty_iter(dbi, cluster * sectors_per_cluster); } last_cluster = cluster - 1; } /* Play some final catchup with the progress meter */ end = DIV_ROUND_UP(job->common.len, job->cluster_size); if (last_cluster + 1 < end) { job->common.offset += ((end - last_cluster - 1) * job->cluster_size); }out: bdrv_dirty_iter_free(dbi); return ret;}
negative
static uint64_t omap_eac_read(void *opaque, target_phys_addr_t addr, unsigned size){ struct omap_eac_s *s = (struct omap_eac_s *) opaque; uint32_t ret; if (size != 2) { return omap_badwidth_read16(opaque, addr); } switch (addr) { case 0x000:/* CPCFR1 */ return s->config[0]; case 0x004:/* CPCFR2 */ return s->config[1]; case 0x008:/* CPCFR3 */ return s->config[2]; case 0x00c:/* CPCFR4 */ return s->config[3]; case 0x010:/* CPTCTL */ return s->control | ((s->codec.rxavail + s->codec.rxlen > 0) << 7) | ((s->codec.txlen < s->codec.txavail) << 5); case 0x014:/* CPTTADR */ return s->address; case 0x018:/* CPTDATL */ return s->data & 0xff; case 0x01c:/* CPTDATH */ return s->data >> 8; case 0x020:/* CPTVSLL */ return s->vtol; case 0x024:/* CPTVSLH */ return s->vtsl | (3 << 5);/* CRDY1 | CRDY2 */ case 0x040:/* MPCTR */ return s->modem.control; case 0x044:/* MPMCCFR */ return s->modem.config; case 0x060:/* BPCTR */ return s->bt.control; case 0x064:/* BPMCCFR */ return s->bt.config; case 0x080:/* AMSCFR */ return s->mixer; case 0x084:/* AMVCTR */ return s->gain[0]; case 0x088:/* AM1VCTR */ return s->gain[1]; case 0x08c:/* AM2VCTR */ return s->gain[2]; case 0x090:/* AM3VCTR */ return s->gain[3]; case 0x094:/* ASTCTR */ return s->att; case 0x098:/* APD1LCR */ return s->max[0]; case 0x09c:/* APD1RCR */ return s->max[1]; case 0x0a0:/* APD2LCR */ return s->max[2]; case 0x0a4:/* APD2RCR */ return s->max[3]; case 0x0a8:/* APD3LCR */ return s->max[4]; case 0x0ac:/* APD3RCR */ return s->max[5]; case 0x0b0:/* APD4R */ return s->max[6]; case 0x0b4:/* ADWR */ /* This should be write-only? Docs list it as read-only. */ return 0x0000; case 0x0b8:/* ADRDR */ if (likely(s->codec.rxlen > 1)) { ret = s->codec.rxbuf[s->codec.rxoff ++]; s->codec.rxlen --; s->codec.rxoff &= EAC_BUF_LEN - 1; return ret; } else if (s->codec.rxlen) { ret = s->codec.rxbuf[s->codec.rxoff ++]; s->codec.rxlen --; s->codec.rxoff &= EAC_BUF_LEN - 1; if (s->codec.rxavail) omap_eac_in_refill(s); omap_eac_in_dmarequest_update(s); return ret; } return 0x0000; case 0x0bc:/* AGCFR */ return s->codec.config[0]; case 0x0c0:/* AGCTR */ return s->codec.config[1] | ((s->codec.config[1] & 2) << 14); case 0x0c4:/* AGCFR2 */ return s->codec.config[2]; case 0x0c8:/* AGCFR3 */ return s->codec.config[3]; case 0x0cc:/* MBPDMACTR */ case 0x0d0:/* MPDDMARR */ case 0x0d8:/* MPUDMARR */ case 0x0e4:/* BPDDMARR */ case 0x0ec:/* BPUDMARR */ return 0x0000; case 0x100:/* VERSION_NUMBER */ return 0x0010; case 0x104:/* SYSCONFIG */ return s->sysconfig; case 0x108:/* SYSSTATUS */ return 1 | 0xe;/* RESETDONE | stuff */ } OMAP_BAD_REG(addr); return 0;}
positive
static int encode_packets(Jpeg2000EncoderContext *s, Jpeg2000Tile *tile, int tileno){ int compno, reslevelno, ret; Jpeg2000CodingStyle *codsty = &s->codsty; Jpeg2000QuantStyle *qntsty = &s->qntsty; av_log(s->avctx, AV_LOG_DEBUG, "tier2\n"); // lay-rlevel-comp-pos progression for (reslevelno = 0; reslevelno < codsty->nreslevels; reslevelno++){ for (compno = 0; compno < s->ncomponents; compno++){ int precno; Jpeg2000ResLevel *reslevel = s->tile[tileno].comp[compno].reslevel + reslevelno; for (precno = 0; precno < reslevel->num_precincts_x * reslevel->num_precincts_y; precno++){ if (ret = encode_packet(s, reslevel, precno, qntsty->expn + (reslevelno ? 3*reslevelno-2 : 0), qntsty->nguardbits)) return ret; } } } av_log(s->avctx, AV_LOG_DEBUG, "after tier2\n"); return 0;}
positive
static void allwinner_ahci_class_init(ObjectClass *klass, void *data){ DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_allwinner_ahci;}
positive
static QemuOpts *opts_parse(QemuOptsList *list, const char *params, int permit_abbrev, bool defaults){ const char *firstname; char value[1024], *id = NULL; const char *p; QemuOpts *opts; assert(!permit_abbrev || list->implied_opt_name); firstname = permit_abbrev ? list->implied_opt_name : NULL; if (strncmp(params, "id=", 3) == 0) { get_opt_value(value, sizeof(value), params+3); id = value; } else if ((p = strstr(params, ",id=")) != NULL) { get_opt_value(value, sizeof(value), p+4); id = value; } if (defaults) { if (!id && !QTAILQ_EMPTY(&list->head)) { opts = qemu_opts_find(list, NULL); } else { opts = qemu_opts_create(list, id, 0); } } else { opts = qemu_opts_create(list, id, 1); } if (opts == NULL) return NULL; if (opts_do_parse(opts, params, firstname, defaults) != 0) { qemu_opts_del(opts); return NULL; } return opts;}
positive
static void chomp3(ChannelData *ctx, int16_t *output, uint8_t val, const uint16_t tab1[], const int16_t *tab2, int tab2_stride, uint32_t numChannels){ int16_t current; current = tab2[((ctx->index & 0x7f0) >> 4)*tab2_stride + val]; current = mace_broken_clip_int16(current + ctx->lev); ctx->lev = current - (current >> 3); *output = QT_8S_2_16S(current); if (( ctx->index += tab1[val]-(ctx->index >> 5) ) < 0) ctx->index = 0;}