project
stringclasses
633 values
commit_id
stringlengths
7
81
target
int64
0
1
func
stringlengths
5
484k
cwe
stringclasses
131 values
big_vul_idx
float64
0
189k
idx
int64
0
522k
hash
stringlengths
34
39
size
float64
1
24k
message
stringlengths
0
11.5k
dataset
stringclasses
1 value
linux
4a491b1ab11ca0556d2fda1ff1301e862a2d44c4
1
int sas_smp_get_phy_events(struct sas_phy *phy) { int res; u8 *req; u8 *resp; struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent); struct domain_device *dev = sas_find_dev_by_rphy(rphy); req = alloc_smp_req(RPEL_REQ_SIZE); if (!req) return -ENOMEM; resp = alloc_smp_resp(RPEL_RESP_SIZE); if (!resp) { kfree(req); return -ENOMEM; } req[1] = SMP_REPORT_PHY_ERR_LOG; req[9] = phy->number; res = smp_execute_task(dev, req, RPEL_REQ_SIZE, resp, RPEL_RESP_SIZE); if (!res) goto out; phy->invalid_dword_count = scsi_to_u32(&resp[12]); phy->running_disparity_error_count = scsi_to_u32(&resp[16]); phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]); phy->phy_reset_problem_count = scsi_to_u32(&resp[24]); out: kfree(resp); return res; }
CWE-772
182,477
3,763
239534202847056847823560696184449505347
null
null
null
openjpeg
6d8c0c06ee32dc03ba80acd48334e98728e56cf5
1
int main(int argc, char *argv[]) { opj_dinfo_t* dinfo; opj_event_mgr_t event_mgr; /* event manager */ int tnum; unsigned int snum; opj_mj2_t *movie; mj2_tk_t *track; mj2_sample_t *sample; unsigned char* frame_codestream; FILE *file, *outfile; char outfilename[50]; mj2_dparameters_t parameters; if (argc != 3) { printf("Usage: %s mj2filename output_location\n", argv[0]); printf("Example: %s foreman.mj2 output/foreman\n", argv[0]); return 1; } file = fopen(argv[1], "rb"); if (!file) { fprintf(stderr, "failed to open %s for reading\n", argv[1]); return 1; } /* configure the event callbacks (not required) setting of each callback is optional */ memset(&event_mgr, 0, sizeof(opj_event_mgr_t)); event_mgr.error_handler = error_callback; event_mgr.warning_handler = warning_callback; event_mgr.info_handler = info_callback; /* get a MJ2 decompressor handle */ dinfo = mj2_create_decompress(); /* catch events using our callbacks and give a local context */ opj_set_event_mgr((opj_common_ptr)dinfo, &event_mgr, stderr); /* setup the decoder decoding parameters using user parameters */ memset(&parameters, 0, sizeof(mj2_dparameters_t)); movie = (opj_mj2_t*) dinfo->mj2_handle; mj2_setup_decoder(movie, &parameters); if (mj2_read_struct(file, movie)) { /* Creating the movie structure*/ return 1; } /* Decode first video track */ tnum = 0; while (movie->tk[tnum].track_type != 0) { tnum ++; } track = &movie->tk[tnum]; fprintf(stdout, "Extracting %d frames from file...\n", track->num_samples); for (snum = 0; snum < track->num_samples; snum++) { sample = &track->sample[snum]; frame_codestream = (unsigned char*) malloc(sample->sample_size - 8); /* Skipping JP2C marker*/ fseek(file, sample->offset + 8, SEEK_SET); fread(frame_codestream, sample->sample_size - 8, 1, file); /* Assuming that jp and ftyp markers size do*/ sprintf(outfilename, "%s_%05d.j2k", argv[2], snum); outfile = fopen(outfilename, "wb"); if (!outfile) { fprintf(stderr, "failed to open %s for writing\n", outfilename); return 1; } fwrite(frame_codestream, sample->sample_size - 8, 1, outfile); fclose(outfile); free(frame_codestream); } fclose(file); fprintf(stdout, "%d frames correctly extracted\n", snum); /* free remaining structures */ if (dinfo) { mj2_destroy_decompress((opj_mj2_t*)dinfo->mj2_handle); } return 0; }
CWE-119
182,479
3,764
271909071981036524810804252028970690716
null
null
null
linux
f3069c6d33f6ae63a1668737bc78aaaa51bff7ca
1
static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, u64 *cookie_ret, struct rds_mr **mr_ret) { struct rds_mr *mr = NULL, *found; unsigned int nr_pages; struct page **pages = NULL; struct scatterlist *sg; void *trans_private; unsigned long flags; rds_rdma_cookie_t cookie; unsigned int nents; long i; int ret; if (rs->rs_bound_addr == 0) { ret = -ENOTCONN; /* XXX not a great errno */ goto out; } if (!rs->rs_transport->get_mr) { ret = -EOPNOTSUPP; goto out; } nr_pages = rds_pages_in_vec(&args->vec); if (nr_pages == 0) { ret = -EINVAL; goto out; } /* Restrict the size of mr irrespective of underlying transport * To account for unaligned mr regions, subtract one from nr_pages */ if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) { ret = -EMSGSIZE; goto out; } rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", args->vec.addr, args->vec.bytes, nr_pages); /* XXX clamp nr_pages to limit the size of this alloc? */ pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); if (!pages) { ret = -ENOMEM; goto out; } mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); if (!mr) { ret = -ENOMEM; goto out; } refcount_set(&mr->r_refcount, 1); RB_CLEAR_NODE(&mr->r_rb_node); mr->r_trans = rs->rs_transport; mr->r_sock = rs; if (args->flags & RDS_RDMA_USE_ONCE) mr->r_use_once = 1; if (args->flags & RDS_RDMA_INVALIDATE) mr->r_invalidate = 1; if (args->flags & RDS_RDMA_READWRITE) mr->r_write = 1; /* * Pin the pages that make up the user buffer and transfer the page * pointers to the mr's sg array. We check to see if we've mapped * the whole region after transferring the partial page references * to the sg array so that we can have one page ref cleanup path. * * For now we have no flag that tells us whether the mapping is * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to * the zero page. */ ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1); if (ret < 0) goto out; nents = ret; sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); if (!sg) { ret = -ENOMEM; goto out; } WARN_ON(!nents); sg_init_table(sg, nents); /* Stick all pages into the scatterlist */ for (i = 0 ; i < nents; i++) sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); rdsdebug("RDS: trans_private nents is %u\n", nents); /* Obtain a transport specific MR. If this succeeds, the * s/g list is now owned by the MR. * Note that dma_map() implies that pending writes are * flushed to RAM, so no dma_sync is needed here. */ trans_private = rs->rs_transport->get_mr(sg, nents, rs, &mr->r_key); if (IS_ERR(trans_private)) { for (i = 0 ; i < nents; i++) put_page(sg_page(&sg[i])); kfree(sg); ret = PTR_ERR(trans_private); goto out; } mr->r_trans_private = trans_private; rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", mr->r_key, (void *)(unsigned long) args->cookie_addr); /* The user may pass us an unaligned address, but we can only * map page aligned regions. So we keep the offset, and build * a 64bit cookie containing <R_Key, offset> and pass that * around. */ cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); if (cookie_ret) *cookie_ret = cookie; if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { ret = -EFAULT; goto out; } /* Inserting the new MR into the rbtree bumps its * reference count. */ spin_lock_irqsave(&rs->rs_rdma_lock, flags); found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); BUG_ON(found && found != mr); rdsdebug("RDS: get_mr key is %x\n", mr->r_key); if (mr_ret) { refcount_inc(&mr->r_refcount); *mr_ret = mr; } ret = 0; out: kfree(pages); if (mr) rds_mr_put(mr); return ret; }
CWE-476
182,481
3,765
227718939197316779375455997164784457939
null
null
null
unixODBC
45ef78e037f578b15fc58938a3a3251655e71d6f#diff-d52750c7ba4e594410438569d8e2963aL24
1
BOOL SQLWriteFileDSN( LPCSTR pszFileName, LPCSTR pszAppName, LPCSTR pszKeyName, LPCSTR pszString ) { HINI hIni; char szFileName[ODBC_FILENAME_MAX+1]; if ( pszFileName[0] == '/' ) { strncpy( szFileName, sizeof(szFileName) - 5, pszFileName ); } else { char szPath[ODBC_FILENAME_MAX+1]; *szPath = '\0'; _odbcinst_FileINI( szPath ); snprintf( szFileName, sizeof(szFileName) - 5, "%s/%s", szPath, pszFileName ); } if ( strlen( szFileName ) < 4 || strcmp( szFileName + strlen( szFileName ) - 4, ".dsn" )) { strcat( szFileName, ".dsn" ); } #ifdef __OS2__ if ( iniOpen( &hIni, szFileName, "#;", '[', ']', '=', TRUE, 0L ) != INI_SUCCESS ) #else if ( iniOpen( &hIni, szFileName, "#;", '[', ']', '=', TRUE ) != INI_SUCCESS ) #endif { inst_logPushMsg( __FILE__, __FILE__, __LINE__, LOG_CRITICAL, ODBC_ERROR_INVALID_PATH, "" ); return FALSE; } /* delete section */ if ( pszString == NULL && pszKeyName == NULL ) { if ( iniObjectSeek( hIni, (char *)pszAppName ) == INI_SUCCESS ) { iniObjectDelete( hIni ); } } /* delete entry */ else if ( pszString == NULL ) { if ( iniPropertySeek( hIni, (char *)pszAppName, (char *)pszKeyName, "" ) == INI_SUCCESS ) { iniPropertyDelete( hIni ); } } else { /* add section */ if ( iniObjectSeek( hIni, (char *)pszAppName ) != INI_SUCCESS ) { iniObjectInsert( hIni, (char *)pszAppName ); } /* update entry */ if ( iniPropertySeek( hIni, (char *)pszAppName, (char *)pszKeyName, "" ) == INI_SUCCESS ) { iniObjectSeek( hIni, (char *)pszAppName ); iniPropertyUpdate( hIni, (char *)pszKeyName, (char *)pszString ); } /* add entry */ else { iniObjectSeek( hIni, (char *)pszAppName ); iniPropertyInsert( hIni, (char *)pszKeyName, (char *)pszString ); } } if ( iniCommit( hIni ) != INI_SUCCESS ) { iniClose( hIni ); inst_logPushMsg( __FILE__, __FILE__, __LINE__, LOG_CRITICAL, ODBC_ERROR_REQUEST_FAILED, "" ); return FALSE; } iniClose( hIni ); return TRUE; }
CWE-119
182,489
3,772
179664217812201069359304742984956823534
null
null
null
linux
9b54d816e00425c3a517514e0d677bb3cec49258
1
int blkcg_init_queue(struct request_queue *q) { struct blkcg_gq *new_blkg, *blkg; bool preloaded; int ret; new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); if (!new_blkg) return -ENOMEM; preloaded = !radix_tree_preload(GFP_KERNEL); /* * Make sure the root blkg exists and count the existing blkgs. As * @q is bypassing at this point, blkg_lookup_create() can't be * used. Open code insertion. */ rcu_read_lock(); spin_lock_irq(q->queue_lock); blkg = blkg_create(&blkcg_root, q, new_blkg); spin_unlock_irq(q->queue_lock); rcu_read_unlock(); if (preloaded) radix_tree_preload_end(); if (IS_ERR(blkg)) { blkg_free(new_blkg); return PTR_ERR(blkg); } q->root_blkg = blkg; q->root_rl.blkg = blkg; ret = blk_throtl_init(q); if (ret) { spin_lock_irq(q->queue_lock); blkg_destroy_all(q); spin_unlock_irq(q->queue_lock); } return ret; }
CWE-415
182,490
3,773
94022243707851467154830311010204147311
null
null
null
leptonica
c1079bb8e77cdd426759e466729917ca37a3ed9f
1
pixHtmlViewer(const char *dirin, const char *dirout, const char *rootname, l_int32 thumbwidth, l_int32 viewwidth) { char *fname, *fullname, *outname; char *mainname, *linkname, *linknameshort; char *viewfile, *thumbfile; char *shtml, *slink; char charbuf[512]; char htmlstring[] = "<html>"; char framestring[] = "</frameset></html>"; l_int32 i, nfiles, index, w, d, nimages, ret; l_float32 factor; PIX *pix, *pixthumb, *pixview; SARRAY *safiles, *sathumbs, *saviews, *sahtml, *salink; PROCNAME("pixHtmlViewer"); if (!dirin) return ERROR_INT("dirin not defined", procName, 1); if (!dirout) return ERROR_INT("dirout not defined", procName, 1); if (!rootname) return ERROR_INT("rootname not defined", procName, 1); if (thumbwidth == 0) thumbwidth = DEFAULT_THUMB_WIDTH; if (thumbwidth < MIN_THUMB_WIDTH) { L_WARNING("thumbwidth too small; using min value\n", procName); thumbwidth = MIN_THUMB_WIDTH; } if (viewwidth == 0) viewwidth = DEFAULT_VIEW_WIDTH; if (viewwidth < MIN_VIEW_WIDTH) { L_WARNING("viewwidth too small; using min value\n", procName); viewwidth = MIN_VIEW_WIDTH; } /* Make the output directory if it doesn't already exist */ #ifndef _WIN32 snprintf(charbuf, sizeof(charbuf), "mkdir -p %s", dirout); ret = system(charbuf); #else ret = CreateDirectory(dirout, NULL) ? 0 : 1; #endif /* !_WIN32 */ if (ret) { L_ERROR("output directory %s not made\n", procName, dirout); return 1; } /* Capture the filenames in the input directory */ if ((safiles = getFilenamesInDirectory(dirin)) == NULL) return ERROR_INT("safiles not made", procName, 1); /* Generate output text file names */ sprintf(charbuf, "%s/%s.html", dirout, rootname); mainname = stringNew(charbuf); sprintf(charbuf, "%s/%s-links.html", dirout, rootname); linkname = stringNew(charbuf); linknameshort = stringJoin(rootname, "-links.html"); /* Generate the thumbs and views */ sathumbs = sarrayCreate(0); saviews = sarrayCreate(0); nfiles = sarrayGetCount(safiles); index = 0; for (i = 0; i < nfiles; i++) { fname = sarrayGetString(safiles, i, L_NOCOPY); fullname = genPathname(dirin, fname); fprintf(stderr, "name: %s\n", fullname); if ((pix = pixRead(fullname)) == NULL) { fprintf(stderr, "file %s not a readable image\n", fullname); lept_free(fullname); continue; } lept_free(fullname); /* Make and store the thumbnail images */ pixGetDimensions(pix, &w, NULL, &d); factor = (l_float32)thumbwidth / (l_float32)w; pixthumb = pixScale(pix, factor, factor); sprintf(charbuf, "%s_thumb_%03d", rootname, index); sarrayAddString(sathumbs, charbuf, L_COPY); outname = genPathname(dirout, charbuf); WriteFormattedPix(outname, pixthumb); lept_free(outname); pixDestroy(&pixthumb); /* Make and store the view images */ factor = (l_float32)viewwidth / (l_float32)w; if (factor >= 1.0) pixview = pixClone(pix); /* no upscaling */ else pixview = pixScale(pix, factor, factor); snprintf(charbuf, sizeof(charbuf), "%s_view_%03d", rootname, index); sarrayAddString(saviews, charbuf, L_COPY); outname = genPathname(dirout, charbuf); WriteFormattedPix(outname, pixview); lept_free(outname); pixDestroy(&pixview); pixDestroy(&pix); index++; } /* Generate the main html file */ sahtml = sarrayCreate(0); sarrayAddString(sahtml, htmlstring, L_COPY); sprintf(charbuf, "<frameset cols=\"%d, *\">", thumbwidth + 30); sarrayAddString(sahtml, charbuf, L_COPY); sprintf(charbuf, "<frame name=\"thumbs\" src=\"%s\">", linknameshort); sarrayAddString(sahtml, charbuf, L_COPY); sprintf(charbuf, "<frame name=\"views\" src=\"%s\">", sarrayGetString(saviews, 0, L_NOCOPY)); sarrayAddString(sahtml, charbuf, L_COPY); sarrayAddString(sahtml, framestring, L_COPY); shtml = sarrayToString(sahtml, 1); l_binaryWrite(mainname, "w", shtml, strlen(shtml)); fprintf(stderr, "******************************************\n" "Writing html file: %s\n" "******************************************\n", mainname); lept_free(shtml); lept_free(mainname); /* Generate the link html file */ nimages = sarrayGetCount(saviews); fprintf(stderr, "num. images = %d\n", nimages); salink = sarrayCreate(0); for (i = 0; i < nimages; i++) { viewfile = sarrayGetString(saviews, i, L_NOCOPY); thumbfile = sarrayGetString(sathumbs, i, L_NOCOPY); sprintf(charbuf, "<a href=\"%s\" TARGET=views><img src=\"%s\"></a>", viewfile, thumbfile); sarrayAddString(salink, charbuf, L_COPY); } slink = sarrayToString(salink, 1); l_binaryWrite(linkname, "w", slink, strlen(slink)); lept_free(slink); lept_free(linkname); lept_free(linknameshort); sarrayDestroy(&safiles); sarrayDestroy(&sathumbs); sarrayDestroy(&saviews); sarrayDestroy(&sahtml); sarrayDestroy(&salink); return 0; }
CWE-119
182,493
3,774
91775814159057421510810636151092338259
null
null
null
leptonica
ee301cb2029db8a6289c5295daa42bba7715e99a
1
gplotRead(const char *filename) { char buf[L_BUF_SIZE]; char *rootname, *title, *xlabel, *ylabel, *ignores; l_int32 outformat, ret, version, ignore; FILE *fp; GPLOT *gplot; PROCNAME("gplotRead"); if (!filename) return (GPLOT *)ERROR_PTR("filename not defined", procName, NULL); if ((fp = fopenReadStream(filename)) == NULL) return (GPLOT *)ERROR_PTR("stream not opened", procName, NULL); ret = fscanf(fp, "Gplot Version %d\n", &version); if (ret != 1) { fclose(fp); return (GPLOT *)ERROR_PTR("not a gplot file", procName, NULL); } if (version != GPLOT_VERSION_NUMBER) { fclose(fp); return (GPLOT *)ERROR_PTR("invalid gplot version", procName, NULL); } ignore = fscanf(fp, "Rootname: %s\n", buf); rootname = stringNew(buf); ignore = fscanf(fp, "Output format: %d\n", &outformat); ignores = fgets(buf, L_BUF_SIZE, fp); /* Title: ... */ title = stringNew(buf + 7); title[strlen(title) - 1] = '\0'; ignores = fgets(buf, L_BUF_SIZE, fp); /* X axis label: ... */ xlabel = stringNew(buf + 14); xlabel[strlen(xlabel) - 1] = '\0'; ignores = fgets(buf, L_BUF_SIZE, fp); /* Y axis label: ... */ ylabel = stringNew(buf + 14); ylabel[strlen(ylabel) - 1] = '\0'; gplot = gplotCreate(rootname, outformat, title, xlabel, ylabel); LEPT_FREE(rootname); LEPT_FREE(title); LEPT_FREE(xlabel); LEPT_FREE(ylabel); if (!gplot) { fclose(fp); return (GPLOT *)ERROR_PTR("gplot not made", procName, NULL); } sarrayDestroy(&gplot->cmddata); sarrayDestroy(&gplot->datanames); sarrayDestroy(&gplot->plotdata); sarrayDestroy(&gplot->plottitles); numaDestroy(&gplot->plotstyles); ignore = fscanf(fp, "Commandfile name: %s\n", buf); stringReplace(&gplot->cmdname, buf); ignore = fscanf(fp, "\nCommandfile data:"); gplot->cmddata = sarrayReadStream(fp); ignore = fscanf(fp, "\nDatafile names:"); gplot->datanames = sarrayReadStream(fp); ignore = fscanf(fp, "\nPlot data:"); gplot->plotdata = sarrayReadStream(fp); ignore = fscanf(fp, "\nPlot titles:"); gplot->plottitles = sarrayReadStream(fp); ignore = fscanf(fp, "\nPlot styles:"); gplot->plotstyles = numaReadStream(fp); ignore = fscanf(fp, "Number of plots: %d\n", &gplot->nplots); ignore = fscanf(fp, "Output file name: %s\n", buf); stringReplace(&gplot->outname, buf); ignore = fscanf(fp, "Axis scaling: %d\n", &gplot->scaling); fclose(fp); return gplot; }
CWE-119
182,499
3,779
92835320699013367944108452503105133522
null
null
null
leptonica
ee301cb2029db8a6289c5295daa42bba7715e99a
1
ptaReadStream(FILE *fp) { char typestr[128]; l_int32 i, n, ix, iy, type, version; l_float32 x, y; PTA *pta; PROCNAME("ptaReadStream"); if (!fp) return (PTA *)ERROR_PTR("stream not defined", procName, NULL); if (fscanf(fp, "\n Pta Version %d\n", &version) != 1) return (PTA *)ERROR_PTR("not a pta file", procName, NULL); if (version != PTA_VERSION_NUMBER) return (PTA *)ERROR_PTR("invalid pta version", procName, NULL); if (fscanf(fp, " Number of pts = %d; format = %s\n", &n, typestr) != 2) return (PTA *)ERROR_PTR("not a pta file", procName, NULL); if (!strcmp(typestr, "float")) type = 0; else /* typestr is "integer" */ type = 1; if ((pta = ptaCreate(n)) == NULL) return (PTA *)ERROR_PTR("pta not made", procName, NULL); for (i = 0; i < n; i++) { if (type == 0) { /* data is float */ if (fscanf(fp, " (%f, %f)\n", &x, &y) != 2) { ptaDestroy(&pta); return (PTA *)ERROR_PTR("error reading floats", procName, NULL); } ptaAddPt(pta, x, y); } else { /* data is integer */ if (fscanf(fp, " (%d, %d)\n", &ix, &iy) != 2) { ptaDestroy(&pta); return (PTA *)ERROR_PTR("error reading ints", procName, NULL); } ptaAddPt(pta, ix, iy); } } return pta; }
CWE-119
182,500
3,780
30001997675172208105166740277810487910
null
null
null
linux
fbe0e839d1e22d88810f3ee3e2f1479be4c0aa4a
1
static int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi) { union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; int drop_count = 0, task_count = 0, ret; struct futex_pi_state *pi_state = NULL; struct futex_hash_bucket *hb1, *hb2; struct futex_q *this, *next; DEFINE_WAKE_Q(wake_q); /* * When PI not supported: return -ENOSYS if requeue_pi is true, * consequently the compiler knows requeue_pi is always false past * this point which will optimize away all the conditional code * further down. */ if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi) return -ENOSYS; if (requeue_pi) { /* * Requeue PI only works on two distinct uaddrs. This * check is only valid for private futexes. See below. */ if (uaddr1 == uaddr2) return -EINVAL; /* * requeue_pi requires a pi_state, try to allocate it now * without any locks in case it fails. */ if (refill_pi_state_cache()) return -ENOMEM; /* * requeue_pi must wake as many tasks as it can, up to nr_wake * + nr_requeue, since it acquires the rt_mutex prior to * returning to userspace, so as to not leave the rt_mutex with * waiters and no owner. However, second and third wake-ups * cannot be predicted as they involve race conditions with the * first wake and a fault while looking up the pi_state. Both * pthread_cond_signal() and pthread_cond_broadcast() should * use nr_wake=1. */ if (nr_wake != 1) return -EINVAL; } retry: ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); if (unlikely(ret != 0)) goto out; ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, requeue_pi ? VERIFY_WRITE : VERIFY_READ); if (unlikely(ret != 0)) goto out_put_key1; /* * The check above which compares uaddrs is not sufficient for * shared futexes. We need to compare the keys: */ if (requeue_pi && match_futex(&key1, &key2)) { ret = -EINVAL; goto out_put_keys; } hb1 = hash_futex(&key1); hb2 = hash_futex(&key2); retry_private: hb_waiters_inc(hb2); double_lock_hb(hb1, hb2); if (likely(cmpval != NULL)) { u32 curval; ret = get_futex_value_locked(&curval, uaddr1); if (unlikely(ret)) { double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); ret = get_user(curval, uaddr1); if (ret) goto out_put_keys; if (!(flags & FLAGS_SHARED)) goto retry_private; put_futex_key(&key2); put_futex_key(&key1); goto retry; } if (curval != *cmpval) { ret = -EAGAIN; goto out_unlock; } } if (requeue_pi && (task_count - nr_wake < nr_requeue)) { /* * Attempt to acquire uaddr2 and wake the top waiter. If we * intend to requeue waiters, force setting the FUTEX_WAITERS * bit. We force this here where we are able to easily handle * faults rather in the requeue loop below. */ ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, &key2, &pi_state, nr_requeue); /* * At this point the top_waiter has either taken uaddr2 or is * waiting on it. If the former, then the pi_state will not * exist yet, look it up one more time to ensure we have a * reference to it. If the lock was taken, ret contains the * vpid of the top waiter task. * If the lock was not taken, we have pi_state and an initial * refcount on it. In case of an error we have nothing. */ if (ret > 0) { WARN_ON(pi_state); drop_count++; task_count++; /* * If we acquired the lock, then the user space value * of uaddr2 should be vpid. It cannot be changed by * the top waiter as it is blocked on hb2 lock if it * tries to do so. If something fiddled with it behind * our back the pi state lookup might unearth it. So * we rather use the known value than rereading and * handing potential crap to lookup_pi_state. * * If that call succeeds then we have pi_state and an * initial refcount on it. */ ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state); } switch (ret) { case 0: /* We hold a reference on the pi state. */ break; /* If the above failed, then pi_state is NULL */ case -EFAULT: double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); put_futex_key(&key2); put_futex_key(&key1); ret = fault_in_user_writeable(uaddr2); if (!ret) goto retry; goto out; case -EAGAIN: /* * Two reasons for this: * - Owner is exiting and we just wait for the * exit to complete. * - The user space value changed. */ double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); put_futex_key(&key2); put_futex_key(&key1); cond_resched(); goto retry; default: goto out_unlock; } } plist_for_each_entry_safe(this, next, &hb1->chain, list) { if (task_count - nr_wake >= nr_requeue) break; if (!match_futex(&this->key, &key1)) continue; /* * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always * be paired with each other and no other futex ops. * * We should never be requeueing a futex_q with a pi_state, * which is awaiting a futex_unlock_pi(). */ if ((requeue_pi && !this->rt_waiter) || (!requeue_pi && this->rt_waiter) || this->pi_state) { ret = -EINVAL; break; } /* * Wake nr_wake waiters. For requeue_pi, if we acquired the * lock, we already woke the top_waiter. If not, it will be * woken by futex_unlock_pi(). */ if (++task_count <= nr_wake && !requeue_pi) { mark_wake_futex(&wake_q, this); continue; } /* Ensure we requeue to the expected futex for requeue_pi. */ if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { ret = -EINVAL; break; } /* * Requeue nr_requeue waiters and possibly one more in the case * of requeue_pi if we couldn't acquire the lock atomically. */ if (requeue_pi) { /* * Prepare the waiter to take the rt_mutex. Take a * refcount on the pi_state and store the pointer in * the futex_q object of the waiter. */ get_pi_state(pi_state); this->pi_state = pi_state; ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, this->rt_waiter, this->task); if (ret == 1) { /* * We got the lock. We do neither drop the * refcount on pi_state nor clear * this->pi_state because the waiter needs the * pi_state for cleaning up the user space * value. It will drop the refcount after * doing so. */ requeue_pi_wake_futex(this, &key2, hb2); drop_count++; continue; } else if (ret) { /* * rt_mutex_start_proxy_lock() detected a * potential deadlock when we tried to queue * that waiter. Drop the pi_state reference * which we took above and remove the pointer * to the state from the waiters futex_q * object. */ this->pi_state = NULL; put_pi_state(pi_state); /* * We stop queueing more waiters and let user * space deal with the mess. */ break; } } requeue_futex(this, hb1, hb2, &key2); drop_count++; } /* * We took an extra initial reference to the pi_state either * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We * need to drop it here again. */ put_pi_state(pi_state); out_unlock: double_unlock_hb(hb1, hb2); wake_up_q(&wake_q); hb_waiters_dec(hb2); /* * drop_futex_key_refs() must be called outside the spinlocks. During * the requeue we moved futex_q's from the hash bucket at key1 to the * one at key2 and updated their key pointer. We no longer need to * hold the references to key1. */ while (--drop_count >= 0) drop_futex_key_refs(&key1); out_put_keys: put_futex_key(&key2); out_put_key1: put_futex_key(&key1); out: return ret ? ret : task_count; }
CWE-190
182,503
3,783
199927163848810392826215218327173341448
null
null
null
suricata
e1ef57c848bbe4e567d5d4b66d346a742e3f77a1
1
static void DetectFlow(ThreadVars *tv, DetectEngineCtx *de_ctx, DetectEngineThreadCtx *det_ctx, Packet *p) { /* No need to perform any detection on this packet, if the the given flag is set.*/ if ((p->flags & PKT_NOPACKET_INSPECTION) || (PACKET_TEST_ACTION(p, ACTION_DROP))) { /* hack: if we are in pass the entire flow mode, we need to still * update the inspect_id forward. So test for the condition here, * and call the update code if necessary. */ const int pass = ((p->flow->flags & FLOW_NOPACKET_INSPECTION)); const AppProto alproto = FlowGetAppProtocol(p->flow); if (pass && AppLayerParserProtocolSupportsTxs(p->proto, alproto)) { uint8_t flags; if (p->flowflags & FLOW_PKT_TOSERVER) { flags = STREAM_TOSERVER; } else { flags = STREAM_TOCLIENT; } flags = FlowGetDisruptionFlags(p->flow, flags); DeStateUpdateInspectTransactionId(p->flow, flags, true); } return; } /* see if the packet matches one or more of the sigs */ (void)DetectRun(tv, de_ctx, det_ctx, p); }
CWE-693
182,504
3,784
195957054812264817912329011940185414213
null
null
null
suricata
e1ef57c848bbe4e567d5d4b66d346a742e3f77a1
1
int StreamTcpPacket (ThreadVars *tv, Packet *p, StreamTcpThread *stt, PacketQueue *pq) { SCEnter(); DEBUG_ASSERT_FLOW_LOCKED(p->flow); SCLogDebug("p->pcap_cnt %"PRIu64, p->pcap_cnt); /* assign the thread id to the flow */ if (unlikely(p->flow->thread_id == 0)) { p->flow->thread_id = (FlowThreadId)tv->id; #ifdef DEBUG } else if (unlikely((FlowThreadId)tv->id != p->flow->thread_id)) { SCLogDebug("wrong thread: flow has %u, we are %d", p->flow->thread_id, tv->id); #endif } TcpSession *ssn = (TcpSession *)p->flow->protoctx; /* track TCP flags */ if (ssn != NULL) { ssn->tcp_packet_flags |= p->tcph->th_flags; if (PKT_IS_TOSERVER(p)) ssn->client.tcp_flags |= p->tcph->th_flags; else if (PKT_IS_TOCLIENT(p)) ssn->server.tcp_flags |= p->tcph->th_flags; /* check if we need to unset the ASYNC flag */ if (ssn->flags & STREAMTCP_FLAG_ASYNC && ssn->client.tcp_flags != 0 && ssn->server.tcp_flags != 0) { SCLogDebug("ssn %p: removing ASYNC flag as we have packets on both sides", ssn); ssn->flags &= ~STREAMTCP_FLAG_ASYNC; } } /* update counters */ if ((p->tcph->th_flags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) { StatsIncr(tv, stt->counter_tcp_synack); } else if (p->tcph->th_flags & (TH_SYN)) { StatsIncr(tv, stt->counter_tcp_syn); } if (p->tcph->th_flags & (TH_RST)) { StatsIncr(tv, stt->counter_tcp_rst); } /* broken TCP http://ask.wireshark.org/questions/3183/acknowledgment-number-broken-tcp-the-acknowledge-field-is-nonzero-while-the-ack-flag-is-not-set */ if (!(p->tcph->th_flags & TH_ACK) && TCP_GET_ACK(p) != 0) { StreamTcpSetEvent(p, STREAM_PKT_BROKEN_ACK); } /* If we are on IPS mode, and got a drop action triggered from * the IP only module, or from a reassembled msg and/or from an * applayer detection, then drop the rest of the packets of the * same stream and avoid inspecting it any further */ if (StreamTcpCheckFlowDrops(p) == 1) { SCLogDebug("This flow/stream triggered a drop rule"); FlowSetNoPacketInspectionFlag(p->flow); DecodeSetNoPacketInspectionFlag(p); StreamTcpDisableAppLayer(p->flow); PACKET_DROP(p); /* return the segments to the pool */ StreamTcpSessionPktFree(p); SCReturnInt(0); } if (ssn == NULL || ssn->state == TCP_NONE) { if (StreamTcpPacketStateNone(tv, p, stt, ssn, &stt->pseudo_queue) == -1) { goto error; } if (ssn != NULL) SCLogDebug("ssn->alproto %"PRIu16"", p->flow->alproto); } else { /* special case for PKT_PSEUDO_STREAM_END packets: * bypass the state handling and various packet checks, * we care about reassembly here. */ if (p->flags & PKT_PSEUDO_STREAM_END) { if (PKT_IS_TOCLIENT(p)) { ssn->client.last_ack = TCP_GET_ACK(p); StreamTcpReassembleHandleSegment(tv, stt->ra_ctx, ssn, &ssn->server, p, pq); } else { ssn->server.last_ack = TCP_GET_ACK(p); StreamTcpReassembleHandleSegment(tv, stt->ra_ctx, ssn, &ssn->client, p, pq); } /* straight to 'skip' as we already handled reassembly */ goto skip; } /* check if the packet is in right direction, when we missed the SYN packet and picked up midstream session. */ if (ssn->flags & STREAMTCP_FLAG_MIDSTREAM_SYNACK) StreamTcpPacketSwitchDir(ssn, p); if (StreamTcpPacketIsKeepAlive(ssn, p) == 1) { goto skip; } if (StreamTcpPacketIsKeepAliveACK(ssn, p) == 1) { StreamTcpClearKeepAliveFlag(ssn, p); goto skip; } StreamTcpClearKeepAliveFlag(ssn, p); /* if packet is not a valid window update, check if it is perhaps * a bad window update that we should ignore (and alert on) */ if (StreamTcpPacketIsFinShutdownAck(ssn, p) == 0) if (StreamTcpPacketIsWindowUpdate(ssn, p) == 0) if (StreamTcpPacketIsBadWindowUpdate(ssn,p)) goto skip; switch (ssn->state) { case TCP_SYN_SENT: if(StreamTcpPacketStateSynSent(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_SYN_RECV: if(StreamTcpPacketStateSynRecv(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_ESTABLISHED: if(StreamTcpPacketStateEstablished(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_FIN_WAIT1: if(StreamTcpPacketStateFinWait1(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_FIN_WAIT2: if(StreamTcpPacketStateFinWait2(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_CLOSING: if(StreamTcpPacketStateClosing(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_CLOSE_WAIT: if(StreamTcpPacketStateCloseWait(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_LAST_ACK: if(StreamTcpPacketStateLastAck(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_TIME_WAIT: if(StreamTcpPacketStateTimeWait(tv, p, stt, ssn, &stt->pseudo_queue)) { goto error; } break; case TCP_CLOSED: /* TCP session memory is not returned to pool until timeout. */ SCLogDebug("packet received on closed state"); break; default: SCLogDebug("packet received on default state"); break; } skip: if (ssn->state >= TCP_ESTABLISHED) { p->flags |= PKT_STREAM_EST; } } /* deal with a pseudo packet that is created upon receiving a RST * segment. To be sure we process both sides of the connection, we * inject a fake packet into the system, forcing reassembly of the * opposing direction. * There should be only one, but to be sure we do a while loop. */ if (ssn != NULL) { while (stt->pseudo_queue.len > 0) { SCLogDebug("processing pseudo packet / stream end"); Packet *np = PacketDequeue(&stt->pseudo_queue); if (np != NULL) { /* process the opposing direction of the original packet */ if (PKT_IS_TOSERVER(np)) { SCLogDebug("pseudo packet is to server"); StreamTcpReassembleHandleSegment(tv, stt->ra_ctx, ssn, &ssn->client, np, NULL); } else { SCLogDebug("pseudo packet is to client"); StreamTcpReassembleHandleSegment(tv, stt->ra_ctx, ssn, &ssn->server, np, NULL); } /* enqueue this packet so we inspect it in detect etc */ PacketEnqueue(pq, np); } SCLogDebug("processing pseudo packet / stream end done"); } /* recalc the csum on the packet if it was modified */ if (p->flags & PKT_STREAM_MODIFIED) { ReCalculateChecksum(p); } /* check for conditions that may make us not want to log this packet */ /* streams that hit depth */ if ((ssn->client.flags & STREAMTCP_STREAM_FLAG_DEPTH_REACHED) && (ssn->server.flags & STREAMTCP_STREAM_FLAG_DEPTH_REACHED)) { /* we can call bypass callback, if enabled */ if (StreamTcpBypassEnabled()) { PacketBypassCallback(p); } } if ((ssn->client.flags & STREAMTCP_STREAM_FLAG_DEPTH_REACHED) || (ssn->server.flags & STREAMTCP_STREAM_FLAG_DEPTH_REACHED)) { p->flags |= PKT_STREAM_NOPCAPLOG; } /* encrypted packets */ if ((PKT_IS_TOSERVER(p) && (ssn->client.flags & STREAMTCP_STREAM_FLAG_NOREASSEMBLY)) || (PKT_IS_TOCLIENT(p) && (ssn->server.flags & STREAMTCP_STREAM_FLAG_NOREASSEMBLY))) { p->flags |= PKT_STREAM_NOPCAPLOG; } if (ssn->flags & STREAMTCP_FLAG_BYPASS) { /* we can call bypass callback, if enabled */ if (StreamTcpBypassEnabled()) { PacketBypassCallback(p); } /* if stream is dead and we have no detect engine at all, bypass. */ } else if (g_detect_disabled && (ssn->client.flags & STREAMTCP_STREAM_FLAG_NOREASSEMBLY) && (ssn->server.flags & STREAMTCP_STREAM_FLAG_NOREASSEMBLY) && StreamTcpBypassEnabled()) { SCLogDebug("bypass as stream is dead and we have no rules"); PacketBypassCallback(p); } } SCReturnInt(0); error: /* make sure we don't leave packets in our pseudo queue */ while (stt->pseudo_queue.len > 0) { Packet *np = PacketDequeue(&stt->pseudo_queue); if (np != NULL) { PacketEnqueue(pq, np); } } /* recalc the csum on the packet if it was modified */ if (p->flags & PKT_STREAM_MODIFIED) { ReCalculateChecksum(p); } if (StreamTcpInlineDropInvalid()) { PACKET_DROP(p); } SCReturnInt(-1); }
CWE-693
182,505
3,785
197454659043875683857697011390226553072
null
null
null
WavPack
d5bf76b5a88d044a1be1d5656698e3ba737167e5
1
int ParseRiffHeaderConfig (FILE *infile, char *infilename, char *fourcc, WavpackContext *wpc, WavpackConfig *config) { int is_rf64 = !strncmp (fourcc, "RF64", 4), got_ds64 = 0; int64_t total_samples = 0, infilesize; RiffChunkHeader riff_chunk_header; ChunkHeader chunk_header; WaveHeader WaveHeader; DS64Chunk ds64_chunk; uint32_t bcount; CLEAR (WaveHeader); CLEAR (ds64_chunk); infilesize = DoGetFileSize (infile); if (!is_rf64 && infilesize >= 4294967296LL && !(config->qmode & QMODE_IGNORE_LENGTH)) { error_line ("can't handle .WAV files larger than 4 GB (non-standard)!"); return WAVPACK_SOFT_ERROR; } memcpy (&riff_chunk_header, fourcc, 4); if ((!DoReadFile (infile, ((char *) &riff_chunk_header) + 4, sizeof (RiffChunkHeader) - 4, &bcount) || bcount != sizeof (RiffChunkHeader) - 4 || strncmp (riff_chunk_header.formType, "WAVE", 4))) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &riff_chunk_header, sizeof (RiffChunkHeader))) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } while (1) { if (!DoReadFile (infile, &chunk_header, sizeof (ChunkHeader), &bcount) || bcount != sizeof (ChunkHeader)) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &chunk_header, sizeof (ChunkHeader))) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } WavpackLittleEndianToNative (&chunk_header, ChunkHeaderFormat); if (!strncmp (chunk_header.ckID, "ds64", 4)) { if (chunk_header.ckSize < sizeof (DS64Chunk) || !DoReadFile (infile, &ds64_chunk, chunk_header.ckSize, &bcount) || bcount != chunk_header.ckSize) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &ds64_chunk, chunk_header.ckSize)) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } got_ds64 = 1; WavpackLittleEndianToNative (&ds64_chunk, DS64ChunkFormat); if (debug_logging_mode) error_line ("DS64: riffSize = %lld, dataSize = %lld, sampleCount = %lld, table_length = %d", (long long) ds64_chunk.riffSize64, (long long) ds64_chunk.dataSize64, (long long) ds64_chunk.sampleCount64, ds64_chunk.tableLength); if (ds64_chunk.tableLength * sizeof (CS64Chunk) != chunk_header.ckSize - sizeof (DS64Chunk)) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } while (ds64_chunk.tableLength--) { CS64Chunk cs64_chunk; if (!DoReadFile (infile, &cs64_chunk, sizeof (CS64Chunk), &bcount) || bcount != sizeof (CS64Chunk) || (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &cs64_chunk, sizeof (CS64Chunk)))) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } } } else if (!strncmp (chunk_header.ckID, "fmt ", 4)) { // if it's the format chunk, we want to get some info out of there and int supported = TRUE, format; // make sure it's a .wav file we can handle if (chunk_header.ckSize < 16 || chunk_header.ckSize > sizeof (WaveHeader) || !DoReadFile (infile, &WaveHeader, chunk_header.ckSize, &bcount) || bcount != chunk_header.ckSize) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } else if (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, &WaveHeader, chunk_header.ckSize)) { error_line ("%s", WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } WavpackLittleEndianToNative (&WaveHeader, WaveHeaderFormat); if (debug_logging_mode) { error_line ("format tag size = %d", chunk_header.ckSize); error_line ("FormatTag = %x, NumChannels = %d, BitsPerSample = %d", WaveHeader.FormatTag, WaveHeader.NumChannels, WaveHeader.BitsPerSample); error_line ("BlockAlign = %d, SampleRate = %d, BytesPerSecond = %d", WaveHeader.BlockAlign, WaveHeader.SampleRate, WaveHeader.BytesPerSecond); if (chunk_header.ckSize > 16) error_line ("cbSize = %d, ValidBitsPerSample = %d", WaveHeader.cbSize, WaveHeader.ValidBitsPerSample); if (chunk_header.ckSize > 20) error_line ("ChannelMask = %x, SubFormat = %d", WaveHeader.ChannelMask, WaveHeader.SubFormat); } if (chunk_header.ckSize > 16 && WaveHeader.cbSize == 2) config->qmode |= QMODE_ADOBE_MODE; format = (WaveHeader.FormatTag == 0xfffe && chunk_header.ckSize == 40) ? WaveHeader.SubFormat : WaveHeader.FormatTag; config->bits_per_sample = (chunk_header.ckSize == 40 && WaveHeader.ValidBitsPerSample) ? WaveHeader.ValidBitsPerSample : WaveHeader.BitsPerSample; if (format != 1 && format != 3) supported = FALSE; if (format == 3 && config->bits_per_sample != 32) supported = FALSE; if (!WaveHeader.NumChannels || WaveHeader.NumChannels > 256 || WaveHeader.BlockAlign / WaveHeader.NumChannels < (config->bits_per_sample + 7) / 8 || WaveHeader.BlockAlign / WaveHeader.NumChannels > 4 || WaveHeader.BlockAlign % WaveHeader.NumChannels) supported = FALSE; if (config->bits_per_sample < 1 || config->bits_per_sample > 32) supported = FALSE; if (!supported) { error_line ("%s is an unsupported .WAV format!", infilename); return WAVPACK_SOFT_ERROR; } if (chunk_header.ckSize < 40) { if (!config->channel_mask && !(config->qmode & QMODE_CHANS_UNASSIGNED)) { if (WaveHeader.NumChannels <= 2) config->channel_mask = 0x5 - WaveHeader.NumChannels; else if (WaveHeader.NumChannels <= 18) config->channel_mask = (1 << WaveHeader.NumChannels) - 1; else config->channel_mask = 0x3ffff; } } else if (WaveHeader.ChannelMask && (config->channel_mask || (config->qmode & QMODE_CHANS_UNASSIGNED))) { error_line ("this WAV file already has channel order information!"); return WAVPACK_SOFT_ERROR; } else if (WaveHeader.ChannelMask) config->channel_mask = WaveHeader.ChannelMask; if (format == 3) config->float_norm_exp = 127; else if ((config->qmode & QMODE_ADOBE_MODE) && WaveHeader.BlockAlign / WaveHeader.NumChannels == 4) { if (WaveHeader.BitsPerSample == 24) config->float_norm_exp = 127 + 23; else if (WaveHeader.BitsPerSample == 32) config->float_norm_exp = 127 + 15; } if (debug_logging_mode) { if (config->float_norm_exp == 127) error_line ("data format: normalized 32-bit floating point"); else if (config->float_norm_exp) error_line ("data format: 32-bit floating point (Audition %d:%d float type 1)", config->float_norm_exp - 126, 150 - config->float_norm_exp); else error_line ("data format: %d-bit integers stored in %d byte(s)", config->bits_per_sample, WaveHeader.BlockAlign / WaveHeader.NumChannels); } } else if (!strncmp (chunk_header.ckID, "data", 4)) { // on the data chunk, get size and exit loop int64_t data_chunk_size = (got_ds64 && chunk_header.ckSize == (uint32_t) -1) ? ds64_chunk.dataSize64 : chunk_header.ckSize; if (!WaveHeader.NumChannels || (is_rf64 && !got_ds64)) { // make sure we saw "fmt" and "ds64" chunks (if required) error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } if (infilesize && !(config->qmode & QMODE_IGNORE_LENGTH) && infilesize - data_chunk_size > 16777216) { error_line ("this .WAV file has over 16 MB of extra RIFF data, probably is corrupt!"); return WAVPACK_SOFT_ERROR; } if (config->qmode & QMODE_IGNORE_LENGTH) { if (infilesize && DoGetFilePosition (infile) != -1) total_samples = (infilesize - DoGetFilePosition (infile)) / WaveHeader.BlockAlign; else total_samples = -1; } else { total_samples = data_chunk_size / WaveHeader.BlockAlign; if (got_ds64 && total_samples != ds64_chunk.sampleCount64) { error_line ("%s is not a valid .WAV file!", infilename); return WAVPACK_SOFT_ERROR; } if (!total_samples) { error_line ("this .WAV file has no audio samples, probably is corrupt!"); return WAVPACK_SOFT_ERROR; } if (total_samples > MAX_WAVPACK_SAMPLES) { error_line ("%s has too many samples for WavPack!", infilename); return WAVPACK_SOFT_ERROR; } } config->bytes_per_sample = WaveHeader.BlockAlign / WaveHeader.NumChannels; config->num_channels = WaveHeader.NumChannels; config->sample_rate = WaveHeader.SampleRate; break; } else { // just copy unknown chunks to output file int bytes_to_copy = (chunk_header.ckSize + 1) & ~1L; char *buff = malloc (bytes_to_copy); if (debug_logging_mode) error_line ("extra unknown chunk \"%c%c%c%c\" of %d bytes", chunk_header.ckID [0], chunk_header.ckID [1], chunk_header.ckID [2], chunk_header.ckID [3], chunk_header.ckSize); if (!DoReadFile (infile, buff, bytes_to_copy, &bcount) || bcount != bytes_to_copy || (!(config->qmode & QMODE_NO_STORE_WRAPPER) && !WavpackAddWrapper (wpc, buff, bytes_to_copy))) { error_line ("%s", WavpackGetErrorMessage (wpc)); free (buff); return WAVPACK_SOFT_ERROR; } free (buff); } } if (!WavpackSetConfiguration64 (wpc, config, total_samples, NULL)) { error_line ("%s: %s", infilename, WavpackGetErrorMessage (wpc)); return WAVPACK_SOFT_ERROR; } return WAVPACK_NO_ERROR; }
CWE-119
182,506
3,786
266946299595107754657540895558952732852
null
null
null
uncurl
448cd13e7b18c83855d706c564341ddd1e38e769
1
UNCURL_EXPORT int32_t uncurl_ws_accept(struct uncurl_conn *ucc, char **origins, int32_t n_origins) { int32_t e; e = uncurl_read_header(ucc); if (e != UNCURL_OK) return e; uncurl_set_header_str(ucc, "Upgrade", "websocket"); uncurl_set_header_str(ucc, "Connection", "Upgrade"); char *origin = NULL; e = uncurl_get_header_str(ucc, "Origin", &origin); if (e != UNCURL_OK) return e; bool origin_ok = false; for (int32_t x = 0; x < n_origins; x++) if (strstr(origin, origins[x])) {origin_ok = true; break;} if (!origin_ok) return UNCURL_WS_ERR_ORIGIN; char *sec_key = NULL; e = uncurl_get_header_str(ucc, "Sec-WebSocket-Key", &sec_key); if (e != UNCURL_OK) return e; char *accept_key = ws_create_accept_key(sec_key); uncurl_set_header_str(ucc, "Sec-WebSocket-Accept", accept_key); free(accept_key); e = uncurl_write_header(ucc, "101", "Switching Protocols", UNCURL_RESPONSE); if (e != UNCURL_OK) return e; ucc->ws_mask = 0; return UNCURL_OK; }
CWE-352
182,508
3,787
185832743048029192101006204349016736111
null
null
null
w3m
7fdc83b0364005a0b5ed869230dd81752ba022e8
1
formUpdateBuffer(Anchor *a, Buffer *buf, FormItemList *form) { Buffer save; char *p; int spos, epos, rows, c_rows, pos, col = 0; Line *l; copyBuffer(&save, buf); gotoLine(buf, a->start.line); switch (form->type) { case FORM_TEXTAREA: case FORM_INPUT_TEXT: case FORM_INPUT_FILE: case FORM_INPUT_PASSWORD: case FORM_INPUT_CHECKBOX: case FORM_INPUT_RADIO: #ifdef MENU_SELECT case FORM_SELECT: #endif /* MENU_SELECT */ spos = a->start.pos; epos = a->end.pos; break; default: spos = a->start.pos + 1; epos = a->end.pos - 1; } switch (form->type) { case FORM_INPUT_CHECKBOX: case FORM_INPUT_RADIO: if (buf->currentLine == NULL || spos >= buf->currentLine->len || spos < 0) break; if (form->checked) buf->currentLine->lineBuf[spos] = '*'; else buf->currentLine->lineBuf[spos] = ' '; break; case FORM_INPUT_TEXT: case FORM_INPUT_FILE: case FORM_INPUT_PASSWORD: case FORM_TEXTAREA: #ifdef MENU_SELECT case FORM_SELECT: if (form->type == FORM_SELECT) { p = form->label->ptr; updateSelectOption(form, form->select_option); } else #endif /* MENU_SELECT */ { if (!form->value) break; p = form->value->ptr; } l = buf->currentLine; if (!l) break; if (form->type == FORM_TEXTAREA) { int n = a->y - buf->currentLine->linenumber; if (n > 0) for (; l && n; l = l->prev, n--) ; else if (n < 0) for (; l && n; l = l->prev, n++) ; if (!l) break; } rows = form->rows ? form->rows : 1; col = COLPOS(l, a->start.pos); for (c_rows = 0; c_rows < rows; c_rows++, l = l->next) { if (rows > 1) { pos = columnPos(l, col); a = retrieveAnchor(buf->formitem, l->linenumber, pos); if (a == NULL) break; spos = a->start.pos; epos = a->end.pos; } if (a->start.line != a->end.line || spos > epos || epos >= l->len || spos < 0 || epos < 0 || COLPOS(l, epos) < col) break; pos = form_update_line(l, &p, spos, epos, COLPOS(l, epos) - col, rows > 1, form->type == FORM_INPUT_PASSWORD); if (pos != epos) { shiftAnchorPosition(buf->href, buf->hmarklist, a->start.line, spos, pos - epos); shiftAnchorPosition(buf->name, buf->hmarklist, a->start.line, spos, pos - epos); shiftAnchorPosition(buf->img, buf->hmarklist, a->start.line, spos, pos - epos); shiftAnchorPosition(buf->formitem, buf->hmarklist, a->start.line, spos, pos - epos); } } break; } copyBuffer(buf, &save); arrangeLine(buf); }
CWE-476
182,519
3,790
90699627261407877967943529408564795887
null
null
null
w3m
8354763b90490d4105695df52674d0fcef823e92
1
feed_table_block_tag(struct table *tbl, char *line, struct table_mode *mode, int indent, int cmd) { int offset; if (mode->indent_level <= 0 && indent == -1) return; if (mode->indent_level >= CHAR_MAX && indent == 1) return; setwidth(tbl, mode); feed_table_inline_tag(tbl, line, mode, -1); clearcontentssize(tbl, mode); if (indent == 1) { mode->indent_level++; if (mode->indent_level <= MAX_INDENT_LEVEL) tbl->indent += INDENT_INCR; } else if (indent == -1) { mode->indent_level--; if (mode->indent_level < MAX_INDENT_LEVEL) tbl->indent -= INDENT_INCR; } offset = tbl->indent; if (cmd == HTML_DT) { if (mode->indent_level > 0 && mode->indent_level <= MAX_INDENT_LEVEL) offset -= INDENT_INCR; } if (tbl->indent > 0) { check_minimum0(tbl, 0); addcontentssize(tbl, offset); } }
CWE-835
182,520
3,791
95430748719998943764079216940849814601
null
null
null
linux
073c516ff73557a8f7315066856c04b50383ac34
1
static void *__ns_get_path(struct path *path, struct ns_common *ns) { struct vfsmount *mnt = nsfs_mnt; struct qstr qname = { .name = "", }; struct dentry *dentry; struct inode *inode; unsigned long d; rcu_read_lock(); d = atomic_long_read(&ns->stashed); if (!d) goto slow; dentry = (struct dentry *)d; if (!lockref_get_not_dead(&dentry->d_lockref)) goto slow; rcu_read_unlock(); ns->ops->put(ns); got_it: path->mnt = mntget(mnt); path->dentry = dentry; return NULL; slow: rcu_read_unlock(); inode = new_inode_pseudo(mnt->mnt_sb); if (!inode) { ns->ops->put(ns); return ERR_PTR(-ENOMEM); } inode->i_ino = ns->inum; inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); inode->i_flags |= S_IMMUTABLE; inode->i_mode = S_IFREG | S_IRUGO; inode->i_fop = &ns_file_operations; inode->i_private = ns; dentry = d_alloc_pseudo(mnt->mnt_sb, &qname); if (!dentry) { iput(inode); return ERR_PTR(-ENOMEM); } d_instantiate(dentry, inode); dentry->d_fsdata = (void *)ns->ops; d = atomic_long_cmpxchg(&ns->stashed, 0, (unsigned long)dentry); if (d) { d_delete(dentry); /* make sure ->d_prune() does nothing */ dput(dentry); cpu_relax(); return ERR_PTR(-EAGAIN); } goto got_it; }
CWE-416
182,521
3,792
283164269815372791078646261925374136835
null
null
null
linux
ae6650163c66a7eff1acd6eb8b0f752dcfa8eba5
1
static void lo_release(struct gendisk *disk, fmode_t mode) { struct loop_device *lo = disk->private_data; int err; if (atomic_dec_return(&lo->lo_refcnt)) return; mutex_lock(&lo->lo_ctl_mutex); if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { /* * In autoclear mode, stop the loop thread * and remove configuration after last close. */ err = loop_clr_fd(lo); if (!err) return; } else if (lo->lo_state == Lo_bound) { /* * Otherwise keep thread (if running) and config, * but flush possible ongoing bios in thread. */ blk_mq_freeze_queue(lo->lo_queue); blk_mq_unfreeze_queue(lo->lo_queue); } mutex_unlock(&lo->lo_ctl_mutex); }
CWE-416
182,524
3,795
92709335376815678411396874140158815969
null
null
null
linux
c1fa0768a8713b135848f78fd43ffc208d8ded70
1
static void flush_tmregs_to_thread(struct task_struct *tsk) { /* * If task is not current, it will have been flushed already to * it's thread_struct during __switch_to(). * * A reclaim flushes ALL the state or if not in TM save TM SPRs * in the appropriate thread structures from live. */ if (tsk != current) return; if (MSR_TM_SUSPENDED(mfmsr())) { tm_reclaim_current(TM_CAUSE_SIGNAL); } else { tm_enable(); tm_save_sprs(&(tsk->thread)); } }
CWE-119
182,528
3,796
117879822457848689953175633263838581607
null
null
null
linux
57ebd808a97d7c5b1e1afb937c2db22beba3c1f8
1
ipt_do_table(struct sk_buff *skb, const struct nf_hook_state *state, struct xt_table *table) { unsigned int hook = state->hook; static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long)))); const struct iphdr *ip; /* Initializing verdict to NF_DROP keeps gcc happy. */ unsigned int verdict = NF_DROP; const char *indev, *outdev; const void *table_base; struct ipt_entry *e, **jumpstack; unsigned int stackidx, cpu; const struct xt_table_info *private; struct xt_action_param acpar; unsigned int addend; /* Initialization */ stackidx = 0; ip = ip_hdr(skb); indev = state->in ? state->in->name : nulldevname; outdev = state->out ? state->out->name : nulldevname; /* We handle fragments by dealing with the first fragment as * if it was a normal packet. All other fragments are treated * normally, except that they will NEVER match rules that ask * things we don't know, ie. tcp syn flag or ports). If the * rule is also a fragment-specific rule, non-fragments won't * match it. */ acpar.fragoff = ntohs(ip->frag_off) & IP_OFFSET; acpar.thoff = ip_hdrlen(skb); acpar.hotdrop = false; acpar.state = state; WARN_ON(!(table->valid_hooks & (1 << hook))); local_bh_disable(); addend = xt_write_recseq_begin(); private = READ_ONCE(table->private); /* Address dependency. */ cpu = smp_processor_id(); table_base = private->entries; jumpstack = (struct ipt_entry **)private->jumpstack[cpu]; /* Switch to alternate jumpstack if we're being invoked via TEE. * TEE issues XT_CONTINUE verdict on original skb so we must not * clobber the jumpstack. * * For recursion via REJECT or SYNPROXY the stack will be clobbered * but it is no problem since absolute verdict is issued by these. */ if (static_key_false(&xt_tee_enabled)) jumpstack += private->stacksize * __this_cpu_read(nf_skb_duplicated); e = get_entry(table_base, private->hook_entry[hook]); do { const struct xt_entry_target *t; const struct xt_entry_match *ematch; struct xt_counters *counter; WARN_ON(!e); if (!ip_packet_match(ip, indev, outdev, &e->ip, acpar.fragoff)) { no_match: e = ipt_next_entry(e); continue; } xt_ematch_foreach(ematch, e) { acpar.match = ematch->u.kernel.match; acpar.matchinfo = ematch->data; if (!acpar.match->match(skb, &acpar)) goto no_match; } counter = xt_get_this_cpu_counter(&e->counters); ADD_COUNTER(*counter, skb->len, 1); t = ipt_get_target(e); WARN_ON(!t->u.kernel.target); #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) /* The packet is traced: log it */ if (unlikely(skb->nf_trace)) trace_packet(state->net, skb, hook, state->in, state->out, table->name, private, e); #endif /* Standard target? */ if (!t->u.kernel.target->target) { int v; v = ((struct xt_standard_target *)t)->verdict; if (v < 0) { /* Pop from stack? */ if (v != XT_RETURN) { verdict = (unsigned int)(-v) - 1; break; } if (stackidx == 0) { e = get_entry(table_base, private->underflow[hook]); } else { e = jumpstack[--stackidx]; e = ipt_next_entry(e); } continue; } if (table_base + v != ipt_next_entry(e) && !(e->ip.flags & IPT_F_GOTO)) jumpstack[stackidx++] = e; e = get_entry(table_base, v); continue; } acpar.target = t->u.kernel.target; acpar.targinfo = t->data; verdict = t->u.kernel.target->target(skb, &acpar); if (verdict == XT_CONTINUE) { /* Target might have changed stuff. */ ip = ip_hdr(skb); e = ipt_next_entry(e); } else { /* Verdict */ break; } } while (!acpar.hotdrop); xt_write_recseq_end(addend); local_bh_enable(); if (acpar.hotdrop) return NF_DROP; else return verdict; }
CWE-476
182,535
3,802
317586211130688072826727616291781375626
null
null
null
curl
ba1dbd78e5f1ed67c1b8d37ac89d90e5e330b628
1
CURLcode Curl_smtp_escape_eob(struct connectdata *conn, const ssize_t nread) { /* When sending a SMTP payload we must detect CRLF. sequences making sure they are sent as CRLF.. instead, as a . on the beginning of a line will be deleted by the server when not part of an EOB terminator and a genuine CRLF.CRLF which isn't escaped will wrongly be detected as end of data by the server */ ssize_t i; ssize_t si; struct Curl_easy *data = conn->data; struct SMTP *smtp = data->req.protop; char *scratch = data->state.scratch; char *newscratch = NULL; char *oldscratch = NULL; size_t eob_sent; /* Do we need to allocate a scratch buffer? */ if(!scratch || data->set.crlf) { oldscratch = scratch; scratch = newscratch = malloc(2 * data->set.buffer_size); if(!newscratch) { failf(data, "Failed to alloc scratch buffer!"); return CURLE_OUT_OF_MEMORY; } } /* Have we already sent part of the EOB? */ eob_sent = smtp->eob; /* This loop can be improved by some kind of Boyer-Moore style of approach but that is saved for later... */ for(i = 0, si = 0; i < nread; i++) { if(SMTP_EOB[smtp->eob] == data->req.upload_fromhere[i]) { smtp->eob++; /* Is the EOB potentially the terminating CRLF? */ if(2 == smtp->eob || SMTP_EOB_LEN == smtp->eob) smtp->trailing_crlf = TRUE; else smtp->trailing_crlf = FALSE; } else if(smtp->eob) { /* A previous substring matched so output that first */ memcpy(&scratch[si], &SMTP_EOB[eob_sent], smtp->eob - eob_sent); si += smtp->eob - eob_sent; /* Then compare the first byte */ if(SMTP_EOB[0] == data->req.upload_fromhere[i]) smtp->eob = 1; else smtp->eob = 0; eob_sent = 0; /* Reset the trailing CRLF flag as there was more data */ smtp->trailing_crlf = FALSE; } /* Do we have a match for CRLF. as per RFC-5321, sect. 4.5.2 */ if(SMTP_EOB_FIND_LEN == smtp->eob) { /* Copy the replacement data to the target buffer */ memcpy(&scratch[si], &SMTP_EOB_REPL[eob_sent], SMTP_EOB_REPL_LEN - eob_sent); si += SMTP_EOB_REPL_LEN - eob_sent; smtp->eob = 0; eob_sent = 0; } else if(!smtp->eob) scratch[si++] = data->req.upload_fromhere[i]; } if(smtp->eob - eob_sent) { /* A substring matched before processing ended so output that now */ memcpy(&scratch[si], &SMTP_EOB[eob_sent], smtp->eob - eob_sent); si += smtp->eob - eob_sent; } /* Only use the new buffer if we replaced something */ if(si != nread) { /* Upload from the new (replaced) buffer instead */ data->req.upload_fromhere = scratch; /* Save the buffer so it can be freed later */ data->state.scratch = scratch; /* Free the old scratch buffer */ free(oldscratch); /* Set the new amount too */ data->req.upload_present = si; } else free(newscratch); return CURLE_OK; }
CWE-119
182,537
3,803
170694906334543872021148259131625584894
null
null
null
miniupnp
7aeb624b44f86d335841242ff427433190e7168a
1
ParseNameValue(const char * buffer, int bufsize, struct NameValueParserData * data) { struct xmlparser parser; data->l_head = NULL; data->portListing = NULL; data->portListingLength = 0; /* init xmlparser object */ parser.xmlstart = buffer; parser.xmlsize = bufsize; parser.data = data; parser.starteltfunc = NameValueParserStartElt; parser.endeltfunc = NameValueParserEndElt; parser.datafunc = NameValueParserGetData; parser.attfunc = 0; parsexml(&parser); }
CWE-119
182,540
3,805
18049727750159877335262818865589438805
null
null
null
wildmidi
814f31d8eceda8401eb812fc2e94ed143fdad0ab
1
WM_SYMBOL midi *WildMidi_Open(const char *midifile) { uint8_t *mididata = NULL; uint32_t midisize = 0; uint8_t mus_hdr[] = { 'M', 'U', 'S', 0x1A }; uint8_t xmi_hdr[] = { 'F', 'O', 'R', 'M' }; midi * ret = NULL; if (!WM_Initialized) { _WM_GLOBAL_ERROR(__FUNCTION__, __LINE__, WM_ERR_NOT_INIT, NULL, 0); return (NULL); } if (midifile == NULL) { _WM_GLOBAL_ERROR(__FUNCTION__, __LINE__, WM_ERR_INVALID_ARG, "(NULL filename)", 0); return (NULL); } if ((mididata = (uint8_t *) _WM_BufferFile(midifile, &midisize)) == NULL) { return (NULL); } if (memcmp(mididata,"HMIMIDIP", 8) == 0) { ret = (void *) _WM_ParseNewHmp(mididata, midisize); } else if (memcmp(mididata, "HMI-MIDISONG061595", 18) == 0) { ret = (void *) _WM_ParseNewHmi(mididata, midisize); } else if (memcmp(mididata, mus_hdr, 4) == 0) { ret = (void *) _WM_ParseNewMus(mididata, midisize); } else if (memcmp(mididata, xmi_hdr, 4) == 0) { ret = (void *) _WM_ParseNewXmi(mididata, midisize); } else { ret = (void *) _WM_ParseNewMidi(mididata, midisize); } free(mididata); if (ret) { if (add_handle(ret) != 0) { WildMidi_Close(ret); ret = NULL; } } return (ret); }
CWE-119
182,541
3,806
49238147717637621953412138813699456307
null
null
null
linux
b86e33075ed1909d8002745b56ecf73b833db143
1
static int __get_data_block(struct inode *inode, sector_t iblock, struct buffer_head *bh, int create, int flag, pgoff_t *next_pgofs) { struct f2fs_map_blocks map; int err; map.m_lblk = iblock; map.m_len = bh->b_size >> inode->i_blkbits; map.m_next_pgofs = next_pgofs; err = f2fs_map_blocks(inode, &map, create, flag); if (!err) { map_bh(bh, inode->i_sb, map.m_pblk); bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; bh->b_size = map.m_len << inode->i_blkbits; } return err; }
CWE-190
182,549
3,814
36840277564373169083265504821394937867
null
null
null
linux
1572e45a924f254d9570093abde46430c3172e3d
1
int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int ret = proc_dointvec(table, write, buffer, lenp, ppos); if (ret || !write) return ret; if (sysctl_perf_cpu_time_max_percent == 100 || sysctl_perf_cpu_time_max_percent == 0) { printk(KERN_WARNING "perf: Dynamic interrupt throttling disabled, can hang your system!\n"); WRITE_ONCE(perf_sample_allowed_ns, 0); } else { update_perf_cpu_limits(); } return 0; }
CWE-190
182,550
3,815
108483018357036796556903065668617274381
null
null
null
linux
30a61ddf8117c26ac5b295e1233eaa9629a94ca3
1
static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build) { struct f2fs_nm_info *nm_i = NM_I(sbi); struct free_nid *i; struct nat_entry *ne; int err; /* 0 nid should not be used */ if (unlikely(nid == 0)) return false; if (build) { /* do not add allocated nids */ ne = __lookup_nat_cache(nm_i, nid); if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || nat_get_blkaddr(ne) != NULL_ADDR)) return false; } i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); i->nid = nid; i->state = NID_NEW; if (radix_tree_preload(GFP_NOFS)) { kmem_cache_free(free_nid_slab, i); return true; } spin_lock(&nm_i->nid_list_lock); err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true); spin_unlock(&nm_i->nid_list_lock); radix_tree_preload_end(); if (err) { kmem_cache_free(free_nid_slab, i); return true; } return true; }
CWE-362
182,551
3,816
84542765132488546853579230832755246774
null
null
null
cups
49fa4983f25b64ec29d548ffa3b9782426007df3
1
add_job(cupsd_client_t *con, /* I - Client connection */ cupsd_printer_t *printer, /* I - Destination printer */ mime_type_t *filetype) /* I - First print file type, if any */ { http_status_t status; /* Policy status */ ipp_attribute_t *attr, /* Current attribute */ *auth_info; /* auth-info attribute */ const char *mandatory; /* Current mandatory job attribute */ const char *val; /* Default option value */ int priority; /* Job priority */ cupsd_job_t *job; /* Current job */ char job_uri[HTTP_MAX_URI]; /* Job URI */ int kbytes; /* Size of print file */ int i; /* Looping var */ int lowerpagerange; /* Page range bound */ int exact; /* Did we have an exact match? */ ipp_attribute_t *media_col, /* media-col attribute */ *media_margin; /* media-*-margin attribute */ ipp_t *unsup_col; /* media-col in unsupported response */ static const char * const readonly[] =/* List of read-only attributes */ { "date-time-at-completed", "date-time-at-creation", "date-time-at-processing", "job-detailed-status-messages", "job-document-access-errors", "job-id", "job-impressions-completed", "job-k-octets-completed", "job-media-sheets-completed", "job-pages-completed", "job-printer-up-time", "job-printer-uri", "job-state", "job-state-message", "job-state-reasons", "job-uri", "number-of-documents", "number-of-intervening-jobs", "output-device-assigned", "time-at-completed", "time-at-creation", "time-at-processing" }; cupsdLogMessage(CUPSD_LOG_DEBUG2, "add_job(%p[%d], %p(%s), %p(%s/%s))", con, con->number, printer, printer->name, filetype, filetype ? filetype->super : "none", filetype ? filetype->type : "none"); /* * Check remote printing to non-shared printer... */ if (!printer->shared && _cups_strcasecmp(con->http->hostname, "localhost") && _cups_strcasecmp(con->http->hostname, ServerName)) { send_ipp_status(con, IPP_NOT_AUTHORIZED, _("The printer or class is not shared.")); return (NULL); } /* * Check policy... */ auth_info = ippFindAttribute(con->request, "auth-info", IPP_TAG_TEXT); if ((status = cupsdCheckPolicy(printer->op_policy_ptr, con, NULL)) != HTTP_OK) { send_http_error(con, status, printer); return (NULL); } else if (printer->num_auth_info_required == 1 && !strcmp(printer->auth_info_required[0], "negotiate") && !con->username[0]) { send_http_error(con, HTTP_UNAUTHORIZED, printer); return (NULL); } #ifdef HAVE_SSL else if (auth_info && !con->http->tls && !httpAddrLocalhost(con->http->hostaddr)) { /* * Require encryption of auth-info over non-local connections... */ send_http_error(con, HTTP_UPGRADE_REQUIRED, printer); return (NULL); } #endif /* HAVE_SSL */ /* * See if the printer is accepting jobs... */ if (!printer->accepting) { send_ipp_status(con, IPP_NOT_ACCEPTING, _("Destination \"%s\" is not accepting jobs."), printer->name); return (NULL); } /* * Validate job template attributes; for now just document-format, * copies, job-sheets, number-up, page-ranges, mandatory attributes, and * media... */ for (i = 0; i < (int)(sizeof(readonly) / sizeof(readonly[0])); i ++) { if ((attr = ippFindAttribute(con->request, readonly[i], IPP_TAG_ZERO)) != NULL) { ippDeleteAttribute(con->request, attr); if (StrictConformance) { send_ipp_status(con, IPP_BAD_REQUEST, _("The '%s' Job Status attribute cannot be supplied in a job creation request."), readonly[i]); return (NULL); } cupsdLogMessage(CUPSD_LOG_INFO, "Unexpected '%s' Job Status attribute in a job creation request.", readonly[i]); } } if (printer->pc) { for (mandatory = (char *)cupsArrayFirst(printer->pc->mandatory); mandatory; mandatory = (char *)cupsArrayNext(printer->pc->mandatory)) { if (!ippFindAttribute(con->request, mandatory, IPP_TAG_ZERO)) { /* * Missing a required attribute... */ send_ipp_status(con, IPP_CONFLICT, _("The \"%s\" attribute is required for print jobs."), mandatory); return (NULL); } } } if (filetype && printer->filetypes && !cupsArrayFind(printer->filetypes, filetype)) { char mimetype[MIME_MAX_SUPER + MIME_MAX_TYPE + 2]; /* MIME media type string */ snprintf(mimetype, sizeof(mimetype), "%s/%s", filetype->super, filetype->type); send_ipp_status(con, IPP_DOCUMENT_FORMAT, _("Unsupported format \"%s\"."), mimetype); ippAddString(con->response, IPP_TAG_UNSUPPORTED_GROUP, IPP_TAG_MIMETYPE, "document-format", NULL, mimetype); return (NULL); } if ((attr = ippFindAttribute(con->request, "copies", IPP_TAG_INTEGER)) != NULL) { if (attr->values[0].integer < 1 || attr->values[0].integer > MaxCopies) { send_ipp_status(con, IPP_ATTRIBUTES, _("Bad copies value %d."), attr->values[0].integer); ippAddInteger(con->response, IPP_TAG_UNSUPPORTED_GROUP, IPP_TAG_INTEGER, "copies", attr->values[0].integer); return (NULL); } } if ((attr = ippFindAttribute(con->request, "job-sheets", IPP_TAG_ZERO)) != NULL) { if (attr->value_tag != IPP_TAG_KEYWORD && attr->value_tag != IPP_TAG_NAME) { send_ipp_status(con, IPP_BAD_REQUEST, _("Bad job-sheets value type.")); return (NULL); } if (attr->num_values > 2) { send_ipp_status(con, IPP_BAD_REQUEST, _("Too many job-sheets values (%d > 2)."), attr->num_values); return (NULL); } for (i = 0; i < attr->num_values; i ++) if (strcmp(attr->values[i].string.text, "none") && !cupsdFindBanner(attr->values[i].string.text)) { send_ipp_status(con, IPP_BAD_REQUEST, _("Bad job-sheets value \"%s\"."), attr->values[i].string.text); return (NULL); } } if ((attr = ippFindAttribute(con->request, "number-up", IPP_TAG_INTEGER)) != NULL) { if (attr->values[0].integer != 1 && attr->values[0].integer != 2 && attr->values[0].integer != 4 && attr->values[0].integer != 6 && attr->values[0].integer != 9 && attr->values[0].integer != 16) { send_ipp_status(con, IPP_ATTRIBUTES, _("Bad number-up value %d."), attr->values[0].integer); ippAddInteger(con->response, IPP_TAG_UNSUPPORTED_GROUP, IPP_TAG_INTEGER, "number-up", attr->values[0].integer); return (NULL); } } if ((attr = ippFindAttribute(con->request, "page-ranges", IPP_TAG_RANGE)) != NULL) { for (i = 0, lowerpagerange = 1; i < attr->num_values; i ++) { if (attr->values[i].range.lower < lowerpagerange || attr->values[i].range.lower > attr->values[i].range.upper) { send_ipp_status(con, IPP_BAD_REQUEST, _("Bad page-ranges values %d-%d."), attr->values[i].range.lower, attr->values[i].range.upper); return (NULL); } lowerpagerange = attr->values[i].range.upper + 1; } } /* * Do media selection as needed... */ if (!ippFindAttribute(con->request, "PageRegion", IPP_TAG_ZERO) && !ippFindAttribute(con->request, "PageSize", IPP_TAG_ZERO) && _ppdCacheGetPageSize(printer->pc, con->request, NULL, &exact)) { if (!exact && (media_col = ippFindAttribute(con->request, "media-col", IPP_TAG_BEGIN_COLLECTION)) != NULL) { send_ipp_status(con, IPP_OK_SUBST, _("Unsupported margins.")); unsup_col = ippNew(); if ((media_margin = ippFindAttribute(media_col->values[0].collection, "media-bottom-margin", IPP_TAG_INTEGER)) != NULL) ippAddInteger(unsup_col, IPP_TAG_ZERO, IPP_TAG_INTEGER, "media-bottom-margin", media_margin->values[0].integer); if ((media_margin = ippFindAttribute(media_col->values[0].collection, "media-left-margin", IPP_TAG_INTEGER)) != NULL) ippAddInteger(unsup_col, IPP_TAG_ZERO, IPP_TAG_INTEGER, "media-left-margin", media_margin->values[0].integer); if ((media_margin = ippFindAttribute(media_col->values[0].collection, "media-right-margin", IPP_TAG_INTEGER)) != NULL) ippAddInteger(unsup_col, IPP_TAG_ZERO, IPP_TAG_INTEGER, "media-right-margin", media_margin->values[0].integer); if ((media_margin = ippFindAttribute(media_col->values[0].collection, "media-top-margin", IPP_TAG_INTEGER)) != NULL) ippAddInteger(unsup_col, IPP_TAG_ZERO, IPP_TAG_INTEGER, "media-top-margin", media_margin->values[0].integer); ippAddCollection(con->response, IPP_TAG_UNSUPPORTED_GROUP, "media-col", unsup_col); ippDelete(unsup_col); } } /* * Make sure we aren't over our limit... */ if (MaxJobs && cupsArrayCount(Jobs) >= MaxJobs) cupsdCleanJobs(); if (MaxJobs && cupsArrayCount(Jobs) >= MaxJobs) { send_ipp_status(con, IPP_NOT_POSSIBLE, _("Too many active jobs.")); return (NULL); } if ((i = check_quotas(con, printer)) < 0) { send_ipp_status(con, IPP_NOT_POSSIBLE, _("Quota limit reached.")); return (NULL); } else if (i == 0) { send_ipp_status(con, IPP_NOT_AUTHORIZED, _("Not allowed to print.")); return (NULL); } /* * Create the job and set things up... */ if ((attr = ippFindAttribute(con->request, "job-priority", IPP_TAG_INTEGER)) != NULL) priority = attr->values[0].integer; else { if ((val = cupsGetOption("job-priority", printer->num_options, printer->options)) != NULL) priority = atoi(val); else priority = 50; ippAddInteger(con->request, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-priority", priority); } if ((attr = ippFindAttribute(con->request, "job-name", IPP_TAG_ZERO)) == NULL) ippAddString(con->request, IPP_TAG_JOB, IPP_TAG_NAME, "job-name", NULL, "Untitled"); else if ((attr->value_tag != IPP_TAG_NAME && attr->value_tag != IPP_TAG_NAMELANG) || attr->num_values != 1) { send_ipp_status(con, IPP_ATTRIBUTES, _("Bad job-name value: Wrong type or count.")); if ((attr = ippCopyAttribute(con->response, attr, 0)) != NULL) attr->group_tag = IPP_TAG_UNSUPPORTED_GROUP; return (NULL); } else if (!ippValidateAttribute(attr)) { send_ipp_status(con, IPP_ATTRIBUTES, _("Bad job-name value: %s"), cupsLastErrorString()); if ((attr = ippCopyAttribute(con->response, attr, 0)) != NULL) attr->group_tag = IPP_TAG_UNSUPPORTED_GROUP; return (NULL); } if ((job = cupsdAddJob(priority, printer->name)) == NULL) { send_ipp_status(con, IPP_INTERNAL_ERROR, _("Unable to add job for destination \"%s\"."), printer->name); return (NULL); } job->dtype = printer->type & (CUPS_PRINTER_CLASS | CUPS_PRINTER_REMOTE); job->attrs = con->request; job->dirty = 1; con->request = ippNewRequest(job->attrs->request.op.operation_id); cupsdMarkDirty(CUPSD_DIRTY_JOBS); add_job_uuid(job); apply_printer_defaults(printer, job); attr = ippFindAttribute(job->attrs, "requesting-user-name", IPP_TAG_NAME); if (con->username[0]) { cupsdSetString(&job->username, con->username); if (attr) ippSetString(job->attrs, &attr, 0, con->username); } else if (attr) { cupsdLogMessage(CUPSD_LOG_DEBUG, "add_job: requesting-user-name=\"%s\"", attr->values[0].string.text); cupsdSetString(&job->username, attr->values[0].string.text); } else cupsdSetString(&job->username, "anonymous"); if (!attr) ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_NAME, "job-originating-user-name", NULL, job->username); else { ippSetGroupTag(job->attrs, &attr, IPP_TAG_JOB); ippSetName(job->attrs, &attr, "job-originating-user-name"); } if (con->username[0] || auth_info) { save_auth_info(con, job, auth_info); /* * Remove the auth-info attribute from the attribute data... */ if (auth_info) ippDeleteAttribute(job->attrs, auth_info); } if ((attr = ippFindAttribute(con->request, "job-name", IPP_TAG_NAME)) != NULL) cupsdSetString(&(job->name), attr->values[0].string.text); if ((attr = ippFindAttribute(job->attrs, "job-originating-host-name", IPP_TAG_ZERO)) != NULL) { /* * Request contains a job-originating-host-name attribute; validate it... */ if (attr->value_tag != IPP_TAG_NAME || attr->num_values != 1 || strcmp(con->http->hostname, "localhost")) { /* * Can't override the value if we aren't connected via localhost. * Also, we can only have 1 value and it must be a name value. */ ippDeleteAttribute(job->attrs, attr); ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_NAME, "job-originating-host-name", NULL, con->http->hostname); } else ippSetGroupTag(job->attrs, &attr, IPP_TAG_JOB); } else { /* * No job-originating-host-name attribute, so use the hostname from * the connection... */ ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_NAME, "job-originating-host-name", NULL, con->http->hostname); } ippAddOutOfBand(job->attrs, IPP_TAG_JOB, IPP_TAG_NOVALUE, "date-time-at-completed"); ippAddDate(job->attrs, IPP_TAG_JOB, "date-time-at-creation", ippTimeToDate(time(NULL))); ippAddOutOfBand(job->attrs, IPP_TAG_JOB, IPP_TAG_NOVALUE, "date-time-at-processing"); ippAddOutOfBand(job->attrs, IPP_TAG_JOB, IPP_TAG_NOVALUE, "time-at-completed"); ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_INTEGER, "time-at-creation", time(NULL)); ippAddOutOfBand(job->attrs, IPP_TAG_JOB, IPP_TAG_NOVALUE, "time-at-processing"); /* * Add remaining job attributes... */ ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-id", job->id); job->state = ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_ENUM, "job-state", IPP_JOB_STOPPED); job->state_value = (ipp_jstate_t)job->state->values[0].integer; job->reasons = ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_KEYWORD, "job-state-reasons", NULL, "job-incoming"); job->impressions = ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-impressions-completed", 0); job->sheets = ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-media-sheets-completed", 0); ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_URI, "job-printer-uri", NULL, printer->uri); if ((attr = ippFindAttribute(job->attrs, "job-k-octets", IPP_TAG_INTEGER)) != NULL) attr->values[0].integer = 0; else ippAddInteger(job->attrs, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-k-octets", 0); if ((attr = ippFindAttribute(job->attrs, "job-hold-until", IPP_TAG_KEYWORD)) == NULL) attr = ippFindAttribute(job->attrs, "job-hold-until", IPP_TAG_NAME); if (!attr) { if ((val = cupsGetOption("job-hold-until", printer->num_options, printer->options)) == NULL) val = "no-hold"; attr = ippAddString(job->attrs, IPP_TAG_JOB, IPP_TAG_KEYWORD, "job-hold-until", NULL, val); } if (printer->holding_new_jobs) { /* * Hold all new jobs on this printer... */ if (attr && strcmp(attr->values[0].string.text, "no-hold")) cupsdSetJobHoldUntil(job, ippGetString(attr, 0, NULL), 0); else cupsdSetJobHoldUntil(job, "indefinite", 0); job->state->values[0].integer = IPP_JOB_HELD; job->state_value = IPP_JOB_HELD; ippSetString(job->attrs, &job->reasons, 0, "job-held-on-create"); } else if (attr && strcmp(attr->values[0].string.text, "no-hold")) { /* * Hold job until specified time... */ cupsdSetJobHoldUntil(job, attr->values[0].string.text, 0); job->state->values[0].integer = IPP_JOB_HELD; job->state_value = IPP_JOB_HELD; ippSetString(job->attrs, &job->reasons, 0, "job-hold-until-specified"); } else if (job->attrs->request.op.operation_id == IPP_CREATE_JOB) { job->hold_until = time(NULL) + MultipleOperationTimeout; job->state->values[0].integer = IPP_JOB_HELD; job->state_value = IPP_JOB_HELD; } else { job->state->values[0].integer = IPP_JOB_PENDING; job->state_value = IPP_JOB_PENDING; ippSetString(job->attrs, &job->reasons, 0, "none"); } if (!(printer->type & CUPS_PRINTER_REMOTE) || Classification) { /* * Add job sheets options... */ if ((attr = ippFindAttribute(job->attrs, "job-sheets", IPP_TAG_ZERO)) == NULL) { cupsdLogMessage(CUPSD_LOG_DEBUG, "Adding default job-sheets values \"%s,%s\"...", printer->job_sheets[0], printer->job_sheets[1]); attr = ippAddStrings(job->attrs, IPP_TAG_JOB, IPP_TAG_NAME, "job-sheets", 2, NULL, NULL); ippSetString(job->attrs, &attr, 0, printer->job_sheets[0]); ippSetString(job->attrs, &attr, 1, printer->job_sheets[1]); } job->job_sheets = attr; /* * Enforce classification level if set... */ if (Classification) { cupsdLogMessage(CUPSD_LOG_INFO, "Classification=\"%s\", ClassifyOverride=%d", Classification ? Classification : "(null)", ClassifyOverride); if (ClassifyOverride) { if (!strcmp(attr->values[0].string.text, "none") && (attr->num_values == 1 || !strcmp(attr->values[1].string.text, "none"))) { /* * Force the leading banner to have the classification on it... */ ippSetString(job->attrs, &attr, 0, Classification); cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION FORCED " "job-sheets=\"%s,none\", " "job-originating-user-name=\"%s\"", Classification, job->username); } else if (attr->num_values == 2 && strcmp(attr->values[0].string.text, attr->values[1].string.text) && strcmp(attr->values[0].string.text, "none") && strcmp(attr->values[1].string.text, "none")) { /* * Can't put two different security markings on the same document! */ ippSetString(job->attrs, &attr, 1, attr->values[0].string.text); cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION FORCED " "job-sheets=\"%s,%s\", " "job-originating-user-name=\"%s\"", attr->values[0].string.text, attr->values[1].string.text, job->username); } else if (strcmp(attr->values[0].string.text, Classification) && strcmp(attr->values[0].string.text, "none") && (attr->num_values == 1 || (strcmp(attr->values[1].string.text, Classification) && strcmp(attr->values[1].string.text, "none")))) { if (attr->num_values == 1) cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION OVERRIDDEN " "job-sheets=\"%s\", " "job-originating-user-name=\"%s\"", attr->values[0].string.text, job->username); else cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION OVERRIDDEN " "job-sheets=\"%s,%s\",fffff " "job-originating-user-name=\"%s\"", attr->values[0].string.text, attr->values[1].string.text, job->username); } } else if (strcmp(attr->values[0].string.text, Classification) && (attr->num_values == 1 || strcmp(attr->values[1].string.text, Classification))) { /* * Force the banner to have the classification on it... */ if (attr->num_values > 1 && !strcmp(attr->values[0].string.text, attr->values[1].string.text)) { ippSetString(job->attrs, &attr, 0, Classification); ippSetString(job->attrs, &attr, 1, Classification); } else { if (attr->num_values == 1 || strcmp(attr->values[0].string.text, "none")) ippSetString(job->attrs, &attr, 0, Classification); if (attr->num_values > 1 && strcmp(attr->values[1].string.text, "none")) ippSetString(job->attrs, &attr, 1, Classification); } if (attr->num_values > 1) cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION FORCED " "job-sheets=\"%s,%s\", " "job-originating-user-name=\"%s\"", attr->values[0].string.text, attr->values[1].string.text, job->username); else cupsdLogJob(job, CUPSD_LOG_NOTICE, "CLASSIFICATION FORCED " "job-sheets=\"%s\", " "job-originating-user-name=\"%s\"", Classification, job->username); } } /* * See if we need to add the starting sheet... */ if (!(printer->type & CUPS_PRINTER_REMOTE)) { cupsdLogJob(job, CUPSD_LOG_INFO, "Adding start banner page \"%s\".", attr->values[0].string.text); if ((kbytes = copy_banner(con, job, attr->values[0].string.text)) < 0) { cupsdSetJobState(job, IPP_JOB_ABORTED, CUPSD_JOB_PURGE, "Aborting job because the start banner could not be " "copied."); return (NULL); } cupsdUpdateQuota(printer, job->username, 0, kbytes); } } else if ((attr = ippFindAttribute(job->attrs, "job-sheets", IPP_TAG_ZERO)) != NULL) job->job_sheets = attr; /* * Fill in the response info... */ httpAssembleURIf(HTTP_URI_CODING_ALL, job_uri, sizeof(job_uri), "ipp", NULL, con->clientname, con->clientport, "/jobs/%d", job->id); ippAddString(con->response, IPP_TAG_JOB, IPP_TAG_URI, "job-uri", NULL, job_uri); ippAddInteger(con->response, IPP_TAG_JOB, IPP_TAG_INTEGER, "job-id", job->id); ippAddInteger(con->response, IPP_TAG_JOB, IPP_TAG_ENUM, "job-state", job->state_value); ippAddString(con->response, IPP_TAG_JOB, IPP_TAG_TEXT, "job-state-message", NULL, ""); ippAddString(con->response, IPP_TAG_JOB, IPP_TAG_KEYWORD, "job-state-reasons", NULL, job->reasons->values[0].string.text); con->response->request.status.status_code = IPP_OK; /* * Add any job subscriptions... */ add_job_subscriptions(con, job); /* * Set all but the first two attributes to the job attributes group... */ for (attr = job->attrs->attrs->next->next; attr; attr = attr->next) attr->group_tag = IPP_TAG_JOB; /* * Fire the "job created" event... */ cupsdAddEvent(CUPSD_EVENT_JOB_CREATED, printer, job, "Job created."); /* * Return the new job... */ return (job); }
CWE-20
182,552
3,817
143641121189248616134865204266509516024
null
null
null
linux
70feee0e1ef331b22cc51f383d532a0d043fbdcc
1
static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) { int i; int nr = pagevec_count(pvec); int delta_munlocked; struct pagevec pvec_putback; int pgrescued = 0; pagevec_init(&pvec_putback, 0); /* Phase 1: page isolation */ spin_lock_irq(zone_lru_lock(zone)); for (i = 0; i < nr; i++) { struct page *page = pvec->pages[i]; if (TestClearPageMlocked(page)) { /* * We already have pin from follow_page_mask() * so we can spare the get_page() here. */ if (__munlock_isolate_lru_page(page, false)) continue; else __munlock_isolation_failed(page); } /* * We won't be munlocking this page in the next phase * but we still need to release the follow_page_mask() * pin. We cannot do it under lru_lock however. If it's * the last pin, __page_cache_release() would deadlock. */ pagevec_add(&pvec_putback, pvec->pages[i]); pvec->pages[i] = NULL; } delta_munlocked = -nr + pagevec_count(&pvec_putback); __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); spin_unlock_irq(zone_lru_lock(zone)); /* Now we can release pins of pages that we are not munlocking */ pagevec_release(&pvec_putback); /* Phase 2: page munlock */ for (i = 0; i < nr; i++) { struct page *page = pvec->pages[i]; if (page) { lock_page(page); if (!__putback_lru_fast_prepare(page, &pvec_putback, &pgrescued)) { /* * Slow path. We don't want to lose the last * pin before unlock_page() */ get_page(page); /* for putback_lru_page() */ __munlock_isolated_page(page); unlock_page(page); put_page(page); /* from follow_page_mask() */ } } } /* * Phase 3: page putback for pages that qualified for the fast path * This will also call put_page() to return pin from follow_page_mask() */ if (pagevec_count(&pvec_putback)) __putback_lru_fast(&pvec_putback, pgrescued); }
CWE-20
182,574
3,837
115707399857902031495153251454101743675
null
null
null
linux
27463ad99f738ed93c7c8b3e2e5bc8c4853a2ff2
1
static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, struct net_device *ndev) { struct hns_nic_priv *priv = netdev_priv(ndev); int ret; assert(skb->queue_mapping < ndev->ae_handle->q_num); ret = hns_nic_net_xmit_hw(ndev, skb, &tx_ring_data(priv, skb->queue_mapping)); if (ret == NETDEV_TX_OK) { netif_trans_update(ndev); ndev->stats.tx_bytes += skb->len; ndev->stats.tx_packets++; } return (netdev_tx_t)ret; }
CWE-416
182,575
3,838
286205539332141525716764065595907992955
null
null
null
linux
27463ad99f738ed93c7c8b3e2e5bc8c4853a2ff2
1
int hns_nic_net_xmit_hw(struct net_device *ndev, struct sk_buff *skb, struct hns_nic_ring_data *ring_data) { struct hns_nic_priv *priv = netdev_priv(ndev); struct hnae_ring *ring = ring_data->ring; struct device *dev = ring_to_dev(ring); struct netdev_queue *dev_queue; struct skb_frag_struct *frag; int buf_num; int seg_num; dma_addr_t dma; int size, next_to_use; int i; switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { case -EBUSY: ring->stats.tx_busy++; goto out_net_tx_busy; case -ENOMEM: ring->stats.sw_err_cnt++; netdev_err(ndev, "no memory to xmit!\n"); goto out_err_tx_ok; default: break; } /* no. of segments (plus a header) */ seg_num = skb_shinfo(skb)->nr_frags + 1; next_to_use = ring->next_to_use; /* fill the first part */ size = skb_headlen(skb); dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) { netdev_err(ndev, "TX head DMA map failed\n"); ring->stats.sw_err_cnt++; goto out_err_tx_ok; } priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, buf_num, DESC_TYPE_SKB, ndev->mtu); /* fill the fragments */ for (i = 1; i < seg_num; i++) { frag = &skb_shinfo(skb)->frags[i - 1]; size = skb_frag_size(frag); dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); if (dma_mapping_error(dev, dma)) { netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); ring->stats.sw_err_cnt++; goto out_map_frag_fail; } priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, seg_num - 1 == i ? 1 : 0, buf_num, DESC_TYPE_PAGE, ndev->mtu); } /*complete translate all packets*/ dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); netdev_tx_sent_queue(dev_queue, skb->len); wmb(); /* commit all data before submit */ assert(skb->queue_mapping < priv->ae_handle->q_num); hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); ring->stats.tx_pkts++; ring->stats.tx_bytes += skb->len; return NETDEV_TX_OK; out_map_frag_fail: while (ring->next_to_use != next_to_use) { unfill_desc(ring); if (ring->next_to_use != next_to_use) dma_unmap_page(dev, ring->desc_cb[ring->next_to_use].dma, ring->desc_cb[ring->next_to_use].length, DMA_TO_DEVICE); else dma_unmap_single(dev, ring->desc_cb[next_to_use].dma, ring->desc_cb[next_to_use].length, DMA_TO_DEVICE); } out_err_tx_ok: dev_kfree_skb_any(skb); return NETDEV_TX_OK; out_net_tx_busy: netif_stop_subqueue(ndev, skb->queue_mapping); /* Herbert's original patch had: * smp_mb__after_netif_stop_queue(); * but since that doesn't exist yet, just open code it. */ smp_mb(); return NETDEV_TX_BUSY; }
CWE-416
182,576
3,839
111953708316717711602790747498334170483
null
null
null
linux
6ea8d958a2c95a1d514015d4e29ba21a8c0a1a91
1
static long madvise_willneed(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end) { struct file *file = vma->vm_file; #ifdef CONFIG_SWAP if (!file) { *prev = vma; force_swapin_readahead(vma, start, end); return 0; } if (shmem_mapping(file->f_mapping)) { *prev = vma; force_shm_swapin_readahead(vma, start, end, file->f_mapping); return 0; } #else if (!file) return -EBADF; #endif if (IS_DAX(file_inode(file))) { /* no bad return value, but ignore advice */ return 0; } *prev = vma; start = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; if (end > vma->vm_end) end = vma->vm_end; end = ((end - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; force_page_cache_readahead(file->f_mapping, file, start, end - start); return 0; }
CWE-835
182,581
3,843
171648586462786758367274877857695235123
null
null
null
linux
28f5a8a7c033cbf3e32277f4cc9c6afd74f05300
1
int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) { int status = 0, size_change; int inode_locked = 0; struct inode *inode = d_inode(dentry); struct super_block *sb = inode->i_sb; struct ocfs2_super *osb = OCFS2_SB(sb); struct buffer_head *bh = NULL; handle_t *handle = NULL; struct dquot *transfer_to[MAXQUOTAS] = { }; int qtype; int had_lock; struct ocfs2_lock_holder oh; trace_ocfs2_setattr(inode, dentry, (unsigned long long)OCFS2_I(inode)->ip_blkno, dentry->d_name.len, dentry->d_name.name, attr->ia_valid, attr->ia_mode, from_kuid(&init_user_ns, attr->ia_uid), from_kgid(&init_user_ns, attr->ia_gid)); /* ensuring we don't even attempt to truncate a symlink */ if (S_ISLNK(inode->i_mode)) attr->ia_valid &= ~ATTR_SIZE; #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ | ATTR_GID | ATTR_UID | ATTR_MODE) if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) return 0; status = setattr_prepare(dentry, attr); if (status) return status; if (is_quota_modification(inode, attr)) { status = dquot_initialize(inode); if (status) return status; } size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; if (size_change) { status = ocfs2_rw_lock(inode, 1); if (status < 0) { mlog_errno(status); goto bail; } } had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); if (had_lock < 0) { status = had_lock; goto bail_unlock_rw; } else if (had_lock) { /* * As far as we know, ocfs2_setattr() could only be the first * VFS entry point in the call chain of recursive cluster * locking issue. * * For instance: * chmod_common() * notify_change() * ocfs2_setattr() * posix_acl_chmod() * ocfs2_iop_get_acl() * * But, we're not 100% sure if it's always true, because the * ordering of the VFS entry points in the call chain is out * of our control. So, we'd better dump the stack here to * catch the other cases of recursive locking. */ mlog(ML_ERROR, "Another case of recursive locking:\n"); dump_stack(); } inode_locked = 1; if (size_change) { status = inode_newsize_ok(inode, attr->ia_size); if (status) goto bail_unlock; inode_dio_wait(inode); if (i_size_read(inode) >= attr->ia_size) { if (ocfs2_should_order_data(inode)) { status = ocfs2_begin_ordered_truncate(inode, attr->ia_size); if (status) goto bail_unlock; } status = ocfs2_truncate_file(inode, bh, attr->ia_size); } else status = ocfs2_extend_file(inode, bh, attr->ia_size); if (status < 0) { if (status != -ENOSPC) mlog_errno(status); status = -ENOSPC; goto bail_unlock; } } if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { /* * Gather pointers to quota structures so that allocation / * freeing of quota structures happens here and not inside * dquot_transfer() where we have problems with lock ordering */ if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); if (IS_ERR(transfer_to[USRQUOTA])) { status = PTR_ERR(transfer_to[USRQUOTA]); goto bail_unlock; } } if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) && OCFS2_HAS_RO_COMPAT_FEATURE(sb, OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); if (IS_ERR(transfer_to[GRPQUOTA])) { status = PTR_ERR(transfer_to[GRPQUOTA]); goto bail_unlock; } } handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 2 * ocfs2_quota_trans_credits(sb)); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } status = __dquot_transfer(inode, transfer_to); if (status < 0) goto bail_commit; } else { handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); if (IS_ERR(handle)) { status = PTR_ERR(handle); mlog_errno(status); goto bail_unlock; } } setattr_copy(inode, attr); mark_inode_dirty(inode); status = ocfs2_mark_inode_dirty(handle, inode, bh); if (status < 0) mlog_errno(status); bail_commit: ocfs2_commit_trans(osb, handle); bail_unlock: if (status && inode_locked) { ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); inode_locked = 0; } bail_unlock_rw: if (size_change) ocfs2_rw_unlock(inode, 1); bail: /* Release quota pointers in case we acquired them */ for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) dqput(transfer_to[qtype]); if (!status && attr->ia_valid & ATTR_MODE) { status = ocfs2_acl_chmod(inode, bh); if (status < 0) mlog_errno(status); } if (inode_locked) ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); brelse(bh); return status; }
182,582
3,844
12293169081478398493319593174566435526
null
null
null
linux
b9a41d21dceadf8104812626ef85dc56ee8a60ed
1
struct mapped_device *dm_get_from_kobject(struct kobject *kobj) { struct mapped_device *md; md = container_of(kobj, struct mapped_device, kobj_holder.kobj); if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) return NULL; dm_get(md); return md; }
CWE-362
182,583
3,845
232285841910144098387097167254511379381
null
null
null
linux
638164a2718f337ea224b747cf5977ef143166a4
1
void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) { __issue_discard_cmd(sbi, false); __drop_discard_cmd(sbi); __wait_discard_cmd(sbi, false); }
CWE-20
182,586
3,847
66587864384024676912151734865897947314
null
null
null
linux
dad48e73127ba10279ea33e6dbc8d3905c4d31c0
1
bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct extent_tree *et; struct extent_node *en; struct extent_info ei; if (!f2fs_may_extent_tree(inode)) { /* drop largest extent */ if (i_ext && i_ext->len) { i_ext->len = 0; return true; } return false; } et = __grab_extent_tree(inode); if (!i_ext || !i_ext->len) return false; get_extent_info(&ei, i_ext); write_lock(&et->lock); if (atomic_read(&et->node_cnt)) goto out; en = __init_extent_tree(sbi, et, &ei); if (en) { spin_lock(&sbi->extent_lock); list_add_tail(&en->list, &sbi->extent_list); spin_unlock(&sbi->extent_lock); } out: write_unlock(&et->lock); return false; }
CWE-119
182,588
3,849
144565331810619095709211959646833908030
null
null
null
cups
afa80cb2b457bf8d64f775bed307588610476c41
1
valid_host(cupsd_client_t *con) /* I - Client connection */ { cupsd_alias_t *a; /* Current alias */ cupsd_netif_t *netif; /* Current network interface */ const char *end; /* End character */ char *ptr; /* Pointer into host value */ /* * Copy the Host: header for later use... */ strlcpy(con->clientname, httpGetField(con->http, HTTP_FIELD_HOST), sizeof(con->clientname)); if ((ptr = strrchr(con->clientname, ':')) != NULL && !strchr(ptr, ']')) { *ptr++ = '\0'; con->clientport = atoi(ptr); } else con->clientport = con->serverport; /* * Then validate... */ if (httpAddrLocalhost(httpGetAddress(con->http))) { /* * Only allow "localhost" or the equivalent IPv4 or IPv6 numerical * addresses when accessing CUPS via the loopback interface... */ return (!_cups_strcasecmp(con->clientname, "localhost") || !_cups_strcasecmp(con->clientname, "localhost.") || #ifdef __linux !_cups_strcasecmp(con->clientname, "localhost.localdomain") || #endif /* __linux */ !strcmp(con->clientname, "127.0.0.1") || !strcmp(con->clientname, "[::1]")); } #if defined(HAVE_DNSSD) || defined(HAVE_AVAHI) /* * Check if the hostname is something.local (Bonjour); if so, allow it. */ if ((end = strrchr(con->clientname, '.')) != NULL && end > con->clientname && !end[1]) { /* * "." on end, work back to second-to-last "."... */ for (end --; end > con->clientname && *end != '.'; end --); } if (end && (!_cups_strcasecmp(end, ".local") || !_cups_strcasecmp(end, ".local."))) return (1); #endif /* HAVE_DNSSD || HAVE_AVAHI */ /* * Check if the hostname is an IP address... */ if (isdigit(con->clientname[0] & 255) || con->clientname[0] == '[') { /* * Possible IPv4/IPv6 address... */ http_addrlist_t *addrlist; /* List of addresses */ if ((addrlist = httpAddrGetList(con->clientname, AF_UNSPEC, NULL)) != NULL) { /* * Good IPv4/IPv6 address... */ httpAddrFreeList(addrlist); return (1); } } /* * Check for (alias) name matches... */ for (a = (cupsd_alias_t *)cupsArrayFirst(ServerAlias); a; a = (cupsd_alias_t *)cupsArrayNext(ServerAlias)) { /* * "ServerAlias *" allows all host values through... */ if (!strcmp(a->name, "*")) return (1); if (!_cups_strncasecmp(con->clientname, a->name, a->namelen)) { /* * Prefix matches; check the character at the end - it must be "." or nul. */ end = con->clientname + a->namelen; if (!*end || (*end == '.' && !end[1])) return (1); } } #if defined(HAVE_DNSSD) || defined(HAVE_AVAHI) for (a = (cupsd_alias_t *)cupsArrayFirst(DNSSDAlias); a; a = (cupsd_alias_t *)cupsArrayNext(DNSSDAlias)) { /* * "ServerAlias *" allows all host values through... */ if (!strcmp(a->name, "*")) return (1); if (!_cups_strncasecmp(con->clientname, a->name, a->namelen)) { /* * Prefix matches; check the character at the end - it must be "." or nul. */ end = con->clientname + a->namelen; if (!*end || (*end == '.' && !end[1])) return (1); } } #endif /* HAVE_DNSSD || HAVE_AVAHI */ /* * Check for interface hostname matches... */ for (netif = (cupsd_netif_t *)cupsArrayFirst(NetIFList); netif; netif = (cupsd_netif_t *)cupsArrayNext(NetIFList)) { if (!_cups_strncasecmp(con->clientname, netif->hostname, netif->hostlen)) { /* * Prefix matches; check the character at the end - it must be "." or nul. */ end = con->clientname + netif->hostlen; if (!*end || (*end == '.' && !end[1])) return (1); } } return (0); }
CWE-290
182,589
3,850
159854871526072811019529448510753380577
null
null
null
mbedtls
83c9f495ffe70c7dd280b41fdfd4881485a3bc28
1
static int ssl_parse_client_psk_identity( mbedtls_ssl_context *ssl, unsigned char **p, const unsigned char *end ) { int ret = 0; size_t n; if( ssl->conf->f_psk == NULL && ( ssl->conf->psk == NULL || ssl->conf->psk_identity == NULL || ssl->conf->psk_identity_len == 0 || ssl->conf->psk_len == 0 ) ) { MBEDTLS_SSL_DEBUG_MSG( 1, ( "got no pre-shared key" ) ); return( MBEDTLS_ERR_SSL_PRIVATE_KEY_REQUIRED ); } /* * Receive client pre-shared key identity name */ if( *p + 2 > end ) { MBEDTLS_SSL_DEBUG_MSG( 1, ( "bad client key exchange message" ) ); return( MBEDTLS_ERR_SSL_BAD_HS_CLIENT_KEY_EXCHANGE ); } n = ( (*p)[0] << 8 ) | (*p)[1]; *p += 2; if( n < 1 || n > 65535 || *p + n > end ) { MBEDTLS_SSL_DEBUG_MSG( 1, ( "bad client key exchange message" ) ); return( MBEDTLS_ERR_SSL_BAD_HS_CLIENT_KEY_EXCHANGE ); } if( ssl->conf->f_psk != NULL ) { if( ssl->conf->f_psk( ssl->conf->p_psk, ssl, *p, n ) != 0 ) ret = MBEDTLS_ERR_SSL_UNKNOWN_IDENTITY; } else { /* Identity is not a big secret since clients send it in the clear, * but treat it carefully anyway, just in case */ if( n != ssl->conf->psk_identity_len || mbedtls_ssl_safer_memcmp( ssl->conf->psk_identity, *p, n ) != 0 ) { ret = MBEDTLS_ERR_SSL_UNKNOWN_IDENTITY; } } if( ret == MBEDTLS_ERR_SSL_UNKNOWN_IDENTITY ) { MBEDTLS_SSL_DEBUG_BUF( 3, "Unknown PSK identity", *p, n ); mbedtls_ssl_send_alert_message( ssl, MBEDTLS_SSL_ALERT_LEVEL_FATAL, MBEDTLS_SSL_ALERT_MSG_UNKNOWN_PSK_IDENTITY ); return( MBEDTLS_ERR_SSL_UNKNOWN_IDENTITY ); } *p += n; return( 0 ); }
CWE-190
182,590
3,851
246504953524229642615603426534100028508
null
null
null
linux
8dca4a41f1ad65043a78c2338d9725f859c8d2c3
1
static int amd_gpio_remove(struct platform_device *pdev) { struct amd_gpio *gpio_dev; gpio_dev = platform_get_drvdata(pdev); gpiochip_remove(&gpio_dev->gc); pinctrl_unregister(gpio_dev->pctrl); return 0; }
CWE-415
182,591
3,852
100344955333259853901115304330828945141
null
null
null
linux
2638fd0f92d4397884fd991d8f4925cb3f081901
1
tcpmss_mangle_packet(struct sk_buff *skb, const struct xt_action_param *par, unsigned int family, unsigned int tcphoff, unsigned int minlen) { const struct xt_tcpmss_info *info = par->targinfo; struct tcphdr *tcph; int len, tcp_hdrlen; unsigned int i; __be16 oldval; u16 newmss; u8 *opt; /* This is a fragment, no TCP header is available */ if (par->fragoff != 0) return 0; if (!skb_make_writable(skb, skb->len)) return -1; len = skb->len - tcphoff; if (len < (int)sizeof(struct tcphdr)) return -1; tcph = (struct tcphdr *)(skb_network_header(skb) + tcphoff); tcp_hdrlen = tcph->doff * 4; if (len < tcp_hdrlen) return -1; if (info->mss == XT_TCPMSS_CLAMP_PMTU) { struct net *net = xt_net(par); unsigned int in_mtu = tcpmss_reverse_mtu(net, skb, family); unsigned int min_mtu = min(dst_mtu(skb_dst(skb)), in_mtu); if (min_mtu <= minlen) { net_err_ratelimited("unknown or invalid path-MTU (%u)\n", min_mtu); return -1; } newmss = min_mtu - minlen; } else newmss = info->mss; opt = (u_int8_t *)tcph; for (i = sizeof(struct tcphdr); i <= tcp_hdrlen - TCPOLEN_MSS; i += optlen(opt, i)) { if (opt[i] == TCPOPT_MSS && opt[i+1] == TCPOLEN_MSS) { u_int16_t oldmss; oldmss = (opt[i+2] << 8) | opt[i+3]; /* Never increase MSS, even when setting it, as * doing so results in problems for hosts that rely * on MSS being set correctly. */ if (oldmss <= newmss) return 0; opt[i+2] = (newmss & 0xff00) >> 8; opt[i+3] = newmss & 0x00ff; inet_proto_csum_replace2(&tcph->check, skb, htons(oldmss), htons(newmss), false); return 0; } } /* There is data after the header so the option can't be added * without moving it, and doing so may make the SYN packet * itself too large. Accept the packet unmodified instead. */ if (len > tcp_hdrlen) return 0; /* * MSS Option not found ?! add it.. */ if (skb_tailroom(skb) < TCPOLEN_MSS) { if (pskb_expand_head(skb, 0, TCPOLEN_MSS - skb_tailroom(skb), GFP_ATOMIC)) return -1; tcph = (struct tcphdr *)(skb_network_header(skb) + tcphoff); } skb_put(skb, TCPOLEN_MSS); /* * IPv4: RFC 1122 states "If an MSS option is not received at * connection setup, TCP MUST assume a default send MSS of 536". * IPv6: RFC 2460 states IPv6 has a minimum MTU of 1280 and a minimum * length IPv6 header of 60, ergo the default MSS value is 1220 * Since no MSS was provided, we must use the default values */ if (xt_family(par) == NFPROTO_IPV4) newmss = min(newmss, (u16)536); else newmss = min(newmss, (u16)1220); opt = (u_int8_t *)tcph + sizeof(struct tcphdr); memmove(opt + TCPOLEN_MSS, opt, len - sizeof(struct tcphdr)); inet_proto_csum_replace2(&tcph->check, skb, htons(len), htons(len + TCPOLEN_MSS), true); opt[0] = TCPOPT_MSS; opt[1] = TCPOLEN_MSS; opt[2] = (newmss & 0xff00) >> 8; opt[3] = newmss & 0x00ff; inet_proto_csum_replace4(&tcph->check, skb, 0, *((__be32 *)opt), false); oldval = ((__be16 *)tcph)[6]; tcph->doff += TCPOLEN_MSS/4; inet_proto_csum_replace2(&tcph->check, skb, oldval, ((__be16 *)tcph)[6], false); return TCPOLEN_MSS; }
CWE-416
182,598
3,858
250029302786329275390750203793296836064
null
null
null
linux
21b5944350052d2583e82dd59b19a9ba94a007f0
1
struct net *get_net_ns_by_id(struct net *net, int id) { struct net *peer; if (id < 0) return NULL; rcu_read_lock(); spin_lock_bh(&net->nsid_lock); peer = idr_find(&net->netns_ids, id); if (peer) get_net(peer); spin_unlock_bh(&net->nsid_lock); rcu_read_unlock(); return peer; }
CWE-416
182,599
3,859
126228411105494440906927692838999625577
null
null
null
linux
1e3921471354244f70fe268586ff94a97a6dd4df
1
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep) { int vm_shared = dst_vma->vm_flags & VM_SHARED; struct hstate *h = hstate_vma(dst_vma); pte_t _dst_pte; spinlock_t *ptl; int ret; struct page *page; if (!*pagep) { ret = -ENOMEM; page = alloc_huge_page(dst_vma, dst_addr, 0); if (IS_ERR(page)) goto out; ret = copy_huge_page_from_user(page, (const void __user *) src_addr, pages_per_huge_page(h), false); /* fallback to copy_from_user outside mmap_sem */ if (unlikely(ret)) { ret = -EFAULT; *pagep = page; /* don't free the page */ goto out; } } else { page = *pagep; *pagep = NULL; } /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); set_page_huge_active(page); /* * If shared, add to page cache */ if (vm_shared) { struct address_space *mapping = dst_vma->vm_file->f_mapping; pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); ret = huge_add_to_page_cache(page, mapping, idx); if (ret) goto out_release_nounlock; } ptl = huge_pte_lockptr(h, dst_mm, dst_pte); spin_lock(ptl); ret = -EEXIST; if (!huge_pte_none(huge_ptep_get(dst_pte))) goto out_release_unlock; if (vm_shared) { page_dup_rmap(page, true); } else { ClearPagePrivate(page); hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); } _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); if (dst_vma->vm_flags & VM_WRITE) _dst_pte = huge_pte_mkdirty(_dst_pte); _dst_pte = pte_mkyoung(_dst_pte); set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, dst_vma->vm_flags & VM_WRITE); hugetlb_count_add(pages_per_huge_page(h), dst_mm); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); spin_unlock(ptl); if (vm_shared) unlock_page(page); ret = 0; out: return ret; out_release_unlock: spin_unlock(ptl); if (vm_shared) unlock_page(page); out_release_nounlock: put_page(page); goto out; }
CWE-119
182,600
3,860
285571524825774592932371504416707749107
null
null
null
linux
5af10dfd0afc559bb4b0f7e3e8227a1578333995
1
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte, struct vm_area_struct *dst_vma, unsigned long dst_addr, unsigned long src_addr, struct page **pagep) { int vm_shared = dst_vma->vm_flags & VM_SHARED; struct hstate *h = hstate_vma(dst_vma); pte_t _dst_pte; spinlock_t *ptl; int ret; struct page *page; if (!*pagep) { ret = -ENOMEM; page = alloc_huge_page(dst_vma, dst_addr, 0); if (IS_ERR(page)) goto out; ret = copy_huge_page_from_user(page, (const void __user *) src_addr, pages_per_huge_page(h), false); /* fallback to copy_from_user outside mmap_sem */ if (unlikely(ret)) { ret = -EFAULT; *pagep = page; /* don't free the page */ goto out; } } else { page = *pagep; *pagep = NULL; } /* * The memory barrier inside __SetPageUptodate makes sure that * preceding stores to the page contents become visible before * the set_pte_at() write. */ __SetPageUptodate(page); set_page_huge_active(page); /* * If shared, add to page cache */ if (vm_shared) { struct address_space *mapping = dst_vma->vm_file->f_mapping; pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); ret = huge_add_to_page_cache(page, mapping, idx); if (ret) goto out_release_nounlock; } ptl = huge_pte_lockptr(h, dst_mm, dst_pte); spin_lock(ptl); ret = -EEXIST; if (!huge_pte_none(huge_ptep_get(dst_pte))) goto out_release_unlock; if (vm_shared) { page_dup_rmap(page, true); } else { ClearPagePrivate(page); hugepage_add_new_anon_rmap(page, dst_vma, dst_addr); } _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE); if (dst_vma->vm_flags & VM_WRITE) _dst_pte = huge_pte_mkdirty(_dst_pte); _dst_pte = pte_mkyoung(_dst_pte); set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte, dst_vma->vm_flags & VM_WRITE); hugetlb_count_add(pages_per_huge_page(h), dst_mm); /* No need to invalidate - it was non-present before */ update_mmu_cache(dst_vma, dst_addr, dst_pte); spin_unlock(ptl); if (vm_shared) unlock_page(page); ret = 0; out: return ret; out_release_unlock: spin_unlock(ptl); out_release_nounlock: if (vm_shared) unlock_page(page); put_page(page); goto out; }
182,601
3,861
78099884844578587350373764756744450922
null
null
null
knc
f237f3e09ecbaf59c897f5046538a7b1a3fa40c1
1
read_packet(int fd, gss_buffer_t buf, int timeout, int first) { int ret; static uint32_t len = 0; static char len_buf[4]; static int len_buf_pos = 0; static char * tmpbuf = 0; static int tmpbuf_pos = 0; if (first) { len_buf_pos = 0; return -2; } if (len_buf_pos < 4) { ret = timed_read(fd, &len_buf[len_buf_pos], 4 - len_buf_pos, timeout); if (ret == -1) { if (errno == EINTR || errno == EAGAIN) return -2; LOG(LOG_ERR, ("%s", strerror(errno))); return -1; } if (ret == 0) { /* EOF */ /* Failure to read ANY length just means we're done */ if (len_buf_pos == 0) return 0; /* * Otherwise, we got EOF mid-length, and that's * a protocol error. */ LOG(LOG_INFO, ("EOF reading packet len")); return -1; } len_buf_pos += ret; } /* Not done reading the length? */ if (len_buf_pos != 4) return -2; /* We have the complete length */ len = ntohl(*(uint32_t *)len_buf); /* * We make sure recvd length is reasonable, allowing for some * slop in enc overhead, beyond the actual maximum number of * bytes of decrypted payload. */ if (len > GSTD_MAXPACKETCONTENTS + 512) { LOG(LOG_ERR, ("ridiculous length, %ld", len)); return -1; } if (!tmpbuf) { if ((tmpbuf = malloc(len)) == NULL) { LOG(LOG_CRIT, ("malloc failure, %ld bytes", len)); return -1; } } ret = timed_read(fd, tmpbuf + tmpbuf_pos, len - tmpbuf_pos, timeout); if (ret == -1) { if (errno == EINTR || errno == EAGAIN) return -2; LOG(LOG_ERR, ("%s", strerror(errno))); return -1; } if (ret == 0) { LOG(LOG_ERR, ("EOF while reading packet (len=%d)", len)); return -1; } tmpbuf_pos += ret; if (tmpbuf_pos == len) { buf->length = len; buf->value = tmpbuf; len = len_buf_pos = tmpbuf_pos = 0; tmpbuf = NULL; LOG(LOG_DEBUG, ("read packet of length %d", buf->length)); return 1; } return -2; }
CWE-400
182,605
3,865
224824590746883093605122222894656215541
null
null
null
util-linux
dffab154d29a288aa171ff50263ecc8f2e14a891
1
create_watching_parent (void) { pid_t child; sigset_t ourset; struct sigaction oldact[3]; int status = 0; int retval; retval = pam_open_session (pamh, 0); if (is_pam_failure(retval)) { cleanup_pam (retval); errx (EXIT_FAILURE, _("cannot open session: %s"), pam_strerror (pamh, retval)); } else _pam_session_opened = 1; memset(oldact, 0, sizeof(oldact)); child = fork (); if (child == (pid_t) -1) { cleanup_pam (PAM_ABORT); err (EXIT_FAILURE, _("cannot create child process")); } /* the child proceeds to run the shell */ if (child == 0) return; /* In the parent watch the child. */ /* su without pam support does not have a helper that keeps sitting on any directory so let's go to /. */ if (chdir ("/") != 0) warn (_("cannot change directory to %s"), "/"); sigfillset (&ourset); if (sigprocmask (SIG_BLOCK, &ourset, NULL)) { warn (_("cannot block signals")); caught_signal = true; } if (!caught_signal) { struct sigaction action; action.sa_handler = su_catch_sig; sigemptyset (&action.sa_mask); action.sa_flags = 0; sigemptyset (&ourset); if (!same_session) { if (sigaddset(&ourset, SIGINT) || sigaddset(&ourset, SIGQUIT)) { warn (_("cannot set signal handler")); caught_signal = true; } } if (!caught_signal && (sigaddset(&ourset, SIGTERM) || sigaddset(&ourset, SIGALRM) || sigaction(SIGTERM, &action, &oldact[0]) || sigprocmask(SIG_UNBLOCK, &ourset, NULL))) { warn (_("cannot set signal handler")); caught_signal = true; } if (!caught_signal && !same_session && (sigaction(SIGINT, &action, &oldact[1]) || sigaction(SIGQUIT, &action, &oldact[2]))) { warn (_("cannot set signal handler")); caught_signal = true; } } if (!caught_signal) { pid_t pid; for (;;) { pid = waitpid (child, &status, WUNTRACED); if (pid != (pid_t)-1 && WIFSTOPPED (status)) { kill (getpid (), SIGSTOP); /* once we get here, we must have resumed */ kill (pid, SIGCONT); } else break; } if (pid != (pid_t)-1) { if (WIFSIGNALED (status)) { fprintf (stderr, "%s%s\n", strsignal (WTERMSIG (status)), WCOREDUMP (status) ? _(" (core dumped)") : ""); status = WTERMSIG (status) + 128; } else status = WEXITSTATUS (status); } else if (caught_signal) status = caught_signal + 128; else status = 1; } else status = 1; if (caught_signal) { fprintf (stderr, _("\nSession terminated, killing shell...")); kill (child, SIGTERM); } cleanup_pam (PAM_SUCCESS); if (caught_signal) { sleep (2); kill (child, SIGKILL); fprintf (stderr, _(" ...killed.\n")); /* Let's terminate itself with the received signal. * * It seems that shells use WIFSIGNALED() rather than our exit status * value to detect situations when is necessary to cleanup (reset) * terminal settings (kzak -- Jun 2013). */ switch (caught_signal) { case SIGTERM: sigaction(SIGTERM, &oldact[0], NULL); break; case SIGINT: sigaction(SIGINT, &oldact[1], NULL); break; case SIGQUIT: sigaction(SIGQUIT, &oldact[2], NULL); break; default: /* just in case that signal stuff initialization failed and * caught_signal = true */ caught_signal = SIGKILL; break; } kill(getpid(), caught_signal); } exit (status); }
CWE-362
182,607
3,866
132373565874554259225056987782473275042
null
null
null
pacemaker
5d71e65049
1
crm_client_new(qb_ipcs_connection_t * c, uid_t uid_client, gid_t gid_client) { static uid_t uid_server = 0; static gid_t gid_cluster = 0; crm_client_t *client = NULL; CRM_LOG_ASSERT(c); if (c == NULL) { return NULL; } if (gid_cluster == 0) { uid_server = getuid(); if(crm_user_lookup(CRM_DAEMON_USER, NULL, &gid_cluster) < 0) { static bool have_error = FALSE; if(have_error == FALSE) { crm_warn("Could not find group for user %s", CRM_DAEMON_USER); have_error = TRUE; } } } if(gid_cluster != 0 && gid_client != 0) { uid_t best_uid = -1; /* Passing -1 to chown(2) means don't change */ if(uid_client == 0 || uid_server == 0) { /* Someone is priveliged, but the other may not be */ best_uid = QB_MAX(uid_client, uid_server); crm_trace("Allowing user %u to clean up after disconnect", best_uid); } crm_trace("Giving access to group %u", gid_cluster); qb_ipcs_connection_auth_set(c, best_uid, gid_cluster, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP); } crm_client_init(); /* TODO: Do our own auth checking, return NULL if unauthorized */ client = calloc(1, sizeof(crm_client_t)); client->ipcs = c; client->kind = CRM_CLIENT_IPC; client->pid = crm_ipcs_client_pid(c); client->id = crm_generate_uuid(); crm_debug("Connecting %p for uid=%d gid=%d pid=%u id=%s", c, uid_client, gid_client, client->pid, client->id); #if ENABLE_ACL client->user = uid2username(uid_client); #endif g_hash_table_insert(client_connections, c, client); return client; }
CWE-285
182,620
3,877
332194409869094663485828599488814314360
null
null
null
libtiff
391e77fcd217e78b2c51342ac3ddb7100ecacdd2
1
PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s) { static const char module[] = "PixarLogDecode"; TIFFDirectory *td = &tif->tif_dir; PixarLogState* sp = DecoderState(tif); tmsize_t i; tmsize_t nsamples; int llen; uint16 *up; switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: nsamples = occ / sizeof(float); /* XXX float == 32 bits */ break; case PIXARLOGDATAFMT_16BIT: case PIXARLOGDATAFMT_12BITPICIO: case PIXARLOGDATAFMT_11BITLOG: nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */ break; case PIXARLOGDATAFMT_8BIT: case PIXARLOGDATAFMT_8BITABGR: nsamples = occ; break; default: TIFFErrorExt(tif->tif_clientdata, module, "%d bit input not supported in PixarLog", td->td_bitspersample); return 0; } llen = sp->stride * td->td_imagewidth; (void) s; assert(sp != NULL); sp->stream.next_out = (unsigned char *) sp->tbuf; assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised, we need to simplify this code to reflect a ZLib that is likely updated to deal with 8byte memory sizes, though this code will respond appropriately even before we simplify it */ sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16)); if (sp->stream.avail_out != nsamples * sizeof(uint16)) { TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size"); return (0); } do { int state = inflate(&sp->stream, Z_PARTIAL_FLUSH); if (state == Z_STREAM_END) { break; /* XXX */ } if (state == Z_DATA_ERROR) { TIFFErrorExt(tif->tif_clientdata, module, "Decoding error at scanline %lu, %s", (unsigned long) tif->tif_row, sp->stream.msg ? sp->stream.msg : "(null)"); if (inflateSync(&sp->stream) != Z_OK) return (0); continue; } if (state != Z_OK) { TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s", sp->stream.msg ? sp->stream.msg : "(null)"); return (0); } } while (sp->stream.avail_out > 0); /* hopefully, we got all the bytes we needed */ if (sp->stream.avail_out != 0) { TIFFErrorExt(tif->tif_clientdata, module, "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)", (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out); return (0); } up = sp->tbuf; /* Swap bytes in the data if from a different endian machine. */ if (tif->tif_flags & TIFF_SWAB) TIFFSwabArrayOfShort(up, nsamples); /* * if llen is not an exact multiple of nsamples, the decode operation * may overflow the output buffer, so truncate it enough to prevent * that but still salvage as much data as possible. */ if (nsamples % llen) { TIFFWarningExt(tif->tif_clientdata, module, "stride %lu is not a multiple of sample count, " "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples); nsamples -= nsamples % llen; } for (i = 0; i < nsamples; i += llen, up += llen) { switch (sp->user_datafmt) { case PIXARLOGDATAFMT_FLOAT: horizontalAccumulateF(up, llen, sp->stride, (float *)op, sp->ToLinearF); op += llen * sizeof(float); break; case PIXARLOGDATAFMT_16BIT: horizontalAccumulate16(up, llen, sp->stride, (uint16 *)op, sp->ToLinear16); op += llen * sizeof(uint16); break; case PIXARLOGDATAFMT_12BITPICIO: horizontalAccumulate12(up, llen, sp->stride, (int16 *)op, sp->ToLinearF); op += llen * sizeof(int16); break; case PIXARLOGDATAFMT_11BITLOG: horizontalAccumulate11(up, llen, sp->stride, (uint16 *)op); op += llen * sizeof(uint16); break; case PIXARLOGDATAFMT_8BIT: horizontalAccumulate8(up, llen, sp->stride, (unsigned char *)op, sp->ToLinear8); op += llen * sizeof(unsigned char); break; case PIXARLOGDATAFMT_8BITABGR: horizontalAccumulate8abgr(up, llen, sp->stride, (unsigned char *)op, sp->ToLinear8); op += llen * sizeof(unsigned char); break; default: TIFFErrorExt(tif->tif_clientdata, module, "Unsupported bits/sample: %d", td->td_bitspersample); return (0); } } return (1); }
CWE-787
182,621
3,878
310103018809032756112426495119322998179
null
null
null
linux
0048b4837affd153897ed1222283492070027aa9
1
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) { struct request *rq = tags->rqs[tag]; /* mq_ctx of flush rq is always cloned from the corresponding req */ struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx); if (!is_flush_request(rq, fq, tag)) return rq; return fq->flush_rq; }
CWE-362
182,629
3,885
304211763979747534563430230664386258527
null
null
null
libtiff
3c5eb8b1be544e41d2c336191bc4936300ad7543
1
_TIFFmalloc(tmsize_t s) { return (malloc((size_t) s)); }
CWE-369
182,631
3,887
51150050486560422023982246681050022017
null
null
null
libtiff
3c5eb8b1be544e41d2c336191bc4936300ad7543
1
_TIFFmalloc(tsize_t s) { return (malloc((size_t) s)); }
CWE-369
182,632
3,888
163740521083677580453583225608417541754
null
null
null
libmspack
2f084136cfe0d05e5bf5703f3e83c6d955234b4d
1
static int chmd_read_headers(struct mspack_system *sys, struct mspack_file *fh, struct mschmd_header *chm, int entire) { unsigned int section, name_len, x, errors, num_chunks; unsigned char buf[0x54], *chunk = NULL, *name, *p, *end; struct mschmd_file *fi, *link = NULL; off_t offset, length; int num_entries; /* initialise pointers */ chm->files = NULL; chm->sysfiles = NULL; chm->chunk_cache = NULL; chm->sec0.base.chm = chm; chm->sec0.base.id = 0; chm->sec1.base.chm = chm; chm->sec1.base.id = 1; chm->sec1.content = NULL; chm->sec1.control = NULL; chm->sec1.spaninfo = NULL; chm->sec1.rtable = NULL; /* read the first header */ if (sys->read(fh, &buf[0], chmhead_SIZEOF) != chmhead_SIZEOF) { return MSPACK_ERR_READ; } /* check ITSF signature */ if (EndGetI32(&buf[chmhead_Signature]) != 0x46535449) { return MSPACK_ERR_SIGNATURE; } /* check both header GUIDs */ if (memcmp(&buf[chmhead_GUID1], &guids[0], 32L) != 0) { D(("incorrect GUIDs")) return MSPACK_ERR_SIGNATURE; } chm->version = EndGetI32(&buf[chmhead_Version]); chm->timestamp = EndGetM32(&buf[chmhead_Timestamp]); chm->language = EndGetI32(&buf[chmhead_LanguageID]); if (chm->version > 3) { sys->message(fh, "WARNING; CHM version > 3"); } /* read the header section table */ if (sys->read(fh, &buf[0], chmhst3_SIZEOF) != chmhst3_SIZEOF) { return MSPACK_ERR_READ; } /* chmhst3_OffsetCS0 does not exist in version 1 or 2 CHM files. * The offset will be corrected later, once HS1 is read. */ if (read_off64(&offset, &buf[chmhst_OffsetHS0], sys, fh) || read_off64(&chm->dir_offset, &buf[chmhst_OffsetHS1], sys, fh) || read_off64(&chm->sec0.offset, &buf[chmhst3_OffsetCS0], sys, fh)) { return MSPACK_ERR_DATAFORMAT; } /* seek to header section 0 */ if (sys->seek(fh, offset, MSPACK_SYS_SEEK_START)) { return MSPACK_ERR_SEEK; } /* read header section 0 */ if (sys->read(fh, &buf[0], chmhs0_SIZEOF) != chmhs0_SIZEOF) { return MSPACK_ERR_READ; } if (read_off64(&chm->length, &buf[chmhs0_FileLen], sys, fh)) { return MSPACK_ERR_DATAFORMAT; } /* seek to header section 1 */ if (sys->seek(fh, chm->dir_offset, MSPACK_SYS_SEEK_START)) { return MSPACK_ERR_SEEK; } /* read header section 1 */ if (sys->read(fh, &buf[0], chmhs1_SIZEOF) != chmhs1_SIZEOF) { return MSPACK_ERR_READ; } chm->dir_offset = sys->tell(fh); chm->chunk_size = EndGetI32(&buf[chmhs1_ChunkSize]); chm->density = EndGetI32(&buf[chmhs1_Density]); chm->depth = EndGetI32(&buf[chmhs1_Depth]); chm->index_root = EndGetI32(&buf[chmhs1_IndexRoot]); chm->num_chunks = EndGetI32(&buf[chmhs1_NumChunks]); chm->first_pmgl = EndGetI32(&buf[chmhs1_FirstPMGL]); chm->last_pmgl = EndGetI32(&buf[chmhs1_LastPMGL]); if (chm->version < 3) { /* versions before 3 don't have chmhst3_OffsetCS0 */ chm->sec0.offset = chm->dir_offset + (chm->chunk_size * chm->num_chunks); } /* check if content offset or file size is wrong */ if (chm->sec0.offset > chm->length) { D(("content section begins after file has ended")) return MSPACK_ERR_DATAFORMAT; } /* ensure there are chunks and that chunk size is * large enough for signature and num_entries */ if (chm->chunk_size < (pmgl_Entries + 2)) { D(("chunk size not large enough")) return MSPACK_ERR_DATAFORMAT; } if (chm->num_chunks == 0) { D(("no chunks")) return MSPACK_ERR_DATAFORMAT; } /* The chunk_cache data structure is not great; large values for num_chunks * or num_chunks*chunk_size can exhaust all memory. Until a better chunk * cache is implemented, put arbitrary limits on num_chunks and chunk size. */ if (chm->num_chunks > 100000) { D(("more than 100,000 chunks")) return MSPACK_ERR_DATAFORMAT; } if ((off_t)chm->chunk_size * (off_t)chm->num_chunks > chm->length) { D(("chunks larger than entire file")) return MSPACK_ERR_DATAFORMAT; } /* common sense checks on header section 1 fields */ if ((chm->chunk_size & (chm->chunk_size - 1)) != 0) { sys->message(fh, "WARNING; chunk size is not a power of two"); } if (chm->first_pmgl != 0) { sys->message(fh, "WARNING; first PMGL chunk is not zero"); } if (chm->first_pmgl > chm->last_pmgl) { D(("first pmgl chunk is after last pmgl chunk")) return MSPACK_ERR_DATAFORMAT; } if (chm->index_root != 0xFFFFFFFF && chm->index_root >= chm->num_chunks) { D(("index_root outside valid range")) return MSPACK_ERR_DATAFORMAT; } /* if we are doing a quick read, stop here! */ if (!entire) { return MSPACK_ERR_OK; } /* seek to the first PMGL chunk, and reduce the number of chunks to read */ if ((x = chm->first_pmgl) != 0) { if (sys->seek(fh,(off_t) (x * chm->chunk_size), MSPACK_SYS_SEEK_CUR)) { return MSPACK_ERR_SEEK; } } num_chunks = chm->last_pmgl - x + 1; if (!(chunk = (unsigned char *) sys->alloc(sys, (size_t)chm->chunk_size))) { return MSPACK_ERR_NOMEMORY; } /* read and process all chunks from FirstPMGL to LastPMGL */ errors = 0; while (num_chunks--) { /* read next chunk */ if (sys->read(fh, chunk, (int)chm->chunk_size) != (int)chm->chunk_size) { sys->free(chunk); return MSPACK_ERR_READ; } /* process only directory (PMGL) chunks */ if (EndGetI32(&chunk[pmgl_Signature]) != 0x4C474D50) continue; if (EndGetI32(&chunk[pmgl_QuickRefSize]) < 2) { sys->message(fh, "WARNING; PMGL quickref area is too small"); } if (EndGetI32(&chunk[pmgl_QuickRefSize]) > ((int)chm->chunk_size - pmgl_Entries)) { sys->message(fh, "WARNING; PMGL quickref area is too large"); } p = &chunk[pmgl_Entries]; end = &chunk[chm->chunk_size - 2]; num_entries = EndGetI16(end); while (num_entries--) { READ_ENCINT(name_len); if (name_len > (unsigned int) (end - p)) goto chunk_end; name = p; p += name_len; READ_ENCINT(section); READ_ENCINT(offset); READ_ENCINT(length); /* ignore blank or one-char (e.g. "/") filenames we'd return as blank */ if (name_len < 2 || !name[0] || !name[1]) continue; /* empty files and directory names are stored as a file entry at * offset 0 with length 0. We want to keep empty files, but not * directory names, which end with a "/" */ if ((offset == 0) && (length == 0)) { if ((name_len > 0) && (name[name_len-1] == '/')) continue; } if (section > 1) { sys->message(fh, "invalid section number '%u'.", section); continue; } if (!(fi = (struct mschmd_file *) sys->alloc(sys, sizeof(struct mschmd_file) + name_len + 1))) { sys->free(chunk); return MSPACK_ERR_NOMEMORY; } fi->next = NULL; fi->filename = (char *) &fi[1]; fi->section = ((section == 0) ? (struct mschmd_section *) (&chm->sec0) : (struct mschmd_section *) (&chm->sec1)); fi->offset = offset; fi->length = length; sys->copy(name, fi->filename, (size_t) name_len); fi->filename[name_len] = '\0'; if (name[0] == ':' && name[1] == ':') { /* system file */ if (memcmp(&name[2], &content_name[2], 31L) == 0) { if (memcmp(&name[33], &content_name[33], 8L) == 0) { chm->sec1.content = fi; } else if (memcmp(&name[33], &control_name[33], 11L) == 0) { chm->sec1.control = fi; } else if (memcmp(&name[33], &spaninfo_name[33], 8L) == 0) { chm->sec1.spaninfo = fi; } else if (memcmp(&name[33], &rtable_name[33], 72L) == 0) { chm->sec1.rtable = fi; } } fi->next = chm->sysfiles; chm->sysfiles = fi; } else { /* normal file */ if (link) link->next = fi; else chm->files = fi; link = fi; } } /* this is reached either when num_entries runs out, or if * reading data from the chunk reached a premature end of chunk */ chunk_end: if (num_entries >= 0) { D(("chunk ended before all entries could be read")) errors++; } } sys->free(chunk); return (errors > 0) ? MSPACK_ERR_DATAFORMAT : MSPACK_ERR_OK; }
CWE-119
182,636
3,889
20608871291788966016405043541915276382
null
null
null
cJSON
be749d7efa7c9021da746e685bd6dec79f9dd99b
1
static cJSON *get_object_item(const cJSON * const object, const char * const name, const cJSON_bool case_sensitive) { cJSON *current_element = NULL; if ((object == NULL) || (name == NULL)) { return NULL; } current_element = object->child; if (case_sensitive) { while ((current_element != NULL) && (strcmp(name, current_element->string) != 0)) { current_element = current_element->next; } } else { while ((current_element != NULL) && (case_insensitive_strcmp((const unsigned char*)name, (const unsigned char*)(current_element->string)) != 0)) { current_element = current_element->next; } } return current_element; }
CWE-754
182,652
3,890
140993672709749145119733856672850007056
null
null
null
VeraCrypt
f30f9339c9a0b9bbcc6f5ad38804af39db1f479e
1
NTSTATUS ProcessMainDeviceControlIrp (PDEVICE_OBJECT DeviceObject, PEXTENSION Extension, PIRP Irp) { PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (Irp); NTSTATUS ntStatus; switch (irpSp->Parameters.DeviceIoControl.IoControlCode) { case TC_IOCTL_GET_DRIVER_VERSION: case TC_IOCTL_LEGACY_GET_DRIVER_VERSION: if (ValidateIOBufferSize (Irp, sizeof (LONG), ValidateOutput)) { LONG tmp = VERSION_NUM; memcpy (Irp->AssociatedIrp.SystemBuffer, &tmp, 4); Irp->IoStatus.Information = sizeof (LONG); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_GET_DEVICE_REFCOUNT: if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput)) { *(int *) Irp->AssociatedIrp.SystemBuffer = DeviceObject->ReferenceCount; Irp->IoStatus.Information = sizeof (int); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_IS_DRIVER_UNLOAD_DISABLED: if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput)) { LONG deviceObjectCount = 0; *(int *) Irp->AssociatedIrp.SystemBuffer = DriverUnloadDisabled; if (IoEnumerateDeviceObjectList (TCDriverObject, NULL, 0, &deviceObjectCount) == STATUS_BUFFER_TOO_SMALL && deviceObjectCount > 1) *(int *) Irp->AssociatedIrp.SystemBuffer = TRUE; Irp->IoStatus.Information = sizeof (int); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_IS_ANY_VOLUME_MOUNTED: if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput)) { int drive; *(int *) Irp->AssociatedIrp.SystemBuffer = 0; for (drive = MIN_MOUNTED_VOLUME_DRIVE_NUMBER; drive <= MAX_MOUNTED_VOLUME_DRIVE_NUMBER; ++drive) { if (GetVirtualVolumeDeviceObject (drive)) { *(int *) Irp->AssociatedIrp.SystemBuffer = 1; break; } } if (IsBootDriveMounted()) *(int *) Irp->AssociatedIrp.SystemBuffer = 1; Irp->IoStatus.Information = sizeof (int); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_OPEN_TEST: { OPEN_TEST_STRUCT *opentest = (OPEN_TEST_STRUCT *) Irp->AssociatedIrp.SystemBuffer; OBJECT_ATTRIBUTES ObjectAttributes; HANDLE NtFileHandle; UNICODE_STRING FullFileName; IO_STATUS_BLOCK IoStatus; LARGE_INTEGER offset; ACCESS_MASK access = FILE_READ_ATTRIBUTES; if (!ValidateIOBufferSize (Irp, sizeof (OPEN_TEST_STRUCT), ValidateInputOutput)) break; EnsureNullTerminatedString (opentest->wszFileName, sizeof (opentest->wszFileName)); RtlInitUnicodeString (&FullFileName, opentest->wszFileName); InitializeObjectAttributes (&ObjectAttributes, &FullFileName, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, NULL, NULL); if (opentest->bDetectTCBootLoader || opentest->DetectFilesystem || opentest->bComputeVolumeIDs) access |= FILE_READ_DATA; ntStatus = ZwCreateFile (&NtFileHandle, SYNCHRONIZE | access, &ObjectAttributes, &IoStatus, NULL, 0, FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); if (NT_SUCCESS (ntStatus)) { opentest->TCBootLoaderDetected = FALSE; opentest->FilesystemDetected = FALSE; memset (opentest->VolumeIDComputed, 0, sizeof (opentest->VolumeIDComputed)); memset (opentest->volumeIDs, 0, sizeof (opentest->volumeIDs)); if (opentest->bDetectTCBootLoader || opentest->DetectFilesystem || opentest->bComputeVolumeIDs) { byte *readBuffer = TCalloc (TC_MAX_VOLUME_SECTOR_SIZE); if (!readBuffer) { ntStatus = STATUS_INSUFFICIENT_RESOURCES; } else { if (opentest->bDetectTCBootLoader || opentest->DetectFilesystem) { offset.QuadPart = 0; ntStatus = ZwReadFile (NtFileHandle, NULL, NULL, NULL, &IoStatus, readBuffer, TC_MAX_VOLUME_SECTOR_SIZE, &offset, NULL); if (NT_SUCCESS (ntStatus)) { size_t i; if (opentest->bDetectTCBootLoader && IoStatus.Information >= TC_SECTOR_SIZE_BIOS) { for (i = 0; i < TC_SECTOR_SIZE_BIOS - strlen (TC_APP_NAME); ++i) { if (memcmp (readBuffer + i, TC_APP_NAME, strlen (TC_APP_NAME)) == 0) { opentest->TCBootLoaderDetected = TRUE; break; } } } if (opentest->DetectFilesystem && IoStatus.Information >= sizeof (int64)) { switch (BE64 (*(uint64 *) readBuffer)) { case 0xEB52904E54465320ULL: // NTFS case 0xEB3C904D53444F53ULL: // FAT16/FAT32 case 0xEB58904D53444F53ULL: // FAT32 case 0xEB76904558464154ULL: // exFAT case 0x0000005265465300ULL: // ReFS case 0xEB58906D6B66732EULL: // FAT32 mkfs.fat case 0xEB58906D6B646F73ULL: // FAT32 mkfs.vfat/mkdosfs case 0xEB3C906D6B66732EULL: // FAT16/FAT12 mkfs.fat case 0xEB3C906D6B646F73ULL: // FAT16/FAT12 mkfs.vfat/mkdosfs opentest->FilesystemDetected = TRUE; break; case 0x0000000000000000ULL: if (IsAllZeroes (readBuffer + 8, TC_VOLUME_HEADER_EFFECTIVE_SIZE - 8)) opentest->FilesystemDetected = TRUE; break; } } } } if (opentest->bComputeVolumeIDs && (!opentest->DetectFilesystem || !opentest->FilesystemDetected)) { int volumeType; for (volumeType = TC_VOLUME_TYPE_NORMAL; volumeType < TC_VOLUME_TYPE_COUNT; volumeType++) { /* Read the volume header */ switch (volumeType) { case TC_VOLUME_TYPE_NORMAL: offset.QuadPart = TC_VOLUME_HEADER_OFFSET; break; case TC_VOLUME_TYPE_HIDDEN: offset.QuadPart = TC_HIDDEN_VOLUME_HEADER_OFFSET; break; } ntStatus = ZwReadFile (NtFileHandle, NULL, NULL, NULL, &IoStatus, readBuffer, TC_MAX_VOLUME_SECTOR_SIZE, &offset, NULL); if (NT_SUCCESS (ntStatus)) { /* compute the ID of this volume: SHA-256 of the effective header */ sha256 (opentest->volumeIDs[volumeType], readBuffer, TC_VOLUME_HEADER_EFFECTIVE_SIZE); opentest->VolumeIDComputed[volumeType] = TRUE; } } } TCfree (readBuffer); } } ZwClose (NtFileHandle); Dump ("Open test on file %ls success.\n", opentest->wszFileName); } else { #if 0 Dump ("Open test on file %ls failed NTSTATUS 0x%08x\n", opentest->wszFileName, ntStatus); #endif } Irp->IoStatus.Information = NT_SUCCESS (ntStatus) ? sizeof (OPEN_TEST_STRUCT) : 0; Irp->IoStatus.Status = ntStatus; } break; case TC_IOCTL_GET_SYSTEM_DRIVE_CONFIG: { GetSystemDriveConfigurationRequest *request = (GetSystemDriveConfigurationRequest *) Irp->AssociatedIrp.SystemBuffer; OBJECT_ATTRIBUTES ObjectAttributes; HANDLE NtFileHandle; UNICODE_STRING FullFileName; IO_STATUS_BLOCK IoStatus; LARGE_INTEGER offset; byte readBuffer [TC_SECTOR_SIZE_BIOS]; if (!ValidateIOBufferSize (Irp, sizeof (GetSystemDriveConfigurationRequest), ValidateInputOutput)) break; EnsureNullTerminatedString (request->DevicePath, sizeof (request->DevicePath)); RtlInitUnicodeString (&FullFileName, request->DevicePath); InitializeObjectAttributes (&ObjectAttributes, &FullFileName, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, NULL, NULL); ntStatus = ZwCreateFile (&NtFileHandle, SYNCHRONIZE | GENERIC_READ, &ObjectAttributes, &IoStatus, NULL, FILE_ATTRIBUTE_NORMAL, FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, FILE_SYNCHRONOUS_IO_NONALERT | FILE_RANDOM_ACCESS, NULL, 0); if (NT_SUCCESS (ntStatus)) { offset.QuadPart = 0; // MBR ntStatus = ZwReadFile (NtFileHandle, NULL, NULL, NULL, &IoStatus, readBuffer, sizeof(readBuffer), &offset, NULL); if (NT_SUCCESS (ntStatus)) { size_t i; request->DriveIsDynamic = FALSE; if (readBuffer[510] == 0x55 && readBuffer[511] == 0xaa) { int i; for (i = 0; i < 4; ++i) { if (readBuffer[446 + i * 16 + 4] == PARTITION_LDM) { request->DriveIsDynamic = TRUE; break; } } } request->BootLoaderVersion = 0; request->Configuration = 0; request->UserConfiguration = 0; request->CustomUserMessage[0] = 0; for (i = 0; i < sizeof (readBuffer) - strlen (TC_APP_NAME); ++i) { if (memcmp (readBuffer + i, TC_APP_NAME, strlen (TC_APP_NAME)) == 0) { request->BootLoaderVersion = BE16 (*(uint16 *) (readBuffer + TC_BOOT_SECTOR_VERSION_OFFSET)); request->Configuration = readBuffer[TC_BOOT_SECTOR_CONFIG_OFFSET]; if (request->BootLoaderVersion != 0 && request->BootLoaderVersion <= VERSION_NUM) { request->UserConfiguration = readBuffer[TC_BOOT_SECTOR_USER_CONFIG_OFFSET]; memcpy (request->CustomUserMessage, readBuffer + TC_BOOT_SECTOR_USER_MESSAGE_OFFSET, TC_BOOT_SECTOR_USER_MESSAGE_MAX_LENGTH); } break; } } Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof (*request); } else { Irp->IoStatus.Status = ntStatus; Irp->IoStatus.Information = 0; } ZwClose (NtFileHandle); } else { Irp->IoStatus.Status = ntStatus; Irp->IoStatus.Information = 0; } } break; case TC_IOCTL_WIPE_PASSWORD_CACHE: WipeCache (); Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_PASSWORD_CACHE_STATUS: Irp->IoStatus.Status = cacheEmpty ? STATUS_PIPE_EMPTY : STATUS_SUCCESS; Irp->IoStatus.Information = 0; break; case TC_IOCTL_SET_PORTABLE_MODE_STATUS: if (!UserCanAccessDriveDevice()) { Irp->IoStatus.Status = STATUS_ACCESS_DENIED; Irp->IoStatus.Information = 0; } else { PortableMode = TRUE; Dump ("Setting portable mode\n"); } break; case TC_IOCTL_GET_PORTABLE_MODE_STATUS: Irp->IoStatus.Status = PortableMode ? STATUS_SUCCESS : STATUS_PIPE_EMPTY; Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_MOUNTED_VOLUMES: if (ValidateIOBufferSize (Irp, sizeof (MOUNT_LIST_STRUCT), ValidateOutput)) { MOUNT_LIST_STRUCT *list = (MOUNT_LIST_STRUCT *) Irp->AssociatedIrp.SystemBuffer; PDEVICE_OBJECT ListDevice; int drive; list->ulMountedDrives = 0; for (drive = MIN_MOUNTED_VOLUME_DRIVE_NUMBER; drive <= MAX_MOUNTED_VOLUME_DRIVE_NUMBER; ++drive) { PEXTENSION ListExtension; ListDevice = GetVirtualVolumeDeviceObject (drive); if (!ListDevice) continue; ListExtension = (PEXTENSION) ListDevice->DeviceExtension; if (IsVolumeAccessibleByCurrentUser (ListExtension)) { list->ulMountedDrives |= (1 << ListExtension->nDosDriveNo); RtlStringCbCopyW (list->wszVolume[ListExtension->nDosDriveNo], sizeof(list->wszVolume[ListExtension->nDosDriveNo]),ListExtension->wszVolume); RtlStringCbCopyW (list->wszLabel[ListExtension->nDosDriveNo], sizeof(list->wszLabel[ListExtension->nDosDriveNo]),ListExtension->wszLabel); memcpy (list->volumeID[ListExtension->nDosDriveNo], ListExtension->volumeID, VOLUME_ID_SIZE); list->diskLength[ListExtension->nDosDriveNo] = ListExtension->DiskLength; list->ea[ListExtension->nDosDriveNo] = ListExtension->cryptoInfo->ea; if (ListExtension->cryptoInfo->hiddenVolume) list->volumeType[ListExtension->nDosDriveNo] = PROP_VOL_TYPE_HIDDEN; // Hidden volume else if (ListExtension->cryptoInfo->bHiddenVolProtectionAction) list->volumeType[ListExtension->nDosDriveNo] = PROP_VOL_TYPE_OUTER_VOL_WRITE_PREVENTED; // Normal/outer volume (hidden volume protected AND write already prevented) else if (ListExtension->cryptoInfo->bProtectHiddenVolume) list->volumeType[ListExtension->nDosDriveNo] = PROP_VOL_TYPE_OUTER; // Normal/outer volume (hidden volume protected) else list->volumeType[ListExtension->nDosDriveNo] = PROP_VOL_TYPE_NORMAL; // Normal volume list->truecryptMode[ListExtension->nDosDriveNo] = ListExtension->cryptoInfo->bTrueCryptMode; } } Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof (MOUNT_LIST_STRUCT); } break; case TC_IOCTL_LEGACY_GET_MOUNTED_VOLUMES: if (ValidateIOBufferSize (Irp, sizeof (uint32), ValidateOutput)) { memset (Irp->AssociatedIrp.SystemBuffer, 0, irpSp->Parameters.DeviceIoControl.OutputBufferLength); *(uint32 *) Irp->AssociatedIrp.SystemBuffer = 0xffffFFFF; Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = irpSp->Parameters.DeviceIoControl.OutputBufferLength; } break; case TC_IOCTL_GET_VOLUME_PROPERTIES: if (ValidateIOBufferSize (Irp, sizeof (VOLUME_PROPERTIES_STRUCT), ValidateInputOutput)) { VOLUME_PROPERTIES_STRUCT *prop = (VOLUME_PROPERTIES_STRUCT *) Irp->AssociatedIrp.SystemBuffer; PDEVICE_OBJECT ListDevice = GetVirtualVolumeDeviceObject (prop->driveNo); Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; Irp->IoStatus.Information = 0; if (ListDevice) { PEXTENSION ListExtension = (PEXTENSION) ListDevice->DeviceExtension; if (IsVolumeAccessibleByCurrentUser (ListExtension)) { prop->uniqueId = ListExtension->UniqueVolumeId; RtlStringCbCopyW (prop->wszVolume, sizeof(prop->wszVolume),ListExtension->wszVolume); RtlStringCbCopyW (prop->wszLabel, sizeof(prop->wszLabel),ListExtension->wszLabel); memcpy (prop->volumeID, ListExtension->volumeID, VOLUME_ID_SIZE); prop->bDriverSetLabel = ListExtension->bDriverSetLabel; prop->diskLength = ListExtension->DiskLength; prop->ea = ListExtension->cryptoInfo->ea; prop->mode = ListExtension->cryptoInfo->mode; prop->pkcs5 = ListExtension->cryptoInfo->pkcs5; prop->pkcs5Iterations = ListExtension->cryptoInfo->noIterations; prop->volumePim = ListExtension->cryptoInfo->volumePim; #if 0 prop->volumeCreationTime = ListExtension->cryptoInfo->volume_creation_time; prop->headerCreationTime = ListExtension->cryptoInfo->header_creation_time; #endif prop->volumeHeaderFlags = ListExtension->cryptoInfo->HeaderFlags; prop->readOnly = ListExtension->bReadOnly; prop->removable = ListExtension->bRemovable; prop->partitionInInactiveSysEncScope = ListExtension->PartitionInInactiveSysEncScope; prop->hiddenVolume = ListExtension->cryptoInfo->hiddenVolume; if (ListExtension->cryptoInfo->bProtectHiddenVolume) prop->hiddenVolProtection = ListExtension->cryptoInfo->bHiddenVolProtectionAction ? HIDVOL_PROT_STATUS_ACTION_TAKEN : HIDVOL_PROT_STATUS_ACTIVE; else prop->hiddenVolProtection = HIDVOL_PROT_STATUS_NONE; prop->totalBytesRead = ListExtension->Queue.TotalBytesRead; prop->totalBytesWritten = ListExtension->Queue.TotalBytesWritten; prop->volFormatVersion = ListExtension->cryptoInfo->LegacyVolume ? TC_VOLUME_FORMAT_VERSION_PRE_6_0 : TC_VOLUME_FORMAT_VERSION; Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof (VOLUME_PROPERTIES_STRUCT); } } } break; case TC_IOCTL_GET_RESOLVED_SYMLINK: if (ValidateIOBufferSize (Irp, sizeof (RESOLVE_SYMLINK_STRUCT), ValidateInputOutput)) { RESOLVE_SYMLINK_STRUCT *resolve = (RESOLVE_SYMLINK_STRUCT *) Irp->AssociatedIrp.SystemBuffer; { NTSTATUS ntStatus; EnsureNullTerminatedString (resolve->symLinkName, sizeof (resolve->symLinkName)); ntStatus = SymbolicLinkToTarget (resolve->symLinkName, resolve->targetName, sizeof (resolve->targetName)); Irp->IoStatus.Information = sizeof (RESOLVE_SYMLINK_STRUCT); Irp->IoStatus.Status = ntStatus; } } break; case TC_IOCTL_GET_DRIVE_PARTITION_INFO: if (ValidateIOBufferSize (Irp, sizeof (DISK_PARTITION_INFO_STRUCT), ValidateInputOutput)) { DISK_PARTITION_INFO_STRUCT *info = (DISK_PARTITION_INFO_STRUCT *) Irp->AssociatedIrp.SystemBuffer; { PARTITION_INFORMATION_EX pi; NTSTATUS ntStatus; EnsureNullTerminatedString (info->deviceName, sizeof (info->deviceName)); ntStatus = TCDeviceIoControl (info->deviceName, IOCTL_DISK_GET_PARTITION_INFO_EX, NULL, 0, &pi, sizeof (pi)); if (NT_SUCCESS(ntStatus)) { memset (&info->partInfo, 0, sizeof (info->partInfo)); info->partInfo.PartitionLength = pi.PartitionLength; info->partInfo.PartitionNumber = pi.PartitionNumber; info->partInfo.StartingOffset = pi.StartingOffset; if (pi.PartitionStyle == PARTITION_STYLE_MBR) { info->partInfo.PartitionType = pi.Mbr.PartitionType; info->partInfo.BootIndicator = pi.Mbr.BootIndicator; } info->IsGPT = pi.PartitionStyle == PARTITION_STYLE_GPT; } else { ntStatus = TCDeviceIoControl (info->deviceName, IOCTL_DISK_GET_PARTITION_INFO, NULL, 0, &info->partInfo, sizeof (info->partInfo)); info->IsGPT = FALSE; } if (!NT_SUCCESS (ntStatus)) { GET_LENGTH_INFORMATION lengthInfo; ntStatus = TCDeviceIoControl (info->deviceName, IOCTL_DISK_GET_LENGTH_INFO, NULL, 0, &lengthInfo, sizeof (lengthInfo)); if (NT_SUCCESS (ntStatus)) { memset (&info->partInfo, 0, sizeof (info->partInfo)); info->partInfo.PartitionLength = lengthInfo.Length; } } info->IsDynamic = FALSE; if (NT_SUCCESS (ntStatus) && OsMajorVersion >= 6) { # define IOCTL_VOLUME_IS_DYNAMIC CTL_CODE(IOCTL_VOLUME_BASE, 18, METHOD_BUFFERED, FILE_ANY_ACCESS) if (!NT_SUCCESS (TCDeviceIoControl (info->deviceName, IOCTL_VOLUME_IS_DYNAMIC, NULL, 0, &info->IsDynamic, sizeof (info->IsDynamic)))) info->IsDynamic = FALSE; } Irp->IoStatus.Information = sizeof (DISK_PARTITION_INFO_STRUCT); Irp->IoStatus.Status = ntStatus; } } break; case TC_IOCTL_GET_DRIVE_GEOMETRY: if (ValidateIOBufferSize (Irp, sizeof (DISK_GEOMETRY_STRUCT), ValidateInputOutput)) { DISK_GEOMETRY_STRUCT *g = (DISK_GEOMETRY_STRUCT *) Irp->AssociatedIrp.SystemBuffer; { NTSTATUS ntStatus; EnsureNullTerminatedString (g->deviceName, sizeof (g->deviceName)); Dump ("Calling IOCTL_DISK_GET_DRIVE_GEOMETRY on %ls\n", g->deviceName); ntStatus = TCDeviceIoControl (g->deviceName, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &g->diskGeometry, sizeof (g->diskGeometry)); Irp->IoStatus.Information = sizeof (DISK_GEOMETRY_STRUCT); Irp->IoStatus.Status = ntStatus; } } break; case VC_IOCTL_GET_DRIVE_GEOMETRY_EX: if (ValidateIOBufferSize (Irp, sizeof (DISK_GEOMETRY_EX_STRUCT), ValidateInputOutput)) { DISK_GEOMETRY_EX_STRUCT *g = (DISK_GEOMETRY_EX_STRUCT *) Irp->AssociatedIrp.SystemBuffer; { NTSTATUS ntStatus; PVOID buffer = TCalloc (256); // enough for DISK_GEOMETRY_EX and padded data if (buffer) { EnsureNullTerminatedString (g->deviceName, sizeof (g->deviceName)); Dump ("Calling IOCTL_DISK_GET_DRIVE_GEOMETRY_EX on %ls\n", g->deviceName); ntStatus = TCDeviceIoControl (g->deviceName, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, buffer, 256); if (NT_SUCCESS(ntStatus)) { PDISK_GEOMETRY_EX pGeo = (PDISK_GEOMETRY_EX) buffer; memcpy (&g->diskGeometry, &pGeo->Geometry, sizeof (DISK_GEOMETRY)); g->DiskSize.QuadPart = pGeo->DiskSize.QuadPart; } else { DISK_GEOMETRY dg = {0}; Dump ("Failed. Calling IOCTL_DISK_GET_DRIVE_GEOMETRY on %ls\n", g->deviceName); ntStatus = TCDeviceIoControl (g->deviceName, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &dg, sizeof (dg)); if (NT_SUCCESS(ntStatus)) { memcpy (&g->diskGeometry, &dg, sizeof (DISK_GEOMETRY)); g->DiskSize.QuadPart = dg.Cylinders.QuadPart * dg.SectorsPerTrack * dg.TracksPerCylinder * dg.BytesPerSector; if (OsMajorVersion >= 6) { STORAGE_READ_CAPACITY storage = {0}; NTSTATUS lStatus; storage.Version = sizeof (STORAGE_READ_CAPACITY); Dump ("Calling IOCTL_STORAGE_READ_CAPACITY on %ls\n", g->deviceName); lStatus = TCDeviceIoControl (g->deviceName, IOCTL_STORAGE_READ_CAPACITY, NULL, 0, &storage, sizeof (STORAGE_READ_CAPACITY)); if ( NT_SUCCESS(lStatus) && (storage.Size == sizeof (STORAGE_READ_CAPACITY)) ) { g->DiskSize.QuadPart = storage.DiskLength.QuadPart; } } } } TCfree (buffer); Irp->IoStatus.Information = sizeof (DISK_GEOMETRY_EX_STRUCT); Irp->IoStatus.Status = ntStatus; } else { Irp->IoStatus.Status = STATUS_INSUFFICIENT_RESOURCES; Irp->IoStatus.Information = 0; } } } break; case TC_IOCTL_PROBE_REAL_DRIVE_SIZE: if (ValidateIOBufferSize (Irp, sizeof (ProbeRealDriveSizeRequest), ValidateInputOutput)) { ProbeRealDriveSizeRequest *request = (ProbeRealDriveSizeRequest *) Irp->AssociatedIrp.SystemBuffer; NTSTATUS status; UNICODE_STRING name; PFILE_OBJECT fileObject; PDEVICE_OBJECT deviceObject; EnsureNullTerminatedString (request->DeviceName, sizeof (request->DeviceName)); RtlInitUnicodeString (&name, request->DeviceName); status = IoGetDeviceObjectPointer (&name, FILE_READ_ATTRIBUTES, &fileObject, &deviceObject); if (!NT_SUCCESS (status)) { Irp->IoStatus.Information = 0; Irp->IoStatus.Status = status; break; } status = ProbeRealDriveSize (deviceObject, &request->RealDriveSize); ObDereferenceObject (fileObject); if (status == STATUS_TIMEOUT) { request->TimeOut = TRUE; Irp->IoStatus.Information = sizeof (ProbeRealDriveSizeRequest); Irp->IoStatus.Status = STATUS_SUCCESS; } else if (!NT_SUCCESS (status)) { Irp->IoStatus.Information = 0; Irp->IoStatus.Status = status; } else { request->TimeOut = FALSE; Irp->IoStatus.Information = sizeof (ProbeRealDriveSizeRequest); Irp->IoStatus.Status = status; } } break; case TC_IOCTL_MOUNT_VOLUME: if (ValidateIOBufferSize (Irp, sizeof (MOUNT_STRUCT), ValidateInputOutput)) { MOUNT_STRUCT *mount = (MOUNT_STRUCT *) Irp->AssociatedIrp.SystemBuffer; if (mount->VolumePassword.Length > MAX_PASSWORD || mount->ProtectedHidVolPassword.Length > MAX_PASSWORD || mount->pkcs5_prf < 0 || mount->pkcs5_prf > LAST_PRF_ID || mount->VolumePim < -1 || mount->VolumePim == INT_MAX || mount->ProtectedHidVolPkcs5Prf < 0 || mount->ProtectedHidVolPkcs5Prf > LAST_PRF_ID || (mount->bTrueCryptMode != FALSE && mount->bTrueCryptMode != TRUE) ) { Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; Irp->IoStatus.Information = 0; break; } EnsureNullTerminatedString (mount->wszVolume, sizeof (mount->wszVolume)); EnsureNullTerminatedString (mount->wszLabel, sizeof (mount->wszLabel)); Irp->IoStatus.Information = sizeof (MOUNT_STRUCT); Irp->IoStatus.Status = MountDevice (DeviceObject, mount); burn (&mount->VolumePassword, sizeof (mount->VolumePassword)); burn (&mount->ProtectedHidVolPassword, sizeof (mount->ProtectedHidVolPassword)); burn (&mount->pkcs5_prf, sizeof (mount->pkcs5_prf)); burn (&mount->VolumePim, sizeof (mount->VolumePim)); burn (&mount->bTrueCryptMode, sizeof (mount->bTrueCryptMode)); burn (&mount->ProtectedHidVolPkcs5Prf, sizeof (mount->ProtectedHidVolPkcs5Prf)); burn (&mount->ProtectedHidVolPim, sizeof (mount->ProtectedHidVolPim)); } break; case TC_IOCTL_DISMOUNT_VOLUME: if (ValidateIOBufferSize (Irp, sizeof (UNMOUNT_STRUCT), ValidateInputOutput)) { UNMOUNT_STRUCT *unmount = (UNMOUNT_STRUCT *) Irp->AssociatedIrp.SystemBuffer; PDEVICE_OBJECT ListDevice = GetVirtualVolumeDeviceObject (unmount->nDosDriveNo); unmount->nReturnCode = ERR_DRIVE_NOT_FOUND; if (ListDevice) { PEXTENSION ListExtension = (PEXTENSION) ListDevice->DeviceExtension; if (IsVolumeAccessibleByCurrentUser (ListExtension)) unmount->nReturnCode = UnmountDevice (unmount, ListDevice, unmount->ignoreOpenFiles); } Irp->IoStatus.Information = sizeof (UNMOUNT_STRUCT); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_DISMOUNT_ALL_VOLUMES: if (ValidateIOBufferSize (Irp, sizeof (UNMOUNT_STRUCT), ValidateInputOutput)) { UNMOUNT_STRUCT *unmount = (UNMOUNT_STRUCT *) Irp->AssociatedIrp.SystemBuffer; unmount->nReturnCode = UnmountAllDevices (unmount, unmount->ignoreOpenFiles); Irp->IoStatus.Information = sizeof (UNMOUNT_STRUCT); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_BOOT_ENCRYPTION_SETUP: Irp->IoStatus.Status = StartBootEncryptionSetup (DeviceObject, Irp, irpSp); Irp->IoStatus.Information = 0; break; case TC_IOCTL_ABORT_BOOT_ENCRYPTION_SETUP: Irp->IoStatus.Status = AbortBootEncryptionSetup(); Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_BOOT_ENCRYPTION_STATUS: GetBootEncryptionStatus (Irp, irpSp); break; case TC_IOCTL_GET_BOOT_ENCRYPTION_SETUP_RESULT: Irp->IoStatus.Information = 0; Irp->IoStatus.Status = GetSetupResult(); break; case TC_IOCTL_GET_BOOT_DRIVE_VOLUME_PROPERTIES: GetBootDriveVolumeProperties (Irp, irpSp); break; case TC_IOCTL_GET_BOOT_LOADER_VERSION: GetBootLoaderVersion (Irp, irpSp); break; case TC_IOCTL_REOPEN_BOOT_VOLUME_HEADER: ReopenBootVolumeHeader (Irp, irpSp); break; case VC_IOCTL_GET_BOOT_LOADER_FINGERPRINT: GetBootLoaderFingerprint (Irp, irpSp); break; case TC_IOCTL_GET_BOOT_ENCRYPTION_ALGORITHM_NAME: GetBootEncryptionAlgorithmName (Irp, irpSp); break; case TC_IOCTL_IS_HIDDEN_SYSTEM_RUNNING: if (ValidateIOBufferSize (Irp, sizeof (int), ValidateOutput)) { *(int *) Irp->AssociatedIrp.SystemBuffer = IsHiddenSystemRunning() ? 1 : 0; Irp->IoStatus.Information = sizeof (int); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_START_DECOY_SYSTEM_WIPE: Irp->IoStatus.Status = StartDecoySystemWipe (DeviceObject, Irp, irpSp); Irp->IoStatus.Information = 0; break; case TC_IOCTL_ABORT_DECOY_SYSTEM_WIPE: Irp->IoStatus.Status = AbortDecoySystemWipe(); Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_DECOY_SYSTEM_WIPE_RESULT: Irp->IoStatus.Status = GetDecoySystemWipeResult(); Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_DECOY_SYSTEM_WIPE_STATUS: GetDecoySystemWipeStatus (Irp, irpSp); break; case TC_IOCTL_WRITE_BOOT_DRIVE_SECTOR: Irp->IoStatus.Status = WriteBootDriveSector (Irp, irpSp); Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_WARNING_FLAGS: if (ValidateIOBufferSize (Irp, sizeof (GetWarningFlagsRequest), ValidateOutput)) { GetWarningFlagsRequest *flags = (GetWarningFlagsRequest *) Irp->AssociatedIrp.SystemBuffer; flags->PagingFileCreationPrevented = PagingFileCreationPrevented; PagingFileCreationPrevented = FALSE; flags->SystemFavoriteVolumeDirty = SystemFavoriteVolumeDirty; SystemFavoriteVolumeDirty = FALSE; Irp->IoStatus.Information = sizeof (GetWarningFlagsRequest); Irp->IoStatus.Status = STATUS_SUCCESS; } break; case TC_IOCTL_SET_SYSTEM_FAVORITE_VOLUME_DIRTY: if (UserCanAccessDriveDevice()) { SystemFavoriteVolumeDirty = TRUE; Irp->IoStatus.Status = STATUS_SUCCESS; } else Irp->IoStatus.Status = STATUS_ACCESS_DENIED; Irp->IoStatus.Information = 0; break; case TC_IOCTL_REREAD_DRIVER_CONFIG: Irp->IoStatus.Status = ReadRegistryConfigFlags (FALSE); Irp->IoStatus.Information = 0; break; case TC_IOCTL_GET_SYSTEM_DRIVE_DUMP_CONFIG: if ( (ValidateIOBufferSize (Irp, sizeof (GetSystemDriveDumpConfigRequest), ValidateOutput)) && (Irp->RequestorMode == KernelMode) ) { GetSystemDriveDumpConfigRequest *request = (GetSystemDriveDumpConfigRequest *) Irp->AssociatedIrp.SystemBuffer; request->BootDriveFilterExtension = GetBootDriveFilterExtension(); if (IsBootDriveMounted() && request->BootDriveFilterExtension) { request->HwEncryptionEnabled = IsHwEncryptionEnabled(); Irp->IoStatus.Status = STATUS_SUCCESS; Irp->IoStatus.Information = sizeof (*request); } else { Irp->IoStatus.Status = STATUS_INVALID_PARAMETER; Irp->IoStatus.Information = 0; } } break; default: return TCCompleteIrp (Irp, STATUS_INVALID_DEVICE_REQUEST, 0); } #if defined(DEBUG) || defined(DEBUG_TRACE) if (!NT_SUCCESS (Irp->IoStatus.Status)) { switch (irpSp->Parameters.DeviceIoControl.IoControlCode) { case TC_IOCTL_GET_MOUNTED_VOLUMES: case TC_IOCTL_GET_PASSWORD_CACHE_STATUS: case TC_IOCTL_GET_PORTABLE_MODE_STATUS: case TC_IOCTL_SET_PORTABLE_MODE_STATUS: case TC_IOCTL_OPEN_TEST: case TC_IOCTL_GET_RESOLVED_SYMLINK: case TC_IOCTL_GET_DRIVE_PARTITION_INFO: case TC_IOCTL_GET_BOOT_DRIVE_VOLUME_PROPERTIES: case TC_IOCTL_GET_BOOT_ENCRYPTION_STATUS: case TC_IOCTL_IS_HIDDEN_SYSTEM_RUNNING: break; default: Dump ("IOCTL error 0x%08x\n", Irp->IoStatus.Status); } } #endif return TCCompleteIrp (Irp, Irp->IoStatus.Status, Irp->IoStatus.Information); }
CWE-119
182,653
3,891
102220743591744226152792111568948720783
null
null
null
libarchive
8312eaa576014cd9b965012af51bc1f967b12423
1
parse_rockridge(struct archive_read *a, struct file_info *file, const unsigned char *p, const unsigned char *end) { struct iso9660 *iso9660; iso9660 = (struct iso9660 *)(a->format->data); while (p + 4 <= end /* Enough space for another entry. */ && p[0] >= 'A' && p[0] <= 'Z' /* Sanity-check 1st char of name. */ && p[1] >= 'A' && p[1] <= 'Z' /* Sanity-check 2nd char of name. */ && p[2] >= 4 /* Sanity-check length. */ && p + p[2] <= end) { /* Sanity-check length. */ const unsigned char *data = p + 4; int data_length = p[2] - 4; int version = p[3]; switch(p[0]) { case 'C': if (p[1] == 'E') { if (version == 1 && data_length == 24) { /* * CE extension comprises: * 8 byte sector containing extension * 8 byte offset w/in above sector * 8 byte length of continuation */ int32_t location = archive_le32dec(data); file->ce_offset = archive_le32dec(data+8); file->ce_size = archive_le32dec(data+16); if (register_CE(a, location, file) != ARCHIVE_OK) return (ARCHIVE_FATAL); } } else if (p[1] == 'L') { if (version == 1 && data_length == 8) { file->cl_offset = (uint64_t) iso9660->logical_block_size * (uint64_t)archive_le32dec(data); iso9660->seenRockridge = 1; } } break; case 'N': if (p[1] == 'M') { if (version == 1) { parse_rockridge_NM1(file, data, data_length); iso9660->seenRockridge = 1; } } break; case 'P': /* * PD extension is padding; * contents are always ignored. * * PL extension won't appear; * contents are always ignored. */ if (p[1] == 'N') { if (version == 1 && data_length == 16) { file->rdev = toi(data,4); file->rdev <<= 32; file->rdev |= toi(data + 8, 4); iso9660->seenRockridge = 1; } } else if (p[1] == 'X') { /* * PX extension comprises: * 8 bytes for mode, * 8 bytes for nlinks, * 8 bytes for uid, * 8 bytes for gid, * 8 bytes for inode. */ if (version == 1) { if (data_length >= 8) file->mode = toi(data, 4); if (data_length >= 16) file->nlinks = toi(data + 8, 4); if (data_length >= 24) file->uid = toi(data + 16, 4); if (data_length >= 32) file->gid = toi(data + 24, 4); if (data_length >= 40) file->number = toi(data + 32, 4); iso9660->seenRockridge = 1; } } break; case 'R': if (p[1] == 'E' && version == 1) { file->re = 1; iso9660->seenRockridge = 1; } else if (p[1] == 'R' && version == 1) { /* * RR extension comprises: * one byte flag value * This extension is obsolete, * so contents are always ignored. */ } break; case 'S': if (p[1] == 'L') { if (version == 1) { parse_rockridge_SL1(file, data, data_length); iso9660->seenRockridge = 1; } } else if (p[1] == 'T' && data_length == 0 && version == 1) { /* * ST extension marks end of this * block of SUSP entries. * * It allows SUSP to coexist with * non-SUSP uses of the System * Use Area by placing non-SUSP data * after SUSP data. */ iso9660->seenSUSP = 0; iso9660->seenRockridge = 0; return (ARCHIVE_OK); } break; case 'T': if (p[1] == 'F') { if (version == 1) { parse_rockridge_TF1(file, data, data_length); iso9660->seenRockridge = 1; } } break; case 'Z': if (p[1] == 'F') { if (version == 1) parse_rockridge_ZF1(file, data, data_length); } break; default: break; } p += p[2]; } return (ARCHIVE_OK); }
CWE-400
182,655
3,892
54247877453009565821600705765205998992
null
null
null
libarchive
65a23f5dbee4497064e9bb467f81138a62b0dae1
1
get_uncompressed_data(struct archive_read *a, const void **buff, size_t size, size_t minimum) { struct _7zip *zip = (struct _7zip *)a->format->data; ssize_t bytes_avail; if (zip->codec == _7Z_COPY && zip->codec2 == (unsigned long)-1) { /* Copy mode. */ /* * Note: '1' here is a performance optimization. * Recall that the decompression layer returns a count of * available bytes; asking for more than that forces the * decompressor to combine reads by copying data. */ *buff = __archive_read_ahead(a, 1, &bytes_avail); if (bytes_avail <= 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Truncated 7-Zip file data"); return (ARCHIVE_FATAL); } if ((size_t)bytes_avail > zip->uncompressed_buffer_bytes_remaining) bytes_avail = (ssize_t) zip->uncompressed_buffer_bytes_remaining; if ((size_t)bytes_avail > size) bytes_avail = (ssize_t)size; zip->pack_stream_bytes_unconsumed = bytes_avail; } else if (zip->uncompressed_buffer_pointer == NULL) { /* Decompression has failed. */ archive_set_error(&(a->archive), ARCHIVE_ERRNO_MISC, "Damaged 7-Zip archive"); return (ARCHIVE_FATAL); } else { /* Packed mode. */ if (minimum > zip->uncompressed_buffer_bytes_remaining) { /* * If remaining uncompressed data size is less than * the minimum size, fill the buffer up to the * minimum size. */ if (extract_pack_stream(a, minimum) < 0) return (ARCHIVE_FATAL); } if (size > zip->uncompressed_buffer_bytes_remaining) bytes_avail = (ssize_t) zip->uncompressed_buffer_bytes_remaining; else bytes_avail = (ssize_t)size; *buff = zip->uncompressed_buffer_pointer; zip->uncompressed_buffer_pointer += bytes_avail; } zip->uncompressed_buffer_bytes_remaining -= bytes_avail; return (bytes_avail); }
CWE-125
182,656
3,893
172034182329715273594814063437732540486
null
null
null
ImageMagick
ecf7c6b288e11e7e7f75387c5e9e93e423b98397
1
static MagickBooleanType TraceBezier(MVGInfo *mvg_info, const size_t number_coordinates) { double alpha, *coefficients, weight; PointInfo end, point, *points; PrimitiveInfo *primitive_info; register PrimitiveInfo *p; register ssize_t i, j; size_t control_points, quantum; /* Allocate coefficients. */ primitive_info=(*mvg_info->primitive_info)+mvg_info->offset; quantum=number_coordinates; for (i=0; i < (ssize_t) number_coordinates; i++) { for (j=i+1; j < (ssize_t) number_coordinates; j++) { alpha=fabs(primitive_info[j].point.x-primitive_info[i].point.x); if (alpha > (double) SSIZE_MAX) { (void) ThrowMagickException(mvg_info->exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",""); return(MagickFalse); } if (alpha > (double) quantum) quantum=(size_t) alpha; alpha=fabs(primitive_info[j].point.y-primitive_info[i].point.y); if (alpha > (double) SSIZE_MAX) { (void) ThrowMagickException(mvg_info->exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",""); return(MagickFalse); } if (alpha > (double) quantum) quantum=(size_t) alpha; } } quantum=MagickMin(quantum/number_coordinates,BezierQuantum); primitive_info=(*mvg_info->primitive_info)+mvg_info->offset; coefficients=(double *) AcquireQuantumMemory(number_coordinates, sizeof(*coefficients)); points=(PointInfo *) AcquireQuantumMemory(quantum,number_coordinates* sizeof(*points)); if ((coefficients == (double *) NULL) || (points == (PointInfo *) NULL)) { if (points != (PointInfo *) NULL) points=(PointInfo *) RelinquishMagickMemory(points); if (coefficients != (double *) NULL) coefficients=(double *) RelinquishMagickMemory(coefficients); (void) ThrowMagickException(mvg_info->exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",""); return(MagickFalse); } control_points=quantum*number_coordinates; if (CheckPrimitiveExtent(mvg_info,control_points+1) == MagickFalse) { points=(PointInfo *) RelinquishMagickMemory(points); coefficients=(double *) RelinquishMagickMemory(coefficients); return(MagickFalse); } /* Compute bezier points. */ end=primitive_info[number_coordinates-1].point; for (i=0; i < (ssize_t) number_coordinates; i++) coefficients[i]=Permutate((ssize_t) number_coordinates-1,i); weight=0.0; for (i=0; i < (ssize_t) control_points; i++) { p=primitive_info; point.x=0.0; point.y=0.0; alpha=pow((double) (1.0-weight),(double) number_coordinates-1.0); for (j=0; j < (ssize_t) number_coordinates; j++) { point.x+=alpha*coefficients[j]*p->point.x; point.y+=alpha*coefficients[j]*p->point.y; alpha*=weight/(1.0-weight); p++; } points[i]=point; weight+=1.0/control_points; } /* Bezier curves are just short segmented polys. */ p=primitive_info; for (i=0; i < (ssize_t) control_points; i++) { if (TracePoint(p,points[i]) == MagickFalse) { points=(PointInfo *) RelinquishMagickMemory(points); coefficients=(double *) RelinquishMagickMemory(coefficients); return(MagickFalse); } p+=p->coordinates; } if (TracePoint(p,end) == MagickFalse) { points=(PointInfo *) RelinquishMagickMemory(points); coefficients=(double *) RelinquishMagickMemory(coefficients); return(MagickFalse); } p+=p->coordinates; primitive_info->coordinates=(size_t) (p-primitive_info); primitive_info->closed_subpath=MagickFalse; for (i=0; i < (ssize_t) primitive_info->coordinates; i++) { p->primitive=primitive_info->primitive; p--; } points=(PointInfo *) RelinquishMagickMemory(points); coefficients=(double *) RelinquishMagickMemory(coefficients); return(MagickTrue); }
182,657
3,894
121438564734510893154338206426452772984
null
null
null
FFmpeg
02f909dc24b1f05cfbba75077c7707b905e63cd2
1
static av_cold int vqa_decode_init(AVCodecContext *avctx) { VqaContext *s = avctx->priv_data; int i, j, codebook_index, ret; s->avctx = avctx; avctx->pix_fmt = AV_PIX_FMT_PAL8; /* make sure the extradata made it */ if (s->avctx->extradata_size != VQA_HEADER_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "expected extradata size of %d\n", VQA_HEADER_SIZE); return AVERROR(EINVAL); } /* load up the VQA parameters from the header */ s->vqa_version = s->avctx->extradata[0]; switch (s->vqa_version) { case 1: case 2: break; case 3: avpriv_report_missing_feature(avctx, "VQA Version %d", s->vqa_version); return AVERROR_PATCHWELCOME; default: avpriv_request_sample(avctx, "VQA Version %i", s->vqa_version); return AVERROR_PATCHWELCOME; } s->width = AV_RL16(&s->avctx->extradata[6]); s->height = AV_RL16(&s->avctx->extradata[8]); if ((ret = av_image_check_size(s->width, s->height, 0, avctx)) < 0) { s->width= s->height= 0; return ret; } s->vector_width = s->avctx->extradata[10]; s->vector_height = s->avctx->extradata[11]; s->partial_count = s->partial_countdown = s->avctx->extradata[13]; /* the vector dimensions have to meet very stringent requirements */ if ((s->vector_width != 4) || ((s->vector_height != 2) && (s->vector_height != 4))) { /* return without further initialization */ return AVERROR_INVALIDDATA; } if (s->width % s->vector_width || s->height % s->vector_height) { av_log(avctx, AV_LOG_ERROR, "Image size not multiple of block size\n"); return AVERROR_INVALIDDATA; } /* allocate codebooks */ s->codebook_size = MAX_CODEBOOK_SIZE; s->codebook = av_malloc(s->codebook_size); if (!s->codebook) goto fail; s->next_codebook_buffer = av_malloc(s->codebook_size); if (!s->next_codebook_buffer) goto fail; /* allocate decode buffer */ s->decode_buffer_size = (s->width / s->vector_width) * (s->height / s->vector_height) * 2; s->decode_buffer = av_mallocz(s->decode_buffer_size); if (!s->decode_buffer) goto fail; /* initialize the solid-color vectors */ if (s->vector_height == 4) { codebook_index = 0xFF00 * 16; for (i = 0; i < 256; i++) for (j = 0; j < 16; j++) s->codebook[codebook_index++] = i; } else { codebook_index = 0xF00 * 8; for (i = 0; i < 256; i++) for (j = 0; j < 8; j++) s->codebook[codebook_index++] = i; } s->next_codebook_buffer_index = 0; return 0; fail: av_freep(&s->codebook); av_freep(&s->next_codebook_buffer); av_freep(&s->decode_buffer); return AVERROR(ENOMEM); }
182,658
3,895
316842430652442068597011136556372655888
null
null
null
FreeRDP
fc80ab45621bd966f70594c0b7393ec005a94007
1
static unsigned HuffmanTree_makeFromFrequencies(HuffmanTree* tree, const unsigned* frequencies, size_t mincodes, size_t numcodes, unsigned maxbitlen) { unsigned error = 0; while(!frequencies[numcodes - 1] && numcodes > mincodes) numcodes--; /*trim zeroes*/ tree->maxbitlen = maxbitlen; tree->numcodes = (unsigned)numcodes; /*number of symbols*/ tree->lengths = (unsigned*)realloc(tree->lengths, numcodes * sizeof(unsigned)); if(!tree->lengths) return 83; /*alloc fail*/ /*initialize all lengths to 0*/ memset(tree->lengths, 0, numcodes * sizeof(unsigned)); error = lodepng_huffman_code_lengths(tree->lengths, frequencies, numcodes, maxbitlen); if(!error) error = HuffmanTree_makeFromLengths2(tree); return error; }
CWE-772
182,671
3,903
314310845739413683327632662628636176827
null
null
null
linux
6caabe7f197d3466d238f70915d65301f1716626
1
int hsr_dev_finalize(struct net_device *hsr_dev, struct net_device *slave[2], unsigned char multicast_spec, u8 protocol_version) { struct hsr_priv *hsr; struct hsr_port *port; int res; hsr = netdev_priv(hsr_dev); INIT_LIST_HEAD(&hsr->ports); INIT_LIST_HEAD(&hsr->node_db); INIT_LIST_HEAD(&hsr->self_node_db); ether_addr_copy(hsr_dev->dev_addr, slave[0]->dev_addr); /* Make sure we recognize frames from ourselves in hsr_rcv() */ res = hsr_create_self_node(&hsr->self_node_db, hsr_dev->dev_addr, slave[1]->dev_addr); if (res < 0) return res; spin_lock_init(&hsr->seqnr_lock); /* Overflow soon to find bugs easier: */ hsr->sequence_nr = HSR_SEQNR_START; hsr->sup_sequence_nr = HSR_SUP_SEQNR_START; timer_setup(&hsr->announce_timer, hsr_announce, 0); timer_setup(&hsr->prune_timer, hsr_prune_nodes, 0); ether_addr_copy(hsr->sup_multicast_addr, def_multicast_addr); hsr->sup_multicast_addr[ETH_ALEN - 1] = multicast_spec; hsr->protVersion = protocol_version; /* FIXME: should I modify the value of these? * * - hsr_dev->flags - i.e. * IFF_MASTER/SLAVE? * - hsr_dev->priv_flags - i.e. * IFF_EBRIDGE? * IFF_TX_SKB_SHARING? * IFF_HSR_MASTER/SLAVE? */ /* Make sure the 1st call to netif_carrier_on() gets through */ netif_carrier_off(hsr_dev); res = hsr_add_port(hsr, hsr_dev, HSR_PT_MASTER); if (res) return res; res = register_netdevice(hsr_dev); if (res) goto fail; res = hsr_add_port(hsr, slave[0], HSR_PT_SLAVE_A); if (res) goto fail; res = hsr_add_port(hsr, slave[1], HSR_PT_SLAVE_B); if (res) goto fail; mod_timer(&hsr->prune_timer, jiffies + msecs_to_jiffies(PRUNE_PERIOD)); return 0; fail: hsr_for_each_port(hsr, port) hsr_del_port(port); return res; }
CWE-772
182,674
3,904
119005556713086028153791350544506054661
null
null
null
linux
07f12b26e21ab359261bf75cfcb424fdc7daeb6d
1
static int __net_init sit_init_net(struct net *net) { struct sit_net *sitn = net_generic(net, sit_net_id); struct ip_tunnel *t; int err; sitn->tunnels[0] = sitn->tunnels_wc; sitn->tunnels[1] = sitn->tunnels_l; sitn->tunnels[2] = sitn->tunnels_r; sitn->tunnels[3] = sitn->tunnels_r_l; if (!net_has_fallback_tunnels(net)) return 0; sitn->fb_tunnel_dev = alloc_netdev(sizeof(struct ip_tunnel), "sit0", NET_NAME_UNKNOWN, ipip6_tunnel_setup); if (!sitn->fb_tunnel_dev) { err = -ENOMEM; goto err_alloc_dev; } dev_net_set(sitn->fb_tunnel_dev, net); sitn->fb_tunnel_dev->rtnl_link_ops = &sit_link_ops; /* FB netdevice is special: we have one, and only one per netns. * Allowing to move it to another netns is clearly unsafe. */ sitn->fb_tunnel_dev->features |= NETIF_F_NETNS_LOCAL; err = register_netdev(sitn->fb_tunnel_dev); if (err) goto err_reg_dev; ipip6_tunnel_clone_6rd(sitn->fb_tunnel_dev, sitn); ipip6_fb_tunnel_init(sitn->fb_tunnel_dev); t = netdev_priv(sitn->fb_tunnel_dev); strcpy(t->parms.name, sitn->fb_tunnel_dev->name); return 0; err_reg_dev: ipip6_dev_free(sitn->fb_tunnel_dev); err_alloc_dev: return err; }
CWE-772
182,675
3,905
172436102843847513192111079812504216595
null
null
null
linux
df7e40425813c50cd252e6f5e348a81ef1acae56
1
static struct ib_ucontext *hns_roce_alloc_ucontext(struct ib_device *ib_dev, struct ib_udata *udata) { int ret = 0; struct hns_roce_ucontext *context; struct hns_roce_ib_alloc_ucontext_resp resp; struct hns_roce_dev *hr_dev = to_hr_dev(ib_dev); resp.qp_tab_size = hr_dev->caps.num_qps; context = kmalloc(sizeof(*context), GFP_KERNEL); if (!context) return ERR_PTR(-ENOMEM); ret = hns_roce_uar_alloc(hr_dev, &context->uar); if (ret) goto error_fail_uar_alloc; if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_RECORD_DB) { INIT_LIST_HEAD(&context->page_list); mutex_init(&context->page_mutex); } ret = ib_copy_to_udata(udata, &resp, sizeof(resp)); if (ret) goto error_fail_copy_to_udata; return &context->ibucontext; error_fail_copy_to_udata: hns_roce_uar_free(hr_dev, &context->uar); error_fail_uar_alloc: kfree(context); return ERR_PTR(ret); }
CWE-665
182,676
3,906
64634537219115924760290964582584954138
null
null
null
linux
7d0a06586b2686ba80c4a2da5f91cb10ffbea736
1
void rds6_inc_info_copy(struct rds_incoming *inc, struct rds_info_iterator *iter, struct in6_addr *saddr, struct in6_addr *daddr, int flip) { struct rds6_info_message minfo6; minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence); minfo6.len = be32_to_cpu(inc->i_hdr.h_len); if (flip) { minfo6.laddr = *daddr; minfo6.faddr = *saddr; minfo6.lport = inc->i_hdr.h_dport; minfo6.fport = inc->i_hdr.h_sport; } else { minfo6.laddr = *saddr; minfo6.faddr = *daddr; minfo6.lport = inc->i_hdr.h_sport; minfo6.fport = inc->i_hdr.h_dport; } rds_info_copy(iter, &minfo6, sizeof(minfo6)); }
CWE-200
182,682
3,912
4978163243173314372841183496877822786
null
null
null
ngiflib
37d939a6f511d16d4c95678025c235fe62e6417a
1
static void WritePixel(struct ngiflib_img * i, struct ngiflib_decode_context * context, u8 v) { struct ngiflib_gif * p = i->parent; if(v!=i->gce.transparent_color || !i->gce.transparent_flag) { #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ *context->frbuff_p.p8 = v; #ifndef NGIFLIB_INDEXED_ONLY } else *context->frbuff_p.p32 = GifIndexToTrueColor(i->palette, v); #endif /* NGIFLIB_INDEXED_ONLY */ } if(--(context->Xtogo) <= 0) { #ifdef NGIFLIB_ENABLE_CALLBACKS if(p->line_cb) p->line_cb(p, context->line_p, context->curY); #endif /* NGIFLIB_ENABLE_CALLBACKS */ context->Xtogo = i->width; switch(context->pass) { case 0: context->curY++; break; case 1: /* 1st pass : every eighth row starting from 0 */ context->curY += 8; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 4; } break; case 2: /* 2nd pass : every eighth row starting from 4 */ context->curY += 8; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 2; } break; case 3: /* 3rd pass : every fourth row starting from 2 */ context->curY += 4; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 1; } break; case 4: /* 4th pass : every odd row */ context->curY += 2; break; } #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ #ifdef NGIFLIB_ENABLE_CALLBACKS context->line_p.p8 = p->frbuff.p8 + (u32)context->curY*p->width; context->frbuff_p.p8 = context->line_p.p8 + i->posX; #else context->frbuff_p.p8 = p->frbuff.p8 + (u32)context->curY*p->width + i->posX; #endif /* NGIFLIB_ENABLE_CALLBACKS */ #ifndef NGIFLIB_INDEXED_ONLY } else { #ifdef NGIFLIB_ENABLE_CALLBACKS context->line_p.p32 = p->frbuff.p32 + (u32)context->curY*p->width; context->frbuff_p.p32 = context->line_p.p32 + i->posX; #else context->frbuff_p.p32 = p->frbuff.p32 + (u32)context->curY*p->width + i->posX; #endif /* NGIFLIB_ENABLE_CALLBACKS */ } #endif /* NGIFLIB_INDEXED_ONLY */ } else { #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ context->frbuff_p.p8++; #ifndef NGIFLIB_INDEXED_ONLY } else { context->frbuff_p.p32++; } #endif /* NGIFLIB_INDEXED_ONLY */ } }
CWE-119
182,683
3,913
48375775932930185724867683324130029206
null
null
null
ngiflib
37d939a6f511d16d4c95678025c235fe62e6417a
1
static void WritePixels(struct ngiflib_img * i, struct ngiflib_decode_context * context, const u8 * pixels, u16 n) { u16 tocopy; struct ngiflib_gif * p = i->parent; while(n > 0) { tocopy = (context->Xtogo < n) ? context->Xtogo : n; if(!i->gce.transparent_flag) { #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ ngiflib_memcpy(context->frbuff_p.p8, pixels, tocopy); pixels += tocopy; context->frbuff_p.p8 += tocopy; #ifndef NGIFLIB_INDEXED_ONLY } else { int j; for(j = (int)tocopy; j > 0; j--) { *(context->frbuff_p.p32++) = GifIndexToTrueColor(i->palette, *pixels++); } } #endif /* NGIFLIB_INDEXED_ONLY */ } else { int j; #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ for(j = (int)tocopy; j > 0; j--) { if(*pixels != i->gce.transparent_color) *context->frbuff_p.p8 = *pixels; pixels++; context->frbuff_p.p8++; } #ifndef NGIFLIB_INDEXED_ONLY } else { for(j = (int)tocopy; j > 0; j--) { if(*pixels != i->gce.transparent_color) { *context->frbuff_p.p32 = GifIndexToTrueColor(i->palette, *pixels); } pixels++; context->frbuff_p.p32++; } } #endif /* NGIFLIB_INDEXED_ONLY */ } context->Xtogo -= tocopy; if(context->Xtogo == 0) { #ifdef NGIFLIB_ENABLE_CALLBACKS if(p->line_cb) p->line_cb(p, context->line_p, context->curY); #endif /* NGIFLIB_ENABLE_CALLBACKS */ context->Xtogo = i->width; switch(context->pass) { case 0: context->curY++; break; case 1: /* 1st pass : every eighth row starting from 0 */ context->curY += 8; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 4; } break; case 2: /* 2nd pass : every eighth row starting from 4 */ context->curY += 8; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 2; } break; case 3: /* 3rd pass : every fourth row starting from 2 */ context->curY += 4; if(context->curY >= p->height) { context->pass++; context->curY = i->posY + 1; } break; case 4: /* 4th pass : every odd row */ context->curY += 2; break; } #ifndef NGIFLIB_INDEXED_ONLY if(p->mode & NGIFLIB_MODE_INDEXED) { #endif /* NGIFLIB_INDEXED_ONLY */ #ifdef NGIFLIB_ENABLE_CALLBACKS context->line_p.p8 = p->frbuff.p8 + (u32)context->curY*p->width; context->frbuff_p.p8 = context->line_p.p8 + i->posX; #else context->frbuff_p.p8 = p->frbuff.p8 + (u32)context->curY*p->width + i->posX; #endif /* NGIFLIB_ENABLE_CALLBACKS */ #ifndef NGIFLIB_INDEXED_ONLY } else { #ifdef NGIFLIB_ENABLE_CALLBACKS context->line_p.p32 = p->frbuff.p32 + (u32)context->curY*p->width; context->frbuff_p.p32 = context->line_p.p32 + i->posX; #else context->frbuff_p.p32 = p->frbuff.p32 + (u32)context->curY*p->width + i->posX; #endif /* NGIFLIB_ENABLE_CALLBACKS */ } #endif /* NGIFLIB_INDEXED_ONLY */ } n -= tocopy; } }
CWE-119
182,684
3,914
121149780617115001490343375689676600724
null
null
null
pam_p11
d150b60e1e14c261b113f55681419ad1dfa8a76c
1
static int key_verify(pam_handle_t *pamh, int flags, PKCS11_KEY *authkey) { int ok = 0; unsigned char challenge[30]; unsigned char signature[256]; unsigned int siglen = sizeof signature; const EVP_MD *md = EVP_sha1(); EVP_MD_CTX *md_ctx = EVP_MD_CTX_new(); EVP_PKEY *privkey = PKCS11_get_private_key(authkey); EVP_PKEY *pubkey = PKCS11_get_public_key(authkey); /* Verify a SHA-1 hash of random data, signed by the key. * * Note that this will not work keys that aren't eligible for signing. * Unfortunately, libp11 currently has no way of checking * C_GetAttributeValue(CKA_SIGN), see * https://github.com/OpenSC/libp11/issues/219. Since we don't want to * implement try and error, we live with this limitation */ if (1 != randomize(pamh, challenge, sizeof challenge)) { goto err; } if (NULL == pubkey || NULL == privkey || NULL == md_ctx || NULL == md || !EVP_SignInit(md_ctx, md) || !EVP_SignUpdate(md_ctx, challenge, sizeof challenge) || !EVP_SignFinal(md_ctx, signature, &siglen, privkey) || !EVP_MD_CTX_reset(md_ctx) || !EVP_VerifyInit(md_ctx, md) || !EVP_VerifyUpdate(md_ctx, challenge, sizeof challenge) || 1 != EVP_VerifyFinal(md_ctx, signature, siglen, pubkey)) { pam_syslog(pamh, LOG_DEBUG, "Error verifying key: %s\n", ERR_reason_error_string(ERR_get_error())); prompt(flags, pamh, PAM_ERROR_MSG, NULL, _("Error verifying key")); goto err; } ok = 1; err: if (NULL != pubkey) EVP_PKEY_free(pubkey); if (NULL != privkey) EVP_PKEY_free(privkey); if (NULL != md_ctx) { EVP_MD_CTX_free(md_ctx); } return ok; }
CWE-119
182,685
3,915
188572096424461194823633593541595883788
null
null
null
OpenSC
412a6142c27a5973c61ba540e33cdc22d5608e68
1
static int decode_bit_string(const u8 * inbuf, size_t inlen, void *outbuf, size_t outlen, int invert) { const u8 *in = inbuf; u8 *out = (u8 *) outbuf; int zero_bits = *in & 0x07; size_t octets_left = inlen - 1; int i, count = 0; memset(outbuf, 0, outlen); in++; if (outlen < octets_left) return SC_ERROR_BUFFER_TOO_SMALL; if (inlen < 1) return SC_ERROR_INVALID_ASN1_OBJECT; while (octets_left) { /* 1st octet of input: ABCDEFGH, where A is the MSB */ /* 1st octet of output: HGFEDCBA, where A is the LSB */ /* first bit in bit string is the LSB in first resulting octet */ int bits_to_go; *out = 0; if (octets_left == 1) bits_to_go = 8 - zero_bits; else bits_to_go = 8; if (invert) for (i = 0; i < bits_to_go; i++) { *out |= ((*in >> (7 - i)) & 1) << i; } else { *out = *in; } out++; in++; octets_left--; count++; } return (count * 8) - zero_bits; }
CWE-119
182,687
3,916
35056032605146491128134611908744837465
null
null
null
linux
01ca667133d019edc9f0a1f70a272447c84ec41f
1
static int __init fm10k_init_module(void) { pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version); pr_info("%s\n", fm10k_copyright); /* create driver workqueue */ fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, fm10k_driver_name); fm10k_dbg_init(); return fm10k_register_pci_driver(); }
CWE-476
182,688
3,917
247849593238575593335699554271677890854
null
null
null
linux
ceabee6c59943bdd5e1da1a6a20dc7ee5f8113a2
1
int genl_register_family(struct genl_family *family) { int err, i; int start = GENL_START_ALLOC, end = GENL_MAX_ID; err = genl_validate_ops(family); if (err) return err; genl_lock_all(); if (genl_family_find_byname(family->name)) { err = -EEXIST; goto errout_locked; } /* * Sadly, a few cases need to be special-cased * due to them having previously abused the API * and having used their family ID also as their * multicast group ID, so we use reserved IDs * for both to be sure we can do that mapping. */ if (family == &genl_ctrl) { /* and this needs to be special for initial family lookups */ start = end = GENL_ID_CTRL; } else if (strcmp(family->name, "pmcraid") == 0) { start = end = GENL_ID_PMCRAID; } else if (strcmp(family->name, "VFS_DQUOT") == 0) { start = end = GENL_ID_VFS_DQUOT; } if (family->maxattr && !family->parallel_ops) { family->attrbuf = kmalloc_array(family->maxattr + 1, sizeof(struct nlattr *), GFP_KERNEL); if (family->attrbuf == NULL) { err = -ENOMEM; goto errout_locked; } } else family->attrbuf = NULL; family->id = idr_alloc(&genl_fam_idr, family, start, end + 1, GFP_KERNEL); if (family->id < 0) { err = family->id; goto errout_locked; } err = genl_validate_assign_mc_groups(family); if (err) goto errout_remove; genl_unlock_all(); /* send all events */ genl_ctrl_event(CTRL_CMD_NEWFAMILY, family, NULL, 0); for (i = 0; i < family->n_mcgrps; i++) genl_ctrl_event(CTRL_CMD_NEWMCAST_GRP, family, &family->mcgrps[i], family->mcgrp_offset + i); return 0; errout_remove: idr_remove(&genl_fam_idr, family->id); kfree(family->attrbuf); errout_locked: genl_unlock_all(); return err; }
CWE-399
182,696
3,924
108757618594854407125473728635580181721
null
null
null
linux
088aaf17aa79300cab14dbee2569c58cfafd7d6e
1
SMB2_read(const unsigned int xid, struct cifs_io_parms *io_parms, unsigned int *nbytes, char **buf, int *buf_type) { struct smb_rqst rqst; int resp_buftype, rc = -EACCES; struct smb2_read_plain_req *req = NULL; struct smb2_read_rsp *rsp = NULL; struct kvec iov[1]; struct kvec rsp_iov; unsigned int total_len; int flags = CIFS_LOG_ERROR; struct cifs_ses *ses = io_parms->tcon->ses; *nbytes = 0; rc = smb2_new_read_req((void **)&req, &total_len, io_parms, NULL, 0, 0); if (rc) return rc; if (smb3_encryption_required(io_parms->tcon)) flags |= CIFS_TRANSFORM_REQ; iov[0].iov_base = (char *)req; iov[0].iov_len = total_len; memset(&rqst, 0, sizeof(struct smb_rqst)); rqst.rq_iov = iov; rqst.rq_nvec = 1; rc = cifs_send_recv(xid, ses, &rqst, &resp_buftype, flags, &rsp_iov); cifs_small_buf_release(req); rsp = (struct smb2_read_rsp *)rsp_iov.iov_base; if (rc) { if (rc != -ENODATA) { cifs_stats_fail_inc(io_parms->tcon, SMB2_READ_HE); cifs_dbg(VFS, "Send error in read = %d\n", rc); trace_smb3_read_err(xid, req->PersistentFileId, io_parms->tcon->tid, ses->Suid, io_parms->offset, io_parms->length, rc); } else trace_smb3_read_done(xid, req->PersistentFileId, io_parms->tcon->tid, ses->Suid, io_parms->offset, 0); free_rsp_buf(resp_buftype, rsp_iov.iov_base); return rc == -ENODATA ? 0 : rc; } else trace_smb3_read_done(xid, req->PersistentFileId, io_parms->tcon->tid, ses->Suid, io_parms->offset, io_parms->length); *nbytes = le32_to_cpu(rsp->DataLength); if ((*nbytes > CIFS_MAX_MSGSIZE) || (*nbytes > io_parms->length)) { cifs_dbg(FYI, "bad length %d for count %d\n", *nbytes, io_parms->length); rc = -EIO; *nbytes = 0; } if (*buf) { memcpy(*buf, (char *)rsp + rsp->DataOffset, *nbytes); free_rsp_buf(resp_buftype, rsp_iov.iov_base); } else if (resp_buftype != CIFS_NO_BUFFER) { *buf = rsp_iov.iov_base; if (resp_buftype == CIFS_SMALL_BUFFER) *buf_type = CIFS_SMALL_BUFFER; else if (resp_buftype == CIFS_LARGE_BUFFER) *buf_type = CIFS_LARGE_BUFFER; } return rc; }
CWE-416
182,697
3,925
86958898671006708369220523221200158619
null
null
null
linux
6a3eb3360667170988f8a6477f6686242061488a
1
SMB2_write(const unsigned int xid, struct cifs_io_parms *io_parms, unsigned int *nbytes, struct kvec *iov, int n_vec) { struct smb_rqst rqst; int rc = 0; struct smb2_write_req *req = NULL; struct smb2_write_rsp *rsp = NULL; int resp_buftype; struct kvec rsp_iov; int flags = 0; unsigned int total_len; *nbytes = 0; if (n_vec < 1) return rc; rc = smb2_plain_req_init(SMB2_WRITE, io_parms->tcon, (void **) &req, &total_len); if (rc) return rc; if (io_parms->tcon->ses->server == NULL) return -ECONNABORTED; if (smb3_encryption_required(io_parms->tcon)) flags |= CIFS_TRANSFORM_REQ; req->sync_hdr.ProcessId = cpu_to_le32(io_parms->pid); req->PersistentFileId = io_parms->persistent_fid; req->VolatileFileId = io_parms->volatile_fid; req->WriteChannelInfoOffset = 0; req->WriteChannelInfoLength = 0; req->Channel = 0; req->Length = cpu_to_le32(io_parms->length); req->Offset = cpu_to_le64(io_parms->offset); req->DataOffset = cpu_to_le16( offsetof(struct smb2_write_req, Buffer)); req->RemainingBytes = 0; trace_smb3_write_enter(xid, io_parms->persistent_fid, io_parms->tcon->tid, io_parms->tcon->ses->Suid, io_parms->offset, io_parms->length); iov[0].iov_base = (char *)req; /* 1 for Buffer */ iov[0].iov_len = total_len - 1; memset(&rqst, 0, sizeof(struct smb_rqst)); rqst.rq_iov = iov; rqst.rq_nvec = n_vec + 1; rc = cifs_send_recv(xid, io_parms->tcon->ses, &rqst, &resp_buftype, flags, &rsp_iov); cifs_small_buf_release(req); rsp = (struct smb2_write_rsp *)rsp_iov.iov_base; if (rc) { trace_smb3_write_err(xid, req->PersistentFileId, io_parms->tcon->tid, io_parms->tcon->ses->Suid, io_parms->offset, io_parms->length, rc); cifs_stats_fail_inc(io_parms->tcon, SMB2_WRITE_HE); cifs_dbg(VFS, "Send error in write = %d\n", rc); } else { *nbytes = le32_to_cpu(rsp->DataLength); trace_smb3_write_done(xid, req->PersistentFileId, io_parms->tcon->tid, io_parms->tcon->ses->Suid, io_parms->offset, *nbytes); } free_rsp_buf(resp_buftype, rsp); return rc; }
CWE-416
182,698
3,926
57757169545362263238503424238941036670
null
null
null
linux
b57a55e2200ede754e4dc9cce4ba9402544b9365
1
SMB2_negotiate(const unsigned int xid, struct cifs_ses *ses) { struct smb_rqst rqst; struct smb2_negotiate_req *req; struct smb2_negotiate_rsp *rsp; struct kvec iov[1]; struct kvec rsp_iov; int rc = 0; int resp_buftype; struct TCP_Server_Info *server = ses->server; int blob_offset, blob_length; char *security_blob; int flags = CIFS_NEG_OP; unsigned int total_len; cifs_dbg(FYI, "Negotiate protocol\n"); if (!server) { WARN(1, "%s: server is NULL!\n", __func__); return -EIO; } rc = smb2_plain_req_init(SMB2_NEGOTIATE, NULL, (void **) &req, &total_len); if (rc) return rc; req->sync_hdr.SessionId = 0; memset(server->preauth_sha_hash, 0, SMB2_PREAUTH_HASH_SIZE); memset(ses->preauth_sha_hash, 0, SMB2_PREAUTH_HASH_SIZE); if (strcmp(ses->server->vals->version_string, SMB3ANY_VERSION_STRING) == 0) { req->Dialects[0] = cpu_to_le16(SMB30_PROT_ID); req->Dialects[1] = cpu_to_le16(SMB302_PROT_ID); req->DialectCount = cpu_to_le16(2); total_len += 4; } else if (strcmp(ses->server->vals->version_string, SMBDEFAULT_VERSION_STRING) == 0) { req->Dialects[0] = cpu_to_le16(SMB21_PROT_ID); req->Dialects[1] = cpu_to_le16(SMB30_PROT_ID); req->Dialects[2] = cpu_to_le16(SMB302_PROT_ID); req->Dialects[3] = cpu_to_le16(SMB311_PROT_ID); req->DialectCount = cpu_to_le16(4); total_len += 8; } else { /* otherwise send specific dialect */ req->Dialects[0] = cpu_to_le16(ses->server->vals->protocol_id); req->DialectCount = cpu_to_le16(1); total_len += 2; } /* only one of SMB2 signing flags may be set in SMB2 request */ if (ses->sign) req->SecurityMode = cpu_to_le16(SMB2_NEGOTIATE_SIGNING_REQUIRED); else if (global_secflags & CIFSSEC_MAY_SIGN) req->SecurityMode = cpu_to_le16(SMB2_NEGOTIATE_SIGNING_ENABLED); else req->SecurityMode = 0; req->Capabilities = cpu_to_le32(ses->server->vals->req_capabilities); /* ClientGUID must be zero for SMB2.02 dialect */ if (ses->server->vals->protocol_id == SMB20_PROT_ID) memset(req->ClientGUID, 0, SMB2_CLIENT_GUID_SIZE); else { memcpy(req->ClientGUID, server->client_guid, SMB2_CLIENT_GUID_SIZE); if ((ses->server->vals->protocol_id == SMB311_PROT_ID) || (strcmp(ses->server->vals->version_string, SMBDEFAULT_VERSION_STRING) == 0)) assemble_neg_contexts(req, &total_len); } iov[0].iov_base = (char *)req; iov[0].iov_len = total_len; memset(&rqst, 0, sizeof(struct smb_rqst)); rqst.rq_iov = iov; rqst.rq_nvec = 1; rc = cifs_send_recv(xid, ses, &rqst, &resp_buftype, flags, &rsp_iov); cifs_small_buf_release(req); rsp = (struct smb2_negotiate_rsp *)rsp_iov.iov_base; /* * No tcon so can't do * cifs_stats_inc(&tcon->stats.smb2_stats.smb2_com_fail[SMB2...]); */ if (rc == -EOPNOTSUPP) { cifs_dbg(VFS, "Dialect not supported by server. Consider " "specifying vers=1.0 or vers=2.0 on mount for accessing" " older servers\n"); goto neg_exit; } else if (rc != 0) goto neg_exit; if (strcmp(ses->server->vals->version_string, SMB3ANY_VERSION_STRING) == 0) { if (rsp->DialectRevision == cpu_to_le16(SMB20_PROT_ID)) { cifs_dbg(VFS, "SMB2 dialect returned but not requested\n"); return -EIO; } else if (rsp->DialectRevision == cpu_to_le16(SMB21_PROT_ID)) { cifs_dbg(VFS, "SMB2.1 dialect returned but not requested\n"); return -EIO; } } else if (strcmp(ses->server->vals->version_string, SMBDEFAULT_VERSION_STRING) == 0) { if (rsp->DialectRevision == cpu_to_le16(SMB20_PROT_ID)) { cifs_dbg(VFS, "SMB2 dialect returned but not requested\n"); return -EIO; } else if (rsp->DialectRevision == cpu_to_le16(SMB21_PROT_ID)) { /* ops set to 3.0 by default for default so update */ ses->server->ops = &smb21_operations; } else if (rsp->DialectRevision == cpu_to_le16(SMB311_PROT_ID)) ses->server->ops = &smb311_operations; } else if (le16_to_cpu(rsp->DialectRevision) != ses->server->vals->protocol_id) { /* if requested single dialect ensure returned dialect matched */ cifs_dbg(VFS, "Illegal 0x%x dialect returned: not requested\n", le16_to_cpu(rsp->DialectRevision)); return -EIO; } cifs_dbg(FYI, "mode 0x%x\n", rsp->SecurityMode); if (rsp->DialectRevision == cpu_to_le16(SMB20_PROT_ID)) cifs_dbg(FYI, "negotiated smb2.0 dialect\n"); else if (rsp->DialectRevision == cpu_to_le16(SMB21_PROT_ID)) cifs_dbg(FYI, "negotiated smb2.1 dialect\n"); else if (rsp->DialectRevision == cpu_to_le16(SMB30_PROT_ID)) cifs_dbg(FYI, "negotiated smb3.0 dialect\n"); else if (rsp->DialectRevision == cpu_to_le16(SMB302_PROT_ID)) cifs_dbg(FYI, "negotiated smb3.02 dialect\n"); else if (rsp->DialectRevision == cpu_to_le16(SMB311_PROT_ID)) cifs_dbg(FYI, "negotiated smb3.1.1 dialect\n"); else { cifs_dbg(VFS, "Illegal dialect returned by server 0x%x\n", le16_to_cpu(rsp->DialectRevision)); rc = -EIO; goto neg_exit; } server->dialect = le16_to_cpu(rsp->DialectRevision); /* * Keep a copy of the hash after negprot. This hash will be * the starting hash value for all sessions made from this * server. */ memcpy(server->preauth_sha_hash, ses->preauth_sha_hash, SMB2_PREAUTH_HASH_SIZE); /* SMB2 only has an extended negflavor */ server->negflavor = CIFS_NEGFLAVOR_EXTENDED; /* set it to the maximum buffer size value we can send with 1 credit */ server->maxBuf = min_t(unsigned int, le32_to_cpu(rsp->MaxTransactSize), SMB2_MAX_BUFFER_SIZE); server->max_read = le32_to_cpu(rsp->MaxReadSize); server->max_write = le32_to_cpu(rsp->MaxWriteSize); server->sec_mode = le16_to_cpu(rsp->SecurityMode); if ((server->sec_mode & SMB2_SEC_MODE_FLAGS_ALL) != server->sec_mode) cifs_dbg(FYI, "Server returned unexpected security mode 0x%x\n", server->sec_mode); server->capabilities = le32_to_cpu(rsp->Capabilities); /* Internal types */ server->capabilities |= SMB2_NT_FIND | SMB2_LARGE_FILES; security_blob = smb2_get_data_area_len(&blob_offset, &blob_length, (struct smb2_sync_hdr *)rsp); /* * See MS-SMB2 section 2.2.4: if no blob, client picks default which * for us will be * ses->sectype = RawNTLMSSP; * but for time being this is our only auth choice so doesn't matter. * We just found a server which sets blob length to zero expecting raw. */ if (blob_length == 0) { cifs_dbg(FYI, "missing security blob on negprot\n"); server->sec_ntlmssp = true; } rc = cifs_enable_signing(server, ses->sign); if (rc) goto neg_exit; if (blob_length) { rc = decode_negTokenInit(security_blob, blob_length, server); if (rc == 1) rc = 0; else if (rc == 0) rc = -EIO; } if (rsp->DialectRevision == cpu_to_le16(SMB311_PROT_ID)) { if (rsp->NegotiateContextCount) rc = smb311_decode_neg_context(rsp, server, rsp_iov.iov_len); else cifs_dbg(VFS, "Missing expected negotiate contexts\n"); } neg_exit: free_rsp_buf(resp_buftype, rsp); return rc; }
CWE-125
182,699
3,927
205015380050265479080256698117700745134
null
null
null
linux
56897b217a1d0a91c9920cb418d6b3fe922f590a
1
static int hci_uart_set_proto(struct hci_uart *hu, int id) { const struct hci_uart_proto *p; int err; p = hci_uart_get_proto(id); if (!p) return -EPROTONOSUPPORT; hu->proto = p; set_bit(HCI_UART_PROTO_READY, &hu->flags); err = hci_uart_register_dev(hu); if (err) { clear_bit(HCI_UART_PROTO_READY, &hu->flags); return err; } return 0; }
CWE-416
182,700
3,928
136154177591265244860327524236767709957
null
null
null
linux
1fb254aa983bf190cfd685d40c64a480a9bafaee
1
xfs_setattr_nonsize( struct xfs_inode *ip, struct iattr *iattr, int flags) { xfs_mount_t *mp = ip->i_mount; struct inode *inode = VFS_I(ip); int mask = iattr->ia_valid; xfs_trans_t *tp; int error; kuid_t uid = GLOBAL_ROOT_UID, iuid = GLOBAL_ROOT_UID; kgid_t gid = GLOBAL_ROOT_GID, igid = GLOBAL_ROOT_GID; struct xfs_dquot *udqp = NULL, *gdqp = NULL; struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL; ASSERT((mask & ATTR_SIZE) == 0); /* * If disk quotas is on, we make sure that the dquots do exist on disk, * before we start any other transactions. Trying to do this later * is messy. We don't care to take a readlock to look at the ids * in inode here, because we can't hold it across the trans_reserve. * If the IDs do change before we take the ilock, we're covered * because the i_*dquot fields will get updated anyway. */ if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) { uint qflags = 0; if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) { uid = iattr->ia_uid; qflags |= XFS_QMOPT_UQUOTA; } else { uid = inode->i_uid; } if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) { gid = iattr->ia_gid; qflags |= XFS_QMOPT_GQUOTA; } else { gid = inode->i_gid; } /* * We take a reference when we initialize udqp and gdqp, * so it is important that we never blindly double trip on * the same variable. See xfs_create() for an example. */ ASSERT(udqp == NULL); ASSERT(gdqp == NULL); error = xfs_qm_vop_dqalloc(ip, xfs_kuid_to_uid(uid), xfs_kgid_to_gid(gid), xfs_get_projid(ip), qflags, &udqp, &gdqp, NULL); if (error) return error; } error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); if (error) goto out_dqrele; xfs_ilock(ip, XFS_ILOCK_EXCL); xfs_trans_ijoin(tp, ip, 0); /* * Change file ownership. Must be the owner or privileged. */ if (mask & (ATTR_UID|ATTR_GID)) { /* * These IDs could have changed since we last looked at them. * But, we're assured that if the ownership did change * while we didn't have the inode locked, inode's dquot(s) * would have changed also. */ iuid = inode->i_uid; igid = inode->i_gid; gid = (mask & ATTR_GID) ? iattr->ia_gid : igid; uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid; /* * Do a quota reservation only if uid/gid is actually * going to change. */ if (XFS_IS_QUOTA_RUNNING(mp) && ((XFS_IS_UQUOTA_ON(mp) && !uid_eq(iuid, uid)) || (XFS_IS_GQUOTA_ON(mp) && !gid_eq(igid, gid)))) { ASSERT(tp); error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp, NULL, capable(CAP_FOWNER) ? XFS_QMOPT_FORCE_RES : 0); if (error) /* out of quota */ goto out_cancel; } } /* * Change file ownership. Must be the owner or privileged. */ if (mask & (ATTR_UID|ATTR_GID)) { /* * CAP_FSETID overrides the following restrictions: * * The set-user-ID and set-group-ID bits of a file will be * cleared upon successful return from chown() */ if ((inode->i_mode & (S_ISUID|S_ISGID)) && !capable(CAP_FSETID)) inode->i_mode &= ~(S_ISUID|S_ISGID); /* * Change the ownerships and register quota modifications * in the transaction. */ if (!uid_eq(iuid, uid)) { if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) { ASSERT(mask & ATTR_UID); ASSERT(udqp); olddquot1 = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp); } ip->i_d.di_uid = xfs_kuid_to_uid(uid); inode->i_uid = uid; } if (!gid_eq(igid, gid)) { if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) { ASSERT(xfs_sb_version_has_pquotino(&mp->m_sb) || !XFS_IS_PQUOTA_ON(mp)); ASSERT(mask & ATTR_GID); ASSERT(gdqp); olddquot2 = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp); } ip->i_d.di_gid = xfs_kgid_to_gid(gid); inode->i_gid = gid; } } if (mask & ATTR_MODE) xfs_setattr_mode(ip, iattr); if (mask & (ATTR_ATIME|ATTR_CTIME|ATTR_MTIME)) xfs_setattr_time(ip, iattr); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); XFS_STATS_INC(mp, xs_ig_attrchg); if (mp->m_flags & XFS_MOUNT_WSYNC) xfs_trans_set_sync(tp); error = xfs_trans_commit(tp); xfs_iunlock(ip, XFS_ILOCK_EXCL); /* * Release any dquot(s) the inode had kept before chown. */ xfs_qm_dqrele(olddquot1); xfs_qm_dqrele(olddquot2); xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); if (error) return error; /* * XXX(hch): Updating the ACL entries is not atomic vs the i_mode * update. We could avoid this with linked transactions * and passing down the transaction pointer all the way * to attr_set. No previous user of the generic * Posix ACL code seems to care about this issue either. */ if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) { error = posix_acl_chmod(inode, inode->i_mode); if (error) return error; } return 0; out_cancel: xfs_trans_cancel(tp); out_dqrele: xfs_qm_dqrele(udqp); xfs_qm_dqrele(gdqp); return error; }
CWE-399
182,706
3,933
255274943777258110954580645137799780170
null
null
null
tcpdump
0b661e0aa61850234b64394585cf577aac570bf4
1
lmp_print_data_link_subobjs(netdissect_options *ndo, const u_char *obj_tptr, int total_subobj_len, int offset) { int hexdump = FALSE; int subobj_type, subobj_len; union { /* int to float conversion buffer */ float f; uint32_t i; } bw; while (total_subobj_len > 0 && hexdump == FALSE ) { subobj_type = EXTRACT_8BITS(obj_tptr + offset); subobj_len = EXTRACT_8BITS(obj_tptr + offset + 1); ND_PRINT((ndo, "\n\t Subobject, Type: %s (%u), Length: %u", tok2str(lmp_data_link_subobj, "Unknown", subobj_type), subobj_type, subobj_len)); if (subobj_len < 4) { ND_PRINT((ndo, " (too short)")); break; } if ((subobj_len % 4) != 0) { ND_PRINT((ndo, " (not a multiple of 4)")); break; } if (total_subobj_len < subobj_len) { ND_PRINT((ndo, " (goes past the end of the object)")); break; } switch(subobj_type) { case INT_SWITCHING_TYPE_SUBOBJ: ND_PRINT((ndo, "\n\t Switching Type: %s (%u)", tok2str(gmpls_switch_cap_values, "Unknown", EXTRACT_8BITS(obj_tptr + offset + 2)), EXTRACT_8BITS(obj_tptr + offset + 2))); ND_PRINT((ndo, "\n\t Encoding Type: %s (%u)", tok2str(gmpls_encoding_values, "Unknown", EXTRACT_8BITS(obj_tptr + offset + 3)), EXTRACT_8BITS(obj_tptr + offset + 3))); ND_TCHECK_32BITS(obj_tptr + offset + 4); bw.i = EXTRACT_32BITS(obj_tptr+offset+4); ND_PRINT((ndo, "\n\t Min Reservable Bandwidth: %.3f Mbps", bw.f*8/1000000)); bw.i = EXTRACT_32BITS(obj_tptr+offset+8); ND_PRINT((ndo, "\n\t Max Reservable Bandwidth: %.3f Mbps", bw.f*8/1000000)); break; case WAVELENGTH_SUBOBJ: ND_PRINT((ndo, "\n\t Wavelength: %u", EXTRACT_32BITS(obj_tptr+offset+4))); break; default: /* Any Unknown Subobject ==> Exit loop */ hexdump=TRUE; break; } total_subobj_len-=subobj_len; offset+=subobj_len; } return (hexdump); trunc: return -1; }
CWE-20
182,710
3,935
157557897929143566192618160849698294812
null
null
null
libpcap
a5a36d9e82dde7265e38fe1f87b7f11c461c29f6
1
pcap_ng_check_header(const uint8_t *magic, FILE *fp, u_int precision, char *errbuf, int *err) { bpf_u_int32 magic_int; size_t amt_read; bpf_u_int32 total_length; bpf_u_int32 byte_order_magic; struct block_header *bhdrp; struct section_header_block *shbp; pcap_t *p; int swapped = 0; struct pcap_ng_sf *ps; int status; struct block_cursor cursor; struct interface_description_block *idbp; /* * Assume no read errors. */ *err = 0; /* * Check whether the first 4 bytes of the file are the block * type for a pcapng savefile. */ memcpy(&magic_int, magic, sizeof(magic_int)); if (magic_int != BT_SHB) { /* * XXX - check whether this looks like what the block * type would be after being munged by mapping between * UN*X and DOS/Windows text file format and, if it * does, look for the byte-order magic number in * the appropriate place and, if we find it, report * this as possibly being a pcapng file transferred * between UN*X and Windows in text file format? */ return (NULL); /* nope */ } /* * OK, they are. However, that's just \n\r\r\n, so it could, * conceivably, be an ordinary text file. * * It could not, however, conceivably be any other type of * capture file, so we can read the rest of the putative * Section Header Block; put the block type in the common * header, read the rest of the common header and the * fixed-length portion of the SHB, and look for the byte-order * magic value. */ amt_read = fread(&total_length, 1, sizeof(total_length), fp); if (amt_read < sizeof(total_length)) { if (ferror(fp)) { pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno, "error reading dump file"); *err = 1; return (NULL); /* fail */ } /* * Possibly a weird short text file, so just say * "not pcapng". */ return (NULL); } amt_read = fread(&byte_order_magic, 1, sizeof(byte_order_magic), fp); if (amt_read < sizeof(byte_order_magic)) { if (ferror(fp)) { pcap_fmt_errmsg_for_errno(errbuf, PCAP_ERRBUF_SIZE, errno, "error reading dump file"); *err = 1; return (NULL); /* fail */ } /* * Possibly a weird short text file, so just say * "not pcapng". */ return (NULL); } if (byte_order_magic != BYTE_ORDER_MAGIC) { byte_order_magic = SWAPLONG(byte_order_magic); if (byte_order_magic != BYTE_ORDER_MAGIC) { /* * Not a pcapng file. */ return (NULL); } swapped = 1; total_length = SWAPLONG(total_length); } /* * Check the sanity of the total length. */ if (total_length < sizeof(*bhdrp) + sizeof(*shbp) + sizeof(struct block_trailer) || (total_length > BT_SHB_INSANE_MAX)) { pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "Section Header Block in pcapng dump file has invalid length %" PRIsize " < _%lu_ < %lu (BT_SHB_INSANE_MAX)", sizeof(*bhdrp) + sizeof(*shbp) + sizeof(struct block_trailer), total_length, BT_SHB_INSANE_MAX); *err = 1; return (NULL); } /* * OK, this is a good pcapng file. * Allocate a pcap_t for it. */ p = pcap_open_offline_common(errbuf, sizeof (struct pcap_ng_sf)); if (p == NULL) { /* Allocation failed. */ *err = 1; return (NULL); } p->swapped = swapped; ps = p->priv; /* * What precision does the user want? */ switch (precision) { case PCAP_TSTAMP_PRECISION_MICRO: ps->user_tsresol = 1000000; break; case PCAP_TSTAMP_PRECISION_NANO: ps->user_tsresol = 1000000000; break; default: pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "unknown time stamp resolution %u", precision); free(p); *err = 1; return (NULL); } p->opt.tstamp_precision = precision; /* * Allocate a buffer into which to read blocks. We default to * the maximum of: * * the total length of the SHB for which we read the header; * * 2K, which should be more than large enough for an Enhanced * Packet Block containing a full-size Ethernet frame, and * leaving room for some options. * * If we find a bigger block, we reallocate the buffer, up to * the maximum size. We start out with a maximum size of * INITIAL_MAX_BLOCKSIZE; if we see any link-layer header types * with a maximum snapshot that results in a larger maximum * block length, we boost the maximum. */ p->bufsize = 2048; if (p->bufsize < total_length) p->bufsize = total_length; p->buffer = malloc(p->bufsize); if (p->buffer == NULL) { pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "out of memory"); free(p); *err = 1; return (NULL); } ps->max_blocksize = INITIAL_MAX_BLOCKSIZE; /* * Copy the stuff we've read to the buffer, and read the rest * of the SHB. */ bhdrp = (struct block_header *)p->buffer; shbp = (struct section_header_block *)((u_char *)p->buffer + sizeof(struct block_header)); bhdrp->block_type = magic_int; bhdrp->total_length = total_length; shbp->byte_order_magic = byte_order_magic; if (read_bytes(fp, (u_char *)p->buffer + (sizeof(magic_int) + sizeof(total_length) + sizeof(byte_order_magic)), total_length - (sizeof(magic_int) + sizeof(total_length) + sizeof(byte_order_magic)), 1, errbuf) == -1) goto fail; if (p->swapped) { /* * Byte-swap the fields we've read. */ shbp->major_version = SWAPSHORT(shbp->major_version); shbp->minor_version = SWAPSHORT(shbp->minor_version); /* * XXX - we don't care about the section length. */ } /* currently only SHB version 1.0 is supported */ if (! (shbp->major_version == PCAP_NG_VERSION_MAJOR && shbp->minor_version == PCAP_NG_VERSION_MINOR)) { pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "unsupported pcapng savefile version %u.%u", shbp->major_version, shbp->minor_version); goto fail; } p->version_major = shbp->major_version; p->version_minor = shbp->minor_version; /* * Save the time stamp resolution the user requested. */ p->opt.tstamp_precision = precision; /* * Now start looking for an Interface Description Block. */ for (;;) { /* * Read the next block. */ status = read_block(fp, p, &cursor, errbuf); if (status == 0) { /* EOF - no IDB in this file */ pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "the capture file has no Interface Description Blocks"); goto fail; } if (status == -1) goto fail; /* error */ switch (cursor.block_type) { case BT_IDB: /* * Get a pointer to the fixed-length portion of the * IDB. */ idbp = get_from_block_data(&cursor, sizeof(*idbp), errbuf); if (idbp == NULL) goto fail; /* error */ /* * Byte-swap it if necessary. */ if (p->swapped) { idbp->linktype = SWAPSHORT(idbp->linktype); idbp->snaplen = SWAPLONG(idbp->snaplen); } /* * Try to add this interface. */ if (!add_interface(p, &cursor, errbuf)) goto fail; goto done; case BT_EPB: case BT_SPB: case BT_PB: /* * Saw a packet before we saw any IDBs. That's * not valid, as we don't know what link-layer * encapsulation the packet has. */ pcap_snprintf(errbuf, PCAP_ERRBUF_SIZE, "the capture file has a packet block before any Interface Description Blocks"); goto fail; default: /* * Just ignore it. */ break; } } done: p->tzoff = 0; /* XXX - not used in pcap */ p->linktype = linktype_to_dlt(idbp->linktype); p->snapshot = pcap_adjust_snapshot(p->linktype, idbp->snaplen); p->linktype_ext = 0; /* * If the maximum block size for a packet with the maximum * snapshot length for this DLT_ is bigger than the current * maximum block size, increase the maximum. */ if (MAX_BLOCKSIZE_FOR_SNAPLEN(max_snaplen_for_dlt(p->linktype)) > ps->max_blocksize) ps->max_blocksize = MAX_BLOCKSIZE_FOR_SNAPLEN(max_snaplen_for_dlt(p->linktype)); p->next_packet_op = pcap_ng_next_packet; p->cleanup_op = pcap_ng_cleanup; return (p); fail: free(ps->ifaces); free(p->buffer); free(p); *err = 1; return (NULL); }
CWE-20
182,711
3,936
62382392079134393664084007008674588988
null
null
null
gpmf-parser
341f12cd5b97ab419e53853ca00176457c9f1681
1
GPMF_ERR IsValidSize(GPMF_stream *ms, uint32_t size) // size is in longs not bytes. { if (ms) { int32_t nestsize = (int32_t)ms->nest_size[ms->nest_level]; if (nestsize == 0 && ms->nest_level == 0) nestsize = ms->buffer_size_longs; if (size + 2 <= nestsize) return GPMF_OK; } return GPMF_ERROR_BAD_STRUCTURE; }
CWE-787
182,716
3,937
39887036510019131347357739912182783183
null
null
null
gpmf-parser
341f12cd5b97ab419e53853ca00176457c9f1681
1
size_t OpenMP4Source(char *filename, uint32_t traktype, uint32_t traksubtype) //RAW or within MP4 { mp4object *mp4 = (mp4object *)malloc(sizeof(mp4object)); if (mp4 == NULL) return 0; memset(mp4, 0, sizeof(mp4object)); #ifdef _WINDOWS fopen_s(&mp4->mediafp, filename, "rb"); #else mp4->mediafp = fopen(filename, "rb"); #endif if (mp4->mediafp) { uint32_t qttag, qtsize32, skip, type = 0, subtype = 0, num; size_t len; int32_t nest = 0; uint64_t nestsize[MAX_NEST_LEVEL] = { 0 }; uint64_t lastsize = 0, qtsize; do { len = fread(&qtsize32, 1, 4, mp4->mediafp); len += fread(&qttag, 1, 4, mp4->mediafp); if (len == 8) { if (!VALID_FOURCC(qttag)) { LONGSEEK(mp4->mediafp, lastsize - 8 - 8, SEEK_CUR); NESTSIZE(lastsize - 8); continue; } qtsize32 = BYTESWAP32(qtsize32); if (qtsize32 == 1) // 64-bit Atom { fread(&qtsize, 1, 8, mp4->mediafp); qtsize = BYTESWAP64(qtsize) - 8; } else qtsize = qtsize32; nest++; if (qtsize < 8) break; if (nest >= MAX_NEST_LEVEL) break; nestsize[nest] = qtsize; lastsize = qtsize; #if PRINT_MP4_STRUCTURE for (int i = 1; i < nest; i++) printf(" "); printf("%c%c%c%c (%lld)\n", (qttag & 0xff), ((qttag >> 8) & 0xff), ((qttag >> 16) & 0xff), ((qttag >> 24) & 0xff), qtsize); if (qttag == MAKEID('m', 'd', 'a', 't') || qttag == MAKEID('f', 't', 'y', 'p') || qttag == MAKEID('u', 'd', 't', 'a')) { LONGSEEK(mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); continue; } #else if (qttag != MAKEID('m', 'o', 'o', 'v') && //skip over all but these atoms qttag != MAKEID('m', 'v', 'h', 'd') && qttag != MAKEID('t', 'r', 'a', 'k') && qttag != MAKEID('m', 'd', 'i', 'a') && qttag != MAKEID('m', 'd', 'h', 'd') && qttag != MAKEID('m', 'i', 'n', 'f') && qttag != MAKEID('g', 'm', 'i', 'n') && qttag != MAKEID('d', 'i', 'n', 'f') && qttag != MAKEID('a', 'l', 'i', 's') && qttag != MAKEID('s', 't', 's', 'd') && qttag != MAKEID('a', 'l', 'i', 's') && qttag != MAKEID('a', 'l', 'i', 's') && qttag != MAKEID('s', 't', 'b', 'l') && qttag != MAKEID('s', 't', 't', 's') && qttag != MAKEID('s', 't', 's', 'c') && qttag != MAKEID('s', 't', 's', 'z') && qttag != MAKEID('s', 't', 'c', 'o') && qttag != MAKEID('c', 'o', '6', '4') && qttag != MAKEID('h', 'd', 'l', 'r')) { LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else #endif if (qttag == MAKEID('m', 'v', 'h', 'd')) //mvhd movie header { len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&skip, 1, 4, mp4->mediafp); len += fread(&skip, 1, 4, mp4->mediafp); len += fread(&mp4->clockdemon, 1, 4, mp4->mediafp); mp4->clockdemon = BYTESWAP32(mp4->clockdemon); len += fread(&mp4->clockcount, 1, 4, mp4->mediafp); mp4->clockcount = BYTESWAP32(mp4->clockcount); LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over mvhd NESTSIZE(qtsize); } else if (qttag == MAKEID('m', 'd', 'h', 'd')) //mdhd media header { media_header md; len = fread(&md, 1, sizeof(md), mp4->mediafp); if (len == sizeof(md)) { md.creation_time = BYTESWAP32(md.creation_time); md.modification_time = BYTESWAP32(md.modification_time); md.time_scale = BYTESWAP32(md.time_scale); md.duration = BYTESWAP32(md.duration); mp4->trak_clockdemon = md.time_scale; mp4->trak_clockcount = md.duration; if (mp4->videolength == 0.0) // Get the video length from the first track { mp4->videolength = (float)((double)mp4->trak_clockcount / (double)mp4->trak_clockdemon); } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over mvhd NESTSIZE(qtsize); } else if (qttag == MAKEID('h', 'd', 'l', 'r')) //hldr { uint32_t temp; len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&skip, 1, 4, mp4->mediafp); len += fread(&temp, 1, 4, mp4->mediafp); // type will be 'meta' for the correct trak. if (temp != MAKEID('a', 'l', 'i', 's')) type = temp; LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over hldr NESTSIZE(qtsize); } else if (qttag == MAKEID('s', 't', 's', 'd')) //read the sample decription to determine the type of metadata { if (type == traktype) //like meta { len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&skip, 1, 4, mp4->mediafp); len += fread(&skip, 1, 4, mp4->mediafp); len += fread(&subtype, 1, 4, mp4->mediafp); // type will be 'meta' for the correct trak. if (len == 16) { if (subtype != traksubtype) // MP4 metadata { type = 0; // MP4 } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stsd } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else if (qttag == MAKEID('s', 't', 's', 'c')) // metadata stsc - offset chunks { if (type == traktype) // meta { len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&num, 1, 4, mp4->mediafp); num = BYTESWAP32(num); if (num * 12 <= qtsize - 8 - len) { mp4->metastsc_count = num; if (mp4->metastsc) free(mp4->metastsc); mp4->metastsc = (SampleToChunk *)malloc(num * 12); if (mp4->metastsc) { uint32_t total_stsc = num; len += fread(mp4->metastsc, 1, num * sizeof(SampleToChunk), mp4->mediafp); do { num--; mp4->metastsc[num].chunk_num = BYTESWAP32(mp4->metastsc[num].chunk_num); mp4->metastsc[num].samples = BYTESWAP32(mp4->metastsc[num].samples); mp4->metastsc[num].id = BYTESWAP32(mp4->metastsc[num].id); } while (num > 0); } if (mp4->metastsc_count == 1 && mp4->metastsc[0].samples == 1) // Simplify if the stsc is not reporting any grouped chunks. { if (mp4->metastsc) free(mp4->metastsc); mp4->metastsc = NULL; mp4->metastsc_count = 0; } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stsx } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else if (qttag == MAKEID('s', 't', 's', 'z')) // metadata stsz - sizes { if (type == traktype) // meta { uint32_t equalsamplesize; len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&equalsamplesize, 1, 4, mp4->mediafp); len += fread(&num, 1, 4, mp4->mediafp); num = BYTESWAP32(num); if (num * 4 <= qtsize - 8 - len) { mp4->metasize_count = num; if (mp4->metasizes) free(mp4->metasizes); mp4->metasizes = (uint32_t *)malloc(num * 4); if (mp4->metasizes) { if (equalsamplesize == 0) { len += fread(mp4->metasizes, 1, num * 4, mp4->mediafp); do { num--; mp4->metasizes[num] = BYTESWAP32(mp4->metasizes[num]); } while (num > 0); } else { equalsamplesize = BYTESWAP32(equalsamplesize); do { num--; mp4->metasizes[num] = equalsamplesize; } while (num > 0); } } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stsz } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else if (qttag == MAKEID('s', 't', 'c', 'o')) // metadata stco - offsets { if (type == traktype) // meta { len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&num, 1, 4, mp4->mediafp); num = BYTESWAP32(num); if (num * 4 <= qtsize - 8 - len) { if (mp4->metastsc_count > 0 && num != mp4->metasize_count) { mp4->indexcount = mp4->metasize_count; if (mp4->metaoffsets) free(mp4->metaoffsets); mp4->metaoffsets = (uint64_t *)malloc(mp4->metasize_count * 8); if (mp4->metaoffsets) { uint32_t *metaoffsets32 = NULL; metaoffsets32 = (uint32_t *)malloc(num * 4); if (metaoffsets32) { uint64_t fileoffset = 0; int stsc_pos = 0; int stco_pos = 0; int repeat = 1; len += fread(metaoffsets32, 1, num * 4, mp4->mediafp); do { num--; metaoffsets32[num] = BYTESWAP32(metaoffsets32[num]); } while (num > 0); mp4->metaoffsets[0] = fileoffset = metaoffsets32[stco_pos]; num = 1; while (num < mp4->metasize_count) { if (stsc_pos + 1 < (int)mp4->metastsc_count && num == stsc_pos) { stco_pos++; stsc_pos++; fileoffset = (uint64_t)metaoffsets32[stco_pos]; repeat = 1; } else if (repeat == mp4->metastsc[stsc_pos].samples) { stco_pos++; fileoffset = (uint64_t)metaoffsets32[stco_pos]; repeat = 1; } else { fileoffset += (uint64_t)mp4->metasizes[num - 1]; repeat++; } mp4->metaoffsets[num] = fileoffset; num++; } if (mp4->metastsc) free(mp4->metastsc); mp4->metastsc = NULL; mp4->metastsc_count = 0; free(metaoffsets32); } } } else { mp4->indexcount = num; if (mp4->metaoffsets) free(mp4->metaoffsets); mp4->metaoffsets = (uint64_t *)malloc(num * 8); if (mp4->metaoffsets) { uint32_t *metaoffsets32 = NULL; metaoffsets32 = (uint32_t *)malloc(num * 4); if (metaoffsets32) { size_t readlen = fread(metaoffsets32, 1, num * 4, mp4->mediafp); len += readlen; do { num--; mp4->metaoffsets[num] = BYTESWAP32(metaoffsets32[num]); } while (num > 0); free(metaoffsets32); } } } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stco } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else if (qttag == MAKEID('c', 'o', '6', '4')) // metadata stco - offsets { if (type == traktype) // meta { len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&num, 1, 4, mp4->mediafp); num = BYTESWAP32(num); if (num * 8 <= qtsize - 8 - len) { if (mp4->metastsc_count > 0 && num != mp4->metasize_count) { mp4->indexcount = mp4->metasize_count; if (mp4->metaoffsets) free(mp4->metaoffsets); mp4->metaoffsets = (uint64_t *)malloc(mp4->metasize_count * 8); if (mp4->metaoffsets) { uint64_t *metaoffsets64 = NULL; metaoffsets64 = (uint64_t *)malloc(num * 8); if (metaoffsets64) { uint64_t fileoffset = 0; int stsc_pos = 0; int stco_pos = 0; len += fread(metaoffsets64, 1, num * 8, mp4->mediafp); do { num--; metaoffsets64[num] = BYTESWAP64(metaoffsets64[num]); } while (num > 0); fileoffset = metaoffsets64[0]; mp4->metaoffsets[0] = fileoffset; num = 1; while (num < mp4->metasize_count) { if (num != mp4->metastsc[stsc_pos].chunk_num - 1 && 0 == (num - (mp4->metastsc[stsc_pos].chunk_num - 1)) % mp4->metastsc[stsc_pos].samples) { stco_pos++; fileoffset = (uint64_t)metaoffsets64[stco_pos]; } else { fileoffset += (uint64_t)mp4->metasizes[num - 1]; } mp4->metaoffsets[num] = fileoffset; num++; } if (mp4->metastsc) free(mp4->metastsc); mp4->metastsc = NULL; mp4->metastsc_count = 0; free(metaoffsets64); } } } else { mp4->indexcount = num; if (mp4->metaoffsets) free(mp4->metaoffsets); mp4->metaoffsets = (uint64_t *)malloc(num * 8); if (mp4->metaoffsets) { len += fread(mp4->metaoffsets, 1, num * 8, mp4->mediafp); do { num--; mp4->metaoffsets[num] = BYTESWAP64(mp4->metaoffsets[num]); } while (num > 0); } } } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stco } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else if (qttag == MAKEID('s', 't', 't', 's')) // time to samples { if (type == traktype) // meta { uint32_t totaldur = 0, samples = 0; int32_t entries = 0; len = fread(&skip, 1, 4, mp4->mediafp); len += fread(&num, 1, 4, mp4->mediafp); num = BYTESWAP32(num); if (num * 8 <= qtsize - 8 - len) { entries = num; mp4->meta_clockdemon = mp4->trak_clockdemon; mp4->meta_clockcount = mp4->trak_clockcount; while (entries > 0) { int32_t samplecount; int32_t duration; len += fread(&samplecount, 1, 4, mp4->mediafp); samplecount = BYTESWAP32(samplecount); len += fread(&duration, 1, 4, mp4->mediafp); duration = BYTESWAP32(duration); samples += samplecount; entries--; totaldur += duration; mp4->metadatalength += (double)((double)samplecount * (double)duration / (double)mp4->meta_clockdemon); } mp4->basemetadataduration = mp4->metadatalength * (double)mp4->meta_clockdemon / (double)samples; } LONGSEEK(mp4->mediafp, qtsize - 8 - len, SEEK_CUR); // skip over stco } else LONGSEEK(mp4->mediafp, qtsize - 8, SEEK_CUR); NESTSIZE(qtsize); } else { NESTSIZE(8); } } else { break; } } while (len > 0); } else { free(mp4); mp4 = NULL; } return (size_t)mp4; }
CWE-787
182,722
3,943
268050768699578633698158535559948879186
null
null
null
ImageMagick6
3c53413eb544cc567309b4c86485eae43e956112
1
static MagickBooleanType WriteTIFFImage(const ImageInfo *image_info, Image *image) { const char *mode, *option; CompressionType compression; EndianType endian_type; MagickBooleanType debug, status; MagickOffsetType scene; QuantumInfo *quantum_info; QuantumType quantum_type; register ssize_t i; size_t imageListLength; ssize_t y; TIFF *tiff; TIFFInfo tiff_info; uint16 bits_per_sample, compress_tag, endian, photometric, predictor; unsigned char *pixels; /* Open TIFF file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception); if (status == MagickFalse) return(status); (void) SetMagickThreadValue(tiff_exception,&image->exception); endian_type=UndefinedEndian; option=GetImageOption(image_info,"tiff:endian"); if (option != (const char *) NULL) { if (LocaleNCompare(option,"msb",3) == 0) endian_type=MSBEndian; if (LocaleNCompare(option,"lsb",3) == 0) endian_type=LSBEndian;; } switch (endian_type) { case LSBEndian: mode="wl"; break; case MSBEndian: mode="wb"; break; default: mode="w"; break; } #if defined(TIFF_VERSION_BIG) if (LocaleCompare(image_info->magick,"TIFF64") == 0) switch (endian_type) { case LSBEndian: mode="wl8"; break; case MSBEndian: mode="wb8"; break; default: mode="w8"; break; } #endif tiff=TIFFClientOpen(image->filename,mode,(thandle_t) image,TIFFReadBlob, TIFFWriteBlob,TIFFSeekBlob,TIFFCloseBlob,TIFFGetBlobSize,TIFFMapBlob, TIFFUnmapBlob); if (tiff == (TIFF *) NULL) return(MagickFalse); if (image->exception.severity > ErrorException) { TIFFClose(tiff); return(MagickFalse); } (void) DeleteImageProfile(image,"tiff:37724"); scene=0; debug=IsEventLogging(); (void) debug; imageListLength=GetImageListLength(image); do { /* Initialize TIFF fields. */ if ((image_info->type != UndefinedType) && (image_info->type != OptimizeType)) (void) SetImageType(image,image_info->type); compression=UndefinedCompression; if (image->compression != JPEGCompression) compression=image->compression; if (image_info->compression != UndefinedCompression) compression=image_info->compression; switch (compression) { case FaxCompression: case Group4Compression: { (void) SetImageType(image,BilevelType); (void) SetImageDepth(image,1); break; } case JPEGCompression: { (void) SetImageStorageClass(image,DirectClass); (void) SetImageDepth(image,8); break; } default: break; } quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); if ((image->storage_class != PseudoClass) && (image->depth >= 32) && (quantum_info->format == UndefinedQuantumFormat) && (IsHighDynamicRangeImage(image,&image->exception) != MagickFalse)) { status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat); if (status == MagickFalse) { quantum_info=DestroyQuantumInfo(quantum_info); ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); } } if ((LocaleCompare(image_info->magick,"PTIF") == 0) && (GetPreviousImageInList(image) != (Image *) NULL)) (void) TIFFSetField(tiff,TIFFTAG_SUBFILETYPE,FILETYPE_REDUCEDIMAGE); if ((image->columns != (uint32) image->columns) || (image->rows != (uint32) image->rows)) ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit"); (void) TIFFSetField(tiff,TIFFTAG_IMAGELENGTH,(uint32) image->rows); (void) TIFFSetField(tiff,TIFFTAG_IMAGEWIDTH,(uint32) image->columns); switch (compression) { case FaxCompression: { compress_tag=COMPRESSION_CCITTFAX3; option=GetImageOption(image_info,"quantum:polarity"); if (option == (const char *) NULL) SetQuantumMinIsWhite(quantum_info,MagickTrue); break; } case Group4Compression: { compress_tag=COMPRESSION_CCITTFAX4; option=GetImageOption(image_info,"quantum:polarity"); if (option == (const char *) NULL) SetQuantumMinIsWhite(quantum_info,MagickTrue); break; } #if defined(COMPRESSION_JBIG) case JBIG1Compression: { compress_tag=COMPRESSION_JBIG; break; } #endif case JPEGCompression: { compress_tag=COMPRESSION_JPEG; break; } #if defined(COMPRESSION_LZMA) case LZMACompression: { compress_tag=COMPRESSION_LZMA; break; } #endif case LZWCompression: { compress_tag=COMPRESSION_LZW; break; } case RLECompression: { compress_tag=COMPRESSION_PACKBITS; break; } #if defined(COMPRESSION_WEBP) case WebPCompression: { compress_tag=COMPRESSION_WEBP; break; } #endif case ZipCompression: { compress_tag=COMPRESSION_ADOBE_DEFLATE; break; } #if defined(COMPRESSION_ZSTD) case ZstdCompression: { compress_tag=COMPRESSION_ZSTD; break; } #endif case NoCompression: default: { compress_tag=COMPRESSION_NONE; break; } } #if defined(MAGICKCORE_HAVE_TIFFISCODECCONFIGURED) || (TIFFLIB_VERSION > 20040919) if ((compress_tag != COMPRESSION_NONE) && (TIFFIsCODECConfigured(compress_tag) == 0)) { (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"CompressionNotSupported","`%s'",CommandOptionToMnemonic( MagickCompressOptions,(ssize_t) compression)); compress_tag=COMPRESSION_NONE; } #else switch (compress_tag) { #if defined(CCITT_SUPPORT) case COMPRESSION_CCITTFAX3: case COMPRESSION_CCITTFAX4: #endif #if defined(YCBCR_SUPPORT) && defined(JPEG_SUPPORT) case COMPRESSION_JPEG: #endif #if defined(LZMA_SUPPORT) && defined(COMPRESSION_LZMA) case COMPRESSION_LZMA: #endif #if defined(LZW_SUPPORT) case COMPRESSION_LZW: #endif #if defined(PACKBITS_SUPPORT) case COMPRESSION_PACKBITS: #endif #if defined(ZIP_SUPPORT) case COMPRESSION_ADOBE_DEFLATE: #endif case COMPRESSION_NONE: break; default: { (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"CompressionNotSupported","`%s'",CommandOptionToMnemonic( MagickCompressOptions,(ssize_t) compression)); compress_tag=COMPRESSION_NONE; break; } } #endif if (image->colorspace == CMYKColorspace) { photometric=PHOTOMETRIC_SEPARATED; (void) TIFFSetField(tiff,TIFFTAG_SAMPLESPERPIXEL,4); (void) TIFFSetField(tiff,TIFFTAG_INKSET,INKSET_CMYK); } else { /* Full color TIFF raster. */ if (image->colorspace == LabColorspace) { photometric=PHOTOMETRIC_CIELAB; EncodeLabImage(image,&image->exception); } else if (image->colorspace == YCbCrColorspace) { photometric=PHOTOMETRIC_YCBCR; (void) TIFFSetField(tiff,TIFFTAG_YCBCRSUBSAMPLING,1,1); (void) SetImageStorageClass(image,DirectClass); (void) SetImageDepth(image,8); } else photometric=PHOTOMETRIC_RGB; (void) TIFFSetField(tiff,TIFFTAG_SAMPLESPERPIXEL,3); if ((image_info->type != TrueColorType) && (image_info->type != TrueColorMatteType)) { if ((image_info->type != PaletteType) && (SetImageGray(image,&image->exception) != MagickFalse)) { photometric=(uint16) (quantum_info->min_is_white != MagickFalse ? PHOTOMETRIC_MINISWHITE : PHOTOMETRIC_MINISBLACK); (void) TIFFSetField(tiff,TIFFTAG_SAMPLESPERPIXEL,1); if ((image->depth == 1) && (image->matte == MagickFalse)) SetImageMonochrome(image,&image->exception); } else if (image->storage_class == PseudoClass) { size_t depth; /* Colormapped TIFF raster. */ (void) TIFFSetField(tiff,TIFFTAG_SAMPLESPERPIXEL,1); photometric=PHOTOMETRIC_PALETTE; depth=1; while ((GetQuantumRange(depth)+1) < image->colors) depth<<=1; status=SetQuantumDepth(image,quantum_info,depth); if (status == MagickFalse) ThrowWriterException(ResourceLimitError, "MemoryAllocationFailed"); } } } (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_FILLORDER,&endian); if ((compress_tag == COMPRESSION_CCITTFAX3) || (compress_tag == COMPRESSION_CCITTFAX4)) { if ((photometric != PHOTOMETRIC_MINISWHITE) && (photometric != PHOTOMETRIC_MINISBLACK)) { compress_tag=COMPRESSION_NONE; endian=FILLORDER_MSB2LSB; } } option=GetImageOption(image_info,"tiff:fill-order"); if (option != (const char *) NULL) { if (LocaleNCompare(option,"msb",3) == 0) endian=FILLORDER_MSB2LSB; if (LocaleNCompare(option,"lsb",3) == 0) endian=FILLORDER_LSB2MSB; } (void) TIFFSetField(tiff,TIFFTAG_COMPRESSION,compress_tag); (void) TIFFSetField(tiff,TIFFTAG_FILLORDER,endian); (void) TIFFSetField(tiff,TIFFTAG_BITSPERSAMPLE,quantum_info->depth); if (image->matte != MagickFalse) { uint16 extra_samples, sample_info[1], samples_per_pixel; /* TIFF has a matte channel. */ extra_samples=1; sample_info[0]=EXTRASAMPLE_UNASSALPHA; option=GetImageOption(image_info,"tiff:alpha"); if (option != (const char *) NULL) { if (LocaleCompare(option,"associated") == 0) sample_info[0]=EXTRASAMPLE_ASSOCALPHA; else if (LocaleCompare(option,"unspecified") == 0) sample_info[0]=EXTRASAMPLE_UNSPECIFIED; } (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_SAMPLESPERPIXEL, &samples_per_pixel); (void) TIFFSetField(tiff,TIFFTAG_SAMPLESPERPIXEL,samples_per_pixel+1); (void) TIFFSetField(tiff,TIFFTAG_EXTRASAMPLES,extra_samples, &sample_info); if (sample_info[0] == EXTRASAMPLE_ASSOCALPHA) SetQuantumAlphaType(quantum_info,AssociatedQuantumAlpha); } (void) TIFFSetField(tiff,TIFFTAG_PHOTOMETRIC,photometric); switch (quantum_info->format) { case FloatingPointQuantumFormat: { (void) TIFFSetField(tiff,TIFFTAG_SAMPLEFORMAT,SAMPLEFORMAT_IEEEFP); (void) TIFFSetField(tiff,TIFFTAG_SMINSAMPLEVALUE,quantum_info->minimum); (void) TIFFSetField(tiff,TIFFTAG_SMAXSAMPLEVALUE,quantum_info->maximum); break; } case SignedQuantumFormat: { (void) TIFFSetField(tiff,TIFFTAG_SAMPLEFORMAT,SAMPLEFORMAT_INT); break; } case UnsignedQuantumFormat: { (void) TIFFSetField(tiff,TIFFTAG_SAMPLEFORMAT,SAMPLEFORMAT_UINT); break; } default: break; } (void) TIFFSetField(tiff,TIFFTAG_PLANARCONFIG,PLANARCONFIG_CONTIG); if (photometric == PHOTOMETRIC_RGB) if ((image_info->interlace == PlaneInterlace) || (image_info->interlace == PartitionInterlace)) (void) TIFFSetField(tiff,TIFFTAG_PLANARCONFIG,PLANARCONFIG_SEPARATE); predictor=0; switch (compress_tag) { case COMPRESSION_JPEG: { #if defined(JPEG_SUPPORT) if (image_info->quality != UndefinedCompressionQuality) (void) TIFFSetField(tiff,TIFFTAG_JPEGQUALITY,image_info->quality); (void) TIFFSetField(tiff,TIFFTAG_JPEGCOLORMODE,JPEGCOLORMODE_RAW); if (IssRGBCompatibleColorspace(image->colorspace) != MagickFalse) { const char *value; (void) TIFFSetField(tiff,TIFFTAG_JPEGCOLORMODE,JPEGCOLORMODE_RGB); if (image->colorspace == YCbCrColorspace) { const char *sampling_factor; GeometryInfo geometry_info; MagickStatusType flags; sampling_factor=(const char *) NULL; value=GetImageProperty(image,"jpeg:sampling-factor"); if (value != (char *) NULL) { sampling_factor=value; if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Input sampling-factors=%s",sampling_factor); } if (image_info->sampling_factor != (char *) NULL) sampling_factor=image_info->sampling_factor; if (sampling_factor != (const char *) NULL) { flags=ParseGeometry(sampling_factor,&geometry_info); if ((flags & SigmaValue) == 0) geometry_info.sigma=geometry_info.rho; (void) TIFFSetField(tiff,TIFFTAG_YCBCRSUBSAMPLING,(uint16) geometry_info.rho,(uint16) geometry_info.sigma); } } } (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (bits_per_sample == 12) (void) TIFFSetField(tiff,TIFFTAG_JPEGTABLESMODE,JPEGTABLESMODE_QUANT); #endif break; } case COMPRESSION_ADOBE_DEFLATE: { (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (((photometric == PHOTOMETRIC_RGB) || (photometric == PHOTOMETRIC_SEPARATED) || (photometric == PHOTOMETRIC_MINISBLACK)) && ((bits_per_sample == 8) || (bits_per_sample == 16))) predictor=PREDICTOR_HORIZONTAL; (void) TIFFSetField(tiff,TIFFTAG_ZIPQUALITY,(long) ( image_info->quality == UndefinedCompressionQuality ? 7 : MagickMin((ssize_t) image_info->quality/10,9))); break; } case COMPRESSION_CCITTFAX3: { /* Byte-aligned EOL. */ (void) TIFFSetField(tiff,TIFFTAG_GROUP3OPTIONS,4); break; } case COMPRESSION_CCITTFAX4: break; #if defined(LZMA_SUPPORT) && defined(COMPRESSION_LZMA) case COMPRESSION_LZMA: { if (((photometric == PHOTOMETRIC_RGB) || (photometric == PHOTOMETRIC_SEPARATED) || (photometric == PHOTOMETRIC_MINISBLACK)) && ((bits_per_sample == 8) || (bits_per_sample == 16))) predictor=PREDICTOR_HORIZONTAL; (void) TIFFSetField(tiff,TIFFTAG_LZMAPRESET,(long) ( image_info->quality == UndefinedCompressionQuality ? 7 : MagickMin((ssize_t) image_info->quality/10,9))); break; } #endif case COMPRESSION_LZW: { (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (((photometric == PHOTOMETRIC_RGB) || (photometric == PHOTOMETRIC_SEPARATED) || (photometric == PHOTOMETRIC_MINISBLACK)) && ((bits_per_sample == 8) || (bits_per_sample == 16))) predictor=PREDICTOR_HORIZONTAL; break; } #if defined(WEBP_SUPPORT) && defined(COMPRESSION_WEBP) case COMPRESSION_WEBP: { (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (((photometric == PHOTOMETRIC_RGB) || (photometric == PHOTOMETRIC_SEPARATED) || (photometric == PHOTOMETRIC_MINISBLACK)) && ((bits_per_sample == 8) || (bits_per_sample == 16))) predictor=PREDICTOR_HORIZONTAL; (void) TIFFSetField(tiff,TIFFTAG_WEBP_LEVEL,mage_info->quality); if (image_info->quality >= 100) (void) TIFFSetField(tiff,TIFFTAG_WEBP_LOSSLESS,1); break; } #endif #if defined(ZSTD_SUPPORT) && defined(COMPRESSION_ZSTD) case COMPRESSION_ZSTD: { (void) TIFFGetFieldDefaulted(tiff,TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (((photometric == PHOTOMETRIC_RGB) || (photometric == PHOTOMETRIC_SEPARATED) || (photometric == PHOTOMETRIC_MINISBLACK)) && ((bits_per_sample == 8) || (bits_per_sample == 16))) predictor=PREDICTOR_HORIZONTAL; (void) TIFFSetField(tiff,TIFFTAG_ZSTD_LEVEL,22*image_info->quality/ 100.0); break; } #endif default: break; } option=GetImageOption(image_info,"tiff:predictor"); if (option != (const char * ) NULL) predictor=(size_t) strtol(option,(char **) NULL,10); if (predictor != 0) (void) TIFFSetField(tiff,TIFFTAG_PREDICTOR,predictor); if ((image->x_resolution != 0.0) && (image->y_resolution != 0.0)) { unsigned short units; /* Set image resolution. */ units=RESUNIT_NONE; if (image->units == PixelsPerInchResolution) units=RESUNIT_INCH; if (image->units == PixelsPerCentimeterResolution) units=RESUNIT_CENTIMETER; (void) TIFFSetField(tiff,TIFFTAG_RESOLUTIONUNIT,(uint16) units); (void) TIFFSetField(tiff,TIFFTAG_XRESOLUTION,image->x_resolution); (void) TIFFSetField(tiff,TIFFTAG_YRESOLUTION,image->y_resolution); if ((image->page.x < 0) || (image->page.y < 0)) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"TIFF: negative image positions unsupported","%s", image->filename); if ((image->page.x > 0) && (image->x_resolution > 0.0)) { /* Set horizontal image position. */ (void) TIFFSetField(tiff,TIFFTAG_XPOSITION,(float) image->page.x/ image->x_resolution); } if ((image->page.y > 0) && (image->y_resolution > 0.0)) { /* Set vertical image position. */ (void) TIFFSetField(tiff,TIFFTAG_YPOSITION,(float) image->page.y/ image->y_resolution); } } if (image->chromaticity.white_point.x != 0.0) { float chromaticity[6]; /* Set image chromaticity. */ chromaticity[0]=(float) image->chromaticity.red_primary.x; chromaticity[1]=(float) image->chromaticity.red_primary.y; chromaticity[2]=(float) image->chromaticity.green_primary.x; chromaticity[3]=(float) image->chromaticity.green_primary.y; chromaticity[4]=(float) image->chromaticity.blue_primary.x; chromaticity[5]=(float) image->chromaticity.blue_primary.y; (void) TIFFSetField(tiff,TIFFTAG_PRIMARYCHROMATICITIES,chromaticity); chromaticity[0]=(float) image->chromaticity.white_point.x; chromaticity[1]=(float) image->chromaticity.white_point.y; (void) TIFFSetField(tiff,TIFFTAG_WHITEPOINT,chromaticity); } if ((LocaleCompare(image_info->magick,"PTIF") != 0) && (image_info->adjoin != MagickFalse) && (imageListLength > 1)) { (void) TIFFSetField(tiff,TIFFTAG_SUBFILETYPE,FILETYPE_PAGE); if (image->scene != 0) (void) TIFFSetField(tiff,TIFFTAG_PAGENUMBER,(uint16) image->scene, imageListLength); } if (image->orientation != UndefinedOrientation) (void) TIFFSetField(tiff,TIFFTAG_ORIENTATION,(uint16) image->orientation); else (void) TIFFSetField(tiff,TIFFTAG_ORIENTATION,ORIENTATION_TOPLEFT); (void) TIFFSetProfiles(tiff,image); { uint16 page, pages; page=(uint16) scene; pages=(uint16) imageListLength; if ((LocaleCompare(image_info->magick,"PTIF") != 0) && (image_info->adjoin != MagickFalse) && (pages > 1)) (void) TIFFSetField(tiff,TIFFTAG_SUBFILETYPE,FILETYPE_PAGE); (void) TIFFSetField(tiff,TIFFTAG_PAGENUMBER,page,pages); } (void) TIFFSetProperties(tiff,image_info,image); DisableMSCWarning(4127) if (0) RestoreMSCWarning (void) TIFFSetEXIFProperties(tiff,image); /* Write image scanlines. */ if (GetTIFFInfo(image_info,tiff,&tiff_info) == MagickFalse) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); quantum_info->endian=LSBEndian; pixels=GetQuantumPixels(quantum_info); tiff_info.scanline=GetQuantumPixels(quantum_info); switch (photometric) { case PHOTOMETRIC_CIELAB: case PHOTOMETRIC_YCBCR: case PHOTOMETRIC_RGB: { /* RGB TIFF image. */ switch (image_info->interlace) { case NoInterlace: default: { quantum_type=RGBQuantum; if (image->matte != MagickFalse) quantum_type=RGBAQuantum; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,0,image) == -1) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,image->rows); if (status == MagickFalse) break; } } break; } case PlaneInterlace: case PartitionInterlace: { /* Plane interlacing: RRRRRR...GGGGGG...BBBBBB... */ for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,RedQuantum,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,0,image) == -1) break; } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,100,400); if (status == MagickFalse) break; } for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,GreenQuantum,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,1,image) == -1) break; } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,200,400); if (status == MagickFalse) break; } for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,BlueQuantum,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,2,image) == -1) break; } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,300,400); if (status == MagickFalse) break; } if (image->matte != MagickFalse) for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1, &image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,AlphaQuantum,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,3,image) == -1) break; } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,400,400); if (status == MagickFalse) break; } break; } } break; } case PHOTOMETRIC_SEPARATED: { /* CMYK TIFF image. */ quantum_type=CMYKQuantum; if (image->matte != MagickFalse) quantum_type=CMYKAQuantum; if (image->colorspace != CMYKColorspace) (void) TransformImageColorspace(image,CMYKColorspace); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,0,image) == -1) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } break; } case PHOTOMETRIC_PALETTE: { uint16 *blue, *green, *red; /* Colormapped TIFF image. */ red=(uint16 *) AcquireQuantumMemory(65536,sizeof(*red)); green=(uint16 *) AcquireQuantumMemory(65536,sizeof(*green)); blue=(uint16 *) AcquireQuantumMemory(65536,sizeof(*blue)); if ((red == (uint16 *) NULL) || (green == (uint16 *) NULL) || (blue == (uint16 *) NULL)) { if (red != (uint16 *) NULL) red=(uint16 *) RelinquishMagickMemory(red); if (green != (uint16 *) NULL) green=(uint16 *) RelinquishMagickMemory(green); if (blue != (uint16 *) NULL) blue=(uint16 *) RelinquishMagickMemory(blue); ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); } /* Initialize TIFF colormap. */ (void) memset(red,0,65536*sizeof(*red)); (void) memset(green,0,65536*sizeof(*green)); (void) memset(blue,0,65536*sizeof(*blue)); for (i=0; i < (ssize_t) image->colors; i++) { red[i]=ScaleQuantumToShort(image->colormap[i].red); green[i]=ScaleQuantumToShort(image->colormap[i].green); blue[i]=ScaleQuantumToShort(image->colormap[i].blue); } (void) TIFFSetField(tiff,TIFFTAG_COLORMAP,red,green,blue); red=(uint16 *) RelinquishMagickMemory(red); green=(uint16 *) RelinquishMagickMemory(green); blue=(uint16 *) RelinquishMagickMemory(blue); } default: { /* Convert PseudoClass packets to contiguous grayscale scanlines. */ quantum_type=IndexQuantum; if (image->matte != MagickFalse) { if (photometric != PHOTOMETRIC_PALETTE) quantum_type=GrayAlphaQuantum; else quantum_type=IndexAlphaQuantum; } else if (photometric != PHOTOMETRIC_PALETTE) quantum_type=GrayQuantum; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; (void) ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); if (TIFFWritePixels(tiff,&tiff_info,y,0,image) == -1) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } break; } } quantum_info=DestroyQuantumInfo(quantum_info); if (image->colorspace == LabColorspace) DecodeLabImage(image,&image->exception); DestroyTIFFInfo(&tiff_info); if (image->exception.severity > ErrorException) break; DisableMSCWarning(4127) if (0 && (image_info->verbose != MagickFalse)) RestoreMSCWarning TIFFPrintDirectory(tiff,stdout,MagickFalse); (void) TIFFWriteDirectory(tiff); image=SyncNextImageInList(image); if (image == (Image *) NULL) break; status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength); if (status == MagickFalse) break; } while (image_info->adjoin != MagickFalse); TIFFClose(tiff); return(image->exception.severity > ErrorException ? MagickFalse : MagickTrue); }
CWE-125
182,725
3,946
36416815289515489995402621737388926389
null
null
null
ImageMagick
c78993d138bf480ab4652b5a48379d4ff75ba5f7
1
static Image *ReadXWDImage(const ImageInfo *image_info,ExceptionInfo *exception) { #define CheckOverflowException(length,width,height) \ (((height) != 0) && ((length)/((size_t) height) != ((size_t) width))) char *comment; Image *image; int x_status; MagickBooleanType authentic_colormap; MagickStatusType status; Quantum index; register ssize_t x; register Quantum *q; register ssize_t i; register size_t pixel; size_t length; ssize_t count, y; unsigned long lsb_first; XColor *colors; XImage *ximage; XWDFileHeader header; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } /* Read in header information. */ count=ReadBlob(image,sz_XWDheader,(unsigned char *) &header); if (count != sz_XWDheader) ThrowReaderException(CorruptImageError,"UnableToReadImageHeader"); /* Ensure the header byte-order is most-significant byte first. */ lsb_first=1; if ((int) (*(char *) &lsb_first) != 0) MSBOrderLong((unsigned char *) &header,sz_XWDheader); /* Check to see if the dump file is in the proper format. */ if (header.file_version != XWD_FILE_VERSION) ThrowReaderException(CorruptImageError,"FileFormatVersionMismatch"); if (header.header_size < sz_XWDheader) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); switch (header.visual_class) { case StaticGray: case GrayScale: { if (header.bits_per_pixel != 1) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); break; } case StaticColor: case PseudoColor: { if ((header.bits_per_pixel < 1) || (header.bits_per_pixel > 15) || (header.ncolors == 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); break; } case TrueColor: case DirectColor: { if ((header.bits_per_pixel != 16) && (header.bits_per_pixel != 24) && (header.bits_per_pixel != 32)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); break; } default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } switch (header.pixmap_format) { case XYBitmap: { if (header.pixmap_depth != 1) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); break; } case XYPixmap: case ZPixmap: { if ((header.pixmap_depth < 1) || (header.pixmap_depth > 32)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); switch (header.bitmap_pad) { case 8: case 16: case 32: break; default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } break; } default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } switch (header.bitmap_unit) { case 8: case 16: case 32: break; default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } switch (header.byte_order) { case LSBFirst: case MSBFirst: break; default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } switch (header.bitmap_bit_order) { case LSBFirst: case MSBFirst: break; default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } if (header.ncolors > 65535) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); if (((header.bitmap_pad % 8) != 0) || (header.bitmap_pad > 32)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); length=(size_t) (header.header_size-sz_XWDheader); comment=(char *) AcquireQuantumMemory(length+1,sizeof(*comment)); if (comment == (char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); count=ReadBlob(image,length,(unsigned char *) comment); comment[length]='\0'; (void) SetImageProperty(image,"comment",comment,exception); comment=DestroyString(comment); if (count != (ssize_t) length) ThrowReaderException(CorruptImageError,"UnexpectedEndOfFile"); /* Initialize the X image. */ ximage=(XImage *) AcquireMagickMemory(sizeof(*ximage)); if (ximage == (XImage *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); ximage->depth=(int) header.pixmap_depth; ximage->format=(int) header.pixmap_format; ximage->xoffset=(int) header.xoffset; ximage->data=(char *) NULL; ximage->width=(int) header.pixmap_width; ximage->height=(int) header.pixmap_height; ximage->bitmap_pad=(int) header.bitmap_pad; ximage->bytes_per_line=(int) header.bytes_per_line; ximage->byte_order=(int) header.byte_order; ximage->bitmap_unit=(int) header.bitmap_unit; ximage->bitmap_bit_order=(int) header.bitmap_bit_order; ximage->bits_per_pixel=(int) header.bits_per_pixel; ximage->red_mask=header.red_mask; ximage->green_mask=header.green_mask; ximage->blue_mask=header.blue_mask; if ((ximage->width < 0) || (ximage->height < 0) || (ximage->depth < 0) || (ximage->format < 0) || (ximage->byte_order < 0) || (ximage->bitmap_bit_order < 0) || (ximage->bitmap_pad < 0) || (ximage->bytes_per_line < 0)) { ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } if ((ximage->width > 65535) || (ximage->height > 65535)) { ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } if ((ximage->bits_per_pixel > 32) || (ximage->bitmap_unit > 32)) { ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } x_status=XInitImage(ximage); if (x_status == 0) { ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"UnexpectedEndOfFile"); } /* Read colormap. */ authentic_colormap=MagickFalse; colors=(XColor *) NULL; if (header.ncolors != 0) { XWDColor color; colors=(XColor *) AcquireQuantumMemory((size_t) header.ncolors, sizeof(*colors)); if (colors == (XColor *) NULL) { ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } for (i=0; i < (ssize_t) header.ncolors; i++) { count=ReadBlob(image,sz_XWDColor,(unsigned char *) &color); if (count != sz_XWDColor) { colors=(XColor *) RelinquishMagickMemory(colors); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"UnexpectedEndOfFile"); } colors[i].pixel=color.pixel; colors[i].red=color.red; colors[i].green=color.green; colors[i].blue=color.blue; colors[i].flags=(char) color.flags; if (color.flags != 0) authentic_colormap=MagickTrue; } /* Ensure the header byte-order is most-significant byte first. */ lsb_first=1; if ((int) (*(char *) &lsb_first) != 0) for (i=0; i < (ssize_t) header.ncolors; i++) { MSBOrderLong((unsigned char *) &colors[i].pixel, sizeof(colors[i].pixel)); MSBOrderShort((unsigned char *) &colors[i].red,3* sizeof(colors[i].red)); } } /* Allocate the pixel buffer. */ length=(size_t) ximage->bytes_per_line*ximage->height; if (CheckOverflowException(length,ximage->bytes_per_line,ximage->height)) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } if (ximage->format != ZPixmap) { size_t extent; extent=length; length*=ximage->depth; if (CheckOverflowException(length,extent,ximage->depth)) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } } ximage->data=(char *) AcquireQuantumMemory(length,sizeof(*ximage->data)); if (ximage->data == (char *) NULL) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } count=ReadBlob(image,length,(unsigned char *) ximage->data); if (count != (ssize_t) length) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage->data=DestroyString(ximage->data); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(CorruptImageError,"UnableToReadImageData"); } /* Convert image to MIFF format. */ image->columns=(size_t) ximage->width; image->rows=(size_t) ximage->height; image->depth=8; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage->data=DestroyString(ximage->data); ximage=(XImage *) RelinquishMagickMemory(ximage); return(DestroyImageList(image)); } if ((header.ncolors == 0U) || (ximage->red_mask != 0) || (ximage->green_mask != 0) || (ximage->blue_mask != 0)) image->storage_class=DirectClass; else image->storage_class=PseudoClass; image->colors=header.ncolors; if (image_info->ping == MagickFalse) switch (image->storage_class) { case DirectClass: default: { register size_t color; size_t blue_mask, blue_shift, green_mask, green_shift, red_mask, red_shift; /* Determine shift and mask for red, green, and blue. */ red_mask=ximage->red_mask; red_shift=0; while ((red_mask != 0) && ((red_mask & 0x01) == 0)) { red_mask>>=1; red_shift++; } green_mask=ximage->green_mask; green_shift=0; while ((green_mask != 0) && ((green_mask & 0x01) == 0)) { green_mask>>=1; green_shift++; } blue_mask=ximage->blue_mask; blue_shift=0; while ((blue_mask != 0) && ((blue_mask & 0x01) == 0)) { blue_mask>>=1; blue_shift++; } /* Convert X image to DirectClass packets. */ if ((image->colors != 0) && (authentic_colormap != MagickFalse)) for (y=0; y < (ssize_t) image->rows; y++) { q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { pixel=XGetPixel(ximage,(int) x,(int) y); index=(Quantum) ConstrainColormapIndex(image,(ssize_t) (pixel >> red_shift) & red_mask,exception); SetPixelRed(image,ScaleShortToQuantum( colors[(ssize_t) index].red),q); index=(Quantum) ConstrainColormapIndex(image,(ssize_t) (pixel >> green_shift) & green_mask,exception); SetPixelGreen(image,ScaleShortToQuantum( colors[(ssize_t) index].green),q); index=(Quantum) ConstrainColormapIndex(image,(ssize_t) (pixel >> blue_shift) & blue_mask,exception); SetPixelBlue(image,ScaleShortToQuantum( colors[(ssize_t) index].blue),q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } else for (y=0; y < (ssize_t) image->rows; y++) { q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { pixel=XGetPixel(ximage,(int) x,(int) y); color=(pixel >> red_shift) & red_mask; if (red_mask != 0) color=(color*65535UL)/red_mask; SetPixelRed(image,ScaleShortToQuantum((unsigned short) color),q); color=(pixel >> green_shift) & green_mask; if (green_mask != 0) color=(color*65535UL)/green_mask; SetPixelGreen(image,ScaleShortToQuantum((unsigned short) color), q); color=(pixel >> blue_shift) & blue_mask; if (blue_mask != 0) color=(color*65535UL)/blue_mask; SetPixelBlue(image,ScaleShortToQuantum((unsigned short) color),q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } break; } case PseudoClass: { /* Convert X image to PseudoClass packets. */ if (AcquireImageColormap(image,image->colors,exception) == MagickFalse) { if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage->data=DestroyString(ximage->data); ximage=(XImage *) RelinquishMagickMemory(ximage); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } for (i=0; i < (ssize_t) image->colors; i++) { image->colormap[i].red=(MagickRealType) ScaleShortToQuantum( colors[i].red); image->colormap[i].green=(MagickRealType) ScaleShortToQuantum( colors[i].green); image->colormap[i].blue=(MagickRealType) ScaleShortToQuantum( colors[i].blue); } for (y=0; y < (ssize_t) image->rows; y++) { q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { index=(Quantum) ConstrainColormapIndex(image,(ssize_t) XGetPixel(ximage,(int) x,(int) y),exception); SetPixelIndex(image,index,q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) index,q); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } break; } } /* Free image and colormap. */ if (header.ncolors != 0) colors=(XColor *) RelinquishMagickMemory(colors); ximage->data=DestroyString(ximage->data); ximage=(XImage *) RelinquishMagickMemory(ximage); if (EOFBlob(image) != MagickFalse) ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); (void) CloseBlob(image); return(GetFirstImageInList(image)); }
CWE-125
182,728
3,949
233532117835758407105643683626381581591
null
null
null
ImageMagick6
b522d2d857d2f75b659936b59b0da9df1682c256
1
MagickExport Image *MeanShiftImage(const Image *image,const size_t width, const size_t height,const double color_distance,ExceptionInfo *exception) { #define MaxMeanShiftIterations 100 #define MeanShiftImageTag "MeanShift/Image" CacheView *image_view, *mean_view, *pixel_view; Image *mean_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); mean_image=CloneImage(image,0,0,MagickTrue,exception); if (mean_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(mean_image,DirectClass) == MagickFalse) { InheritException(exception,&mean_image->exception); mean_image=DestroyImage(mean_image); return((Image *) NULL); } status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); pixel_view=AcquireVirtualCacheView(image,exception); mean_view=AcquireAuthenticCacheView(mean_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status,progress) \ magick_number_threads(mean_image,mean_image,mean_image->rows,1) #endif for (y=0; y < (ssize_t) mean_image->rows; y++) { register const IndexPacket *magick_restrict indexes; register const PixelPacket *magick_restrict p; register PixelPacket *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); q=GetCacheViewAuthenticPixels(mean_view,0,y,mean_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } indexes=GetCacheViewVirtualIndexQueue(image_view); for (x=0; x < (ssize_t) mean_image->columns; x++) { MagickPixelPacket mean_pixel, previous_pixel; PointInfo mean_location, previous_location; register ssize_t i; GetMagickPixelPacket(image,&mean_pixel); SetMagickPixelPacket(image,p,indexes+x,&mean_pixel); mean_location.x=(double) x; mean_location.y=(double) y; for (i=0; i < MaxMeanShiftIterations; i++) { double distance, gamma; MagickPixelPacket sum_pixel; PointInfo sum_location; ssize_t count, v; sum_location.x=0.0; sum_location.y=0.0; GetMagickPixelPacket(image,&sum_pixel); previous_location=mean_location; previous_pixel=mean_pixel; count=0; for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++) { ssize_t u; for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++) { if ((v*v+u*u) <= (ssize_t) ((width/2)*(height/2))) { PixelPacket pixel; status=GetOneCacheViewVirtualPixel(pixel_view,(ssize_t) MagickRound(mean_location.x+u),(ssize_t) MagickRound( mean_location.y+v),&pixel,exception); distance=(mean_pixel.red-pixel.red)*(mean_pixel.red-pixel.red)+ (mean_pixel.green-pixel.green)*(mean_pixel.green-pixel.green)+ (mean_pixel.blue-pixel.blue)*(mean_pixel.blue-pixel.blue); if (distance <= (color_distance*color_distance)) { sum_location.x+=mean_location.x+u; sum_location.y+=mean_location.y+v; sum_pixel.red+=pixel.red; sum_pixel.green+=pixel.green; sum_pixel.blue+=pixel.blue; sum_pixel.opacity+=pixel.opacity; count++; } } } } gamma=1.0/count; mean_location.x=gamma*sum_location.x; mean_location.y=gamma*sum_location.y; mean_pixel.red=gamma*sum_pixel.red; mean_pixel.green=gamma*sum_pixel.green; mean_pixel.blue=gamma*sum_pixel.blue; mean_pixel.opacity=gamma*sum_pixel.opacity; distance=(mean_location.x-previous_location.x)* (mean_location.x-previous_location.x)+ (mean_location.y-previous_location.y)* (mean_location.y-previous_location.y)+ 255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)* 255.0*QuantumScale*(mean_pixel.red-previous_pixel.red)+ 255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)* 255.0*QuantumScale*(mean_pixel.green-previous_pixel.green)+ 255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue)* 255.0*QuantumScale*(mean_pixel.blue-previous_pixel.blue); if (distance <= 3.0) break; } q->red=ClampToQuantum(mean_pixel.red); q->green=ClampToQuantum(mean_pixel.green); q->blue=ClampToQuantum(mean_pixel.blue); q->opacity=ClampToQuantum(mean_pixel.opacity); p++; q++; } if (SyncCacheViewAuthenticPixels(mean_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,MeanShiftImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } mean_view=DestroyCacheView(mean_view); pixel_view=DestroyCacheView(pixel_view); image_view=DestroyCacheView(image_view); return(mean_image); }
CWE-369
182,734
3,954
231391488542660689121103185575633080478
null
null
null
ImageMagick6
614a257295bdcdeda347086761062ac7658b6830
1
MagickExport unsigned char *DetachBlob(BlobInfo *blob_info) { unsigned char *data; assert(blob_info != (BlobInfo *) NULL); if (blob_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); if (blob_info->mapped != MagickFalse) { (void) UnmapBlob(blob_info->data,blob_info->length); RelinquishMagickResource(MapResource,blob_info->length); } blob_info->mapped=MagickFalse; blob_info->length=0; blob_info->offset=0; blob_info->eof=MagickFalse; blob_info->error=0; blob_info->exempt=MagickFalse; blob_info->type=UndefinedStream; blob_info->file_info.file=(FILE *) NULL; data=blob_info->data; blob_info->data=(unsigned char *) NULL; blob_info->stream=(StreamHandler) NULL; return(data); }
CWE-416
182,735
3,955
230870644106464156163565283393791167096
null
null
null
pdfresurrect
0c4120fffa3dffe97b95c486a120eded82afe8a6
1
void pdf_load_pages_kids(FILE *fp, pdf_t *pdf) { int i, id, dummy; char *buf, *c; long start, sz; start = ftell(fp); /* Load all kids for all xref tables (versions) */ for (i=0; i<pdf->n_xrefs; i++) { if (pdf->xrefs[i].version && (pdf->xrefs[i].end != 0)) { fseek(fp, pdf->xrefs[i].start, SEEK_SET); while (SAFE_F(fp, (fgetc(fp) != 't'))) ; /* Iterate to trailer */ /* Get root catalog */ sz = pdf->xrefs[i].end - ftell(fp); buf = malloc(sz + 1); SAFE_E(fread(buf, 1, sz, fp), sz, "Failed to load /Root.\n"); buf[sz] = '\0'; if (!(c = strstr(buf, "/Root"))) { free(buf); continue; } /* Jump to catalog (root) */ id = atoi(c + strlen("/Root") + 1); free(buf); buf = get_object(fp, id, &pdf->xrefs[i], NULL, &dummy); if (!buf || !(c = strstr(buf, "/Pages"))) { free(buf); continue; } /* Start at the first Pages obj and get kids */ id = atoi(c + strlen("/Pages") + 1); load_kids(fp, id, &pdf->xrefs[i]); free(buf); } } fseek(fp, start, SEEK_SET); }
CWE-787
182,743
3,961
305307068957863415290842462726625376353
null
null
null
linux
7caac62ed598a196d6ddf8d9c121e12e082cac3
1
mwifiex_set_wmm_params(struct mwifiex_private *priv, struct mwifiex_uap_bss_param *bss_cfg, struct cfg80211_ap_settings *params) { const u8 *vendor_ie; const u8 *wmm_ie; u8 wmm_oui[] = {0x00, 0x50, 0xf2, 0x02}; vendor_ie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WMM, params->beacon.tail, params->beacon.tail_len); if (vendor_ie) { wmm_ie = vendor_ie; memcpy(&bss_cfg->wmm_info, wmm_ie + sizeof(struct ieee_types_header), *(wmm_ie + 1)); priv->wmm_enabled = 1; } else { memset(&bss_cfg->wmm_info, 0, sizeof(bss_cfg->wmm_info)); memcpy(&bss_cfg->wmm_info.oui, wmm_oui, sizeof(wmm_oui)); bss_cfg->wmm_info.subtype = MWIFIEX_WMM_SUBTYPE; bss_cfg->wmm_info.version = MWIFIEX_WMM_VERSION; priv->wmm_enabled = 0; } bss_cfg->qos_info = 0x00; return; }
CWE-120
182,749
3,966
210184099351750208838399280254377336082
null
null
null
3proxy
3b67dc844789dc0f00e934270c7b349bcb547865
1
void * adminchild(struct clientparam* param) { int i, res; char * buf; char username[256]; char *sb; char *req = NULL; struct printparam pp; int contentlen = 0; int isform = 0; pp.inbuf = 0; pp.cp = param; buf = myalloc(LINESIZE); if(!buf) {RETURN(555);} i = sockgetlinebuf(param, CLIENT, (unsigned char *)buf, LINESIZE - 1, '\n', conf.timeouts[STRING_S]); if(i<5 || ((buf[0]!='G' || buf[1]!='E' || buf[2]!='T' || buf[3]!=' ' || buf[4]!='/') && (buf[0]!='P' || buf[1]!='O' || buf[2]!='S' || buf[3]!='T' || buf[4]!=' ' || buf[5]!='/'))) { RETURN(701); } buf[i] = 0; sb = strchr(buf+5, ' '); if(!sb){ RETURN(702); } *sb = 0; req = mystrdup(buf + ((*buf == 'P')? 6 : 5)); while((i = sockgetlinebuf(param, CLIENT, (unsigned char *)buf, LINESIZE - 1, '\n', conf.timeouts[STRING_S])) > 2){ buf[i] = 0; if(i > 19 && (!strncasecmp(buf, "authorization", 13))){ sb = strchr(buf, ':'); if(!sb)continue; ++sb; while(isspace(*sb))sb++; if(!*sb || strncasecmp(sb, "basic", 5)){ continue; } sb+=5; while(isspace(*sb))sb++; i = de64((unsigned char *)sb, (unsigned char *)username, 255); if(i<=0)continue; username[i] = 0; sb = strchr((char *)username, ':'); if(sb){ *sb = 0; if(param->password)myfree(param->password); param->password = (unsigned char *)mystrdup(sb+1); } if(param->username) myfree(param->username); param->username = (unsigned char *)mystrdup(username); continue; } else if(i > 15 && (!strncasecmp(buf, "content-length:", 15))){ sb = buf + 15; while(isspace(*sb))sb++; contentlen = atoi(sb); } else if(i > 13 && (!strncasecmp(buf, "content-type:", 13))){ sb = buf + 13; while(isspace(*sb))sb++; if(!strncasecmp(sb, "x-www-form-urlencoded", 21)) isform = 1; } } param->operation = ADMIN; if(isform && contentlen) { printstr(&pp, "HTTP/1.0 100 Continue\r\n\r\n"); stdpr(&pp, NULL, 0); } res = (*param->srv->authfunc)(param); if(res && res != 10) { printstr(&pp, authreq); RETURN(res); } if(param->srv->singlepacket || param->redirected){ if(*req == 'C') req[1] = 0; else *req = 0; } sprintf(buf, ok, conf.stringtable?(char *)conf.stringtable[2]:"3proxy", conf.stringtable?(char *)conf.stringtable[2]:"3[APA3A] tiny proxy", conf.stringtable?(char *)conf.stringtable[3]:""); if(*req != 'S') printstr(&pp, buf); switch(*req){ case 'C': printstr(&pp, counters); { struct trafcount *cp; int num = 0; for(cp = conf.trafcounter; cp; cp = cp->next, num++){ int inbuf = 0; if(cp->ace && (param->srv->singlepacket || param->redirected)){ if(!ACLmatches(cp->ace, param))continue; } if(req[1] == 'S' && atoi(req+2) == num) cp->disabled=0; if(req[1] == 'D' && atoi(req+2) == num) cp->disabled=1; inbuf += sprintf(buf, "<tr>" "<td>%s</td><td><A HREF=\'/C%c%d\'>%s</A></td><td>", (cp->comment)?cp->comment:"&nbsp;", (cp->disabled)?'S':'D', num, (cp->disabled)?"NO":"YES" ); if(!cp->ace || !cp->ace->users){ inbuf += sprintf(buf+inbuf, "<center>ANY</center>"); } else { inbuf += printuserlist(buf+inbuf, LINESIZE-800, cp->ace->users, ",<br />\r\n"); } inbuf += sprintf(buf+inbuf, "</td><td>"); if(!cp->ace || !cp->ace->src){ inbuf += sprintf(buf+inbuf, "<center>ANY</center>"); } else { inbuf += printiplist(buf+inbuf, LINESIZE-512, cp->ace->src, ",<br />\r\n"); } inbuf += sprintf(buf+inbuf, "</td><td>"); if(!cp->ace || !cp->ace->dst){ inbuf += sprintf(buf+inbuf, "<center>ANY</center>"); } else { inbuf += printiplist(buf+inbuf, LINESIZE-512, cp->ace->dst, ",<br />\r\n"); } inbuf += sprintf(buf+inbuf, "</td><td>"); if(!cp->ace || !cp->ace->ports){ inbuf += sprintf(buf+inbuf, "<center>ANY</center>"); } else { inbuf += printportlist(buf+inbuf, LINESIZE-128, cp->ace->ports, ",<br />\r\n"); } if(cp->type == NONE) { inbuf += sprintf(buf+inbuf, "</td><td colspan=\'6\' align=\'center\'>exclude from limitation</td></tr>\r\n" ); } else { inbuf += sprintf(buf+inbuf, "</td><td>%"PRINTF_INT64_MODIFIER"u</td>" "<td>MB%s</td>" "<td>%"PRINTF_INT64_MODIFIER"u</td>" "<td>%s</td>", cp->traflim64 / (1024 * 1024), rotations[cp->type], cp->traf64, cp->cleared?ctime(&cp->cleared):"never" ); inbuf += sprintf(buf + inbuf, "<td>%s</td>" "<td>%i</td>" "</tr>\r\n", cp->updated?ctime(&cp->updated):"never", cp->number ); } printstr(&pp, buf); } } printstr(&pp, counterstail); break; case 'R': conf.needreload = 1; printstr(&pp, "<h3>Reload scheduled</h3>"); break; case 'S': { if(req[1] == 'X'){ printstr(&pp, style); break; } printstr(&pp, xml); printval(conf.services, TYPE_SERVER, 0, &pp); printstr(&pp, postxml); } break; case 'F': { FILE *fp; char buf[256]; fp = confopen(); if(!fp){ printstr(&pp, "<h3><font color=\"red\">Failed to open config file</font></h3>"); break; } printstr(&pp, "<h3>Please be careful editing config file remotely</h3>"); printstr(&pp, "<form method=\"POST\" action=\"/U\"><textarea cols=\"80\" rows=\"30\" name=\"conffile\">"); while(fgets(buf, 256, fp)){ printstr(&pp, buf); } if(!writable) fclose(fp); printstr(&pp, "</textarea><br><input type=\"Submit\"></form>"); break; } case 'U': { int l=0; int error = 0; if(!writable || fseek(writable, 0, 0)){ error = 1; } while((i = sockgetlinebuf(param, CLIENT, (unsigned char *)buf, LINESIZE - 1, '+', conf.timeouts[STRING_S])) > 0){ if(i > (contentlen - l)) i = (contentlen - l); buf[i] = 0; if(!l){ if(strncasecmp(buf, "conffile=", 9)) error = 1; } if(!error){ decodeurl((unsigned char *)buf, 1); fprintf(writable, "%s", l? buf : buf + 9); } l += i; if(l >= contentlen) break; } if(writable && !error){ fflush(writable); #ifndef _WINCE ftruncate(fileno(writable), ftell(writable)); #endif } printstr(&pp, error? "<h3><font color=\"red\">Config file is not writable</font></h3>Make sure you have \"writable\" command in configuration file": "<h3>Configuration updated</h3>"); } break; default: printstr(&pp, (char *)conf.stringtable[WEBBANNERS]); break; } if(*req != 'S') printstr(&pp, tail); CLEANRET: printstr(&pp, NULL); if(buf) myfree(buf); (*param->srv->logfunc)(param, (unsigned char *)req); if(req)myfree(req); freeparam(param); return (NULL); }
CWE-787
182,752
3,969
208643767936815362008928273310670006868
null
null
null
libmodbus
5ccdf5ef79d742640355d1132fa9e2abc7fbaefc
1
int modbus_reply(modbus_t *ctx, const uint8_t *req, int req_length, modbus_mapping_t *mb_mapping) { int offset; int slave; int function; uint16_t address; uint8_t rsp[MAX_MESSAGE_LENGTH]; int rsp_length = 0; sft_t sft; if (ctx == NULL) { errno = EINVAL; return -1; } offset = ctx->backend->header_length; slave = req[offset - 1]; function = req[offset]; address = (req[offset + 1] << 8) + req[offset + 2]; sft.slave = slave; sft.function = function; sft.t_id = ctx->backend->prepare_response_tid(req, &req_length); /* Data are flushed on illegal number of values errors. */ switch (function) { case MODBUS_FC_READ_COILS: case MODBUS_FC_READ_DISCRETE_INPUTS: { unsigned int is_input = (function == MODBUS_FC_READ_DISCRETE_INPUTS); int start_bits = is_input ? mb_mapping->start_input_bits : mb_mapping->start_bits; int nb_bits = is_input ? mb_mapping->nb_input_bits : mb_mapping->nb_bits; uint8_t *tab_bits = is_input ? mb_mapping->tab_input_bits : mb_mapping->tab_bits; const char * const name = is_input ? "read_input_bits" : "read_bits"; int nb = (req[offset + 3] << 8) + req[offset + 4]; /* The mapping can be shifted to reduce memory consumption and it doesn't always start at address zero. */ int mapping_address = address - start_bits; if (nb < 1 || MODBUS_MAX_READ_BITS < nb) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE, "Illegal nb of values %d in %s (max %d)\n", nb, name, MODBUS_MAX_READ_BITS); } else if (mapping_address < 0 || (mapping_address + nb) > nb_bits) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in %s\n", mapping_address < 0 ? address : address + nb, name); } else { rsp_length = ctx->backend->build_response_basis(&sft, rsp); rsp[rsp_length++] = (nb / 8) + ((nb % 8) ? 1 : 0); rsp_length = response_io_status(tab_bits, mapping_address, nb, rsp, rsp_length); } } break; case MODBUS_FC_READ_HOLDING_REGISTERS: case MODBUS_FC_READ_INPUT_REGISTERS: { unsigned int is_input = (function == MODBUS_FC_READ_INPUT_REGISTERS); int start_registers = is_input ? mb_mapping->start_input_registers : mb_mapping->start_registers; int nb_registers = is_input ? mb_mapping->nb_input_registers : mb_mapping->nb_registers; uint16_t *tab_registers = is_input ? mb_mapping->tab_input_registers : mb_mapping->tab_registers; const char * const name = is_input ? "read_input_registers" : "read_registers"; int nb = (req[offset + 3] << 8) + req[offset + 4]; /* The mapping can be shifted to reduce memory consumption and it doesn't always start at address zero. */ int mapping_address = address - start_registers; if (nb < 1 || MODBUS_MAX_READ_REGISTERS < nb) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE, "Illegal nb of values %d in %s (max %d)\n", nb, name, MODBUS_MAX_READ_REGISTERS); } else if (mapping_address < 0 || (mapping_address + nb) > nb_registers) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in %s\n", mapping_address < 0 ? address : address + nb, name); } else { int i; rsp_length = ctx->backend->build_response_basis(&sft, rsp); rsp[rsp_length++] = nb << 1; for (i = mapping_address; i < mapping_address + nb; i++) { rsp[rsp_length++] = tab_registers[i] >> 8; rsp[rsp_length++] = tab_registers[i] & 0xFF; } } } break; case MODBUS_FC_WRITE_SINGLE_COIL: { int mapping_address = address - mb_mapping->start_bits; if (mapping_address < 0 || mapping_address >= mb_mapping->nb_bits) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in write_bit\n", address); } else { int data = (req[offset + 3] << 8) + req[offset + 4]; if (data == 0xFF00 || data == 0x0) { mb_mapping->tab_bits[mapping_address] = data ? ON : OFF; memcpy(rsp, req, req_length); rsp_length = req_length; } else { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, FALSE, "Illegal data value 0x%0X in write_bit request at address %0X\n", data, address); } } } break; case MODBUS_FC_WRITE_SINGLE_REGISTER: { int mapping_address = address - mb_mapping->start_registers; if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in write_register\n", address); } else { int data = (req[offset + 3] << 8) + req[offset + 4]; mb_mapping->tab_registers[mapping_address] = data; memcpy(rsp, req, req_length); rsp_length = req_length; } } break; case MODBUS_FC_WRITE_MULTIPLE_COILS: { int nb = (req[offset + 3] << 8) + req[offset + 4]; int mapping_address = address - mb_mapping->start_bits; if (nb < 1 || MODBUS_MAX_WRITE_BITS < nb) { /* May be the indication has been truncated on reading because of * invalid address (eg. nb is 0 but the request contains values to * write) so it's necessary to flush. */ rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE, "Illegal number of values %d in write_bits (max %d)\n", nb, MODBUS_MAX_WRITE_BITS); } else if (mapping_address < 0 || (mapping_address + nb) > mb_mapping->nb_bits) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in write_bits\n", mapping_address < 0 ? address : address + nb); } else { /* 6 = byte count */ modbus_set_bits_from_bytes(mb_mapping->tab_bits, mapping_address, nb, &req[offset + 6]); rsp_length = ctx->backend->build_response_basis(&sft, rsp); /* 4 to copy the bit address (2) and the quantity of bits */ memcpy(rsp + rsp_length, req + rsp_length, 4); rsp_length += 4; } } break; case MODBUS_FC_WRITE_MULTIPLE_REGISTERS: { int nb = (req[offset + 3] << 8) + req[offset + 4]; int mapping_address = address - mb_mapping->start_registers; if (nb < 1 || MODBUS_MAX_WRITE_REGISTERS < nb) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE, "Illegal number of values %d in write_registers (max %d)\n", nb, MODBUS_MAX_WRITE_REGISTERS); } else if (mapping_address < 0 || (mapping_address + nb) > mb_mapping->nb_registers) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in write_registers\n", mapping_address < 0 ? address : address + nb); } else { int i, j; for (i = mapping_address, j = 6; i < mapping_address + nb; i++, j += 2) { /* 6 and 7 = first value */ mb_mapping->tab_registers[i] = (req[offset + j] << 8) + req[offset + j + 1]; } rsp_length = ctx->backend->build_response_basis(&sft, rsp); /* 4 to copy the address (2) and the no. of registers */ memcpy(rsp + rsp_length, req + rsp_length, 4); rsp_length += 4; } } break; case MODBUS_FC_REPORT_SLAVE_ID: { int str_len; int byte_count_pos; rsp_length = ctx->backend->build_response_basis(&sft, rsp); /* Skip byte count for now */ byte_count_pos = rsp_length++; rsp[rsp_length++] = _REPORT_SLAVE_ID; /* Run indicator status to ON */ rsp[rsp_length++] = 0xFF; /* LMB + length of LIBMODBUS_VERSION_STRING */ str_len = 3 + strlen(LIBMODBUS_VERSION_STRING); memcpy(rsp + rsp_length, "LMB" LIBMODBUS_VERSION_STRING, str_len); rsp_length += str_len; rsp[byte_count_pos] = rsp_length - byte_count_pos - 1; } break; case MODBUS_FC_READ_EXCEPTION_STATUS: if (ctx->debug) { fprintf(stderr, "FIXME Not implemented\n"); } errno = ENOPROTOOPT; return -1; break; case MODBUS_FC_MASK_WRITE_REGISTER: { int mapping_address = address - mb_mapping->start_registers; if (mapping_address < 0 || mapping_address >= mb_mapping->nb_registers) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data address 0x%0X in write_register\n", address); } else { uint16_t data = mb_mapping->tab_registers[mapping_address]; uint16_t and = (req[offset + 3] << 8) + req[offset + 4]; uint16_t or = (req[offset + 5] << 8) + req[offset + 6]; data = (data & and) | (or & (~and)); mb_mapping->tab_registers[mapping_address] = data; memcpy(rsp, req, req_length); rsp_length = req_length; } } break; case MODBUS_FC_WRITE_AND_READ_REGISTERS: { int nb = (req[offset + 3] << 8) + req[offset + 4]; uint16_t address_write = (req[offset + 5] << 8) + req[offset + 6]; int nb_write = (req[offset + 7] << 8) + req[offset + 8]; int nb_write_bytes = req[offset + 9]; int mapping_address = address - mb_mapping->start_registers; int mapping_address_write = address_write - mb_mapping->start_registers; if (nb_write < 1 || MODBUS_MAX_WR_WRITE_REGISTERS < nb_write || nb < 1 || MODBUS_MAX_WR_READ_REGISTERS < nb || nb_write_bytes != nb_write * 2) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE, rsp, TRUE, "Illegal nb of values (W%d, R%d) in write_and_read_registers (max W%d, R%d)\n", nb_write, nb, MODBUS_MAX_WR_WRITE_REGISTERS, MODBUS_MAX_WR_READ_REGISTERS); } else if (mapping_address < 0 || (mapping_address + nb) > mb_mapping->nb_registers || mapping_address < 0 || (mapping_address_write + nb_write) > mb_mapping->nb_registers) { rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_DATA_ADDRESS, rsp, FALSE, "Illegal data read address 0x%0X or write address 0x%0X write_and_read_registers\n", mapping_address < 0 ? address : address + nb, mapping_address_write < 0 ? address_write : address_write + nb_write); } else { int i, j; rsp_length = ctx->backend->build_response_basis(&sft, rsp); rsp[rsp_length++] = nb << 1; /* Write first. 10 and 11 are the offset of the first values to write */ for (i = mapping_address_write, j = 10; i < mapping_address_write + nb_write; i++, j += 2) { mb_mapping->tab_registers[i] = (req[offset + j] << 8) + req[offset + j + 1]; } /* and read the data for the response */ for (i = mapping_address; i < mapping_address + nb; i++) { rsp[rsp_length++] = mb_mapping->tab_registers[i] >> 8; rsp[rsp_length++] = mb_mapping->tab_registers[i] & 0xFF; } } } break; default: rsp_length = response_exception( ctx, &sft, MODBUS_EXCEPTION_ILLEGAL_FUNCTION, rsp, TRUE, "Unknown Modbus function code: 0x%0X\n", function); break; } /* Suppress any responses when the request was a broadcast */ return (ctx->backend->backend_type == _MODBUS_BACKEND_TYPE_RTU && slave == MODBUS_BROADCAST_ADDRESS) ? 0 : send_msg(ctx, rsp, rsp_length); }
CWE-125
182,753
3,970
118810954539967247399565164296988875198
null
null
null
nfdump
3b006ededaf351f1723aea6c727c9edd1b1fff9b
1
static void Process_ipfix_template_withdraw(exporter_ipfix_domain_t *exporter, void *DataPtr, uint32_t size_left, FlowSource_t *fs) { ipfix_template_record_t *ipfix_template_record; while ( size_left ) { uint32_t id; ipfix_template_record = (ipfix_template_record_t *)DataPtr; size_left -= 4; id = ntohs(ipfix_template_record->TemplateID); if ( id == IPFIX_TEMPLATE_FLOWSET_ID ) { remove_all_translation_tables(exporter); ReInitExtensionMapList(fs); } else { remove_translation_table(fs, exporter, id); } DataPtr = DataPtr + 4; if ( size_left < 4 ) { dbg_printf("Skip %u bytes padding\n", size_left); size_left = 0; } } } // End of Process_ipfix_template_withdraw
CWE-190
182,755
3,972
255402460928750508120369305474900435214
null
null
null
ssdp-responder
ce04b1f29a137198182f60bbb628d5ceb8171765
1
static void ssdp_recv(int sd) { ssize_t len; struct sockaddr sa; socklen_t salen; char buf[MAX_PKT_SIZE]; memset(buf, 0, sizeof(buf)); len = recvfrom(sd, buf, sizeof(buf), MSG_DONTWAIT, &sa, &salen); if (len > 0) { buf[len] = 0; if (sa.sa_family != AF_INET) return; if (strstr(buf, "M-SEARCH *")) { size_t i; char *ptr, *type; struct ifsock *ifs; struct sockaddr_in *sin = (struct sockaddr_in *)&sa; ifs = find_outbound(&sa); if (!ifs) { logit(LOG_DEBUG, "No matching socket for client %s", inet_ntoa(sin->sin_addr)); return; } logit(LOG_DEBUG, "Matching socket for client %s", inet_ntoa(sin->sin_addr)); type = strcasestr(buf, "\r\nST:"); if (!type) { logit(LOG_DEBUG, "No Search Type (ST:) found in M-SEARCH *, assuming " SSDP_ST_ALL); type = SSDP_ST_ALL; send_message(ifs, type, &sa); return; } type = strchr(type, ':'); if (!type) return; type++; while (isspace(*type)) type++; ptr = strstr(type, "\r\n"); if (!ptr) return; *ptr = 0; for (i = 0; supported_types[i]; i++) { if (!strcmp(supported_types[i], type)) { logit(LOG_DEBUG, "M-SEARCH * ST: %s from %s port %d", type, inet_ntoa(sin->sin_addr), ntohs(sin->sin_port)); send_message(ifs, type, &sa); return; } } logit(LOG_DEBUG, "M-SEARCH * for unsupported ST: %s from %s", type, inet_ntoa(sin->sin_addr)); } } }
CWE-119
182,756
3,973
280032986814402166997723743808336204875
null
null
null
linux
da99466ac243f15fbba65bd261bfc75ffa1532b6
1
static int set_geometry(unsigned int cmd, struct floppy_struct *g, int drive, int type, struct block_device *bdev) { int cnt; /* sanity checking for parameters. */ if (g->sect <= 0 || g->head <= 0 || /* check for zero in F_SECT_PER_TRACK */ (unsigned char)((g->sect << 2) >> FD_SIZECODE(g)) == 0 || g->track <= 0 || g->track > UDP->tracks >> STRETCH(g) || /* check if reserved bits are set */ (g->stretch & ~(FD_STRETCH | FD_SWAPSIDES | FD_SECTBASEMASK)) != 0) return -EINVAL; if (type) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&open_lock); if (lock_fdc(drive)) { mutex_unlock(&open_lock); return -EINTR; } floppy_type[type] = *g; floppy_type[type].name = "user format"; for (cnt = type << 2; cnt < (type << 2) + 4; cnt++) floppy_sizes[cnt] = floppy_sizes[cnt + 0x80] = floppy_type[type].size + 1; process_fd_request(); for (cnt = 0; cnt < N_DRIVE; cnt++) { struct block_device *bdev = opened_bdev[cnt]; if (!bdev || ITYPE(drive_state[cnt].fd_device) != type) continue; __invalidate_device(bdev, true); } mutex_unlock(&open_lock); } else { int oldStretch; if (lock_fdc(drive)) return -EINTR; if (cmd != FDDEFPRM) { /* notice a disk change immediately, else * we lose our settings immediately*/ if (poll_drive(true, FD_RAW_NEED_DISK) == -EINTR) return -EINTR; } oldStretch = g->stretch; user_params[drive] = *g; if (buffer_drive == drive) SUPBOUND(buffer_max, user_params[drive].sect); current_type[drive] = &user_params[drive]; floppy_sizes[drive] = user_params[drive].size; if (cmd == FDDEFPRM) DRS->keep_data = -1; else DRS->keep_data = 1; /* invalidation. Invalidate only when needed, i.e. * when there are already sectors in the buffer cache * whose number will change. This is useful, because * mtools often changes the geometry of the disk after * looking at the boot block */ if (DRS->maxblock > user_params[drive].sect || DRS->maxtrack || ((user_params[drive].sect ^ oldStretch) & (FD_SWAPSIDES | FD_SECTBASEMASK))) invalidate_drive(bdev); else process_fd_request(); } return 0; }
CWE-125
182,759
3,975
296852991544563069556868154065271697977
null
null
null
ImageMagick6
4f31d78716ac94c85c244efcea368fea202e2ed4
1
MagickExport void RemoveDuplicateLayers(Image **images, ExceptionInfo *exception) { register Image *curr, *next; RectangleInfo bounds; assert((*images) != (const Image *) NULL); assert((*images)->signature == MagickCoreSignature); if ((*images)->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",(*images)->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); curr=GetFirstImageInList(*images); for (; (next=GetNextImageInList(curr)) != (Image *) NULL; curr=next) { if ( curr->columns != next->columns || curr->rows != next->rows || curr->page.x != next->page.x || curr->page.y != next->page.y ) continue; bounds=CompareImageBounds(curr,next,CompareAnyLayer,exception); if ( bounds.x < 0 ) { /* the two images are the same, merge time delays and delete one. */ size_t time; time = curr->delay*1000/curr->ticks_per_second; time += next->delay*1000/next->ticks_per_second; next->ticks_per_second = 100L; next->delay = time*curr->ticks_per_second/1000; next->iterations = curr->iterations; *images = curr; (void) DeleteImageFromList(images); } } *images = GetFirstImageInList(*images); }
CWE-369
182,760
3,976
325777336146972951329186891163860925632
null
null
null
ImageMagick6
f6ffc702c6eecd963587273a429dcd608c648984
1
MagickExport Image *ComplexImages(const Image *images,const ComplexOperator op, ExceptionInfo *exception) { #define ComplexImageTag "Complex/Image" CacheView *Ai_view, *Ar_view, *Bi_view, *Br_view, *Ci_view, *Cr_view; const char *artifact; const Image *Ai_image, *Ar_image, *Bi_image, *Br_image; double snr; Image *Ci_image, *complex_images, *Cr_image, *image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(images != (Image *) NULL); assert(images->signature == MagickCoreSignature); if (images->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (images->next == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ImageSequenceRequired","`%s'",images->filename); return((Image *) NULL); } image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(image,DirectClass) == MagickFalse) { image=DestroyImageList(image); return(image); } image->depth=32UL; complex_images=NewImageList(); AppendImageToList(&complex_images,image); image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) { complex_images=DestroyImageList(complex_images); return(complex_images); } AppendImageToList(&complex_images,image); /* Apply complex mathematics to image pixels. */ artifact=GetImageArtifact(image,"complex:snr"); snr=0.0; if (artifact != (const char *) NULL) snr=StringToDouble(artifact,(char **) NULL); Ar_image=images; Ai_image=images->next; Br_image=images; Bi_image=images->next; if ((images->next->next != (Image *) NULL) && (images->next->next->next != (Image *) NULL)) { Br_image=images->next->next; Bi_image=images->next->next->next; } Cr_image=complex_images; Ci_image=complex_images->next; Ar_view=AcquireVirtualCacheView(Ar_image,exception); Ai_view=AcquireVirtualCacheView(Ai_image,exception); Br_view=AcquireVirtualCacheView(Br_image,exception); Bi_view=AcquireVirtualCacheView(Bi_image,exception); Cr_view=AcquireAuthenticCacheView(Cr_image,exception); Ci_view=AcquireAuthenticCacheView(Ci_image,exception); status=MagickTrue; progress=0; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(images,complex_images,images->rows,1L) #endif for (y=0; y < (ssize_t) images->rows; y++) { register const PixelPacket *magick_restrict Ai, *magick_restrict Ar, *magick_restrict Bi, *magick_restrict Br; register PixelPacket *magick_restrict Ci, *magick_restrict Cr; register ssize_t x; if (status == MagickFalse) continue; Ar=GetCacheViewVirtualPixels(Ar_view,0,y,Ar_image->columns,1,exception); Ai=GetCacheViewVirtualPixels(Ai_view,0,y,Ai_image->columns,1,exception); Br=GetCacheViewVirtualPixels(Br_view,0,y,Br_image->columns,1,exception); Bi=GetCacheViewVirtualPixels(Bi_view,0,y,Bi_image->columns,1,exception); Cr=QueueCacheViewAuthenticPixels(Cr_view,0,y,Cr_image->columns,1,exception); Ci=QueueCacheViewAuthenticPixels(Ci_view,0,y,Ci_image->columns,1,exception); if ((Ar == (const PixelPacket *) NULL) || (Ai == (const PixelPacket *) NULL) || (Br == (const PixelPacket *) NULL) || (Bi == (const PixelPacket *) NULL) || (Cr == (PixelPacket *) NULL) || (Ci == (PixelPacket *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) images->columns; x++) { switch (op) { case AddComplexOperator: { Cr->red=Ar->red+Br->red; Ci->red=Ai->red+Bi->red; Cr->green=Ar->green+Br->green; Ci->green=Ai->green+Bi->green; Cr->blue=Ar->blue+Br->blue; Ci->blue=Ai->blue+Bi->blue; if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity+Br->opacity; Ci->opacity=Ai->opacity+Bi->opacity; } break; } case ConjugateComplexOperator: default: { Cr->red=Ar->red; Ci->red=(-Bi->red); Cr->green=Ar->green; Ci->green=(-Bi->green); Cr->blue=Ar->blue; Ci->blue=(-Bi->blue); if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity; Ci->opacity=(-Bi->opacity); } break; } case DivideComplexOperator: { double gamma; gamma=PerceptibleReciprocal(Br->red*Br->red+Bi->red*Bi->red+snr); Cr->red=gamma*(Ar->red*Br->red+Ai->red*Bi->red); Ci->red=gamma*(Ai->red*Br->red-Ar->red*Bi->red); gamma=PerceptibleReciprocal(Br->green*Br->green+Bi->green*Bi->green+ snr); Cr->green=gamma*(Ar->green*Br->green+Ai->green*Bi->green); Ci->green=gamma*(Ai->green*Br->green-Ar->green*Bi->green); gamma=PerceptibleReciprocal(Br->blue*Br->blue+Bi->blue*Bi->blue+snr); Cr->blue=gamma*(Ar->blue*Br->blue+Ai->blue*Bi->blue); Ci->blue=gamma*(Ai->blue*Br->blue-Ar->blue*Bi->blue); if (images->matte != MagickFalse) { gamma=PerceptibleReciprocal(Br->opacity*Br->opacity+Bi->opacity* Bi->opacity+snr); Cr->opacity=gamma*(Ar->opacity*Br->opacity+Ai->opacity* Bi->opacity); Ci->opacity=gamma*(Ai->opacity*Br->opacity-Ar->opacity* Bi->opacity); } break; } case MagnitudePhaseComplexOperator: { Cr->red=sqrt(Ar->red*Ar->red+Ai->red*Ai->red); Ci->red=atan2(Ai->red,Ar->red)/(2.0*MagickPI)+0.5; Cr->green=sqrt(Ar->green*Ar->green+Ai->green*Ai->green); Ci->green=atan2(Ai->green,Ar->green)/(2.0*MagickPI)+0.5; Cr->blue=sqrt(Ar->blue*Ar->blue+Ai->blue*Ai->blue); Ci->blue=atan2(Ai->blue,Ar->blue)/(2.0*MagickPI)+0.5; if (images->matte != MagickFalse) { Cr->opacity=sqrt(Ar->opacity*Ar->opacity+Ai->opacity*Ai->opacity); Ci->opacity=atan2(Ai->opacity,Ar->opacity)/(2.0*MagickPI)+0.5; } break; } case MultiplyComplexOperator: { Cr->red=QuantumScale*(Ar->red*Br->red-Ai->red*Bi->red); Ci->red=QuantumScale*(Ai->red*Br->red+Ar->red*Bi->red); Cr->green=QuantumScale*(Ar->green*Br->green-Ai->green*Bi->green); Ci->green=QuantumScale*(Ai->green*Br->green+Ar->green*Bi->green); Cr->blue=QuantumScale*(Ar->blue*Br->blue-Ai->blue*Bi->blue); Ci->blue=QuantumScale*(Ai->blue*Br->blue+Ar->blue*Bi->blue); if (images->matte != MagickFalse) { Cr->opacity=QuantumScale*(Ar->opacity*Br->opacity-Ai->opacity* Bi->opacity); Ci->opacity=QuantumScale*(Ai->opacity*Br->opacity+Ar->opacity* Bi->opacity); } break; } case RealImaginaryComplexOperator: { Cr->red=Ar->red*cos(2.0*MagickPI*(Ai->red-0.5)); Ci->red=Ar->red*sin(2.0*MagickPI*(Ai->red-0.5)); Cr->green=Ar->green*cos(2.0*MagickPI*(Ai->green-0.5)); Ci->green=Ar->green*sin(2.0*MagickPI*(Ai->green-0.5)); Cr->blue=Ar->blue*cos(2.0*MagickPI*(Ai->blue-0.5)); Ci->blue=Ar->blue*sin(2.0*MagickPI*(Ai->blue-0.5)); if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity*cos(2.0*MagickPI*(Ai->opacity-0.5)); Ci->opacity=Ar->opacity*sin(2.0*MagickPI*(Ai->opacity-0.5)); } break; } case SubtractComplexOperator: { Cr->red=Ar->red-Br->red; Ci->red=Ai->red-Bi->red; Cr->green=Ar->green-Br->green; Ci->green=Ai->green-Bi->green; Cr->blue=Ar->blue-Br->blue; Ci->blue=Ai->blue-Bi->blue; if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity-Br->opacity; Ci->opacity=Ai->opacity-Bi->opacity; } break; } } Ar++; Ai++; Br++; Bi++; Cr++; Ci++; } if (SyncCacheViewAuthenticPixels(Ci_view,exception) == MagickFalse) status=MagickFalse; if (SyncCacheViewAuthenticPixels(Cr_view,exception) == MagickFalse) status=MagickFalse; if (images->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(images,ComplexImageTag,progress,images->rows); if (proceed == MagickFalse) status=MagickFalse; } } Cr_view=DestroyCacheView(Cr_view); Ci_view=DestroyCacheView(Ci_view); Br_view=DestroyCacheView(Br_view); Bi_view=DestroyCacheView(Bi_view); Ar_view=DestroyCacheView(Ar_view); Ai_view=DestroyCacheView(Ai_view); if (status == MagickFalse) complex_images=DestroyImageList(complex_images); return(complex_images); }
CWE-125
182,762
3,978
174887836793841058053150996430889447165
null
null
null
ImageMagick6
bb812022d0bc12107db215c981cab0b1ccd73d91
1
WandExport MagickBooleanType MogrifyImageList(ImageInfo *image_info, const int argc,const char **argv,Image **images,ExceptionInfo *exception) { ChannelType channel; const char *option; ImageInfo *mogrify_info; MagickStatusType status; QuantizeInfo *quantize_info; register ssize_t i; ssize_t count, index; /* Apply options to the image list. */ assert(image_info != (ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(images != (Image **) NULL); assert((*images)->previous == (Image *) NULL); assert((*images)->signature == MagickCoreSignature); if ((*images)->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", (*images)->filename); if ((argc <= 0) || (*argv == (char *) NULL)) return(MagickTrue); mogrify_info=CloneImageInfo(image_info); quantize_info=AcquireQuantizeInfo(mogrify_info); channel=mogrify_info->channel; status=MagickTrue; for (i=0; i < (ssize_t) argc; i++) { if (*images == (Image *) NULL) break; option=argv[i]; if (IsCommandOption(option) == MagickFalse) continue; count=ParseCommandOption(MagickCommandOptions,MagickFalse,option); count=MagickMax(count,0L); if ((i+count) >= (ssize_t) argc) break; status=MogrifyImageInfo(mogrify_info,(int) count+1,argv+i,exception); switch (*(option+1)) { case 'a': { if (LocaleCompare("affinity",option+1) == 0) { (void) SyncImagesSettings(mogrify_info,*images); if (*option == '+') { (void) RemapImages(quantize_info,*images,(Image *) NULL); InheritException(exception,&(*images)->exception); break; } i++; break; } if (LocaleCompare("append",option+1) == 0) { Image *append_image; (void) SyncImagesSettings(mogrify_info,*images); append_image=AppendImages(*images,*option == '-' ? MagickTrue : MagickFalse,exception); if (append_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=append_image; break; } if (LocaleCompare("average",option+1) == 0) { Image *average_image; /* Average an image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); average_image=EvaluateImages(*images,MeanEvaluateOperator, exception); if (average_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=average_image; break; } break; } case 'c': { if (LocaleCompare("channel",option+1) == 0) { if (*option == '+') { channel=DefaultChannels; break; } channel=(ChannelType) ParseChannelOption(argv[i+1]); break; } if (LocaleCompare("clut",option+1) == 0) { Image *clut_image, *image; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); clut_image=RemoveFirstImageFromList(images); if (clut_image == (Image *) NULL) { status=MagickFalse; break; } (void) ClutImageChannel(image,channel,clut_image); clut_image=DestroyImage(clut_image); InheritException(exception,&image->exception); *images=DestroyImageList(*images); *images=image; break; } if (LocaleCompare("coalesce",option+1) == 0) { Image *coalesce_image; (void) SyncImagesSettings(mogrify_info,*images); coalesce_image=CoalesceImages(*images,exception); if (coalesce_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=coalesce_image; break; } if (LocaleCompare("combine",option+1) == 0) { Image *combine_image; (void) SyncImagesSettings(mogrify_info,*images); combine_image=CombineImages(*images,channel,exception); if (combine_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=combine_image; break; } if (LocaleCompare("compare",option+1) == 0) { const char *option; double distortion; Image *difference_image, *image, *reconstruct_image; MetricType metric; /* Mathematically and visually annotate the difference between an image and its reconstruction. */ (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); reconstruct_image=RemoveFirstImageFromList(images); if (reconstruct_image == (Image *) NULL) { status=MagickFalse; break; } metric=UndefinedMetric; option=GetImageOption(image_info,"metric"); if (option != (const char *) NULL) metric=(MetricType) ParseCommandOption(MagickMetricOptions, MagickFalse,option); difference_image=CompareImageChannels(image,reconstruct_image, channel,metric,&distortion,exception); if (difference_image == (Image *) NULL) break; reconstruct_image=DestroyImage(reconstruct_image); image=DestroyImage(image); if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=difference_image; break; } if (LocaleCompare("complex",option+1) == 0) { ComplexOperator op; Image *complex_images; (void) SyncImageSettings(mogrify_info,*images); op=(ComplexOperator) ParseCommandOption(MagickComplexOptions, MagickFalse,argv[i+1]); complex_images=ComplexImages(*images,op,exception); if (complex_images == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=complex_images; break; } if (LocaleCompare("composite",option+1) == 0) { Image *mask_image, *composite_image, *image; RectangleInfo geometry; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); composite_image=RemoveFirstImageFromList(images); if (composite_image == (Image *) NULL) { status=MagickFalse; break; } (void) TransformImage(&composite_image,(char *) NULL, composite_image->geometry); SetGeometry(composite_image,&geometry); (void) ParseAbsoluteGeometry(composite_image->geometry,&geometry); GravityAdjustGeometry(image->columns,image->rows,image->gravity, &geometry); mask_image=RemoveFirstImageFromList(images); if (mask_image != (Image *) NULL) { if ((image->compose == DisplaceCompositeOp) || (image->compose == DistortCompositeOp)) { /* Merge Y displacement into X displacement image. */ (void) CompositeImage(composite_image,CopyGreenCompositeOp, mask_image,0,0); mask_image=DestroyImage(mask_image); } else { /* Set a blending mask for the composition. */ if (image->mask != (Image *) NULL) image->mask=DestroyImage(image->mask); image->mask=mask_image; (void) NegateImage(image->mask,MagickFalse); } } (void) CompositeImageChannel(image,channel,image->compose, composite_image,geometry.x,geometry.y); if (mask_image != (Image *) NULL) { image->mask=DestroyImage(image->mask); mask_image=image->mask; } composite_image=DestroyImage(composite_image); InheritException(exception,&image->exception); *images=DestroyImageList(*images); *images=image; break; } if (LocaleCompare("copy",option+1) == 0) { Image *source_image; OffsetInfo offset; RectangleInfo geometry; /* Copy image pixels. */ (void) SyncImageSettings(mogrify_info,*images); (void) ParsePageGeometry(*images,argv[i+2],&geometry,exception); offset.x=geometry.x; offset.y=geometry.y; source_image=(*images); if (source_image->next != (Image *) NULL) source_image=source_image->next; (void) ParsePageGeometry(source_image,argv[i+1],&geometry, exception); status=CopyImagePixels(*images,source_image,&geometry,&offset, exception); break; } break; } case 'd': { if (LocaleCompare("deconstruct",option+1) == 0) { Image *deconstruct_image; (void) SyncImagesSettings(mogrify_info,*images); deconstruct_image=DeconstructImages(*images,exception); if (deconstruct_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=deconstruct_image; break; } if (LocaleCompare("delete",option+1) == 0) { if (*option == '+') DeleteImages(images,"-1",exception); else DeleteImages(images,argv[i+1],exception); break; } if (LocaleCompare("dither",option+1) == 0) { if (*option == '+') { quantize_info->dither=MagickFalse; break; } quantize_info->dither=MagickTrue; quantize_info->dither_method=(DitherMethod) ParseCommandOption( MagickDitherOptions,MagickFalse,argv[i+1]); break; } if (LocaleCompare("duplicate",option+1) == 0) { Image *duplicate_images; if (*option == '+') duplicate_images=DuplicateImages(*images,1,"-1",exception); else { const char *p; size_t number_duplicates; number_duplicates=(size_t) StringToLong(argv[i+1]); p=strchr(argv[i+1],','); if (p == (const char *) NULL) duplicate_images=DuplicateImages(*images,number_duplicates, "-1",exception); else duplicate_images=DuplicateImages(*images,number_duplicates,p, exception); } AppendImageToList(images, duplicate_images); (void) SyncImagesSettings(mogrify_info,*images); break; } break; } case 'e': { if (LocaleCompare("evaluate-sequence",option+1) == 0) { Image *evaluate_image; MagickEvaluateOperator op; (void) SyncImageSettings(mogrify_info,*images); op=(MagickEvaluateOperator) ParseCommandOption( MagickEvaluateOptions,MagickFalse,argv[i+1]); evaluate_image=EvaluateImages(*images,op,exception); if (evaluate_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=evaluate_image; break; } break; } case 'f': { if (LocaleCompare("fft",option+1) == 0) { Image *fourier_image; /* Implements the discrete Fourier transform (DFT). */ (void) SyncImageSettings(mogrify_info,*images); fourier_image=ForwardFourierTransformImage(*images,*option == '-' ? MagickTrue : MagickFalse,exception); if (fourier_image == (Image *) NULL) break; *images=DestroyImageList(*images); *images=fourier_image; break; } if (LocaleCompare("flatten",option+1) == 0) { Image *flatten_image; (void) SyncImagesSettings(mogrify_info,*images); flatten_image=MergeImageLayers(*images,FlattenLayer,exception); if (flatten_image == (Image *) NULL) break; *images=DestroyImageList(*images); *images=flatten_image; break; } if (LocaleCompare("fx",option+1) == 0) { Image *fx_image; (void) SyncImagesSettings(mogrify_info,*images); fx_image=FxImageChannel(*images,channel,argv[i+1],exception); if (fx_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=fx_image; break; } break; } case 'h': { if (LocaleCompare("hald-clut",option+1) == 0) { Image *hald_image, *image; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); hald_image=RemoveFirstImageFromList(images); if (hald_image == (Image *) NULL) { status=MagickFalse; break; } (void) HaldClutImageChannel(image,channel,hald_image); hald_image=DestroyImage(hald_image); InheritException(exception,&image->exception); if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=image; break; } break; } case 'i': { if (LocaleCompare("ift",option+1) == 0) { Image *fourier_image, *magnitude_image, *phase_image; /* Implements the inverse fourier discrete Fourier transform (DFT). */ (void) SyncImagesSettings(mogrify_info,*images); magnitude_image=RemoveFirstImageFromList(images); phase_image=RemoveFirstImageFromList(images); if (phase_image == (Image *) NULL) { status=MagickFalse; break; } fourier_image=InverseFourierTransformImage(magnitude_image, phase_image,*option == '-' ? MagickTrue : MagickFalse,exception); if (fourier_image == (Image *) NULL) break; if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=fourier_image; break; } if (LocaleCompare("insert",option+1) == 0) { Image *p, *q; index=0; if (*option != '+') index=(ssize_t) StringToLong(argv[i+1]); p=RemoveLastImageFromList(images); if (p == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",argv[i+1]); status=MagickFalse; break; } q=p; if (index == 0) PrependImageToList(images,q); else if (index == (ssize_t) GetImageListLength(*images)) AppendImageToList(images,q); else { q=GetImageFromList(*images,index-1); if (q == (Image *) NULL) { p=DestroyImage(p); (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",argv[i+1]); status=MagickFalse; break; } InsertImageInList(&q,p); } *images=GetFirstImageInList(q); break; } break; } case 'l': { if (LocaleCompare("layers",option+1) == 0) { Image *layers; ImageLayerMethod method; (void) SyncImagesSettings(mogrify_info,*images); layers=(Image *) NULL; method=(ImageLayerMethod) ParseCommandOption(MagickLayerOptions, MagickFalse,argv[i+1]); switch (method) { case CoalesceLayer: { layers=CoalesceImages(*images,exception); break; } case CompareAnyLayer: case CompareClearLayer: case CompareOverlayLayer: default: { layers=CompareImageLayers(*images,method,exception); break; } case MergeLayer: case FlattenLayer: case MosaicLayer: case TrimBoundsLayer: { layers=MergeImageLayers(*images,method,exception); break; } case DisposeLayer: { layers=DisposeImages(*images,exception); break; } case OptimizeImageLayer: { layers=OptimizeImageLayers(*images,exception); break; } case OptimizePlusLayer: { layers=OptimizePlusImageLayers(*images,exception); break; } case OptimizeTransLayer: { OptimizeImageTransparency(*images,exception); break; } case RemoveDupsLayer: { RemoveDuplicateLayers(images,exception); break; } case RemoveZeroLayer: { RemoveZeroDelayLayers(images,exception); break; } case OptimizeLayer: { /* General Purpose, GIF Animation Optimizer. */ layers=CoalesceImages(*images,exception); if (layers == (Image *) NULL) { status=MagickFalse; break; } InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; layers=OptimizeImageLayers(*images,exception); if (layers == (Image *) NULL) { status=MagickFalse; break; } InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; layers=(Image *) NULL; OptimizeImageTransparency(*images,exception); InheritException(exception,&(*images)->exception); (void) RemapImages(quantize_info,*images,(Image *) NULL); break; } case CompositeLayer: { CompositeOperator compose; Image *source; RectangleInfo geometry; /* Split image sequence at the first 'NULL:' image. */ source=(*images); while (source != (Image *) NULL) { source=GetNextImageInList(source); if ((source != (Image *) NULL) && (LocaleCompare(source->magick,"NULL") == 0)) break; } if (source != (Image *) NULL) { if ((GetPreviousImageInList(source) == (Image *) NULL) || (GetNextImageInList(source) == (Image *) NULL)) source=(Image *) NULL; else { /* Separate the two lists, junk the null: image. */ source=SplitImageList(source->previous); DeleteImageFromList(&source); } } if (source == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"MissingNullSeparator","layers Composite"); status=MagickFalse; break; } /* Adjust offset with gravity and virtual canvas. */ SetGeometry(*images,&geometry); (void) ParseAbsoluteGeometry((*images)->geometry,&geometry); geometry.width=source->page.width != 0 ? source->page.width : source->columns; geometry.height=source->page.height != 0 ? source->page.height : source->rows; GravityAdjustGeometry((*images)->page.width != 0 ? (*images)->page.width : (*images)->columns, (*images)->page.height != 0 ? (*images)->page.height : (*images)->rows,(*images)->gravity,&geometry); compose=OverCompositeOp; option=GetImageOption(mogrify_info,"compose"); if (option != (const char *) NULL) compose=(CompositeOperator) ParseCommandOption( MagickComposeOptions,MagickFalse,option); CompositeLayers(*images,compose,source,geometry.x,geometry.y, exception); source=DestroyImageList(source); break; } } if (layers == (Image *) NULL) break; InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; break; } break; } case 'm': { if (LocaleCompare("map",option+1) == 0) { (void) SyncImagesSettings(mogrify_info,*images); if (*option == '+') { (void) RemapImages(quantize_info,*images,(Image *) NULL); InheritException(exception,&(*images)->exception); break; } i++; break; } if (LocaleCompare("maximum",option+1) == 0) { Image *maximum_image; /* Maximum image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); maximum_image=EvaluateImages(*images,MaxEvaluateOperator,exception); if (maximum_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=maximum_image; break; } if (LocaleCompare("minimum",option+1) == 0) { Image *minimum_image; /* Minimum image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); minimum_image=EvaluateImages(*images,MinEvaluateOperator,exception); if (minimum_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=minimum_image; break; } if (LocaleCompare("morph",option+1) == 0) { Image *morph_image; (void) SyncImagesSettings(mogrify_info,*images); morph_image=MorphImages(*images,StringToUnsignedLong(argv[i+1]), exception); if (morph_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=morph_image; break; } if (LocaleCompare("mosaic",option+1) == 0) { Image *mosaic_image; (void) SyncImagesSettings(mogrify_info,*images); mosaic_image=MergeImageLayers(*images,MosaicLayer,exception); if (mosaic_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=mosaic_image; break; } break; } case 'p': { if (LocaleCompare("poly",option+1) == 0) { char *args, token[MaxTextExtent]; const char *p; double *arguments; Image *polynomial_image; register ssize_t x; size_t number_arguments; /* Polynomial image. */ (void) SyncImageSettings(mogrify_info,*images); args=InterpretImageProperties(mogrify_info,*images,argv[i+1]); InheritException(exception,&(*images)->exception); if (args == (char *) NULL) break; p=(char *) args; for (x=0; *p != '\0'; x++) { GetNextToken(p,&p,MaxTextExtent,token); if (*token == ',') GetNextToken(p,&p,MaxTextExtent,token); } number_arguments=(size_t) x; arguments=(double *) AcquireQuantumMemory(number_arguments, sizeof(*arguments)); if (arguments == (double *) NULL) ThrowWandFatalException(ResourceLimitFatalError, "MemoryAllocationFailed",(*images)->filename); (void) memset(arguments,0,number_arguments* sizeof(*arguments)); p=(char *) args; for (x=0; (x < (ssize_t) number_arguments) && (*p != '\0'); x++) { GetNextToken(p,&p,MaxTextExtent,token); if (*token == ',') GetNextToken(p,&p,MaxTextExtent,token); arguments[x]=StringToDouble(token,(char **) NULL); } args=DestroyString(args); polynomial_image=PolynomialImageChannel(*images,channel, number_arguments >> 1,arguments,exception); arguments=(double *) RelinquishMagickMemory(arguments); if (polynomial_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=polynomial_image; break; } if (LocaleCompare("print",option+1) == 0) { char *string; (void) SyncImagesSettings(mogrify_info,*images); string=InterpretImageProperties(mogrify_info,*images,argv[i+1]); if (string == (char *) NULL) break; InheritException(exception,&(*images)->exception); (void) FormatLocaleFile(stdout,"%s",string); string=DestroyString(string); } if (LocaleCompare("process",option+1) == 0) { char **arguments; int j, number_arguments; (void) SyncImagesSettings(mogrify_info,*images); arguments=StringToArgv(argv[i+1],&number_arguments); if (arguments == (char **) NULL) break; if ((argc > 1) && (strchr(arguments[1],'=') != (char *) NULL)) { char breaker, quote, *token; const char *arguments; int next, status; size_t length; TokenInfo *token_info; /* Support old style syntax, filter="-option arg". */ length=strlen(argv[i+1]); token=(char *) NULL; if (~length >= (MaxTextExtent-1)) token=(char *) AcquireQuantumMemory(length+MaxTextExtent, sizeof(*token)); if (token == (char *) NULL) break; next=0; arguments=argv[i+1]; token_info=AcquireTokenInfo(); status=Tokenizer(token_info,0,token,length,arguments,"","=", "\"",'\0',&breaker,&next,&quote); token_info=DestroyTokenInfo(token_info); if (status == 0) { const char *argv; argv=(&(arguments[next])); (void) InvokeDynamicImageFilter(token,&(*images),1,&argv, exception); } token=DestroyString(token); break; } (void) SubstituteString(&arguments[1],"-",""); (void) InvokeDynamicImageFilter(arguments[1],&(*images), number_arguments-2,(const char **) arguments+2,exception); for (j=0; j < number_arguments; j++) arguments[j]=DestroyString(arguments[j]); arguments=(char **) RelinquishMagickMemory(arguments); break; } break; } case 'r': { if (LocaleCompare("reverse",option+1) == 0) { ReverseImageList(images); InheritException(exception,&(*images)->exception); break; } break; } case 's': { if (LocaleCompare("smush",option+1) == 0) { Image *smush_image; ssize_t offset; (void) SyncImagesSettings(mogrify_info,*images); offset=(ssize_t) StringToLong(argv[i+1]); smush_image=SmushImages(*images,*option == '-' ? MagickTrue : MagickFalse,offset,exception); if (smush_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=smush_image; break; } if (LocaleCompare("swap",option+1) == 0) { Image *p, *q, *u, *v; ssize_t swap_index; index=(-1); swap_index=(-2); if (*option != '+') { GeometryInfo geometry_info; MagickStatusType flags; swap_index=(-1); flags=ParseGeometry(argv[i+1],&geometry_info); index=(ssize_t) geometry_info.rho; if ((flags & SigmaValue) != 0) swap_index=(ssize_t) geometry_info.sigma; } p=GetImageFromList(*images,index); q=GetImageFromList(*images,swap_index); if ((p == (Image *) NULL) || (q == (Image *) NULL)) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",(*images)->filename); status=MagickFalse; break; } if (p == q) break; u=CloneImage(p,0,0,MagickTrue,exception); if (u == (Image *) NULL) break; v=CloneImage(q,0,0,MagickTrue,exception); if (v == (Image *) NULL) { u=DestroyImage(u); break; } ReplaceImageInList(&p,v); ReplaceImageInList(&q,u); *images=GetFirstImageInList(q); break; } break; } case 'w': { if (LocaleCompare("write",option+1) == 0) { char key[MaxTextExtent]; Image *write_images; ImageInfo *write_info; (void) SyncImagesSettings(mogrify_info,*images); (void) FormatLocaleString(key,MaxTextExtent,"cache:%s",argv[i+1]); (void) DeleteImageRegistry(key); write_images=(*images); if (*option == '+') write_images=CloneImageList(*images,exception); write_info=CloneImageInfo(mogrify_info); status&=WriteImages(write_info,write_images,argv[i+1],exception); write_info=DestroyImageInfo(write_info); if (*option == '+') write_images=DestroyImageList(write_images); break; } break; } default: break; } i+=count; } quantize_info=DestroyQuantizeInfo(quantize_info); mogrify_info=DestroyImageInfo(mogrify_info); status&=MogrifyImageInfo(image_info,argc,argv,exception); return(status != 0 ? MagickTrue : MagickFalse); }
CWE-399
182,763
3,979
271961819426692353580427639059494122987
null
null
null
ImageMagick6
5982632109cad48bc6dab867298fdea4dea57c51
1
WandExport MagickBooleanType MogrifyImageList(ImageInfo *image_info, const int argc,const char **argv,Image **images,ExceptionInfo *exception) { ChannelType channel; const char *option; ImageInfo *mogrify_info; MagickStatusType status; QuantizeInfo *quantize_info; register ssize_t i; ssize_t count, index; /* Apply options to the image list. */ assert(image_info != (ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(images != (Image **) NULL); assert((*images)->previous == (Image *) NULL); assert((*images)->signature == MagickCoreSignature); if ((*images)->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", (*images)->filename); if ((argc <= 0) || (*argv == (char *) NULL)) return(MagickTrue); mogrify_info=CloneImageInfo(image_info); quantize_info=AcquireQuantizeInfo(mogrify_info); channel=mogrify_info->channel; status=MagickTrue; for (i=0; i < (ssize_t) argc; i++) { if (*images == (Image *) NULL) break; option=argv[i]; if (IsCommandOption(option) == MagickFalse) continue; count=ParseCommandOption(MagickCommandOptions,MagickFalse,option); count=MagickMax(count,0L); if ((i+count) >= (ssize_t) argc) break; status=MogrifyImageInfo(mogrify_info,(int) count+1,argv+i,exception); switch (*(option+1)) { case 'a': { if (LocaleCompare("affinity",option+1) == 0) { (void) SyncImagesSettings(mogrify_info,*images); if (*option == '+') { (void) RemapImages(quantize_info,*images,(Image *) NULL); InheritException(exception,&(*images)->exception); break; } i++; break; } if (LocaleCompare("append",option+1) == 0) { Image *append_image; (void) SyncImagesSettings(mogrify_info,*images); append_image=AppendImages(*images,*option == '-' ? MagickTrue : MagickFalse,exception); if (append_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=append_image; break; } if (LocaleCompare("average",option+1) == 0) { Image *average_image; /* Average an image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); average_image=EvaluateImages(*images,MeanEvaluateOperator, exception); if (average_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=average_image; break; } break; } case 'c': { if (LocaleCompare("channel",option+1) == 0) { if (*option == '+') { channel=DefaultChannels; break; } channel=(ChannelType) ParseChannelOption(argv[i+1]); break; } if (LocaleCompare("clut",option+1) == 0) { Image *clut_image, *image; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); clut_image=RemoveFirstImageFromList(images); if (clut_image == (Image *) NULL) { status=MagickFalse; break; } (void) ClutImageChannel(image,channel,clut_image); clut_image=DestroyImage(clut_image); InheritException(exception,&image->exception); *images=DestroyImageList(*images); *images=image; break; } if (LocaleCompare("coalesce",option+1) == 0) { Image *coalesce_image; (void) SyncImagesSettings(mogrify_info,*images); coalesce_image=CoalesceImages(*images,exception); if (coalesce_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=coalesce_image; break; } if (LocaleCompare("combine",option+1) == 0) { Image *combine_image; (void) SyncImagesSettings(mogrify_info,*images); combine_image=CombineImages(*images,channel,exception); if (combine_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=combine_image; break; } if (LocaleCompare("compare",option+1) == 0) { const char *option; double distortion; Image *difference_image, *image, *reconstruct_image; MetricType metric; /* Mathematically and visually annotate the difference between an image and its reconstruction. */ (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); reconstruct_image=RemoveFirstImageFromList(images); if (reconstruct_image == (Image *) NULL) { status=MagickFalse; break; } metric=UndefinedMetric; option=GetImageOption(image_info,"metric"); if (option != (const char *) NULL) metric=(MetricType) ParseCommandOption(MagickMetricOptions, MagickFalse,option); difference_image=CompareImageChannels(image,reconstruct_image, channel,metric,&distortion,exception); if (difference_image == (Image *) NULL) break; if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=difference_image; break; } if (LocaleCompare("complex",option+1) == 0) { ComplexOperator op; Image *complex_images; (void) SyncImageSettings(mogrify_info,*images); op=(ComplexOperator) ParseCommandOption(MagickComplexOptions, MagickFalse,argv[i+1]); complex_images=ComplexImages(*images,op,exception); if (complex_images == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=complex_images; break; } if (LocaleCompare("composite",option+1) == 0) { Image *mask_image, *composite_image, *image; RectangleInfo geometry; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); composite_image=RemoveFirstImageFromList(images); if (composite_image == (Image *) NULL) { status=MagickFalse; break; } (void) TransformImage(&composite_image,(char *) NULL, composite_image->geometry); SetGeometry(composite_image,&geometry); (void) ParseAbsoluteGeometry(composite_image->geometry,&geometry); GravityAdjustGeometry(image->columns,image->rows,image->gravity, &geometry); mask_image=RemoveFirstImageFromList(images); if (mask_image != (Image *) NULL) { if ((image->compose == DisplaceCompositeOp) || (image->compose == DistortCompositeOp)) { /* Merge Y displacement into X displacement image. */ (void) CompositeImage(composite_image,CopyGreenCompositeOp, mask_image,0,0); mask_image=DestroyImage(mask_image); } else { /* Set a blending mask for the composition. */ if (image->mask != (Image *) NULL) image->mask=DestroyImage(image->mask); image->mask=mask_image; (void) NegateImage(image->mask,MagickFalse); } } (void) CompositeImageChannel(image,channel,image->compose, composite_image,geometry.x,geometry.y); if (mask_image != (Image *) NULL) { image->mask=DestroyImage(image->mask); mask_image=image->mask; } composite_image=DestroyImage(composite_image); InheritException(exception,&image->exception); *images=DestroyImageList(*images); *images=image; break; } if (LocaleCompare("copy",option+1) == 0) { Image *source_image; OffsetInfo offset; RectangleInfo geometry; /* Copy image pixels. */ (void) SyncImageSettings(mogrify_info,*images); (void) ParsePageGeometry(*images,argv[i+2],&geometry,exception); offset.x=geometry.x; offset.y=geometry.y; source_image=(*images); if (source_image->next != (Image *) NULL) source_image=source_image->next; (void) ParsePageGeometry(source_image,argv[i+1],&geometry, exception); status=CopyImagePixels(*images,source_image,&geometry,&offset, exception); break; } break; } case 'd': { if (LocaleCompare("deconstruct",option+1) == 0) { Image *deconstruct_image; (void) SyncImagesSettings(mogrify_info,*images); deconstruct_image=DeconstructImages(*images,exception); if (deconstruct_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=deconstruct_image; break; } if (LocaleCompare("delete",option+1) == 0) { if (*option == '+') DeleteImages(images,"-1",exception); else DeleteImages(images,argv[i+1],exception); break; } if (LocaleCompare("dither",option+1) == 0) { if (*option == '+') { quantize_info->dither=MagickFalse; break; } quantize_info->dither=MagickTrue; quantize_info->dither_method=(DitherMethod) ParseCommandOption( MagickDitherOptions,MagickFalse,argv[i+1]); break; } if (LocaleCompare("duplicate",option+1) == 0) { Image *duplicate_images; if (*option == '+') duplicate_images=DuplicateImages(*images,1,"-1",exception); else { const char *p; size_t number_duplicates; number_duplicates=(size_t) StringToLong(argv[i+1]); p=strchr(argv[i+1],','); if (p == (const char *) NULL) duplicate_images=DuplicateImages(*images,number_duplicates, "-1",exception); else duplicate_images=DuplicateImages(*images,number_duplicates,p, exception); } AppendImageToList(images, duplicate_images); (void) SyncImagesSettings(mogrify_info,*images); break; } break; } case 'e': { if (LocaleCompare("evaluate-sequence",option+1) == 0) { Image *evaluate_image; MagickEvaluateOperator op; (void) SyncImageSettings(mogrify_info,*images); op=(MagickEvaluateOperator) ParseCommandOption( MagickEvaluateOptions,MagickFalse,argv[i+1]); evaluate_image=EvaluateImages(*images,op,exception); if (evaluate_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=evaluate_image; break; } break; } case 'f': { if (LocaleCompare("fft",option+1) == 0) { Image *fourier_image; /* Implements the discrete Fourier transform (DFT). */ (void) SyncImageSettings(mogrify_info,*images); fourier_image=ForwardFourierTransformImage(*images,*option == '-' ? MagickTrue : MagickFalse,exception); if (fourier_image == (Image *) NULL) break; *images=DestroyImageList(*images); *images=fourier_image; break; } if (LocaleCompare("flatten",option+1) == 0) { Image *flatten_image; (void) SyncImagesSettings(mogrify_info,*images); flatten_image=MergeImageLayers(*images,FlattenLayer,exception); if (flatten_image == (Image *) NULL) break; *images=DestroyImageList(*images); *images=flatten_image; break; } if (LocaleCompare("fx",option+1) == 0) { Image *fx_image; (void) SyncImagesSettings(mogrify_info,*images); fx_image=FxImageChannel(*images,channel,argv[i+1],exception); if (fx_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=fx_image; break; } break; } case 'h': { if (LocaleCompare("hald-clut",option+1) == 0) { Image *hald_image, *image; (void) SyncImagesSettings(mogrify_info,*images); image=RemoveFirstImageFromList(images); hald_image=RemoveFirstImageFromList(images); if (hald_image == (Image *) NULL) { status=MagickFalse; break; } (void) HaldClutImageChannel(image,channel,hald_image); hald_image=DestroyImage(hald_image); InheritException(exception,&image->exception); if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=image; break; } break; } case 'i': { if (LocaleCompare("ift",option+1) == 0) { Image *fourier_image, *magnitude_image, *phase_image; /* Implements the inverse fourier discrete Fourier transform (DFT). */ (void) SyncImagesSettings(mogrify_info,*images); magnitude_image=RemoveFirstImageFromList(images); phase_image=RemoveFirstImageFromList(images); if (phase_image == (Image *) NULL) { status=MagickFalse; break; } fourier_image=InverseFourierTransformImage(magnitude_image, phase_image,*option == '-' ? MagickTrue : MagickFalse,exception); if (fourier_image == (Image *) NULL) break; if (*images != (Image *) NULL) *images=DestroyImageList(*images); *images=fourier_image; break; } if (LocaleCompare("insert",option+1) == 0) { Image *p, *q; index=0; if (*option != '+') index=(ssize_t) StringToLong(argv[i+1]); p=RemoveLastImageFromList(images); if (p == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",argv[i+1]); status=MagickFalse; break; } q=p; if (index == 0) PrependImageToList(images,q); else if (index == (ssize_t) GetImageListLength(*images)) AppendImageToList(images,q); else { q=GetImageFromList(*images,index-1); if (q == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",argv[i+1]); status=MagickFalse; break; } InsertImageInList(&q,p); } *images=GetFirstImageInList(q); break; } break; } case 'l': { if (LocaleCompare("layers",option+1) == 0) { Image *layers; ImageLayerMethod method; (void) SyncImagesSettings(mogrify_info,*images); layers=(Image *) NULL; method=(ImageLayerMethod) ParseCommandOption(MagickLayerOptions, MagickFalse,argv[i+1]); switch (method) { case CoalesceLayer: { layers=CoalesceImages(*images,exception); break; } case CompareAnyLayer: case CompareClearLayer: case CompareOverlayLayer: default: { layers=CompareImageLayers(*images,method,exception); break; } case MergeLayer: case FlattenLayer: case MosaicLayer: case TrimBoundsLayer: { layers=MergeImageLayers(*images,method,exception); break; } case DisposeLayer: { layers=DisposeImages(*images,exception); break; } case OptimizeImageLayer: { layers=OptimizeImageLayers(*images,exception); break; } case OptimizePlusLayer: { layers=OptimizePlusImageLayers(*images,exception); break; } case OptimizeTransLayer: { OptimizeImageTransparency(*images,exception); break; } case RemoveDupsLayer: { RemoveDuplicateLayers(images,exception); break; } case RemoveZeroLayer: { RemoveZeroDelayLayers(images,exception); break; } case OptimizeLayer: { /* General Purpose, GIF Animation Optimizer. */ layers=CoalesceImages(*images,exception); if (layers == (Image *) NULL) { status=MagickFalse; break; } InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; layers=OptimizeImageLayers(*images,exception); if (layers == (Image *) NULL) { status=MagickFalse; break; } InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; layers=(Image *) NULL; OptimizeImageTransparency(*images,exception); InheritException(exception,&(*images)->exception); (void) RemapImages(quantize_info,*images,(Image *) NULL); break; } case CompositeLayer: { CompositeOperator compose; Image *source; RectangleInfo geometry; /* Split image sequence at the first 'NULL:' image. */ source=(*images); while (source != (Image *) NULL) { source=GetNextImageInList(source); if ((source != (Image *) NULL) && (LocaleCompare(source->magick,"NULL") == 0)) break; } if (source != (Image *) NULL) { if ((GetPreviousImageInList(source) == (Image *) NULL) || (GetNextImageInList(source) == (Image *) NULL)) source=(Image *) NULL; else { /* Separate the two lists, junk the null: image. */ source=SplitImageList(source->previous); DeleteImageFromList(&source); } } if (source == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"MissingNullSeparator","layers Composite"); status=MagickFalse; break; } /* Adjust offset with gravity and virtual canvas. */ SetGeometry(*images,&geometry); (void) ParseAbsoluteGeometry((*images)->geometry,&geometry); geometry.width=source->page.width != 0 ? source->page.width : source->columns; geometry.height=source->page.height != 0 ? source->page.height : source->rows; GravityAdjustGeometry((*images)->page.width != 0 ? (*images)->page.width : (*images)->columns, (*images)->page.height != 0 ? (*images)->page.height : (*images)->rows,(*images)->gravity,&geometry); compose=OverCompositeOp; option=GetImageOption(mogrify_info,"compose"); if (option != (const char *) NULL) compose=(CompositeOperator) ParseCommandOption( MagickComposeOptions,MagickFalse,option); CompositeLayers(*images,compose,source,geometry.x,geometry.y, exception); source=DestroyImageList(source); break; } } if (layers == (Image *) NULL) break; InheritException(exception,&layers->exception); *images=DestroyImageList(*images); *images=layers; break; } break; } case 'm': { if (LocaleCompare("map",option+1) == 0) { (void) SyncImagesSettings(mogrify_info,*images); if (*option == '+') { (void) RemapImages(quantize_info,*images,(Image *) NULL); InheritException(exception,&(*images)->exception); break; } i++; break; } if (LocaleCompare("maximum",option+1) == 0) { Image *maximum_image; /* Maximum image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); maximum_image=EvaluateImages(*images,MaxEvaluateOperator,exception); if (maximum_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=maximum_image; break; } if (LocaleCompare("minimum",option+1) == 0) { Image *minimum_image; /* Minimum image sequence (deprecated). */ (void) SyncImagesSettings(mogrify_info,*images); minimum_image=EvaluateImages(*images,MinEvaluateOperator,exception); if (minimum_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=minimum_image; break; } if (LocaleCompare("morph",option+1) == 0) { Image *morph_image; (void) SyncImagesSettings(mogrify_info,*images); morph_image=MorphImages(*images,StringToUnsignedLong(argv[i+1]), exception); if (morph_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=morph_image; break; } if (LocaleCompare("mosaic",option+1) == 0) { Image *mosaic_image; (void) SyncImagesSettings(mogrify_info,*images); mosaic_image=MergeImageLayers(*images,MosaicLayer,exception); if (mosaic_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=mosaic_image; break; } break; } case 'p': { if (LocaleCompare("poly",option+1) == 0) { char *args, token[MaxTextExtent]; const char *p; double *arguments; Image *polynomial_image; register ssize_t x; size_t number_arguments; /* Polynomial image. */ (void) SyncImageSettings(mogrify_info,*images); args=InterpretImageProperties(mogrify_info,*images,argv[i+1]); InheritException(exception,&(*images)->exception); if (args == (char *) NULL) break; p=(char *) args; for (x=0; *p != '\0'; x++) { GetNextToken(p,&p,MaxTextExtent,token); if (*token == ',') GetNextToken(p,&p,MaxTextExtent,token); } number_arguments=(size_t) x; arguments=(double *) AcquireQuantumMemory(number_arguments, sizeof(*arguments)); if (arguments == (double *) NULL) ThrowWandFatalException(ResourceLimitFatalError, "MemoryAllocationFailed",(*images)->filename); (void) memset(arguments,0,number_arguments* sizeof(*arguments)); p=(char *) args; for (x=0; (x < (ssize_t) number_arguments) && (*p != '\0'); x++) { GetNextToken(p,&p,MaxTextExtent,token); if (*token == ',') GetNextToken(p,&p,MaxTextExtent,token); arguments[x]=StringToDouble(token,(char **) NULL); } args=DestroyString(args); polynomial_image=PolynomialImageChannel(*images,channel, number_arguments >> 1,arguments,exception); arguments=(double *) RelinquishMagickMemory(arguments); if (polynomial_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=polynomial_image; break; } if (LocaleCompare("print",option+1) == 0) { char *string; (void) SyncImagesSettings(mogrify_info,*images); string=InterpretImageProperties(mogrify_info,*images,argv[i+1]); if (string == (char *) NULL) break; InheritException(exception,&(*images)->exception); (void) FormatLocaleFile(stdout,"%s",string); string=DestroyString(string); } if (LocaleCompare("process",option+1) == 0) { char **arguments; int j, number_arguments; (void) SyncImagesSettings(mogrify_info,*images); arguments=StringToArgv(argv[i+1],&number_arguments); if (arguments == (char **) NULL) break; if ((argc > 1) && (strchr(arguments[1],'=') != (char *) NULL)) { char breaker, quote, *token; const char *arguments; int next, status; size_t length; TokenInfo *token_info; /* Support old style syntax, filter="-option arg". */ length=strlen(argv[i+1]); token=(char *) NULL; if (~length >= (MaxTextExtent-1)) token=(char *) AcquireQuantumMemory(length+MaxTextExtent, sizeof(*token)); if (token == (char *) NULL) break; next=0; arguments=argv[i+1]; token_info=AcquireTokenInfo(); status=Tokenizer(token_info,0,token,length,arguments,"","=", "\"",'\0',&breaker,&next,&quote); token_info=DestroyTokenInfo(token_info); if (status == 0) { const char *argv; argv=(&(arguments[next])); (void) InvokeDynamicImageFilter(token,&(*images),1,&argv, exception); } token=DestroyString(token); break; } (void) SubstituteString(&arguments[1],"-",""); (void) InvokeDynamicImageFilter(arguments[1],&(*images), number_arguments-2,(const char **) arguments+2,exception); for (j=0; j < number_arguments; j++) arguments[j]=DestroyString(arguments[j]); arguments=(char **) RelinquishMagickMemory(arguments); break; } break; } case 'r': { if (LocaleCompare("reverse",option+1) == 0) { ReverseImageList(images); InheritException(exception,&(*images)->exception); break; } break; } case 's': { if (LocaleCompare("smush",option+1) == 0) { Image *smush_image; ssize_t offset; (void) SyncImagesSettings(mogrify_info,*images); offset=(ssize_t) StringToLong(argv[i+1]); smush_image=SmushImages(*images,*option == '-' ? MagickTrue : MagickFalse,offset,exception); if (smush_image == (Image *) NULL) { status=MagickFalse; break; } *images=DestroyImageList(*images); *images=smush_image; break; } if (LocaleCompare("swap",option+1) == 0) { Image *p, *q, *u, *v; ssize_t swap_index; index=(-1); swap_index=(-2); if (*option != '+') { GeometryInfo geometry_info; MagickStatusType flags; swap_index=(-1); flags=ParseGeometry(argv[i+1],&geometry_info); index=(ssize_t) geometry_info.rho; if ((flags & SigmaValue) != 0) swap_index=(ssize_t) geometry_info.sigma; } p=GetImageFromList(*images,index); q=GetImageFromList(*images,swap_index); if ((p == (Image *) NULL) || (q == (Image *) NULL)) { (void) ThrowMagickException(exception,GetMagickModule(), OptionError,"NoSuchImage","`%s'",(*images)->filename); status=MagickFalse; break; } if (p == q) break; u=CloneImage(p,0,0,MagickTrue,exception); if (u == (Image *) NULL) break; v=CloneImage(q,0,0,MagickTrue,exception); if (v == (Image *) NULL) { u=DestroyImage(u); break; } ReplaceImageInList(&p,v); ReplaceImageInList(&q,u); *images=GetFirstImageInList(q); break; } break; } case 'w': { if (LocaleCompare("write",option+1) == 0) { char key[MaxTextExtent]; Image *write_images; ImageInfo *write_info; (void) SyncImagesSettings(mogrify_info,*images); (void) FormatLocaleString(key,MaxTextExtent,"cache:%s",argv[i+1]); (void) DeleteImageRegistry(key); write_images=(*images); if (*option == '+') write_images=CloneImageList(*images,exception); write_info=CloneImageInfo(mogrify_info); status&=WriteImages(write_info,write_images,argv[i+1],exception); write_info=DestroyImageInfo(write_info); if (*option == '+') write_images=DestroyImageList(write_images); break; } break; } default: break; } i+=count; } quantize_info=DestroyQuantizeInfo(quantize_info); mogrify_info=DestroyImageInfo(mogrify_info); status&=MogrifyImageInfo(image_info,argc,argv,exception); return(status != 0 ? MagickTrue : MagickFalse); }
CWE-399
182,764
3,980
86170942970773206180470697635619002895
null
null
null
ImageMagick6
19651f3db63fa1511ed83a348c4c82fa553f8d01
1
MagickExport Image *ComplexImages(const Image *images,const ComplexOperator op, ExceptionInfo *exception) { #define ComplexImageTag "Complex/Image" CacheView *Ai_view, *Ar_view, *Bi_view, *Br_view, *Ci_view, *Cr_view; const char *artifact; const Image *Ai_image, *Ar_image, *Bi_image, *Br_image; double snr; Image *Ci_image, *complex_images, *Cr_image, *image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(images != (Image *) NULL); assert(images->signature == MagickCoreSignature); if (images->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (images->next == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ImageSequenceRequired","`%s'",images->filename); return((Image *) NULL); } image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(image,DirectClass) == MagickFalse) { image=DestroyImageList(image); return(image); } image->depth=32UL; complex_images=NewImageList(); AppendImageToList(&complex_images,image); image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) { complex_images=DestroyImageList(complex_images); return(complex_images); } AppendImageToList(&complex_images,image); /* Apply complex mathematics to image pixels. */ artifact=GetImageArtifact(image,"complex:snr"); snr=0.0; if (artifact != (const char *) NULL) snr=StringToDouble(artifact,(char **) NULL); Ar_image=images; Ai_image=images->next; Br_image=images; Bi_image=images->next; if ((images->next->next != (Image *) NULL) && (images->next->next->next != (Image *) NULL)) { Br_image=images->next->next; Bi_image=images->next->next->next; } Cr_image=complex_images; Ci_image=complex_images->next; Ar_view=AcquireVirtualCacheView(Ar_image,exception); Ai_view=AcquireVirtualCacheView(Ai_image,exception); Br_view=AcquireVirtualCacheView(Br_image,exception); Bi_view=AcquireVirtualCacheView(Bi_image,exception); Cr_view=AcquireAuthenticCacheView(Cr_image,exception); Ci_view=AcquireAuthenticCacheView(Ci_image,exception); status=MagickTrue; progress=0; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(images,complex_images,images->rows,1L) #endif for (y=0; y < (ssize_t) images->rows; y++) { register const PixelPacket *magick_restrict Ai, *magick_restrict Ar, *magick_restrict Bi, *magick_restrict Br; register PixelPacket *magick_restrict Ci, *magick_restrict Cr; register ssize_t x; if (status == MagickFalse) continue; Ar=GetCacheViewVirtualPixels(Ar_view,0,y, MagickMax(Ar_image->columns,Cr_image->columns),1,exception); Ai=GetCacheViewVirtualPixels(Ai_view,0,y, MagickMax(Ai_image->columns,Ci_image->columns),1,exception); Br=GetCacheViewVirtualPixels(Br_view,0,y, MagickMax(Br_image->columns,Cr_image->columns),1,exception); Bi=GetCacheViewVirtualPixels(Bi_view,0,y, MagickMax(Bi_image->columns,Ci_image->columns),1,exception); Cr=QueueCacheViewAuthenticPixels(Cr_view,0,y,Cr_image->columns,1,exception); Ci=QueueCacheViewAuthenticPixels(Ci_view,0,y,Ci_image->columns,1,exception); if ((Ar == (const PixelPacket *) NULL) || (Ai == (const PixelPacket *) NULL) || (Br == (const PixelPacket *) NULL) || (Bi == (const PixelPacket *) NULL) || (Cr == (PixelPacket *) NULL) || (Ci == (PixelPacket *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) images->columns; x++) { switch (op) { case AddComplexOperator: { Cr->red=Ar->red+Br->red; Ci->red=Ai->red+Bi->red; Cr->green=Ar->green+Br->green; Ci->green=Ai->green+Bi->green; Cr->blue=Ar->blue+Br->blue; Ci->blue=Ai->blue+Bi->blue; if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity+Br->opacity; Ci->opacity=Ai->opacity+Bi->opacity; } break; } case ConjugateComplexOperator: default: { Cr->red=Ar->red; Ci->red=(-Bi->red); Cr->green=Ar->green; Ci->green=(-Bi->green); Cr->blue=Ar->blue; Ci->blue=(-Bi->blue); if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity; Ci->opacity=(-Bi->opacity); } break; } case DivideComplexOperator: { double gamma; gamma=PerceptibleReciprocal(Br->red*Br->red+Bi->red*Bi->red+snr); Cr->red=gamma*(Ar->red*Br->red+Ai->red*Bi->red); Ci->red=gamma*(Ai->red*Br->red-Ar->red*Bi->red); gamma=PerceptibleReciprocal(Br->green*Br->green+Bi->green*Bi->green+ snr); Cr->green=gamma*(Ar->green*Br->green+Ai->green*Bi->green); Ci->green=gamma*(Ai->green*Br->green-Ar->green*Bi->green); gamma=PerceptibleReciprocal(Br->blue*Br->blue+Bi->blue*Bi->blue+snr); Cr->blue=gamma*(Ar->blue*Br->blue+Ai->blue*Bi->blue); Ci->blue=gamma*(Ai->blue*Br->blue-Ar->blue*Bi->blue); if (images->matte != MagickFalse) { gamma=PerceptibleReciprocal(Br->opacity*Br->opacity+Bi->opacity* Bi->opacity+snr); Cr->opacity=gamma*(Ar->opacity*Br->opacity+Ai->opacity* Bi->opacity); Ci->opacity=gamma*(Ai->opacity*Br->opacity-Ar->opacity* Bi->opacity); } break; } case MagnitudePhaseComplexOperator: { Cr->red=sqrt(Ar->red*Ar->red+Ai->red*Ai->red); Ci->red=atan2(Ai->red,Ar->red)/(2.0*MagickPI)+0.5; Cr->green=sqrt(Ar->green*Ar->green+Ai->green*Ai->green); Ci->green=atan2(Ai->green,Ar->green)/(2.0*MagickPI)+0.5; Cr->blue=sqrt(Ar->blue*Ar->blue+Ai->blue*Ai->blue); Ci->blue=atan2(Ai->blue,Ar->blue)/(2.0*MagickPI)+0.5; if (images->matte != MagickFalse) { Cr->opacity=sqrt(Ar->opacity*Ar->opacity+Ai->opacity*Ai->opacity); Ci->opacity=atan2(Ai->opacity,Ar->opacity)/(2.0*MagickPI)+0.5; } break; } case MultiplyComplexOperator: { Cr->red=QuantumScale*(Ar->red*Br->red-Ai->red*Bi->red); Ci->red=QuantumScale*(Ai->red*Br->red+Ar->red*Bi->red); Cr->green=QuantumScale*(Ar->green*Br->green-Ai->green*Bi->green); Ci->green=QuantumScale*(Ai->green*Br->green+Ar->green*Bi->green); Cr->blue=QuantumScale*(Ar->blue*Br->blue-Ai->blue*Bi->blue); Ci->blue=QuantumScale*(Ai->blue*Br->blue+Ar->blue*Bi->blue); if (images->matte != MagickFalse) { Cr->opacity=QuantumScale*(Ar->opacity*Br->opacity-Ai->opacity* Bi->opacity); Ci->opacity=QuantumScale*(Ai->opacity*Br->opacity+Ar->opacity* Bi->opacity); } break; } case RealImaginaryComplexOperator: { Cr->red=Ar->red*cos(2.0*MagickPI*(Ai->red-0.5)); Ci->red=Ar->red*sin(2.0*MagickPI*(Ai->red-0.5)); Cr->green=Ar->green*cos(2.0*MagickPI*(Ai->green-0.5)); Ci->green=Ar->green*sin(2.0*MagickPI*(Ai->green-0.5)); Cr->blue=Ar->blue*cos(2.0*MagickPI*(Ai->blue-0.5)); Ci->blue=Ar->blue*sin(2.0*MagickPI*(Ai->blue-0.5)); if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity*cos(2.0*MagickPI*(Ai->opacity-0.5)); Ci->opacity=Ar->opacity*sin(2.0*MagickPI*(Ai->opacity-0.5)); } break; } case SubtractComplexOperator: { Cr->red=Ar->red-Br->red; Ci->red=Ai->red-Bi->red; Cr->green=Ar->green-Br->green; Ci->green=Ai->green-Bi->green; Cr->blue=Ar->blue-Br->blue; Ci->blue=Ai->blue-Bi->blue; if (images->matte != MagickFalse) { Cr->opacity=Ar->opacity-Br->opacity; Ci->opacity=Ai->opacity-Bi->opacity; } break; } } Ar++; Ai++; Br++; Bi++; Cr++; Ci++; } if (SyncCacheViewAuthenticPixels(Ci_view,exception) == MagickFalse) status=MagickFalse; if (SyncCacheViewAuthenticPixels(Cr_view,exception) == MagickFalse) status=MagickFalse; if (images->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(images,ComplexImageTag,progress,images->rows); if (proceed == MagickFalse) status=MagickFalse; } } Cr_view=DestroyCacheView(Cr_view); Ci_view=DestroyCacheView(Ci_view); Br_view=DestroyCacheView(Br_view); Bi_view=DestroyCacheView(Bi_view); Ar_view=DestroyCacheView(Ar_view); Ai_view=DestroyCacheView(Ai_view); if (status == MagickFalse) complex_images=DestroyImageList(complex_images); return(complex_images); }
CWE-119
182,766
3,981
27837401205454582530045895540535793908
null
null
null
ImageMagick6
cb5ec7d98195aa74d5ed299b38eff2a68122f3fa
1
static MagickBooleanType WritePNMImage(const ImageInfo *image_info,Image *image) { char buffer[MaxTextExtent], format, magick[MaxTextExtent]; const char *value; IndexPacket index; MagickBooleanType status; MagickOffsetType scene; QuantumAny pixel; QuantumInfo *quantum_info; QuantumType quantum_type; register unsigned char *pixels, *q; size_t extent, imageListLength, packet_size; ssize_t count, y; /* Open output image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception); if (status == MagickFalse) return(status); scene=0; imageListLength=GetImageListLength(image); do { QuantumAny max_value; /* Write PNM file header. */ max_value=GetQuantumRange(image->depth); packet_size=3; quantum_type=RGBQuantum; (void) CopyMagickString(magick,image_info->magick,MaxTextExtent); switch (magick[1]) { case 'A': case 'a': { format='7'; break; } case 'B': case 'b': { format='4'; if (image_info->compression == NoCompression) format='1'; break; } case 'F': case 'f': { format='F'; if (SetImageGray(image,&image->exception) != MagickFalse) format='f'; break; } case 'G': case 'g': { format='5'; if (image_info->compression == NoCompression) format='2'; break; } case 'N': case 'n': { if ((image_info->type != TrueColorType) && (SetImageGray(image,&image->exception) != MagickFalse)) { format='5'; if (image_info->compression == NoCompression) format='2'; if (SetImageMonochrome(image,&image->exception) != MagickFalse) { format='4'; if (image_info->compression == NoCompression) format='1'; } break; } } default: { format='6'; if (image_info->compression == NoCompression) format='3'; break; } } (void) FormatLocaleString(buffer,MaxTextExtent,"P%c\n",format); (void) WriteBlobString(image,buffer); value=GetImageProperty(image,"comment"); if (value != (const char *) NULL) { register const char *p; /* Write comments to file. */ (void) WriteBlobByte(image,'#'); for (p=value; *p != '\0'; p++) { (void) WriteBlobByte(image,(unsigned char) *p); if ((*p == '\n') || (*p == '\r')) (void) WriteBlobByte(image,'#'); } (void) WriteBlobByte(image,'\n'); } if (format != '7') { (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g %.20g\n", (double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); } else { char type[MaxTextExtent]; /* PAM header. */ (void) FormatLocaleString(buffer,MaxTextExtent, "WIDTH %.20g\nHEIGHT %.20g\n",(double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); quantum_type=GetQuantumType(image,&image->exception); switch (quantum_type) { case CMYKQuantum: case CMYKAQuantum: { packet_size=4; (void) CopyMagickString(type,"CMYK",MaxTextExtent); break; } case GrayQuantum: case GrayAlphaQuantum: { packet_size=1; (void) CopyMagickString(type,"GRAYSCALE",MaxTextExtent); if (IdentifyImageMonochrome(image,&image->exception) != MagickFalse) (void) CopyMagickString(type,"BLACKANDWHITE",MaxTextExtent); break; } default: { quantum_type=RGBQuantum; if (image->matte != MagickFalse) quantum_type=RGBAQuantum; packet_size=3; (void) CopyMagickString(type,"RGB",MaxTextExtent); break; } } if (image->matte != MagickFalse) { packet_size++; (void) ConcatenateMagickString(type,"_ALPHA",MaxTextExtent); } if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent, "DEPTH %.20g\nMAXVAL %.20g\n",(double) packet_size,(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); (void) FormatLocaleString(buffer,MaxTextExtent,"TUPLTYPE %s\nENDHDR\n", type); (void) WriteBlobString(image,buffer); } /* Convert to PNM raster pixels. */ switch (format) { case '1': { unsigned char pixels[2048]; /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { *q++=(unsigned char) (GetPixelLuma(image,p) >= (QuantumRange/2.0) ? '0' : '1'); *q++=' '; if ((q-pixels+1) >= (ssize_t) sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '2': { unsigned char pixels[2048]; /* Convert image to a PGM image. */ if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { index=ClampToQuantum(GetPixelLuma(image,p)); if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToChar(index)); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToShort(index)); else count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToLong(index)); extent=(size_t) count; (void) strncpy((char *) q,buffer,extent); q+=extent; if ((q-pixels+extent+1) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '3': { unsigned char pixels[2048]; /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace); if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToChar(GetPixelRed(p)), ScaleQuantumToChar(GetPixelGreen(p)), ScaleQuantumToChar(GetPixelBlue(p))); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToShort(GetPixelRed(p)), ScaleQuantumToShort(GetPixelGreen(p)), ScaleQuantumToShort(GetPixelBlue(p))); else count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToLong(GetPixelRed(p)), ScaleQuantumToLong(GetPixelGreen(p)), ScaleQuantumToLong(GetPixelBlue(p))); extent=(size_t) count; (void) strncpy((char *) q,buffer,extent); q+=extent; if ((q-pixels+extent+1) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '4': { /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType); image->depth=1; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,GrayQuantum,pixels,&image->exception); count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '5': { /* Convert image to a PGM image. */ if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,GrayQuantum); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,GrayQuantum,pixels,&image->exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 8) pixel=ScaleQuantumToChar(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopCharPixel((unsigned char) pixel,q); p++; } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 16) pixel=ScaleQuantumToShort(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 32) pixel=ScaleQuantumToLong(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); p++; } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '6': { /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace); if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); p++; } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '7': { /* Convert image to a PAM. */ if (image->depth > 32) image->depth=32; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const IndexPacket *magick_restrict indexes; register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; indexes=GetVirtualIndexQueue(image); q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); break; } default: { switch (quantum_type) { case GrayQuantum: case GrayAlphaQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } case CMYKQuantum: case CMYKAQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x), max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case 'F': case 'f': { (void) WriteBlobString(image,image->endian == LSBEndian ? "-1.0\n" : "1.0\n"); image->depth=32; quantum_type=format == 'f' ? GrayQuantum : RGBQuantum; quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat); if (status == MagickFalse) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); pixels=GetQuantumPixels(quantum_info); for (y=(ssize_t) image->rows-1; y >= 0; y--) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); (void) WriteBlob(image,extent,pixels); if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } } if (GetNextImageInList(image) == (Image *) NULL) break; image=SyncNextImageInList(image); status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength); if (status == MagickFalse) break; } while (image_info->adjoin != MagickFalse); (void) CloseBlob(image); return(MagickTrue); }
CWE-119
182,768
3,982
329339327940665844534672246343237563272
null
null
null
ImageMagick6
5c7fbf9a14fb83c9685ad69d48899f490a37609d
1
static MagickBooleanType WritePNMImage(const ImageInfo *image_info,Image *image) { char buffer[MaxTextExtent], format, magick[MaxTextExtent]; const char *value; IndexPacket index; MagickBooleanType status; MagickOffsetType scene; QuantumAny pixel; QuantumInfo *quantum_info; QuantumType quantum_type; register unsigned char *pixels, *q; size_t extent, imageListLength, packet_size; ssize_t count, y; /* Open output image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception); if (status == MagickFalse) return(status); scene=0; imageListLength=GetImageListLength(image); do { QuantumAny max_value; /* Write PNM file header. */ max_value=GetQuantumRange(image->depth); packet_size=3; quantum_type=RGBQuantum; (void) CopyMagickString(magick,image_info->magick,MaxTextExtent); switch (magick[1]) { case 'A': case 'a': { format='7'; break; } case 'B': case 'b': { format='4'; if (image_info->compression == NoCompression) format='1'; break; } case 'F': case 'f': { format='F'; if (SetImageGray(image,&image->exception) != MagickFalse) format='f'; break; } case 'G': case 'g': { format='5'; if (image_info->compression == NoCompression) format='2'; break; } case 'N': case 'n': { if ((image_info->type != TrueColorType) && (SetImageGray(image,&image->exception) != MagickFalse)) { format='5'; if (image_info->compression == NoCompression) format='2'; if (SetImageMonochrome(image,&image->exception) != MagickFalse) { format='4'; if (image_info->compression == NoCompression) format='1'; } break; } } default: { format='6'; if (image_info->compression == NoCompression) format='3'; break; } } (void) FormatLocaleString(buffer,MaxTextExtent,"P%c\n",format); (void) WriteBlobString(image,buffer); value=GetImageProperty(image,"comment"); if (value != (const char *) NULL) { register const char *p; /* Write comments to file. */ (void) WriteBlobByte(image,'#'); for (p=value; *p != '\0'; p++) { (void) WriteBlobByte(image,(unsigned char) *p); if ((*p == '\n') || (*p == '\r')) (void) WriteBlobByte(image,'#'); } (void) WriteBlobByte(image,'\n'); } if (format != '7') { (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g %.20g\n", (double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); } else { char type[MaxTextExtent]; /* PAM header. */ (void) FormatLocaleString(buffer,MaxTextExtent, "WIDTH %.20g\nHEIGHT %.20g\n",(double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); quantum_type=GetQuantumType(image,&image->exception); switch (quantum_type) { case CMYKQuantum: case CMYKAQuantum: { packet_size=4; (void) CopyMagickString(type,"CMYK",MaxTextExtent); break; } case GrayQuantum: case GrayAlphaQuantum: { packet_size=1; (void) CopyMagickString(type,"GRAYSCALE",MaxTextExtent); if (IdentifyImageMonochrome(image,&image->exception) != MagickFalse) (void) CopyMagickString(type,"BLACKANDWHITE",MaxTextExtent); break; } default: { quantum_type=RGBQuantum; if (image->matte != MagickFalse) quantum_type=RGBAQuantum; packet_size=3; (void) CopyMagickString(type,"RGB",MaxTextExtent); break; } } if (image->matte != MagickFalse) { packet_size++; (void) ConcatenateMagickString(type,"_ALPHA",MaxTextExtent); } if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent, "DEPTH %.20g\nMAXVAL %.20g\n",(double) packet_size,(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); (void) FormatLocaleString(buffer,MaxTextExtent,"TUPLTYPE %s\nENDHDR\n", type); (void) WriteBlobString(image,buffer); } /* Convert to PNM raster pixels. */ switch (format) { case '1': { unsigned char pixels[2048]; /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { *q++=(unsigned char) (GetPixelLuma(image,p) >= (QuantumRange/2.0) ? '0' : '1'); *q++=' '; if ((q-pixels+1) >= (ssize_t) sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '2': { unsigned char pixels[2048]; /* Convert image to a PGM image. */ if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { index=ClampToQuantum(GetPixelLuma(image,p)); if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToChar(index)); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToShort(index)); else count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent,"%u ", ScaleQuantumToLong(index)); extent=(size_t) count; (void) strncpy((char *) q,buffer,extent); q+=extent; if ((q-pixels+extent+2) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '3': { unsigned char pixels[2048]; /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace); if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToChar(GetPixelRed(p)), ScaleQuantumToChar(GetPixelGreen(p)), ScaleQuantumToChar(GetPixelBlue(p))); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToShort(GetPixelRed(p)), ScaleQuantumToShort(GetPixelGreen(p)), ScaleQuantumToShort(GetPixelBlue(p))); else count=(ssize_t) FormatLocaleString(buffer,MaxTextExtent, "%u %u %u ",ScaleQuantumToLong(GetPixelRed(p)), ScaleQuantumToLong(GetPixelGreen(p)), ScaleQuantumToLong(GetPixelBlue(p))); extent=(size_t) count; (void) strncpy((char *) q,buffer,extent); q+=extent; if ((q-pixels+extent+2) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p++; } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '4': { /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType); image->depth=1; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,GrayQuantum,pixels,&image->exception); count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '5': { /* Convert image to a PGM image. */ if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,GrayQuantum); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,GrayQuantum,pixels,&image->exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 8) pixel=ScaleQuantumToChar(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopCharPixel((unsigned char) pixel,q); p++; } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 16) pixel=ScaleQuantumToShort(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { if (IsGrayPixel(p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); else { if (image->depth == 32) pixel=ScaleQuantumToLong(GetPixelRed(p)); else pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); } q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); p++; } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '6': { /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace); if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MaxTextExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); for (y=0; y < (ssize_t) image->rows; y++) { register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); p++; } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned short) pixel,q); p++; } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '7': { /* Convert image to a PAM. */ if (image->depth > 32) image->depth=32; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const IndexPacket *magick_restrict indexes; register const PixelPacket *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; indexes=GetVirtualIndexQueue(image); q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); break; } default: { switch (quantum_type) { case GrayQuantum: case GrayAlphaQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum( GetPixelLuma(image,p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelOpacity(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } case CMYKQuantum: case CMYKAQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x), max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelIndex(indexes+x),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopCharPixel((unsigned char) pixel,q); } p++; } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p++; } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->matte != MagickFalse) { pixel=ScaleQuantumToAny((Quantum) (QuantumRange- GetPixelOpacity(p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p++; } break; } } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case 'F': case 'f': { (void) WriteBlobString(image,image->endian == LSBEndian ? "-1.0\n" : "1.0\n"); image->depth=32; quantum_type=format == 'f' ? GrayQuantum : RGBQuantum; quantum_info=AcquireQuantumInfo((const ImageInfo *) NULL,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat); if (status == MagickFalse) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); pixels=GetQuantumPixels(quantum_info); for (y=(ssize_t) image->rows-1; y >= 0; y--) { register const PixelPacket *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception); if (p == (const PixelPacket *) NULL) break; extent=ExportQuantumPixels(image,(const CacheView *) NULL, quantum_info,quantum_type,pixels,&image->exception); (void) WriteBlob(image,extent,pixels); if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } } if (GetNextImageInList(image) == (Image *) NULL) break; image=SyncNextImageInList(image); status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength); if (status == MagickFalse) break; } while (image_info->adjoin != MagickFalse); (void) CloseBlob(image); return(MagickTrue); }
CWE-119
182,769
3,983
9166256097747161769206826068415541721
null
null
null
ImageMagick
7689875ef64f34141e7292f6945efdf0530b4a5e
1
static MagickBooleanType WritePNMImage(const ImageInfo *image_info,Image *image, ExceptionInfo *exception) { char buffer[MagickPathExtent], format, magick[MagickPathExtent]; const char *value; MagickBooleanType status; MagickOffsetType scene; Quantum index; QuantumAny pixel; QuantumInfo *quantum_info; QuantumType quantum_type; register unsigned char *q; size_t extent, imageListLength, packet_size; ssize_t count, y; /* Open output image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception); if (status == MagickFalse) return(status); scene=0; imageListLength=GetImageListLength(image); do { QuantumAny max_value; /* Write PNM file header. */ packet_size=3; quantum_type=RGBQuantum; (void) CopyMagickString(magick,image_info->magick,MagickPathExtent); max_value=GetQuantumRange(image->depth); switch (magick[1]) { case 'A': case 'a': { format='7'; break; } case 'B': case 'b': { format='4'; if (image_info->compression == NoCompression) format='1'; break; } case 'F': case 'f': { format='F'; if (SetImageGray(image,exception) != MagickFalse) format='f'; break; } case 'G': case 'g': { format='5'; if (image_info->compression == NoCompression) format='2'; break; } case 'N': case 'n': { if ((image_info->type != TrueColorType) && (SetImageGray(image,exception) != MagickFalse)) { format='5'; if (image_info->compression == NoCompression) format='2'; if (SetImageMonochrome(image,exception) != MagickFalse) { format='4'; if (image_info->compression == NoCompression) format='1'; } break; } } default: { format='6'; if (image_info->compression == NoCompression) format='3'; break; } } (void) FormatLocaleString(buffer,MagickPathExtent,"P%c\n",format); (void) WriteBlobString(image,buffer); value=GetImageProperty(image,"comment",exception); if (value != (const char *) NULL) { register const char *p; /* Write comments to file. */ (void) WriteBlobByte(image,'#'); for (p=value; *p != '\0'; p++) { (void) WriteBlobByte(image,(unsigned char) *p); if ((*p == '\n') || (*p == '\r')) (void) WriteBlobByte(image,'#'); } (void) WriteBlobByte(image,'\n'); } if (format != '7') { (void) FormatLocaleString(buffer,MagickPathExtent,"%.20g %.20g\n", (double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); } else { char type[MagickPathExtent]; /* PAM header. */ (void) FormatLocaleString(buffer,MagickPathExtent, "WIDTH %.20g\nHEIGHT %.20g\n",(double) image->columns,(double) image->rows); (void) WriteBlobString(image,buffer); quantum_type=GetQuantumType(image,exception); switch (quantum_type) { case CMYKQuantum: case CMYKAQuantum: { packet_size=4; (void) CopyMagickString(type,"CMYK",MagickPathExtent); break; } case GrayQuantum: case GrayAlphaQuantum: { packet_size=1; (void) CopyMagickString(type,"GRAYSCALE",MagickPathExtent); if (IdentifyImageMonochrome(image,exception) != MagickFalse) (void) CopyMagickString(type,"BLACKANDWHITE",MagickPathExtent); break; } default: { quantum_type=RGBQuantum; if (image->alpha_trait != UndefinedPixelTrait) quantum_type=RGBAQuantum; packet_size=3; (void) CopyMagickString(type,"RGB",MagickPathExtent); break; } } if (image->alpha_trait != UndefinedPixelTrait) { packet_size++; (void) ConcatenateMagickString(type,"_ALPHA",MagickPathExtent); } if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MagickPathExtent, "DEPTH %.20g\nMAXVAL %.20g\n",(double) packet_size,(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); (void) FormatLocaleString(buffer,MagickPathExtent, "TUPLTYPE %s\nENDHDR\n",type); (void) WriteBlobString(image,buffer); } /* Convert runextent encoded to PNM raster pixels. */ switch (format) { case '1': { unsigned char pixels[2048]; /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType,exception); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { *q++=(unsigned char) (GetPixelLuma(image,p) >= (QuantumRange/2.0) ? '0' : '1'); *q++=' '; if ((q-pixels+1) >= (ssize_t) sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } p+=GetPixelChannels(image); } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '2': { unsigned char pixels[2048]; /* Convert image to a PGM image. */ if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { index=ClampToQuantum(GetPixelLuma(image,p)); if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent,"%u ", ScaleQuantumToChar(index)); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent, "%u ",ScaleQuantumToShort(index)); else count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent, "%u ",ScaleQuantumToLong(index)); extent=(size_t) count; if ((q-pixels+extent+1) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } (void) strncpy((char *) q,buffer,extent); q+=extent; p+=GetPixelChannels(image); } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '3': { unsigned char pixels[2048]; /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace,exception); if (image->depth <= 8) (void) WriteBlobString(image,"255\n"); else if (image->depth <= 16) (void) WriteBlobString(image,"65535\n"); else (void) WriteBlobString(image,"4294967295\n"); q=pixels; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (image->depth <= 8) count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent, "%u %u %u ",ScaleQuantumToChar(GetPixelRed(image,p)), ScaleQuantumToChar(GetPixelGreen(image,p)), ScaleQuantumToChar(GetPixelBlue(image,p))); else if (image->depth <= 16) count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent, "%u %u %u ",ScaleQuantumToShort(GetPixelRed(image,p)), ScaleQuantumToShort(GetPixelGreen(image,p)), ScaleQuantumToShort(GetPixelBlue(image,p))); else count=(ssize_t) FormatLocaleString(buffer,MagickPathExtent, "%u %u %u ",ScaleQuantumToLong(GetPixelRed(image,p)), ScaleQuantumToLong(GetPixelGreen(image,p)), ScaleQuantumToLong(GetPixelBlue(image,p))); extent=(size_t) count; if ((q-pixels+extent+2) >= sizeof(pixels)) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; } (void) strncpy((char *) q,buffer,extent); q+=extent; p+=GetPixelChannels(image); } *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); q=pixels; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (q != pixels) { *q++='\n'; (void) WriteBlob(image,q-pixels,pixels); } break; } case '4': { register unsigned char *pixels; /* Convert image to a PBM image. */ (void) SetImageType(image,BilevelType,exception); image->depth=1; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; extent=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info, GrayQuantum,pixels,exception); count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '5': { register unsigned char *pixels; /* Convert image to a PGM image. */ if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MagickPathExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); quantum_info->min_is_white=MagickTrue; pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,GrayQuantum); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info, GrayQuantum,pixels,exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelGray(image,p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma( image,p)),max_value); else { if (image->depth == 8) pixel=ScaleQuantumToChar(GetPixelRed(image,p)); else pixel=ScaleQuantumToAny(GetPixelRed(image,p), max_value); } q=PopCharPixel((unsigned char) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelGray(image,p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image, p)),max_value); else { if (image->depth == 16) pixel=ScaleQuantumToShort(GetPixelRed(image,p)); else pixel=ScaleQuantumToAny(GetPixelRed(image,p), max_value); } q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { if (IsPixelGray(image,p) == MagickFalse) pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image,p)), max_value); else { if (image->depth == 16) pixel=ScaleQuantumToLong(GetPixelRed(image,p)); else pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); } q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '6': { register unsigned char *pixels; /* Convert image to a PNM image. */ (void) TransformImageColorspace(image,sRGBColorspace,exception); if (image->depth > 32) image->depth=32; (void) FormatLocaleString(buffer,MagickPathExtent,"%.20g\n",(double) ((MagickOffsetType) GetQuantumRange(image->depth))); (void) WriteBlobString(image,buffer); quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); extent=GetQuantumExtent(image,quantum_info,quantum_type); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info, quantum_type,pixels,exception); break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); p+=GetPixelChannels(image); } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case '7': { register unsigned char *pixels; /* Convert image to a PAM. */ if (image->depth > 32) image->depth=32; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); (void) SetQuantumEndian(image,quantum_info,MSBEndian); pixels=GetQuantumPixels(quantum_info); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; q=pixels; switch (image->depth) { case 8: case 16: case 32: { extent=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info, quantum_type,pixels,exception); break; } default: { switch (quantum_type) { case GrayQuantum: case GrayAlphaQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma( image,p)),max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelAlpha(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); } p+=GetPixelChannels(image); } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma( image,p)),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelAlpha(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(ClampToQuantum(GetPixelLuma(image, p)),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=(unsigned char) ScaleQuantumToAny( GetPixelAlpha(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p+=GetPixelChannels(image); } break; } case CMYKQuantum: case CMYKAQuantum: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlack(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); } p+=GetPixelChannels(image); } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlack(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlack(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p+=GetPixelChannels(image); } break; } default: { if (image->depth <= 8) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopCharPixel((unsigned char) pixel,q); } p+=GetPixelChannels(image); } break; } if (image->depth <= 16) { for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopShortPixel(MSBEndian,(unsigned short) pixel,q); } p+=GetPixelChannels(image); } break; } for (x=0; x < (ssize_t) image->columns; x++) { pixel=ScaleQuantumToAny(GetPixelRed(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelGreen(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); pixel=ScaleQuantumToAny(GetPixelBlue(image,p),max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); if (image->alpha_trait != UndefinedPixelTrait) { pixel=ScaleQuantumToAny(GetPixelAlpha(image,p), max_value); q=PopLongPixel(MSBEndian,(unsigned int) pixel,q); } p+=GetPixelChannels(image); } break; } } extent=(size_t) (q-pixels); break; } } count=WriteBlob(image,extent,pixels); if (count != (ssize_t) extent) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } case 'F': case 'f': { register unsigned char *pixels; (void) WriteBlobString(image,image->endian == LSBEndian ? "-1.0\n" : "1.0\n"); image->depth=32; quantum_type=format == 'f' ? GrayQuantum : RGBQuantum; quantum_info=AcquireQuantumInfo(image_info,image); if (quantum_info == (QuantumInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); status=SetQuantumFormat(image,quantum_info,FloatingPointQuantumFormat); if (status == MagickFalse) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); pixels=GetQuantumPixels(quantum_info); for (y=(ssize_t) image->rows-1; y >= 0; y--) { register const Quantum *magick_restrict p; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; extent=ExportQuantumPixels(image,(CacheView *) NULL,quantum_info, quantum_type,pixels,exception); (void) WriteBlob(image,extent,pixels); if (image->previous == (Image *) NULL) { status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } quantum_info=DestroyQuantumInfo(quantum_info); break; } } if (GetNextImageInList(image) == (Image *) NULL) break; image=SyncNextImageInList(image); status=SetImageProgress(image,SaveImagesTag,scene++,imageListLength); if (status == MagickFalse) break; } while (image_info->adjoin != MagickFalse); (void) CloseBlob(image); return(MagickTrue); }
CWE-119
182,770
3,984
238763905085634725006049457787638250815
null
null
null
ImageMagick
d5089971bd792311aaab5cb73460326d7ef7f32d
1
MagickExport Image *ComplexImages(const Image *images,const ComplexOperator op, ExceptionInfo *exception) { #define ComplexImageTag "Complex/Image" CacheView *Ai_view, *Ar_view, *Bi_view, *Br_view, *Ci_view, *Cr_view; const char *artifact; const Image *Ai_image, *Ar_image, *Bi_image, *Br_image; double snr; Image *Ci_image, *complex_images, *Cr_image, *image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; assert(images != (Image *) NULL); assert(images->signature == MagickCoreSignature); if (images->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); if (images->next == (Image *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(),ImageError, "ImageSequenceRequired","`%s'",images->filename); return((Image *) NULL); } image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) { image=DestroyImageList(image); return(image); } image->depth=32UL; complex_images=NewImageList(); AppendImageToList(&complex_images,image); image=CloneImage(images,0,0,MagickTrue,exception); if (image == (Image *) NULL) { complex_images=DestroyImageList(complex_images); return(complex_images); } AppendImageToList(&complex_images,image); /* Apply complex mathematics to image pixels. */ artifact=GetImageArtifact(image,"complex:snr"); snr=0.0; if (artifact != (const char *) NULL) snr=StringToDouble(artifact,(char **) NULL); Ar_image=images; Ai_image=images->next; Br_image=images; Bi_image=images->next; if ((images->next->next != (Image *) NULL) && (images->next->next->next != (Image *) NULL)) { Br_image=images->next->next; Bi_image=images->next->next->next; } Cr_image=complex_images; Ci_image=complex_images->next; Ar_view=AcquireVirtualCacheView(Ar_image,exception); Ai_view=AcquireVirtualCacheView(Ai_image,exception); Br_view=AcquireVirtualCacheView(Br_image,exception); Bi_view=AcquireVirtualCacheView(Bi_image,exception); Cr_view=AcquireAuthenticCacheView(Cr_image,exception); Ci_view=AcquireAuthenticCacheView(Ci_image,exception); status=MagickTrue; progress=0; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(Cr_image,complex_images,Cr_image->rows,1L) #endif for (y=0; y < (ssize_t) Cr_image->rows; y++) { register const Quantum *magick_restrict Ai, *magick_restrict Ar, *magick_restrict Bi, *magick_restrict Br; register Quantum *magick_restrict Ci, *magick_restrict Cr; register ssize_t x; if (status == MagickFalse) continue; Ar=GetCacheViewVirtualPixels(Ar_view,0,y,Cr_image->columns,1,exception); Ai=GetCacheViewVirtualPixels(Ai_view,0,y,Cr_image->columns,1,exception); Br=GetCacheViewVirtualPixels(Br_view,0,y,Cr_image->columns,1,exception); Bi=GetCacheViewVirtualPixels(Bi_view,0,y,Cr_image->columns,1,exception); Cr=QueueCacheViewAuthenticPixels(Cr_view,0,y,Cr_image->columns,1,exception); Ci=QueueCacheViewAuthenticPixels(Ci_view,0,y,Ci_image->columns,1,exception); if ((Ar == (const Quantum *) NULL) || (Ai == (const Quantum *) NULL) || (Br == (const Quantum *) NULL) || (Bi == (const Quantum *) NULL) || (Cr == (Quantum *) NULL) || (Ci == (Quantum *) NULL)) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) Cr_image->columns; x++) { register ssize_t i; for (i=0; i < (ssize_t) GetPixelChannels(Cr_image); i++) { switch (op) { case AddComplexOperator: { Cr[i]=Ar[i]+Br[i]; Ci[i]=Ai[i]+Bi[i]; break; } case ConjugateComplexOperator: default: { Cr[i]=Ar[i]; Ci[i]=(-Bi[i]); break; } case DivideComplexOperator: { double gamma; gamma=PerceptibleReciprocal((double) Br[i]*Br[i]+Bi[i]*Bi[i]+snr); Cr[i]=gamma*((double) Ar[i]*Br[i]+(double) Ai[i]*Bi[i]); Ci[i]=gamma*((double) Ai[i]*Br[i]-(double) Ar[i]*Bi[i]); break; } case MagnitudePhaseComplexOperator: { Cr[i]=sqrt((double) Ar[i]*Ar[i]+(double) Ai[i]*Ai[i]); Ci[i]=atan2((double) Ai[i],(double) Ar[i])/(2.0*MagickPI)+0.5; break; } case MultiplyComplexOperator: { Cr[i]=QuantumScale*((double) Ar[i]*Br[i]-(double) Ai[i]*Bi[i]); Ci[i]=QuantumScale*((double) Ai[i]*Br[i]+(double) Ar[i]*Bi[i]); break; } case RealImaginaryComplexOperator: { Cr[i]=Ar[i]*cos(2.0*MagickPI*(Ai[i]-0.5)); Ci[i]=Ar[i]*sin(2.0*MagickPI*(Ai[i]-0.5)); break; } case SubtractComplexOperator: { Cr[i]=Ar[i]-Br[i]; Ci[i]=Ai[i]-Bi[i]; break; } } } Ar+=GetPixelChannels(Ar_image); Ai+=GetPixelChannels(Ai_image); Br+=GetPixelChannels(Br_image); Bi+=GetPixelChannels(Bi_image); Cr+=GetPixelChannels(Cr_image); Ci+=GetPixelChannels(Ci_image); } if (SyncCacheViewAuthenticPixels(Ci_view,exception) == MagickFalse) status=MagickFalse; if (SyncCacheViewAuthenticPixels(Cr_view,exception) == MagickFalse) status=MagickFalse; if (images->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(images,ComplexImageTag,progress,images->rows); if (proceed == MagickFalse) status=MagickFalse; } } Cr_view=DestroyCacheView(Cr_view); Ci_view=DestroyCacheView(Ci_view); Br_view=DestroyCacheView(Br_view); Bi_view=DestroyCacheView(Bi_view); Ar_view=DestroyCacheView(Ar_view); Ai_view=DestroyCacheView(Ai_view); if (status == MagickFalse) complex_images=DestroyImageList(complex_images); return(complex_images); }
CWE-125
182,771
3,985
52955262328526057717600355686095634332
null
null
null
ImageMagick
f595a1985233c399a05c0c37cc41de16a90dd025
1
MagickExport MagickBooleanType AnnotateImage(Image *image, const DrawInfo *draw_info,ExceptionInfo *exception) { char *p, primitive[MagickPathExtent], *text, **textlist; DrawInfo *annotate, *annotate_info; GeometryInfo geometry_info; MagickBooleanType status; PointInfo offset; RectangleInfo geometry; register ssize_t i; TypeMetric metrics; size_t height, number_lines; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(draw_info != (DrawInfo *) NULL); assert(draw_info->signature == MagickCoreSignature); if (draw_info->text == (char *) NULL) return(MagickFalse); if (*draw_info->text == '\0') return(MagickTrue); annotate=CloneDrawInfo((ImageInfo *) NULL,draw_info); text=annotate->text; annotate->text=(char *) NULL; annotate_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); number_lines=1; for (p=text; *p != '\0'; p++) if (*p == '\n') number_lines++; textlist=AcquireQuantumMemory(number_lines+1,sizeof(*textlist)); if (textlist == (char **) NULL) return(MagickFalse); p=text; for (i=0; i < number_lines; i++) { char *q; textlist[i]=p; for (q=p; *q != '\0'; q++) if ((*q == '\r') || (*q == '\n')) break; if (*q == '\r') { *q='\0'; q++; } *q='\0'; p=q+1; } textlist[i]=(char *) NULL; SetGeometry(image,&geometry); SetGeometryInfo(&geometry_info); if (annotate_info->geometry != (char *) NULL) { (void) ParsePageGeometry(image,annotate_info->geometry,&geometry, exception); (void) ParseGeometry(annotate_info->geometry,&geometry_info); } if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse) return(MagickFalse); if (IsGrayColorspace(image->colorspace) != MagickFalse) (void) SetImageColorspace(image,sRGBColorspace,exception); status=MagickTrue; (void) memset(&metrics,0,sizeof(metrics)); for (i=0; textlist[i] != (char *) NULL; i++) { if (*textlist[i] == '\0') continue; /* Position text relative to image. */ annotate_info->affine.tx=geometry_info.xi-image->page.x; annotate_info->affine.ty=geometry_info.psi-image->page.y; (void) CloneString(&annotate->text,textlist[i]); if ((metrics.width == 0) || (annotate->gravity != NorthWestGravity)) (void) GetTypeMetrics(image,annotate,&metrics,exception); height=(ssize_t) (metrics.ascent-metrics.descent+ draw_info->interline_spacing+0.5); switch (annotate->gravity) { case UndefinedGravity: default: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height; break; } case NorthWestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height+annotate_info->affine.ry* (metrics.ascent+metrics.descent); offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent; break; } case NorthGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0+annotate_info->affine.ry* (metrics.ascent+metrics.descent); offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent-annotate_info->affine.rx*metrics.width/2.0; break; } case NorthEastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width+annotate_info->affine.ry* (metrics.ascent+metrics.descent)-1.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+i* annotate_info->affine.sy*height+annotate_info->affine.sy* metrics.ascent-annotate_info->affine.rx*metrics.width; break; } case WestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height+annotate_info->affine.ry* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height+ annotate_info->affine.sy*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0; break; } case CenterGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0+annotate_info->affine.ry* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0+annotate_info->affine.sy* (metrics.ascent+metrics.descent-(number_lines-1.0)*height)/2.0; break; } case EastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width+ annotate_info->affine.ry*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0-1.0; offset.y=(geometry.height == 0 ? -1.0 : 1.0)*annotate_info->affine.ty+ geometry.height/2.0+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width+ annotate_info->affine.sy*(metrics.ascent+metrics.descent- (number_lines-1.0)*height)/2.0; break; } case SouthWestGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+i* annotate_info->affine.ry*height-annotate_info->affine.ry* (number_lines-1.0)*height; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } case SouthGravity: { offset.x=(geometry.width == 0 ? -1.0 : 1.0)*annotate_info->affine.tx+ geometry.width/2.0+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0- annotate_info->affine.ry*(number_lines-1.0)*height/2.0; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } case SouthEastGravity: { offset.x=(geometry.width == 0 ? 1.0 : -1.0)*annotate_info->affine.tx+ geometry.width+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width- annotate_info->affine.ry*(number_lines-1.0)*height-1.0; offset.y=(geometry.height == 0 ? 1.0 : -1.0)*annotate_info->affine.ty+ geometry.height+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width- annotate_info->affine.sy*(number_lines-1.0)*height+metrics.descent; break; } } switch (annotate->align) { case LeftAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height; break; } case CenterAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width/2.0; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width/2.0; break; } case RightAlign: { offset.x=annotate_info->affine.tx+i*annotate_info->affine.ry*height- annotate_info->affine.sx*metrics.width; offset.y=annotate_info->affine.ty+i*annotate_info->affine.sy*height- annotate_info->affine.rx*metrics.width; break; } default: break; } if (draw_info->undercolor.alpha != TransparentAlpha) { DrawInfo *undercolor_info; /* Text box. */ undercolor_info=CloneDrawInfo((ImageInfo *) NULL,(DrawInfo *) NULL); undercolor_info->fill=draw_info->undercolor; undercolor_info->affine=draw_info->affine; undercolor_info->affine.tx=offset.x-draw_info->affine.ry*metrics.ascent; undercolor_info->affine.ty=offset.y-draw_info->affine.sy*metrics.ascent; (void) FormatLocaleString(primitive,MagickPathExtent, "rectangle 0.0,0.0 %g,%g",metrics.origin.x,(double) height); (void) CloneString(&undercolor_info->primitive,primitive); (void) DrawImage(image,undercolor_info,exception); (void) DestroyDrawInfo(undercolor_info); } annotate_info->affine.tx=offset.x; annotate_info->affine.ty=offset.y; (void) FormatLocaleString(primitive,MagickPathExtent,"stroke-width %g " "line 0,0 %g,0",metrics.underline_thickness,metrics.width); if (annotate->decorate == OverlineDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy*(metrics.ascent+ metrics.descent-metrics.underline_position)); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } else if (annotate->decorate == UnderlineDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy* metrics.underline_position); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } /* Annotate image with text. */ status=RenderType(image,annotate,&offset,&metrics,exception); if (status == MagickFalse) break; if (annotate->decorate == LineThroughDecoration) { annotate_info->affine.ty-=(draw_info->affine.sy*(height+ metrics.underline_position+metrics.descent)/2.0); (void) CloneString(&annotate_info->primitive,primitive); (void) DrawImage(image,annotate_info,exception); } } /* Relinquish resources. */ annotate_info=DestroyDrawInfo(annotate_info); annotate=DestroyDrawInfo(annotate); textlist=(char **) RelinquishMagickMemory(textlist); return(status); }
CWE-399
182,772
3,986
38384457200441265136671540328716083715
null
null
null
ImageMagick6
5e409ae7a389cdf2ed17469303be3f3f21cec450
1
static MagickPixelPacket **AcquirePixelThreadSet(const Image *image) { MagickPixelPacket **pixels; register ssize_t i, j; size_t number_threads; number_threads=(size_t) GetMagickResourceLimit(ThreadResource); pixels=(MagickPixelPacket **) AcquireQuantumMemory(number_threads, sizeof(*pixels)); if (pixels == (MagickPixelPacket **) NULL) return((MagickPixelPacket **) NULL); (void) memset(pixels,0,number_threads*sizeof(*pixels)); for (i=0; i < (ssize_t) number_threads; i++) { pixels[i]=(MagickPixelPacket *) AcquireQuantumMemory(image->columns, sizeof(**pixels)); if (pixels[i] == (MagickPixelPacket *) NULL) return(DestroyPixelThreadSet(pixels)); for (j=0; j < (ssize_t) image->columns; j++) GetMagickPixelPacket(image,&pixels[i][j]); } return(pixels); }
CWE-119
182,773
3,987
298386231418854875486630382525427998779
null
null
null
ImageMagick
d4fc44b58a14f76b1ac997517d742ee12c9dc5d3
1
MagickExport Image *EnhanceImage(const Image *image,ExceptionInfo *exception) { #define EnhanceImageTag "Enhance/Image" #define EnhancePixel(weight) \ mean=QuantumScale*((double) GetPixelRed(image,r)+pixel.red)/2.0; \ distance=QuantumScale*((double) GetPixelRed(image,r)-pixel.red); \ distance_squared=(4.0+mean)*distance*distance; \ mean=QuantumScale*((double) GetPixelGreen(image,r)+pixel.green)/2.0; \ distance=QuantumScale*((double) GetPixelGreen(image,r)-pixel.green); \ distance_squared+=(7.0-mean)*distance*distance; \ mean=QuantumScale*((double) GetPixelBlue(image,r)+pixel.blue)/2.0; \ distance=QuantumScale*((double) GetPixelBlue(image,r)-pixel.blue); \ distance_squared+=(5.0-mean)*distance*distance; \ mean=QuantumScale*((double) GetPixelBlack(image,r)+pixel.black)/2.0; \ distance=QuantumScale*((double) GetPixelBlack(image,r)-pixel.black); \ distance_squared+=(5.0-mean)*distance*distance; \ mean=QuantumScale*((double) GetPixelAlpha(image,r)+pixel.alpha)/2.0; \ distance=QuantumScale*((double) GetPixelAlpha(image,r)-pixel.alpha); \ distance_squared+=(5.0-mean)*distance*distance; \ if (distance_squared < 0.069) \ { \ aggregate.red+=(weight)*GetPixelRed(image,r); \ aggregate.green+=(weight)*GetPixelGreen(image,r); \ aggregate.blue+=(weight)*GetPixelBlue(image,r); \ aggregate.black+=(weight)*GetPixelBlack(image,r); \ aggregate.alpha+=(weight)*GetPixelAlpha(image,r); \ total_weight+=(weight); \ } \ r+=GetPixelChannels(image); CacheView *enhance_view, *image_view; Image *enhance_image; MagickBooleanType status; MagickOffsetType progress; ssize_t y; /* Initialize enhanced image attributes. */ assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); enhance_image=CloneImage(image,0,0,MagickTrue, exception); if (enhance_image == (Image *) NULL) return((Image *) NULL); if (SetImageStorageClass(enhance_image,DirectClass,exception) == MagickFalse) { enhance_image=DestroyImage(enhance_image); return((Image *) NULL); } /* Enhance image. */ status=MagickTrue; progress=0; image_view=AcquireVirtualCacheView(image,exception); enhance_view=AcquireAuthenticCacheView(enhance_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,enhance_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo pixel; register const Quantum *magick_restrict p; register Quantum *magick_restrict q; register ssize_t x; ssize_t center; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-2,y-2,image->columns+4,5,exception); q=QueueCacheViewAuthenticPixels(enhance_view,0,y,enhance_image->columns,1, exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) { status=MagickFalse; continue; } center=(ssize_t) GetPixelChannels(image)*(2*(image->columns+4)+2); GetPixelInfo(image,&pixel); for (x=0; x < (ssize_t) image->columns; x++) { double distance, distance_squared, mean, total_weight; PixelInfo aggregate; register const Quantum *magick_restrict r; GetPixelInfo(image,&aggregate); total_weight=0.0; GetPixelInfoPixel(image,p+center,&pixel); r=p; EnhancePixel(5.0); EnhancePixel(8.0); EnhancePixel(10.0); EnhancePixel(8.0); EnhancePixel(5.0); r=p+GetPixelChannels(image)*(image->columns+4); EnhancePixel(8.0); EnhancePixel(20.0); EnhancePixel(40.0); EnhancePixel(20.0); EnhancePixel(8.0); r=p+2*GetPixelChannels(image)*(image->columns+4); EnhancePixel(10.0); EnhancePixel(40.0); EnhancePixel(80.0); EnhancePixel(40.0); EnhancePixel(10.0); r=p+3*GetPixelChannels(image)*(image->columns+4); EnhancePixel(8.0); EnhancePixel(20.0); EnhancePixel(40.0); EnhancePixel(20.0); EnhancePixel(8.0); r=p+4*GetPixelChannels(image)*(image->columns+4); EnhancePixel(5.0); EnhancePixel(8.0); EnhancePixel(10.0); EnhancePixel(8.0); EnhancePixel(5.0); if (total_weight > MagickEpsilon) { pixel.red=((aggregate.red+total_weight/2.0)/total_weight); pixel.green=((aggregate.green+total_weight/2.0)/total_weight); pixel.blue=((aggregate.blue+total_weight/2.0)/total_weight); pixel.black=((aggregate.black+total_weight/2.0)/total_weight); pixel.alpha=((aggregate.alpha+total_weight/2.0)/total_weight); } SetPixelViaPixelInfo(image,&pixel,q); p+=GetPixelChannels(image); q+=GetPixelChannels(enhance_image); } if (SyncCacheViewAuthenticPixels(enhance_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,EnhanceImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } enhance_view=DestroyCacheView(enhance_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) enhance_image=DestroyImage(enhance_image); return(enhance_image); }
CWE-119
182,774
3,988
39724954808497897368380970872542606579
null
null
null
ImageMagick6
35c7032723d85eee7318ff6c82f031fa2666b773
1
MagickExport Image *AdaptiveThresholdImage(const Image *image, const size_t width,const size_t height,const ssize_t offset, ExceptionInfo *exception) { #define ThresholdImageTag "Threshold/Image" CacheView *image_view, *threshold_view; Image *threshold_image; MagickBooleanType status; MagickOffsetType progress; MagickPixelPacket zero; MagickRealType number_pixels; ssize_t y; assert(image != (const Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); threshold_image=CloneImage(image,0,0,MagickTrue,exception); if (threshold_image == (Image *) NULL) return((Image *) NULL); if (width == 0) return(threshold_image); if (SetImageStorageClass(threshold_image,DirectClass) == MagickFalse) { InheritException(exception,&threshold_image->exception); threshold_image=DestroyImage(threshold_image); return((Image *) NULL); } /* Local adaptive threshold. */ status=MagickTrue; progress=0; GetMagickPixelPacket(image,&zero); number_pixels=(MagickRealType) (width*height); image_view=AcquireVirtualCacheView(image,exception); threshold_view=AcquireAuthenticCacheView(threshold_image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(progress,status) \ magick_number_threads(image,threshold_image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { MagickBooleanType sync; MagickPixelPacket channel_bias, channel_sum; register const IndexPacket *magick_restrict indexes; register const PixelPacket *magick_restrict p, *magick_restrict r; register IndexPacket *magick_restrict threshold_indexes; register PixelPacket *magick_restrict q; register ssize_t x; ssize_t u, v; if (status == MagickFalse) continue; p=GetCacheViewVirtualPixels(image_view,-((ssize_t) width/2L),y-(ssize_t) height/2L,image->columns+width,height,exception); q=GetCacheViewAuthenticPixels(threshold_view,0,y,threshold_image->columns,1, exception); if ((p == (const PixelPacket *) NULL) || (q == (PixelPacket *) NULL)) { status=MagickFalse; continue; } indexes=GetCacheViewVirtualIndexQueue(image_view); threshold_indexes=GetCacheViewAuthenticIndexQueue(threshold_view); channel_bias=zero; channel_sum=zero; r=p; for (v=0; v < (ssize_t) height; v++) { for (u=0; u < (ssize_t) width; u++) { if (u == (ssize_t) (width-1)) { channel_bias.red+=r[u].red; channel_bias.green+=r[u].green; channel_bias.blue+=r[u].blue; channel_bias.opacity+=r[u].opacity; if (image->colorspace == CMYKColorspace) channel_bias.index=(MagickRealType) GetPixelIndex(indexes+(r-p)+u); } channel_sum.red+=r[u].red; channel_sum.green+=r[u].green; channel_sum.blue+=r[u].blue; channel_sum.opacity+=r[u].opacity; if (image->colorspace == CMYKColorspace) channel_sum.index=(MagickRealType) GetPixelIndex(indexes+(r-p)+u); } r+=image->columns+width; } for (x=0; x < (ssize_t) image->columns; x++) { MagickPixelPacket mean; mean=zero; r=p; channel_sum.red-=channel_bias.red; channel_sum.green-=channel_bias.green; channel_sum.blue-=channel_bias.blue; channel_sum.opacity-=channel_bias.opacity; channel_sum.index-=channel_bias.index; channel_bias=zero; for (v=0; v < (ssize_t) height; v++) { channel_bias.red+=r[0].red; channel_bias.green+=r[0].green; channel_bias.blue+=r[0].blue; channel_bias.opacity+=r[0].opacity; if (image->colorspace == CMYKColorspace) channel_bias.index=(MagickRealType) GetPixelIndex(indexes+x+(r-p)+0); channel_sum.red+=r[width-1].red; channel_sum.green+=r[width-1].green; channel_sum.blue+=r[width-1].blue; channel_sum.opacity+=r[width-1].opacity; if (image->colorspace == CMYKColorspace) channel_sum.index=(MagickRealType) GetPixelIndex(indexes+x+(r-p)+ width-1); r+=image->columns+width; } mean.red=(MagickRealType) (channel_sum.red/number_pixels+offset); mean.green=(MagickRealType) (channel_sum.green/number_pixels+offset); mean.blue=(MagickRealType) (channel_sum.blue/number_pixels+offset); mean.opacity=(MagickRealType) (channel_sum.opacity/number_pixels+offset); if (image->colorspace == CMYKColorspace) mean.index=(MagickRealType) (channel_sum.index/number_pixels+offset); SetPixelRed(q,((MagickRealType) GetPixelRed(q) <= mean.red) ? 0 : QuantumRange); SetPixelGreen(q,((MagickRealType) GetPixelGreen(q) <= mean.green) ? 0 : QuantumRange); SetPixelBlue(q,((MagickRealType) GetPixelBlue(q) <= mean.blue) ? 0 : QuantumRange); SetPixelOpacity(q,((MagickRealType) GetPixelOpacity(q) <= mean.opacity) ? 0 : QuantumRange); if (image->colorspace == CMYKColorspace) SetPixelIndex(threshold_indexes+x,(((MagickRealType) GetPixelIndex( threshold_indexes+x) <= mean.index) ? 0 : QuantumRange)); p++; q++; } sync=SyncCacheViewAuthenticPixels(threshold_view,exception); if (sync == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp atomic #endif progress++; proceed=SetImageProgress(image,ThresholdImageTag,progress,image->rows); if (proceed == MagickFalse) status=MagickFalse; } } threshold_view=DestroyCacheView(threshold_view); image_view=DestroyCacheView(image_view); if (status == MagickFalse) threshold_image=DestroyImage(threshold_image); return(threshold_image); }
CWE-125
182,775
3,989
320134287425152833035606598911374284965
null
null
null
ImageMagick
ce08a3691a8ac29125e29fc41967b3737fa3f425
1
WandPrivate MagickBooleanType CLIListOperatorImages(MagickCLI *cli_wand, const char *option,const char *arg1n,const char *arg2n) { const char /* percent escaped versions of the args */ *arg1, *arg2; Image *new_images; MagickStatusType status; ssize_t parse; #define _image_info (cli_wand->wand.image_info) #define _images (cli_wand->wand.images) #define _exception (cli_wand->wand.exception) #define _draw_info (cli_wand->draw_info) #define _quantize_info (cli_wand->quantize_info) #define _process_flags (cli_wand->process_flags) #define _option_type ((CommandOptionFlags) cli_wand->command->flags) #define IfNormalOp (*option=='-') #define IfPlusOp (*option!='-') #define IsNormalOp IfNormalOp ? MagickTrue : MagickFalse assert(cli_wand != (MagickCLI *) NULL); assert(cli_wand->signature == MagickWandSignature); assert(cli_wand->wand.signature == MagickWandSignature); assert(_images != (Image *) NULL); /* _images must be present */ if (cli_wand->wand.debug != MagickFalse) (void) CLILogEvent(cli_wand,CommandEvent,GetMagickModule(), "- List Operator: %s \"%s\" \"%s\"", option, arg1n == (const char *) NULL ? "null" : arg1n, arg2n == (const char *) NULL ? "null" : arg2n); arg1 = arg1n; arg2 = arg2n; /* Interpret Percent Escapes in Arguments - using first image */ if ( (((_process_flags & ProcessInterpretProperities) != 0 ) || ((_option_type & AlwaysInterpretArgsFlag) != 0) ) && ((_option_type & NeverInterpretArgsFlag) == 0) ) { /* Interpret Percent escapes in argument 1 */ if (arg1n != (char *) NULL) { arg1=InterpretImageProperties(_image_info,_images,arg1n,_exception); if (arg1 == (char *) NULL) { CLIWandException(OptionWarning,"InterpretPropertyFailure",option); arg1=arg1n; /* use the given argument as is */ } } if (arg2n != (char *) NULL) { arg2=InterpretImageProperties(_image_info,_images,arg2n,_exception); if (arg2 == (char *) NULL) { CLIWandException(OptionWarning,"InterpretPropertyFailure",option); arg2=arg2n; /* use the given argument as is */ } } } #undef _process_flags #undef _option_type status=MagickTrue; new_images=NewImageList(); switch (*(option+1)) { case 'a': { if (LocaleCompare("append",option+1) == 0) { new_images=AppendImages(_images,IsNormalOp,_exception); break; } if (LocaleCompare("average",option+1) == 0) { CLIWandWarnReplaced("-evaluate-sequence Mean"); (void) CLIListOperatorImages(cli_wand,"-evaluate-sequence","Mean", NULL); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'c': { if (LocaleCompare("channel-fx",option+1) == 0) { new_images=ChannelFxImage(_images,arg1,_exception); break; } if (LocaleCompare("clut",option+1) == 0) { Image *clut_image; /* FUTURE - make this a compose option, and thus can be used with layers compose or even compose last image over all other _images. */ new_images=RemoveFirstImageFromList(&_images); clut_image=RemoveLastImageFromList(&_images); /* FUTURE - produce Exception, rather than silent fail */ if (clut_image == (Image *) NULL) break; (void) ClutImage(new_images,clut_image,new_images->interpolate, _exception); clut_image=DestroyImage(clut_image); break; } if (LocaleCompare("coalesce",option+1) == 0) { new_images=CoalesceImages(_images,_exception); break; } if (LocaleCompare("combine",option+1) == 0) { parse=(ssize_t) _images->colorspace; if (_images->number_channels < GetImageListLength(_images)) parse=sRGBColorspace; if ( IfPlusOp ) parse=ParseCommandOption(MagickColorspaceOptions,MagickFalse,arg1); if (parse < 0) CLIWandExceptArgBreak(OptionError,"UnrecognizedColorspace",option, arg1); new_images=CombineImages(_images,(ColorspaceType) parse,_exception); break; } if (LocaleCompare("compare",option+1) == 0) { double distortion; Image *image, *reconstruct_image; MetricType metric; /* Mathematically and visually annotate the difference between an image and its reconstruction. */ image=RemoveFirstImageFromList(&_images); reconstruct_image=RemoveFirstImageFromList(&_images); /* FUTURE - produce Exception, rather than silent fail */ if (reconstruct_image == (Image *) NULL) break; metric=UndefinedErrorMetric; option=GetImageOption(_image_info,"metric"); if (option != (const char *) NULL) metric=(MetricType) ParseCommandOption(MagickMetricOptions, MagickFalse,option); new_images=CompareImages(image,reconstruct_image,metric,&distortion, _exception); (void) distortion; reconstruct_image=DestroyImage(reconstruct_image); image=DestroyImage(image); break; } if (LocaleCompare("complex",option+1) == 0) { parse=ParseCommandOption(MagickComplexOptions,MagickFalse,arg1); if (parse < 0) CLIWandExceptArgBreak(OptionError,"UnrecognizedEvaluateOperator", option,arg1); new_images=ComplexImages(_images,(ComplexOperator) parse,_exception); break; } if (LocaleCompare("composite",option+1) == 0) { CompositeOperator compose; const char* value; MagickBooleanType clip_to_self; Image *mask_image, *source_image; RectangleInfo geometry; /* Compose value from "-compose" option only */ value=GetImageOption(_image_info,"compose"); if (value == (const char *) NULL) compose=OverCompositeOp; /* use Over not source_image->compose */ else compose=(CompositeOperator) ParseCommandOption(MagickComposeOptions, MagickFalse,value); /* Get "clip-to-self" expert setting (false is normal) */ clip_to_self=GetCompositeClipToSelf(compose); value=GetImageOption(_image_info,"compose:clip-to-self"); if (value != (const char *) NULL) clip_to_self=IsStringTrue(value); value=GetImageOption(_image_info,"compose:outside-overlay"); if (value != (const char *) NULL) clip_to_self=IsStringFalse(value); /* deprecated */ new_images=RemoveFirstImageFromList(&_images); source_image=RemoveFirstImageFromList(&_images); if (source_image == (Image *) NULL) break; /* FUTURE - produce Exception, rather than silent fail */ /* FUTURE - this should not be here! - should be part of -geometry */ if (source_image->geometry != (char *) NULL) { RectangleInfo resize_geometry; (void) ParseRegionGeometry(source_image,source_image->geometry, &resize_geometry,_exception); if ((source_image->columns != resize_geometry.width) || (source_image->rows != resize_geometry.height)) { Image *resize_image; resize_image=ResizeImage(source_image,resize_geometry.width, resize_geometry.height,source_image->filter,_exception); if (resize_image != (Image *) NULL) { source_image=DestroyImage(source_image); source_image=resize_image; } } } SetGeometry(source_image,&geometry); (void) ParseAbsoluteGeometry(source_image->geometry,&geometry); GravityAdjustGeometry(new_images->columns,new_images->rows, new_images->gravity, &geometry); mask_image=RemoveFirstImageFromList(&_images); if (mask_image == (Image *) NULL) status&=CompositeImage(new_images,source_image,compose,clip_to_self, geometry.x,geometry.y,_exception); else { if ((compose == DisplaceCompositeOp) || (compose == DistortCompositeOp)) { status&=CompositeImage(source_image,mask_image, CopyGreenCompositeOp,MagickTrue,0,0,_exception); status&=CompositeImage(new_images,source_image,compose, clip_to_self,geometry.x,geometry.y,_exception); } else { Image *clone_image; clone_image=CloneImage(new_images,0,0,MagickTrue,_exception); if (clone_image == (Image *) NULL) break; status&=CompositeImage(new_images,source_image,compose, clip_to_self,geometry.x,geometry.y,_exception); status&=CompositeImage(new_images,mask_image, CopyAlphaCompositeOp,MagickTrue,0,0,_exception); status&=CompositeImage(clone_image,new_images,OverCompositeOp, clip_to_self,0,0,_exception); new_images=DestroyImage(new_images); new_images=clone_image; } mask_image=DestroyImage(mask_image); } source_image=DestroyImage(source_image); break; } if (LocaleCompare("copy",option+1) == 0) { Image *source_image; OffsetInfo offset; RectangleInfo geometry; /* Copy image pixels. */ if (IsGeometry(arg1) == MagickFalse) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); if (IsGeometry(arg2) == MagickFalse) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); (void) ParsePageGeometry(_images,arg2,&geometry,_exception); offset.x=geometry.x; offset.y=geometry.y; source_image=_images; if (source_image->next != (Image *) NULL) source_image=source_image->next; (void) ParsePageGeometry(source_image,arg1,&geometry,_exception); (void) CopyImagePixels(_images,source_image,&geometry,&offset, _exception); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'd': { if (LocaleCompare("deconstruct",option+1) == 0) { CLIWandWarnReplaced("-layer CompareAny"); (void) CLIListOperatorImages(cli_wand,"-layer","CompareAny",NULL); break; } if (LocaleCompare("delete",option+1) == 0) { if (IfNormalOp) DeleteImages(&_images,arg1,_exception); else DeleteImages(&_images,"-1",_exception); break; } if (LocaleCompare("duplicate",option+1) == 0) { if (IfNormalOp) { const char *p; size_t number_duplicates; if (IsGeometry(arg1) == MagickFalse) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option, arg1); number_duplicates=(size_t) StringToLong(arg1); p=strchr(arg1,','); if (p == (const char *) NULL) new_images=DuplicateImages(_images,number_duplicates,"-1", _exception); else new_images=DuplicateImages(_images,number_duplicates,p, _exception); } else new_images=DuplicateImages(_images,1,"-1",_exception); AppendImageToList(&_images, new_images); new_images=(Image *) NULL; break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'e': { if (LocaleCompare("evaluate-sequence",option+1) == 0) { parse=ParseCommandOption(MagickEvaluateOptions,MagickFalse,arg1); if (parse < 0) CLIWandExceptArgBreak(OptionError,"UnrecognizedEvaluateOperator", option,arg1); new_images=EvaluateImages(_images,(MagickEvaluateOperator) parse, _exception); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'f': { if (LocaleCompare("fft",option+1) == 0) { new_images=ForwardFourierTransformImage(_images,IsNormalOp, _exception); break; } if (LocaleCompare("flatten",option+1) == 0) { /* REDIRECTED to use -layers flatten instead */ (void) CLIListOperatorImages(cli_wand,"-layers",option+1,NULL); break; } if (LocaleCompare("fx",option+1) == 0) { new_images=FxImage(_images,arg1,_exception); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'h': { if (LocaleCompare("hald-clut",option+1) == 0) { /* FUTURE - make this a compose option (and thus layers compose ) or perhaps compose last image over all other _images. */ Image *hald_image; new_images=RemoveFirstImageFromList(&_images); hald_image=RemoveLastImageFromList(&_images); if (hald_image == (Image *) NULL) break; (void) HaldClutImage(new_images,hald_image,_exception); hald_image=DestroyImage(hald_image); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'i': { if (LocaleCompare("ift",option+1) == 0) { Image *magnitude_image, *phase_image; magnitude_image=RemoveFirstImageFromList(&_images); phase_image=RemoveFirstImageFromList(&_images); /* FUTURE - produce Exception, rather than silent fail */ if (phase_image == (Image *) NULL) break; new_images=InverseFourierTransformImage(magnitude_image,phase_image, IsNormalOp,_exception); magnitude_image=DestroyImage(magnitude_image); phase_image=DestroyImage(phase_image); break; } if (LocaleCompare("insert",option+1) == 0) { Image *insert_image, *index_image; ssize_t index; if (IfNormalOp && (IsGeometry(arg1) == MagickFalse)) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); index=0; insert_image=RemoveLastImageFromList(&_images); if (IfNormalOp) index=(ssize_t) StringToLong(arg1); index_image=insert_image; if (index == 0) PrependImageToList(&_images,insert_image); else if (index == (ssize_t) GetImageListLength(_images)) AppendImageToList(&_images,insert_image); else { index_image=GetImageFromList(_images,index-1); if (index_image == (Image *) NULL) CLIWandExceptArgBreak(OptionError,"NoSuchImage",option,arg1); InsertImageInList(&index_image,insert_image); } _images=GetFirstImageInList(index_image); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'l': { if (LocaleCompare("layers",option+1) == 0) { parse=ParseCommandOption(MagickLayerOptions,MagickFalse,arg1); if ( parse < 0 ) CLIWandExceptArgBreak(OptionError,"UnrecognizedLayerMethod", option,arg1); switch ((LayerMethod) parse) { case CoalesceLayer: { new_images=CoalesceImages(_images,_exception); break; } case CompareAnyLayer: case CompareClearLayer: case CompareOverlayLayer: default: { new_images=CompareImagesLayers(_images,(LayerMethod) parse, _exception); break; } case MergeLayer: case FlattenLayer: case MosaicLayer: case TrimBoundsLayer: { new_images=MergeImageLayers(_images,(LayerMethod) parse, _exception); break; } case DisposeLayer: { new_images=DisposeImages(_images,_exception); break; } case OptimizeImageLayer: { new_images=OptimizeImageLayers(_images,_exception); break; } case OptimizePlusLayer: { new_images=OptimizePlusImageLayers(_images,_exception); break; } case OptimizeTransLayer: { OptimizeImageTransparency(_images,_exception); break; } case RemoveDupsLayer: { RemoveDuplicateLayers(&_images,_exception); break; } case RemoveZeroLayer: { RemoveZeroDelayLayers(&_images,_exception); break; } case OptimizeLayer: { /* General Purpose, GIF Animation Optimizer. */ new_images=CoalesceImages(_images,_exception); if (new_images == (Image *) NULL) break; _images=DestroyImageList(_images); _images=OptimizeImageLayers(new_images,_exception); if (_images == (Image *) NULL) break; new_images=DestroyImageList(new_images); OptimizeImageTransparency(_images,_exception); (void) RemapImages(_quantize_info,_images,(Image *) NULL, _exception); break; } case CompositeLayer: { Image *source; RectangleInfo geometry; CompositeOperator compose; const char* value; value=GetImageOption(_image_info,"compose"); compose=OverCompositeOp; /* Default to Over */ if (value != (const char *) NULL) compose=(CompositeOperator) ParseCommandOption( MagickComposeOptions,MagickFalse,value); /* Split image sequence at the first 'NULL:' image. */ source=_images; while (source != (Image *) NULL) { source=GetNextImageInList(source); if ((source != (Image *) NULL) && (LocaleCompare(source->magick,"NULL") == 0)) break; } if (source != (Image *) NULL) { if ((GetPreviousImageInList(source) == (Image *) NULL) || (GetNextImageInList(source) == (Image *) NULL)) source=(Image *) NULL; else { /* Separate the two lists, junk the null: image. */ source=SplitImageList(source->previous); DeleteImageFromList(&source); } } if (source == (Image *) NULL) { (void) ThrowMagickException(_exception,GetMagickModule(), OptionError,"MissingNullSeparator","layers Composite"); break; } /* Adjust offset with gravity and virtual canvas. */ SetGeometry(_images,&geometry); (void) ParseAbsoluteGeometry(_images->geometry,&geometry); geometry.width=source->page.width != 0 ? source->page.width : source->columns; geometry.height=source->page.height != 0 ? source->page.height : source->rows; GravityAdjustGeometry(_images->page.width != 0 ? _images->page.width : _images->columns, _images->page.height != 0 ? _images->page.height : _images->rows,_images->gravity,&geometry); /* Compose the two image sequences together */ CompositeLayers(_images,compose,source,geometry.x,geometry.y, _exception); source=DestroyImageList(source); break; } } break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'm': { if (LocaleCompare("map",option+1) == 0) { CLIWandWarnReplaced("+remap"); (void) RemapImages(_quantize_info,_images,(Image *) NULL,_exception); break; } if (LocaleCompare("metric",option+1) == 0) { (void) SetImageOption(_image_info,option+1,arg1); break; } if (LocaleCompare("morph",option+1) == 0) { Image *morph_image; if (IsGeometry(arg1) == MagickFalse) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); morph_image=MorphImages(_images,StringToUnsignedLong(arg1), _exception); if (morph_image == (Image *) NULL) break; _images=DestroyImageList(_images); _images=morph_image; break; } if (LocaleCompare("mosaic",option+1) == 0) { /* REDIRECTED to use -layers mosaic instead */ (void) CLIListOperatorImages(cli_wand,"-layers",option+1,NULL); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'p': { if (LocaleCompare("poly",option+1) == 0) { double *args; ssize_t count; /* convert argument string into an array of doubles */ args = StringToArrayOfDoubles(arg1,&count,_exception); if (args == (double *) NULL ) CLIWandExceptArgBreak(OptionError,"InvalidNumberList",option,arg1); new_images=PolynomialImage(_images,(size_t) (count >> 1),args, _exception); args=(double *) RelinquishMagickMemory(args); break; } if (LocaleCompare("process",option+1) == 0) { /* FUTURE: better parsing using ScriptToken() from string ??? */ char **arguments; int j, number_arguments; arguments=StringToArgv(arg1,&number_arguments); if (arguments == (char **) NULL) break; if (strchr(arguments[1],'=') != (char *) NULL) { char breaker, quote, *token; const char *arguments; int next, status; size_t length; TokenInfo *token_info; /* Support old style syntax, filter="-option arg1". */ assert(arg1 != (const char *) NULL); length=strlen(arg1); token=(char *) NULL; if (~length >= (MagickPathExtent-1)) token=(char *) AcquireQuantumMemory(length+MagickPathExtent, sizeof(*token)); if (token == (char *) NULL) break; next=0; arguments=arg1; token_info=AcquireTokenInfo(); status=Tokenizer(token_info,0,token,length,arguments,"","=", "\"",'\0',&breaker,&next,&quote); token_info=DestroyTokenInfo(token_info); if (status == 0) { const char *argv; argv=(&(arguments[next])); (void) InvokeDynamicImageFilter(token,&_images,1,&argv, _exception); } token=DestroyString(token); break; } (void) SubstituteString(&arguments[1],"-",""); (void) InvokeDynamicImageFilter(arguments[1],&_images, number_arguments-2,(const char **) arguments+2,_exception); for (j=0; j < number_arguments; j++) arguments[j]=DestroyString(arguments[j]); arguments=(char **) RelinquishMagickMemory(arguments); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 'r': { if (LocaleCompare("remap",option+1) == 0) { (void) RemapImages(_quantize_info,_images,(Image *) NULL,_exception); break; } if (LocaleCompare("reverse",option+1) == 0) { ReverseImageList(&_images); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } case 's': { if (LocaleCompare("smush",option+1) == 0) { /* FUTURE: this option needs more work to make better */ ssize_t offset; if (IsGeometry(arg1) == MagickFalse) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); offset=(ssize_t) StringToLong(arg1); new_images=SmushImages(_images,IsNormalOp,offset,_exception); break; } if (LocaleCompare("subimage",option+1) == 0) { Image *base_image, *compare_image; const char *value; MetricType metric; double similarity; RectangleInfo offset; base_image=GetImageFromList(_images,0); compare_image=GetImageFromList(_images,1); /* Comparision Metric */ metric=UndefinedErrorMetric; value=GetImageOption(_image_info,"metric"); if (value != (const char *) NULL) metric=(MetricType) ParseCommandOption(MagickMetricOptions, MagickFalse,value); new_images=SimilarityImage(base_image,compare_image,metric,0.0, &offset,&similarity,_exception); if (new_images != (Image *) NULL) { char result[MagickPathExtent]; (void) FormatLocaleString(result,MagickPathExtent,"%lf", similarity); (void) SetImageProperty(new_images,"subimage:similarity",result, _exception); (void) FormatLocaleString(result,MagickPathExtent,"%+ld",(long) offset.x); (void) SetImageProperty(new_images,"subimage:x",result, _exception); (void) FormatLocaleString(result,MagickPathExtent,"%+ld",(long) offset.y); (void) SetImageProperty(new_images,"subimage:y",result, _exception); (void) FormatLocaleString(result,MagickPathExtent, "%lux%lu%+ld%+ld",(unsigned long) offset.width,(unsigned long) offset.height,(long) offset.x,(long) offset.y); (void) SetImageProperty(new_images,"subimage:offset",result, _exception); } break; } if (LocaleCompare("swap",option+1) == 0) { Image *p, *q, *swap; ssize_t index, swap_index; index=(-1); swap_index=(-2); if (IfNormalOp) { GeometryInfo geometry_info; MagickStatusType flags; swap_index=(-1); flags=ParseGeometry(arg1,&geometry_info); if ((flags & RhoValue) == 0) CLIWandExceptArgBreak(OptionError,"InvalidArgument",option,arg1); index=(ssize_t) geometry_info.rho; if ((flags & SigmaValue) != 0) swap_index=(ssize_t) geometry_info.sigma; } p=GetImageFromList(_images,index); q=GetImageFromList(_images,swap_index); if ((p == (Image *) NULL) || (q == (Image *) NULL)) { if (IfNormalOp) CLIWandExceptArgBreak(OptionError,"InvalidImageIndex",option,arg1) else CLIWandExceptionBreak(OptionError,"TwoOrMoreImagesRequired",option); } if (p == q) CLIWandExceptArgBreak(OptionError,"InvalidImageIndex",option,arg1); swap=CloneImage(p,0,0,MagickTrue,_exception); if (swap == (Image *) NULL) CLIWandExceptArgBreak(ResourceLimitError,"MemoryAllocationFailed", option,GetExceptionMessage(errno)); ReplaceImageInList(&p,CloneImage(q,0,0,MagickTrue,_exception)); ReplaceImageInList(&q,swap); _images=GetFirstImageInList(q); break; } CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } default: CLIWandExceptionBreak(OptionError,"UnrecognizedOption",option); } /* clean up percent escape interpreted strings */ if (arg1 != arg1n ) arg1=DestroyString((char *)arg1); if (arg2 != arg2n ) arg2=DestroyString((char *)arg2); /* if new image list generated, replace existing image list */ if (new_images == (Image *) NULL) return(status == 0 ? MagickFalse : MagickTrue); _images=DestroyImageList(_images); _images=GetFirstImageInList(new_images); return(status == 0 ? MagickFalse : MagickTrue); #undef _image_info #undef _images #undef _exception #undef _draw_info #undef _quantize_info #undef IfNormalOp #undef IfPlusOp #undef IsNormalOp }
CWE-399
182,776
3,990
306991356440368999888482520666328065332
null
null
null