project
stringclasses
633 values
commit_id
stringlengths
7
81
target
int64
0
1
func
stringlengths
5
484k
cwe
stringclasses
131 values
big_vul_idx
float64
0
189k
idx
int64
0
522k
hash
stringlengths
34
39
size
float64
1
24k
message
stringlengths
0
11.5k
dataset
stringclasses
1 value
linux
92f28d973cce45ef5823209aab3138eb45d8b349
1
static __inline__ int scm_check_creds(struct ucred *creds) { const struct cred *cred = current_cred(); kuid_t uid = make_kuid(cred->user_ns, creds->uid); kgid_t gid = make_kgid(cred->user_ns, creds->gid); if (!uid_valid(uid) || !gid_valid(gid)) return -EINVAL; if ((creds->pid == task_tgid_vnr(current) || nsown_capable(CAP_SYS_ADMIN)) && ((uid_eq(uid, cred->uid) || uid_eq(uid, cred->euid) || uid_eq(uid, cred->suid)) || nsown_capable(CAP_SETUID)) && ((gid_eq(gid, cred->gid) || gid_eq(gid, cred->egid) || gid_eq(gid, cred->sgid)) || nsown_capable(CAP_SETGID))) { return 0; } return -EPERM; }
CWE-264
179,265
1,050
265477273618585724017415837621967247884
null
null
null
linux
132c94e31b8bca8ea921f9f96a57d684fa4ae0a9
1
static struct mount *clone_mnt(struct mount *old, struct dentry *root, int flag) { struct super_block *sb = old->mnt.mnt_sb; struct mount *mnt; int err; mnt = alloc_vfsmnt(old->mnt_devname); if (!mnt) return ERR_PTR(-ENOMEM); if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) mnt->mnt_group_id = 0; /* not a peer of original */ else mnt->mnt_group_id = old->mnt_group_id; if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { err = mnt_alloc_group_id(mnt); if (err) goto out_free; } mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; atomic_inc(&sb->s_active); mnt->mnt.mnt_sb = sb; mnt->mnt.mnt_root = dget(root); mnt->mnt_mountpoint = mnt->mnt.mnt_root; mnt->mnt_parent = mnt; br_write_lock(&vfsmount_lock); list_add_tail(&mnt->mnt_instance, &sb->s_mounts); br_write_unlock(&vfsmount_lock); if ((flag & CL_SLAVE) || ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { list_add(&mnt->mnt_slave, &old->mnt_slave_list); mnt->mnt_master = old; CLEAR_MNT_SHARED(mnt); } else if (!(flag & CL_PRIVATE)) { if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) list_add(&mnt->mnt_share, &old->mnt_share); if (IS_MNT_SLAVE(old)) list_add(&mnt->mnt_slave, &old->mnt_slave); mnt->mnt_master = old->mnt_master; } if (flag & CL_MAKE_SHARED) set_mnt_shared(mnt); /* stick the duplicate mount on the same expiry list * as the original if that was on one */ if (flag & CL_EXPIRE) { if (!list_empty(&old->mnt_expire)) list_add(&mnt->mnt_expire, &old->mnt_expire); } return mnt; out_free: free_vfsmnt(mnt); return ERR_PTR(err); }
CWE-264
179,266
1,051
333226396239700821421685271003259941488
null
null
null
linux
3151527ee007b73a0ebd296010f1c0454a919c7d
1
int create_user_ns(struct cred *new) { struct user_namespace *ns, *parent_ns = new->user_ns; kuid_t owner = new->euid; kgid_t group = new->egid; int ret; /* The creator needs a mapping in the parent user namespace * or else we won't be able to reasonably tell userspace who * created a user_namespace. */ if (!kuid_has_mapping(parent_ns, owner) || !kgid_has_mapping(parent_ns, group)) return -EPERM; ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL); if (!ns) return -ENOMEM; ret = proc_alloc_inum(&ns->proc_inum); if (ret) { kmem_cache_free(user_ns_cachep, ns); return ret; } atomic_set(&ns->count, 1); /* Leave the new->user_ns reference with the new user namespace. */ ns->parent = parent_ns; ns->owner = owner; ns->group = group; set_cred_user_ns(new, ns); return 0; }
CWE-264
179,269
1,054
62769202323779361493560203769736579979
null
null
null
curl
2eb8dcf26cb37f09cffe26909a646e702dbcab66
1
static bool tailmatch(const char *little, const char *bigone) { size_t littlelen = strlen(little); size_t biglen = strlen(bigone); if(littlelen > biglen) return FALSE; return Curl_raw_equal(little, bigone+biglen-littlelen) ? TRUE : FALSE; }
CWE-200
179,270
1,055
325637020867287521959143082960787130430
null
null
null
linux
715230a44310a8cf66fbfb5a46f9a62a9b2de424
1
static void tg3_read_vpd(struct tg3 *tp) { u8 *vpd_data; unsigned int block_end, rosize, len; u32 vpdlen; int j, i = 0; vpd_data = (u8 *)tg3_vpd_readblock(tp, &vpdlen); if (!vpd_data) goto out_no_vpd; i = pci_vpd_find_tag(vpd_data, 0, vpdlen, PCI_VPD_LRDT_RO_DATA); if (i < 0) goto out_not_found; rosize = pci_vpd_lrdt_size(&vpd_data[i]); block_end = i + PCI_VPD_LRDT_TAG_SIZE + rosize; i += PCI_VPD_LRDT_TAG_SIZE; if (block_end > vpdlen) goto out_not_found; j = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_MFR_ID); if (j > 0) { len = pci_vpd_info_field_size(&vpd_data[j]); j += PCI_VPD_INFO_FLD_HDR_SIZE; if (j + len > block_end || len != 4 || memcmp(&vpd_data[j], "1028", 4)) goto partno; j = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_VENDOR0); if (j < 0) goto partno; len = pci_vpd_info_field_size(&vpd_data[j]); j += PCI_VPD_INFO_FLD_HDR_SIZE; if (j + len > block_end) goto partno; memcpy(tp->fw_ver, &vpd_data[j], len); strncat(tp->fw_ver, " bc ", vpdlen - len - 1); } partno: i = pci_vpd_find_info_keyword(vpd_data, i, rosize, PCI_VPD_RO_KEYWORD_PARTNO); if (i < 0) goto out_not_found; len = pci_vpd_info_field_size(&vpd_data[i]); i += PCI_VPD_INFO_FLD_HDR_SIZE; if (len > TG3_BPN_SIZE || (len + i) > vpdlen) goto out_not_found; memcpy(tp->board_part_number, &vpd_data[i], len); out_not_found: kfree(vpd_data); if (tp->board_part_number[0]) return; out_no_vpd: if (tg3_asic_rev(tp) == ASIC_REV_5717) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717 || tp->pdev->device == TG3PCI_DEVICE_TIGON3_5717_C) strcpy(tp->board_part_number, "BCM5717"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_5718) strcpy(tp->board_part_number, "BCM5718"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57780) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57780) strcpy(tp->board_part_number, "BCM57780"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57760) strcpy(tp->board_part_number, "BCM57760"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57790) strcpy(tp->board_part_number, "BCM57790"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57788) strcpy(tp->board_part_number, "BCM57788"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57765) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57761) strcpy(tp->board_part_number, "BCM57761"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57765) strcpy(tp->board_part_number, "BCM57765"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57781) strcpy(tp->board_part_number, "BCM57781"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57785) strcpy(tp->board_part_number, "BCM57785"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57791) strcpy(tp->board_part_number, "BCM57791"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57795) strcpy(tp->board_part_number, "BCM57795"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_57766) { if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57762) strcpy(tp->board_part_number, "BCM57762"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57766) strcpy(tp->board_part_number, "BCM57766"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57782) strcpy(tp->board_part_number, "BCM57782"); else if (tp->pdev->device == TG3PCI_DEVICE_TIGON3_57786) strcpy(tp->board_part_number, "BCM57786"); else goto nomatch; } else if (tg3_asic_rev(tp) == ASIC_REV_5906) { strcpy(tp->board_part_number, "BCM95906"); } else { nomatch: strcpy(tp->board_part_number, "none"); } }
CWE-119
179,273
1,056
112924613750397927048878971722801062246
null
null
null
linux
12176503366885edd542389eed3aaf94be163fdb
1
static int do_video_set_spu_palette(unsigned int fd, unsigned int cmd, struct compat_video_spu_palette __user *up) { struct video_spu_palette __user *up_native; compat_uptr_t palp; int length, err; err = get_user(palp, &up->palette); err |= get_user(length, &up->length); up_native = compat_alloc_user_space(sizeof(struct video_spu_palette)); err = put_user(compat_ptr(palp), &up_native->palette); err |= put_user(length, &up_native->length); if (err) return -EFAULT; err = sys_ioctl(fd, cmd, (unsigned long) up_native); return err; }
CWE-200
179,274
1,057
316505203133565640195168358797398379359
null
null
null
linux
c0f5ecee4e741667b2493c742b60b6218d40b3aa
1
static void wdm_in_callback(struct urb *urb) { struct wdm_device *desc = urb->context; int status = urb->status; spin_lock(&desc->iuspin); clear_bit(WDM_RESPONDING, &desc->flags); if (status) { switch (status) { case -ENOENT: dev_dbg(&desc->intf->dev, "nonzero urb status received: -ENOENT"); goto skip_error; case -ECONNRESET: dev_dbg(&desc->intf->dev, "nonzero urb status received: -ECONNRESET"); goto skip_error; case -ESHUTDOWN: dev_dbg(&desc->intf->dev, "nonzero urb status received: -ESHUTDOWN"); goto skip_error; case -EPIPE: dev_err(&desc->intf->dev, "nonzero urb status received: -EPIPE\n"); break; default: dev_err(&desc->intf->dev, "Unexpected error %d\n", status); break; } } desc->rerr = status; desc->reslength = urb->actual_length; memmove(desc->ubuf + desc->length, desc->inbuf, desc->reslength); desc->length += desc->reslength; skip_error: wake_up(&desc->wait); set_bit(WDM_READ, &desc->flags); spin_unlock(&desc->iuspin); }
CWE-119
179,275
1,058
263555284317390403116045523741699148008
null
null
null
linux
726bc6b092da4c093eb74d13c07184b18c1af0f1
1
static int sctp_getsockopt_assoc_stats(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_stats sas; struct sctp_association *asoc = NULL; /* User must provide at least the assoc id */ if (len < sizeof(sctp_assoc_t)) return -EINVAL; if (copy_from_user(&sas, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, sas.sas_assoc_id); if (!asoc) return -EINVAL; sas.sas_rtxchunks = asoc->stats.rtxchunks; sas.sas_gapcnt = asoc->stats.gapcnt; sas.sas_outofseqtsns = asoc->stats.outofseqtsns; sas.sas_osacks = asoc->stats.osacks; sas.sas_isacks = asoc->stats.isacks; sas.sas_octrlchunks = asoc->stats.octrlchunks; sas.sas_ictrlchunks = asoc->stats.ictrlchunks; sas.sas_oodchunks = asoc->stats.oodchunks; sas.sas_iodchunks = asoc->stats.iodchunks; sas.sas_ouodchunks = asoc->stats.ouodchunks; sas.sas_iuodchunks = asoc->stats.iuodchunks; sas.sas_idupchunks = asoc->stats.idupchunks; sas.sas_opackets = asoc->stats.opackets; sas.sas_ipackets = asoc->stats.ipackets; /* New high max rto observed, will return 0 if not a single * RTO update took place. obs_rto_ipaddr will be bogus * in such a case */ sas.sas_maxrto = asoc->stats.max_obs_rto; memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr, sizeof(struct sockaddr_storage)); /* Mark beginning of a new observation period */ asoc->stats.max_obs_rto = asoc->rto_min; /* Allow the struct to grow and fill in as much as possible */ len = min_t(size_t, len, sizeof(sas)); if (put_user(len, optlen)) return -EFAULT; SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n", len, sas.sas_assoc_id); if (copy_to_user(optval, &sas, len)) return -EFAULT; return 0; }
CWE-20
179,283
1,065
170963965115843549721398736237152348844
null
null
null
linux
864745d291b5ba80ea0bd0edcbe67273de368836
1
static struct sk_buff *xfrm_state_netlink(struct sk_buff *in_skb, struct xfrm_state *x, u32 seq) { struct xfrm_dump_info info; struct sk_buff *skb; skb = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC); if (!skb) return ERR_PTR(-ENOMEM); info.in_skb = in_skb; info.out_skb = skb; info.nlmsg_seq = seq; info.nlmsg_flags = 0; if (dump_one_state(x, 0, &info)) { kfree_skb(skb); return NULL; } return skb; }
179,284
1,066
324377055092562535340765358029287961768
null
null
null
linux
eb178619f930fa2ba2348de332a1ff1c66a31424
1
_xfs_buf_find( struct xfs_buftarg *btp, struct xfs_buf_map *map, int nmaps, xfs_buf_flags_t flags, xfs_buf_t *new_bp) { size_t numbytes; struct xfs_perag *pag; struct rb_node **rbp; struct rb_node *parent; xfs_buf_t *bp; xfs_daddr_t blkno = map[0].bm_bn; int numblks = 0; int i; for (i = 0; i < nmaps; i++) numblks += map[i].bm_len; numbytes = BBTOB(numblks); /* Check for IOs smaller than the sector size / not sector aligned */ ASSERT(!(numbytes < (1 << btp->bt_sshift))); ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask)); /* get tree root */ pag = xfs_perag_get(btp->bt_mount, xfs_daddr_to_agno(btp->bt_mount, blkno)); /* walk tree */ spin_lock(&pag->pag_buf_lock); rbp = &pag->pag_buf_tree.rb_node; parent = NULL; bp = NULL; while (*rbp) { parent = *rbp; bp = rb_entry(parent, struct xfs_buf, b_rbnode); if (blkno < bp->b_bn) rbp = &(*rbp)->rb_left; else if (blkno > bp->b_bn) rbp = &(*rbp)->rb_right; else { /* * found a block number match. If the range doesn't * match, the only way this is allowed is if the buffer * in the cache is stale and the transaction that made * it stale has not yet committed. i.e. we are * reallocating a busy extent. Skip this buffer and * continue searching to the right for an exact match. */ if (bp->b_length != numblks) { ASSERT(bp->b_flags & XBF_STALE); rbp = &(*rbp)->rb_right; continue; } atomic_inc(&bp->b_hold); goto found; } } /* No match found */ if (new_bp) { rb_link_node(&new_bp->b_rbnode, parent, rbp); rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); /* the buffer keeps the perag reference until it is freed */ new_bp->b_pag = pag; spin_unlock(&pag->pag_buf_lock); } else { XFS_STATS_INC(xb_miss_locked); spin_unlock(&pag->pag_buf_lock); xfs_perag_put(pag); } return new_bp; found: spin_unlock(&pag->pag_buf_lock); xfs_perag_put(pag); if (!xfs_buf_trylock(bp)) { if (flags & XBF_TRYLOCK) { xfs_buf_rele(bp); XFS_STATS_INC(xb_busy_locked); return NULL; } xfs_buf_lock(bp); XFS_STATS_INC(xb_get_locked_waited); } /* * if the buffer is stale, clear all the external state associated with * it. We need to keep flags such as how we allocated the buffer memory * intact here. */ if (bp->b_flags & XBF_STALE) { ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); ASSERT(bp->b_iodone == NULL); bp->b_flags &= _XBF_KMEM | _XBF_PAGES; bp->b_ops = NULL; } trace_xfs_buf_find(bp, flags, _RET_IP_); XFS_STATS_INC(xb_get_locked); return bp; }
CWE-20
179,285
1,067
91424937264814556580236710533933601112
null
null
null
linux
a2c118bfab8bc6b8bb213abfc35201e441693d55
1
static unsigned long ioapic_read_indirect(struct kvm_ioapic *ioapic, unsigned long addr, unsigned long length) { unsigned long result = 0; switch (ioapic->ioregsel) { case IOAPIC_REG_VERSION: result = ((((IOAPIC_NUM_PINS - 1) & 0xff) << 16) | (IOAPIC_VERSION_ID & 0xff)); break; case IOAPIC_REG_APIC_ID: case IOAPIC_REG_ARB_ID: result = ((ioapic->id & 0xf) << 24); break; default: { u32 redir_index = (ioapic->ioregsel - 0x10) >> 1; u64 redir_content; ASSERT(redir_index < IOAPIC_NUM_PINS); redir_content = ioapic->redirtbl[redir_index].bits; result = (ioapic->ioregsel & 0x1) ? (redir_content >> 32) & 0xffffffff : redir_content & 0xffffffff; break; } } return result; }
CWE-20
179,286
1,068
68178098106123347133017883923942382578
null
null
null
linux
0b79459b482e85cb7426aa7da683a9f2c97aeae1
1
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { bool pr = false; u32 msr = msr_info->index; u64 data = msr_info->data; switch (msr) { case MSR_AMD64_NB_CFG: case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case MSR_VM_HSAVE_PA: case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: break; case MSR_EFER: return set_efer(vcpu, data); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ if (data != 0) { vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " "0x%llx\n", data); return 1; } break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); case MSR_IA32_TSCDEADLINE: kvm_set_lapic_tscdeadline_msr(vcpu, data); break; case MSR_IA32_TSC_ADJUST: if (guest_cpuid_has_tsc_adjust(vcpu)) { if (!msr_info->host_initiated) { u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); } vcpu->arch.ia32_tsc_adjust_msr = data; } break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { kvmclock_reset(vcpu); vcpu->arch.time = data; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; /* ...but clean it before doing the actual write */ vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); /* Check that the address is 32-byte aligned. */ if (vcpu->arch.time_offset & (sizeof(struct pvclock_vcpu_time_info) - 1)) break; vcpu->arch.time_page = gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); if (is_error_page(vcpu->arch.time_page)) vcpu->arch.time_page = NULL; break; } case MSR_KVM_ASYNC_PF_EN: if (kvm_pv_enable_async_pf(vcpu, data)) return 1; break; case MSR_KVM_STEAL_TIME: if (unlikely(!sched_info_on())) return 1; if (data & KVM_STEAL_RESERVED_MASK) return 1; if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, data & KVM_STEAL_VALID_BITS)) return 1; vcpu->arch.st.msr_val = data; if (!(data & KVM_MSR_ENABLED)) break; vcpu->arch.st.last_steal = current->sched_info.run_delay; preempt_disable(); accumulate_steal_time(vcpu); preempt_enable(); kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); break; case MSR_KVM_PV_EOI_EN: if (kvm_lapic_enable_pv_eoi(vcpu, data)) return 1; break; case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return set_msr_mce(vcpu, msr, data); /* Performance counters are not protected by a CPUID bit, * so we should check all of them in the generic path for the sake of * cross vendor migration. * Writing a zero into the event select MSRs disables them, * which we perfectly emulate ;-). Any other value should be at least * reported, some guests depend on them. */ case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: if (data != 0) vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; /* at least RHEL 4 unconditionally writes to the perfctr registers, * so we ignore writes to make it happy. */ case MSR_K7_PERFCTR0: case MSR_K7_PERFCTR1: case MSR_K7_PERFCTR2: case MSR_K7_PERFCTR3: vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: pr = true; case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (pr || data != 0) vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_K7_CLK_CTL: /* * Ignore all writes to this no longer documented MSR. * Writes are only relevant for old K7 processors, * all pre-dating SVM, but a recommended workaround from * AMD for these chips. It is possible to specify the * affected processor models on the command line, hence * the need to ignore the workaround. */ break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = set_msr_hyperv_pw(vcpu, msr, data); mutex_unlock(&vcpu->kvm->lock); return r; } else return set_msr_hyperv(vcpu, msr, data); break; case MSR_IA32_BBL_CR_CTL3: /* Drop writes to this legacy MSR -- see rdmsr * counterpart for further detail. */ vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.length = data; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.status = data; break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (!ignore_msrs) { vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); return 1; } else { vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; } } return 0; }
CWE-399
179,290
1,071
148215412997884658749636479368404361217
null
null
null
linux
c300aa64ddf57d9c5d9c898a64b36877345dd4a9
1
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { bool pr = false; u32 msr = msr_info->index; u64 data = msr_info->data; switch (msr) { case MSR_AMD64_NB_CFG: case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: case MSR_VM_HSAVE_PA: case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: break; case MSR_EFER: return set_efer(vcpu, data); case MSR_K7_HWCR: data &= ~(u64)0x40; /* ignore flush filter disable */ data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ if (data != 0) { vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", data); return 1; } break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " "0x%llx\n", data); return 1; } break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: return kvm_x2apic_msr_write(vcpu, msr, data); case MSR_IA32_TSCDEADLINE: kvm_set_lapic_tscdeadline_msr(vcpu, data); break; case MSR_IA32_TSC_ADJUST: if (guest_cpuid_has_tsc_adjust(vcpu)) { if (!msr_info->host_initiated) { u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); } vcpu->arch.ia32_tsc_adjust_msr = data; } break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_KVM_WALL_CLOCK_NEW: case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME_NEW: case MSR_KVM_SYSTEM_TIME: { kvmclock_reset(vcpu); vcpu->arch.time = data; kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) break; /* ...but clean it before doing the actual write */ vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); vcpu->arch.time_page = gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); if (is_error_page(vcpu->arch.time_page)) vcpu->arch.time_page = NULL; break; } case MSR_KVM_ASYNC_PF_EN: if (kvm_pv_enable_async_pf(vcpu, data)) return 1; break; case MSR_KVM_STEAL_TIME: if (unlikely(!sched_info_on())) return 1; if (data & KVM_STEAL_RESERVED_MASK) return 1; if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, data & KVM_STEAL_VALID_BITS)) return 1; vcpu->arch.st.msr_val = data; if (!(data & KVM_MSR_ENABLED)) break; vcpu->arch.st.last_steal = current->sched_info.run_delay; preempt_disable(); accumulate_steal_time(vcpu); preempt_enable(); kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); break; case MSR_KVM_PV_EOI_EN: if (kvm_lapic_enable_pv_eoi(vcpu, data)) return 1; break; case MSR_IA32_MCG_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return set_msr_mce(vcpu, msr, data); /* Performance counters are not protected by a CPUID bit, * so we should check all of them in the generic path for the sake of * cross vendor migration. * Writing a zero into the event select MSRs disables them, * which we perfectly emulate ;-). Any other value should be at least * reported, some guests depend on them. */ case MSR_K7_EVNTSEL0: case MSR_K7_EVNTSEL1: case MSR_K7_EVNTSEL2: case MSR_K7_EVNTSEL3: if (data != 0) vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; /* at least RHEL 4 unconditionally writes to the perfctr registers, * so we ignore writes to make it happy. */ case MSR_K7_PERFCTR0: case MSR_K7_PERFCTR1: case MSR_K7_PERFCTR2: case MSR_K7_PERFCTR3: vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_P6_PERFCTR0: case MSR_P6_PERFCTR1: pr = true; case MSR_P6_EVNTSEL0: case MSR_P6_EVNTSEL1: if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (pr || data != 0) vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; case MSR_K7_CLK_CTL: /* * Ignore all writes to this no longer documented MSR. * Writes are only relevant for old K7 processors, * all pre-dating SVM, but a recommended workaround from * AMD for these chips. It is possible to specify the * affected processor models on the command line, hence * the need to ignore the workaround. */ break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; mutex_lock(&vcpu->kvm->lock); r = set_msr_hyperv_pw(vcpu, msr, data); mutex_unlock(&vcpu->kvm->lock); return r; } else return set_msr_hyperv(vcpu, msr, data); break; case MSR_IA32_BBL_CR_CTL3: /* Drop writes to this legacy MSR -- see rdmsr * counterpart for further detail. */ vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; case MSR_AMD64_OSVW_ID_LENGTH: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.length = data; break; case MSR_AMD64_OSVW_STATUS: if (!guest_cpuid_has_osvw(vcpu)) return 1; vcpu->arch.osvw.status = data; break; default: if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) return xen_hvm_config(vcpu, data); if (kvm_pmu_msr(vcpu, msr)) return kvm_pmu_set_msr(vcpu, msr, data); if (!ignore_msrs) { vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); return 1; } else { vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); break; } } return 0; }
CWE-119
179,292
1,073
283608099968125207964532142865153428743
null
null
null
linux
0da9dfdd2cd9889201bc6f6f43580c99165cd087
1
int install_user_keyrings(void) { struct user_struct *user; const struct cred *cred; struct key *uid_keyring, *session_keyring; key_perm_t user_keyring_perm; char buf[20]; int ret; uid_t uid; user_keyring_perm = (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL; cred = current_cred(); user = cred->user; uid = from_kuid(cred->user_ns, user->uid); kenter("%p{%u}", user, uid); if (user->uid_keyring) { kleave(" = 0 [exist]"); return 0; } mutex_lock(&key_user_keyring_mutex); ret = 0; if (!user->uid_keyring) { /* get the UID-specific keyring * - there may be one in existence already as it may have been * pinned by a session, but the user_struct pointing to it * may have been destroyed by setuid */ sprintf(buf, "_uid.%u", uid); uid_keyring = find_keyring_by_name(buf, true); if (IS_ERR(uid_keyring)) { uid_keyring = keyring_alloc(buf, user->uid, INVALID_GID, cred, user_keyring_perm, KEY_ALLOC_IN_QUOTA, NULL); if (IS_ERR(uid_keyring)) { ret = PTR_ERR(uid_keyring); goto error; } } /* get a default session keyring (which might also exist * already) */ sprintf(buf, "_uid_ses.%u", uid); session_keyring = find_keyring_by_name(buf, true); if (IS_ERR(session_keyring)) { session_keyring = keyring_alloc(buf, user->uid, INVALID_GID, cred, user_keyring_perm, KEY_ALLOC_IN_QUOTA, NULL); if (IS_ERR(session_keyring)) { ret = PTR_ERR(session_keyring); goto error_release; } /* we install a link from the user session keyring to * the user keyring */ ret = key_link(session_keyring, uid_keyring); if (ret < 0) goto error_release_both; } /* install the keyrings */ user->uid_keyring = uid_keyring; user->session_keyring = session_keyring; } mutex_unlock(&key_user_keyring_mutex); kleave(" = 0"); return 0; error_release_both: key_put(session_keyring); error_release: key_put(uid_keyring); error: mutex_unlock(&key_user_keyring_mutex); kleave(" = %d", ret); return ret; }
CWE-362
179,293
1,074
150644529088062988217803795766094771664
null
null
null
linux
1ee0a224bc9aad1de496c795f96bc6ba2c394811
1
static void chase_port(struct edgeport_port *port, unsigned long timeout, int flush) { int baud_rate; struct tty_struct *tty = tty_port_tty_get(&port->port->port); struct usb_serial *serial = port->port->serial; wait_queue_t wait; unsigned long flags; if (!timeout) timeout = (HZ * EDGE_CLOSING_WAIT)/100; /* wait for data to drain from the buffer */ spin_lock_irqsave(&port->ep_lock, flags); init_waitqueue_entry(&wait, current); add_wait_queue(&tty->write_wait, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (kfifo_len(&port->write_fifo) == 0 || timeout == 0 || signal_pending(current) || serial->disconnected) /* disconnect */ break; spin_unlock_irqrestore(&port->ep_lock, flags); timeout = schedule_timeout(timeout); spin_lock_irqsave(&port->ep_lock, flags); } set_current_state(TASK_RUNNING); remove_wait_queue(&tty->write_wait, &wait); if (flush) kfifo_reset_out(&port->write_fifo); spin_unlock_irqrestore(&port->ep_lock, flags); tty_kref_put(tty); /* wait for data to drain from the device */ timeout += jiffies; while ((long)(jiffies - timeout) < 0 && !signal_pending(current) && !serial->disconnected) { /* not disconnected */ if (!tx_active(port)) break; msleep(10); } /* disconnected */ if (serial->disconnected) return; /* wait one more character time, based on baud rate */ /* (tx_active doesn't seem to wait for the last byte) */ baud_rate = port->baud_rate; if (baud_rate == 0) baud_rate = 50; msleep(max(1, DIV_ROUND_UP(10000, baud_rate))); }
CWE-264
179,294
1,075
45678875671616345348570222539533714638
null
null
null
linux
ce0030c00f95cf9110d9cdcd41e901e1fb814417
1
static void call_console_drivers(unsigned start, unsigned end) { unsigned cur_index, start_print; static int msg_level = -1; BUG_ON(((int)(start - end)) > 0); cur_index = start; start_print = start; while (cur_index != end) { if (msg_level < 0 && ((end - cur_index) > 2)) { /* strip log prefix */ cur_index += log_prefix(&LOG_BUF(cur_index), &msg_level, NULL); start_print = cur_index; } while (cur_index != end) { char c = LOG_BUF(cur_index); cur_index++; if (c == '\n') { if (msg_level < 0) { /* * printk() has already given us loglevel tags in * the buffer. This code is here in case the * log buffer has wrapped right round and scribbled * on those tags */ msg_level = default_message_loglevel; } _call_console_drivers(start_print, cur_index, msg_level); msg_level = -1; start_print = cur_index; break; } } } _call_console_drivers(start_print, end, msg_level); }
CWE-119
179,298
1,079
150497347424301985399622499839907794574
null
null
null
tinc
17a33dfd95b1a29e90db76414eb9622df9632320
1
void receive_tcppacket(connection_t *c, const char *buffer, int len) { vpn_packet_t outpkt; outpkt.len = len; if(c->options & OPTION_TCPONLY) outpkt.priority = 0; else outpkt.priority = -1; memcpy(outpkt.data, buffer, len); receive_packet(c->node, &outpkt); }
CWE-119
179,301
1,080
130046906967549597758760447336187151115
null
null
null
krb5
8ee70ec63931d1e38567905387ab9b1d45734d81
1
prep_reprocess_req(krb5_kdc_req *request, krb5_principal *krbtgt_princ) { krb5_error_code retval = KRB5KRB_AP_ERR_BADMATCH; char **realms, **cpp, *temp_buf=NULL; krb5_data *comp1 = NULL, *comp2 = NULL; char *comp1_str = NULL; /* By now we know that server principal name is unknown. * If CANONICALIZE flag is set in the request * If req is not U2U authn. req * the requested server princ. has exactly two components * either * the name type is NT-SRV-HST * or name type is NT-UNKNOWN and * the 1st component is listed in conf file under host_based_services * the 1st component is not in a list in conf under "no_host_referral" * the 2d component looks like fully-qualified domain name (FQDN) * If all of these conditions are satisfied - try mapping the FQDN and * re-process the request as if client had asked for cross-realm TGT. */ if (isflagset(request->kdc_options, KDC_OPT_CANONICALIZE) && !isflagset(request->kdc_options, KDC_OPT_ENC_TKT_IN_SKEY) && krb5_princ_size(kdc_context, request->server) == 2) { comp1 = krb5_princ_component(kdc_context, request->server, 0); comp2 = krb5_princ_component(kdc_context, request->server, 1); comp1_str = calloc(1,comp1->length+1); if (!comp1_str) { retval = ENOMEM; goto cleanup; } strlcpy(comp1_str,comp1->data,comp1->length+1); if ((krb5_princ_type(kdc_context, request->server) == KRB5_NT_SRV_HST || krb5_princ_type(kdc_context, request->server) == KRB5_NT_SRV_INST || (krb5_princ_type(kdc_context, request->server) == KRB5_NT_UNKNOWN && kdc_active_realm->realm_host_based_services != NULL && (krb5_match_config_pattern(kdc_active_realm->realm_host_based_services, comp1_str) == TRUE || krb5_match_config_pattern(kdc_active_realm->realm_host_based_services, KRB5_CONF_ASTERISK) == TRUE))) && (kdc_active_realm->realm_no_host_referral == NULL || (krb5_match_config_pattern(kdc_active_realm->realm_no_host_referral, KRB5_CONF_ASTERISK) == FALSE && krb5_match_config_pattern(kdc_active_realm->realm_no_host_referral, comp1_str) == FALSE))) { if (memchr(comp2->data, '.', comp2->length) == NULL) goto cleanup; temp_buf = calloc(1, comp2->length+1); if (!temp_buf) { retval = ENOMEM; goto cleanup; } strlcpy(temp_buf, comp2->data,comp2->length+1); retval = krb5int_get_domain_realm_mapping(kdc_context, temp_buf, &realms); free(temp_buf); if (retval) { /* no match found */ kdc_err(kdc_context, retval, "unable to find realm of host"); goto cleanup; } if (realms == 0) { retval = KRB5KRB_AP_ERR_BADMATCH; goto cleanup; } /* Don't return a referral to the null realm or the service * realm. */ if (realms[0] == 0 || data_eq_string(request->server->realm, realms[0])) { free(realms[0]); free(realms); retval = KRB5KRB_AP_ERR_BADMATCH; goto cleanup; } /* Modify request. * Construct cross-realm tgt : krbtgt/REMOTE_REALM@LOCAL_REALM * and use it as a principal in this req. */ retval = krb5_build_principal(kdc_context, krbtgt_princ, (*request->server).realm.length, (*request->server).realm.data, "krbtgt", realms[0], (char *)0); for (cpp = realms; *cpp; cpp++) free(*cpp); } } cleanup: free(comp1_str); return retval; }
CWE-119
179,304
1,083
26445768461799658627820158469477432629
null
null
null
krb5
f249555301940c6df3a2cdda13b56b5674eebc2e
1
pkinit_check_kdc_pkid(krb5_context context, pkinit_plg_crypto_context plg_cryptoctx, pkinit_req_crypto_context req_cryptoctx, pkinit_identity_crypto_context id_cryptoctx, unsigned char *pdid_buf, unsigned int pkid_len, int *valid_kdcPkId) { krb5_error_code retval = KRB5KDC_ERR_PREAUTH_FAILED; PKCS7_ISSUER_AND_SERIAL *is = NULL; const unsigned char *p = pdid_buf; int status = 1; X509 *kdc_cert = sk_X509_value(id_cryptoctx->my_certs, id_cryptoctx->cert_index); *valid_kdcPkId = 0; pkiDebug("found kdcPkId in AS REQ\n"); is = d2i_PKCS7_ISSUER_AND_SERIAL(NULL, &p, (int)pkid_len); if (is == NULL) goto cleanup; status = X509_NAME_cmp(X509_get_issuer_name(kdc_cert), is->issuer); if (!status) { status = ASN1_INTEGER_cmp(X509_get_serialNumber(kdc_cert), is->serial); if (!status) *valid_kdcPkId = 1; } retval = 0; cleanup: X509_NAME_free(is->issuer); ASN1_INTEGER_free(is->serial); free(is); return retval; }
179,305
1,084
113776654271026499150762592325156046711
null
null
null
linux
2ca39528c01a933f6689cd6505ce65bd6d68a530
1
flush_signal_handlers(struct task_struct *t, int force_default) { int i; struct k_sigaction *ka = &t->sighand->action[0]; for (i = _NSIG ; i != 0 ; i--) { if (force_default || ka->sa.sa_handler != SIG_IGN) ka->sa.sa_handler = SIG_DFL; ka->sa.sa_flags = 0; sigemptyset(&ka->sa.sa_mask); ka++; } }
CWE-264
179,306
1,085
300076951675769576789330637334839523682
null
null
null
linux
0a9ab9bdb3e891762553f667066190c1d22ad62b
1
static int hidp_setup_hid(struct hidp_session *session, struct hidp_connadd_req *req) { struct hid_device *hid; int err; session->rd_data = kzalloc(req->rd_size, GFP_KERNEL); if (!session->rd_data) return -ENOMEM; if (copy_from_user(session->rd_data, req->rd_data, req->rd_size)) { err = -EFAULT; goto fault; } session->rd_size = req->rd_size; hid = hid_allocate_device(); if (IS_ERR(hid)) { err = PTR_ERR(hid); goto fault; } session->hid = hid; hid->driver_data = session; hid->bus = BUS_BLUETOOTH; hid->vendor = req->vendor; hid->product = req->product; hid->version = req->version; hid->country = req->country; strncpy(hid->name, req->name, 128); snprintf(hid->phys, sizeof(hid->phys), "%pMR", &bt_sk(session->ctrl_sock->sk)->src); snprintf(hid->uniq, sizeof(hid->uniq), "%pMR", &bt_sk(session->ctrl_sock->sk)->dst); hid->dev.parent = &session->conn->dev; hid->ll_driver = &hidp_hid_driver; hid->hid_get_raw_report = hidp_get_raw_report; hid->hid_output_raw_report = hidp_output_raw_report; /* True if device is blacklisted in drivers/hid/hid-core.c */ if (hid_ignore(hid)) { hid_destroy_device(session->hid); session->hid = NULL; return -ENODEV; } return 0; fault: kfree(session->rd_data); session->rd_data = NULL; return err; }
CWE-200
179,312
1,089
293512902537004236220512847055814585434
null
null
null
linux
a67adb997419fb53540d4a4f79c6471c60bc69b6
1
int evm_update_evmxattr(struct dentry *dentry, const char *xattr_name, const char *xattr_value, size_t xattr_value_len) { struct inode *inode = dentry->d_inode; struct evm_ima_xattr_data xattr_data; int rc = 0; rc = evm_calc_hmac(dentry, xattr_name, xattr_value, xattr_value_len, xattr_data.digest); if (rc == 0) { xattr_data.type = EVM_XATTR_HMAC; rc = __vfs_setxattr_noperm(dentry, XATTR_NAME_EVM, &xattr_data, sizeof(xattr_data), 0); } else if (rc == -ENODATA) rc = inode->i_op->removexattr(dentry, XATTR_NAME_EVM); return rc; }
179,313
1,090
305997047583974474229271303979449827597
null
null
null
linux
bd97120fc3d1a11f3124c7c9ba1d91f51829eb85
1
static int translate_desc(struct vhost_dev *dev, u64 addr, u32 len, struct iovec iov[], int iov_size) { const struct vhost_memory_region *reg; struct vhost_memory *mem; struct iovec *_iov; u64 s = 0; int ret = 0; rcu_read_lock(); mem = rcu_dereference(dev->memory); while ((u64)len > s) { u64 size; if (unlikely(ret >= iov_size)) { ret = -ENOBUFS; break; } reg = find_region(mem, addr, len); if (unlikely(!reg)) { ret = -EFAULT; break; } _iov = iov + ret; size = reg->memory_size - addr + reg->guest_phys_addr; _iov->iov_len = min((u64)len, size); _iov->iov_base = (void __user *)(unsigned long) (reg->userspace_addr + addr - reg->guest_phys_addr); s += size; addr += size; ++ret; } rcu_read_unlock(); return ret; }
179,314
1,091
36058613995489191804912663384715370298
null
null
null
linux
89d7ae34cdda4195809a5a987f697a517a2a3177
1
int cipso_v4_validate(const struct sk_buff *skb, unsigned char **option) { unsigned char *opt = *option; unsigned char *tag; unsigned char opt_iter; unsigned char err_offset = 0; u8 opt_len; u8 tag_len; struct cipso_v4_doi *doi_def = NULL; u32 tag_iter; /* caller already checks for length values that are too large */ opt_len = opt[1]; if (opt_len < 8) { err_offset = 1; goto validate_return; } rcu_read_lock(); doi_def = cipso_v4_doi_search(get_unaligned_be32(&opt[2])); if (doi_def == NULL) { err_offset = 2; goto validate_return_locked; } opt_iter = CIPSO_V4_HDR_LEN; tag = opt + opt_iter; while (opt_iter < opt_len) { for (tag_iter = 0; doi_def->tags[tag_iter] != tag[0];) if (doi_def->tags[tag_iter] == CIPSO_V4_TAG_INVALID || ++tag_iter == CIPSO_V4_TAG_MAXCNT) { err_offset = opt_iter; goto validate_return_locked; } tag_len = tag[1]; if (tag_len > (opt_len - opt_iter)) { err_offset = opt_iter + 1; goto validate_return_locked; } switch (tag[0]) { case CIPSO_V4_TAG_RBITMAP: if (tag_len < CIPSO_V4_TAG_RBM_BLEN) { err_offset = opt_iter + 1; goto validate_return_locked; } /* We are already going to do all the verification * necessary at the socket layer so from our point of * view it is safe to turn these checks off (and less * work), however, the CIPSO draft says we should do * all the CIPSO validations here but it doesn't * really specify _exactly_ what we need to validate * ... so, just make it a sysctl tunable. */ if (cipso_v4_rbm_strictvalid) { if (cipso_v4_map_lvl_valid(doi_def, tag[3]) < 0) { err_offset = opt_iter + 3; goto validate_return_locked; } if (tag_len > CIPSO_V4_TAG_RBM_BLEN && cipso_v4_map_cat_rbm_valid(doi_def, &tag[4], tag_len - 4) < 0) { err_offset = opt_iter + 4; goto validate_return_locked; } } break; case CIPSO_V4_TAG_ENUM: if (tag_len < CIPSO_V4_TAG_ENUM_BLEN) { err_offset = opt_iter + 1; goto validate_return_locked; } if (cipso_v4_map_lvl_valid(doi_def, tag[3]) < 0) { err_offset = opt_iter + 3; goto validate_return_locked; } if (tag_len > CIPSO_V4_TAG_ENUM_BLEN && cipso_v4_map_cat_enum_valid(doi_def, &tag[4], tag_len - 4) < 0) { err_offset = opt_iter + 4; goto validate_return_locked; } break; case CIPSO_V4_TAG_RANGE: if (tag_len < CIPSO_V4_TAG_RNG_BLEN) { err_offset = opt_iter + 1; goto validate_return_locked; } if (cipso_v4_map_lvl_valid(doi_def, tag[3]) < 0) { err_offset = opt_iter + 3; goto validate_return_locked; } if (tag_len > CIPSO_V4_TAG_RNG_BLEN && cipso_v4_map_cat_rng_valid(doi_def, &tag[4], tag_len - 4) < 0) { err_offset = opt_iter + 4; goto validate_return_locked; } break; case CIPSO_V4_TAG_LOCAL: /* This is a non-standard tag that we only allow for * local connections, so if the incoming interface is * not the loopback device drop the packet. */ if (!(skb->dev->flags & IFF_LOOPBACK)) { err_offset = opt_iter; goto validate_return_locked; } if (tag_len != CIPSO_V4_TAG_LOC_BLEN) { err_offset = opt_iter + 1; goto validate_return_locked; } break; default: err_offset = opt_iter; goto validate_return_locked; } tag += tag_len; opt_iter += tag_len; } validate_return_locked: rcu_read_unlock(); validate_return: *option = opt + err_offset; return err_offset; }
CWE-119
179,315
1,092
254520361513953381472265258043035062652
null
null
null
linux
77c1090f94d1b0b5186fb13a1b71b47b1343f87f
1
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned int flags, int *peeked, int *off, int *err) { struct sk_buff *skb; long timeo; /* * Caller is allowed not to check sk->sk_err before skb_recv_datagram() */ int error = sock_error(sk); if (error) goto no_packet; timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); do { /* Again only user level code calls this function, so nothing * interrupt level will suddenly eat the receive_queue. * * Look at current nfs client by the way... * However, this function was correct in any case. 8) */ unsigned long cpu_flags; struct sk_buff_head *queue = &sk->sk_receive_queue; spin_lock_irqsave(&queue->lock, cpu_flags); skb_queue_walk(queue, skb) { *peeked = skb->peeked; if (flags & MSG_PEEK) { if (*off >= skb->len) { *off -= skb->len; continue; } skb->peeked = 1; atomic_inc(&skb->users); } else __skb_unlink(skb, queue); spin_unlock_irqrestore(&queue->lock, cpu_flags); return skb; } spin_unlock_irqrestore(&queue->lock, cpu_flags); /* User doesn't want to wait */ error = -EAGAIN; if (!timeo) goto no_packet; } while (!wait_for_packet(sk, err, &timeo)); return NULL; no_packet: *err = error; return NULL; }
CWE-20
179,316
1,093
89456193869845556775746278518779936780
null
null
null
linux
c903f0456bc69176912dee6dd25c6a66ee1aed00
1
static int msr_open(struct inode *inode, struct file *file) { unsigned int cpu; struct cpuinfo_x86 *c; cpu = iminor(file->f_path.dentry->d_inode); if (cpu >= nr_cpu_ids || !cpu_online(cpu)) return -ENXIO; /* No such CPU */ c = &cpu_data(cpu); if (!cpu_has(c, X86_FEATURE_MSR)) return -EIO; /* MSR not supported */ return 0; }
CWE-264
179,338
1,115
134954684690763782108810687579849886489
null
null
null
libarchive
22531545514043e04633e1c015c7540b9de9dbe4
1
_archive_write_data(struct archive *_a, const void *buff, size_t s) { struct archive_write *a = (struct archive_write *)_a; archive_check_magic(&a->archive, ARCHIVE_WRITE_MAGIC, ARCHIVE_STATE_DATA, "archive_write_data"); archive_clear_error(&a->archive); return ((a->format_write_data)(a, buff, s)); }
CWE-189
179,348
1,123
130653882621145290070878332961230320693
null
null
null
linux
fe685aabf7c8c9f138e5ea900954d295bf229175
1
isofs_export_encode_fh(struct inode *inode, __u32 *fh32, int *max_len, struct inode *parent) { struct iso_inode_info * ei = ISOFS_I(inode); int len = *max_len; int type = 1; __u16 *fh16 = (__u16*)fh32; /* * WARNING: max_len is 5 for NFSv2. Because of this * limitation, we use the lower 16 bits of fh32[1] to hold the * offset of the inode and the upper 16 bits of fh32[1] to * hold the offset of the parent. */ if (parent && (len < 5)) { *max_len = 5; return 255; } else if (len < 3) { *max_len = 3; return 255; } len = 3; fh32[0] = ei->i_iget5_block; fh16[2] = (__u16)ei->i_iget5_offset; /* fh16 [sic] */ fh32[2] = inode->i_generation; if (parent) { struct iso_inode_info *eparent; eparent = ISOFS_I(parent); fh32[3] = eparent->i_iget5_block; fh16[3] = (__u16)eparent->i_iget5_offset; /* fh16 [sic] */ fh32[4] = parent->i_generation; len = 5; type = 2; } *max_len = len; return type; }
CWE-200
179,349
1,124
175765004232940692877706715077624484230
null
null
null
linux
0143fc5e9f6f5aad4764801015bc8d4b4a278200
1
static int udf_encode_fh(struct inode *inode, __u32 *fh, int *lenp, struct inode *parent) { int len = *lenp; struct kernel_lb_addr location = UDF_I(inode)->i_location; struct fid *fid = (struct fid *)fh; int type = FILEID_UDF_WITHOUT_PARENT; if (parent && (len < 5)) { *lenp = 5; return 255; } else if (len < 3) { *lenp = 3; return 255; } *lenp = 3; fid->udf.block = location.logicalBlockNum; fid->udf.partref = location.partitionReferenceNum; fid->udf.generation = inode->i_generation; if (parent) { location = UDF_I(parent)->i_location; fid->udf.parent_block = location.logicalBlockNum; fid->udf.parent_partref = location.partitionReferenceNum; fid->udf.parent_generation = inode->i_generation; *lenp = 5; type = FILEID_UDF_WITH_PARENT; } return type; }
CWE-200
179,350
1,125
271056274363302483785723168483520524098
null
null
null
linux
a117dacde0288f3ec60b6e5bcedae8fa37ee0dfc
1
static long __tun_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg, int ifreq_len) { struct tun_file *tfile = file->private_data; struct tun_struct *tun; void __user* argp = (void __user*)arg; struct sock_fprog fprog; struct ifreq ifr; int sndbuf; int vnet_hdr_sz; int ret; if (cmd == TUNSETIFF || _IOC_TYPE(cmd) == 0x89) if (copy_from_user(&ifr, argp, ifreq_len)) return -EFAULT; if (cmd == TUNGETFEATURES) { /* Currently this just means: "what IFF flags are valid?". * This is needed because we never checked for invalid flags on * TUNSETIFF. */ return put_user(IFF_TUN | IFF_TAP | IFF_NO_PI | IFF_ONE_QUEUE | IFF_VNET_HDR, (unsigned int __user*)argp); } rtnl_lock(); tun = __tun_get(tfile); if (cmd == TUNSETIFF && !tun) { ifr.ifr_name[IFNAMSIZ-1] = '\0'; ret = tun_set_iff(tfile->net, file, &ifr); if (ret) goto unlock; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; goto unlock; } ret = -EBADFD; if (!tun) goto unlock; tun_debug(KERN_INFO, tun, "tun_chr_ioctl cmd %d\n", cmd); ret = 0; switch (cmd) { case TUNGETIFF: ret = tun_get_iff(current->nsproxy->net_ns, tun, &ifr); if (ret) break; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case TUNSETNOCSUM: /* Disable/Enable checksum */ /* [unimplemented] */ tun_debug(KERN_INFO, tun, "ignored: set checksum %s\n", arg ? "disabled" : "enabled"); break; case TUNSETPERSIST: /* Disable/Enable persist mode */ if (arg) tun->flags |= TUN_PERSIST; else tun->flags &= ~TUN_PERSIST; tun_debug(KERN_INFO, tun, "persist %s\n", arg ? "enabled" : "disabled"); break; case TUNSETOWNER: /* Set owner of the device */ tun->owner = (uid_t) arg; tun_debug(KERN_INFO, tun, "owner set to %d\n", tun->owner); break; case TUNSETGROUP: /* Set group of the device */ tun->group= (gid_t) arg; tun_debug(KERN_INFO, tun, "group set to %d\n", tun->group); break; case TUNSETLINK: /* Only allow setting the type when the interface is down */ if (tun->dev->flags & IFF_UP) { tun_debug(KERN_INFO, tun, "Linktype set failed because interface is up\n"); ret = -EBUSY; } else { tun->dev->type = (int) arg; tun_debug(KERN_INFO, tun, "linktype set to %d\n", tun->dev->type); ret = 0; } break; #ifdef TUN_DEBUG case TUNSETDEBUG: tun->debug = arg; break; #endif case TUNSETOFFLOAD: ret = set_offload(tun, arg); break; case TUNSETTXFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = update_filter(&tun->txflt, (void __user *)arg); break; case SIOCGIFHWADDR: /* Get hw address */ memcpy(ifr.ifr_hwaddr.sa_data, tun->dev->dev_addr, ETH_ALEN); ifr.ifr_hwaddr.sa_family = tun->dev->type; if (copy_to_user(argp, &ifr, ifreq_len)) ret = -EFAULT; break; case SIOCSIFHWADDR: /* Set hw address */ tun_debug(KERN_DEBUG, tun, "set hw address: %pM\n", ifr.ifr_hwaddr.sa_data); ret = dev_set_mac_address(tun->dev, &ifr.ifr_hwaddr); break; case TUNGETSNDBUF: sndbuf = tun->socket.sk->sk_sndbuf; if (copy_to_user(argp, &sndbuf, sizeof(sndbuf))) ret = -EFAULT; break; case TUNSETSNDBUF: if (copy_from_user(&sndbuf, argp, sizeof(sndbuf))) { ret = -EFAULT; break; } tun->socket.sk->sk_sndbuf = sndbuf; break; case TUNGETVNETHDRSZ: vnet_hdr_sz = tun->vnet_hdr_sz; if (copy_to_user(argp, &vnet_hdr_sz, sizeof(vnet_hdr_sz))) ret = -EFAULT; break; case TUNSETVNETHDRSZ: if (copy_from_user(&vnet_hdr_sz, argp, sizeof(vnet_hdr_sz))) { ret = -EFAULT; break; } if (vnet_hdr_sz < (int)sizeof(struct virtio_net_hdr)) { ret = -EINVAL; break; } tun->vnet_hdr_sz = vnet_hdr_sz; break; case TUNATTACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = -EFAULT; if (copy_from_user(&fprog, argp, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, tun->socket.sk); break; case TUNDETACHFILTER: /* Can be set only for TAPs */ ret = -EINVAL; if ((tun->flags & TUN_TYPE_MASK) != TUN_TAP_DEV) break; ret = sk_detach_filter(tun->socket.sk); break; default: ret = -EINVAL; break; } unlock: rtnl_unlock(); if (tun) tun_put(tun); return ret; }
CWE-200
179,351
1,126
35869627182032716346589885505053331464
null
null
null
linux
e862f1a9b7df4e8196ebec45ac62295138aa3fc2
1
int vcc_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct atm_vcc *vcc; int len; if (get_user(len, optlen)) return -EFAULT; if (__SO_LEVEL_MATCH(optname, level) && len != __SO_SIZE(optname)) return -EINVAL; vcc = ATM_SD(sock); switch (optname) { case SO_ATMQOS: if (!test_bit(ATM_VF_HASQOS, &vcc->flags)) return -EINVAL; return copy_to_user(optval, &vcc->qos, sizeof(vcc->qos)) ? -EFAULT : 0; case SO_SETCLP: return put_user(vcc->atm_options & ATM_ATMOPT_CLP ? 1 : 0, (unsigned long __user *)optval) ? -EFAULT : 0; case SO_ATMPVC: { struct sockaddr_atmpvc pvc; if (!vcc->dev || !test_bit(ATM_VF_ADDR, &vcc->flags)) return -ENOTCONN; pvc.sap_family = AF_ATMPVC; pvc.sap_addr.itf = vcc->dev->number; pvc.sap_addr.vpi = vcc->vpi; pvc.sap_addr.vci = vcc->vci; return copy_to_user(optval, &pvc, sizeof(pvc)) ? -EFAULT : 0; } default: if (level == SOL_SOCKET) return -EINVAL; break; } if (!vcc->dev || !vcc->dev->ops->getsockopt) return -EINVAL; return vcc->dev->ops->getsockopt(vcc, level, optname, optval, len); }
CWE-200
179,352
1,127
133848982303383403195265161712061518840
null
null
null
linux
9344a972961d1a6d2c04d9008b13617bcb6ec2ef
1
static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer) { struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; struct sock *sk = sock->sk; BT_DBG("sock %p, sk %p", sock, sk); sa->rc_family = AF_BLUETOOTH; sa->rc_channel = rfcomm_pi(sk)->channel; if (peer) bacpy(&sa->rc_bdaddr, &bt_sk(sk)->dst); else bacpy(&sa->rc_bdaddr, &bt_sk(sk)->src); *len = sizeof(struct sockaddr_rc); return 0; }
CWE-200
179,353
1,128
94097099797321759376102906975104746907
null
null
null
linux
e15ca9a0ef9a86f0477530b0f44a725d67f889ee
1
static int hci_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct hci_ufilter uf; struct sock *sk = sock->sk; int len, opt, err = 0; BT_DBG("sk %p, opt %d", sk, optname); if (get_user(len, optlen)) return -EFAULT; lock_sock(sk); if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { err = -EINVAL; goto done; } switch (optname) { case HCI_DATA_DIR: if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) opt = 1; else opt = 0; if (put_user(opt, optval)) err = -EFAULT; break; case HCI_TIME_STAMP: if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) opt = 1; else opt = 0; if (put_user(opt, optval)) err = -EFAULT; break; case HCI_FILTER: { struct hci_filter *f = &hci_pi(sk)->filter; uf.type_mask = f->type_mask; uf.opcode = f->opcode; uf.event_mask[0] = *((u32 *) f->event_mask + 0); uf.event_mask[1] = *((u32 *) f->event_mask + 1); } len = min_t(unsigned int, len, sizeof(uf)); if (copy_to_user(optval, &uf, len)) err = -EFAULT; break; default: err = -ENOPROTOOPT; break; } done: release_sock(sk); return err; }
CWE-200
179,354
1,129
274243474172140942840266275074793223211
null
null
null
linux
04d4fbca1017c11381e7d82acea21dd741e748bc
1
static int l2tp_ip6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sockaddr_l2tpip6 *lsa = (struct sockaddr_l2tpip6 *)uaddr; struct sock *sk = sock->sk; struct ipv6_pinfo *np = inet6_sk(sk); struct l2tp_ip6_sock *lsk = l2tp_ip6_sk(sk); lsa->l2tp_family = AF_INET6; lsa->l2tp_flowinfo = 0; lsa->l2tp_scope_id = 0; if (peer) { if (!lsk->peer_conn_id) return -ENOTCONN; lsa->l2tp_conn_id = lsk->peer_conn_id; lsa->l2tp_addr = np->daddr; if (np->sndflow) lsa->l2tp_flowinfo = np->flow_label; } else { if (ipv6_addr_any(&np->rcv_saddr)) lsa->l2tp_addr = np->saddr; else lsa->l2tp_addr = np->rcv_saddr; lsa->l2tp_conn_id = lsk->conn_id; } if (ipv6_addr_type(&lsa->l2tp_addr) & IPV6_ADDR_LINKLOCAL) lsa->l2tp_scope_id = sk->sk_bound_dev_if; *uaddr_len = sizeof(*lsa); return 0; }
CWE-200
179,355
1,130
85210193838679965766514615800467640408
null
null
null
linux
3592aaeb80290bda0f2cf0b5456c97bfc638b192
1
static int llc_ui_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddrlen, int peer) { struct sockaddr_llc sllc; struct sock *sk = sock->sk; struct llc_sock *llc = llc_sk(sk); int rc = 0; memset(&sllc, 0, sizeof(sllc)); lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) goto out; *uaddrlen = sizeof(sllc); memset(uaddr, 0, *uaddrlen); if (peer) { rc = -ENOTCONN; if (sk->sk_state != TCP_ESTABLISHED) goto out; if(llc->dev) sllc.sllc_arphrd = llc->dev->type; sllc.sllc_sap = llc->daddr.lsap; memcpy(&sllc.sllc_mac, &llc->daddr.mac, IFHWADDRLEN); } else { rc = -EINVAL; if (!llc->sap) goto out; sllc.sllc_sap = llc->sap->laddr.lsap; if (llc->dev) { sllc.sllc_arphrd = llc->dev->type; memcpy(&sllc.sllc_mac, llc->dev->dev_addr, IFHWADDRLEN); } } rc = 0; sllc.sllc_family = AF_LLC; memcpy(uaddr, &sllc, sizeof(sllc)); out: release_sock(sk); return rc; }
CWE-200
179,356
1,131
39906440321854088454720219629246777862
null
null
null
linux
7b07f8eb75aa3097cdfd4f6eac3da49db787381d
1
static int ccid3_hc_tx_getsockopt(struct sock *sk, const int optname, int len, u32 __user *optval, int __user *optlen) { const struct ccid3_hc_tx_sock *hc = ccid3_hc_tx_sk(sk); struct tfrc_tx_info tfrc; const void *val; switch (optname) { case DCCP_SOCKOPT_CCID_TX_INFO: if (len < sizeof(tfrc)) return -EINVAL; tfrc.tfrctx_x = hc->tx_x; tfrc.tfrctx_x_recv = hc->tx_x_recv; tfrc.tfrctx_x_calc = hc->tx_x_calc; tfrc.tfrctx_rtt = hc->tx_rtt; tfrc.tfrctx_p = hc->tx_p; tfrc.tfrctx_rto = hc->tx_t_rto; tfrc.tfrctx_ipi = hc->tx_t_ipi; len = sizeof(tfrc); val = &tfrc; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen) || copy_to_user(optval, val, len)) return -EFAULT; return 0; }
CWE-200
179,357
1,132
8536137024975475585022210917155420368
null
null
null
linux
2d8a041b7bfe1097af21441cb77d6af95f4f4680
1
do_ip_vs_get_ctl(struct sock *sk, int cmd, void __user *user, int *len) { unsigned char arg[128]; int ret = 0; unsigned int copylen; struct net *net = sock_net(sk); struct netns_ipvs *ipvs = net_ipvs(net); BUG_ON(!net); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (cmd < IP_VS_BASE_CTL || cmd > IP_VS_SO_GET_MAX) return -EINVAL; if (*len < get_arglen[GET_CMDID(cmd)]) { pr_err("get_ctl: len %u < %u\n", *len, get_arglen[GET_CMDID(cmd)]); return -EINVAL; } copylen = get_arglen[GET_CMDID(cmd)]; if (copylen > 128) return -EINVAL; if (copy_from_user(arg, user, copylen) != 0) return -EFAULT; /* * Handle daemons first since it has its own locking */ if (cmd == IP_VS_SO_GET_DAEMON) { struct ip_vs_daemon_user d[2]; memset(&d, 0, sizeof(d)); if (mutex_lock_interruptible(&ipvs->sync_mutex)) return -ERESTARTSYS; if (ipvs->sync_state & IP_VS_STATE_MASTER) { d[0].state = IP_VS_STATE_MASTER; strlcpy(d[0].mcast_ifn, ipvs->master_mcast_ifn, sizeof(d[0].mcast_ifn)); d[0].syncid = ipvs->master_syncid; } if (ipvs->sync_state & IP_VS_STATE_BACKUP) { d[1].state = IP_VS_STATE_BACKUP; strlcpy(d[1].mcast_ifn, ipvs->backup_mcast_ifn, sizeof(d[1].mcast_ifn)); d[1].syncid = ipvs->backup_syncid; } if (copy_to_user(user, &d, sizeof(d)) != 0) ret = -EFAULT; mutex_unlock(&ipvs->sync_mutex); return ret; } if (mutex_lock_interruptible(&__ip_vs_mutex)) return -ERESTARTSYS; switch (cmd) { case IP_VS_SO_GET_VERSION: { char buf[64]; sprintf(buf, "IP Virtual Server version %d.%d.%d (size=%d)", NVERSION(IP_VS_VERSION_CODE), ip_vs_conn_tab_size); if (copy_to_user(user, buf, strlen(buf)+1) != 0) { ret = -EFAULT; goto out; } *len = strlen(buf)+1; } break; case IP_VS_SO_GET_INFO: { struct ip_vs_getinfo info; info.version = IP_VS_VERSION_CODE; info.size = ip_vs_conn_tab_size; info.num_services = ipvs->num_services; if (copy_to_user(user, &info, sizeof(info)) != 0) ret = -EFAULT; } break; case IP_VS_SO_GET_SERVICES: { struct ip_vs_get_services *get; int size; get = (struct ip_vs_get_services *)arg; size = sizeof(*get) + sizeof(struct ip_vs_service_entry) * get->num_services; if (*len != size) { pr_err("length: %u != %u\n", *len, size); ret = -EINVAL; goto out; } ret = __ip_vs_get_service_entries(net, get, user); } break; case IP_VS_SO_GET_SERVICE: { struct ip_vs_service_entry *entry; struct ip_vs_service *svc; union nf_inet_addr addr; entry = (struct ip_vs_service_entry *)arg; addr.ip = entry->addr; if (entry->fwmark) svc = __ip_vs_svc_fwm_find(net, AF_INET, entry->fwmark); else svc = __ip_vs_service_find(net, AF_INET, entry->protocol, &addr, entry->port); if (svc) { ip_vs_copy_service(entry, svc); if (copy_to_user(user, entry, sizeof(*entry)) != 0) ret = -EFAULT; } else ret = -ESRCH; } break; case IP_VS_SO_GET_DESTS: { struct ip_vs_get_dests *get; int size; get = (struct ip_vs_get_dests *)arg; size = sizeof(*get) + sizeof(struct ip_vs_dest_entry) * get->num_dests; if (*len != size) { pr_err("length: %u != %u\n", *len, size); ret = -EINVAL; goto out; } ret = __ip_vs_get_dest_entries(net, get, user); } break; case IP_VS_SO_GET_TIMEOUT: { struct ip_vs_timeout_user t; __ip_vs_get_timeouts(net, &t); if (copy_to_user(user, &t, sizeof(t)) != 0) ret = -EFAULT; } break; default: ret = -EINVAL; } out: mutex_unlock(&__ip_vs_mutex); return ret; }
CWE-200
179,358
1,133
267941661112975051742367659362771086875
null
null
null
linux
f778a636713a435d3a922c60b1622a91136560c1
1
static void copy_to_user_state(struct xfrm_state *x, struct xfrm_usersa_info *p) { memcpy(&p->id, &x->id, sizeof(p->id)); memcpy(&p->sel, &x->sel, sizeof(p->sel)); memcpy(&p->lft, &x->lft, sizeof(p->lft)); memcpy(&p->curlft, &x->curlft, sizeof(p->curlft)); memcpy(&p->stats, &x->stats, sizeof(p->stats)); memcpy(&p->saddr, &x->props.saddr, sizeof(p->saddr)); p->mode = x->props.mode; p->replay_window = x->props.replay_window; p->reqid = x->props.reqid; p->family = x->props.family; p->flags = x->props.flags; p->seq = x->km.seq; }
CWE-200
179,361
1,134
144112786017541915774880277836606119070
null
null
null
linux
b66c5984017533316fd1951770302649baf1aa33
1
static int load_script(struct linux_binprm *bprm) { const char *i_arg, *i_name; char *cp; struct file *file; char interp[BINPRM_BUF_SIZE]; int retval; if ((bprm->buf[0] != '#') || (bprm->buf[1] != '!')) return -ENOEXEC; /* * This section does the #! interpretation. * Sorta complicated, but hopefully it will work. -TYT */ allow_write_access(bprm->file); fput(bprm->file); bprm->file = NULL; bprm->buf[BINPRM_BUF_SIZE - 1] = '\0'; if ((cp = strchr(bprm->buf, '\n')) == NULL) cp = bprm->buf+BINPRM_BUF_SIZE-1; *cp = '\0'; while (cp > bprm->buf) { cp--; if ((*cp == ' ') || (*cp == '\t')) *cp = '\0'; else break; } for (cp = bprm->buf+2; (*cp == ' ') || (*cp == '\t'); cp++); if (*cp == '\0') return -ENOEXEC; /* No interpreter name found */ i_name = cp; i_arg = NULL; for ( ; *cp && (*cp != ' ') && (*cp != '\t'); cp++) /* nothing */ ; while ((*cp == ' ') || (*cp == '\t')) *cp++ = '\0'; if (*cp) i_arg = cp; strcpy (interp, i_name); /* * OK, we've parsed out the interpreter name and * (optional) argument. * Splice in (1) the interpreter's name for argv[0] * (2) (optional) argument to interpreter * (3) filename of shell script (replace argv[0]) * * This is done in reverse order, because of how the * user environment and arguments are stored. */ retval = remove_arg_zero(bprm); if (retval) return retval; retval = copy_strings_kernel(1, &bprm->interp, bprm); if (retval < 0) return retval; bprm->argc++; if (i_arg) { retval = copy_strings_kernel(1, &i_arg, bprm); if (retval < 0) return retval; bprm->argc++; } retval = copy_strings_kernel(1, &i_name, bprm); if (retval) return retval; bprm->argc++; bprm->interp = interp; /* * OK, now restart the process with the interpreter's dentry. */ file = open_exec(interp); if (IS_ERR(file)) return PTR_ERR(file); bprm->file = file; retval = prepare_binprm(bprm); if (retval < 0) return retval; return search_binary_handler(bprm); }
CWE-200
179,370
1,142
328383916190717074167517185933046956222
null
null
null
krb5
db64ca25d661a47b996b4e2645998b5d7f0eb52c
1
pkinit_server_return_padata(krb5_context context, krb5_pa_data * padata, krb5_data *req_pkt, krb5_kdc_req * request, krb5_kdc_rep * reply, krb5_keyblock * encrypting_key, krb5_pa_data ** send_pa, krb5_kdcpreauth_callbacks cb, krb5_kdcpreauth_rock rock, krb5_kdcpreauth_moddata moddata, krb5_kdcpreauth_modreq modreq) { krb5_error_code retval = 0; krb5_data scratch = {0, 0, NULL}; krb5_pa_pk_as_req *reqp = NULL; krb5_pa_pk_as_req_draft9 *reqp9 = NULL; int i = 0; unsigned char *subjectPublicKey = NULL; unsigned char *dh_pubkey = NULL, *server_key = NULL; unsigned int subjectPublicKey_len = 0; unsigned int server_key_len = 0, dh_pubkey_len = 0; krb5_kdc_dh_key_info dhkey_info; krb5_data *encoded_dhkey_info = NULL; krb5_pa_pk_as_rep *rep = NULL; krb5_pa_pk_as_rep_draft9 *rep9 = NULL; krb5_data *out_data = NULL; krb5_octet_data secret; krb5_enctype enctype = -1; krb5_reply_key_pack *key_pack = NULL; krb5_reply_key_pack_draft9 *key_pack9 = NULL; krb5_data *encoded_key_pack = NULL; pkinit_kdc_context plgctx; pkinit_kdc_req_context reqctx; int fixed_keypack = 0; *send_pa = NULL; if (padata->pa_type == KRB5_PADATA_PKINIT_KX) { return return_pkinit_kx(context, request, reply, encrypting_key, send_pa); } if (padata->length <= 0 || padata->contents == NULL) return 0; if (modreq == NULL) { pkiDebug("missing request context \n"); return EINVAL; } plgctx = pkinit_find_realm_context(context, moddata, request->server); if (plgctx == NULL) { pkiDebug("Unable to locate correct realm context\n"); return ENOENT; } pkiDebug("pkinit_return_padata: entered!\n"); reqctx = (pkinit_kdc_req_context)modreq; if (encrypting_key->contents) { free(encrypting_key->contents); encrypting_key->length = 0; encrypting_key->contents = NULL; } for(i = 0; i < request->nktypes; i++) { enctype = request->ktype[i]; if (!krb5_c_valid_enctype(enctype)) continue; else { pkiDebug("KDC picked etype = %d\n", enctype); break; } } if (i == request->nktypes) { retval = KRB5KDC_ERR_ETYPE_NOSUPP; goto cleanup; } switch((int)reqctx->pa_type) { case KRB5_PADATA_PK_AS_REQ: init_krb5_pa_pk_as_rep(&rep); if (rep == NULL) { retval = ENOMEM; goto cleanup; } /* let's assume it's RSA. we'll reset it to DH if needed */ rep->choice = choice_pa_pk_as_rep_encKeyPack; break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: init_krb5_pa_pk_as_rep_draft9(&rep9); if (rep9 == NULL) { retval = ENOMEM; goto cleanup; } rep9->choice = choice_pa_pk_as_rep_draft9_encKeyPack; break; default: retval = KRB5KDC_ERR_PREAUTH_FAILED; goto cleanup; } if (reqctx->rcv_auth_pack != NULL && reqctx->rcv_auth_pack->clientPublicValue != NULL) { subjectPublicKey = reqctx->rcv_auth_pack->clientPublicValue->subjectPublicKey.data; subjectPublicKey_len = reqctx->rcv_auth_pack->clientPublicValue->subjectPublicKey.length; rep->choice = choice_pa_pk_as_rep_dhInfo; } else if (reqctx->rcv_auth_pack9 != NULL && reqctx->rcv_auth_pack9->clientPublicValue != NULL) { subjectPublicKey = reqctx->rcv_auth_pack9->clientPublicValue->subjectPublicKey.data; subjectPublicKey_len = reqctx->rcv_auth_pack9->clientPublicValue->subjectPublicKey.length; rep9->choice = choice_pa_pk_as_rep_draft9_dhSignedData; } /* if this DH, then process finish computing DH key */ if (rep != NULL && (rep->choice == choice_pa_pk_as_rep_dhInfo || rep->choice == choice_pa_pk_as_rep_draft9_dhSignedData)) { pkiDebug("received DH key delivery AS REQ\n"); retval = server_process_dh(context, plgctx->cryptoctx, reqctx->cryptoctx, plgctx->idctx, subjectPublicKey, subjectPublicKey_len, &dh_pubkey, &dh_pubkey_len, &server_key, &server_key_len); if (retval) { pkiDebug("failed to process/create dh paramters\n"); goto cleanup; } } if ((rep9 != NULL && rep9->choice == choice_pa_pk_as_rep_draft9_dhSignedData) || (rep != NULL && rep->choice == choice_pa_pk_as_rep_dhInfo)) { /* * This is DH, so don't generate the key until after we * encode the reply, because the encoded reply is needed * to generate the key in some cases. */ dhkey_info.subjectPublicKey.length = dh_pubkey_len; dhkey_info.subjectPublicKey.data = dh_pubkey; dhkey_info.nonce = request->nonce; dhkey_info.dhKeyExpiration = 0; retval = k5int_encode_krb5_kdc_dh_key_info(&dhkey_info, &encoded_dhkey_info); if (retval) { pkiDebug("encode_krb5_kdc_dh_key_info failed\n"); goto cleanup; } #ifdef DEBUG_ASN1 print_buffer_bin((unsigned char *)encoded_dhkey_info->data, encoded_dhkey_info->length, "/tmp/kdc_dh_key_info"); #endif switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: retval = cms_signeddata_create(context, plgctx->cryptoctx, reqctx->cryptoctx, plgctx->idctx, CMS_SIGN_SERVER, 1, (unsigned char *)encoded_dhkey_info->data, encoded_dhkey_info->length, &rep->u.dh_Info.dhSignedData.data, &rep->u.dh_Info.dhSignedData.length); if (retval) { pkiDebug("failed to create pkcs7 signed data\n"); goto cleanup; } break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: retval = cms_signeddata_create(context, plgctx->cryptoctx, reqctx->cryptoctx, plgctx->idctx, CMS_SIGN_DRAFT9, 1, (unsigned char *)encoded_dhkey_info->data, encoded_dhkey_info->length, &rep9->u.dhSignedData.data, &rep9->u.dhSignedData.length); if (retval) { pkiDebug("failed to create pkcs7 signed data\n"); goto cleanup; } break; } } else { pkiDebug("received RSA key delivery AS REQ\n"); retval = krb5_c_make_random_key(context, enctype, encrypting_key); if (retval) { pkiDebug("unable to make a session key\n"); goto cleanup; } /* check if PA_TYPE of 132 is present which means the client is * requesting that a checksum is send back instead of the nonce */ for (i = 0; request->padata[i] != NULL; i++) { pkiDebug("%s: Checking pa_type 0x%08x\n", __FUNCTION__, request->padata[i]->pa_type); if (request->padata[i]->pa_type == 132) fixed_keypack = 1; } pkiDebug("%s: return checksum instead of nonce = %d\n", __FUNCTION__, fixed_keypack); /* if this is an RFC reply or draft9 client requested a checksum * in the reply instead of the nonce, create an RFC-style keypack */ if ((int)padata->pa_type == KRB5_PADATA_PK_AS_REQ || fixed_keypack) { init_krb5_reply_key_pack(&key_pack); if (key_pack == NULL) { retval = ENOMEM; goto cleanup; } retval = krb5_c_make_checksum(context, 0, encrypting_key, KRB5_KEYUSAGE_TGS_REQ_AUTH_CKSUM, req_pkt, &key_pack->asChecksum); if (retval) { pkiDebug("unable to calculate AS REQ checksum\n"); goto cleanup; } #ifdef DEBUG_CKSUM pkiDebug("calculating checksum on buf size = %d\n", req_pkt->length); print_buffer(req_pkt->data, req_pkt->length); pkiDebug("checksum size = %d\n", key_pack->asChecksum.length); print_buffer(key_pack->asChecksum.contents, key_pack->asChecksum.length); pkiDebug("encrypting key (%d)\n", encrypting_key->length); print_buffer(encrypting_key->contents, encrypting_key->length); #endif krb5_copy_keyblock_contents(context, encrypting_key, &key_pack->replyKey); retval = k5int_encode_krb5_reply_key_pack(key_pack, &encoded_key_pack); if (retval) { pkiDebug("failed to encode reply_key_pack\n"); goto cleanup; } } switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: rep->choice = choice_pa_pk_as_rep_encKeyPack; retval = cms_envelopeddata_create(context, plgctx->cryptoctx, reqctx->cryptoctx, plgctx->idctx, padata->pa_type, 1, (unsigned char *)encoded_key_pack->data, encoded_key_pack->length, &rep->u.encKeyPack.data, &rep->u.encKeyPack.length); break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: /* if the request is from the broken draft9 client that * expects back a nonce, create it now */ if (!fixed_keypack) { init_krb5_reply_key_pack_draft9(&key_pack9); if (key_pack9 == NULL) { retval = ENOMEM; goto cleanup; } key_pack9->nonce = reqctx->rcv_auth_pack9->pkAuthenticator.nonce; krb5_copy_keyblock_contents(context, encrypting_key, &key_pack9->replyKey); retval = k5int_encode_krb5_reply_key_pack_draft9(key_pack9, &encoded_key_pack); if (retval) { pkiDebug("failed to encode reply_key_pack\n"); goto cleanup; } } rep9->choice = choice_pa_pk_as_rep_draft9_encKeyPack; retval = cms_envelopeddata_create(context, plgctx->cryptoctx, reqctx->cryptoctx, plgctx->idctx, padata->pa_type, 1, (unsigned char *)encoded_key_pack->data, encoded_key_pack->length, &rep9->u.encKeyPack.data, &rep9->u.encKeyPack.length); break; } if (retval) { pkiDebug("failed to create pkcs7 enveloped data: %s\n", error_message(retval)); goto cleanup; } #ifdef DEBUG_ASN1 print_buffer_bin((unsigned char *)encoded_key_pack->data, encoded_key_pack->length, "/tmp/kdc_key_pack"); switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: print_buffer_bin(rep->u.encKeyPack.data, rep->u.encKeyPack.length, "/tmp/kdc_enc_key_pack"); break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: print_buffer_bin(rep9->u.encKeyPack.data, rep9->u.encKeyPack.length, "/tmp/kdc_enc_key_pack"); break; } #endif } if ((rep != NULL && rep->choice == choice_pa_pk_as_rep_dhInfo) && ((reqctx->rcv_auth_pack != NULL && reqctx->rcv_auth_pack->supportedKDFs != NULL))) { /* If using the alg-agility KDF, put the algorithm in the reply * before encoding it. */ if (reqctx->rcv_auth_pack != NULL && reqctx->rcv_auth_pack->supportedKDFs != NULL) { retval = pkinit_pick_kdf_alg(context, reqctx->rcv_auth_pack->supportedKDFs, &(rep->u.dh_Info.kdfID)); if (retval) { pkiDebug("pkinit_pick_kdf_alg failed: %s\n", error_message(retval)); goto cleanup; } } } switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: retval = k5int_encode_krb5_pa_pk_as_rep(rep, &out_data); break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: retval = k5int_encode_krb5_pa_pk_as_rep_draft9(rep9, &out_data); break; } if (retval) { pkiDebug("failed to encode AS_REP\n"); goto cleanup; } #ifdef DEBUG_ASN1 if (out_data != NULL) print_buffer_bin((unsigned char *)out_data->data, out_data->length, "/tmp/kdc_as_rep"); #endif /* If this is DH, we haven't computed the key yet, so do it now. */ if ((rep9 != NULL && rep9->choice == choice_pa_pk_as_rep_draft9_dhSignedData) || (rep != NULL && rep->choice == choice_pa_pk_as_rep_dhInfo)) { /* If mutually supported KDFs were found, use the alg agility KDF */ if (rep->u.dh_Info.kdfID) { secret.data = server_key; secret.length = server_key_len; retval = pkinit_alg_agility_kdf(context, &secret, rep->u.dh_Info.kdfID, request->client, request->server, enctype, (krb5_octet_data *)req_pkt, (krb5_octet_data *)out_data, encrypting_key); if (retval) { pkiDebug("pkinit_alg_agility_kdf failed: %s\n", error_message(retval)); goto cleanup; } /* Otherwise, use the older octetstring2key() function */ } else { retval = pkinit_octetstring2key(context, enctype, server_key, server_key_len, encrypting_key); if (retval) { pkiDebug("pkinit_octetstring2key failed: %s\n", error_message(retval)); goto cleanup; } } } *send_pa = malloc(sizeof(krb5_pa_data)); if (*send_pa == NULL) { retval = ENOMEM; free(out_data->data); free(out_data); out_data = NULL; goto cleanup; } (*send_pa)->magic = KV5M_PA_DATA; switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: (*send_pa)->pa_type = KRB5_PADATA_PK_AS_REP; break; case KRB5_PADATA_PK_AS_REQ_OLD: case KRB5_PADATA_PK_AS_REP_OLD: (*send_pa)->pa_type = KRB5_PADATA_PK_AS_REP_OLD; break; } (*send_pa)->length = out_data->length; (*send_pa)->contents = (krb5_octet *) out_data->data; cleanup: pkinit_fini_kdc_req_context(context, reqctx); free(scratch.data); free(out_data); if (encoded_dhkey_info != NULL) krb5_free_data(context, encoded_dhkey_info); if (encoded_key_pack != NULL) krb5_free_data(context, encoded_key_pack); free(dh_pubkey); free(server_key); switch ((int)padata->pa_type) { case KRB5_PADATA_PK_AS_REQ: free_krb5_pa_pk_as_req(&reqp); free_krb5_pa_pk_as_rep(&rep); free_krb5_reply_key_pack(&key_pack); break; case KRB5_PADATA_PK_AS_REP_OLD: case KRB5_PADATA_PK_AS_REQ_OLD: free_krb5_pa_pk_as_req_draft9(&reqp9); free_krb5_pa_pk_as_rep_draft9(&rep9); if (!fixed_keypack) free_krb5_reply_key_pack_draft9(&key_pack9); else free_krb5_reply_key_pack(&key_pack); break; } if (retval) pkiDebug("pkinit_verify_padata failure"); return retval; }
179,378
1,150
76503992088312027840262291132360097655
null
null
null
linux
b5a1eeef04cc7859f34dec9b72ea1b28e4aba07c
1
static ssize_t bat_socket_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct socket_client *socket_client = file->private_data; struct socket_packet *socket_packet; size_t packet_len; int error; if ((file->f_flags & O_NONBLOCK) && (socket_client->queue_len == 0)) return -EAGAIN; if ((!buf) || (count < sizeof(struct icmp_packet))) return -EINVAL; if (!access_ok(VERIFY_WRITE, buf, count)) return -EFAULT; error = wait_event_interruptible(socket_client->queue_wait, socket_client->queue_len); if (error) return error; spin_lock_bh(&socket_client->lock); socket_packet = list_first_entry(&socket_client->queue_list, struct socket_packet, list); list_del(&socket_packet->list); socket_client->queue_len--; spin_unlock_bh(&socket_client->lock); error = copy_to_user(buf, &socket_packet->icmp_packet, socket_packet->icmp_len); packet_len = socket_packet->icmp_len; kfree(socket_packet); if (error) return -EFAULT; return packet_len; }
CWE-119
179,379
1,151
85869577016758360857678073749575889128
null
null
null
linux
ae53b5bd77719fed58086c5be60ce4f22bffe1c6
1
int sctp_rcv(struct sk_buff *skb) { struct sock *sk; struct sctp_association *asoc; struct sctp_endpoint *ep = NULL; struct sctp_ep_common *rcvr; struct sctp_transport *transport = NULL; struct sctp_chunk *chunk; struct sctphdr *sh; union sctp_addr src; union sctp_addr dest; int family; struct sctp_af *af; if (skb->pkt_type!=PACKET_HOST) goto discard_it; SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS); if (skb_linearize(skb)) goto discard_it; sh = sctp_hdr(skb); /* Pull up the IP and SCTP headers. */ __skb_pull(skb, skb_transport_offset(skb)); if (skb->len < sizeof(struct sctphdr)) goto discard_it; if (!skb_csum_unnecessary(skb) && sctp_rcv_checksum(skb) < 0) goto discard_it; skb_pull(skb, sizeof(struct sctphdr)); /* Make sure we at least have chunk headers worth of data left. */ if (skb->len < sizeof(struct sctp_chunkhdr)) goto discard_it; family = ipver2af(ip_hdr(skb)->version); af = sctp_get_af_specific(family); if (unlikely(!af)) goto discard_it; /* Initialize local addresses for lookups. */ af->from_skb(&src, skb, 1); af->from_skb(&dest, skb, 0); /* If the packet is to or from a non-unicast address, * silently discard the packet. * * This is not clearly defined in the RFC except in section * 8.4 - OOTB handling. However, based on the book "Stream Control * Transmission Protocol" 2.1, "It is important to note that the * IP address of an SCTP transport address must be a routable * unicast address. In other words, IP multicast addresses and * IP broadcast addresses cannot be used in an SCTP transport * address." */ if (!af->addr_valid(&src, NULL, skb) || !af->addr_valid(&dest, NULL, skb)) goto discard_it; asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport); if (!asoc) ep = __sctp_rcv_lookup_endpoint(&dest); /* Retrieve the common input handling substructure. */ rcvr = asoc ? &asoc->base : &ep->base; sk = rcvr->sk; /* * If a frame arrives on an interface and the receiving socket is * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB */ if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) { if (asoc) { sctp_association_put(asoc); asoc = NULL; } else { sctp_endpoint_put(ep); ep = NULL; } sk = sctp_get_ctl_sock(); ep = sctp_sk(sk)->ep; sctp_endpoint_hold(ep); rcvr = &ep->base; } /* * RFC 2960, 8.4 - Handle "Out of the blue" Packets. * An SCTP packet is called an "out of the blue" (OOTB) * packet if it is correctly formed, i.e., passed the * receiver's checksum check, but the receiver is not * able to identify the association to which this * packet belongs. */ if (!asoc) { if (sctp_rcv_ootb(skb)) { SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES); goto discard_release; } } if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) goto discard_release; nf_reset(skb); if (sk_filter(sk, skb)) goto discard_release; /* Create an SCTP packet structure. */ chunk = sctp_chunkify(skb, asoc, sk); if (!chunk) goto discard_release; SCTP_INPUT_CB(skb)->chunk = chunk; /* Remember what endpoint is to handle this packet. */ chunk->rcvr = rcvr; /* Remember the SCTP header. */ chunk->sctp_hdr = sh; /* Set the source and destination addresses of the incoming chunk. */ sctp_init_addrs(chunk, &src, &dest); /* Remember where we came from. */ chunk->transport = transport; /* Acquire access to the sock lock. Note: We are safe from other * bottom halves on this lock, but a user may be in the lock too, * so check if it is busy. */ sctp_bh_lock_sock(sk); if (sock_owned_by_user(sk)) { SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_BACKLOG); sctp_add_backlog(sk, skb); } else { SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_SOFTIRQ); sctp_inq_push(&chunk->rcvr->inqueue, chunk); } sctp_bh_unlock_sock(sk); /* Release the asoc/ep ref we took in the lookup calls. */ if (asoc) sctp_association_put(asoc); else sctp_endpoint_put(ep); return 0; discard_it: SCTP_INC_STATS_BH(SCTP_MIB_IN_PKT_DISCARDS); kfree_skb(skb); return 0; discard_release: /* Release the asoc/ep ref we took in the lookup calls. */ if (asoc) sctp_association_put(asoc); else sctp_endpoint_put(ep); goto discard_it; }
CWE-362
179,380
1,152
173020335186799730748611767119463332665
null
null
null
linux
c4e7f9022e506c6635a5037713c37118e23193e4
1
static int kvm_vm_ioctl_assign_device(struct kvm *kvm, struct kvm_assigned_pci_dev *assigned_dev) { int r = 0, idx; struct kvm_assigned_dev_kernel *match; struct pci_dev *dev; if (!(assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)) return -EINVAL; mutex_lock(&kvm->lock); idx = srcu_read_lock(&kvm->srcu); match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head, assigned_dev->assigned_dev_id); if (match) { /* device already assigned */ r = -EEXIST; goto out; } match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL); if (match == NULL) { printk(KERN_INFO "%s: Couldn't allocate memory\n", __func__); r = -ENOMEM; goto out; } dev = pci_get_domain_bus_and_slot(assigned_dev->segnr, assigned_dev->busnr, assigned_dev->devfn); if (!dev) { printk(KERN_INFO "%s: host device not found\n", __func__); r = -EINVAL; goto out_free; } if (pci_enable_device(dev)) { printk(KERN_INFO "%s: Could not enable PCI device\n", __func__); r = -EBUSY; goto out_put; } r = pci_request_regions(dev, "kvm_assigned_device"); if (r) { printk(KERN_INFO "%s: Could not get access to device regions\n", __func__); goto out_disable; } pci_reset_function(dev); pci_save_state(dev); match->pci_saved_state = pci_store_saved_state(dev); if (!match->pci_saved_state) printk(KERN_DEBUG "%s: Couldn't store %s saved state\n", __func__, dev_name(&dev->dev)); match->assigned_dev_id = assigned_dev->assigned_dev_id; match->host_segnr = assigned_dev->segnr; match->host_busnr = assigned_dev->busnr; match->host_devfn = assigned_dev->devfn; match->flags = assigned_dev->flags; match->dev = dev; spin_lock_init(&match->intx_lock); match->irq_source_id = -1; match->kvm = kvm; match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq; list_add(&match->list, &kvm->arch.assigned_dev_head); if (!kvm->arch.iommu_domain) { r = kvm_iommu_map_guest(kvm); if (r) goto out_list_del; } r = kvm_assign_device(kvm, match); if (r) goto out_list_del; out: srcu_read_unlock(&kvm->srcu, idx); mutex_unlock(&kvm->lock); return r; out_list_del: if (pci_load_and_free_saved_state(dev, &match->pci_saved_state)) printk(KERN_INFO "%s: Couldn't reload %s saved state\n", __func__, dev_name(&dev->dev)); list_del(&match->list); pci_release_regions(dev); out_disable: pci_disable_device(dev); out_put: pci_dev_put(dev); out_free: kfree(match); srcu_read_unlock(&kvm->srcu, idx); mutex_unlock(&kvm->lock); return r; }
CWE-264
179,381
1,153
272600557570379830235938521554631335981
null
null
null
linux
f8e9881c2aef1e982e5abc25c046820cd0b7cf64
1
static int br_parse_ip_options(struct sk_buff *skb) { struct ip_options *opt; struct iphdr *iph; struct net_device *dev = skb->dev; u32 len; iph = ip_hdr(skb); opt = &(IPCB(skb)->opt); /* Basic sanity checks */ if (iph->ihl < 5 || iph->version != 4) goto inhdr_error; if (!pskb_may_pull(skb, iph->ihl*4)) goto inhdr_error; iph = ip_hdr(skb); if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) goto inhdr_error; len = ntohs(iph->tot_len); if (skb->len < len) { IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS); goto drop; } else if (len < (iph->ihl*4)) goto inhdr_error; if (pskb_trim_rcsum(skb, len)) { IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS); goto drop; } /* Zero out the CB buffer if no options present */ if (iph->ihl == 5) { memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); return 0; } opt->optlen = iph->ihl*4 - sizeof(struct iphdr); if (ip_options_compile(dev_net(dev), opt, skb)) goto inhdr_error; /* Check correct handling of SRR option */ if (unlikely(opt->srr)) { struct in_device *in_dev = __in_dev_get_rcu(dev); if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev)) goto drop; if (ip_options_rcv_srr(skb)) goto drop; } return 0; inhdr_error: IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS); drop: return -1; }
CWE-399
179,388
1,160
126955592485195450458871228478571792967
null
null
null
linux
a5b2c5b2ad5853591a6cac6134cd0f599a720865
1
static int apparmor_setprocattr(struct task_struct *task, char *name, void *value, size_t size) { char *command, *args = value; size_t arg_size; int error; if (size == 0) return -EINVAL; /* args points to a PAGE_SIZE buffer, AppArmor requires that * the buffer must be null terminated or have size <= PAGE_SIZE -1 * so that AppArmor can null terminate them */ if (args[size - 1] != '\0') { if (size == PAGE_SIZE) return -EINVAL; args[size] = '\0'; } /* task can only write its own attributes */ if (current != task) return -EACCES; args = value; args = strim(args); command = strsep(&args, " "); if (!args) return -EINVAL; args = skip_spaces(args); if (!*args) return -EINVAL; arg_size = size - (args - (char *) value); if (strcmp(name, "current") == 0) { if (strcmp(command, "changehat") == 0) { error = aa_setprocattr_changehat(args, arg_size, !AA_DO_TEST); } else if (strcmp(command, "permhat") == 0) { error = aa_setprocattr_changehat(args, arg_size, AA_DO_TEST); } else if (strcmp(command, "changeprofile") == 0) { error = aa_setprocattr_changeprofile(args, !AA_ONEXEC, !AA_DO_TEST); } else if (strcmp(command, "permprofile") == 0) { error = aa_setprocattr_changeprofile(args, !AA_ONEXEC, AA_DO_TEST); } else if (strcmp(command, "permipc") == 0) { error = aa_setprocattr_permipc(args); } else { struct common_audit_data sa; COMMON_AUDIT_DATA_INIT(&sa, NONE); sa.aad.op = OP_SETPROCATTR; sa.aad.info = name; sa.aad.error = -EINVAL; return aa_audit(AUDIT_APPARMOR_DENIED, NULL, GFP_KERNEL, &sa, NULL); } } else if (strcmp(name, "exec") == 0) { error = aa_setprocattr_changeprofile(args, AA_ONEXEC, !AA_DO_TEST); } else { /* only support the "current" and "exec" process attributes */ return -EINVAL; } if (!error) error = size; return error; }
CWE-20
179,391
1,163
198478101125261503167728423542978062883
null
null
null
linux
aba8d056078e47350d85b06a9cabd5afcc4b72ea
1
int perf_config(config_fn_t fn, void *data) { int ret = 0, found = 0; char *repo_config = NULL; const char *home = NULL; /* Setting $PERF_CONFIG makes perf read _only_ the given config file. */ if (config_exclusive_filename) return perf_config_from_file(fn, config_exclusive_filename, data); if (perf_config_system() && !access(perf_etc_perfconfig(), R_OK)) { ret += perf_config_from_file(fn, perf_etc_perfconfig(), data); found += 1; } home = getenv("HOME"); if (perf_config_global() && home) { char *user_config = strdup(mkpath("%s/.perfconfig", home)); if (!access(user_config, R_OK)) { ret += perf_config_from_file(fn, user_config, data); found += 1; } free(user_config); } repo_config = perf_pathdup("config"); if (!access(repo_config, R_OK)) { ret += perf_config_from_file(fn, repo_config, data); found += 1; } free(repo_config); if (found == 0) return -1; return ret; }
179,392
1,164
291567066678415769190519908516115264132
null
null
null
linux
ea2bc483ff5caada7c4aa0d5fbf87d3a6590273d
1
static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, sctp_socket_type_t type) { struct sctp_sock *oldsp = sctp_sk(oldsk); struct sctp_sock *newsp = sctp_sk(newsk); struct sctp_bind_bucket *pp; /* hash list port iterator */ struct sctp_endpoint *newep = newsp->ep; struct sk_buff *skb, *tmp; struct sctp_ulpevent *event; int flags = 0; /* Migrate socket buffer sizes and all the socket level options to the * new socket. */ newsk->sk_sndbuf = oldsk->sk_sndbuf; newsk->sk_rcvbuf = oldsk->sk_rcvbuf; /* Brute force copy old sctp opt. */ inet_sk_copy_descendant(newsk, oldsk); /* Restore the ep value that was overwritten with the above structure * copy. */ newsp->ep = newep; newsp->hmac = NULL; /* Hook this new socket in to the bind_hash list. */ pp = sctp_sk(oldsk)->bind_hash; sk_add_bind_node(newsk, &pp->owner); sctp_sk(newsk)->bind_hash = pp; inet_sk(newsk)->num = inet_sk(oldsk)->num; /* Copy the bind_addr list from the original endpoint to the new * endpoint so that we can handle restarts properly */ if (PF_INET6 == assoc->base.sk->sk_family) flags = SCTP_ADDR6_ALLOWED; if (assoc->peer.ipv4_address) flags |= SCTP_ADDR4_PEERSUPP; if (assoc->peer.ipv6_address) flags |= SCTP_ADDR6_PEERSUPP; sctp_bind_addr_copy(&newsp->ep->base.bind_addr, &oldsp->ep->base.bind_addr, SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); /* Move any messages in the old socket's receive queue that are for the * peeled off association to the new socket's receive queue. */ sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { sctp_sock_rfree(skb); __skb_unlink(skb, &oldsk->sk_receive_queue); __skb_queue_tail(&newsk->sk_receive_queue, skb); sctp_skb_set_owner_r(skb, newsk); } } /* Clean up any messages pending delivery due to partial * delivery. Three cases: * 1) No partial deliver; no work. * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. */ skb_queue_head_init(&newsp->pd_lobby); sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; if (sctp_sk(oldsk)->pd_mode) { struct sk_buff_head *queue; /* Decide which queue to move pd_lobby skbs to. */ if (assoc->ulpq.pd_mode) { queue = &newsp->pd_lobby; } else queue = &newsk->sk_receive_queue; /* Walk through the pd_lobby, looking for skbs that * need moved to the new socket. */ sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { sctp_sock_rfree(skb); __skb_unlink(skb, &oldsp->pd_lobby); __skb_queue_tail(queue, skb); sctp_skb_set_owner_r(skb, newsk); } } /* Clear up any skbs waiting for the partial * delivery to finish. */ if (assoc->ulpq.pd_mode) sctp_clear_pd(oldsk); } /* Set the type of socket to indicate that it is peeled off from the * original UDP-style socket or created with the accept() call on a * TCP-style socket.. */ newsp->type = type; /* Mark the new socket "in-use" by the user so that any packets * that may arrive on the association after we've moved it are * queued to the backlog. This prevents a potential race between * backlog processing on the old socket and new-packet processing * on the new socket. */ sctp_lock_sock(newsk); sctp_assoc_migrate(assoc, newsk); /* If the association on the newsk is already closed before accept() * is called, set RCV_SHUTDOWN flag. */ if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) newsk->sk_shutdown |= RCV_SHUTDOWN; newsk->sk_state = SCTP_SS_ESTABLISHED; sctp_release_sock(newsk); }
179,396
1,167
245295386150735555711105037144149537552
null
null
null
linux
4ff67b720c02c36e54d55b88c2931879b7db1cd2
1
cifs_find_smb_ses(struct TCP_Server_Info *server, char *username) { struct list_head *tmp; struct cifsSesInfo *ses; write_lock(&cifs_tcp_ses_lock); list_for_each(tmp, &server->smb_ses_list) { ses = list_entry(tmp, struct cifsSesInfo, smb_ses_list); if (strncmp(ses->userName, username, MAX_USERNAME_SIZE)) continue; ++ses->ses_count; write_unlock(&cifs_tcp_ses_lock); return ses; } write_unlock(&cifs_tcp_ses_lock); return NULL; }
CWE-264
179,401
1,172
174415870851944486620971874274594890925
null
null
null
linux
d370af0ef7951188daeb15bae75db7ba57c67846
1
static void iriap_getvaluebyclass_indication(struct iriap_cb *self, struct sk_buff *skb) { struct ias_object *obj; struct ias_attrib *attrib; int name_len; int attr_len; char name[IAS_MAX_CLASSNAME + 1]; /* 60 bytes */ char attr[IAS_MAX_ATTRIBNAME + 1]; /* 60 bytes */ __u8 *fp; int n; IRDA_DEBUG(4, "%s()\n", __func__); IRDA_ASSERT(self != NULL, return;); IRDA_ASSERT(self->magic == IAS_MAGIC, return;); IRDA_ASSERT(skb != NULL, return;); fp = skb->data; n = 1; name_len = fp[n++]; memcpy(name, fp+n, name_len); n+=name_len; name[name_len] = '\0'; attr_len = fp[n++]; memcpy(attr, fp+n, attr_len); n+=attr_len; attr[attr_len] = '\0'; IRDA_DEBUG(4, "LM-IAS: Looking up %s: %s\n", name, attr); obj = irias_find_object(name); if (obj == NULL) { IRDA_DEBUG(2, "LM-IAS: Object %s not found\n", name); iriap_getvaluebyclass_response(self, 0x1235, IAS_CLASS_UNKNOWN, &irias_missing); return; } IRDA_DEBUG(4, "LM-IAS: found %s, id=%d\n", obj->name, obj->id); attrib = irias_find_attrib(obj, attr); if (attrib == NULL) { IRDA_DEBUG(2, "LM-IAS: Attribute %s not found\n", attr); iriap_getvaluebyclass_response(self, obj->id, IAS_ATTRIB_UNKNOWN, &irias_missing); return; } /* We have a match; send the value. */ iriap_getvaluebyclass_response(self, obj->id, IAS_SUCCESS, attrib->value); }
CWE-119
179,405
1,176
289039370717523292092463182568935459370
null
null
null
linux
8909c9ad8ff03611c9c96c9a92656213e4bb495b
1
void dev_load(struct net *net, const char *name) { struct net_device *dev; rcu_read_lock(); dev = dev_get_by_name_rcu(net, name); rcu_read_unlock(); if (!dev && capable(CAP_NET_ADMIN)) request_module("%s", name); }
CWE-264
179,406
1,177
265834847794592046608322157600854064030
null
null
null
krb5
cf1a0c411b2668c57c41e9c4efd15ba17b6b322c
1
process_chpw_request(krb5_context context, void *server_handle, char *realm, krb5_keytab keytab, const krb5_fulladdr *local_faddr, const krb5_fulladdr *remote_faddr, krb5_data *req, krb5_data *rep) { krb5_error_code ret; char *ptr; unsigned int plen, vno; krb5_data ap_req, ap_rep = empty_data(); krb5_data cipher = empty_data(), clear = empty_data(); krb5_auth_context auth_context = NULL; krb5_principal changepw = NULL; krb5_principal client, target = NULL; krb5_ticket *ticket = NULL; krb5_replay_data replay; krb5_error krberror; int numresult; char strresult[1024]; char *clientstr = NULL, *targetstr = NULL; const char *errmsg = NULL; size_t clen; char *cdots; struct sockaddr_storage ss; socklen_t salen; char addrbuf[100]; krb5_address *addr = remote_faddr->address; *rep = empty_data(); if (req->length < 4) { /* either this, or the server is printing bad messages, or the caller passed in garbage */ ret = KRB5KRB_AP_ERR_MODIFIED; numresult = KRB5_KPASSWD_MALFORMED; strlcpy(strresult, "Request was truncated", sizeof(strresult)); goto chpwfail; } ptr = req->data; /* verify length */ plen = (*ptr++ & 0xff); plen = (plen<<8) | (*ptr++ & 0xff); if (plen != req->length) { ret = KRB5KRB_AP_ERR_MODIFIED; numresult = KRB5_KPASSWD_MALFORMED; strlcpy(strresult, "Request length was inconsistent", sizeof(strresult)); goto chpwfail; } /* verify version number */ vno = (*ptr++ & 0xff) ; vno = (vno<<8) | (*ptr++ & 0xff); if (vno != 1 && vno != RFC3244_VERSION) { ret = KRB5KDC_ERR_BAD_PVNO; numresult = KRB5_KPASSWD_BAD_VERSION; snprintf(strresult, sizeof(strresult), "Request contained unknown protocol version number %d", vno); goto chpwfail; } /* read, check ap-req length */ ap_req.length = (*ptr++ & 0xff); ap_req.length = (ap_req.length<<8) | (*ptr++ & 0xff); if (ptr + ap_req.length >= req->data + req->length) { ret = KRB5KRB_AP_ERR_MODIFIED; numresult = KRB5_KPASSWD_MALFORMED; strlcpy(strresult, "Request was truncated in AP-REQ", sizeof(strresult)); goto chpwfail; } /* verify ap_req */ ap_req.data = ptr; ptr += ap_req.length; ret = krb5_auth_con_init(context, &auth_context); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed initializing auth context", sizeof(strresult)); goto chpwfail; } ret = krb5_auth_con_setflags(context, auth_context, KRB5_AUTH_CONTEXT_DO_SEQUENCE); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed initializing auth context", sizeof(strresult)); goto chpwfail; } ret = krb5_build_principal(context, &changepw, strlen(realm), realm, "kadmin", "changepw", NULL); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed building kadmin/changepw principal", sizeof(strresult)); goto chpwfail; } ret = krb5_rd_req(context, &auth_context, &ap_req, changepw, keytab, NULL, &ticket); if (ret) { numresult = KRB5_KPASSWD_AUTHERROR; strlcpy(strresult, "Failed reading application request", sizeof(strresult)); goto chpwfail; } /* construct the ap-rep */ ret = krb5_mk_rep(context, auth_context, &ap_rep); if (ret) { numresult = KRB5_KPASSWD_AUTHERROR; strlcpy(strresult, "Failed replying to application request", sizeof(strresult)); goto chpwfail; } /* decrypt the ChangePasswdData */ cipher.length = (req->data + req->length) - ptr; cipher.data = ptr; /* * Don't set a remote address in auth_context before calling krb5_rd_priv, * so that we can work against clients behind a NAT. Reflection attacks * aren't a concern since we use sequence numbers and since our requests * don't look anything like our responses. Also don't set a local address, * since we don't know what interface the request was received on. */ ret = krb5_rd_priv(context, auth_context, &cipher, &clear, &replay); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed decrypting request", sizeof(strresult)); goto chpwfail; } client = ticket->enc_part2->client; /* decode ChangePasswdData for setpw requests */ if (vno == RFC3244_VERSION) { krb5_data *clear_data; ret = decode_krb5_setpw_req(&clear, &clear_data, &target); if (ret != 0) { numresult = KRB5_KPASSWD_MALFORMED; strlcpy(strresult, "Failed decoding ChangePasswdData", sizeof(strresult)); goto chpwfail; } zapfree(clear.data, clear.length); clear = *clear_data; free(clear_data); if (target != NULL) { ret = krb5_unparse_name(context, target, &targetstr); if (ret != 0) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed unparsing target name for log", sizeof(strresult)); goto chpwfail; } } } ret = krb5_unparse_name(context, client, &clientstr); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed unparsing client name for log", sizeof(strresult)); goto chpwfail; } /* for cpw, verify that this is an AS_REQ ticket */ if (vno == 1 && (ticket->enc_part2->flags & TKT_FLG_INITIAL) == 0) { numresult = KRB5_KPASSWD_INITIAL_FLAG_NEEDED; strlcpy(strresult, "Ticket must be derived from a password", sizeof(strresult)); goto chpwfail; } /* change the password */ ptr = k5memdup0(clear.data, clear.length, &ret); ret = schpw_util_wrapper(server_handle, client, target, (ticket->enc_part2->flags & TKT_FLG_INITIAL) != 0, ptr, NULL, strresult, sizeof(strresult)); if (ret) errmsg = krb5_get_error_message(context, ret); /* zap the password */ zapfree(clear.data, clear.length); zapfree(ptr, clear.length); clear = empty_data(); clen = strlen(clientstr); trunc_name(&clen, &cdots); switch (addr->addrtype) { case ADDRTYPE_INET: { struct sockaddr_in *sin = ss2sin(&ss); sin->sin_family = AF_INET; memcpy(&sin->sin_addr, addr->contents, addr->length); sin->sin_port = htons(remote_faddr->port); salen = sizeof(*sin); break; } case ADDRTYPE_INET6: { struct sockaddr_in6 *sin6 = ss2sin6(&ss); sin6->sin6_family = AF_INET6; memcpy(&sin6->sin6_addr, addr->contents, addr->length); sin6->sin6_port = htons(remote_faddr->port); salen = sizeof(*sin6); break; } default: { struct sockaddr *sa = ss2sa(&ss); sa->sa_family = AF_UNSPEC; salen = sizeof(*sa); break; } } if (getnameinfo(ss2sa(&ss), salen, addrbuf, sizeof(addrbuf), NULL, 0, NI_NUMERICHOST | NI_NUMERICSERV) != 0) strlcpy(addrbuf, "<unprintable>", sizeof(addrbuf)); if (vno == RFC3244_VERSION) { size_t tlen; char *tdots; const char *targetp; if (target == NULL) { tlen = clen; tdots = cdots; targetp = targetstr; } else { tlen = strlen(targetstr); trunc_name(&tlen, &tdots); targetp = clientstr; } krb5_klog_syslog(LOG_NOTICE, _("setpw request from %s by %.*s%s for " "%.*s%s: %s"), addrbuf, (int) clen, clientstr, cdots, (int) tlen, targetp, tdots, errmsg ? errmsg : "success"); } else { krb5_klog_syslog(LOG_NOTICE, _("chpw request from %s for %.*s%s: %s"), addrbuf, (int) clen, clientstr, cdots, errmsg ? errmsg : "success"); } switch (ret) { case KADM5_AUTH_CHANGEPW: numresult = KRB5_KPASSWD_ACCESSDENIED; break; case KADM5_PASS_Q_TOOSHORT: case KADM5_PASS_REUSE: case KADM5_PASS_Q_CLASS: case KADM5_PASS_Q_DICT: case KADM5_PASS_Q_GENERIC: case KADM5_PASS_TOOSOON: numresult = KRB5_KPASSWD_SOFTERROR; break; case 0: numresult = KRB5_KPASSWD_SUCCESS; strlcpy(strresult, "", sizeof(strresult)); break; default: numresult = KRB5_KPASSWD_HARDERROR; break; } chpwfail: clear.length = 2 + strlen(strresult); clear.data = (char *) malloc(clear.length); ptr = clear.data; *ptr++ = (numresult>>8) & 0xff; *ptr++ = numresult & 0xff; memcpy(ptr, strresult, strlen(strresult)); cipher = empty_data(); if (ap_rep.length) { ret = krb5_auth_con_setaddrs(context, auth_context, local_faddr->address, NULL); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed storing client and server internet addresses", sizeof(strresult)); } else { ret = krb5_mk_priv(context, auth_context, &clear, &cipher, &replay); if (ret) { numresult = KRB5_KPASSWD_HARDERROR; strlcpy(strresult, "Failed encrypting reply", sizeof(strresult)); } } } /* if no KRB-PRIV was constructed, then we need a KRB-ERROR. if this fails, just bail. there's nothing else we can do. */ if (cipher.length == 0) { /* clear out ap_rep now, so that it won't be inserted in the reply */ if (ap_rep.length) { free(ap_rep.data); ap_rep = empty_data(); } krberror.ctime = 0; krberror.cusec = 0; krberror.susec = 0; ret = krb5_timeofday(context, &krberror.stime); if (ret) goto bailout; /* this is really icky. but it's what all the other callers to mk_error do. */ krberror.error = ret; krberror.error -= ERROR_TABLE_BASE_krb5; if (krberror.error < 0 || krberror.error > 128) krberror.error = KRB_ERR_GENERIC; krberror.client = NULL; ret = krb5_build_principal(context, &krberror.server, strlen(realm), realm, "kadmin", "changepw", NULL); if (ret) goto bailout; krberror.text.length = 0; krberror.e_data = clear; ret = krb5_mk_error(context, &krberror, &cipher); krb5_free_principal(context, krberror.server); if (ret) goto bailout; } /* construct the reply */ ret = alloc_data(rep, 6 + ap_rep.length + cipher.length); if (ret) goto bailout; ptr = rep->data; /* length */ *ptr++ = (rep->length>>8) & 0xff; *ptr++ = rep->length & 0xff; /* version == 0x0001 big-endian */ *ptr++ = 0; *ptr++ = 1; /* ap_rep length, big-endian */ *ptr++ = (ap_rep.length>>8) & 0xff; *ptr++ = ap_rep.length & 0xff; /* ap-rep data */ if (ap_rep.length) { memcpy(ptr, ap_rep.data, ap_rep.length); ptr += ap_rep.length; } /* krb-priv or krb-error */ memcpy(ptr, cipher.data, cipher.length); bailout: krb5_auth_con_free(context, auth_context); krb5_free_principal(context, changepw); krb5_free_ticket(context, ticket); free(ap_rep.data); free(clear.data); free(cipher.data); krb5_free_principal(context, target); krb5_free_unparsed_name(context, targetstr); krb5_free_unparsed_name(context, clientstr); krb5_free_error_message(context, errmsg); return ret; }
CWE-20
179,407
1,178
151952841528932102997447826449546146841
null
null
null
linux
f54e18f1b831c92f6512d2eedb224cd63d607d3d
1
static int rock_continue(struct rock_state *rs) { int ret = 1; int blocksize = 1 << rs->inode->i_blkbits; const int min_de_size = offsetof(struct rock_ridge, u); kfree(rs->buffer); rs->buffer = NULL; if ((unsigned)rs->cont_offset > blocksize - min_de_size || (unsigned)rs->cont_size > blocksize || (unsigned)(rs->cont_offset + rs->cont_size) > blocksize) { printk(KERN_NOTICE "rock: corrupted directory entry. " "extent=%d, offset=%d, size=%d\n", rs->cont_extent, rs->cont_offset, rs->cont_size); ret = -EIO; goto out; } if (rs->cont_extent) { struct buffer_head *bh; rs->buffer = kmalloc(rs->cont_size, GFP_KERNEL); if (!rs->buffer) { ret = -ENOMEM; goto out; } ret = -EIO; bh = sb_bread(rs->inode->i_sb, rs->cont_extent); if (bh) { memcpy(rs->buffer, bh->b_data + rs->cont_offset, rs->cont_size); put_bh(bh); rs->chr = rs->buffer; rs->len = rs->cont_size; rs->cont_extent = 0; rs->cont_size = 0; rs->cont_offset = 0; return 0; } printk("Unable to read rock-ridge attributes\n"); } out: kfree(rs->buffer); rs->buffer = NULL; return ret; }
CWE-399
179,408
1,179
37972843024361272794052624541015761601
null
null
null
linux
f647d7c155f069c1a068030255c300663516420e
1
__switch_to(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev = &prev_p->thread; struct thread_struct *next = &next_p->thread; int cpu = smp_processor_id(); struct tss_struct *tss = &per_cpu(init_tss, cpu); unsigned fsindex, gsindex; fpu_switch_t fpu; fpu = switch_fpu_prepare(prev_p, next_p, cpu); /* * Reload esp0, LDT and the page table pointer: */ load_sp0(tss, next); /* * Switch DS and ES. * This won't pick up thread selector changes, but I guess that is ok. */ savesegment(es, prev->es); if (unlikely(next->es | prev->es)) loadsegment(es, next->es); savesegment(ds, prev->ds); if (unlikely(next->ds | prev->ds)) loadsegment(ds, next->ds); /* We must save %fs and %gs before load_TLS() because * %fs and %gs may be cleared by load_TLS(). * * (e.g. xen_load_tls()) */ savesegment(fs, fsindex); savesegment(gs, gsindex); load_TLS(next, cpu); /* * Leave lazy mode, flushing any hypercalls made here. * This must be done before restoring TLS segments so * the GDT and LDT are properly updated, and must be * done before math_state_restore, so the TS bit is up * to date. */ arch_end_context_switch(next_p); /* * Switch FS and GS. * * Segment register != 0 always requires a reload. Also * reload when it has changed. When prev process used 64bit * base always reload to avoid an information leak. */ if (unlikely(fsindex | next->fsindex | prev->fs)) { loadsegment(fs, next->fsindex); /* * Check if the user used a selector != 0; if yes * clear 64bit base, since overloaded base is always * mapped to the Null selector */ if (fsindex) prev->fs = 0; } /* when next process has a 64bit base use it */ if (next->fs) wrmsrl(MSR_FS_BASE, next->fs); prev->fsindex = fsindex; if (unlikely(gsindex | next->gsindex | prev->gs)) { load_gs_index(next->gsindex); if (gsindex) prev->gs = 0; } if (next->gs) wrmsrl(MSR_KERNEL_GS_BASE, next->gs); prev->gsindex = gsindex; switch_fpu_finish(next_p, fpu); /* * Switch the PDA and FPU contexts. */ prev->usersp = this_cpu_read(old_rsp); this_cpu_write(old_rsp, next->usersp); this_cpu_write(current_task, next_p); /* * If it were not for PREEMPT_ACTIVE we could guarantee that the * preempt_count of all tasks was equal here and this would not be * needed. */ task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count); this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count); this_cpu_write(kernel_stack, (unsigned long)task_stack_page(next_p) + THREAD_SIZE - KERNEL_STACK_OFFSET); /* * Now maybe reload the debug registers and handle I/O bitmaps */ if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) __switch_to_xtra(prev_p, next_p, tss); return prev_p; }
CWE-200
179,409
1,180
205391279388742041103241912506458605751
null
null
null
tcpdump
0f95d441e4b5d7512cc5c326c8668a120e048eda
1
ppp_hdlc(netdissect_options *ndo, const u_char *p, int length) { u_char *b, *s, *t, c; int i, proto; const void *se; if (length <= 0) return; b = (uint8_t *)malloc(length); if (b == NULL) return; /* * Unescape all the data into a temporary, private, buffer. * Do this so that we dont overwrite the original packet * contents. */ for (s = (u_char *)p, t = b, i = length; i > 0; i--) { c = *s++; if (c == 0x7d) { if (i > 1) { i--; c = *s++ ^ 0x20; } else continue; } *t++ = c; } se = ndo->ndo_snapend; ndo->ndo_snapend = t; length = t - b; /* now lets guess about the payload codepoint format */ if (length < 1) goto trunc; proto = *b; /* start with a one-octet codepoint guess */ switch (proto) { case PPP_IP: ip_print(ndo, b + 1, length - 1); goto cleanup; case PPP_IPV6: ip6_print(ndo, b + 1, length - 1); goto cleanup; default: /* no luck - try next guess */ break; } if (length < 2) goto trunc; proto = EXTRACT_16BITS(b); /* next guess - load two octets */ switch (proto) { case (PPP_ADDRESS << 8 | PPP_CONTROL): /* looks like a PPP frame */ if (length < 4) goto trunc; proto = EXTRACT_16BITS(b+2); /* load the PPP proto-id */ handle_ppp(ndo, proto, b + 4, length - 4); break; default: /* last guess - proto must be a PPP proto-id */ handle_ppp(ndo, proto, b + 2, length - 2); break; } cleanup: ndo->ndo_snapend = se; free(b); return; trunc: ndo->ndo_snapend = se; free(b); ND_PRINT((ndo, "[|ppp]")); }
CWE-119
179,412
1,183
163830884355634389581814561024512585440
null
null
null
linux
f2e323ec96077642d397bb1c355def536d489d16
1
static int ttusbdecfe_dvbs_diseqc_send_master_cmd(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd) { struct ttusbdecfe_state* state = (struct ttusbdecfe_state*) fe->demodulator_priv; u8 b[] = { 0x00, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(&b[4], cmd->msg, cmd->msg_len); state->config->send_command(fe, 0x72, sizeof(b) - (6 - cmd->msg_len), b, NULL, NULL); return 0; }
CWE-119
179,413
1,184
192608949045328579601369441585250086987
null
null
null
linux
338f977f4eb441e69bb9a46eaa0ac715c931a67f
1
static int ieee80211_fragment(struct ieee80211_tx_data *tx, struct sk_buff *skb, int hdrlen, int frag_threshold) { struct ieee80211_local *local = tx->local; struct ieee80211_tx_info *info; struct sk_buff *tmp; int per_fragm = frag_threshold - hdrlen - FCS_LEN; int pos = hdrlen + per_fragm; int rem = skb->len - hdrlen - per_fragm; if (WARN_ON(rem < 0)) return -EINVAL; /* first fragment was already added to queue by caller */ while (rem) { int fraglen = per_fragm; if (fraglen > rem) fraglen = rem; rem -= fraglen; tmp = dev_alloc_skb(local->tx_headroom + frag_threshold + tx->sdata->encrypt_headroom + IEEE80211_ENCRYPT_TAILROOM); if (!tmp) return -ENOMEM; __skb_queue_tail(&tx->skbs, tmp); skb_reserve(tmp, local->tx_headroom + tx->sdata->encrypt_headroom); /* copy control information */ memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); info = IEEE80211_SKB_CB(tmp); info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT); if (rem) info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; skb_copy_queue_mapping(tmp, skb); tmp->priority = skb->priority; tmp->dev = skb->dev; /* copy header and data */ memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); pos += fraglen; } /* adjust first fragment's length */ skb->len = hdrlen + per_fragm; return 0; }
CWE-200
179,414
1,185
252627261483521544309005842789154299812
null
null
null
linux
a430c9166312e1aa3d80bce32374233bdbfeba32
1
int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len) { int rc = X86EMUL_CONTINUE; int mode = ctxt->mode; int def_op_bytes, def_ad_bytes, goffset, simd_prefix; bool op_prefix = false; bool has_seg_override = false; struct opcode opcode; ctxt->memop.type = OP_NONE; ctxt->memopp = NULL; ctxt->_eip = ctxt->eip; ctxt->fetch.ptr = ctxt->fetch.data; ctxt->fetch.end = ctxt->fetch.data + insn_len; ctxt->opcode_len = 1; if (insn_len > 0) memcpy(ctxt->fetch.data, insn, insn_len); else { rc = __do_insn_fetch_bytes(ctxt, 1); if (rc != X86EMUL_CONTINUE) return rc; } switch (mode) { case X86EMUL_MODE_REAL: case X86EMUL_MODE_VM86: case X86EMUL_MODE_PROT16: def_op_bytes = def_ad_bytes = 2; break; case X86EMUL_MODE_PROT32: def_op_bytes = def_ad_bytes = 4; break; #ifdef CONFIG_X86_64 case X86EMUL_MODE_PROT64: def_op_bytes = 4; def_ad_bytes = 8; break; #endif default: return EMULATION_FAILED; } ctxt->op_bytes = def_op_bytes; ctxt->ad_bytes = def_ad_bytes; /* Legacy prefixes. */ for (;;) { switch (ctxt->b = insn_fetch(u8, ctxt)) { case 0x66: /* operand-size override */ op_prefix = true; /* switch between 2/4 bytes */ ctxt->op_bytes = def_op_bytes ^ 6; break; case 0x67: /* address-size override */ if (mode == X86EMUL_MODE_PROT64) /* switch between 4/8 bytes */ ctxt->ad_bytes = def_ad_bytes ^ 12; else /* switch between 2/4 bytes */ ctxt->ad_bytes = def_ad_bytes ^ 6; break; case 0x26: /* ES override */ case 0x2e: /* CS override */ case 0x36: /* SS override */ case 0x3e: /* DS override */ has_seg_override = true; ctxt->seg_override = (ctxt->b >> 3) & 3; break; case 0x64: /* FS override */ case 0x65: /* GS override */ has_seg_override = true; ctxt->seg_override = ctxt->b & 7; break; case 0x40 ... 0x4f: /* REX */ if (mode != X86EMUL_MODE_PROT64) goto done_prefixes; ctxt->rex_prefix = ctxt->b; continue; case 0xf0: /* LOCK */ ctxt->lock_prefix = 1; break; case 0xf2: /* REPNE/REPNZ */ case 0xf3: /* REP/REPE/REPZ */ ctxt->rep_prefix = ctxt->b; break; default: goto done_prefixes; } /* Any legacy prefix after a REX prefix nullifies its effect. */ ctxt->rex_prefix = 0; } done_prefixes: /* REX prefix. */ if (ctxt->rex_prefix & 8) ctxt->op_bytes = 8; /* REX.W */ /* Opcode byte(s). */ opcode = opcode_table[ctxt->b]; /* Two-byte opcode? */ if (ctxt->b == 0x0f) { ctxt->opcode_len = 2; ctxt->b = insn_fetch(u8, ctxt); opcode = twobyte_table[ctxt->b]; /* 0F_38 opcode map */ if (ctxt->b == 0x38) { ctxt->opcode_len = 3; ctxt->b = insn_fetch(u8, ctxt); opcode = opcode_map_0f_38[ctxt->b]; } } ctxt->d = opcode.flags; if (ctxt->d & ModRM) ctxt->modrm = insn_fetch(u8, ctxt); /* vex-prefix instructions are not implemented */ if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) && (mode == X86EMUL_MODE_PROT64 || (mode >= X86EMUL_MODE_PROT16 && (ctxt->modrm & 0x80)))) { ctxt->d = NotImpl; } while (ctxt->d & GroupMask) { switch (ctxt->d & GroupMask) { case Group: goffset = (ctxt->modrm >> 3) & 7; opcode = opcode.u.group[goffset]; break; case GroupDual: goffset = (ctxt->modrm >> 3) & 7; if ((ctxt->modrm >> 6) == 3) opcode = opcode.u.gdual->mod3[goffset]; else opcode = opcode.u.gdual->mod012[goffset]; break; case RMExt: goffset = ctxt->modrm & 7; opcode = opcode.u.group[goffset]; break; case Prefix: if (ctxt->rep_prefix && op_prefix) return EMULATION_FAILED; simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix; switch (simd_prefix) { case 0x00: opcode = opcode.u.gprefix->pfx_no; break; case 0x66: opcode = opcode.u.gprefix->pfx_66; break; case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break; case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break; } break; case Escape: if (ctxt->modrm > 0xbf) opcode = opcode.u.esc->high[ctxt->modrm - 0xc0]; else opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7]; break; default: return EMULATION_FAILED; } ctxt->d &= ~(u64)GroupMask; ctxt->d |= opcode.flags; } /* Unrecognised? */ if (ctxt->d == 0) return EMULATION_FAILED; ctxt->execute = opcode.u.execute; if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD))) return EMULATION_FAILED; if (unlikely(ctxt->d & (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm))) { /* * These are copied unconditionally here, and checked unconditionally * in x86_emulate_insn. */ ctxt->check_perm = opcode.check_perm; ctxt->intercept = opcode.intercept; if (ctxt->d & NotImpl) return EMULATION_FAILED; if (mode == X86EMUL_MODE_PROT64 && (ctxt->d & Stack)) ctxt->op_bytes = 8; if (ctxt->d & Op3264) { if (mode == X86EMUL_MODE_PROT64) ctxt->op_bytes = 8; else ctxt->op_bytes = 4; } if (ctxt->d & Sse) ctxt->op_bytes = 16; else if (ctxt->d & Mmx) ctxt->op_bytes = 8; } /* ModRM and SIB bytes. */ if (ctxt->d & ModRM) { rc = decode_modrm(ctxt, &ctxt->memop); if (!has_seg_override) { has_seg_override = true; ctxt->seg_override = ctxt->modrm_seg; } } else if (ctxt->d & MemAbs) rc = decode_abs(ctxt, &ctxt->memop); if (rc != X86EMUL_CONTINUE) goto done; if (!has_seg_override) ctxt->seg_override = VCPU_SREG_DS; ctxt->memop.addr.mem.seg = ctxt->seg_override; /* * Decode and fetch the source operand: register, memory * or immediate. */ rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask); if (rc != X86EMUL_CONTINUE) goto done; /* * Decode and fetch the second source operand: register, memory * or immediate. */ rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask); if (rc != X86EMUL_CONTINUE) goto done; /* Decode and fetch the destination operand: register or memory. */ rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask); done: if (ctxt->rip_relative) ctxt->memopp->addr.mem.ea += ctxt->_eip; return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK; }
CWE-399
179,415
1,186
201743535793806938662424126490716359872
null
null
null
linux
3d32e4dbe71374a6780eaf51d719d76f9a9bf22f
1
int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot) { gfn_t gfn, end_gfn; pfn_t pfn; int r = 0; struct iommu_domain *domain = kvm->arch.iommu_domain; int flags; /* check if iommu exists and in use */ if (!domain) return 0; gfn = slot->base_gfn; end_gfn = gfn + slot->npages; flags = IOMMU_READ; if (!(slot->flags & KVM_MEM_READONLY)) flags |= IOMMU_WRITE; if (!kvm->arch.iommu_noncoherent) flags |= IOMMU_CACHE; while (gfn < end_gfn) { unsigned long page_size; /* Check if already mapped */ if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn))) { gfn += 1; continue; } /* Get the page size we could use to map */ page_size = kvm_host_page_size(kvm, gfn); /* Make sure the page_size does not exceed the memslot */ while ((gfn + (page_size >> PAGE_SHIFT)) > end_gfn) page_size >>= 1; /* Make sure gfn is aligned to the page size we want to map */ while ((gfn << PAGE_SHIFT) & (page_size - 1)) page_size >>= 1; /* Make sure hva is aligned to the page size we want to map */ while (__gfn_to_hva_memslot(slot, gfn) & (page_size - 1)) page_size >>= 1; /* * Pin all pages we are about to map in memory. This is * important because we unmap and unpin in 4kb steps later. */ pfn = kvm_pin_pages(slot, gfn, page_size); if (is_error_noslot_pfn(pfn)) { gfn += 1; continue; } /* Map into IO address space */ r = iommu_map(domain, gfn_to_gpa(gfn), pfn_to_hpa(pfn), page_size, flags); if (r) { printk(KERN_ERR "kvm_iommu_map_address:" "iommu failed to map pfn=%llx\n", pfn); kvm_unpin_pages(kvm, pfn, page_size); goto unmap_pages; } gfn += page_size >> PAGE_SHIFT; } return 0; unmap_pages: kvm_iommu_put_pages(kvm, slot->base_gfn, gfn - slot->base_gfn); return r; }
CWE-189
179,416
1,187
40650788508994539050513510667633304622
null
null
null
linux
a2b9e6c1a35afcc0973acb72e591c714e78885ff
1
static int handle_emulation_failure(struct kvm_vcpu *vcpu) { int r = EMULATE_DONE; ++vcpu->stat.insn_emulation_fail; trace_kvm_emulate_insn_failed(vcpu); if (!is_guest_mode(vcpu)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; r = EMULATE_FAIL; } kvm_queue_exception(vcpu, UD_VECTOR); return r; }
CWE-362
179,424
1,191
44326647696150177215031281260553621216
null
null
null
linux
e40607cbe270a9e8360907cb1e62ddf0736e4864
1
static int sctp_process_param(struct sctp_association *asoc, union sctp_params param, const union sctp_addr *peer_addr, gfp_t gfp) { struct net *net = sock_net(asoc->base.sk); union sctp_addr addr; int i; __u16 sat; int retval = 1; sctp_scope_t scope; time_t stale; struct sctp_af *af; union sctp_addr_param *addr_param; struct sctp_transport *t; struct sctp_endpoint *ep = asoc->ep; /* We maintain all INIT parameters in network byte order all the * time. This allows us to not worry about whether the parameters * came from a fresh INIT, and INIT ACK, or were stored in a cookie. */ switch (param.p->type) { case SCTP_PARAM_IPV6_ADDRESS: if (PF_INET6 != asoc->base.sk->sk_family) break; goto do_addr_param; case SCTP_PARAM_IPV4_ADDRESS: /* v4 addresses are not allowed on v6-only socket */ if (ipv6_only_sock(asoc->base.sk)) break; do_addr_param: af = sctp_get_af_specific(param_type2af(param.p->type)); af->from_addr_param(&addr, param.addr, htons(asoc->peer.port), 0); scope = sctp_scope(peer_addr); if (sctp_in_scope(net, &addr, scope)) if (!sctp_assoc_add_peer(asoc, &addr, gfp, SCTP_UNCONFIRMED)) return 0; break; case SCTP_PARAM_COOKIE_PRESERVATIVE: if (!net->sctp.cookie_preserve_enable) break; stale = ntohl(param.life->lifespan_increment); /* Suggested Cookie Life span increment's unit is msec, * (1/1000sec). */ asoc->cookie_life = ktime_add_ms(asoc->cookie_life, stale); break; case SCTP_PARAM_HOST_NAME_ADDRESS: pr_debug("%s: unimplemented SCTP_HOST_NAME_ADDRESS\n", __func__); break; case SCTP_PARAM_SUPPORTED_ADDRESS_TYPES: /* Turn off the default values first so we'll know which * ones are really set by the peer. */ asoc->peer.ipv4_address = 0; asoc->peer.ipv6_address = 0; /* Assume that peer supports the address family * by which it sends a packet. */ if (peer_addr->sa.sa_family == AF_INET6) asoc->peer.ipv6_address = 1; else if (peer_addr->sa.sa_family == AF_INET) asoc->peer.ipv4_address = 1; /* Cycle through address types; avoid divide by 0. */ sat = ntohs(param.p->length) - sizeof(sctp_paramhdr_t); if (sat) sat /= sizeof(__u16); for (i = 0; i < sat; ++i) { switch (param.sat->types[i]) { case SCTP_PARAM_IPV4_ADDRESS: asoc->peer.ipv4_address = 1; break; case SCTP_PARAM_IPV6_ADDRESS: if (PF_INET6 == asoc->base.sk->sk_family) asoc->peer.ipv6_address = 1; break; case SCTP_PARAM_HOST_NAME_ADDRESS: asoc->peer.hostname_address = 1; break; default: /* Just ignore anything else. */ break; } } break; case SCTP_PARAM_STATE_COOKIE: asoc->peer.cookie_len = ntohs(param.p->length) - sizeof(sctp_paramhdr_t); asoc->peer.cookie = param.cookie->body; break; case SCTP_PARAM_HEARTBEAT_INFO: /* Would be odd to receive, but it causes no problems. */ break; case SCTP_PARAM_UNRECOGNIZED_PARAMETERS: /* Rejected during verify stage. */ break; case SCTP_PARAM_ECN_CAPABLE: asoc->peer.ecn_capable = 1; break; case SCTP_PARAM_ADAPTATION_LAYER_IND: asoc->peer.adaptation_ind = ntohl(param.aind->adaptation_ind); break; case SCTP_PARAM_SET_PRIMARY: if (!net->sctp.addip_enable) goto fall_through; addr_param = param.v + sizeof(sctp_addip_param_t); af = sctp_get_af_specific(param_type2af(param.p->type)); af->from_addr_param(&addr, addr_param, htons(asoc->peer.port), 0); /* if the address is invalid, we can't process it. * XXX: see spec for what to do. */ if (!af->addr_valid(&addr, NULL, NULL)) break; t = sctp_assoc_lookup_paddr(asoc, &addr); if (!t) break; sctp_assoc_set_primary(asoc, t); break; case SCTP_PARAM_SUPPORTED_EXT: sctp_process_ext_param(asoc, param); break; case SCTP_PARAM_FWD_TSN_SUPPORT: if (net->sctp.prsctp_enable) { asoc->peer.prsctp_capable = 1; break; } /* Fall Through */ goto fall_through; case SCTP_PARAM_RANDOM: if (!ep->auth_enable) goto fall_through; /* Save peer's random parameter */ asoc->peer.peer_random = kmemdup(param.p, ntohs(param.p->length), gfp); if (!asoc->peer.peer_random) { retval = 0; break; } break; case SCTP_PARAM_HMAC_ALGO: if (!ep->auth_enable) goto fall_through; /* Save peer's HMAC list */ asoc->peer.peer_hmacs = kmemdup(param.p, ntohs(param.p->length), gfp); if (!asoc->peer.peer_hmacs) { retval = 0; break; } /* Set the default HMAC the peer requested*/ sctp_auth_asoc_set_default_hmac(asoc, param.hmac_algo); break; case SCTP_PARAM_CHUNKS: if (!ep->auth_enable) goto fall_through; asoc->peer.peer_chunks = kmemdup(param.p, ntohs(param.p->length), gfp); if (!asoc->peer.peer_chunks) retval = 0; break; fall_through: default: /* Any unrecognized parameters should have been caught * and handled by sctp_verify_param() which should be * called prior to this routine. Simply log the error * here. */ pr_debug("%s: ignoring param:%d for association:%p.\n", __func__, ntohs(param.p->type), asoc); break; } return retval; }
CWE-399
179,425
1,192
233310274121482160323868526280614090729
null
null
null
linux
c88547a8119e3b581318ab65e9b72f27f23e641d
1
xfs_da3_fixhashpath( struct xfs_da_state *state, struct xfs_da_state_path *path) { struct xfs_da_state_blk *blk; struct xfs_da_intnode *node; struct xfs_da_node_entry *btree; xfs_dahash_t lasthash=0; int level; int count; struct xfs_inode *dp = state->args->dp; trace_xfs_da_fixhashpath(state->args); level = path->active-1; blk = &path->blk[ level ]; switch (blk->magic) { case XFS_ATTR_LEAF_MAGIC: lasthash = xfs_attr_leaf_lasthash(blk->bp, &count); if (count == 0) return; break; case XFS_DIR2_LEAFN_MAGIC: lasthash = xfs_dir2_leafn_lasthash(dp, blk->bp, &count); if (count == 0) return; break; case XFS_DA_NODE_MAGIC: lasthash = xfs_da3_node_lasthash(dp, blk->bp, &count); if (count == 0) return; break; } for (blk--, level--; level >= 0; blk--, level--) { struct xfs_da3_icnode_hdr nodehdr; node = blk->bp->b_addr; dp->d_ops->node_hdr_from_disk(&nodehdr, node); btree = dp->d_ops->node_tree_p(node); if (be32_to_cpu(btree->hashval) == lasthash) break; blk->hashval = lasthash; btree[blk->index].hashval = cpu_to_be32(lasthash); xfs_trans_log_buf(state->args->trans, blk->bp, XFS_DA_LOGRANGE(node, &btree[blk->index], sizeof(*btree))); lasthash = be32_to_cpu(btree[nodehdr.count - 1].hashval); } }
CWE-399
179,432
1,199
190462110703120600634107071844827289206
null
null
null
linux
18f39e7be0121317550d03e267e3ebd4dbfbb3ce
1
SMB2_tcon(const unsigned int xid, struct cifs_ses *ses, const char *tree, struct cifs_tcon *tcon, const struct nls_table *cp) { struct smb2_tree_connect_req *req; struct smb2_tree_connect_rsp *rsp = NULL; struct kvec iov[2]; int rc = 0; int resp_buftype; int unc_path_len; struct TCP_Server_Info *server; __le16 *unc_path = NULL; cifs_dbg(FYI, "TCON\n"); if ((ses->server) && tree) server = ses->server; else return -EIO; if (tcon && tcon->bad_network_name) return -ENOENT; unc_path = kmalloc(MAX_SHARENAME_LENGTH * 2, GFP_KERNEL); if (unc_path == NULL) return -ENOMEM; unc_path_len = cifs_strtoUTF16(unc_path, tree, strlen(tree), cp) + 1; unc_path_len *= 2; if (unc_path_len < 2) { kfree(unc_path); return -EINVAL; } rc = small_smb2_init(SMB2_TREE_CONNECT, tcon, (void **) &req); if (rc) { kfree(unc_path); return rc; } if (tcon == NULL) { /* since no tcon, smb2_init can not do this, so do here */ req->hdr.SessionId = ses->Suid; /* if (ses->server->sec_mode & SECMODE_SIGN_REQUIRED) req->hdr.Flags |= SMB2_FLAGS_SIGNED; */ } iov[0].iov_base = (char *)req; /* 4 for rfc1002 length field and 1 for pad */ iov[0].iov_len = get_rfc1002_length(req) + 4 - 1; /* Testing shows that buffer offset must be at location of Buffer[0] */ req->PathOffset = cpu_to_le16(sizeof(struct smb2_tree_connect_req) - 1 /* pad */ - 4 /* do not count rfc1001 len field */); req->PathLength = cpu_to_le16(unc_path_len - 2); iov[1].iov_base = unc_path; iov[1].iov_len = unc_path_len; inc_rfc1001_len(req, unc_path_len - 1 /* pad */); rc = SendReceive2(xid, ses, iov, 2, &resp_buftype, 0); rsp = (struct smb2_tree_connect_rsp *)iov[0].iov_base; if (rc != 0) { if (tcon) { cifs_stats_fail_inc(tcon, SMB2_TREE_CONNECT_HE); tcon->need_reconnect = true; } goto tcon_error_exit; } if (tcon == NULL) { ses->ipc_tid = rsp->hdr.TreeId; goto tcon_exit; } if (rsp->ShareType & SMB2_SHARE_TYPE_DISK) cifs_dbg(FYI, "connection to disk share\n"); else if (rsp->ShareType & SMB2_SHARE_TYPE_PIPE) { tcon->ipc = true; cifs_dbg(FYI, "connection to pipe share\n"); } else if (rsp->ShareType & SMB2_SHARE_TYPE_PRINT) { tcon->print = true; cifs_dbg(FYI, "connection to printer\n"); } else { cifs_dbg(VFS, "unknown share type %d\n", rsp->ShareType); rc = -EOPNOTSUPP; goto tcon_error_exit; } tcon->share_flags = le32_to_cpu(rsp->ShareFlags); tcon->capabilities = rsp->Capabilities; /* we keep caps little endian */ tcon->maximal_access = le32_to_cpu(rsp->MaximalAccess); tcon->tidStatus = CifsGood; tcon->need_reconnect = false; tcon->tid = rsp->hdr.TreeId; strlcpy(tcon->treeName, tree, sizeof(tcon->treeName)); if ((rsp->Capabilities & SMB2_SHARE_CAP_DFS) && ((tcon->share_flags & SHI1005_FLAGS_DFS) == 0)) cifs_dbg(VFS, "DFS capability contradicts DFS flag\n"); init_copy_chunk_defaults(tcon); if (tcon->ses->server->ops->validate_negotiate) rc = tcon->ses->server->ops->validate_negotiate(xid, tcon); tcon_exit: free_rsp_buf(resp_buftype, rsp); kfree(unc_path); return rc; tcon_error_exit: if (rsp->hdr.Status == STATUS_BAD_NETWORK_NAME) { cifs_dbg(VFS, "BAD_NETWORK_NAME: %s\n", tree); tcon->bad_network_name = true; } goto tcon_exit; }
CWE-399
179,433
1,200
60644300295276330698708639327961395692
null
null
null
linux
c03aa9f6e1f938618e6db2e23afef0574efeeb65
1
static void __udf_read_inode(struct inode *inode) { struct buffer_head *bh = NULL; struct fileEntry *fe; struct extendedFileEntry *efe; uint16_t ident; struct udf_inode_info *iinfo = UDF_I(inode); struct udf_sb_info *sbi = UDF_SB(inode->i_sb); unsigned int link_count; /* * Set defaults, but the inode is still incomplete! * Note: get_new_inode() sets the following on a new inode: * i_sb = sb * i_no = ino * i_flags = sb->s_flags * i_state = 0 * clean_inode(): zero fills and sets * i_count = 1 * i_nlink = 1 * i_op = NULL; */ bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident); if (!bh) { udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino); make_bad_inode(inode); return; } if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && ident != TAG_IDENT_USE) { udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n", inode->i_ino, ident); brelse(bh); make_bad_inode(inode); return; } fe = (struct fileEntry *)bh->b_data; efe = (struct extendedFileEntry *)bh->b_data; if (fe->icbTag.strategyType == cpu_to_le16(4096)) { struct buffer_head *ibh; ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1, &ident); if (ident == TAG_IDENT_IE && ibh) { struct buffer_head *nbh = NULL; struct kernel_lb_addr loc; struct indirectEntry *ie; ie = (struct indirectEntry *)ibh->b_data; loc = lelb_to_cpu(ie->indirectICB.extLocation); if (ie->indirectICB.extLength && (nbh = udf_read_ptagged(inode->i_sb, &loc, 0, &ident))) { if (ident == TAG_IDENT_FE || ident == TAG_IDENT_EFE) { memcpy(&iinfo->i_location, &loc, sizeof(struct kernel_lb_addr)); brelse(bh); brelse(ibh); brelse(nbh); __udf_read_inode(inode); return; } brelse(nbh); } } brelse(ibh); } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { udf_err(inode->i_sb, "unsupported strategy type: %d\n", le16_to_cpu(fe->icbTag.strategyType)); brelse(bh); make_bad_inode(inode); return; } if (fe->icbTag.strategyType == cpu_to_le16(4)) iinfo->i_strat4096 = 0; else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ iinfo->i_strat4096 = 1; iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK; iinfo->i_unique = 0; iinfo->i_lenEAttr = 0; iinfo->i_lenExtents = 0; iinfo->i_lenAlloc = 0; iinfo->i_next_alloc_block = 0; iinfo->i_next_alloc_goal = 0; if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { iinfo->i_efe = 1; iinfo->i_use = 0; if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct extendedFileEntry), inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry)); } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { iinfo->i_efe = 0; iinfo->i_use = 0; if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct fileEntry), inode->i_sb->s_blocksize - sizeof(struct fileEntry)); } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { iinfo->i_efe = 0; iinfo->i_use = 1; iinfo->i_lenAlloc = le32_to_cpu( ((struct unallocSpaceEntry *)bh->b_data)-> lengthAllocDescs); if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) { make_bad_inode(inode); return; } memcpy(iinfo->i_ext.i_data, bh->b_data + sizeof(struct unallocSpaceEntry), inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry)); return; } read_lock(&sbi->s_cred_lock); i_uid_write(inode, le32_to_cpu(fe->uid)); if (!uid_valid(inode->i_uid) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) inode->i_uid = UDF_SB(inode->i_sb)->s_uid; i_gid_write(inode, le32_to_cpu(fe->gid)); if (!gid_valid(inode->i_gid) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) || UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) inode->i_gid = UDF_SB(inode->i_sb)->s_gid; if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && sbi->s_fmode != UDF_INVALID_MODE) inode->i_mode = sbi->s_fmode; else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && sbi->s_dmode != UDF_INVALID_MODE) inode->i_mode = sbi->s_dmode; else inode->i_mode = udf_convert_permissions(fe); inode->i_mode &= ~sbi->s_umask; read_unlock(&sbi->s_cred_lock); link_count = le16_to_cpu(fe->fileLinkCount); if (!link_count) link_count = 1; set_nlink(inode, link_count); inode->i_size = le64_to_cpu(fe->informationLength); iinfo->i_lenExtents = inode->i_size; if (iinfo->i_efe == 0) { inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << (inode->i_sb->s_blocksize_bits - 9); if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime)) inode->i_atime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime)) inode->i_mtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime)) inode->i_ctime = sbi->s_record_time; iinfo->i_unique = le64_to_cpu(fe->uniqueID); iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); } else { inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << (inode->i_sb->s_blocksize_bits - 9); if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime)) inode->i_atime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime)) inode->i_mtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime)) iinfo->i_crtime = sbi->s_record_time; if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime)) inode->i_ctime = sbi->s_record_time; iinfo->i_unique = le64_to_cpu(efe->uniqueID); iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); } switch (fe->icbTag.fileType) { case ICBTAG_FILE_TYPE_DIRECTORY: inode->i_op = &udf_dir_inode_operations; inode->i_fop = &udf_dir_operations; inode->i_mode |= S_IFDIR; inc_nlink(inode); break; case ICBTAG_FILE_TYPE_REALTIME: case ICBTAG_FILE_TYPE_REGULAR: case ICBTAG_FILE_TYPE_UNDEF: case ICBTAG_FILE_TYPE_VAT20: if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) inode->i_data.a_ops = &udf_adinicb_aops; else inode->i_data.a_ops = &udf_aops; inode->i_op = &udf_file_inode_operations; inode->i_fop = &udf_file_operations; inode->i_mode |= S_IFREG; break; case ICBTAG_FILE_TYPE_BLOCK: inode->i_mode |= S_IFBLK; break; case ICBTAG_FILE_TYPE_CHAR: inode->i_mode |= S_IFCHR; break; case ICBTAG_FILE_TYPE_FIFO: init_special_inode(inode, inode->i_mode | S_IFIFO, 0); break; case ICBTAG_FILE_TYPE_SOCKET: init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); break; case ICBTAG_FILE_TYPE_SYMLINK: inode->i_data.a_ops = &udf_symlink_aops; inode->i_op = &udf_symlink_inode_operations; inode->i_mode = S_IFLNK | S_IRWXUGO; break; case ICBTAG_FILE_TYPE_MAIN: udf_debug("METADATA FILE-----\n"); break; case ICBTAG_FILE_TYPE_MIRROR: udf_debug("METADATA MIRROR FILE-----\n"); break; case ICBTAG_FILE_TYPE_BITMAP: udf_debug("METADATA BITMAP FILE-----\n"); break; default: udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n", inode->i_ino, fe->icbTag.fileType); make_bad_inode(inode); return; } if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); if (dsea) { init_special_inode(inode, inode->i_mode, MKDEV(le32_to_cpu(dsea->majorDeviceIdent), le32_to_cpu(dsea->minorDeviceIdent))); /* Developer ID ??? */ } else make_bad_inode(inode); } brelse(bh); }
CWE-399
179,438
1,204
121718855555196308354887151663402502923
null
null
null
ettercap
e3abe7d7585ecc420a7cab73313216613aadad5a
1
FUNC_DECODER(dissector_postgresql) { DECLARE_DISP_PTR(ptr); struct ec_session *s = NULL; void *ident = NULL; char tmp[MAX_ASCII_ADDR_LEN]; struct postgresql_status *conn_status; /* don't complain about unused var */ (void) DECODE_DATA; (void) DECODE_DATALEN; (void) DECODED_LEN; if (FROM_CLIENT("postgresql", PACKET)) { if (PACKET->DATA.len < 4) return NULL; dissect_create_ident(&ident, PACKET, DISSECT_CODE(dissector_postgresql)); /* if the session does not exist... */ if (session_get(&s, ident, DISSECT_IDENT_LEN) == -ENOTFOUND) { /* search for user and database strings, look for StartupMessage */ unsigned char *u = memmem(ptr, PACKET->DATA.len, "user", 4); unsigned char *d = memmem(ptr, PACKET->DATA.len, "database", 8); if (!memcmp(ptr + 4, "\x00\x03\x00\x00", 4) && u && d) { /* create the new session */ dissect_create_session(&s, PACKET, DISSECT_CODE(dissector_postgresql)); /* remember the state (used later) */ SAFE_CALLOC(s->data, 1, sizeof(struct postgresql_status)); conn_status = (struct postgresql_status *) s->data; conn_status->status = WAIT_AUTH; /* user is always null-terminated */ strncpy((char*)conn_status->user, (char*)(u + 5), 65); conn_status->user[64] = 0; /* database is always null-terminated */ strncpy((char*)conn_status->database, (char*)(d + 9), 65); conn_status->database[64] = 0; /* save the session */ session_put(s); } } else { conn_status = (struct postgresql_status *) s->data; if (conn_status->status == WAIT_RESPONSE) { /* check for PasswordMessage packet */ if (ptr[0] == 'p' && conn_status->type == MD5) { DEBUG_MSG("\tDissector_postgresql RESPONSE type is MD5"); if(memcmp(ptr + 1, "\x00\x00\x00\x28", 4)) { DEBUG_MSG("\tDissector_postgresql BUG, expected length is 40"); return NULL; } if (PACKET->DATA.len < 40) { DEBUG_MSG("\tDissector_postgresql BUG, expected length is 40"); return NULL; } memcpy(conn_status->hash, ptr + 5 + 3, 32); conn_status->hash[32] = 0; DISSECT_MSG("%s:$postgres$%s*%s*%s:%s:%d\n", conn_status->user, conn_status->user, conn_status->salt, conn_status->hash, ip_addr_ntoa(&PACKET->L3.dst, tmp), ntohs(PACKET->L4.dst)); dissect_wipe_session(PACKET, DISSECT_CODE(dissector_postgresql)); } else if (ptr[0] == 'p' && conn_status->type == CT) { int length; DEBUG_MSG("\tDissector_postgresql RESPONSE type is clear-text!"); GET_ULONG_BE(length, ptr, 1); strncpy((char*)conn_status->password, (char*)(ptr + 5), length - 4); conn_status->password[length - 4] = 0; DISSECT_MSG("PostgreSQL credentials:%s-%d:%s:%s\n", ip_addr_ntoa(&PACKET->L3.dst, tmp), ntohs(PACKET->L4.dst), conn_status->user, conn_status->password); dissect_wipe_session(PACKET, DISSECT_CODE(dissector_postgresql)); } } } } else { /* Packets coming from the server */ if (PACKET->DATA.len < 9) return NULL; dissect_create_ident(&ident, PACKET, DISSECT_CODE(dissector_postgresql)); if (session_get(&s, ident, DISSECT_IDENT_LEN) == ESUCCESS) { conn_status = (struct postgresql_status *) s->data; if (conn_status->status == WAIT_AUTH && ptr[0] == 'R' && !memcmp(ptr + 1, "\x00\x00\x00\x0c", 4) && !memcmp(ptr + 5, "\x00\x00\x00\x05", 4)) { conn_status->status = WAIT_RESPONSE; conn_status->type = MD5; DEBUG_MSG("\tDissector_postgresql AUTH type is MD5"); hex_encode(ptr + 9, 4, conn_status->salt); /* save salt */ } else if (conn_status->status == WAIT_AUTH && ptr[0] == 'R' && !memcmp(ptr + 1, "\x00\x00\x00\x08", 4) && !memcmp(ptr + 5, "\x00\x00\x00\x03", 4)) { conn_status->status = WAIT_RESPONSE; conn_status->type = CT; DEBUG_MSG("\tDissector_postgresql AUTH type is clear-text!"); } } } SAFE_FREE(ident); return NULL; }
CWE-119
179,439
1,205
113723108844572007792416732313477179140
null
null
null
linux
410dd3cf4c9b36f27ed4542ee18b1af5e68645a4
1
parse_rock_ridge_inode_internal(struct iso_directory_record *de, struct inode *inode, int regard_xa) { int symlink_len = 0; int cnt, sig; struct inode *reloc; struct rock_ridge *rr; int rootflag; struct rock_state rs; int ret = 0; if (!ISOFS_SB(inode->i_sb)->s_rock) return 0; init_rock_state(&rs, inode); setup_rock_ridge(de, inode, &rs); if (regard_xa) { rs.chr += 14; rs.len -= 14; if (rs.len < 0) rs.len = 0; } repeat: while (rs.len > 2) { /* There may be one byte for padding somewhere */ rr = (struct rock_ridge *)rs.chr; /* * Ignore rock ridge info if rr->len is out of range, but * don't return -EIO because that would make the file * invisible. */ if (rr->len < 3) goto out; /* Something got screwed up here */ sig = isonum_721(rs.chr); if (rock_check_overflow(&rs, sig)) goto eio; rs.chr += rr->len; rs.len -= rr->len; /* * As above, just ignore the rock ridge info if rr->len * is bogus. */ if (rs.len < 0) goto out; /* Something got screwed up here */ switch (sig) { #ifndef CONFIG_ZISOFS /* No flag for SF or ZF */ case SIG('R', 'R'): if ((rr->u.RR.flags[0] & (RR_PX | RR_TF | RR_SL | RR_CL)) == 0) goto out; break; #endif case SIG('S', 'P'): if (check_sp(rr, inode)) goto out; break; case SIG('C', 'E'): rs.cont_extent = isonum_733(rr->u.CE.extent); rs.cont_offset = isonum_733(rr->u.CE.offset); rs.cont_size = isonum_733(rr->u.CE.size); break; case SIG('E', 'R'): ISOFS_SB(inode->i_sb)->s_rock = 1; printk(KERN_DEBUG "ISO 9660 Extensions: "); { int p; for (p = 0; p < rr->u.ER.len_id; p++) printk("%c", rr->u.ER.data[p]); } printk("\n"); break; case SIG('P', 'X'): inode->i_mode = isonum_733(rr->u.PX.mode); set_nlink(inode, isonum_733(rr->u.PX.n_links)); i_uid_write(inode, isonum_733(rr->u.PX.uid)); i_gid_write(inode, isonum_733(rr->u.PX.gid)); break; case SIG('P', 'N'): { int high, low; high = isonum_733(rr->u.PN.dev_high); low = isonum_733(rr->u.PN.dev_low); /* * The Rock Ridge standard specifies that if * sizeof(dev_t) <= 4, then the high field is * unused, and the device number is completely * stored in the low field. Some writers may * ignore this subtlety, * and as a result we test to see if the entire * device number is * stored in the low field, and use that. */ if ((low & ~0xff) && high == 0) { inode->i_rdev = MKDEV(low >> 8, low & 0xff); } else { inode->i_rdev = MKDEV(high, low); } } break; case SIG('T', 'F'): /* * Some RRIP writers incorrectly place ctime in the * TF_CREATE field. Try to handle this correctly for * either case. */ /* Rock ridge never appears on a High Sierra disk */ cnt = 0; if (rr->u.TF.flags & TF_CREATE) { inode->i_ctime.tv_sec = iso_date(rr->u.TF.times[cnt++].time, 0); inode->i_ctime.tv_nsec = 0; } if (rr->u.TF.flags & TF_MODIFY) { inode->i_mtime.tv_sec = iso_date(rr->u.TF.times[cnt++].time, 0); inode->i_mtime.tv_nsec = 0; } if (rr->u.TF.flags & TF_ACCESS) { inode->i_atime.tv_sec = iso_date(rr->u.TF.times[cnt++].time, 0); inode->i_atime.tv_nsec = 0; } if (rr->u.TF.flags & TF_ATTRIBUTES) { inode->i_ctime.tv_sec = iso_date(rr->u.TF.times[cnt++].time, 0); inode->i_ctime.tv_nsec = 0; } break; case SIG('S', 'L'): { int slen; struct SL_component *slp; struct SL_component *oldslp; slen = rr->len - 5; slp = &rr->u.SL.link; inode->i_size = symlink_len; while (slen > 1) { rootflag = 0; switch (slp->flags & ~1) { case 0: inode->i_size += slp->len; break; case 2: inode->i_size += 1; break; case 4: inode->i_size += 2; break; case 8: rootflag = 1; inode->i_size += 1; break; default: printk("Symlink component flag " "not implemented\n"); } slen -= slp->len + 2; oldslp = slp; slp = (struct SL_component *) (((char *)slp) + slp->len + 2); if (slen < 2) { if (((rr->u.SL. flags & 1) != 0) && ((oldslp-> flags & 1) == 0)) inode->i_size += 1; break; } /* * If this component record isn't * continued, then append a '/'. */ if (!rootflag && (oldslp->flags & 1) == 0) inode->i_size += 1; } } symlink_len = inode->i_size; break; case SIG('R', 'E'): printk(KERN_WARNING "Attempt to read inode for " "relocated directory\n"); goto out; case SIG('C', 'L'): ISOFS_I(inode)->i_first_extent = isonum_733(rr->u.CL.location); reloc = isofs_iget(inode->i_sb, ISOFS_I(inode)->i_first_extent, 0); if (IS_ERR(reloc)) { ret = PTR_ERR(reloc); goto out; } inode->i_mode = reloc->i_mode; set_nlink(inode, reloc->i_nlink); inode->i_uid = reloc->i_uid; inode->i_gid = reloc->i_gid; inode->i_rdev = reloc->i_rdev; inode->i_size = reloc->i_size; inode->i_blocks = reloc->i_blocks; inode->i_atime = reloc->i_atime; inode->i_ctime = reloc->i_ctime; inode->i_mtime = reloc->i_mtime; iput(reloc); break; #ifdef CONFIG_ZISOFS case SIG('Z', 'F'): { int algo; if (ISOFS_SB(inode->i_sb)->s_nocompress) break; algo = isonum_721(rr->u.ZF.algorithm); if (algo == SIG('p', 'z')) { int block_shift = isonum_711(&rr->u.ZF.parms[1]); if (block_shift > 17) { printk(KERN_WARNING "isofs: " "Can't handle ZF block " "size of 2^%d\n", block_shift); } else { /* * Note: we don't change * i_blocks here */ ISOFS_I(inode)->i_file_format = isofs_file_compressed; /* * Parameters to compression * algorithm (header size, * block size) */ ISOFS_I(inode)->i_format_parm[0] = isonum_711(&rr->u.ZF.parms[0]); ISOFS_I(inode)->i_format_parm[1] = isonum_711(&rr->u.ZF.parms[1]); inode->i_size = isonum_733(rr->u.ZF. real_size); } } else { printk(KERN_WARNING "isofs: Unknown ZF compression " "algorithm: %c%c\n", rr->u.ZF.algorithm[0], rr->u.ZF.algorithm[1]); } break; } #endif default: break; } } ret = rock_continue(&rs); if (ret == 0) goto repeat; if (ret == 1) ret = 0; out: kfree(rs.buffer); return ret; eio: ret = -EIO; goto out; }
CWE-20
179,443
1,209
46643672205519704191602265138531527274
null
null
null
krb5
af0ed4df4dfae762ab5fb605f5a0c8f59cb4f6ca
1
kadm5_randkey_principal_3(void *server_handle, krb5_principal principal, krb5_boolean keepold, int n_ks_tuple, krb5_key_salt_tuple *ks_tuple, krb5_keyblock **keyblocks, int *n_keys) { krb5_db_entry *kdb; osa_princ_ent_rec adb; krb5_int32 now; kadm5_policy_ent_rec pol; int ret, last_pwd; krb5_boolean have_pol = FALSE; kadm5_server_handle_t handle = server_handle; krb5_keyblock *act_mkey; krb5_kvno act_kvno; int new_n_ks_tuple = 0; krb5_key_salt_tuple *new_ks_tuple = NULL; if (keyblocks) *keyblocks = NULL; CHECK_HANDLE(server_handle); krb5_clear_error_message(handle->context); if (principal == NULL) return EINVAL; if ((ret = kdb_get_entry(handle, principal, &kdb, &adb))) return(ret); ret = apply_keysalt_policy(handle, adb.policy, n_ks_tuple, ks_tuple, &new_n_ks_tuple, &new_ks_tuple); if (ret) goto done; if (krb5_principal_compare(handle->context, principal, hist_princ)) { /* If changing the history entry, the new entry must have exactly one * key. */ if (keepold) return KADM5_PROTECT_PRINCIPAL; new_n_ks_tuple = 1; } ret = kdb_get_active_mkey(handle, &act_kvno, &act_mkey); if (ret) goto done; ret = krb5_dbe_crk(handle->context, act_mkey, new_ks_tuple, new_n_ks_tuple, keepold, kdb); if (ret) goto done; ret = krb5_dbe_update_mkvno(handle->context, kdb, act_kvno); if (ret) goto done; kdb->attributes &= ~KRB5_KDB_REQUIRES_PWCHANGE; ret = krb5_timeofday(handle->context, &now); if (ret) goto done; if ((adb.aux_attributes & KADM5_POLICY)) { ret = get_policy(handle, adb.policy, &pol, &have_pol); if (ret) goto done; } if (have_pol) { ret = krb5_dbe_lookup_last_pwd_change(handle->context, kdb, &last_pwd); if (ret) goto done; #if 0 /* * The spec says this check is overridden if the caller has * modify privilege. The admin server therefore makes this * check itself (in chpass_principal_wrapper, misc.c). A * local caller implicitly has all authorization bits. */ if((now - last_pwd) < pol.pw_min_life && !(kdb->attributes & KRB5_KDB_REQUIRES_PWCHANGE)) { ret = KADM5_PASS_TOOSOON; goto done; } #endif if (pol.pw_max_life) kdb->pw_expiration = now + pol.pw_max_life; else kdb->pw_expiration = 0; } else { kdb->pw_expiration = 0; } ret = krb5_dbe_update_last_pwd_change(handle->context, kdb, now); if (ret) goto done; /* unlock principal on this KDC */ kdb->fail_auth_count = 0; if (keyblocks) { ret = decrypt_key_data(handle->context, kdb->n_key_data, kdb->key_data, keyblocks, n_keys); if (ret) goto done; } /* key data changed, let the database provider know */ kdb->mask = KADM5_KEY_DATA | KADM5_FAIL_AUTH_COUNT; /* | KADM5_RANDKEY_USED */; ret = k5_kadm5_hook_chpass(handle->context, handle->hook_handles, KADM5_HOOK_STAGE_PRECOMMIT, principal, keepold, new_n_ks_tuple, new_ks_tuple, NULL); if (ret) goto done; if ((ret = kdb_put_entry(handle, kdb, &adb))) goto done; (void) k5_kadm5_hook_chpass(handle->context, handle->hook_handles, KADM5_HOOK_STAGE_POSTCOMMIT, principal, keepold, new_n_ks_tuple, new_ks_tuple, NULL); ret = KADM5_OK; done: free(new_ks_tuple); kdb_free_entry(handle, kdb, &adb); if (have_pol) kadm5_free_policy_ent(handle->lhandle, &pol); return ret; }
CWE-255
179,447
1,211
147608648129973756964624859682015241078
null
null
null
linux
9566d6742852c527bf5af38af5cbb878dad75705
1
static int do_remount(struct path *path, int flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; /* Don't allow changing of locked mnt flags. * * No locks need to be held here while testing the various * MNT_LOCK flags because those flags can never be cleared * once they are set. */ if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && !(mnt_flags & MNT_READONLY)) { return -EPERM; } err = security_sb_remount(sb, data); if (err) return err; down_write(&sb->s_umount); if (flags & MS_BIND) err = change_mount_flags(path->mnt, flags); else if (!capable(CAP_SYS_ADMIN)) err = -EPERM; else err = do_remount_sb(sb, flags, data, 0); if (!err) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } up_write(&sb->s_umount); return err; }
CWE-264
179,454
1,217
67643344520913295248862751136888291968
null
null
null
linux
a6138db815df5ee542d848318e5dae681590fccd
1
static int do_remount(struct path *path, int flags, int mnt_flags, void *data) { int err; struct super_block *sb = path->mnt->mnt_sb; struct mount *mnt = real_mount(path->mnt); if (!check_mnt(mnt)) return -EINVAL; if (path->dentry != path->mnt->mnt_root) return -EINVAL; err = security_sb_remount(sb, data); if (err) return err; down_write(&sb->s_umount); if (flags & MS_BIND) err = change_mount_flags(path->mnt, flags); else if (!capable(CAP_SYS_ADMIN)) err = -EPERM; else err = do_remount_sb(sb, flags, data, 0); if (!err) { lock_mount_hash(); mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; mnt->mnt.mnt_flags = mnt_flags; touch_mnt_namespace(mnt->mnt_ns); unlock_mount_hash(); } up_write(&sb->s_umount); return err; }
CWE-264
179,455
1,218
251245953508821352743020493309298185926
null
null
null
linux
1be9a950c646c9092fb3618197f7b6bfb50e82aa
1
void sctp_assoc_update(struct sctp_association *asoc, struct sctp_association *new) { struct sctp_transport *trans; struct list_head *pos, *temp; /* Copy in new parameters of peer. */ asoc->c = new->c; asoc->peer.rwnd = new->peer.rwnd; asoc->peer.sack_needed = new->peer.sack_needed; asoc->peer.i = new->peer.i; sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, asoc->peer.i.initial_tsn, GFP_ATOMIC); /* Remove any peer addresses not present in the new association. */ list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { trans = list_entry(pos, struct sctp_transport, transports); if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { sctp_assoc_rm_peer(asoc, trans); continue; } if (asoc->state >= SCTP_STATE_ESTABLISHED) sctp_transport_reset(trans); } /* If the case is A (association restart), use * initial_tsn as next_tsn. If the case is B, use * current next_tsn in case data sent to peer * has been discarded and needs retransmission. */ if (asoc->state >= SCTP_STATE_ESTABLISHED) { asoc->next_tsn = new->next_tsn; asoc->ctsn_ack_point = new->ctsn_ack_point; asoc->adv_peer_ack_point = new->adv_peer_ack_point; /* Reinitialize SSN for both local streams * and peer's streams. */ sctp_ssnmap_clear(asoc->ssnmap); /* Flush the ULP reassembly and ordered queue. * Any data there will now be stale and will * cause problems. */ sctp_ulpq_flush(&asoc->ulpq); /* reset the overall association error count so * that the restarted association doesn't get torn * down on the next retransmission timer. */ asoc->overall_error_count = 0; } else { /* Add any peer addresses from the new association. */ list_for_each_entry(trans, &new->peer.transport_addr_list, transports) { if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) sctp_assoc_add_peer(asoc, &trans->ipaddr, GFP_ATOMIC, trans->state); } asoc->ctsn_ack_point = asoc->next_tsn - 1; asoc->adv_peer_ack_point = asoc->ctsn_ack_point; if (!asoc->ssnmap) { /* Move the ssnmap. */ asoc->ssnmap = new->ssnmap; new->ssnmap = NULL; } if (!asoc->assoc_id) { /* get a new association id since we don't have one * yet. */ sctp_assoc_set_id(asoc, GFP_ATOMIC); } } /* SCTP-AUTH: Save the peer parameters from the new associations * and also move the association shared keys over */ kfree(asoc->peer.peer_random); asoc->peer.peer_random = new->peer.peer_random; new->peer.peer_random = NULL; kfree(asoc->peer.peer_chunks); asoc->peer.peer_chunks = new->peer.peer_chunks; new->peer.peer_chunks = NULL; kfree(asoc->peer.peer_hmacs); asoc->peer.peer_hmacs = new->peer.peer_hmacs; new->peer.peer_hmacs = NULL; sctp_auth_key_put(asoc->asoc_shared_key); sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); }
179,456
1,219
268873015146939465230572027615388419429
null
null
null
linux
295dc39d941dc2ae53d5c170365af4c9d5c16212
1
mountpoint_last(struct nameidata *nd, struct path *path) { int error = 0; struct dentry *dentry; struct dentry *dir = nd->path.dentry; /* If we're in rcuwalk, drop out of it to handle last component */ if (nd->flags & LOOKUP_RCU) { if (unlazy_walk(nd, NULL)) { error = -ECHILD; goto out; } } nd->flags &= ~LOOKUP_PARENT; if (unlikely(nd->last_type != LAST_NORM)) { error = handle_dots(nd, nd->last_type); if (error) goto out; dentry = dget(nd->path.dentry); goto done; } mutex_lock(&dir->d_inode->i_mutex); dentry = d_lookup(dir, &nd->last); if (!dentry) { /* * No cached dentry. Mounted dentries are pinned in the cache, * so that means that this dentry is probably a symlink or the * path doesn't actually point to a mounted dentry. */ dentry = d_alloc(dir, &nd->last); if (!dentry) { error = -ENOMEM; mutex_unlock(&dir->d_inode->i_mutex); goto out; } dentry = lookup_real(dir->d_inode, dentry, nd->flags); error = PTR_ERR(dentry); if (IS_ERR(dentry)) { mutex_unlock(&dir->d_inode->i_mutex); goto out; } } mutex_unlock(&dir->d_inode->i_mutex); done: if (!dentry->d_inode || d_is_negative(dentry)) { error = -ENOENT; dput(dentry); goto out; } path->dentry = dentry; path->mnt = mntget(nd->path.mnt); if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) return 1; follow_mount(path); error = 0; out: terminate_walk(nd); return error; }
CWE-59
179,457
1,220
289527718022341317804957843288422047472
null
null
null
linux
d3217b15a19a4779c39b212358a5c71d725822ee
1
void sctp_association_free(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; struct sctp_transport *transport; struct list_head *pos, *temp; int i; /* Only real associations count against the endpoint, so * don't bother for if this is a temporary association. */ if (!asoc->temp) { list_del(&asoc->asocs); /* Decrement the backlog value for a TCP-style listening * socket. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) sk->sk_ack_backlog--; } /* Mark as dead, so other users can know this structure is * going away. */ asoc->base.dead = true; /* Dispose of any data lying around in the outqueue. */ sctp_outq_free(&asoc->outqueue); /* Dispose of any pending messages for the upper layer. */ sctp_ulpq_free(&asoc->ulpq); /* Dispose of any pending chunks on the inqueue. */ sctp_inq_free(&asoc->base.inqueue); sctp_tsnmap_free(&asoc->peer.tsn_map); /* Free ssnmap storage. */ sctp_ssnmap_free(asoc->ssnmap); /* Clean up the bound address list. */ sctp_bind_addr_free(&asoc->base.bind_addr); /* Do we need to go through all of our timers and * delete them? To be safe we will try to delete all, but we * should be able to go through and make a guess based * on our state. */ for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { if (del_timer(&asoc->timers[i])) sctp_association_put(asoc); } /* Free peer's cached cookie. */ kfree(asoc->peer.cookie); kfree(asoc->peer.peer_random); kfree(asoc->peer.peer_chunks); kfree(asoc->peer.peer_hmacs); /* Release the transport structures. */ list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { transport = list_entry(pos, struct sctp_transport, transports); list_del_rcu(pos); sctp_transport_free(transport); } asoc->peer.transport_count = 0; sctp_asconf_queue_teardown(asoc); /* Free pending address space being deleted */ if (asoc->asconf_addr_del_pending != NULL) kfree(asoc->asconf_addr_del_pending); /* AUTH - Free the endpoint shared keys */ sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); /* AUTH - Free the association shared key */ sctp_auth_key_put(asoc->asoc_shared_key); sctp_association_put(asoc); }
CWE-20
179,461
1,223
307155962389758075381537374371474956716
null
null
null
linux
ac902c112d90a89e59916f751c2745f4dbdbb4bd
1
static bool snd_ctl_remove_numid_conflict(struct snd_card *card, unsigned int count) { struct snd_kcontrol *kctl; list_for_each_entry(kctl, &card->controls, list) { if (kctl->id.numid < card->last_numid + 1 + count && kctl->id.numid + kctl->count > card->last_numid + 1) { card->last_numid = kctl->id.numid + kctl->count - 1; return true; } } return false; }
CWE-189
179,462
1,224
82969020191262428727479609436945294087
null
null
null
linux
82262a46627bebb0febcc26664746c25cef08563
1
static int snd_ctl_elem_add(struct snd_ctl_file *file, struct snd_ctl_elem_info *info, int replace) { struct snd_card *card = file->card; struct snd_kcontrol kctl, *_kctl; unsigned int access; long private_size; struct user_element *ue; int idx, err; if (!replace && card->user_ctl_count >= MAX_USER_CONTROLS) return -ENOMEM; if (info->count < 1) return -EINVAL; access = info->access == 0 ? SNDRV_CTL_ELEM_ACCESS_READWRITE : (info->access & (SNDRV_CTL_ELEM_ACCESS_READWRITE| SNDRV_CTL_ELEM_ACCESS_INACTIVE| SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE)); info->id.numid = 0; memset(&kctl, 0, sizeof(kctl)); down_write(&card->controls_rwsem); _kctl = snd_ctl_find_id(card, &info->id); err = 0; if (_kctl) { if (replace) err = snd_ctl_remove(card, _kctl); else err = -EBUSY; } else { if (replace) err = -ENOENT; } up_write(&card->controls_rwsem); if (err < 0) return err; memcpy(&kctl.id, &info->id, sizeof(info->id)); kctl.count = info->owner ? info->owner : 1; access |= SNDRV_CTL_ELEM_ACCESS_USER; if (info->type == SNDRV_CTL_ELEM_TYPE_ENUMERATED) kctl.info = snd_ctl_elem_user_enum_info; else kctl.info = snd_ctl_elem_user_info; if (access & SNDRV_CTL_ELEM_ACCESS_READ) kctl.get = snd_ctl_elem_user_get; if (access & SNDRV_CTL_ELEM_ACCESS_WRITE) kctl.put = snd_ctl_elem_user_put; if (access & SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE) { kctl.tlv.c = snd_ctl_elem_user_tlv; access |= SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } switch (info->type) { case SNDRV_CTL_ELEM_TYPE_BOOLEAN: case SNDRV_CTL_ELEM_TYPE_INTEGER: private_size = sizeof(long); if (info->count > 128) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_INTEGER64: private_size = sizeof(long long); if (info->count > 64) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_ENUMERATED: private_size = sizeof(unsigned int); if (info->count > 128 || info->value.enumerated.items == 0) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_BYTES: private_size = sizeof(unsigned char); if (info->count > 512) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_IEC958: private_size = sizeof(struct snd_aes_iec958); if (info->count != 1) return -EINVAL; break; default: return -EINVAL; } private_size *= info->count; ue = kzalloc(sizeof(struct user_element) + private_size, GFP_KERNEL); if (ue == NULL) return -ENOMEM; ue->card = card; ue->info = *info; ue->info.access = 0; ue->elem_data = (char *)ue + sizeof(*ue); ue->elem_data_size = private_size; if (ue->info.type == SNDRV_CTL_ELEM_TYPE_ENUMERATED) { err = snd_ctl_elem_init_enum_names(ue); if (err < 0) { kfree(ue); return err; } } kctl.private_free = snd_ctl_elem_user_free; _kctl = snd_ctl_new(&kctl, access); if (_kctl == NULL) { kfree(ue->priv_data); kfree(ue); return -ENOMEM; } _kctl->private_data = ue; for (idx = 0; idx < _kctl->count; idx++) _kctl->vd[idx].owner = file; err = snd_ctl_add(card, _kctl); if (err < 0) return err; down_write(&card->controls_rwsem); card->user_ctl_count++; up_write(&card->controls_rwsem); return 0; }
CWE-189
179,463
1,225
104448511318866041989201295871870924377
null
null
null
linux
206204a1162b995e2185275167b22468c00d6b36
1
static int lz4_uncompress(const char *source, char *dest, int osize) { const BYTE *ip = (const BYTE *) source; const BYTE *ref; BYTE *op = (BYTE *) dest; BYTE * const oend = op + osize; BYTE *cpy; unsigned token; size_t length; size_t dec32table[] = {0, 3, 2, 3, 0, 0, 0, 0}; #if LZ4_ARCH64 size_t dec64table[] = {0, 0, 0, -1, 0, 1, 2, 3}; #endif while (1) { /* get runlength */ token = *ip++; length = (token >> ML_BITS); if (length == RUN_MASK) { size_t len; len = *ip++; for (; len == 255; length += 255) len = *ip++; length += len; } /* copy literals */ cpy = op + length; if (unlikely(cpy > oend - COPYLENGTH)) { /* * Error: not enough place for another match * (min 4) + 5 literals */ if (cpy != oend) goto _output_error; memcpy(op, ip, length); ip += length; break; /* EOF */ } LZ4_WILDCOPY(ip, op, cpy); ip -= (op - cpy); op = cpy; /* get offset */ LZ4_READ_LITTLEENDIAN_16(ref, cpy, ip); ip += 2; /* Error: offset create reference outside destination buffer */ if (unlikely(ref < (BYTE *const) dest)) goto _output_error; /* get matchlength */ length = token & ML_MASK; if (length == ML_MASK) { for (; *ip == 255; length += 255) ip++; length += *ip++; } /* copy repeated sequence */ if (unlikely((op - ref) < STEPSIZE)) { #if LZ4_ARCH64 size_t dec64 = dec64table[op - ref]; #else const int dec64 = 0; #endif op[0] = ref[0]; op[1] = ref[1]; op[2] = ref[2]; op[3] = ref[3]; op += 4; ref += 4; ref -= dec32table[op-ref]; PUT4(ref, op); op += STEPSIZE - 4; ref -= dec64; } else { LZ4_COPYSTEP(ref, op); } cpy = op + length - (STEPSIZE - 4); if (cpy > (oend - COPYLENGTH)) { /* Error: request to write beyond destination buffer */ if (cpy > oend) goto _output_error; LZ4_SECURECOPY(ref, op, (oend - COPYLENGTH)); while (op < cpy) *op++ = *ref++; op = cpy; /* * Check EOF (should never happen, since last 5 bytes * are supposed to be literals) */ if (op == oend) goto _output_error; continue; } LZ4_SECURECOPY(ref, op, cpy); op = cpy; /* correction */ } /* end of decoding */ return (int) (((char *)ip) - source); /* write overflow error detected */ _output_error: return (int) (-(((char *)ip) - source)); }
CWE-20
179,473
1,233
88608013649608299301297380118665587051
null
null
null
linux
206a81c18401c0cde6e579164f752c4b147324ce
1
int lzo1x_decompress_safe(const unsigned char *in, size_t in_len, unsigned char *out, size_t *out_len) { unsigned char *op; const unsigned char *ip; size_t t, next; size_t state = 0; const unsigned char *m_pos; const unsigned char * const ip_end = in + in_len; unsigned char * const op_end = out + *out_len; op = out; ip = in; if (unlikely(in_len < 3)) goto input_overrun; if (*ip > 17) { t = *ip++ - 17; if (t < 4) { next = t; goto match_next; } goto copy_literal_run; } for (;;) { t = *ip++; if (t < 16) { if (likely(state == 0)) { if (unlikely(t == 0)) { while (unlikely(*ip == 0)) { t += 255; ip++; NEED_IP(1); } t += 15 + *ip++; } t += 3; copy_literal_run: #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (likely(HAVE_IP(t + 15) && HAVE_OP(t + 15))) { const unsigned char *ie = ip + t; unsigned char *oe = op + t; do { COPY8(op, ip); op += 8; ip += 8; COPY8(op, ip); op += 8; ip += 8; } while (ip < ie); ip = ie; op = oe; } else #endif { NEED_OP(t); NEED_IP(t + 3); do { *op++ = *ip++; } while (--t > 0); } state = 4; continue; } else if (state != 4) { next = t & 3; m_pos = op - 1; m_pos -= t >> 2; m_pos -= *ip++ << 2; TEST_LB(m_pos); NEED_OP(2); op[0] = m_pos[0]; op[1] = m_pos[1]; op += 2; goto match_next; } else { next = t & 3; m_pos = op - (1 + M2_MAX_OFFSET); m_pos -= t >> 2; m_pos -= *ip++ << 2; t = 3; } } else if (t >= 64) { next = t & 3; m_pos = op - 1; m_pos -= (t >> 2) & 7; m_pos -= *ip++ << 3; t = (t >> 5) - 1 + (3 - 1); } else if (t >= 32) { t = (t & 31) + (3 - 1); if (unlikely(t == 2)) { while (unlikely(*ip == 0)) { t += 255; ip++; NEED_IP(1); } t += 31 + *ip++; NEED_IP(2); } m_pos = op - 1; next = get_unaligned_le16(ip); ip += 2; m_pos -= next >> 2; next &= 3; } else { m_pos = op; m_pos -= (t & 8) << 11; t = (t & 7) + (3 - 1); if (unlikely(t == 2)) { while (unlikely(*ip == 0)) { t += 255; ip++; NEED_IP(1); } t += 7 + *ip++; NEED_IP(2); } next = get_unaligned_le16(ip); ip += 2; m_pos -= next >> 2; next &= 3; if (m_pos == op) goto eof_found; m_pos -= 0x4000; } TEST_LB(m_pos); #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (op - m_pos >= 8) { unsigned char *oe = op + t; if (likely(HAVE_OP(t + 15))) { do { COPY8(op, m_pos); op += 8; m_pos += 8; COPY8(op, m_pos); op += 8; m_pos += 8; } while (op < oe); op = oe; if (HAVE_IP(6)) { state = next; COPY4(op, ip); op += next; ip += next; continue; } } else { NEED_OP(t); do { *op++ = *m_pos++; } while (op < oe); } } else #endif { unsigned char *oe = op + t; NEED_OP(t); op[0] = m_pos[0]; op[1] = m_pos[1]; op += 2; m_pos += 2; do { *op++ = *m_pos++; } while (op < oe); } match_next: state = next; t = next; #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) if (likely(HAVE_IP(6) && HAVE_OP(4))) { COPY4(op, ip); op += t; ip += t; } else #endif { NEED_IP(t + 3); NEED_OP(t); while (t > 0) { *op++ = *ip++; t--; } } } eof_found: *out_len = op - out; return (t != 3 ? LZO_E_ERROR : ip == ip_end ? LZO_E_OK : ip < ip_end ? LZO_E_INPUT_NOT_CONSUMED : LZO_E_INPUT_OVERRUN); input_overrun: *out_len = op - out; return LZO_E_INPUT_OVERRUN; output_overrun: *out_len = op - out; return LZO_E_OUTPUT_OVERRUN; lookbehind_overrun: *out_len = op - out; return LZO_E_LOOKBEHIND_OVERRUN; }
CWE-119
179,474
1,234
274406254790435141604534304938072258803
null
null
null
sgminer
910c36089940e81fb85c65b8e63dcd2fac71470c
1
static bool parse_notify(struct pool *pool, json_t *val) { char *job_id, *prev_hash, *coinbase1, *coinbase2, *bbversion, *nbit, *ntime, *header; size_t cb1_len, cb2_len, alloc_len; unsigned char *cb1, *cb2; bool clean, ret = false; int merkles, i; json_t *arr; arr = json_array_get(val, 4); if (!arr || !json_is_array(arr)) goto out; merkles = json_array_size(arr); job_id = json_array_string(val, 0); prev_hash = json_array_string(val, 1); coinbase1 = json_array_string(val, 2); coinbase2 = json_array_string(val, 3); bbversion = json_array_string(val, 5); nbit = json_array_string(val, 6); ntime = json_array_string(val, 7); clean = json_is_true(json_array_get(val, 8)); if (!job_id || !prev_hash || !coinbase1 || !coinbase2 || !bbversion || !nbit || !ntime) { /* Annoying but we must not leak memory */ if (job_id) free(job_id); if (prev_hash) free(prev_hash); if (coinbase1) free(coinbase1); if (coinbase2) free(coinbase2); if (bbversion) free(bbversion); if (nbit) free(nbit); if (ntime) free(ntime); goto out; } cg_wlock(&pool->data_lock); free(pool->swork.job_id); free(pool->swork.prev_hash); free(pool->swork.bbversion); free(pool->swork.nbit); free(pool->swork.ntime); pool->swork.job_id = job_id; pool->swork.prev_hash = prev_hash; cb1_len = strlen(coinbase1) / 2; cb2_len = strlen(coinbase2) / 2; pool->swork.bbversion = bbversion; pool->swork.nbit = nbit; pool->swork.ntime = ntime; pool->swork.clean = clean; alloc_len = pool->swork.cb_len = cb1_len + pool->n1_len + pool->n2size + cb2_len; pool->nonce2_offset = cb1_len + pool->n1_len; for (i = 0; i < pool->swork.merkles; i++) free(pool->swork.merkle_bin[i]); if (merkles) { pool->swork.merkle_bin = (unsigned char **)realloc(pool->swork.merkle_bin, sizeof(char *) * merkles + 1); for (i = 0; i < merkles; i++) { char *merkle = json_array_string(arr, i); pool->swork.merkle_bin[i] = (unsigned char *)malloc(32); if (unlikely(!pool->swork.merkle_bin[i])) quit(1, "Failed to malloc pool swork merkle_bin"); hex2bin(pool->swork.merkle_bin[i], merkle, 32); free(merkle); } } pool->swork.merkles = merkles; if (clean) pool->nonce2 = 0; pool->merkle_offset = strlen(pool->swork.bbversion) + strlen(pool->swork.prev_hash); pool->swork.header_len = pool->merkle_offset + /* merkle_hash */ 32 + strlen(pool->swork.ntime) + strlen(pool->swork.nbit) + /* nonce */ 8 + /* workpadding */ 96; pool->merkle_offset /= 2; pool->swork.header_len = pool->swork.header_len * 2 + 1; align_len(&pool->swork.header_len); header = (char *)alloca(pool->swork.header_len); snprintf(header, pool->swork.header_len, "%s%s%s%s%s%s%s", pool->swork.bbversion, pool->swork.prev_hash, blank_merkel, pool->swork.ntime, pool->swork.nbit, "00000000", /* nonce */ workpadding); if (unlikely(!hex2bin(pool->header_bin, header, 128))) quit(1, "Failed to convert header to header_bin in parse_notify"); cb1 = (unsigned char *)calloc(cb1_len, 1); if (unlikely(!cb1)) quithere(1, "Failed to calloc cb1 in parse_notify"); hex2bin(cb1, coinbase1, cb1_len); cb2 = (unsigned char *)calloc(cb2_len, 1); if (unlikely(!cb2)) quithere(1, "Failed to calloc cb2 in parse_notify"); hex2bin(cb2, coinbase2, cb2_len); free(pool->coinbase); align_len(&alloc_len); pool->coinbase = (unsigned char *)calloc(alloc_len, 1); if (unlikely(!pool->coinbase)) quit(1, "Failed to calloc pool coinbase in parse_notify"); memcpy(pool->coinbase, cb1, cb1_len); memcpy(pool->coinbase + cb1_len, pool->nonce1bin, pool->n1_len); memcpy(pool->coinbase + cb1_len + pool->n1_len + pool->n2size, cb2, cb2_len); cg_wunlock(&pool->data_lock); if (opt_protocol) { applog(LOG_DEBUG, "job_id: %s", job_id); applog(LOG_DEBUG, "prev_hash: %s", prev_hash); applog(LOG_DEBUG, "coinbase1: %s", coinbase1); applog(LOG_DEBUG, "coinbase2: %s", coinbase2); applog(LOG_DEBUG, "bbversion: %s", bbversion); applog(LOG_DEBUG, "nbit: %s", nbit); applog(LOG_DEBUG, "ntime: %s", ntime); applog(LOG_DEBUG, "clean: %s", clean ? "yes" : "no"); } free(coinbase1); free(coinbase2); free(cb1); free(cb2); /* A notify message is the closest stratum gets to a getwork */ pool->getwork_requested++; total_getworks++; ret = true; if (pool == current_pool()) opt_work_update = true; out: return ret; }
CWE-20
179,475
1,235
317403549402048861780792420180268215135
null
null
null
cgminer
e1c5050734123973b99d181c45e74b2cbb00272e
1
bool extract_sockaddr(char *url, char **sockaddr_url, char **sockaddr_port) { char *url_begin, *url_end, *ipv6_begin, *ipv6_end, *port_start = NULL; char url_address[256], port[6]; int url_len, port_len = 0; *sockaddr_url = url; url_begin = strstr(url, "//"); if (!url_begin) url_begin = url; else url_begin += 2; /* Look for numeric ipv6 entries */ ipv6_begin = strstr(url_begin, "["); ipv6_end = strstr(url_begin, "]"); if (ipv6_begin && ipv6_end && ipv6_end > ipv6_begin) url_end = strstr(ipv6_end, ":"); else url_end = strstr(url_begin, ":"); if (url_end) { url_len = url_end - url_begin; port_len = strlen(url_begin) - url_len - 1; if (port_len < 1) return false; port_start = url_end + 1; } else url_len = strlen(url_begin); if (url_len < 1) return false; sprintf(url_address, "%.*s", url_len, url_begin); if (port_len) { char *slash; snprintf(port, 6, "%.*s", port_len, port_start); slash = strchr(port, '/'); if (slash) *slash = '\0'; } else strcpy(port, "80"); *sockaddr_port = strdup(port); *sockaddr_url = strdup(url_address); return true; }
CWE-119
179,476
1,236
268425937881460227077617707628391335121
null
null
null
cgminer
e1c5050734123973b99d181c45e74b2cbb00272e
1
static bool parse_notify(struct pool *pool, json_t *val) { char *job_id, *prev_hash, *coinbase1, *coinbase2, *bbversion, *nbit, *ntime, header[228]; unsigned char *cb1 = NULL, *cb2 = NULL; size_t cb1_len, cb2_len, alloc_len; bool clean, ret = false; int merkles, i; json_t *arr; arr = json_array_get(val, 4); if (!arr || !json_is_array(arr)) goto out; merkles = json_array_size(arr); job_id = json_array_string(val, 0); prev_hash = __json_array_string(val, 1); coinbase1 = json_array_string(val, 2); coinbase2 = json_array_string(val, 3); bbversion = __json_array_string(val, 5); nbit = __json_array_string(val, 6); ntime = __json_array_string(val, 7); clean = json_is_true(json_array_get(val, 8)); if (!job_id || !prev_hash || !coinbase1 || !coinbase2 || !bbversion || !nbit || !ntime) { /* Annoying but we must not leak memory */ if (job_id) free(job_id); if (coinbase1) free(coinbase1); if (coinbase2) free(coinbase2); goto out; } cg_wlock(&pool->data_lock); free(pool->swork.job_id); pool->swork.job_id = job_id; snprintf(pool->prev_hash, 65, "%s", prev_hash); cb1_len = strlen(coinbase1) / 2; cb2_len = strlen(coinbase2) / 2; snprintf(pool->bbversion, 9, "%s", bbversion); snprintf(pool->nbit, 9, "%s", nbit); snprintf(pool->ntime, 9, "%s", ntime); pool->swork.clean = clean; alloc_len = pool->coinbase_len = cb1_len + pool->n1_len + pool->n2size + cb2_len; pool->nonce2_offset = cb1_len + pool->n1_len; for (i = 0; i < pool->merkles; i++) free(pool->swork.merkle_bin[i]); if (merkles) { pool->swork.merkle_bin = realloc(pool->swork.merkle_bin, sizeof(char *) * merkles + 1); for (i = 0; i < merkles; i++) { char *merkle = json_array_string(arr, i); pool->swork.merkle_bin[i] = malloc(32); if (unlikely(!pool->swork.merkle_bin[i])) quit(1, "Failed to malloc pool swork merkle_bin"); if (opt_protocol) applog(LOG_DEBUG, "merkle %d: %s", i, merkle); ret = hex2bin(pool->swork.merkle_bin[i], merkle, 32); free(merkle); if (unlikely(!ret)) { applog(LOG_ERR, "Failed to convert merkle to merkle_bin in parse_notify"); goto out_unlock; } } } pool->merkles = merkles; if (clean) pool->nonce2 = 0; #if 0 header_len = strlen(pool->bbversion) + strlen(pool->prev_hash); /* merkle_hash */ 32 + strlen(pool->ntime) + strlen(pool->nbit) + /* nonce */ 8 + /* workpadding */ 96; #endif snprintf(header, 225, "%s%s%s%s%s%s%s", pool->bbversion, pool->prev_hash, blank_merkle, pool->ntime, pool->nbit, "00000000", /* nonce */ workpadding); ret = hex2bin(pool->header_bin, header, 112); if (unlikely(!ret)) { applog(LOG_ERR, "Failed to convert header to header_bin in parse_notify"); goto out_unlock; } cb1 = alloca(cb1_len); ret = hex2bin(cb1, coinbase1, cb1_len); if (unlikely(!ret)) { applog(LOG_ERR, "Failed to convert cb1 to cb1_bin in parse_notify"); goto out_unlock; } cb2 = alloca(cb2_len); ret = hex2bin(cb2, coinbase2, cb2_len); if (unlikely(!ret)) { applog(LOG_ERR, "Failed to convert cb2 to cb2_bin in parse_notify"); goto out_unlock; } free(pool->coinbase); align_len(&alloc_len); pool->coinbase = calloc(alloc_len, 1); if (unlikely(!pool->coinbase)) quit(1, "Failed to calloc pool coinbase in parse_notify"); memcpy(pool->coinbase, cb1, cb1_len); memcpy(pool->coinbase + cb1_len, pool->nonce1bin, pool->n1_len); memcpy(pool->coinbase + cb1_len + pool->n1_len + pool->n2size, cb2, cb2_len); if (opt_debug) { char *cb = bin2hex(pool->coinbase, pool->coinbase_len); applog(LOG_DEBUG, "Pool %d coinbase %s", pool->pool_no, cb); free(cb); } out_unlock: cg_wunlock(&pool->data_lock); if (opt_protocol) { applog(LOG_DEBUG, "job_id: %s", job_id); applog(LOG_DEBUG, "prev_hash: %s", prev_hash); applog(LOG_DEBUG, "coinbase1: %s", coinbase1); applog(LOG_DEBUG, "coinbase2: %s", coinbase2); applog(LOG_DEBUG, "bbversion: %s", bbversion); applog(LOG_DEBUG, "nbit: %s", nbit); applog(LOG_DEBUG, "ntime: %s", ntime); applog(LOG_DEBUG, "clean: %s", clean ? "yes" : "no"); } free(coinbase1); free(coinbase2); /* A notify message is the closest stratum gets to a getwork */ pool->getwork_requested++; total_getworks++; if (pool == current_pool()) opt_work_update = true; out: return ret; }
CWE-119
179,478
1,237
84334959585750243556126605758413185403
null
null
null
cgminer
e1c5050734123973b99d181c45e74b2cbb00272e
1
static bool parse_reconnect(struct pool *pool, json_t *val) { char *sockaddr_url, *stratum_port, *tmp; char *url, *port, address[256]; memset(address, 0, 255); url = (char *)json_string_value(json_array_get(val, 0)); if (!url) url = pool->sockaddr_url; else { char *dot_pool, *dot_reconnect; dot_pool = strchr(pool->sockaddr_url, '.'); if (!dot_pool) { applog(LOG_ERR, "Denied stratum reconnect request for pool without domain '%s'", pool->sockaddr_url); return false; } dot_reconnect = strchr(url, '.'); if (!dot_reconnect) { applog(LOG_ERR, "Denied stratum reconnect request to url without domain '%s'", url); return false; } if (strcmp(dot_pool, dot_reconnect)) { applog(LOG_ERR, "Denied stratum reconnect request to non-matching domain url '%s'", pool->sockaddr_url); return false; } } port = (char *)json_string_value(json_array_get(val, 1)); if (!port) port = pool->stratum_port; sprintf(address, "%s:%s", url, port); if (!extract_sockaddr(address, &sockaddr_url, &stratum_port)) return false; applog(LOG_WARNING, "Stratum reconnect requested from pool %d to %s", pool->pool_no, address); clear_pool_work(pool); mutex_lock(&pool->stratum_lock); __suspend_stratum(pool); tmp = pool->sockaddr_url; pool->sockaddr_url = sockaddr_url; pool->stratum_url = pool->sockaddr_url; free(tmp); tmp = pool->stratum_port; pool->stratum_port = stratum_port; free(tmp); mutex_unlock(&pool->stratum_lock); if (!restart_stratum(pool)) { pool_failed(pool); return false; } return true; }
CWE-119
179,479
1,238
137361347459447412875947908752625113506
null
null
null
krb5
a7886f0ed1277c69142b14a2c6629175a6331edc
1
acc_ctx_cont(OM_uint32 *minstat, gss_buffer_t buf, gss_ctx_id_t *ctx, gss_buffer_t *responseToken, gss_buffer_t *mechListMIC, OM_uint32 *negState, send_token_flag *return_token) { OM_uint32 ret, tmpmin; gss_OID supportedMech; spnego_gss_ctx_id_t sc; unsigned int len; unsigned char *ptr, *bufstart; sc = (spnego_gss_ctx_id_t)*ctx; ret = GSS_S_DEFECTIVE_TOKEN; *negState = REJECT; *minstat = 0; supportedMech = GSS_C_NO_OID; *return_token = ERROR_TOKEN_SEND; *responseToken = *mechListMIC = GSS_C_NO_BUFFER; ptr = bufstart = buf->value; #define REMAIN (buf->length - (ptr - bufstart)) if (REMAIN > INT_MAX) return GSS_S_DEFECTIVE_TOKEN; /* * Attempt to work with old Sun SPNEGO. */ if (*ptr == HEADER_ID) { ret = g_verify_token_header(gss_mech_spnego, &len, &ptr, 0, REMAIN); if (ret) { *minstat = ret; return GSS_S_DEFECTIVE_TOKEN; } } if (*ptr != (CONTEXT | 0x01)) { return GSS_S_DEFECTIVE_TOKEN; } ret = get_negTokenResp(minstat, ptr, REMAIN, negState, &supportedMech, responseToken, mechListMIC); if (ret != GSS_S_COMPLETE) goto cleanup; if (*responseToken == GSS_C_NO_BUFFER && *mechListMIC == GSS_C_NO_BUFFER) { ret = GSS_S_DEFECTIVE_TOKEN; goto cleanup; } if (supportedMech != GSS_C_NO_OID) { ret = GSS_S_DEFECTIVE_TOKEN; goto cleanup; } sc->firstpass = 0; *negState = ACCEPT_INCOMPLETE; *return_token = CONT_TOKEN_SEND; cleanup: if (supportedMech != GSS_C_NO_OID) { generic_gss_release_oid(&tmpmin, &supportedMech); } return ret; #undef REMAIN }
CWE-476
179,482
1,239
111177546391845933490047709357450343244
null
null
null
krb5
f18ddf5d82de0ab7591a36e465bc24225776940f
1
init_ctx_reselect(OM_uint32 *minor_status, spnego_gss_ctx_id_t sc, OM_uint32 acc_negState, gss_OID supportedMech, gss_buffer_t *responseToken, gss_buffer_t *mechListMIC, OM_uint32 *negState, send_token_flag *tokflag) { OM_uint32 tmpmin; size_t i; generic_gss_release_oid(&tmpmin, &sc->internal_mech); gss_delete_sec_context(&tmpmin, &sc->ctx_handle, GSS_C_NO_BUFFER); /* Find supportedMech in sc->mech_set. */ for (i = 0; i < sc->mech_set->count; i++) { if (g_OID_equal(supportedMech, &sc->mech_set->elements[i])) break; } if (i == sc->mech_set->count) return GSS_S_DEFECTIVE_TOKEN; sc->internal_mech = &sc->mech_set->elements[i]; /* * Windows 2003 and earlier don't correctly send a * negState of request-mic when counter-proposing a * mechanism. They probably don't handle mechListMICs * properly either. */ if (acc_negState != REQUEST_MIC) return GSS_S_DEFECTIVE_TOKEN; sc->mech_complete = 0; sc->mic_reqd = 1; *negState = REQUEST_MIC; *tokflag = CONT_TOKEN_SEND; return GSS_S_CONTINUE_NEEDED; }
CWE-415
179,483
1,240
116847216199976585060972233215007848831
null
null
null
php-src
b34d7849ed90ced9345f8ea1c59bc8d101c18468
1
static u_char *php_parserr(u_char *cp, querybuf *answer, int type_to_fetch, int store, int raw, zval **subarray) { u_short type, class, dlen; u_long ttl; long n, i; u_short s; u_char *tp, *p; char name[MAXHOSTNAMELEN]; int have_v6_break = 0, in_v6_break = 0; *subarray = NULL; n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, sizeof(name) - 2); if (n < 0) { return NULL; } cp += n; GETSHORT(type, cp); GETSHORT(class, cp); GETLONG(ttl, cp); GETSHORT(dlen, cp); if (type_to_fetch != T_ANY && type != type_to_fetch) { cp += dlen; return cp; } if (!store) { cp += dlen; return cp; } ALLOC_INIT_ZVAL(*subarray); array_init(*subarray); add_assoc_string(*subarray, "host", name, 1); add_assoc_string(*subarray, "class", "IN", 1); add_assoc_long(*subarray, "ttl", ttl); if (raw) { add_assoc_long(*subarray, "type", type); add_assoc_stringl(*subarray, "data", (char*) cp, (uint) dlen, 1); cp += dlen; return cp; } switch (type) { case DNS_T_A: add_assoc_string(*subarray, "type", "A", 1); snprintf(name, sizeof(name), "%d.%d.%d.%d", cp[0], cp[1], cp[2], cp[3]); add_assoc_string(*subarray, "ip", name, 1); cp += dlen; break; case DNS_T_MX: add_assoc_string(*subarray, "type", "MX", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "pri", n); /* no break; */ case DNS_T_CNAME: if (type == DNS_T_CNAME) { add_assoc_string(*subarray, "type", "CNAME", 1); } /* no break; */ case DNS_T_NS: if (type == DNS_T_NS) { add_assoc_string(*subarray, "type", "NS", 1); } /* no break; */ case DNS_T_PTR: if (type == DNS_T_PTR) { add_assoc_string(*subarray, "type", "PTR", 1); } n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "target", name, 1); break; case DNS_T_HINFO: /* See RFC 1010 for values */ add_assoc_string(*subarray, "type", "HINFO", 1); n = *cp & 0xFF; cp++; add_assoc_stringl(*subarray, "cpu", (char*)cp, n, 1); cp += n; n = *cp & 0xFF; cp++; add_assoc_stringl(*subarray, "os", (char*)cp, n, 1); cp += n; break; case DNS_T_TXT: { int ll = 0; zval *entries = NULL; add_assoc_string(*subarray, "type", "TXT", 1); tp = emalloc(dlen + 1); MAKE_STD_ZVAL(entries); array_init(entries); while (ll < dlen) { n = cp[ll]; memcpy(tp + ll , cp + ll + 1, n); add_next_index_stringl(entries, cp + ll + 1, n, 1); ll = ll + n + 1; } tp[dlen] = '\0'; cp += dlen; add_assoc_stringl(*subarray, "txt", tp, (dlen>0)?dlen - 1:0, 0); add_assoc_zval(*subarray, "entries", entries); } break; case DNS_T_SOA: add_assoc_string(*subarray, "type", "SOA", 1); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) -2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "mname", name, 1); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) -2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "rname", name, 1); GETLONG(n, cp); add_assoc_long(*subarray, "serial", n); GETLONG(n, cp); add_assoc_long(*subarray, "refresh", n); GETLONG(n, cp); add_assoc_long(*subarray, "retry", n); GETLONG(n, cp); add_assoc_long(*subarray, "expire", n); GETLONG(n, cp); add_assoc_long(*subarray, "minimum-ttl", n); break; case DNS_T_AAAA: tp = (u_char*)name; for(i=0; i < 8; i++) { GETSHORT(s, cp); if (s != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } tp += sprintf((char*)tp,"%x",s); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } } if (have_v6_break && in_v6_break) { tp[0] = ':'; tp++; } tp[0] = '\0'; add_assoc_string(*subarray, "type", "AAAA", 1); add_assoc_string(*subarray, "ipv6", name, 1); break; case DNS_T_A6: p = cp; add_assoc_string(*subarray, "type", "A6", 1); n = ((int)cp[0]) & 0xFF; cp++; add_assoc_long(*subarray, "masklen", n); tp = (u_char*)name; if (n > 15) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } if (n % 16 > 8) { /* Partial short */ if (cp[0] != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } sprintf((char*)tp, "%x", cp[0] & 0xFF); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } cp++; } for (i = (n + 8) / 16; i < 8; i++) { GETSHORT(s, cp); if (s != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } tp += sprintf((char*)tp,"%x",s); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } } if (have_v6_break && in_v6_break) { tp[0] = ':'; tp++; } tp[0] = '\0'; add_assoc_string(*subarray, "ipv6", name, 1); if (cp < p + dlen) { n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "chain", name, 1); } break; case DNS_T_SRV: add_assoc_string(*subarray, "type", "SRV", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "pri", n); GETSHORT(n, cp); add_assoc_long(*subarray, "weight", n); GETSHORT(n, cp); add_assoc_long(*subarray, "port", n); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "target", name, 1); break; case DNS_T_NAPTR: add_assoc_string(*subarray, "type", "NAPTR", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "order", n); GETSHORT(n, cp); add_assoc_long(*subarray, "pref", n); n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "flags", (char*)++cp, n, 1); cp += n; n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "services", (char*)++cp, n, 1); cp += n; n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "regex", (char*)++cp, n, 1); cp += n; n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "replacement", name, 1); break; default: zval_ptr_dtor(subarray); *subarray = NULL; cp += dlen; break; } return cp; }
CWE-119
179,486
1,242
61555348514619221447360707443484627048
null
null
null
linux
4442dc8a92b8f9ad8ee9e7f8438f4c04c03a22dc
1
static int rd_build_device_space(struct rd_dev *rd_dev) { u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed; u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / sizeof(struct scatterlist)); struct rd_dev_sg_table *sg_table; struct page *pg; struct scatterlist *sg; if (rd_dev->rd_page_count <= 0) { pr_err("Illegal page count: %u for Ramdisk device\n", rd_dev->rd_page_count); return -EINVAL; } /* Don't need backing pages for NULLIO */ if (rd_dev->rd_flags & RDF_NULLIO) return 0; total_sg_needed = rd_dev->rd_page_count; sg_tables = (total_sg_needed / max_sg_per_table) + 1; sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL); if (!sg_table) { pr_err("Unable to allocate memory for Ramdisk" " scatterlist tables\n"); return -ENOMEM; } rd_dev->sg_table_array = sg_table; rd_dev->sg_table_count = sg_tables; while (total_sg_needed) { sg_per_table = (total_sg_needed > max_sg_per_table) ? max_sg_per_table : total_sg_needed; sg = kzalloc(sg_per_table * sizeof(struct scatterlist), GFP_KERNEL); if (!sg) { pr_err("Unable to allocate scatterlist array" " for struct rd_dev\n"); return -ENOMEM; } sg_init_table(sg, sg_per_table); sg_table[i].sg_table = sg; sg_table[i].rd_sg_count = sg_per_table; sg_table[i].page_start_offset = page_offset; sg_table[i++].page_end_offset = (page_offset + sg_per_table) - 1; for (j = 0; j < sg_per_table; j++) { pg = alloc_pages(GFP_KERNEL, 0); if (!pg) { pr_err("Unable to allocate scatterlist" " pages for struct rd_dev_sg_table\n"); return -ENOMEM; } sg_assign_page(&sg[j], pg); sg[j].length = PAGE_SIZE; } page_offset += sg_per_table; total_sg_needed -= sg_per_table; } pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of" " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count, rd_dev->sg_table_count); return 0; }
CWE-264
179,487
1,243
231707640209773852599856573451469871968
null
null
null
miniupnp
3a87aa2f10bd7f1408e1849bdb59c41dd63a9fe9
1
getHTTPResponse(int s, int * size) { char buf[2048]; int n; int endofheaders = 0; int chunked = 0; int content_length = -1; unsigned int chunksize = 0; unsigned int bytestocopy = 0; /* buffers : */ char * header_buf; unsigned int header_buf_len = 2048; unsigned int header_buf_used = 0; char * content_buf; unsigned int content_buf_len = 2048; unsigned int content_buf_used = 0; char chunksize_buf[32]; unsigned int chunksize_buf_index; header_buf = malloc(header_buf_len); content_buf = malloc(content_buf_len); chunksize_buf[0] = '\0'; chunksize_buf_index = 0; while((n = receivedata(s, buf, 2048, 5000, NULL)) > 0) { if(endofheaders == 0) { int i; int linestart=0; int colon=0; int valuestart=0; if(header_buf_used + n > header_buf_len) { header_buf = realloc(header_buf, header_buf_used + n); header_buf_len = header_buf_used + n; } memcpy(header_buf + header_buf_used, buf, n); header_buf_used += n; /* search for CR LF CR LF (end of headers) * recognize also LF LF */ i = 0; while(i < ((int)header_buf_used-1) && (endofheaders == 0)) { if(header_buf[i] == '\r') { i++; if(header_buf[i] == '\n') { i++; if(i < (int)header_buf_used && header_buf[i] == '\r') { i++; if(i < (int)header_buf_used && header_buf[i] == '\n') { endofheaders = i+1; } } } } else if(header_buf[i] == '\n') { i++; if(header_buf[i] == '\n') { endofheaders = i+1; } } i++; } if(endofheaders == 0) continue; /* parse header lines */ for(i = 0; i < endofheaders - 1; i++) { if(colon <= linestart && header_buf[i]==':') { colon = i; while(i < (endofheaders-1) && (header_buf[i+1] == ' ' || header_buf[i+1] == '\t')) i++; valuestart = i + 1; } /* detecting end of line */ else if(header_buf[i]=='\r' || header_buf[i]=='\n') { if(colon > linestart && valuestart > colon) { #ifdef DEBUG printf("header='%.*s', value='%.*s'\n", colon-linestart, header_buf+linestart, i-valuestart, header_buf+valuestart); #endif if(0==strncasecmp(header_buf+linestart, "content-length", colon-linestart)) { content_length = atoi(header_buf+valuestart); #ifdef DEBUG printf("Content-Length: %d\n", content_length); #endif } else if(0==strncasecmp(header_buf+linestart, "transfer-encoding", colon-linestart) && 0==strncasecmp(header_buf+valuestart, "chunked", 7)) { #ifdef DEBUG printf("chunked transfer-encoding!\n"); #endif chunked = 1; } } while(header_buf[i]=='\r' || header_buf[i] == '\n') i++; linestart = i; colon = linestart; valuestart = 0; } } /* copy the remaining of the received data back to buf */ n = header_buf_used - endofheaders; memcpy(buf, header_buf + endofheaders, n); /* if(headers) */ } if(endofheaders) { /* content */ if(chunked) { int i = 0; while(i < n) { if(chunksize == 0) { /* reading chunk size */ if(chunksize_buf_index == 0) { /* skipping any leading CR LF */ if(i<n && buf[i] == '\r') i++; if(i<n && buf[i] == '\n') i++; } while(i<n && isxdigit(buf[i]) && chunksize_buf_index < (sizeof(chunksize_buf)-1)) { chunksize_buf[chunksize_buf_index++] = buf[i]; chunksize_buf[chunksize_buf_index] = '\0'; i++; } while(i<n && buf[i] != '\r' && buf[i] != '\n') i++; /* discarding chunk-extension */ if(i<n && buf[i] == '\r') i++; if(i<n && buf[i] == '\n') { unsigned int j; for(j = 0; j < chunksize_buf_index; j++) { if(chunksize_buf[j] >= '0' && chunksize_buf[j] <= '9') chunksize = (chunksize << 4) + (chunksize_buf[j] - '0'); else chunksize = (chunksize << 4) + ((chunksize_buf[j] | 32) - 'a' + 10); } chunksize_buf[0] = '\0'; chunksize_buf_index = 0; i++; } else { /* not finished to get chunksize */ continue; } #ifdef DEBUG printf("chunksize = %u (%x)\n", chunksize, chunksize); #endif if(chunksize == 0) { #ifdef DEBUG printf("end of HTTP content - %d %d\n", i, n); /*printf("'%.*s'\n", n-i, buf+i);*/ #endif goto end_of_stream; } } bytestocopy = ((int)chunksize < (n - i))?chunksize:(unsigned int)(n - i); if((content_buf_used + bytestocopy) > content_buf_len) { if(content_length >= (int)(content_buf_used + bytestocopy)) { content_buf_len = content_length; } else { content_buf_len = content_buf_used + bytestocopy; } content_buf = (char *)realloc((void *)content_buf, content_buf_len); } memcpy(content_buf + content_buf_used, buf + i, bytestocopy); content_buf_used += bytestocopy; i += bytestocopy; chunksize -= bytestocopy; } } else { /* not chunked */ if(content_length > 0 && (int)(content_buf_used + n) > content_length) { /* skipping additional bytes */ n = content_length - content_buf_used; } if(content_buf_used + n > content_buf_len) { if(content_length >= (int)(content_buf_used + n)) { content_buf_len = content_length; } else { content_buf_len = content_buf_used + n; } content_buf = (char *)realloc((void *)content_buf, content_buf_len); } memcpy(content_buf + content_buf_used, buf, n); content_buf_used += n; } } /* use the Content-Length header value if available */ if(content_length > 0 && (int)content_buf_used >= content_length) { #ifdef DEBUG printf("End of HTTP content\n"); #endif break; } } end_of_stream: free(header_buf); header_buf = NULL; *size = content_buf_used; if(content_buf_used == 0) { free(content_buf); content_buf = NULL; } return content_buf; }
CWE-119
179,496
1,251
306297354977511070065482433729517457700
null
null
null
file
39c7ac1106be844a5296d3eb5971946cc09ffda0
1
donote(struct magic_set *ms, void *vbuf, size_t offset, size_t size, int clazz, int swap, size_t align, int *flags) { Elf32_Nhdr nh32; Elf64_Nhdr nh64; size_t noff, doff; #ifdef ELFCORE int os_style = -1; #endif uint32_t namesz, descsz; unsigned char *nbuf = CAST(unsigned char *, vbuf); (void)memcpy(xnh_addr, &nbuf[offset], xnh_sizeof); offset += xnh_sizeof; namesz = xnh_namesz; descsz = xnh_descsz; if ((namesz == 0) && (descsz == 0)) { /* * We're out of note headers. */ return (offset >= size) ? offset : size; } if (namesz & 0x80000000) { (void)file_printf(ms, ", bad note name size 0x%lx", (unsigned long)namesz); return offset; } if (descsz & 0x80000000) { (void)file_printf(ms, ", bad note description size 0x%lx", (unsigned long)descsz); return offset; } noff = offset; doff = ELF_ALIGN(offset + namesz); if (offset + namesz > size) { /* * We're past the end of the buffer. */ return doff; } offset = ELF_ALIGN(doff + descsz); if (doff + descsz > size) { /* * We're past the end of the buffer. */ return (offset >= size) ? offset : size; } if ((*flags & (FLAGS_DID_NOTE|FLAGS_DID_BUILD_ID)) == (FLAGS_DID_NOTE|FLAGS_DID_BUILD_ID)) goto core; if (namesz == 5 && strcmp((char *)&nbuf[noff], "SuSE") == 0 && xnh_type == NT_GNU_VERSION && descsz == 2) { file_printf(ms, ", for SuSE %d.%d", nbuf[doff], nbuf[doff + 1]); } if (namesz == 4 && strcmp((char *)&nbuf[noff], "GNU") == 0 && xnh_type == NT_GNU_VERSION && descsz == 16) { uint32_t desc[4]; (void)memcpy(desc, &nbuf[doff], sizeof(desc)); if (file_printf(ms, ", for GNU/") == -1) return size; switch (elf_getu32(swap, desc[0])) { case GNU_OS_LINUX: if (file_printf(ms, "Linux") == -1) return size; break; case GNU_OS_HURD: if (file_printf(ms, "Hurd") == -1) return size; break; case GNU_OS_SOLARIS: if (file_printf(ms, "Solaris") == -1) return size; break; case GNU_OS_KFREEBSD: if (file_printf(ms, "kFreeBSD") == -1) return size; break; case GNU_OS_KNETBSD: if (file_printf(ms, "kNetBSD") == -1) return size; break; default: if (file_printf(ms, "<unknown>") == -1) return size; } if (file_printf(ms, " %d.%d.%d", elf_getu32(swap, desc[1]), elf_getu32(swap, desc[2]), elf_getu32(swap, desc[3])) == -1) return size; *flags |= FLAGS_DID_NOTE; return size; } if (namesz == 4 && strcmp((char *)&nbuf[noff], "GNU") == 0 && xnh_type == NT_GNU_BUILD_ID && (descsz == 16 || descsz == 20)) { uint8_t desc[20]; uint32_t i; if (file_printf(ms, ", BuildID[%s]=", descsz == 16 ? "md5/uuid" : "sha1") == -1) return size; (void)memcpy(desc, &nbuf[doff], descsz); for (i = 0; i < descsz; i++) if (file_printf(ms, "%02x", desc[i]) == -1) return size; *flags |= FLAGS_DID_BUILD_ID; } if (namesz == 4 && strcmp((char *)&nbuf[noff], "PaX") == 0 && xnh_type == NT_NETBSD_PAX && descsz == 4) { static const char *pax[] = { "+mprotect", "-mprotect", "+segvguard", "-segvguard", "+ASLR", "-ASLR", }; uint32_t desc; size_t i; int did = 0; (void)memcpy(&desc, &nbuf[doff], sizeof(desc)); desc = elf_getu32(swap, desc); if (desc && file_printf(ms, ", PaX: ") == -1) return size; for (i = 0; i < __arraycount(pax); i++) { if (((1 << i) & desc) == 0) continue; if (file_printf(ms, "%s%s", did++ ? "," : "", pax[i]) == -1) return size; } } if (namesz == 7 && strcmp((char *)&nbuf[noff], "NetBSD") == 0) { switch (xnh_type) { case NT_NETBSD_VERSION: if (descsz == 4) { do_note_netbsd_version(ms, swap, &nbuf[doff]); *flags |= FLAGS_DID_NOTE; return size; } break; case NT_NETBSD_MARCH: if (file_printf(ms, ", compiled for: %.*s", (int)descsz, (const char *)&nbuf[doff]) == -1) return size; break; case NT_NETBSD_CMODEL: if (file_printf(ms, ", compiler model: %.*s", (int)descsz, (const char *)&nbuf[doff]) == -1) return size; break; default: if (file_printf(ms, ", note=%u", xnh_type) == -1) return size; break; } return size; } if (namesz == 8 && strcmp((char *)&nbuf[noff], "FreeBSD") == 0) { if (xnh_type == NT_FREEBSD_VERSION && descsz == 4) { do_note_freebsd_version(ms, swap, &nbuf[doff]); *flags |= FLAGS_DID_NOTE; return size; } } if (namesz == 8 && strcmp((char *)&nbuf[noff], "OpenBSD") == 0 && xnh_type == NT_OPENBSD_VERSION && descsz == 4) { if (file_printf(ms, ", for OpenBSD") == -1) return size; /* Content of note is always 0 */ *flags |= FLAGS_DID_NOTE; return size; } if (namesz == 10 && strcmp((char *)&nbuf[noff], "DragonFly") == 0 && xnh_type == NT_DRAGONFLY_VERSION && descsz == 4) { uint32_t desc; if (file_printf(ms, ", for DragonFly") == -1) return size; (void)memcpy(&desc, &nbuf[doff], sizeof(desc)); desc = elf_getu32(swap, desc); if (file_printf(ms, " %d.%d.%d", desc / 100000, desc / 10000 % 10, desc % 10000) == -1) return size; *flags |= FLAGS_DID_NOTE; return size; } core: /* * Sigh. The 2.0.36 kernel in Debian 2.1, at * least, doesn't correctly implement name * sections, in core dumps, as specified by * the "Program Linking" section of "UNIX(R) System * V Release 4 Programmer's Guide: ANSI C and * Programming Support Tools", because my copy * clearly says "The first 'namesz' bytes in 'name' * contain a *null-terminated* [emphasis mine] * character representation of the entry's owner * or originator", but the 2.0.36 kernel code * doesn't include the terminating null in the * name.... */ if ((namesz == 4 && strncmp((char *)&nbuf[noff], "CORE", 4) == 0) || (namesz == 5 && strcmp((char *)&nbuf[noff], "CORE") == 0)) { os_style = OS_STYLE_SVR4; } if ((namesz == 8 && strcmp((char *)&nbuf[noff], "FreeBSD") == 0)) { os_style = OS_STYLE_FREEBSD; } if ((namesz >= 11 && strncmp((char *)&nbuf[noff], "NetBSD-CORE", 11) == 0)) { os_style = OS_STYLE_NETBSD; } #ifdef ELFCORE if ((*flags & FLAGS_DID_CORE) != 0) return size; if (os_style != -1 && (*flags & FLAGS_DID_CORE_STYLE) == 0) { if (file_printf(ms, ", %s-style", os_style_names[os_style]) == -1) return size; *flags |= FLAGS_DID_CORE_STYLE; } switch (os_style) { case OS_STYLE_NETBSD: if (xnh_type == NT_NETBSD_CORE_PROCINFO) { uint32_t signo; /* * Extract the program name. It is at * offset 0x7c, and is up to 32-bytes, * including the terminating NUL. */ if (file_printf(ms, ", from '%.31s'", &nbuf[doff + 0x7c]) == -1) return size; /* * Extract the signal number. It is at * offset 0x08. */ (void)memcpy(&signo, &nbuf[doff + 0x08], sizeof(signo)); if (file_printf(ms, " (signal %u)", elf_getu32(swap, signo)) == -1) return size; *flags |= FLAGS_DID_CORE; return size; } break; default: if (xnh_type == NT_PRPSINFO && *flags & FLAGS_IS_CORE) { size_t i, j; unsigned char c; /* * Extract the program name. We assume * it to be 16 characters (that's what it * is in SunOS 5.x and Linux). * * Unfortunately, it's at a different offset * in various OSes, so try multiple offsets. * If the characters aren't all printable, * reject it. */ for (i = 0; i < NOFFSETS; i++) { unsigned char *cname, *cp; size_t reloffset = prpsoffsets(i); size_t noffset = doff + reloffset; size_t k; for (j = 0; j < 16; j++, noffset++, reloffset++) { /* * Make sure we're not past * the end of the buffer; if * we are, just give up. */ if (noffset >= size) goto tryanother; /* * Make sure we're not past * the end of the contents; * if we are, this obviously * isn't the right offset. */ if (reloffset >= descsz) goto tryanother; c = nbuf[noffset]; if (c == '\0') { /* * A '\0' at the * beginning is * obviously wrong. * Any other '\0' * means we're done. */ if (j == 0) goto tryanother; else break; } else { /* * A nonprintable * character is also * wrong. */ if (!isprint(c) || isquote(c)) goto tryanother; } } /* * Well, that worked. */ /* * Try next offsets, in case this match is * in the middle of a string. */ for (k = i + 1 ; k < NOFFSETS ; k++) { size_t no; int adjust = 1; if (prpsoffsets(k) >= prpsoffsets(i)) continue; for (no = doff + prpsoffsets(k); no < doff + prpsoffsets(i); no++) adjust = adjust && isprint(nbuf[no]); if (adjust) i = k; } cname = (unsigned char *) &nbuf[doff + prpsoffsets(i)]; for (cp = cname; *cp && isprint(*cp); cp++) continue; /* * Linux apparently appends a space at the end * of the command line: remove it. */ while (cp > cname && isspace(cp[-1])) cp--; if (file_printf(ms, ", from '%.*s'", (int)(cp - cname), cname) == -1) return size; *flags |= FLAGS_DID_CORE; return size; tryanother: ; } } break; } #endif return offset; }
CWE-20
179,499
1,254
134716201177067834981482985636296733745
null
null
null
linux
26b87c7881006311828bb0ab271a551a62dcceb4
1
struct sctp_chunk *sctp_inq_pop(struct sctp_inq *queue) { struct sctp_chunk *chunk; sctp_chunkhdr_t *ch = NULL; /* The assumption is that we are safe to process the chunks * at this time. */ if ((chunk = queue->in_progress)) { /* There is a packet that we have been working on. * Any post processing work to do before we move on? */ if (chunk->singleton || chunk->end_of_packet || chunk->pdiscard) { sctp_chunk_free(chunk); chunk = queue->in_progress = NULL; } else { /* Nothing to do. Next chunk in the packet, please. */ ch = (sctp_chunkhdr_t *) chunk->chunk_end; /* Force chunk->skb->data to chunk->chunk_end. */ skb_pull(chunk->skb, chunk->chunk_end - chunk->skb->data); /* Verify that we have at least chunk headers * worth of buffer left. */ if (skb_headlen(chunk->skb) < sizeof(sctp_chunkhdr_t)) { sctp_chunk_free(chunk); chunk = queue->in_progress = NULL; } } } /* Do we need to take the next packet out of the queue to process? */ if (!chunk) { struct list_head *entry; /* Is the queue empty? */ if (list_empty(&queue->in_chunk_list)) return NULL; entry = queue->in_chunk_list.next; chunk = queue->in_progress = list_entry(entry, struct sctp_chunk, list); list_del_init(entry); /* This is the first chunk in the packet. */ chunk->singleton = 1; ch = (sctp_chunkhdr_t *) chunk->skb->data; chunk->data_accepted = 0; } chunk->chunk_hdr = ch; chunk->chunk_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); /* In the unlikely case of an IP reassembly, the skb could be * non-linear. If so, update chunk_end so that it doesn't go past * the skb->tail. */ if (unlikely(skb_is_nonlinear(chunk->skb))) { if (chunk->chunk_end > skb_tail_pointer(chunk->skb)) chunk->chunk_end = skb_tail_pointer(chunk->skb); } skb_pull(chunk->skb, sizeof(sctp_chunkhdr_t)); chunk->subh.v = NULL; /* Subheader is no longer valid. */ if (chunk->chunk_end < skb_tail_pointer(chunk->skb)) { /* This is not a singleton */ chunk->singleton = 0; } else if (chunk->chunk_end > skb_tail_pointer(chunk->skb)) { /* RFC 2960, Section 6.10 Bundling * * Partial chunks MUST NOT be placed in an SCTP packet. * If the receiver detects a partial chunk, it MUST drop * the chunk. * * Since the end of the chunk is past the end of our buffer * (which contains the whole packet, we can freely discard * the whole packet. */ sctp_chunk_free(chunk); chunk = queue->in_progress = NULL; return NULL; } else { /* We are at the end of the packet, so mark the chunk * in case we need to send a SACK. */ chunk->end_of_packet = 1; } pr_debug("+++sctp_inq_pop+++ chunk:%p[%s], length:%d, skb->len:%d\n", chunk, sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)), ntohs(chunk->chunk_hdr->length), chunk->skb->len); return chunk; }
CWE-399
179,502
1,257
146497261003956651827191971093959685854
null
null
null
linux
26b87c7881006311828bb0ab271a551a62dcceb4
1
sctp_chunk_length_valid(struct sctp_chunk *chunk, __u16 required_length) { __u16 chunk_length = ntohs(chunk->chunk_hdr->length); if (unlikely(chunk_length < required_length)) return 0; return 1; }
CWE-399
179,503
1,258
256102226120872395569526101840031059938
null
null
null
linux
b69040d8e39f20d5215a03502a8e8b4c6ab78395
1
struct sctp_chunk *sctp_assoc_lookup_asconf_ack( const struct sctp_association *asoc, __be32 serial) { struct sctp_chunk *ack; /* Walk through the list of cached ASCONF-ACKs and find the * ack chunk whose serial number matches that of the request. */ list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { if (ack->subh.addip_hdr->serial == serial) { sctp_chunk_hold(ack); return ack; } } return NULL; }
CWE-399
179,504
1,259
285652383158838014592938696821462414726
null
null
null
linux
bfd0a56b90005f8c8a004baf407ad90045c2b11e
1
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) { u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); struct vcpu_vmx *vmx = to_vmx(vcpu); struct vmcs12 *vmcs12 = get_vmcs12(vcpu); u32 exit_reason = vmx->exit_reason; if (vmx->nested.nested_run_pending) return 0; if (unlikely(vmx->fail)) { pr_info_ratelimited("%s failed vm entry %x\n", __func__, vmcs_read32(VM_INSTRUCTION_ERROR)); return 1; } switch (exit_reason) { case EXIT_REASON_EXCEPTION_NMI: if (!is_exception(intr_info)) return 0; else if (is_page_fault(intr_info)) return enable_ept; return vmcs12->exception_bitmap & (1u << (intr_info & INTR_INFO_VECTOR_MASK)); case EXIT_REASON_EXTERNAL_INTERRUPT: return 0; case EXIT_REASON_TRIPLE_FAULT: return 1; case EXIT_REASON_PENDING_INTERRUPT: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); case EXIT_REASON_NMI_WINDOW: return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); case EXIT_REASON_TASK_SWITCH: return 1; case EXIT_REASON_CPUID: return 1; case EXIT_REASON_HLT: return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); case EXIT_REASON_INVD: return 1; case EXIT_REASON_INVLPG: return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); case EXIT_REASON_RDPMC: return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); case EXIT_REASON_RDTSC: return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: /* * VMX instructions trap unconditionally. This allows L1 to * emulate them for its L2 guest, i.e., allows 3-level nesting! */ return 1; case EXIT_REASON_CR_ACCESS: return nested_vmx_exit_handled_cr(vcpu, vmcs12); case EXIT_REASON_DR_ACCESS: return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); case EXIT_REASON_IO_INSTRUCTION: return nested_vmx_exit_handled_io(vcpu, vmcs12); case EXIT_REASON_MSR_READ: case EXIT_REASON_MSR_WRITE: return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); case EXIT_REASON_INVALID_STATE: return 1; case EXIT_REASON_MWAIT_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); case EXIT_REASON_MONITOR_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); case EXIT_REASON_PAUSE_INSTRUCTION: return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || nested_cpu_has2(vmcs12, SECONDARY_EXEC_PAUSE_LOOP_EXITING); case EXIT_REASON_MCE_DURING_VMENTRY: return 0; case EXIT_REASON_TPR_BELOW_THRESHOLD: return 1; case EXIT_REASON_APIC_ACCESS: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); case EXIT_REASON_EPT_VIOLATION: case EXIT_REASON_EPT_MISCONFIG: return 0; case EXIT_REASON_PREEMPTION_TIMER: return vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER; case EXIT_REASON_WBINVD: return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); case EXIT_REASON_XSETBV: return 1; default: return 1; } }
CWE-20
179,517
1,269
74454302223687578052101214034107124660
null
null
null
linux
95389b08d93d5c06ec63ab49bd732b0069b7c35e
1
int assoc_array_gc(struct assoc_array *array, const struct assoc_array_ops *ops, bool (*iterator)(void *object, void *iterator_data), void *iterator_data) { struct assoc_array_shortcut *shortcut, *new_s; struct assoc_array_node *node, *new_n; struct assoc_array_edit *edit; struct assoc_array_ptr *cursor, *ptr; struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; unsigned long nr_leaves_on_tree; int keylen, slot, nr_free, next_slot, i; pr_devel("-->%s()\n", __func__); if (!array->root) return 0; edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); if (!edit) return -ENOMEM; edit->array = array; edit->ops = ops; edit->ops_for_excised_subtree = ops; edit->set[0].ptr = &array->root; edit->excised_subtree = array->root; new_root = new_parent = NULL; new_ptr_pp = &new_root; cursor = array->root; descend: /* If this point is a shortcut, then we need to duplicate it and * advance the target cursor. */ if (assoc_array_ptr_is_shortcut(cursor)) { shortcut = assoc_array_ptr_to_shortcut(cursor); keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; new_s = kmalloc(sizeof(struct assoc_array_shortcut) + keylen * sizeof(unsigned long), GFP_KERNEL); if (!new_s) goto enomem; pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + keylen * sizeof(unsigned long))); new_s->back_pointer = new_parent; new_s->parent_slot = shortcut->parent_slot; *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); new_ptr_pp = &new_s->next_node; cursor = shortcut->next_node; } /* Duplicate the node at this position */ node = assoc_array_ptr_to_node(cursor); new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); if (!new_n) goto enomem; pr_devel("dup node %p -> %p\n", node, new_n); new_n->back_pointer = new_parent; new_n->parent_slot = node->parent_slot; *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); new_ptr_pp = NULL; slot = 0; continue_node: /* Filter across any leaves and gc any subtrees */ for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { ptr = node->slots[slot]; if (!ptr) continue; if (assoc_array_ptr_is_leaf(ptr)) { if (iterator(assoc_array_ptr_to_leaf(ptr), iterator_data)) /* The iterator will have done any reference * counting on the object for us. */ new_n->slots[slot] = ptr; continue; } new_ptr_pp = &new_n->slots[slot]; cursor = ptr; goto descend; } pr_devel("-- compress node %p --\n", new_n); /* Count up the number of empty slots in this node and work out the * subtree leaf count. */ new_n->nr_leaves_on_branch = 0; nr_free = 0; for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { ptr = new_n->slots[slot]; if (!ptr) nr_free++; else if (assoc_array_ptr_is_leaf(ptr)) new_n->nr_leaves_on_branch++; } pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); /* See what we can fold in */ next_slot = 0; for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { struct assoc_array_shortcut *s; struct assoc_array_node *child; ptr = new_n->slots[slot]; if (!ptr || assoc_array_ptr_is_leaf(ptr)) continue; s = NULL; if (assoc_array_ptr_is_shortcut(ptr)) { s = assoc_array_ptr_to_shortcut(ptr); ptr = s->next_node; } child = assoc_array_ptr_to_node(ptr); new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; if (child->nr_leaves_on_branch <= nr_free + 1) { /* Fold the child node into this one */ pr_devel("[%d] fold node %lu/%d [nx %d]\n", slot, child->nr_leaves_on_branch, nr_free + 1, next_slot); /* We would already have reaped an intervening shortcut * on the way back up the tree. */ BUG_ON(s); new_n->slots[slot] = NULL; nr_free++; if (slot < next_slot) next_slot = slot; for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { struct assoc_array_ptr *p = child->slots[i]; if (!p) continue; BUG_ON(assoc_array_ptr_is_meta(p)); while (new_n->slots[next_slot]) next_slot++; BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); new_n->slots[next_slot++] = p; nr_free--; } kfree(child); } else { pr_devel("[%d] retain node %lu/%d [nx %d]\n", slot, child->nr_leaves_on_branch, nr_free + 1, next_slot); } } pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); nr_leaves_on_tree = new_n->nr_leaves_on_branch; /* Excise this node if it is singly occupied by a shortcut */ if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) if ((ptr = new_n->slots[slot])) break; if (assoc_array_ptr_is_meta(ptr) && assoc_array_ptr_is_shortcut(ptr)) { pr_devel("excise node %p with 1 shortcut\n", new_n); new_s = assoc_array_ptr_to_shortcut(ptr); new_parent = new_n->back_pointer; slot = new_n->parent_slot; kfree(new_n); if (!new_parent) { new_s->back_pointer = NULL; new_s->parent_slot = 0; new_root = ptr; goto gc_complete; } if (assoc_array_ptr_is_shortcut(new_parent)) { /* We can discard any preceding shortcut also */ struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(new_parent); pr_devel("excise preceding shortcut\n"); new_parent = new_s->back_pointer = s->back_pointer; slot = new_s->parent_slot = s->parent_slot; kfree(s); if (!new_parent) { new_s->back_pointer = NULL; new_s->parent_slot = 0; new_root = ptr; goto gc_complete; } } new_s->back_pointer = new_parent; new_s->parent_slot = slot; new_n = assoc_array_ptr_to_node(new_parent); new_n->slots[slot] = ptr; goto ascend_old_tree; } } /* Excise any shortcuts we might encounter that point to nodes that * only contain leaves. */ ptr = new_n->back_pointer; if (!ptr) goto gc_complete; if (assoc_array_ptr_is_shortcut(ptr)) { new_s = assoc_array_ptr_to_shortcut(ptr); new_parent = new_s->back_pointer; slot = new_s->parent_slot; if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { struct assoc_array_node *n; pr_devel("excise shortcut\n"); new_n->back_pointer = new_parent; new_n->parent_slot = slot; kfree(new_s); if (!new_parent) { new_root = assoc_array_node_to_ptr(new_n); goto gc_complete; } n = assoc_array_ptr_to_node(new_parent); n->slots[slot] = assoc_array_node_to_ptr(new_n); } } else { new_parent = ptr; } new_n = assoc_array_ptr_to_node(new_parent); ascend_old_tree: ptr = node->back_pointer; if (assoc_array_ptr_is_shortcut(ptr)) { shortcut = assoc_array_ptr_to_shortcut(ptr); slot = shortcut->parent_slot; cursor = shortcut->back_pointer; } else { slot = node->parent_slot; cursor = ptr; } BUG_ON(!ptr); node = assoc_array_ptr_to_node(cursor); slot++; goto continue_node; gc_complete: edit->set[0].to = new_root; assoc_array_apply_edit(edit); array->nr_leaves_on_tree = nr_leaves_on_tree; return 0; enomem: pr_devel("enomem\n"); assoc_array_destroy_subtree(new_root, edit->ops); kfree(edit); return -ENOMEM; }
179,518
1,270
32773475763762926162159414643734330465
null
null
null
linux
2febc839133280d5a5e8e1179c94ea674489dae2
1
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu) { struct kvm_pit *pit = vcpu->kvm->arch.vpit; struct hrtimer *timer; if (!kvm_vcpu_is_bsp(vcpu) || !pit) return; timer = &pit->pit_state.timer; if (hrtimer_cancel(timer)) hrtimer_start_expires(timer, HRTIMER_MODE_ABS); }
CWE-362
179,519
1,271
119883143059227327169610043313158814661
null
null
null
linux
854e8bb1aa06c578c2c9145fa6bfe3680ef63b23
1
static int handle_wrmsr(struct kvm_vcpu *vcpu) { struct msr_data msr; u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); msr.data = data; msr.index = ecx; msr.host_initiated = false; if (vmx_set_msr(vcpu, &msr) != 0) { trace_kvm_msr_write_ex(ecx, data); kvm_inject_gp(vcpu, 0); return 1; } trace_kvm_msr_write(ecx, data); skip_emulated_instruction(vcpu); return 1; }
CWE-264
179,521
1,272
236270974209097227870081475907257735246
null
null
null
linux
350b8bdd689cd2ab2c67c8a86a0be86cfa0751a7
1
int kvm_iommu_map_pages(struct kvm *kvm, struct kvm_memory_slot *slot) { gfn_t gfn, end_gfn; pfn_t pfn; int r = 0; struct iommu_domain *domain = kvm->arch.iommu_domain; int flags; /* check if iommu exists and in use */ if (!domain) return 0; gfn = slot->base_gfn; end_gfn = gfn + slot->npages; flags = IOMMU_READ; if (!(slot->flags & KVM_MEM_READONLY)) flags |= IOMMU_WRITE; if (!kvm->arch.iommu_noncoherent) flags |= IOMMU_CACHE; while (gfn < end_gfn) { unsigned long page_size; /* Check if already mapped */ if (iommu_iova_to_phys(domain, gfn_to_gpa(gfn))) { gfn += 1; continue; } /* Get the page size we could use to map */ page_size = kvm_host_page_size(kvm, gfn); /* Make sure the page_size does not exceed the memslot */ while ((gfn + (page_size >> PAGE_SHIFT)) > end_gfn) page_size >>= 1; /* Make sure gfn is aligned to the page size we want to map */ while ((gfn << PAGE_SHIFT) & (page_size - 1)) page_size >>= 1; /* Make sure hva is aligned to the page size we want to map */ while (__gfn_to_hva_memslot(slot, gfn) & (page_size - 1)) page_size >>= 1; /* * Pin all pages we are about to map in memory. This is * important because we unmap and unpin in 4kb steps later. */ pfn = kvm_pin_pages(slot, gfn, page_size); if (is_error_noslot_pfn(pfn)) { gfn += 1; continue; } /* Map into IO address space */ r = iommu_map(domain, gfn_to_gpa(gfn), pfn_to_hpa(pfn), page_size, flags); if (r) { printk(KERN_ERR "kvm_iommu_map_address:" "iommu failed to map pfn=%llx\n", pfn); goto unmap_pages; } gfn += page_size >> PAGE_SHIFT; } return 0; unmap_pages: kvm_iommu_put_pages(kvm, slot->base_gfn, gfn); return r; }
CWE-189
179,523
1,274
150168140098793637323703932111029602132
null
null
null
php-src
2fefae47716d501aec41c1102f3fd4531f070b05
1
static u_char *php_parserr(u_char *cp, querybuf *answer, int type_to_fetch, int store, int raw, zval **subarray) { u_short type, class, dlen; u_long ttl; long n, i; u_short s; u_char *tp, *p; char name[MAXHOSTNAMELEN]; int have_v6_break = 0, in_v6_break = 0; *subarray = NULL; n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, sizeof(name) - 2); if (n < 0) { return NULL; } cp += n; GETSHORT(type, cp); GETSHORT(class, cp); GETLONG(ttl, cp); GETSHORT(dlen, cp); if (type_to_fetch != T_ANY && type != type_to_fetch) { cp += dlen; return cp; } if (!store) { cp += dlen; return cp; } ALLOC_INIT_ZVAL(*subarray); array_init(*subarray); add_assoc_string(*subarray, "host", name, 1); add_assoc_string(*subarray, "class", "IN", 1); add_assoc_long(*subarray, "ttl", ttl); if (raw) { add_assoc_long(*subarray, "type", type); add_assoc_stringl(*subarray, "data", (char*) cp, (uint) dlen, 1); cp += dlen; return cp; } switch (type) { case DNS_T_A: add_assoc_string(*subarray, "type", "A", 1); snprintf(name, sizeof(name), "%d.%d.%d.%d", cp[0], cp[1], cp[2], cp[3]); add_assoc_string(*subarray, "ip", name, 1); cp += dlen; break; case DNS_T_MX: add_assoc_string(*subarray, "type", "MX", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "pri", n); /* no break; */ case DNS_T_CNAME: if (type == DNS_T_CNAME) { add_assoc_string(*subarray, "type", "CNAME", 1); } /* no break; */ case DNS_T_NS: if (type == DNS_T_NS) { add_assoc_string(*subarray, "type", "NS", 1); } /* no break; */ case DNS_T_PTR: if (type == DNS_T_PTR) { add_assoc_string(*subarray, "type", "PTR", 1); } n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "target", name, 1); break; case DNS_T_HINFO: /* See RFC 1010 for values */ add_assoc_string(*subarray, "type", "HINFO", 1); n = *cp & 0xFF; cp++; add_assoc_stringl(*subarray, "cpu", (char*)cp, n, 1); cp += n; n = *cp & 0xFF; cp++; add_assoc_stringl(*subarray, "os", (char*)cp, n, 1); cp += n; break; case DNS_T_TXT: { int ll = 0; zval *entries = NULL; add_assoc_string(*subarray, "type", "TXT", 1); tp = emalloc(dlen + 1); MAKE_STD_ZVAL(entries); array_init(entries); while (ll < dlen) { n = cp[ll]; if ((ll + n) >= dlen) { n = dlen - (ll + 1); } memcpy(tp + ll , cp + ll + 1, n); add_next_index_stringl(entries, cp + ll + 1, n, 1); ll = ll + n + 1; } tp[dlen] = '\0'; cp += dlen; add_assoc_stringl(*subarray, "txt", tp, (dlen>0)?dlen - 1:0, 0); add_assoc_zval(*subarray, "entries", entries); } break; case DNS_T_SOA: add_assoc_string(*subarray, "type", "SOA", 1); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) -2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "mname", name, 1); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) -2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "rname", name, 1); GETLONG(n, cp); add_assoc_long(*subarray, "serial", n); GETLONG(n, cp); add_assoc_long(*subarray, "refresh", n); GETLONG(n, cp); add_assoc_long(*subarray, "retry", n); GETLONG(n, cp); add_assoc_long(*subarray, "expire", n); GETLONG(n, cp); add_assoc_long(*subarray, "minimum-ttl", n); break; case DNS_T_AAAA: tp = (u_char*)name; for(i=0; i < 8; i++) { GETSHORT(s, cp); if (s != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } tp += sprintf((char*)tp,"%x",s); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } } if (have_v6_break && in_v6_break) { tp[0] = ':'; tp++; } tp[0] = '\0'; add_assoc_string(*subarray, "type", "AAAA", 1); add_assoc_string(*subarray, "ipv6", name, 1); break; case DNS_T_A6: p = cp; add_assoc_string(*subarray, "type", "A6", 1); n = ((int)cp[0]) & 0xFF; cp++; add_assoc_long(*subarray, "masklen", n); tp = (u_char*)name; if (n > 15) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } if (n % 16 > 8) { /* Partial short */ if (cp[0] != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } sprintf((char*)tp, "%x", cp[0] & 0xFF); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } cp++; } for (i = (n + 8) / 16; i < 8; i++) { GETSHORT(s, cp); if (s != 0) { if (tp > (u_char *)name) { in_v6_break = 0; tp[0] = ':'; tp++; } tp += sprintf((char*)tp,"%x",s); } else { if (!have_v6_break) { have_v6_break = 1; in_v6_break = 1; tp[0] = ':'; tp++; } else if (!in_v6_break) { tp[0] = ':'; tp++; tp[0] = '0'; tp++; } } } if (have_v6_break && in_v6_break) { tp[0] = ':'; tp++; } tp[0] = '\0'; add_assoc_string(*subarray, "ipv6", name, 1); if (cp < p + dlen) { n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "chain", name, 1); } break; case DNS_T_SRV: add_assoc_string(*subarray, "type", "SRV", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "pri", n); GETSHORT(n, cp); add_assoc_long(*subarray, "weight", n); GETSHORT(n, cp); add_assoc_long(*subarray, "port", n); n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "target", name, 1); break; case DNS_T_NAPTR: add_assoc_string(*subarray, "type", "NAPTR", 1); GETSHORT(n, cp); add_assoc_long(*subarray, "order", n); GETSHORT(n, cp); add_assoc_long(*subarray, "pref", n); n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "flags", (char*)++cp, n, 1); cp += n; n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "services", (char*)++cp, n, 1); cp += n; n = (cp[0] & 0xFF); add_assoc_stringl(*subarray, "regex", (char*)++cp, n, 1); cp += n; n = dn_expand(answer->qb2, answer->qb2+65536, cp, name, (sizeof name) - 2); if (n < 0) { return NULL; } cp += n; add_assoc_string(*subarray, "replacement", name, 1); break; default: zval_ptr_dtor(subarray); *subarray = NULL; cp += dlen; break; } return cp; }
CWE-119
179,526
1,277
192550270728735179499592366180467891975
null
null
null
file
93e063ee374b6a75729df9e7201fb511e47e259d
1
cdf_read_property_info(const cdf_stream_t *sst, const cdf_header_t *h, uint32_t offs, cdf_property_info_t **info, size_t *count, size_t *maxcount) { const cdf_section_header_t *shp; cdf_section_header_t sh; const uint8_t *p, *q, *e; int16_t s16; int32_t s32; uint32_t u32; int64_t s64; uint64_t u64; cdf_timestamp_t tp; size_t i, o, o4, nelements, j; cdf_property_info_t *inp; if (offs > UINT32_MAX / 4) { errno = EFTYPE; goto out; } shp = CAST(const cdf_section_header_t *, (const void *) ((const char *)sst->sst_tab + offs)); if (cdf_check_stream_offset(sst, h, shp, sizeof(*shp), __LINE__) == -1) goto out; sh.sh_len = CDF_TOLE4(shp->sh_len); #define CDF_SHLEN_LIMIT (UINT32_MAX / 8) if (sh.sh_len > CDF_SHLEN_LIMIT) { errno = EFTYPE; goto out; } sh.sh_properties = CDF_TOLE4(shp->sh_properties); #define CDF_PROP_LIMIT (UINT32_MAX / (4 * sizeof(*inp))) if (sh.sh_properties > CDF_PROP_LIMIT) goto out; DPRINTF(("section len: %u properties %u\n", sh.sh_len, sh.sh_properties)); if (*maxcount) { if (*maxcount > CDF_PROP_LIMIT) goto out; *maxcount += sh.sh_properties; inp = CAST(cdf_property_info_t *, realloc(*info, *maxcount * sizeof(*inp))); } else { *maxcount = sh.sh_properties; inp = CAST(cdf_property_info_t *, malloc(*maxcount * sizeof(*inp))); } if (inp == NULL) goto out; *info = inp; inp += *count; *count += sh.sh_properties; p = CAST(const uint8_t *, (const void *) ((const char *)(const void *)sst->sst_tab + offs + sizeof(sh))); e = CAST(const uint8_t *, (const void *) (((const char *)(const void *)shp) + sh.sh_len)); if (cdf_check_stream_offset(sst, h, e, 0, __LINE__) == -1) goto out; for (i = 0; i < sh.sh_properties; i++) { size_t ofs = CDF_GETUINT32(p, (i << 1) + 1); q = (const uint8_t *)(const void *) ((const char *)(const void *)p + ofs - 2 * sizeof(uint32_t)); if (q > e) { DPRINTF(("Ran of the end %p > %p\n", q, e)); goto out; } inp[i].pi_id = CDF_GETUINT32(p, i << 1); inp[i].pi_type = CDF_GETUINT32(q, 0); DPRINTF(("%" SIZE_T_FORMAT "u) id=%x type=%x offs=0x%tx,0x%x\n", i, inp[i].pi_id, inp[i].pi_type, q - p, offs)); if (inp[i].pi_type & CDF_VECTOR) { nelements = CDF_GETUINT32(q, 1); if (nelements == 0) { DPRINTF(("CDF_VECTOR with nelements == 0\n")); goto out; } o = 2; } else { nelements = 1; o = 1; } o4 = o * sizeof(uint32_t); if (inp[i].pi_type & (CDF_ARRAY|CDF_BYREF|CDF_RESERVED)) goto unknown; switch (inp[i].pi_type & CDF_TYPEMASK) { case CDF_NULL: case CDF_EMPTY: break; case CDF_SIGNED16: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&s16, &q[o4], sizeof(s16)); inp[i].pi_s16 = CDF_TOLE2(s16); break; case CDF_SIGNED32: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&s32, &q[o4], sizeof(s32)); inp[i].pi_s32 = CDF_TOLE4((uint32_t)s32); break; case CDF_BOOL: case CDF_UNSIGNED32: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&u32, &q[o4], sizeof(u32)); inp[i].pi_u32 = CDF_TOLE4(u32); break; case CDF_SIGNED64: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&s64, &q[o4], sizeof(s64)); inp[i].pi_s64 = CDF_TOLE8((uint64_t)s64); break; case CDF_UNSIGNED64: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&u64, &q[o4], sizeof(u64)); inp[i].pi_u64 = CDF_TOLE8((uint64_t)u64); break; case CDF_FLOAT: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&u32, &q[o4], sizeof(u32)); u32 = CDF_TOLE4(u32); memcpy(&inp[i].pi_f, &u32, sizeof(inp[i].pi_f)); break; case CDF_DOUBLE: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&u64, &q[o4], sizeof(u64)); u64 = CDF_TOLE8((uint64_t)u64); memcpy(&inp[i].pi_d, &u64, sizeof(inp[i].pi_d)); break; case CDF_LENGTH32_STRING: case CDF_LENGTH32_WSTRING: if (nelements > 1) { size_t nelem = inp - *info; if (*maxcount > CDF_PROP_LIMIT || nelements > CDF_PROP_LIMIT) goto out; *maxcount += nelements; inp = CAST(cdf_property_info_t *, realloc(*info, *maxcount * sizeof(*inp))); if (inp == NULL) goto out; *info = inp; inp = *info + nelem; } DPRINTF(("nelements = %" SIZE_T_FORMAT "u\n", nelements)); for (j = 0; j < nelements && i < sh.sh_properties; j++, i++) { uint32_t l = CDF_GETUINT32(q, o); inp[i].pi_str.s_len = l; inp[i].pi_str.s_buf = (const char *) (const void *)(&q[o4 + sizeof(l)]); DPRINTF(("l = %d, r = %" SIZE_T_FORMAT "u, s = %s\n", l, CDF_ROUND(l, sizeof(l)), inp[i].pi_str.s_buf)); if (l & 1) l++; o += l >> 1; if (q + o >= e) goto out; o4 = o * sizeof(uint32_t); } i--; break; case CDF_FILETIME: if (inp[i].pi_type & CDF_VECTOR) goto unknown; (void)memcpy(&tp, &q[o4], sizeof(tp)); inp[i].pi_tp = CDF_TOLE8((uint64_t)tp); break; case CDF_CLIPBOARD: if (inp[i].pi_type & CDF_VECTOR) goto unknown; break; default: unknown: DPRINTF(("Don't know how to deal with %x\n", inp[i].pi_type)); break; } } return 0; out: free(*info); return -1; }
CWE-20
179,536
1,285
39554699879590961013357878814695740567
null
null
null
file
40bade80cbe2af1d0b2cd0420cebd5d5905a2382
1
cdf_count_chain(const cdf_sat_t *sat, cdf_secid_t sid, size_t size) { size_t i, j; cdf_secid_t maxsector = (cdf_secid_t)(sat->sat_len * size); DPRINTF(("Chain:")); for (j = i = 0; sid >= 0; i++, j++) { DPRINTF((" %d", sid)); if (j >= CDF_LOOP_LIMIT) { DPRINTF(("Counting chain loop limit")); errno = EFTYPE; return (size_t)-1; } if (sid > maxsector) { DPRINTF(("Sector %d > %d\n", sid, maxsector)); errno = EFTYPE; return (size_t)-1; } sid = CDF_TOLE4((uint32_t)sat->sat_tab[sid]); } if (i == 0) { DPRINTF((" none, sid: %d\n", sid)); return (size_t)-1; } DPRINTF(("\n")); return i; }
CWE-20
179,537
1,286
128863893313877960752074141895244297013
null
null
null
file
36fadd29849b8087af9f4586f89dbf74ea45be67
1
cdf_check_stream_offset(const cdf_stream_t *sst, const cdf_header_t *h, const void *p, size_t tail, int line) { const char *b = (const char *)sst->sst_tab; const char *e = ((const char *)p) + tail; (void)&line; if (e >= b && (size_t)(e - b) <= CDF_SEC_SIZE(h) * sst->sst_len) return 0; DPRINTF(("%d: offset begin %p < end %p || %" SIZE_T_FORMAT "u" " > %" SIZE_T_FORMAT "u [%" SIZE_T_FORMAT "u %" SIZE_T_FORMAT "u]\n", line, b, e, (size_t)(e - b), CDF_SEC_SIZE(h) * sst->sst_len, CDF_SEC_SIZE(h), sst->sst_len)); errno = EFTYPE; return -1; }
CWE-189
179,538
1,287
126331237157471830789816841088958865442
null
null
null
linux
844817e47eef14141cf59b8d5ac08dd11c0a9189
1
static int picolcd_raw_event(struct hid_device *hdev, struct hid_report *report, u8 *raw_data, int size) { struct picolcd_data *data = hid_get_drvdata(hdev); unsigned long flags; int ret = 0; if (!data) return 1; if (report->id == REPORT_KEY_STATE) { if (data->input_keys) ret = picolcd_raw_keypad(data, report, raw_data+1, size-1); } else if (report->id == REPORT_IR_DATA) { ret = picolcd_raw_cir(data, report, raw_data+1, size-1); } else { spin_lock_irqsave(&data->lock, flags); /* * We let the caller of picolcd_send_and_wait() check if the * report we got is one of the expected ones or not. */ if (data->pending) { memcpy(data->pending->raw_data, raw_data+1, size-1); data->pending->raw_size = size-1; data->pending->in_report = report; complete(&data->pending->ready); } spin_unlock_irqrestore(&data->lock, flags); } picolcd_debug_raw_event(data, hdev, report, raw_data, size); return 1; }
CWE-119
179,540
1,288
336846250312050028232066323392072383213
null
null
null
linux
6817ae225cd650fb1c3295d769298c38b1eba818
1
static void command_port_read_callback(struct urb *urb) { struct usb_serial_port *command_port = urb->context; struct whiteheat_command_private *command_info; int status = urb->status; unsigned char *data = urb->transfer_buffer; int result; command_info = usb_get_serial_port_data(command_port); if (!command_info) { dev_dbg(&urb->dev->dev, "%s - command_info is NULL, exiting.\n", __func__); return; } if (status) { dev_dbg(&urb->dev->dev, "%s - nonzero urb status: %d\n", __func__, status); if (status != -ENOENT) command_info->command_finished = WHITEHEAT_CMD_FAILURE; wake_up(&command_info->wait_command); return; } usb_serial_debug_data(&command_port->dev, __func__, urb->actual_length, data); if (data[0] == WHITEHEAT_CMD_COMPLETE) { command_info->command_finished = WHITEHEAT_CMD_COMPLETE; wake_up(&command_info->wait_command); } else if (data[0] == WHITEHEAT_CMD_FAILURE) { command_info->command_finished = WHITEHEAT_CMD_FAILURE; wake_up(&command_info->wait_command); } else if (data[0] == WHITEHEAT_EVENT) { /* These are unsolicited reports from the firmware, hence no waiting command to wakeup */ dev_dbg(&urb->dev->dev, "%s - event received\n", __func__); } else if (data[0] == WHITEHEAT_GET_DTR_RTS) { memcpy(command_info->result_buffer, &data[1], urb->actual_length - 1); command_info->command_finished = WHITEHEAT_CMD_COMPLETE; wake_up(&command_info->wait_command); } else dev_dbg(&urb->dev->dev, "%s - bad reply from firmware\n", __func__); /* Continue trying to always read */ result = usb_submit_urb(command_port->read_urb, GFP_ATOMIC); if (result) dev_dbg(&urb->dev->dev, "%s - failed resubmitting read urb, error %d\n", __func__, result); }
CWE-119
179,541
1,289
11995144287059041052849383480810782444
null
null
null
linux
4ab25786c87eb20857bbb715c3ae34ec8fd6a214
1
static __u8 *ch_report_fixup(struct hid_device *hdev, __u8 *rdesc, unsigned int *rsize) { if (*rsize >= 17 && rdesc[11] == 0x3c && rdesc[12] == 0x02) { hid_info(hdev, "fixing up Cherry Cymotion report descriptor\n"); rdesc[11] = rdesc[16] = 0xff; rdesc[12] = rdesc[17] = 0x03; } return rdesc; }
CWE-119
179,542
1,290
45538586871323178624538960674889390064
null
null
null