project
stringclasses 633
values | commit_id
stringlengths 7
81
| target
int64 0
1
| func
stringlengths 5
484k
| cwe
stringclasses 131
values | big_vul_idx
float64 0
189k
⌀ | idx
int64 0
522k
| hash
stringlengths 34
39
| size
float64 1
24k
⌀ | message
stringlengths 0
11.5k
⌀ | dataset
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_request_forward_body(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->req;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* Note that we don't have to send 100-continue back because we don't
* need the data to complete our job, and it's up to the server to
* decide whether to return 100, 417 or anything else in return of
* an "Expect: 100-continue" header.
*/
if (msg->msg_state == HTTP_MSG_BODY) {
msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
? HTTP_MSG_CHUNK_SIZE
: HTTP_MSG_DATA);
/* TODO/filters: when http-buffer-request option is set or if a
* rule on url_param exists, the first chunk size could be
* already parsed. In that case, msg->next is after the chunk
* size (including the CRLF after the size). So this case should
* be handled to */
}
/* Some post-connect processing might want us to refrain from starting to
* forward data. Currently, the only reason for this is "balance url_param"
* whichs need to parse/process the request after we've enabled forwarding.
*/
if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) {
if (!(s->res.flags & CF_READ_ATTACHED)) {
channel_auto_connect(req);
req->flags |= CF_WAKE_CONNECT;
channel_dont_close(req); /* don't fail on early shutr */
goto waiting;
}
msg->flags &= ~HTTP_MSGF_WAIT_CONN;
}
/* in most states, we should abort in case of early close */
channel_auto_close(req);
if (req->to_forward) {
/* We can't process the buffer's contents yet */
req->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
if (msg->msg_state < HTTP_MSG_DONE) {
ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
? http_msg_forward_chunked_body(s, msg)
: http_msg_forward_body(s, msg));
if (!ret)
goto missing_data_or_waiting;
if (ret < 0)
goto return_bad_req;
}
/* other states, DONE...TUNNEL */
/* we don't want to forward closes on DONE except in tunnel mode. */
if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
channel_dont_close(req);
http_resync_states(s);
if (!(req->analysers & an_bit)) {
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (req->flags & CF_SHUTW) {
/* request errors are most likely due to the
* server aborting the transfer. */
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, s->be);
goto return_bad_req;
}
return 1;
}
/* If "option abortonclose" is set on the backend, we want to monitor
* the client's connection and forward any shutdown notification to the
* server, which will decide whether to close or to go on processing the
* request. We only do that in tunnel mode, and not in other modes since
* it can be abused to exhaust source ports. */
if ((s->be->options & PR_O_ABRT_CLOSE) && !(s->si[0].flags & SI_FL_CLEAN_ABRT)) {
channel_auto_read(req);
if ((req->flags & (CF_SHUTR|CF_READ_NULL)) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN))
s->si[1].flags |= SI_FL_NOLINGER;
channel_auto_close(req);
}
else if (s->txn->meth == HTTP_METH_POST) {
/* POST requests may require to read extra CRLF sent by broken
* browsers and which could cause an RST to be sent upon close
* on some systems (eg: Linux). */
channel_auto_read(req);
}
return 0;
missing_data_or_waiting:
/* stop waiting for data if the input is closed before the end */
if (msg->msg_state < HTTP_MSG_ENDING && req->flags & CF_SHUTR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
goto return_bad_req_stats_ok;
}
waiting:
/* waiting for the last bits to leave the buffer */
if (req->flags & CF_SHUTW)
goto aborted_xfer;
/* When TE: chunked is used, we need to get there again to parse remaining
* chunks even if the client has closed, so we don't want to set CF_DONTCLOSE.
* And when content-length is used, we never want to let the possible
* shutdown be forwarded to the other side, as the state machine will
* take care of it once the client responds. It's also important to
* prevent TIME_WAITs from accumulating on the backend side, and for
* HTTP/2 where the last frame comes with a shutdown.
*/
if (msg->flags & (HTTP_MSGF_TE_CHNK|HTTP_MSGF_CNT_LEN))
channel_dont_close(req);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if (msg->flags & HTTP_MSGF_TE_CHNK)
req->flags |= CF_EXPECT_MORE;
return 0;
return_bad_req: /* let's centralize all bad requests */
HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
return_bad_req_stats_ok:
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
http_reply_and_close(s, txn->status, NULL);
} else {
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
}
req->analysers &= AN_REQ_FLT_END;
s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
return 0;
aborted_xfer:
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
if (txn->status) {
/* Note: we don't send any error if some data were already sent */
http_reply_and_close(s, txn->status, NULL);
} else {
txn->status = 502;
http_reply_and_close(s, txn->status, http_error_message(s));
}
req->analysers &= AN_REQ_FLT_END;
s->res.analysers &= AN_RES_FLT_END; /* we're in data phase, we want to abort both directions */
HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1);
HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK)) {
if (txn->rsp.msg_state < HTTP_MSG_ERROR)
s->flags |= SF_FINST_H;
else
s->flags |= SF_FINST_D;
}
return 0;
}
|
CWE-200
| 6,848 | 15,097 |
105576462537489128587584941919236046374
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s)
{
struct session *sess = strm_sess(s);
struct http_txn *txn = s->txn;
struct connection *cli_conn;
struct act_rule *rule;
struct hdr_ctx ctx;
int act_flags = 0;
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == rules)
goto resume_execution;
}
s->current_rule_list = rules;
list_for_each_entry(rule, rules, list) {
/* check optional condition */
if (rule->cond) {
int ret;
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (!ret) /* condition not matched */
continue;
}
act_flags |= ACT_FLAG_FIRST;
resume_execution:
switch (rule->action) {
case ACT_ACTION_ALLOW:
return HTTP_RULE_RES_STOP; /* "allow" rules are OK */
case ACT_ACTION_DENY:
txn->flags |= TX_SVDENY;
return HTTP_RULE_RES_STOP;
case ACT_HTTP_SET_NICE:
s->task->nice = rule->arg.nice;
break;
case ACT_HTTP_SET_TOS:
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
inet_set_tos(cli_conn->handle.fd, &cli_conn->addr.from, rule->arg.tos);
break;
case ACT_HTTP_SET_MARK:
#ifdef SO_MARK
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn))
setsockopt(cli_conn->handle.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark));
#endif
break;
case ACT_HTTP_SET_LOGL:
s->logs.level = rule->arg.loglevel;
break;
case ACT_HTTP_REPLACE_HDR:
case ACT_HTTP_REPLACE_VAL:
if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name,
rule->arg.hdr_add.name_len,
&rule->arg.hdr_add.fmt,
&rule->arg.hdr_add.re, rule->action))
return HTTP_RULE_RES_BADREQ;
break;
case ACT_HTTP_DEL_HDR:
ctx.idx = 0;
/* remove all occurrences of the header */
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
}
break;
case ACT_HTTP_SET_HDR:
case ACT_HTTP_ADD_HDR: {
struct chunk *replace;
replace = alloc_trash_chunk();
if (!replace)
return HTTP_RULE_RES_BADREQ;
chunk_printf(replace, "%s: ", rule->arg.hdr_add.name);
memcpy(replace->str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len);
replace->len = rule->arg.hdr_add.name_len;
replace->str[replace->len++] = ':';
replace->str[replace->len++] = ' ';
replace->len += build_logline(s, replace->str + replace->len, replace->size - replace->len,
&rule->arg.hdr_add.fmt);
if (rule->action == ACT_HTTP_SET_HDR) {
/* remove all occurrences of the header */
ctx.idx = 0;
while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len,
txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) {
http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx);
}
}
http_header_add_tail2(&txn->rsp, &txn->hdr_idx, replace->str, replace->len);
free_trash_chunk(replace);
break;
}
case ACT_HTTP_DEL_ACL:
case ACT_HTTP_DEL_MAP: {
struct pat_ref *ref;
struct chunk *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key)
return HTTP_RULE_RES_BADREQ;
/* collect key */
key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
key->str[key->len] = '\0';
/* perform update */
/* returned code: 1=ok, 0=ko */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
pat_ref_delete(ref, key->str);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
break;
}
case ACT_HTTP_ADD_ACL: {
struct pat_ref *ref;
struct chunk *key;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key)
return HTTP_RULE_RES_BADREQ;
/* collect key */
key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
key->str[key->len] = '\0';
/* perform update */
/* check if the entry already exists */
if (pat_ref_find_elt(ref, key->str) == NULL)
pat_ref_add(ref, key->str, NULL, NULL);
free_trash_chunk(key);
break;
}
case ACT_HTTP_SET_MAP: {
struct pat_ref *ref;
struct chunk *key, *value;
/* collect reference */
ref = pat_ref_lookup(rule->arg.map.ref);
if (!ref)
continue;
/* allocate key */
key = alloc_trash_chunk();
if (!key)
return HTTP_RULE_RES_BADREQ;
/* allocate value */
value = alloc_trash_chunk();
if (!value) {
free_trash_chunk(key);
return HTTP_RULE_RES_BADREQ;
}
/* collect key */
key->len = build_logline(s, key->str, key->size, &rule->arg.map.key);
key->str[key->len] = '\0';
/* collect value */
value->len = build_logline(s, value->str, value->size, &rule->arg.map.value);
value->str[value->len] = '\0';
/* perform update */
HA_SPIN_LOCK(PATREF_LOCK, &ref->lock);
if (pat_ref_find_elt(ref, key->str) != NULL)
/* update entry if it exists */
pat_ref_set(ref, key->str, value->str, NULL);
else
/* insert a new entry */
pat_ref_add(ref, key->str, value->str, NULL);
HA_SPIN_UNLOCK(PATREF_LOCK, &ref->lock);
free_trash_chunk(key);
free_trash_chunk(value);
break;
}
case ACT_HTTP_REDIR:
if (!http_apply_redirect_rule(rule->arg.redir, s, txn))
return HTTP_RULE_RES_BADREQ;
return HTTP_RULE_RES_DONE;
case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX:
/* Note: only the first valid tracking parameter of each
* applies.
*/
if (stkctr_entry(&s->stkctr[trk_idx(rule->action)]) == NULL) {
struct stktable *t;
struct stksess *ts;
struct stktable_key *key;
void *ptr;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_RES | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[trk_idx(rule->action)], t, ts);
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
/* let's count a new HTTP request as it's the first time we do it */
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT);
if (ptr)
stktable_data_cast(ptr, http_req_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate),
t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1);
/* When the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan. Normally this is done when receiving the response
* but here we're tracking after this ought to have been done so we have
* to do it on purpose.
*/
if ((unsigned)(txn->status - 400) < 100) {
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_CNT);
if (ptr)
stktable_data_cast(ptr, http_err_cnt)++;
ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_ERR_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate),
t->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u, 1);
}
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
/* If data was modified, we need to touch to re-schedule sync */
stktable_touch_local(t, ts, 0);
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
}
}
break;
case ACT_CUSTOM:
if ((s->req.flags & CF_READ_ERROR) ||
((s->req.flags & (CF_SHUTR|CF_READ_NULL)) &&
!(s->si[0].flags & SI_FL_CLEAN_ABRT) &&
(px->options & PR_O_ABRT_CLOSE)))
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
break;
case ACT_RET_STOP:
return HTTP_RULE_RES_STOP;
case ACT_RET_YIELD:
s->current_rule = rule;
return HTTP_RULE_RES_YIELD;
}
break;
/* other flags exists, but normaly, they never be matched. */
default:
break;
}
}
/* we reached the end of the rules, nothing to report */
return HTTP_RULE_RES_CONT;
}
|
CWE-200
| 6,849 | 15,098 |
113620882422640692645712761464759539418
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_reset_txn(struct stream *s)
{
http_end_txn(s);
http_init_txn(s);
/* reinitialise the current rule list pointer to NULL. We are sure that
* any rulelist match the NULL pointer.
*/
s->current_rule_list = NULL;
s->be = strm_fe(s);
s->logs.logwait = strm_fe(s)->to_log;
s->logs.level = 0;
stream_del_srv_conn(s);
s->target = NULL;
/* re-init store persistence */
s->store_count = 0;
s->uniq_id = global.req_count++;
s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */
/* We must trim any excess data from the response buffer, because we
* may have blocked an invalid response from a server that we don't
* want to accidentely forward once we disable the analysers, nor do
* we want those data to come along with next response. A typical
* example of such data would be from a buggy server responding to
* a HEAD with some data, or sending more than the advertised
* content-length.
*/
if (unlikely(s->res.buf->i))
s->res.buf->i = 0;
/* Now we can realign the response buffer */
buffer_realign(s->res.buf);
s->req.rto = strm_fe(s)->timeout.client;
s->req.wto = TICK_ETERNITY;
s->res.rto = TICK_ETERNITY;
s->res.wto = strm_fe(s)->timeout.client;
s->req.rex = TICK_ETERNITY;
s->req.wex = TICK_ETERNITY;
s->req.analyse_exp = TICK_ETERNITY;
s->res.rex = TICK_ETERNITY;
s->res.wex = TICK_ETERNITY;
s->res.analyse_exp = TICK_ETERNITY;
s->si[1].hcto = TICK_ETERNITY;
}
|
CWE-200
| 6,850 | 15,099 |
170860373087498341628756627743242502815
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_response_forward_body(struct stream *s, struct channel *res, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &s->txn->rsp;
int ret;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
res,
res->rex, res->wex,
res->flags,
res->buf->i,
res->analysers);
if (unlikely(msg->msg_state < HTTP_MSG_BODY))
return 0;
if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) ||
((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) ||
!s->req.analysers) {
/* Output closed while we were sending data. We must abort and
* wake the other side up.
*/
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_resync_states(s);
return 1;
}
/* in most states, we should abort in case of early close */
channel_auto_close(res);
if (msg->msg_state == HTTP_MSG_BODY) {
msg->msg_state = ((msg->flags & HTTP_MSGF_TE_CHNK)
? HTTP_MSG_CHUNK_SIZE
: HTTP_MSG_DATA);
}
if (res->to_forward) {
/* We can't process the buffer's contents yet */
res->flags |= CF_WAKE_WRITE;
goto missing_data_or_waiting;
}
if (msg->msg_state < HTTP_MSG_DONE) {
ret = ((msg->flags & HTTP_MSGF_TE_CHNK)
? http_msg_forward_chunked_body(s, msg)
: http_msg_forward_body(s, msg));
if (!ret)
goto missing_data_or_waiting;
if (ret < 0)
goto return_bad_res;
}
/* other states, DONE...TUNNEL */
/* for keep-alive we don't want to forward closes on DONE */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
channel_dont_close(res);
http_resync_states(s);
if (!(res->analysers & an_bit)) {
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
if (res->flags & CF_SHUTW) {
/* response errors are most likely due to the
* client aborting the transfer. */
goto aborted_xfer;
}
if (msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, strm_fe(s));
goto return_bad_res;
}
return 1;
}
return 0;
missing_data_or_waiting:
if (res->flags & CF_SHUTW)
goto aborted_xfer;
/* stop waiting for data if the input is closed before the end. If the
* client side was already closed, it means that the client has aborted,
* so we don't want to count this as a server abort. Otherwise it's a
* server abort.
*/
if (msg->msg_state < HTTP_MSG_ENDING && res->flags & CF_SHUTR) {
if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))
goto aborted_xfer;
/* If we have some pending data, we continue the processing */
if (!buffer_pending(res->buf)) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.srv_aborts, 1);
goto return_bad_res_stats_ok;
}
}
/* we need to obey the req analyser, so if it leaves, we must too */
if (!s->req.analysers)
goto return_bad_res;
/* When TE: chunked is used, we need to get there again to parse
* remaining chunks even if the server has closed, so we don't want to
* set CF_DONTCLOSE. Similarly, if keep-alive is set on the client side
* or if there are filters registered on the stream, we don't want to
* forward a close
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) ||
HAS_DATA_FILTERS(s, res) ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)
channel_dont_close(res);
/* We know that more data are expected, but we couldn't send more that
* what we did. So we always set the CF_EXPECT_MORE flag so that the
* system knows it must not set a PUSH on this first part. Interactive
* modes are already handled by the stream sock layer. We must not do
* this in content-length mode because it could present the MSG_MORE
* flag with the last block of forwarded data, which would cause an
* additional delay to be observed by the receiver.
*/
if ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->flags & HTTP_MSGF_COMPRESSING))
res->flags |= CF_EXPECT_MORE;
/* the stream handler will take care of timeouts and errors */
return 0;
return_bad_res: /* let's centralize all bad responses */
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
return_bad_res_stats_ok:
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
http_reply_and_close(s, txn->status, NULL);
res->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
if (objt_server(s->target))
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
aborted_xfer:
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
/* don't send any error message as we're in the body */
http_reply_and_close(s, txn->status, NULL);
res->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END; /* we're in data phase, we want to abort both directions */
HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
}
|
CWE-200
| 6,851 | 15,100 |
180938781322327445425168976964983402414
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_resync_states(struct stream *s)
{
struct http_txn *txn = s->txn;
#ifdef DEBUG_FULL
int old_req_state = txn->req.msg_state;
int old_res_state = txn->rsp.msg_state;
#endif
http_sync_req_state(s);
while (1) {
if (!http_sync_res_state(s))
break;
if (!http_sync_req_state(s))
break;
}
DPRINTF(stderr,"[%u] %s: stream=%p old=%s,%s cur=%s,%s "
"req->analysers=0x%08x res->analysers=0x%08x\n",
now_ms, __FUNCTION__, s,
h1_msg_state_str(old_req_state), h1_msg_state_str(old_res_state),
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state),
s->req.analysers, s->res.analysers);
/* OK, both state machines agree on a compatible state.
* There are a few cases we're interested in :
* - HTTP_MSG_CLOSED on both sides means we've reached the end in both
* directions, so let's simply disable both analysers.
* - HTTP_MSG_CLOSED on the response only or HTTP_MSG_ERROR on either
* means we must abort the request.
* - HTTP_MSG_TUNNEL on either means we have to disable analyser on
* corresponding channel.
* - HTTP_MSG_DONE or HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE
* on the response with server-close mode means we've completed one
* request and we must re-initialize the server connection.
*/
if (txn->req.msg_state == HTTP_MSG_CLOSED &&
txn->rsp.msg_state == HTTP_MSG_CLOSED) {
s->req.analysers &= AN_REQ_FLT_END;
channel_auto_close(&s->req);
channel_auto_read(&s->req);
s->res.analysers &= AN_RES_FLT_END;
channel_auto_close(&s->res);
channel_auto_read(&s->res);
}
else if (txn->rsp.msg_state == HTTP_MSG_CLOSED ||
txn->rsp.msg_state == HTTP_MSG_ERROR ||
txn->req.msg_state == HTTP_MSG_ERROR) {
s->res.analysers &= AN_RES_FLT_END;
channel_auto_close(&s->res);
channel_auto_read(&s->res);
s->req.analysers &= AN_REQ_FLT_END;
channel_abort(&s->req);
channel_auto_close(&s->req);
channel_auto_read(&s->req);
channel_truncate(&s->req);
}
else if (txn->req.msg_state == HTTP_MSG_TUNNEL ||
txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
if (txn->req.msg_state == HTTP_MSG_TUNNEL) {
s->req.analysers &= AN_REQ_FLT_END;
if (HAS_REQ_DATA_FILTERS(s))
s->req.analysers |= AN_REQ_FLT_XFER_DATA;
}
if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) {
s->res.analysers &= AN_RES_FLT_END;
if (HAS_RSP_DATA_FILTERS(s))
s->res.analysers |= AN_RES_FLT_XFER_DATA;
}
channel_auto_close(&s->req);
channel_auto_read(&s->req);
channel_auto_close(&s->res);
channel_auto_read(&s->res);
}
else if ((txn->req.msg_state == HTTP_MSG_DONE ||
txn->req.msg_state == HTTP_MSG_CLOSED) &&
txn->rsp.msg_state == HTTP_MSG_DONE &&
((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) {
/* server-close/keep-alive: terminate this transaction,
* possibly killing the server connection and reinitialize
* a fresh-new transaction, but only once we're sure there's
* enough room in the request and response buffer to process
* another request. They must not hold any pending output data
* and the response buffer must realigned
* (realign is done is http_end_txn_clean_session).
*/
if (s->req.buf->o)
s->req.flags |= CF_WAKE_WRITE;
else if (s->res.buf->o)
s->res.flags |= CF_WAKE_WRITE;
else {
s->req.analysers = AN_REQ_FLT_END;
s->res.analysers = AN_RES_FLT_END;
txn->flags |= TX_WAIT_CLEANUP;
}
}
}
|
CWE-200
| 6,852 | 15,101 |
155504441033124534086870432741404229125
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_return_srv_error(struct stream *s, struct stream_interface *si)
{
int err_type = si->err_type;
/* set s->txn->status for http_error_message(s) */
s->txn->status = 503;
if (err_type & SI_ET_QUEUE_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_ABRT)
http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_QUEUE_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_QUEUE_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q,
http_error_message(s));
else if (err_type & SI_ET_CONN_TO)
http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_ERR)
http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C,
(s->flags & SF_SRV_REUSED) ? NULL :
http_error_message(s));
else if (err_type & SI_ET_CONN_RES)
http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C,
(s->txn->flags & TX_NOT_FIRST) ? NULL :
http_error_message(s));
else { /* SI_ET_CONN_OTHER and others */
s->txn->status = 500;
http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C,
http_error_message(s));
}
}
|
CWE-200
| 6,853 | 15,102 |
201758611203848504891071569686410783391
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) {
struct hdr_ctx ctx;
char *hdr_name = be->server_id_hdr_name;
int hdr_name_len = be->server_id_hdr_len;
struct channel *chn = txn->req.chn;
char *hdr_val;
unsigned int old_o, old_i;
ctx.idx = 0;
old_o = http_hdr_rewind(&txn->req);
if (old_o) {
/* The request was already skipped, let's restore it */
b_rew(chn->buf, old_o);
txn->req.next += old_o;
txn->req.sov += old_o;
}
old_i = chn->buf->i;
while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
/* remove any existing values from the header */
http_remove_header2(&txn->req, &txn->hdr_idx, &ctx);
}
/* Add the new header requested with the server value */
hdr_val = trash.str;
memcpy(hdr_val, hdr_name, hdr_name_len);
hdr_val += hdr_name_len;
*hdr_val++ = ':';
*hdr_val++ = ' ';
hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val);
http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str);
if (old_o) {
/* If this was a forwarded request, we must readjust the amount of
* data to be forwarded in order to take into account the size
* variations. Note that the current state is >= HTTP_MSG_BODY,
* so we don't have to adjust ->sol.
*/
old_o += chn->buf->i - old_i;
b_adv(chn->buf, old_o);
txn->req.next -= old_o;
txn->req.sov -= old_o;
}
return 0;
}
|
CWE-200
| 6,854 | 15,103 |
133381547399235497152296464345010740317
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static void http_server_error(struct stream *s, struct stream_interface *si,
int err, int finst, const struct chunk *msg)
{
FLT_STRM_CB(s, flt_http_reply(s, s->txn->status, msg));
channel_auto_read(si_oc(si));
channel_abort(si_oc(si));
channel_auto_close(si_oc(si));
channel_erase(si_oc(si));
channel_auto_close(si_ic(si));
channel_auto_read(si_ic(si));
if (msg)
co_inject(si_ic(si), msg->str, msg->len);
if (!(s->flags & SF_ERR_MASK))
s->flags |= err;
if (!(s->flags & SF_FINST_MASK))
s->flags |= finst;
}
|
CWE-200
| 6,855 | 15,104 |
186869904291587574047984250889932714911
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_set_status(unsigned int status, const char *reason, struct stream *s)
{
struct http_txn *txn = s->txn;
char *cur_ptr, *cur_end;
int delta;
char *res;
int c_l;
const char *msg = reason;
int msg_len;
chunk_reset(&trash);
res = ultoa_o(status, trash.str, trash.size);
c_l = res - trash.str;
trash.str[c_l] = ' ';
trash.len = c_l + 1;
/* Do we have a custom reason format string? */
if (msg == NULL)
msg = get_reason(status);
msg_len = strlen(msg);
strncpy(&trash.str[trash.len], msg, trash.size - trash.len);
trash.len += msg_len;
cur_ptr = s->res.buf->p + txn->rsp.sl.st.c;
cur_end = s->res.buf->p + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l;
/* commit changes and adjust message */
delta = buffer_replace2(s->res.buf, cur_ptr, cur_end, trash.str, trash.len);
/* adjust res line offsets and lengths */
txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l;
txn->rsp.sl.st.c_l = c_l;
txn->rsp.sl.st.r_l = msg_len;
delta = trash.len - (cur_end - cur_ptr);
txn->rsp.sl.st.l += delta;
txn->hdr_idx.v[0].len += delta;
http_msg_move_end(&txn->rsp, delta);
}
|
CWE-200
| 6,856 | 15,105 |
170782748866504371397645688378185611777
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_sync_req_state(struct stream *s)
{
struct channel *chn = &s->req;
struct http_txn *txn = s->txn;
unsigned int old_flags = chn->flags;
unsigned int old_state = txn->req.msg_state;
if (unlikely(txn->req.msg_state < HTTP_MSG_DONE))
return 0;
if (txn->req.msg_state == HTTP_MSG_DONE) {
/* No need to read anymore, the request was completely parsed.
* We can shut the read side unless we want to abort_on_close,
* or we have a POST request. The issue with POST requests is
* that some browsers still send a CRLF after the request, and
* this CRLF must be read so that it does not remain in the kernel
* buffers, otherwise a close could cause an RST on some systems
* (eg: Linux).
* Note that if we're using keep-alive on the client side, we'd
* rather poll now and keep the polling enabled for the whole
* stream's life than enabling/disabling it between each
* response and next request.
*/
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
(!(s->be->options & PR_O_ABRT_CLOSE) ||
(s->si[0].flags & SI_FL_CLEAN_ABRT)) &&
txn->meth != HTTP_METH_POST)
channel_dont_read(chn);
/* if the server closes the connection, we want to immediately react
* and close the socket to save packets and syscalls.
*/
s->si[1].flags |= SI_FL_NOHALF;
/* In any case we've finished parsing the request so we must
* disable Nagle when sending data because 1) we're not going
* to shut this side, and 2) the server is waiting for us to
* send pending data.
*/
chn->flags |= CF_NEVER_WAIT;
if (txn->rsp.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->rsp.msg_state < HTTP_MSG_DONE) {
/* The server has not finished to respond, so we
* don't want to move in order not to upset it.
*/
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : queue a connection close to the server */
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW)))
channel_shutw_now(chn);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the stream is complete
* once both states are CLOSED.
*
* However, there is an exception if the response
* length is undefined. In this case, we need to wait
* the close from the server. The response will be
* switched in TUNNEL mode until the end.
*/
if (!(txn->rsp.flags & HTTP_MSGF_XFER_LEN) &&
txn->rsp.msg_state != HTTP_MSG_CLOSED)
goto check_channel_flags;
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Tunnel mode
* will not have any analyser so it needs to poll for reads.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) {
channel_auto_read(chn);
txn->req.msg_state = HTTP_MSG_TUNNEL;
}
}
goto check_channel_flags;
}
if (txn->req.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->req.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
}
goto wait_other_side;
}
if (txn->req.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* if we don't know whether the server will close, we need to hard close */
if (txn->rsp.flags & HTTP_MSGF_XFER_LEN)
s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */
/* see above in MSG_DONE why we only do this in these states */
if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) &&
(!(s->be->options & PR_O_ABRT_CLOSE) ||
(s->si[0].flags & SI_FL_CLEAN_ABRT)))
channel_dont_read(chn);
goto wait_other_side;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
txn->req.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
wait_other_side:
return txn->req.msg_state != old_state || chn->flags != old_flags;
}
|
CWE-200
| 6,857 | 15,106 |
271564500480511542568988161343136955078
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_sync_res_state(struct stream *s)
{
struct channel *chn = &s->res;
struct http_txn *txn = s->txn;
unsigned int old_flags = chn->flags;
unsigned int old_state = txn->rsp.msg_state;
if (unlikely(txn->rsp.msg_state < HTTP_MSG_DONE))
return 0;
if (txn->rsp.msg_state == HTTP_MSG_DONE) {
/* In theory, we don't need to read anymore, but we must
* still monitor the server connection for a possible close
* while the request is being uploaded, so we don't disable
* reading.
*/
/* channel_dont_read(chn); */
if (txn->req.msg_state == HTTP_MSG_ERROR)
goto wait_other_side;
if (txn->req.msg_state < HTTP_MSG_DONE) {
/* The client seems to still be sending data, probably
* because we got an error response during an upload.
* We have the choice of either breaking the connection
* or letting it pass through. Let's do the later.
*/
goto wait_other_side;
}
/* When we get here, it means that both the request and the
* response have finished receiving. Depending on the connection
* mode, we'll have to wait for the last bytes to leave in either
* direction, and sometimes for a close to be effective.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) {
/* Server-close mode : shut read and wait for the request
* side to close its output buffer. The caller will detect
* when we're in DONE and the other is in CLOSED and will
* catch that for the final cleanup.
*/
if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW)))
channel_shutr_now(chn);
}
else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
/* Option forceclose is set, or either side wants to close,
* let's enforce it now that we're not expecting any new
* data to come. The caller knows the stream is complete
* once both states are CLOSED.
*/
if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
channel_shutr_now(chn);
channel_shutw_now(chn);
}
}
else {
/* The last possible modes are keep-alive and tunnel. Tunnel will
* need to forward remaining data. Keep-alive will need to monitor
* for connection closing.
*/
channel_auto_read(chn);
chn->flags |= CF_NEVER_WAIT;
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN)
txn->rsp.msg_state = HTTP_MSG_TUNNEL;
}
goto check_channel_flags;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSING) {
http_msg_closing:
/* nothing else to forward, just waiting for the output buffer
* to be empty and for the shutw_now to take effect.
*/
if (channel_is_empty(chn)) {
txn->rsp.msg_state = HTTP_MSG_CLOSED;
goto http_msg_closed;
}
else if (chn->flags & CF_SHUTW) {
txn->rsp.err_state = txn->rsp.msg_state;
txn->rsp.msg_state = HTTP_MSG_ERROR;
HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
}
goto wait_other_side;
}
if (txn->rsp.msg_state == HTTP_MSG_CLOSED) {
http_msg_closed:
/* drop any pending data */
channel_truncate(chn);
channel_auto_close(chn);
channel_auto_read(chn);
goto wait_other_side;
}
check_channel_flags:
/* Here, we are in HTTP_MSG_DONE or HTTP_MSG_TUNNEL */
if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) {
/* if we've just closed an output, let's switch */
txn->rsp.msg_state = HTTP_MSG_CLOSING;
goto http_msg_closing;
}
wait_other_side:
/* We force the response to leave immediately if we're waiting for the
* other side, since there is no pending shutdown to push it out.
*/
if (!channel_is_empty(chn))
chn->flags |= CF_SEND_DONTWAIT;
return txn->rsp.msg_state != old_state || chn->flags != old_flags;
}
|
CWE-200
| 6,858 | 15,107 |
339008611653487441529836950375806704821
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int http_transform_header(struct stream* s, struct http_msg *msg,
const char* name, unsigned int name_len,
struct list *fmt, struct my_regex *re,
int action)
{
struct chunk *replace;
int ret = -1;
replace = alloc_trash_chunk();
if (!replace)
goto leave;
replace->len = build_logline(s, replace->str, replace->size, fmt);
if (replace->len >= replace->size - 1)
goto leave;
ret = http_transform_header_str(s, msg, name, name_len, replace->str, re, action);
leave:
free_trash_chunk(replace);
return ret;
}
|
CWE-200
| 6,859 | 15,108 |
84722011132339312145549138769775624744
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_transform_header_str(struct stream* s, struct http_msg *msg,
const char* name, unsigned int name_len,
const char *str, struct my_regex *re,
int action)
{
struct hdr_ctx ctx;
char *buf = msg->chn->buf->p;
struct hdr_idx *idx = &s->txn->hdr_idx;
int (*http_find_hdr_func)(const char *name, int len, char *sol,
struct hdr_idx *idx, struct hdr_ctx *ctx);
struct chunk *output = get_trash_chunk();
ctx.idx = 0;
/* Choose the header browsing function. */
switch (action) {
case ACT_HTTP_REPLACE_VAL:
http_find_hdr_func = http_find_header2;
break;
case ACT_HTTP_REPLACE_HDR:
http_find_hdr_func = http_find_full_header2;
break;
default: /* impossible */
return -1;
}
while (http_find_hdr_func(name, name_len, buf, idx, &ctx)) {
struct hdr_idx_elem *hdr = idx->v + ctx.idx;
int delta;
char *val = ctx.line + ctx.val;
char* val_end = val + ctx.vlen;
if (!regex_exec_match2(re, val, val_end-val, MAX_MATCH, pmatch, 0))
continue;
output->len = exp_replace(output->str, output->size, val, str, pmatch);
if (output->len == -1)
return -1;
delta = buffer_replace2(msg->chn->buf, val, val_end, output->str, output->len);
hdr->len += delta;
http_msg_move_end(msg, delta);
/* Adjust the length of the current value of the index. */
ctx.vlen += delta;
}
return 0;
}
|
CWE-200
| 6,860 | 15,109 |
249929280768838272503962175254957813280
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_txn_reset_req(struct http_txn *txn)
{
txn->req.flags = 0;
txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */
txn->req.next = 0;
txn->req.chunk_len = 0LL;
txn->req.body_len = 0LL;
txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */
}
|
CWE-200
| 6,861 | 15,110 |
292085984903756093964650979508356736072
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void http_txn_reset_res(struct http_txn *txn)
{
txn->rsp.flags = 0;
txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */
txn->rsp.next = 0;
txn->rsp.chunk_len = 0LL;
txn->rsp.body_len = 0LL;
txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */
}
|
CWE-200
| 6,862 | 15,111 |
267827735982022416765656072397085724675
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int http_upgrade_v09_to_v10(struct http_txn *txn)
{
int delta;
char *cur_end;
struct http_msg *msg = &txn->req;
if (msg->sl.rq.v_l != 0)
return 1;
/* RFC 1945 allows only GET for HTTP/0.9 requests */
if (txn->meth != HTTP_METH_GET)
return 0;
cur_end = msg->chn->buf->p + msg->sl.rq.l;
if (msg->sl.rq.u_l == 0) {
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
return 0;
}
/* add HTTP version */
delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11);
http_msg_move_end(msg, delta);
cur_end += delta;
cur_end = (char *)http_parse_reqline(msg,
HTTP_MSG_RQMETH,
msg->chn->buf->p, cur_end + 1,
NULL, NULL);
if (unlikely(!cur_end))
return 0;
/* we have a full HTTP/1.0 request now and we know that
* we have either a CR or an LF at <ptr>.
*/
hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r');
return 1;
}
|
CWE-200
| 6,863 | 15,112 |
307553830972024675538264754322709925140
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_wait_for_request(struct stream *s, struct channel *req, int an_bit)
{
/*
* We will parse the partial (or complete) lines.
* We will check the request syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* req->buf->p = beginning of request
* req->buf->p + msg->eoh = end of processed headers / start of current one
* req->buf->p + req->buf->i = end of input data
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
*
* At end of parsing, we may perform a capture of the error (if any), and
* we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE).
* We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and
* finally headers capture.
*/
int cur_idx;
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->req;
struct hdr_ctx ctx;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/* we're speaking HTTP here, so let's speak HTTP to the client */
s->srv_error = http_return_srv_error;
/* If there is data available for analysis, log the end of the idle time. */
if (buffer_not_empty(req->buf) && s->logs.t_idle == -1)
s->logs.t_idle = tv_ms_elapsed(&s->logs.tv_accept, &now) - s->logs.t_handshake;
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) {
if (txn->flags & TX_NOT_FIRST) {
if (unlikely(!channel_is_rewritable(req))) {
if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
goto failed_keep_alive;
/* some data has still not left the buffer, wake us once that's done */
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
req->flags |= CF_WAKE_WRITE;
return 0;
}
if (unlikely(bi_end(req->buf) < b_ptr(req->buf, msg->next) ||
bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite))
buffer_slow_realign(req->buf);
}
if (likely(msg->next < req->buf->i)) /* some unparsed data are available */
http_msg_analyzer(msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->msg_state >= HTTP_MSG_BODY)) {
char *eol, *sol;
sol = req->buf->p;
/* this is a bit complex : in case of error on the request line,
* we know that rq.l is still zero, so we display only the part
* up to the end of the line (truncated by debug_hdr).
*/
eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i);
debug_hdr("clireq", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("clihdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid request.
* If not so, we check the FD and buffer states before leaving.
* A full request is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* requests are checked first. When waiting for a second request
* on a keep-alive stream, if we encounter and error, close, t/o,
* we note the error in the stream flags but don't set any state.
* Since the error will be noted there, it will not be counted by
* process_stream() as a frontend error.
* Last, we may increase some tracked counters' http request errors on
* the cases that are deliberately the client's fault. For instance,
* a timeout or connection reset is not counted as an error. However
* a bad request is.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/*
* First, let's catch bad requests.
*/
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
stream_inc_http_req_ctr(s);
stream_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
goto return_bad_req;
}
/* 1: Since we are in header mode, if there's no space
* left for headers, we won't be able to free more
* later, so the stream will never terminate. We
* must terminate it now.
*/
if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) {
/* FIXME: check if URI is set and return Status
* 414 Request URI too long instead.
*/
stream_inc_http_req_ctr(s);
stream_inc_http_err_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
if (msg->err_pos < 0)
msg->err_pos = req->buf->i;
goto return_bad_req;
}
/* 2: have we encountered a read error ? */
else if (req->flags & CF_READ_ERROR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
/* we cannot return any message on error */
if (msg->err_pos >= 0) {
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
stream_inc_http_err_ctr(s);
}
txn->status = 400;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, NULL);
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 3: has the read timeout expired ? */
else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLITO;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
/* read timeout : give up with an error message. */
if (msg->err_pos >= 0) {
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
stream_inc_http_err_ctr(s);
}
txn->status = 408;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
/* 4: have we encountered a close ? */
else if (req->flags & CF_SHUTR) {
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (txn->flags & TX_WAIT_NEXT_RQ)
goto failed_keep_alive;
if (sess->fe->options & PR_O_IGNORE_PRB)
goto failed_keep_alive;
if (msg->err_pos >= 0)
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
txn->status = 400;
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
http_reply_and_close(s, txn->status, http_error_message(s));
req->analysers &= AN_REQ_FLT_END;
stream_inc_http_err_ctr(s);
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe);
HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
channel_dont_connect(req);
req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
#ifdef TCP_QUICKACK
if (sess->listener->options & LI_O_NOQUICKACK && req->buf->i &&
objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) {
/* We need more data, we have to re-enable quick-ack in case we
* previously disabled it, otherwise we might cause the client
* to delay next data.
*/
setsockopt(__objt_conn(sess->origin)->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one));
}
#endif
if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) {
/* If the client starts to talk, let's fall back to
* request timeout processing.
*/
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp)) {
if ((msg->msg_state == HTTP_MSG_RQBEFORE) &&
(txn->flags & TX_WAIT_NEXT_RQ) &&
tick_isset(s->be->timeout.httpka))
req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka);
else
req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq);
}
/* we're not ready yet */
return 0;
failed_keep_alive:
/* Here we process low-level errors for keep-alive requests. In
* short, if the request is not the first one and it experiences
* a timeout, read error or shutdown, we just silently close so
* that the client can try again.
*/
txn->status = 0;
msg->msg_state = HTTP_MSG_RQBEFORE;
req->analysers &= AN_REQ_FLT_END;
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
http_reply_and_close(s, txn->status, NULL);
return 0;
}
/* OK now we have a complete HTTP request with indexed headers. Let's
* complete the request parsing by setting a few fields we will need
* later. At this point, we have the last CRLF at req->buf->data + msg->eoh.
* If the request is in HTTP/0.9 form, the rule is still true, and eoh
* points to the CRLF of the request line. msg->next points to the first
* byte after the last LF. msg->sov points to the first byte of data.
* msg->eol cannot be trusted because it may have been left uninitialized
* (for instance in the absence of headers).
*/
stream_inc_http_req_ctr(s);
proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */
if (txn->flags & TX_WAIT_NEXT_RQ) {
/* kill the pending keep-alive timeout */
txn->flags &= ~TX_WAIT_NEXT_RQ;
req->analyse_exp = TICK_ETERNITY;
}
/* Maybe we found in invalid header name while we were configured not
* to block on that, so we have to capture it now.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
/*
* 1: identify the method
*/
txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l);
/* we can make use of server redirect on GET and HEAD */
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SF_REDIRECTABLE;
else if (txn->meth == HTTP_METH_OTHER &&
msg->sl.rq.m_l == 3 && memcmp(req->buf->p, "PRI", 3) == 0) {
/* PRI is reserved for the HTTP/2 preface */
msg->err_pos = 0;
goto return_bad_req;
}
/*
* 2: check if the URI matches the monitor_uri.
* We have to do this for every request which gets in, because
* the monitor-uri is defined by the frontend.
*/
if (unlikely((sess->fe->monitor_uri_len != 0) &&
(sess->fe->monitor_uri_len == msg->sl.rq.u_l) &&
!memcmp(req->buf->p + msg->sl.rq.u,
sess->fe->monitor_uri,
sess->fe->monitor_uri_len))) {
/*
* We have found the monitor URI
*/
struct acl_cond *cond;
s->flags |= SF_MONITOR;
HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1);
/* Check if we want to fail this monitor request or not */
list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) {
int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (cond->pol == ACL_COND_UNLESS)
ret = !ret;
if (ret) {
/* we fail this request, let's return 503 service unavail */
txn->status = 503;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
}
/* nothing to fail, let's reply normaly */
txn->status = 200;
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */
goto return_prx_cond;
}
/*
* 3: Maybe we have to copy the original REQURI for the logs ?
* Note: we cannot log anymore if the request has been
* classified as invalid.
*/
if (unlikely(s->logs.logwait & LW_REQ)) {
/* we have a complete HTTP request that we must log */
if ((txn->uri = pool_alloc(pool_head_requri)) != NULL) {
int urilen = msg->sl.rq.l;
if (urilen >= global.tune.requri_len )
urilen = global.tune.requri_len - 1;
memcpy(txn->uri, req->buf->p, urilen);
txn->uri[urilen] = 0;
if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT)))
s->do_log(s);
} else {
ha_alert("HTTP logging : out of memory.\n");
}
}
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-request.
*/
if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) {
if (msg->sl.rq.v_l != 8) {
msg->err_pos = msg->sl.rq.v;
goto return_bad_req;
}
if (req->buf->p[msg->sl.rq.v + 4] != '/' ||
!isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 5]) ||
req->buf->p[msg->sl.rq.v + 6] != '.' ||
!isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 7])) {
msg->err_pos = msg->sl.rq.v + 4;
goto return_bad_req;
}
}
else {
/* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
goto return_bad_req;
}
/* ... and check if the request is HTTP/1.1 or above */
if ((msg->sl.rq.v_l == 8) &&
((req->buf->p[msg->sl.rq.v + 5] > '1') ||
((req->buf->p[msg->sl.rq.v + 5] == '1') &&
(req->buf->p[msg->sl.rq.v + 7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG);
/* if the frontend has "option http-use-proxy-header", we'll check if
* we have what looks like a proxied connection instead of a connection,
* and in this case set the TX_USE_PX_CONN flag to use Proxy-connection.
* Note that this is *not* RFC-compliant, however browsers and proxies
* happen to do that despite being non-standard :-(
* We consider that a request not beginning with either '/' or '*' is
* a proxied connection, which covers both "scheme://location" and
* CONNECT ip:port.
*/
if ((sess->fe->options2 & PR_O2_USE_PXHDR) &&
req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*')
txn->flags |= TX_USE_PX_CONN;
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
/* 5: we may need to capture headers */
if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap))
capture_headers(req->buf->p, &txn->hdr_idx,
s->req_cap, sess->fe->req_cap);
/* 6: determine the transfer-length according to RFC2616 #4.4, updated
* by RFC7230#3.3.3 :
*
* The length of a message body is determined by one of the following
* (in order of precedence):
*
* 1. Any response to a HEAD request and any response with a 1xx
* (Informational), 204 (No Content), or 304 (Not Modified) status
* code is always terminated by the first empty line after the
* header fields, regardless of the header fields present in the
* message, and thus cannot contain a message body.
*
* 2. Any 2xx (Successful) response to a CONNECT request implies that
* the connection will become a tunnel immediately after the empty
* line that concludes the header fields. A client MUST ignore any
* Content-Length or Transfer-Encoding header fields received in
* such a message.
*
* 3. If a Transfer-Encoding header field is present and the chunked
* transfer coding (Section 4.1) is the final encoding, the message
* body length is determined by reading and decoding the chunked
* data until the transfer coding indicates the data is complete.
*
* If a Transfer-Encoding header field is present in a response and
* the chunked transfer coding is not the final encoding, the
* message body length is determined by reading the connection until
* it is closed by the server. If a Transfer-Encoding header field
* is present in a request and the chunked transfer coding is not
* the final encoding, the message body length cannot be determined
* reliably; the server MUST respond with the 400 (Bad Request)
* status code and then close the connection.
*
* If a message is received with both a Transfer-Encoding and a
* Content-Length header field, the Transfer-Encoding overrides the
* Content-Length. Such a message might indicate an attempt to
* perform request smuggling (Section 9.5) or response splitting
* (Section 9.4) and ought to be handled as an error. A sender MUST
* remove the received Content-Length field prior to forwarding such
* a message downstream.
*
* 4. If a message is received without Transfer-Encoding and with
* either multiple Content-Length header fields having differing
* field-values or a single Content-Length header field having an
* invalid value, then the message framing is invalid and the
* recipient MUST treat it as an unrecoverable error. If this is a
* request message, the server MUST respond with a 400 (Bad Request)
* status code and then close the connection. If this is a response
* message received by a proxy, the proxy MUST close the connection
* to the server, discard the received response, and send a 502 (Bad
* Gateway) response to the client. If this is a response message
* received by a user agent, the user agent MUST close the
* connection to the server and discard the received response.
*
* 5. If a valid Content-Length header field is present without
* Transfer-Encoding, its decimal value defines the expected message
* body length in octets. If the sender closes the connection or
* the recipient times out before the indicated number of octets are
* received, the recipient MUST consider the message to be
* incomplete and close the connection.
*
* 6. If this is a request message and none of the above are true, then
* the message body length is zero (no message body is present).
*
* 7. Otherwise, this is a response message without a declared message
* body length, so the message body length is determined by the
* number of octets received prior to the server closing the
* connection.
*/
ctx.idx = 0;
/* set TE_CHNK and XFER_LEN only if "chunked" is seen last */
while (http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= HTTP_MSGF_TE_CHNK;
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* chunked not last, return badreq */
goto return_bad_req;
}
}
/* Chunked requests must have their content-length removed */
ctx.idx = 0;
if (msg->flags & HTTP_MSGF_TE_CHNK) {
while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx))
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
else while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - req->buf->p;
goto return_bad_req; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN;
msg->body_len = msg->chunk_len = cl;
}
/* even bodyless requests have a known length */
msg->flags |= HTTP_MSGF_XFER_LEN;
/* Until set to anything else, the connection mode is set as Keep-Alive. It will
* only change if both the request and the config reference something else.
* Option httpclose by itself sets tunnel mode where headers are mangled.
* However, if another mode is set, it will affect it (eg: server-close/
* keep-alive + httpclose = close). Note that we avoid to redo the same work
* if FE and BE have the same settings (common). The method consists in
* checking if options changed between the two calls (implying that either
* one is non-null, or one of them is non-null and we are there for the first
* time.
*/
if (!(txn->flags & TX_HDR_CONN_PRS) ||
((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE)))
http_adjust_conn_mode(s, txn, msg);
/* we may have to wait for the request's body */
if ((s->be->options & PR_O_WREQ_BODY) &&
(msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK)))
req->analysers |= AN_REQ_HTTP_BODY;
/*
* RFC7234#4:
* A cache MUST write through requests with methods
* that are unsafe (Section 4.2.1 of [RFC7231]) to
* the origin server; i.e., a cache is not allowed
* to generate a reply to such a request before
* having forwarded the request and having received
* a corresponding response.
*
* RFC7231#4.2.1:
* Of the request methods defined by this
* specification, the GET, HEAD, OPTIONS, and TRACE
* methods are defined to be safe.
*/
if (likely(txn->meth == HTTP_METH_GET ||
txn->meth == HTTP_METH_HEAD ||
txn->meth == HTTP_METH_OPTIONS ||
txn->meth == HTTP_METH_TRACE))
txn->flags |= TX_CACHEABLE | TX_CACHE_COOK;
/* end of job, return OK */
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
return_bad_req:
/* We centralize bad requests processing here */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) {
/* we detected a parsing error. We want to archive this request
* in the dedicated proxy area for later troubleshooting.
*/
http_capture_bad_message(sess->fe, &sess->fe->invalid_req, s, msg, msg->err_state, sess->fe);
}
txn->req.err_state = txn->req.msg_state;
txn->req.msg_state = HTTP_MSG_ERROR;
txn->status = 400;
http_reply_and_close(s, txn->status, http_error_message(s));
HA_ATOMIC_ADD(&sess->fe->fe_counters.failed_req, 1);
if (sess->listener->counters)
HA_ATOMIC_ADD(&sess->listener->counters->failed_req, 1);
return_prx_cond:
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
req->analysers &= AN_REQ_FLT_END;
req->analyse_exp = TICK_ETERNITY;
return 0;
}
|
CWE-200
| 6,864 | 15,113 |
244581213677956224446893536353758825003
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit)
{
struct session *sess = s->sess;
struct http_txn *txn = s->txn;
struct http_msg *msg = &txn->rsp;
struct hdr_ctx ctx;
int use_close_only;
int cur_idx;
int n;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->buf->i,
rep->analysers);
/*
* Now parse the partial (or complete) lines.
* We will check the response syntax, and also join multi-line
* headers. An index of all the lines will be elaborated while
* parsing.
*
* For the parsing, we use a 28 states FSM.
*
* Here is the information we currently have :
* rep->buf->p = beginning of response
* rep->buf->p + msg->eoh = end of processed headers / start of current one
* rep->buf->p + rep->buf->i = end of input data
* msg->eol = end of current header or line (LF or CRLF)
* msg->next = first non-visited byte
*/
next_one:
/* There's a protected area at the end of the buffer for rewriting
* purposes. We don't want to start to parse the request if the
* protected area is affected, because we may have to move processed
* data later, which is much more complicated.
*/
if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) {
if (unlikely(!channel_is_rewritable(rep))) {
/* some data has still not left the buffer, wake us once that's done */
if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT))
goto abort_response;
channel_dont_close(rep);
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
rep->flags |= CF_WAKE_WRITE;
return 0;
}
if (unlikely(bi_end(rep->buf) < b_ptr(rep->buf, msg->next) ||
bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite))
buffer_slow_realign(rep->buf);
if (likely(msg->next < rep->buf->i))
http_msg_analyzer(msg, &txn->hdr_idx);
}
/* 1: we might have to print this header in debug mode */
if (unlikely((global.mode & MODE_DEBUG) &&
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) &&
msg->msg_state >= HTTP_MSG_BODY)) {
char *eol, *sol;
sol = rep->buf->p;
eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i);
debug_hdr("srvrep", s, sol, eol);
sol += hdr_idx_first_pos(&txn->hdr_idx);
cur_idx = hdr_idx_first_idx(&txn->hdr_idx);
while (cur_idx) {
eol = sol + txn->hdr_idx.v[cur_idx].len;
debug_hdr("srvhdr", s, sol, eol);
sol = eol + txn->hdr_idx.v[cur_idx].cr + 1;
cur_idx = txn->hdr_idx.v[cur_idx].next;
}
}
/*
* Now we quickly check if we have found a full valid response.
* If not so, we check the FD and buffer states before leaving.
* A full response is indicated by the fact that we have seen
* the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid
* responses are checked first.
*
* Depending on whether the client is still there or not, we
* may send an error response back or not. Note that normally
* we should only check for HTTP status there, and check I/O
* errors somewhere else.
*/
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
/* Invalid response */
if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) {
/* we detected a parsing error. We want to archive this response
* in the dedicated proxy area for later troubleshooting.
*/
hdr_response_bad:
if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP);
}
abort_response:
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* too large response does not fit in buffer. */
else if (buffer_full(rep->buf, global.tune.maxrewrite)) {
if (msg->err_pos < 0)
msg->err_pos = rep->buf->i;
goto hdr_response_bad;
}
/* read error */
else if (rep->flags & CF_READ_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
/* Check to see if the server refused the early data.
* If so, just send a 425
*/
if (objt_cs(s->si[1].end)) {
struct connection *conn = objt_cs(s->si[1].end)->conn;
if (conn->err_code == CO_ER_SSL_EARLY_FAILED)
txn->status = 425;
}
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* read timeout : return a 504 to the client. */
else if (rep->flags & CF_READ_TIMEOUT) {
if (msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 504;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVTO;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* client abort with an abortonclose */
else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) {
HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1);
HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.cli_aborts, 1);
rep->analysers &= AN_RES_FLT_END;
channel_auto_close(rep);
txn->status = 400;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
/* close from server, capture the response if the server has started to respond */
else if (rep->flags & CF_SHUTR) {
if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
if (objt_server(s->target)) {
HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_resp, 1);
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE);
}
channel_auto_close(rep);
rep->analysers &= AN_RES_FLT_END;
txn->status = 502;
s->si[1].flags |= SI_FL_NOLINGER;
channel_truncate(rep);
http_reply_and_close(s, txn->status, http_error_message(s));
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_SRVCL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
return 0;
}
/* write error to client (we don't send any message then) */
else if (rep->flags & CF_WRITE_ERROR) {
if (msg->err_pos >= 0)
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
else if (txn->flags & TX_NOT_FIRST)
goto abort_keep_alive;
HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1);
rep->analysers &= AN_RES_FLT_END;
channel_auto_close(rep);
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_CLICL;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_H;
/* process_stream() will take care of the error */
return 0;
}
channel_dont_close(rep);
rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */
return 0;
}
/* More interesting part now : we know that we have a complete
* response which at least looks like HTTP. We have an indicator
* of each header's length, so we can parse them quickly.
*/
if (unlikely(msg->err_pos >= 0))
http_capture_bad_message(s->be, &s->be->invalid_rep, s, msg, msg->err_state, sess->fe);
/*
* 1: get the status code
*/
n = rep->buf->p[msg->sl.st.c] - '0';
if (n < 1 || n > 5)
n = 0;
/* when the client triggers a 4xx from the server, it's most often due
* to a missing object or permission. These events should be tracked
* because if they happen often, it may indicate a brute force or a
* vulnerability scan.
*/
if (n == 4)
stream_inc_http_err_ctr(s);
if (objt_server(s->target))
HA_ATOMIC_ADD(&objt_server(s->target)->counters.p.http.rsp[n], 1);
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
* exactly one digit "." one digit. This check may be disabled using
* option accept-invalid-http-response.
*/
if (!(s->be->options2 & PR_O2_RSPBUG_OK)) {
if (msg->sl.st.v_l != 8) {
msg->err_pos = 0;
goto hdr_response_bad;
}
if (rep->buf->p[4] != '/' ||
!isdigit((unsigned char)rep->buf->p[5]) ||
rep->buf->p[6] != '.' ||
!isdigit((unsigned char)rep->buf->p[7])) {
msg->err_pos = 4;
goto hdr_response_bad;
}
}
/* check if the response is HTTP/1.1 or above */
if ((msg->sl.st.v_l == 8) &&
((rep->buf->p[5] > '1') ||
((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1'))))
msg->flags |= HTTP_MSGF_VER_11;
/* "connection" has not been parsed yet */
txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET);
/* transfer length unknown*/
msg->flags &= ~HTTP_MSGF_XFER_LEN;
txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l);
/* Adjust server's health based on status code. Note: status codes 501
* and 505 are triggered on demand by client request, so we must not
* count them as server failures.
*/
if (objt_server(s->target)) {
if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505))
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_OK);
else
health_adjust(objt_server(s->target), HANA_STATUS_HTTP_STS);
}
/*
* We may be facing a 100-continue response, or any other informational
* 1xx response which is non-final, in which case this is not the right
* response, and we're waiting for the next one. Let's allow this response
* to go to the client and wait for the next one. There's an exception for
* 101 which is used later in the code to switch protocols.
*/
if (txn->status < 200 &&
(txn->status == 100 || txn->status >= 102)) {
hdr_idx_init(&txn->hdr_idx);
msg->next -= channel_forward(rep, msg->next);
msg->msg_state = HTTP_MSG_RPBEFORE;
txn->status = 0;
s->logs.t_data = -1; /* was not a response yet */
FLT_STRM_CB(s, flt_http_reset(s, msg));
goto next_one;
}
/*
* 2: check for cacheability.
*/
switch (txn->status) {
case 200:
case 203:
case 204:
case 206:
case 300:
case 301:
case 404:
case 405:
case 410:
case 414:
case 501:
break;
default:
/* RFC7231#6.1:
* Responses with status codes that are defined as
* cacheable by default (e.g., 200, 203, 204, 206,
* 300, 301, 404, 405, 410, 414, and 501 in this
* specification) can be reused by a cache with
* heuristic expiration unless otherwise indicated
* by the method definition or explicit cache
* controls [RFC7234]; all other status codes are
* not cacheable by default.
*/
txn->flags &= ~(TX_CACHEABLE | TX_CACHE_COOK);
break;
}
/*
* 3: we may need to capture headers
*/
s->logs.logwait &= ~LW_RESP;
if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap))
capture_headers(rep->buf->p, &txn->hdr_idx,
s->res_cap, sess->fe->rsp_cap);
/* 4: determine the transfer-length according to RFC2616 #4.4, updated
* by RFC7230#3.3.3 :
*
* The length of a message body is determined by one of the following
* (in order of precedence):
*
* 1. Any 2xx (Successful) response to a CONNECT request implies that
* the connection will become a tunnel immediately after the empty
* line that concludes the header fields. A client MUST ignore
* any Content-Length or Transfer-Encoding header fields received
* in such a message. Any 101 response (Switching Protocols) is
* managed in the same manner.
*
* 2. Any response to a HEAD request and any response with a 1xx
* (Informational), 204 (No Content), or 304 (Not Modified) status
* code is always terminated by the first empty line after the
* header fields, regardless of the header fields present in the
* message, and thus cannot contain a message body.
*
* 3. If a Transfer-Encoding header field is present and the chunked
* transfer coding (Section 4.1) is the final encoding, the message
* body length is determined by reading and decoding the chunked
* data until the transfer coding indicates the data is complete.
*
* If a Transfer-Encoding header field is present in a response and
* the chunked transfer coding is not the final encoding, the
* message body length is determined by reading the connection until
* it is closed by the server. If a Transfer-Encoding header field
* is present in a request and the chunked transfer coding is not
* the final encoding, the message body length cannot be determined
* reliably; the server MUST respond with the 400 (Bad Request)
* status code and then close the connection.
*
* If a message is received with both a Transfer-Encoding and a
* Content-Length header field, the Transfer-Encoding overrides the
* Content-Length. Such a message might indicate an attempt to
* perform request smuggling (Section 9.5) or response splitting
* (Section 9.4) and ought to be handled as an error. A sender MUST
* remove the received Content-Length field prior to forwarding such
* a message downstream.
*
* 4. If a message is received without Transfer-Encoding and with
* either multiple Content-Length header fields having differing
* field-values or a single Content-Length header field having an
* invalid value, then the message framing is invalid and the
* recipient MUST treat it as an unrecoverable error. If this is a
* request message, the server MUST respond with a 400 (Bad Request)
* status code and then close the connection. If this is a response
* message received by a proxy, the proxy MUST close the connection
* to the server, discard the received response, and send a 502 (Bad
* Gateway) response to the client. If this is a response message
* received by a user agent, the user agent MUST close the
* connection to the server and discard the received response.
*
* 5. If a valid Content-Length header field is present without
* Transfer-Encoding, its decimal value defines the expected message
* body length in octets. If the sender closes the connection or
* the recipient times out before the indicated number of octets are
* received, the recipient MUST consider the message to be
* incomplete and close the connection.
*
* 6. If this is a request message and none of the above are true, then
* the message body length is zero (no message body is present).
*
* 7. Otherwise, this is a response message without a declared message
* body length, so the message body length is determined by the
* number of octets received prior to the server closing the
* connection.
*/
/* Skip parsing if no content length is possible. The response flags
* remain 0 as well as the chunk_len, which may or may not mirror
* the real header value, and we note that we know the response's length.
* FIXME: should we parse anyway and return an error on chunked encoding ?
*/
if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) ||
txn->status == 101)) {
/* Either we've established an explicit tunnel, or we're
* switching the protocol. In both cases, we're very unlikely
* to understand the next protocols. We have to switch to tunnel
* mode, so that we transfer the request and responses then let
* this protocol pass unmodified. When we later implement specific
* parsers for such protocols, we'll want to check the Upgrade
* header which contains information about that protocol for
* responses with status 101 (eg: see RFC2817 about TLS).
*/
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN;
msg->flags |= HTTP_MSGF_XFER_LEN;
goto end;
}
if (txn->meth == HTTP_METH_HEAD ||
(txn->status >= 100 && txn->status < 200) ||
txn->status == 204 || txn->status == 304) {
msg->flags |= HTTP_MSGF_XFER_LEN;
goto skip_content_length;
}
use_close_only = 0;
ctx.idx = 0;
while (http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) {
if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0)
msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
else if (msg->flags & HTTP_MSGF_TE_CHNK) {
/* bad transfer-encoding (chunked followed by something else) */
use_close_only = 1;
msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN);
break;
}
}
/* Chunked responses must have their content-length removed */
ctx.idx = 0;
if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) {
while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx))
http_remove_header2(msg, &txn->hdr_idx, &ctx);
}
else while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) {
signed long long cl;
if (!ctx.vlen) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad;
}
if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad; /* parse failure */
}
if (cl < 0) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad;
}
if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) {
msg->err_pos = ctx.line + ctx.val - rep->buf->p;
goto hdr_response_bad; /* already specified, was different */
}
msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN;
msg->body_len = msg->chunk_len = cl;
}
skip_content_length:
/* Now we have to check if we need to modify the Connection header.
* This is more difficult on the response than it is on the request,
* because we can have two different HTTP versions and we don't know
* how the client will interprete a response. For instance, let's say
* that the client sends a keep-alive request in HTTP/1.0 and gets an
* HTTP/1.1 response without any header. Maybe it will bound itself to
* HTTP/1.0 because it only knows about it, and will consider the lack
* of header as a close, or maybe it knows HTTP/1.1 and can consider
* the lack of header as a keep-alive. Thus we will use two flags
* indicating how a request MAY be understood by the client. In case
* of multiple possibilities, we'll fix the header to be explicit. If
* ambiguous cases such as both close and keepalive are seen, then we
* will fall back to explicit close. Note that we won't take risks with
* HTTP/1.0 clients which may not necessarily understand keep-alive.
* See doc/internals/connection-header.txt for the complete matrix.
*/
if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) &&
((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN ||
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) {
int to_del = 0;
/* this situation happens when combining pretend-keepalive with httpclose. */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL &&
((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL ||
(s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
/* on unknown transfer length, we must close */
if (!(msg->flags & HTTP_MSGF_XFER_LEN) &&
(txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO;
/* now adjust header transformations depending on current state */
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN ||
(txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) {
to_del |= 2; /* remove "keep-alive" on any response */
if (!(msg->flags & HTTP_MSGF_VER_11))
to_del |= 1; /* remove "close" for HTTP/1.0 responses */
}
else { /* SCL / KAL */
to_del |= 1; /* remove "close" on any response */
if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11)
to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */
}
/* Parse and remove some headers from the connection header */
http_parse_connection_header(txn, msg, to_del);
/* Some keep-alive responses are converted to Server-close if
* the server wants to close.
*/
if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) {
if ((txn->flags & TX_HDR_CONN_CLO) ||
(!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11)))
txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL;
}
}
end:
/* we want to have the response time before we start processing it */
s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now);
/* end of job, return OK */
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
channel_auto_close(rep);
return 1;
abort_keep_alive:
/* A keep-alive request to the server failed on a network error.
* The client is required to retry. We need to close without returning
* any other information so that the client retries.
*/
txn->status = 0;
rep->analysers &= AN_RES_FLT_END;
s->req.analysers &= AN_REQ_FLT_END;
channel_auto_close(rep);
s->logs.logwait = 0;
s->logs.level = 0;
s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */
channel_truncate(rep);
http_reply_and_close(s, txn->status, NULL);
return 0;
}
|
CWE-200
| 6,866 | 15,114 |
119727813403086973435070414504054192208
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void inet_set_tos(int fd, const struct sockaddr_storage *from, int tos)
{
#ifdef IP_TOS
if (from->ss_family == AF_INET)
setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
#endif
#ifdef IPV6_TCLASS
if (from->ss_family == AF_INET6) {
if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)from)->sin6_addr))
/* v4-mapped addresses need IP_TOS */
setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
else
setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
}
#endif
}
|
CWE-200
| 6,867 | 15,115 |
1956874882775298960569846377911844984
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void init_proto_http()
{
int i;
char *tmp;
int msg;
for (msg = 0; msg < HTTP_ERR_SIZE; msg++) {
if (!http_err_msgs[msg]) {
ha_alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg);
abort();
}
http_err_chunks[msg].str = (char *)http_err_msgs[msg];
http_err_chunks[msg].len = strlen(http_err_msgs[msg]);
}
/* initialize the log header encoding map : '{|}"#' should be encoded with
* '#' as prefix, as well as non-printable characters ( <32 or >= 127 ).
* URL encoding only requires '"', '#' to be encoded as well as non-
* printable characters above.
*/
memset(hdr_encode_map, 0, sizeof(hdr_encode_map));
memset(url_encode_map, 0, sizeof(url_encode_map));
memset(http_encode_map, 0, sizeof(url_encode_map));
for (i = 0; i < 32; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
for (i = 127; i < 256; i++) {
FD_SET(i, hdr_encode_map);
FD_SET(i, url_encode_map);
}
tmp = "\"#{|}";
while (*tmp) {
FD_SET(*tmp, hdr_encode_map);
tmp++;
}
tmp = "\"#";
while (*tmp) {
FD_SET(*tmp, url_encode_map);
tmp++;
}
/* initialize the http header encoding map. The draft httpbis define the
* header content as:
*
* HTTP-message = start-line
* *( header-field CRLF )
* CRLF
* [ message-body ]
* header-field = field-name ":" OWS field-value OWS
* field-value = *( field-content / obs-fold )
* field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ]
* obs-fold = CRLF 1*( SP / HTAB )
* field-vchar = VCHAR / obs-text
* VCHAR = %x21-7E
* obs-text = %x80-FF
*
* All the chars are encoded except "VCHAR", "obs-text", SP and HTAB.
* The encoded chars are form 0x00 to 0x08, 0x0a to 0x1f and 0x7f. The
* "obs-fold" is volontary forgotten because haproxy remove this.
*/
memset(http_encode_map, 0, sizeof(http_encode_map));
for (i = 0x00; i <= 0x08; i++)
FD_SET(i, http_encode_map);
for (i = 0x0a; i <= 0x1f; i++)
FD_SET(i, http_encode_map);
FD_SET(0x7f, http_encode_map);
/* memory allocations */
pool_head_http_txn = create_pool("http_txn", sizeof(struct http_txn), MEM_F_SHARED);
pool_head_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED);
}
|
CWE-200
| 6,868 | 15,116 |
56968694157344301700816307273193028060
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static inline int is_param_delimiter(char c, char delim)
{
return c == '&' || c == ';' || c == delim;
}
|
CWE-200
| 6,869 | 15,117 |
22447955794383445502267729224334475751
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static inline int language_range_match(const char *range, int range_len,
const char *tag, int tag_len)
{
const char *end = range + range_len;
const char *tend = tag + tag_len;
while (range < end) {
if (*range == '-' && tag == tend)
return 1;
if (*range != *tag || tag == tend)
return 0;
range++;
tag++;
}
/* Return true only if the last char of the tag is matched. */
return tag == tend;
}
|
CWE-200
| 6,870 | 15,118 |
60597349677470865613031538128785540706
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void manage_client_side_cookies(struct stream *s, struct channel *req)
{
struct http_txn *txn = s->txn;
struct session *sess = s->sess;
int preserve_hdr;
int cur_idx, old_idx;
char *hdr_beg, *hdr_end, *hdr_next, *del_from;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers, we start with the start line. */
old_idx = 0;
hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Cookie:" headers.
*/
val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6);
if (!val) {
old_idx = cur_idx;
continue;
}
del_from = NULL; /* nothing to be deleted */
preserve_hdr = 0; /* assume we may kill the whole header */
/* Now look for cookies. Conforming to RFC2109, we have to support
* attributes whose name begin with a '$', and associate them with
* the right cookie, if we want to delete this cookie.
* So there are 3 cases for each cookie read :
* 1) it's a special attribute, beginning with a '$' : ignore it.
* 2) it's a server id cookie that we *MAY* want to delete : save
* some pointers on it (last semi-colon, beginning of cookie...)
* 3) it's an application cookie : we *MAY* have to delete a previous
* "special" cookie.
* At the end of loop, if a "special" cookie remains, we may have to
* remove it. If no application cookie persists in the header, we
* *MUST* delete it.
*
* Note: RFC2965 is unclear about the processing of spaces around
* the equal sign in the ATTR=VALUE form. A careful inspection of
* the RFC explicitly allows spaces before it, and not within the
* tokens (attrs or values). An inspection of RFC2109 allows that
* too but section 10.1.3 lets one think that spaces may be allowed
* after the equal sign too, resulting in some (rare) buggy
* implementations trying to do that. So let's do what servers do.
* Latest ietf draft forbids spaces all around. Also, earlier RFCs
* allowed quoted strings in values, with any possible character
* after a backslash, including control chars and delimitors, which
* causes parsing to become ambiguous. Browsers also allow spaces
* within values even without quotes.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header. All of these headers are valid :
*
* Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n
* Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n
* Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n
* | | | | | | | | |
* | | | | | | | | hdr_end <--+
* | | | | | | | +--> next
* | | | | | | +----> val_end
* | | | | | +-----------> val_beg
* | | | | +--------------> equal
* | | | +----------------> att_end
* | | +---------------------> att_beg
* | +--------------------------> prev
* +--------------------------------> hdr_beg
*/
for (prev = hdr_beg + 6; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ',' || *equal == ';')
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
} else {
val_beg = val_end = next = equal;
}
/* We have nothing to do with attributes beginning with '$'. However,
* they will automatically be removed if a header before them is removed,
* since they're supposed to be linked together.
*/
if (*att_beg == '$')
continue;
/* Ignore cookies with no equal sign */
if (equal == next) {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req->buf, &del_from, prev);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
continue;
}
/* if there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->req, stripped_before);
}
/* now everything is as on the diagram above */
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a client side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->cli_cookie = pool_alloc(pool_head_capture)) == NULL) {
ha_alert("HTTP logging : out of memory.\n");
} else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->cli_cookie, att_beg, log_len);
txn->cli_cookie[log_len] = 0;
}
}
/* Persistence cookies in passive, rewrite or insert mode have the
* following form :
*
* Cookie: NAME=SRV[|<lastseen>[|<firstseen>]]
*
* For cookies in prefix mode, the form is :
*
* Cookie: NAME=SRV~VALUE
*/
if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
struct server *srv = s->be->srv;
char *delim;
/* if we're in cookie prefix mode, we'll search the delimitor so that we
* have the server ID between val_beg and delim, and the original cookie between
* delim+1 and val_end. Otherwise, delim==val_end :
*
* Cookie: NAME=SRV; # in all but prefix modes
* Cookie: NAME=SRV~OPAQUE ; # in prefix mode
* | || || | |+-> next
* | || || | +--> val_end
* | || || +---------> delim
* | || |+------------> val_beg
* | || +-------------> att_end = equal
* | |+-----------------> att_beg
* | +------------------> prev
* +-------------------------> hdr_beg
*/
if (s->be->ck_opts & PR_CK_PFX) {
for (delim = val_beg; delim < val_end; delim++)
if (*delim == COOKIE_DELIM)
break;
} else {
char *vbar1;
delim = val_end;
/* Now check if the cookie contains a date field, which would
* appear after a vertical bar ('|') just after the server name
* and before the delimiter.
*/
vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg);
if (vbar1) {
/* OK, so left of the bar is the server's cookie and
* right is the last seen date. It is a base64 encoded
* 30-bit value representing the UNIX date since the
* epoch in 4-second quantities.
*/
int val;
delim = vbar1++;
if (val_end - vbar1 >= 5) {
val = b64tos30(vbar1);
if (val > 0)
txn->cookie_last_date = val << 2;
}
/* look for a second vertical bar */
vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1);
if (vbar1 && (val_end - vbar1 > 5)) {
val = b64tos30(vbar1 + 1);
if (val > 0)
txn->cookie_first_date = val << 2;
}
}
}
/* if the cookie has an expiration date and the proxy wants to check
* it, then we do that now. We first check if the cookie is too old,
* then only if it has expired. We detect strict overflow because the
* time resolution here is not great (4 seconds). Cookies with dates
* in the future are ignored if their offset is beyond one day. This
* allows an admin to fix timezone issues without expiring everyone
* and at the same time avoids keeping unwanted side effects for too
* long.
*/
if (txn->cookie_first_date && s->be->cookie_maxlife &&
(((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) ||
((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_OLD;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
else if (txn->cookie_last_date && s->be->cookie_maxidle &&
(((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) ||
((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) {
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_EXPIRED;
delim = val_beg; // let's pretend we have not found the cookie
txn->cookie_first_date = 0;
txn->cookie_last_date = 0;
}
/* Here, we'll look for the first running server which supports the cookie.
* This allows to share a same cookie between several servers, for example
* to dedicate backup servers to specific servers only.
* However, to prevent clients from sticking to cookie-less backup server
* when they have incidentely learned an empty cookie, we simply ignore
* empty cookies and mark them as invalid.
* The same behaviour is applied when persistence must be ignored.
*/
if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
srv = NULL;
while (srv) {
if (srv->cookie && (srv->cklen == delim - val_beg) &&
!memcmp(val_beg, srv->cookie, delim - val_beg)) {
if ((srv->cur_state != SRV_ST_STOPPED) ||
(s->be->options & PR_O_PERSIST) ||
(s->flags & SF_FORCE_PRST)) {
/* we found the server and we can use it */
txn->flags &= ~TX_CK_MASK;
txn->flags |= (srv->cur_state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN;
s->flags |= SF_DIRECT | SF_ASSIGNED;
s->target = &srv->obj_type;
break;
} else {
/* we found a server, but it's down,
* mark it as such and go on in case
* another one is available.
*/
txn->flags &= ~TX_CK_MASK;
txn->flags |= TX_CK_DOWN;
}
}
srv = srv->next;
}
if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) {
/* no server matched this cookie or we deliberately skipped it */
txn->flags &= ~TX_CK_MASK;
if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED)))
txn->flags |= TX_CK_UNUSED;
else
txn->flags |= TX_CK_INVALID;
}
/* depending on the cookie mode, we may have to either :
* - delete the complete cookie if we're in insert+indirect mode, so that
* the server never sees it ;
* - remove the server id from the cookie value, and tag the cookie as an
* application cookie so that it does not get accidentely removed later,
* if we're in cookie prefix mode
*/
if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) {
int delta; /* negative */
delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0);
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
del_from = NULL;
preserve_hdr = 1; /* we want to keep this cookie */
}
else if (del_from == NULL &&
(s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) {
del_from = prev;
}
} else {
/* This is not our cookie, so we must preserve it. But if we already
* scheduled another cookie for removal, we cannot remove the
* complete header, but we can remove the previous block itself.
*/
preserve_hdr = 1;
if (del_from != NULL) {
int delta = del_hdr_value(req->buf, &del_from, prev);
if (att_beg >= del_from)
att_beg += delta;
if (att_end >= del_from)
att_end += delta;
val_beg += delta;
val_end += delta;
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->req, delta);
prev = del_from;
del_from = NULL;
}
}
/* continue with next cookie on this header line */
att_beg = next;
} /* for each cookie */
/* There are no more cookies on this line.
* We may still have one (or several) marked for deletion at the
* end of the line. We must do this now in two ways :
* - if some cookies must be preserved, we only delete from the
* mark to the end of line ;
* - if nothing needs to be preserved, simply delete the whole header
*/
if (del_from) {
int delta;
if (preserve_hdr) {
delta = del_hdr_value(req->buf, &del_from, hdr_end);
hdr_end = del_from;
cur_hdr->len += delta;
} else {
delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0);
/* FIXME: this should be a separate function */
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
}
hdr_next += delta;
http_msg_move_end(&txn->req, delta);
}
/* check next header */
old_idx = cur_idx;
}
}
|
CWE-200
| 6,871 | 15,119 |
331918759225456684427762056851798643489
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
void manage_server_side_cookies(struct stream *s, struct channel *res)
{
struct http_txn *txn = s->txn;
struct session *sess = s->sess;
struct server *srv;
int is_cookie2;
int cur_idx, old_idx, delta;
char *hdr_beg, *hdr_end, *hdr_next;
char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next;
/* Iterate through the headers.
* we start with the start line.
*/
old_idx = 0;
hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx);
while ((cur_idx = txn->hdr_idx.v[old_idx].next)) {
struct hdr_idx_elem *cur_hdr;
int val;
cur_hdr = &txn->hdr_idx.v[cur_idx];
hdr_beg = hdr_next;
hdr_end = hdr_beg + cur_hdr->len;
hdr_next = hdr_end + cur_hdr->cr + 1;
/* We have one full header between hdr_beg and hdr_end, and the
* next header starts at hdr_next. We're only interested in
* "Set-Cookie" and "Set-Cookie2" headers.
*/
is_cookie2 = 0;
prev = hdr_beg + 10;
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10);
if (!val) {
val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11);
if (!val) {
old_idx = cur_idx;
continue;
}
is_cookie2 = 1;
prev = hdr_beg + 11;
}
/* OK, right now we know we have a Set-Cookie* at hdr_beg, and
* <prev> points to the colon.
*/
txn->flags |= TX_SCK_PRESENT;
/* Maybe we only wanted to see if there was a Set-Cookie (eg:
* check-cache is enabled) and we are not interested in checking
* them. Warning, the cookie capture is declared in the frontend.
*/
if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL)
return;
/* OK so now we know we have to process this response cookie.
* The format of the Set-Cookie header is slightly different
* from the format of the Cookie header in that it does not
* support the comma as a cookie delimiter (thus the header
* cannot be folded) because the Expires attribute described in
* the original Netscape's spec may contain an unquoted date
* with a comma inside. We have to live with this because
* many browsers don't support Max-Age and some browsers don't
* support quoted strings. However the Set-Cookie2 header is
* clean.
*
* We have to keep multiple pointers in order to support cookie
* removal at the beginning, middle or end of header without
* corrupting the header (in case of set-cookie2). A special
* pointer, <scav> points to the beginning of the set-cookie-av
* fields after the first semi-colon. The <next> pointer points
* either to the end of line (set-cookie) or next unquoted comma
* (set-cookie2). All of these headers are valid :
*
* Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n
* Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n
* Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n
* | | | | | | | | | |
* | | | | | | | | +-> next hdr_end <--+
* | | | | | | | +------------> scav
* | | | | | | +--------------> val_end
* | | | | | +--------------------> val_beg
* | | | | +----------------------> equal
* | | | +------------------------> att_end
* | | +----------------------------> att_beg
* | +------------------------------> prev
* +-----------------------------------------> hdr_beg
*/
for (; prev < hdr_end; prev = next) {
/* Iterate through all cookies on this line */
/* find att_beg */
att_beg = prev + 1;
while (att_beg < hdr_end && HTTP_IS_SPHT(*att_beg))
att_beg++;
/* find att_end : this is the first character after the last non
* space before the equal. It may be equal to hdr_end.
*/
equal = att_end = att_beg;
while (equal < hdr_end) {
if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ','))
break;
if (HTTP_IS_SPHT(*equal++))
continue;
att_end = equal;
}
/* here, <equal> points to '=', a delimitor or the end. <att_end>
* is between <att_beg> and <equal>, both may be identical.
*/
/* look for end of cookie if there is an equal sign */
if (equal < hdr_end && *equal == '=') {
/* look for the beginning of the value */
val_beg = equal + 1;
while (val_beg < hdr_end && HTTP_IS_SPHT(*val_beg))
val_beg++;
/* find the end of the value, respecting quotes */
next = find_cookie_value_end(val_beg, hdr_end);
/* make val_end point to the first white space or delimitor after the value */
val_end = next;
while (val_end > val_beg && HTTP_IS_SPHT(*(val_end - 1)))
val_end--;
} else {
/* <equal> points to next comma, semi-colon or EOL */
val_beg = val_end = next = equal;
}
if (next < hdr_end) {
/* Set-Cookie2 supports multiple cookies, and <next> points to
* a colon or semi-colon before the end. So skip all attr-value
* pairs and look for the next comma. For Set-Cookie, since
* commas are permitted in values, skip to the end.
*/
if (is_cookie2)
next = find_hdr_value_end(next, hdr_end);
else
next = hdr_end;
}
/* Now everything is as on the diagram above */
/* Ignore cookies with no equal sign */
if (equal == val_end)
continue;
/* If there are spaces around the equal sign, we need to
* strip them otherwise we'll get trouble for cookie captures,
* or even for rewrites. Since this happens extremely rarely,
* it does not hurt performance.
*/
if (unlikely(att_end != equal || val_beg > equal + 1)) {
int stripped_before = 0;
int stripped_after = 0;
if (att_end != equal) {
stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0);
equal += stripped_before;
val_beg += stripped_before;
}
if (val_beg > equal + 1) {
stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0);
val_beg += stripped_after;
stripped_before += stripped_after;
}
val_end += stripped_before;
next += stripped_before;
hdr_end += stripped_before;
hdr_next += stripped_before;
cur_hdr->len += stripped_before;
http_msg_move_end(&txn->rsp, stripped_before);
}
/* First, let's see if we want to capture this cookie. We check
* that we don't already have a server side cookie, because we
* can only capture one. Also as an optimisation, we ignore
* cookies shorter than the declared name.
*/
if (sess->fe->capture_name != NULL &&
txn->srv_cookie == NULL &&
(val_end - att_beg >= sess->fe->capture_namelen) &&
memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) {
int log_len = val_end - att_beg;
if ((txn->srv_cookie = pool_alloc(pool_head_capture)) == NULL) {
ha_alert("HTTP logging : out of memory.\n");
}
else {
if (log_len > sess->fe->capture_len)
log_len = sess->fe->capture_len;
memcpy(txn->srv_cookie, att_beg, log_len);
txn->srv_cookie[log_len] = 0;
}
}
srv = objt_server(s->target);
/* now check if we need to process it for persistence */
if (!(s->flags & SF_IGNORE_PRST) &&
(att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) &&
(memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) {
/* assume passive cookie by default */
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_FOUND;
/* If the cookie is in insert mode on a known server, we'll delete
* this occurrence because we'll insert another one later.
* We'll delete it too if the "indirect" option is set and we're in
* a direct access.
*/
if (s->be->ck_opts & PR_CK_PSV) {
/* The "preserve" flag was set, we don't want to touch the
* server's cookie.
*/
}
else if ((srv && (s->be->ck_opts & PR_CK_INS)) ||
((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) {
/* this cookie must be deleted */
if (*prev == ':' && next == hdr_end) {
/* whole header */
delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0);
txn->hdr_idx.v[old_idx].next = cur_hdr->next;
txn->hdr_idx.used--;
cur_hdr->len = 0;
cur_idx = old_idx;
hdr_next += delta;
http_msg_move_end(&txn->rsp, delta);
/* note: while both invalid now, <next> and <hdr_end>
* are still equal, so the for() will stop as expected.
*/
} else {
/* just remove the value */
int delta = del_hdr_value(res->buf, &prev, next);
next = prev;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
}
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_DELETED;
/* and go on with next cookie */
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) {
/* replace bytes val_beg->val_end with the cookie name associated
* with this server since we know it.
*/
delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) {
/* insert the cookie name associated with this server
* before existing cookie, and insert a delimiter between them..
*/
delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1);
next += delta;
hdr_end += delta;
hdr_next += delta;
cur_hdr->len += delta;
http_msg_move_end(&txn->rsp, delta);
val_beg[srv->cklen] = COOKIE_DELIM;
txn->flags &= ~TX_SCK_MASK;
txn->flags |= TX_SCK_REPLACED;
}
}
/* that's done for this cookie, check the next one on the same
* line when next != hdr_end (only if is_cookie2).
*/
}
/* check next header */
old_idx = cur_idx;
}
}
|
CWE-200
| 6,872 | 15,120 |
201414502503254779873980470051518073917
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
enum act_parse_ret parse_http_action_reject(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_reject;
return ACT_RET_PRS_OK;
}
|
CWE-200
| 6,873 | 15,121 |
102788261295213954194975972995502053054
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
enum act_parse_ret parse_http_req_capture(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
struct sample_expr *expr;
struct cap_hdr *hdr;
int cur_arg;
int len = 0;
for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
if (strcmp(args[cur_arg], "if") == 0 ||
strcmp(args[cur_arg], "unless") == 0)
break;
if (cur_arg < *orig_arg + 3) {
memprintf(err, "expects <expression> [ 'len' <length> | id <idx> ]");
return ACT_RET_PRS_ERR;
}
cur_arg = *orig_arg;
expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
if (!expr)
return ACT_RET_PRS_ERR;
if (!(expr->fetch->val & SMP_VAL_FE_HRQ_HDR)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
return ACT_RET_PRS_ERR;
}
if (!args[cur_arg] || !*args[cur_arg]) {
memprintf(err, "expects 'len or 'id'");
free(expr);
return ACT_RET_PRS_ERR;
}
if (strcmp(args[cur_arg], "len") == 0) {
cur_arg++;
if (!(px->cap & PR_CAP_FE)) {
memprintf(err, "proxy '%s' has no frontend capability", px->id);
return ACT_RET_PRS_ERR;
}
px->conf.args.ctx = ARGC_CAP;
if (!args[cur_arg]) {
memprintf(err, "missing length value");
free(expr);
return ACT_RET_PRS_ERR;
}
/* we copy the table name for now, it will be resolved later */
len = atoi(args[cur_arg]);
if (len <= 0) {
memprintf(err, "length must be > 0");
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
if (!len) {
memprintf(err, "a positive 'len' argument is mandatory");
free(expr);
return ACT_RET_PRS_ERR;
}
hdr = calloc(1, sizeof(*hdr));
hdr->next = px->req_cap;
hdr->name = NULL; /* not a header capture */
hdr->namelen = 0;
hdr->len = len;
hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED);
hdr->index = px->nb_req_cap++;
px->req_cap = hdr;
px->to_log |= LW_REQHDR;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_req_capture;
rule->arg.cap.expr = expr;
rule->arg.cap.hdr = hdr;
}
else if (strcmp(args[cur_arg], "id") == 0) {
int id;
char *error;
cur_arg++;
if (!args[cur_arg]) {
memprintf(err, "missing id value");
free(expr);
return ACT_RET_PRS_ERR;
}
id = strtol(args[cur_arg], &error, 10);
if (*error != '\0') {
memprintf(err, "cannot parse id '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
px->conf.args.ctx = ARGC_CAP;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_req_capture_by_id;
rule->check_ptr = check_http_req_capture;
rule->arg.capid.expr = expr;
rule->arg.capid.idx = id;
}
else {
memprintf(err, "expects 'len' or 'id', found '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
*orig_arg = cur_arg;
return ACT_RET_PRS_OK;
}
|
CWE-200
| 6,874 | 15,122 |
69463388926048955560534412594957528196
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
struct act_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
{
struct act_rule *rule;
struct action_kw *custom = NULL;
int cur_arg;
char *error;
rule = calloc(1, sizeof(*rule));
if (!rule) {
ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
goto out_err;
}
if (!strcmp(args[0], "allow")) {
rule->action = ACT_ACTION_ALLOW;
cur_arg = 1;
} else if (!strcmp(args[0], "deny") || !strcmp(args[0], "block") || !strcmp(args[0], "tarpit")) {
int code;
int hc;
if (!strcmp(args[0], "tarpit")) {
rule->action = ACT_HTTP_REQ_TARPIT;
rule->deny_status = HTTP_ERR_500;
}
else {
rule->action = ACT_ACTION_DENY;
rule->deny_status = HTTP_ERR_403;
}
cur_arg = 1;
if (strcmp(args[cur_arg], "deny_status") == 0) {
cur_arg++;
if (!args[cur_arg]) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing status code.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
goto out_err;
}
code = atol(args[cur_arg]);
cur_arg++;
for (hc = 0; hc < HTTP_ERR_SIZE; hc++) {
if (http_err_codes[hc] == code) {
rule->deny_status = hc;
break;
}
}
if (hc >= HTTP_ERR_SIZE) {
ha_warning("parsing [%s:%d] : status code %d not handled, using default code %d.\n",
file, linenum, code, http_err_codes[rule->deny_status]);
}
}
} else if (!strcmp(args[0], "auth")) {
rule->action = ACT_HTTP_REQ_AUTH;
cur_arg = 1;
while(*args[cur_arg]) {
if (!strcmp(args[cur_arg], "realm")) {
rule->arg.auth.realm = strdup(args[cur_arg + 1]);
cur_arg+=2;
continue;
} else
break;
}
} else if (!strcmp(args[0], "set-nice")) {
rule->action = ACT_HTTP_SET_NICE;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.nice = atoi(args[cur_arg]);
if (rule->arg.nice < -1024)
rule->arg.nice = -1024;
else if (rule->arg.nice > 1024)
rule->arg.nice = 1024;
cur_arg++;
} else if (!strcmp(args[0], "set-tos")) {
#ifdef IP_TOS
char *err;
rule->action = ACT_HTTP_SET_TOS;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.tos = strtol(args[cur_arg], &err, 0);
if (err && *err != '\0') {
ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
#else
ha_alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-mark")) {
#ifdef SO_MARK
char *err;
rule->action = ACT_HTTP_SET_MARK;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.mark = strtoul(args[cur_arg], &err, 0);
if (err && *err != '\0') {
ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
global.last_checks |= LSTCHK_NETADM;
#else
ha_alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-log-level")) {
rule->action = ACT_HTTP_SET_LOGL;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
bad_log_level:
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (log level name or 'silent').\n",
file, linenum, args[0]);
goto out_err;
}
if (strcmp(args[cur_arg], "silent") == 0)
rule->arg.loglevel = -1;
else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
goto bad_log_level;
cur_arg++;
} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
(*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 3 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
error = NULL;
if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
ha_alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
args[cur_arg + 1], error);
free(error);
goto out_err;
}
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 3;
} else if (strcmp(args[0], "del-header") == 0) {
rule->action = ACT_HTTP_DEL_HDR;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
proxy->conf.args.ctx = ARGC_HRQ;
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "track-sc", 8) == 0 &&
args[0][9] == '\0' && args[0][8] >= '0' &&
args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
struct sample_expr *expr;
unsigned int where;
char *err = NULL;
cur_arg = 1;
proxy->conf.args.ctx = ARGC_TRK;
expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
if (!expr) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
free(err);
goto out_err;
}
where = 0;
if (proxy->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRQ_HDR;
if (proxy->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRQ_HDR;
if (!(expr->fetch->val & where)) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :"
" fetch method '%s' extracts information from '%s', none of which is available here.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0],
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
goto out_err;
}
if (strcmp(args[cur_arg], "table") == 0) {
cur_arg++;
if (!args[cur_arg]) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing table name.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
free(expr);
goto out_err;
}
/* we copy the table name for now, it will be resolved later */
rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
cur_arg++;
}
rule->arg.trk_ctr.expr = expr;
rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
rule->check_ptr = check_trk_action;
} else if (strcmp(args[0], "redirect") == 0) {
struct redirect_rule *redir;
char *errmsg = NULL;
if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 0)) == NULL) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
goto out_err;
}
/* this redirect rule might already contain a parsed condition which
* we'll pass to the http-request rule.
*/
rule->action = ACT_HTTP_REDIR;
rule->arg.redir = redir;
rule->cond = redir->cond;
redir->cond = NULL;
cur_arg = 2;
return rule;
} else if (strncmp(args[0], "add-acl", 7) == 0) {
/* http-request add-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_ADD_ACL;
/*
* '+ 8' for 'add-acl('
* '- 9' for 'add-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-acl", 7) == 0) {
/* http-request del-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_ACL;
/*
* '+ 8' for 'del-acl('
* '- 9' for 'del-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-map", 7) == 0) {
/* http-request del-map(<reference (map name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_MAP;
/*
* '+ 8' for 'del-map('
* '- 9' for 'del-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "set-map", 7) == 0) {
/* http-request set-map(<reference (map name)>) <key pattern> <value pattern> */
rule->action = ACT_HTTP_SET_MAP;
/*
* '+ 8' for 'set-map('
* '- 9' for 'set-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
LIST_INIT(&rule->arg.map.value);
proxy->conf.args.ctx = ARGC_HRQ;
/* key pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s' key: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
/* value pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-request %s' pattern: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (((custom = action_http_req_custom(args[0])) != NULL)) {
char *errmsg = NULL;
cur_arg = 1;
/* try in the module list */
rule->from = ACT_F_HTTP_REQ;
rule->kw = custom;
if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
free(errmsg);
goto out_err;
}
} else {
action_build_list(&http_req_keywords.list, &trash);
ha_alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', "
"'tarpit', 'add-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
"'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
"%s%s, but got '%s'%s.\n",
file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
goto out_err;
}
if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
struct acl_cond *cond;
char *errmsg = NULL;
if ((cond = build_acl_cond(file, linenum, &proxy->acl, proxy, args+cur_arg, &errmsg)) == NULL) {
ha_alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n",
file, linenum, args[0], errmsg);
free(errmsg);
goto out_err;
}
rule->cond = cond;
}
else if (*args[cur_arg]) {
ha_alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth' or"
" either 'if' or 'unless' followed by a condition but found '%s'.\n",
file, linenum, args[0], args[cur_arg]);
goto out_err;
}
return rule;
out_err:
free(rule);
return NULL;
}
|
CWE-200
| 6,875 | 15,123 |
198285935273287115469605286815435635136
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
enum act_parse_ret parse_http_res_capture(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
struct sample_expr *expr;
int cur_arg;
int id;
char *error;
for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++)
if (strcmp(args[cur_arg], "if") == 0 ||
strcmp(args[cur_arg], "unless") == 0)
break;
if (cur_arg < *orig_arg + 3) {
memprintf(err, "expects <expression> id <idx>");
return ACT_RET_PRS_ERR;
}
cur_arg = *orig_arg;
expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
if (!expr)
return ACT_RET_PRS_ERR;
if (!(expr->fetch->val & SMP_VAL_FE_HRS_HDR)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
return ACT_RET_PRS_ERR;
}
if (!args[cur_arg] || !*args[cur_arg]) {
memprintf(err, "expects 'id'");
free(expr);
return ACT_RET_PRS_ERR;
}
if (strcmp(args[cur_arg], "id") != 0) {
memprintf(err, "expects 'id', found '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
if (!args[cur_arg]) {
memprintf(err, "missing id value");
free(expr);
return ACT_RET_PRS_ERR;
}
id = strtol(args[cur_arg], &error, 10);
if (*error != '\0') {
memprintf(err, "cannot parse id '%s'", args[cur_arg]);
free(expr);
return ACT_RET_PRS_ERR;
}
cur_arg++;
px->conf.args.ctx = ARGC_CAP;
rule->action = ACT_CUSTOM;
rule->action_ptr = http_action_res_capture_by_id;
rule->check_ptr = check_http_res_capture;
rule->arg.capid.expr = expr;
rule->arg.capid.idx = id;
*orig_arg = cur_arg;
return ACT_RET_PRS_OK;
}
|
CWE-200
| 6,876 | 15,124 |
187330593411417764052004673517099050045
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
struct act_rule *parse_http_res_cond(const char **args, const char *file, int linenum, struct proxy *proxy)
{
struct act_rule *rule;
struct action_kw *custom = NULL;
int cur_arg;
char *error;
rule = calloc(1, sizeof(*rule));
if (!rule) {
ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
goto out_err;
}
if (!strcmp(args[0], "allow")) {
rule->action = ACT_ACTION_ALLOW;
cur_arg = 1;
} else if (!strcmp(args[0], "deny")) {
rule->action = ACT_ACTION_DENY;
cur_arg = 1;
} else if (!strcmp(args[0], "set-nice")) {
rule->action = ACT_HTTP_SET_NICE;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.nice = atoi(args[cur_arg]);
if (rule->arg.nice < -1024)
rule->arg.nice = -1024;
else if (rule->arg.nice > 1024)
rule->arg.nice = 1024;
cur_arg++;
} else if (!strcmp(args[0], "set-tos")) {
#ifdef IP_TOS
char *err;
rule->action = ACT_HTTP_SET_TOS;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.tos = strtol(args[cur_arg], &err, 0);
if (err && *err != '\0') {
ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
#else
ha_alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-mark")) {
#ifdef SO_MARK
char *err;
rule->action = ACT_HTTP_SET_MARK;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.mark = strtoul(args[cur_arg], &err, 0);
if (err && *err != '\0') {
ha_alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n",
file, linenum, err, args[0]);
goto out_err;
}
cur_arg++;
global.last_checks |= LSTCHK_NETADM;
#else
ha_alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]);
goto out_err;
#endif
} else if (!strcmp(args[0], "set-log-level")) {
rule->action = ACT_HTTP_SET_LOGL;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
bad_log_level:
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (log level name or 'silent').\n",
file, linenum, args[0]);
goto out_err;
}
if (strcmp(args[cur_arg], "silent") == 0)
rule->arg.loglevel = -1;
else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0)
goto bad_log_level;
cur_arg++;
} else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) {
rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) {
rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL;
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] ||
(*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 3 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
LIST_INIT(&rule->arg.hdr_add.fmt);
error = NULL;
if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) {
ha_alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum,
args[cur_arg + 1], error);
free(error);
goto out_err;
}
proxy->conf.args.ctx = ARGC_HRQ;
error = NULL;
if (!parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 3;
} else if (strcmp(args[0], "del-header") == 0) {
rule->action = ACT_HTTP_DEL_HDR;
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
rule->arg.hdr_add.name = strdup(args[cur_arg]);
rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name);
proxy->conf.args.ctx = ARGC_HRS;
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "add-acl", 7) == 0) {
/* http-request add-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_ADD_ACL;
/*
* '+ 8' for 'add-acl('
* '- 9' for 'add-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-acl", 7) == 0) {
/* http-response del-acl(<reference (acl name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_ACL;
/*
* '+ 8' for 'del-acl('
* '- 9' for 'del-acl(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s': %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "del-map", 7) == 0) {
/* http-response del-map(<reference (map name)>) <key pattern> */
rule->action = ACT_HTTP_DEL_MAP;
/*
* '+ 8' for 'del-map('
* '- 9' for 'del-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] ||
(*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
proxy->conf.args.ctx = ARGC_HRS;
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s' %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 1;
} else if (strncmp(args[0], "set-map", 7) == 0) {
/* http-response set-map(<reference (map name)>) <key pattern> <value pattern> */
rule->action = ACT_HTTP_SET_MAP;
/*
* '+ 8' for 'set-map('
* '- 9' for 'set-map(' + trailing ')'
*/
rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9);
cur_arg = 1;
if (!*args[cur_arg] || !*args[cur_arg+1] ||
(*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n",
file, linenum, args[0]);
goto out_err;
}
LIST_INIT(&rule->arg.map.key);
LIST_INIT(&rule->arg.map.value);
proxy->conf.args.ctx = ARGC_HRS;
/* key pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s' name: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
/* value pattern */
error = NULL;
if (!parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP,
(proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, &error)) {
ha_alert("parsing [%s:%d]: 'http-response %s' value: %s.\n",
file, linenum, args[0], error);
free(error);
goto out_err;
}
free(proxy->conf.lfs_file);
proxy->conf.lfs_file = strdup(proxy->conf.args.file);
proxy->conf.lfs_line = proxy->conf.args.line;
cur_arg += 2;
} else if (strcmp(args[0], "redirect") == 0) {
struct redirect_rule *redir;
char *errmsg = NULL;
if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 1)) == NULL) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
goto out_err;
}
/* this redirect rule might already contain a parsed condition which
* we'll pass to the http-request rule.
*/
rule->action = ACT_HTTP_REDIR;
rule->arg.redir = redir;
rule->cond = redir->cond;
redir->cond = NULL;
cur_arg = 2;
return rule;
} else if (strncmp(args[0], "track-sc", 8) == 0 &&
args[0][9] == '\0' && args[0][8] >= '0' &&
args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
struct sample_expr *expr;
unsigned int where;
char *err = NULL;
cur_arg = 1;
proxy->conf.args.ctx = ARGC_TRK;
expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args);
if (!expr) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], err);
free(err);
goto out_err;
}
where = 0;
if (proxy->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRS_HDR;
if (proxy->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRS_HDR;
if (!(expr->fetch->val & where)) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule :"
" fetch method '%s' extracts information from '%s', none of which is available here.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0],
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
goto out_err;
}
if (strcmp(args[cur_arg], "table") == 0) {
cur_arg++;
if (!args[cur_arg]) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : missing table name.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0]);
free(expr);
goto out_err;
}
/* we copy the table name for now, it will be resolved later */
rule->arg.trk_ctr.table.n = strdup(args[cur_arg]);
cur_arg++;
}
rule->arg.trk_ctr.expr = expr;
rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0';
rule->check_ptr = check_trk_action;
} else if (((custom = action_http_res_custom(args[0])) != NULL)) {
char *errmsg = NULL;
cur_arg = 1;
/* try in the module list */
rule->from = ACT_F_HTTP_RES;
rule->kw = custom;
if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) {
ha_alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n",
file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg);
free(errmsg);
goto out_err;
}
} else {
action_build_list(&http_res_keywords.list, &trash);
ha_alert("parsing [%s:%d]: 'http-response' expects 'allow', 'deny', 'redirect', "
"'add-header', 'del-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', "
"'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', 'track-sc*'"
"%s%s, but got '%s'%s.\n",
file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)");
goto out_err;
}
if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) {
struct acl_cond *cond;
char *errmsg = NULL;
if ((cond = build_acl_cond(file, linenum, &proxy->acl, proxy, args+cur_arg, &errmsg)) == NULL) {
ha_alert("parsing [%s:%d] : error detected while parsing an 'http-response %s' condition : %s.\n",
file, linenum, args[0], errmsg);
free(errmsg);
goto out_err;
}
rule->cond = cond;
}
else if (*args[cur_arg]) {
ha_alert("parsing [%s:%d]: 'http-response %s' expects"
" either 'if' or 'unless' followed by a condition but found '%s'.\n",
file, linenum, args[0], args[cur_arg]);
goto out_err;
}
return rule;
out_err:
free(rule);
return NULL;
}
|
CWE-200
| 6,877 | 15,125 |
84941599512750283345740427986650744038
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
enum act_parse_ret parse_http_set_status(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
char *error;
rule->action = ACT_CUSTOM;
rule->action_ptr = action_http_set_status;
/* Check if an argument is available */
if (!*args[*orig_arg]) {
memprintf(err, "expects 1 argument: <status>; or 3 arguments: <status> reason <fmt>");
return ACT_RET_PRS_ERR;
}
/* convert status code as integer */
rule->arg.status.code = strtol(args[*orig_arg], &error, 10);
if (*error != '\0' || rule->arg.status.code < 100 || rule->arg.status.code > 999) {
memprintf(err, "expects an integer status code between 100 and 999");
return ACT_RET_PRS_ERR;
}
(*orig_arg)++;
/* set custom reason string */
rule->arg.status.reason = NULL; // If null, we use the default reason for the status code.
if (*args[*orig_arg] && strcmp(args[*orig_arg], "reason") == 0 &&
(*args[*orig_arg + 1] && strcmp(args[*orig_arg + 1], "if") != 0 && strcmp(args[*orig_arg + 1], "unless") != 0)) {
(*orig_arg)++;
rule->arg.status.reason = strdup(args[*orig_arg]);
(*orig_arg)++;
}
return ACT_RET_PRS_OK;
}
|
CWE-200
| 6,878 | 15,126 |
304383852184669983989965319244864689080
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int parse_qvalue(const char *qvalue, const char **end)
{
int q = 1000;
if (!isdigit((unsigned char)*qvalue))
goto out;
q = (*qvalue++ - '0') * 1000;
if (*qvalue++ != '.')
goto out;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 100;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 10;
if (!isdigit((unsigned char)*qvalue))
goto out;
q += (*qvalue++ - '0') * 1;
out:
if (q > 1000)
q = 1000;
if (end)
*end = qvalue;
return q;
}
|
CWE-200
| 6,879 | 15,127 |
4481420471300358002849929082476393104
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
enum act_parse_ret parse_set_req_line(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
int cur_arg = *orig_arg;
rule->action = ACT_CUSTOM;
switch (args[0][4]) {
case 'm' :
rule->arg.http.action = 0;
rule->action_ptr = http_action_set_req_line;
break;
case 'p' :
rule->arg.http.action = 1;
rule->action_ptr = http_action_set_req_line;
break;
case 'q' :
rule->arg.http.action = 2;
rule->action_ptr = http_action_set_req_line;
break;
case 'u' :
rule->arg.http.action = 3;
rule->action_ptr = http_action_set_req_line;
break;
default:
memprintf(err, "internal error: unhandled action '%s'", args[0]);
return ACT_RET_PRS_ERR;
}
if (!*args[cur_arg] ||
(*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) {
memprintf(err, "expects exactly 1 argument <format>");
return ACT_RET_PRS_ERR;
}
LIST_INIT(&rule->arg.http.logfmt);
px->conf.args.ctx = ARGC_HRQ;
if (!parse_logformat_string(args[cur_arg], px, &rule->arg.http.logfmt, LOG_OPT_HTTP,
(px->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, err)) {
return ACT_RET_PRS_ERR;
}
(*orig_arg)++;
return ACT_RET_PRS_OK;
}
|
CWE-200
| 6,880 | 15,128 |
289135760995635895912404601289450162997
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static struct pattern *pat_match_meth(struct sample *smp, struct pattern_expr *expr, int fill)
{
int icase;
struct pattern_list *lst;
struct pattern *pattern;
list_for_each_entry(lst, &expr->patterns, list) {
pattern = &lst->pat;
/* well-known method */
if (pattern->val.i != HTTP_METH_OTHER) {
if (smp->data.u.meth.meth == pattern->val.i)
return pattern;
else
continue;
}
/* Other method, we must compare the strings */
if (pattern->len != smp->data.u.meth.str.len)
continue;
icase = expr->mflags & PAT_MF_IGNORE_CASE;
if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0) ||
(!icase && strncmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0))
return pattern;
}
return NULL;
}
|
CWE-200
| 6,881 | 15,129 |
238334926356294502697145111655756332524
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int pat_parse_meth(const char *text, struct pattern *pattern, int mflags, char **err)
{
int len, meth;
len = strlen(text);
meth = find_http_meth(text, len);
pattern->val.i = meth;
if (meth == HTTP_METH_OTHER) {
pattern->ptr.str = (char *)text;
pattern->len = len;
}
else {
pattern->ptr.str = NULL;
pattern->len = 0;
}
return 1;
}
|
CWE-200
| 6,882 | 15,130 |
123401668400033891912410784331657090507
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int sample_conv_http_date(const struct arg *args, struct sample *smp, void *private)
{
const char day[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };
const char mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
struct chunk *temp;
struct tm *tm;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
/* add offset */
if (args && (args[0].type == ARGT_SINT))
curr_date += args[0].data.sint;
tm = gmtime(&curr_date);
if (!tm)
return 0;
temp = get_trash_chunk();
temp->len = snprintf(temp->str, temp->size - temp->len,
"%s, %02d %s %04d %02d:%02d:%02d GMT",
day[tm->tm_wday], tm->tm_mday, mon[tm->tm_mon], 1900+tm->tm_year,
tm->tm_hour, tm->tm_min, tm->tm_sec);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
|
CWE-200
| 6,883 | 15,131 |
280907538087255308208356920082756083781
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int sample_conv_q_prefered(const struct arg *args, struct sample *smp, void *private)
{
const char *al = smp->data.u.str.str;
const char *end = al + smp->data.u.str.len;
const char *token;
int toklen;
int qvalue;
const char *str;
const char *w;
int best_q = 0;
/* Set the constant to the sample, because the output of the
* function will be peek in the constant configuration string.
*/
smp->flags |= SMP_F_CONST;
smp->data.u.str.size = 0;
smp->data.u.str.str = "";
smp->data.u.str.len = 0;
/* Parse the accept language */
while (1) {
/* Jump spaces, quit if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
break;
/* Start of the fisrt word. */
token = al;
/* Look for separator: isspace(), ',' or ';'. Next value if 0 length word. */
while (al < end && *al != ';' && *al != ',' && !isspace((unsigned char)*al))
al++;
if (al == token)
goto expect_comma;
/* Length of the token. */
toklen = al - token;
qvalue = 1000;
/* Check if the token exists in the list. If the token not exists,
* jump to the next token.
*/
str = args[0].data.str.str;
w = str;
while (1) {
if (*str == ';' || *str == '\0') {
if (language_range_match(token, toklen, w, str-w))
goto look_for_q;
if (*str == '\0')
goto expect_comma;
w = str + 1;
}
str++;
}
goto expect_comma;
look_for_q:
/* Jump spaces, quit if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* If ',' is found, process the result */
if (*al == ',')
goto process_value;
/* If the character is different from ';', look
* for the end of the header part in best effort.
*/
if (*al != ';')
goto expect_comma;
/* Assumes that the char is ';', now expect "q=". */
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Expect 'q'. If no 'q', continue in best effort */
if (*al != 'q')
goto process_value;
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Expect '='. If no '=', continue in best effort */
if (*al != '=')
goto process_value;
al++;
/* Jump spaces, process value if the end is detected. */
while (al < end && isspace((unsigned char)*al))
al++;
if (al >= end)
goto process_value;
/* Parse the q value. */
qvalue = parse_qvalue(al, &al);
process_value:
/* If the new q value is the best q value, then store the associated
* language in the response. If qvalue is the biggest value (1000),
* break the process.
*/
if (qvalue > best_q) {
smp->data.u.str.str = (char *)w;
smp->data.u.str.len = str - w;
if (qvalue >= 1000)
break;
best_q = qvalue;
}
expect_comma:
/* Expect comma or end. If the end is detected, quit the loop. */
while (al < end && *al != ',')
al++;
if (al >= end)
break;
/* Comma is found, jump it and restart the analyzer. */
al++;
}
/* Set default value if required. */
if (smp->data.u.str.len == 0 && args[1].type == ARGT_STR) {
smp->data.u.str.str = args[1].data.str.str;
smp->data.u.str.len = args[1].data.str.len;
}
/* Return true only if a matching language was found. */
return smp->data.u.str.len != 0;
}
|
CWE-200
| 6,884 | 15,132 |
323052895466681598575113627265972150494
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int sample_conv_url_dec(const struct arg *args, struct sample *smp, void *private)
{
/* If the constant flag is set or if not size is avalaible at
* the end of the buffer, copy the string in other buffer
* before decoding.
*/
if (smp->flags & SMP_F_CONST || smp->data.u.str.size <= smp->data.u.str.len) {
struct chunk *str = get_trash_chunk();
memcpy(str->str, smp->data.u.str.str, smp->data.u.str.len);
smp->data.u.str.str = str->str;
smp->data.u.str.size = str->size;
smp->flags &= ~SMP_F_CONST;
}
/* Add final \0 required by url_decode(), and convert the input string. */
smp->data.u.str.str[smp->data.u.str.len] = '\0';
smp->data.u.str.len = url_decode(smp->data.u.str.str);
return (smp->data.u.str.len >= 0);
}
|
CWE-200
| 6,885 | 15,133 |
134449018583025243761406872089107046148
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int smp_conv_req_capture(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx, i;
struct cap_hdr *hdr;
int len;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
/* Check the availibity of the capture id. */
if (idx > fe->nb_req_cap - 1)
return 0;
/* Look for the original configuration. */
for (hdr = fe->req_cap, i = fe->nb_req_cap - 1;
hdr != NULL && i != idx ;
i--, hdr = hdr->next);
if (!hdr)
return 0;
/* check for the memory allocation */
if (smp->strm->req_cap[hdr->index] == NULL)
smp->strm->req_cap[hdr->index] = pool_alloc(hdr->pool);
if (smp->strm->req_cap[hdr->index] == NULL)
return 0;
/* Check length. */
len = smp->data.u.str.len;
if (len > hdr->len)
len = hdr->len;
/* Capture input data. */
memcpy(smp->strm->req_cap[idx], smp->data.u.str.str, len);
smp->strm->req_cap[idx][len] = '\0';
return 1;
}
|
CWE-200
| 6,886 | 15,134 |
176415933695601863087480166511276460785
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
static int smp_conv_res_capture(const struct arg *args, struct sample *smp, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx, i;
struct cap_hdr *hdr;
int len;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
/* Check the availibity of the capture id. */
if (idx > fe->nb_rsp_cap - 1)
return 0;
/* Look for the original configuration. */
for (hdr = fe->rsp_cap, i = fe->nb_rsp_cap - 1;
hdr != NULL && i != idx ;
i--, hdr = hdr->next);
if (!hdr)
return 0;
/* check for the memory allocation */
if (smp->strm->res_cap[hdr->index] == NULL)
smp->strm->res_cap[hdr->index] = pool_alloc(hdr->pool);
if (smp->strm->res_cap[hdr->index] == NULL)
return 0;
/* Check length. */
len = smp->data.u.str.len;
if (len > hdr->len)
len = hdr->len;
/* Capture input data. */
memcpy(smp->strm->res_cap[idx], smp->data.u.str.str, len);
smp->strm->res_cap[idx][len] = '\0';
return 1;
}
|
CWE-200
| 6,887 | 15,135 |
337584787138409865513624611775056327891
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end, *beg;
struct hdr_ctx ctx;
struct chunk *temp;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ctx.idx = 0;
if (!http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx) || !ctx.vlen)
return smp_fetch_path(args, smp, kw, private);
/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
temp = get_trash_chunk();
memcpy(temp->str, ctx.line + ctx.val, ctx.vlen);
smp->data.type = SMP_T_STR;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = ctx.vlen;
/* now retrieve the path */
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
beg = http_get_path(txn);
if (!beg)
beg = end;
for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
if (beg < ptr && *beg == '/') {
memcpy(smp->data.u.str.str + smp->data.u.str.len, beg, ptr - beg);
smp->data.u.str.len += ptr - beg;
}
smp->flags = SMP_F_VOL_1ST;
return 1;
}
|
CWE-200
| 6,888 | 15,136 |
83766067680769430792608820131530272898
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_ctx ctx;
unsigned int hash = 0;
char *ptr, *beg, *end;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ctx.idx = 0;
if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) {
/* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */
ptr = ctx.line + ctx.val;
len = ctx.vlen;
while (len--)
hash = *(ptr++) + (hash << 6) + (hash << 16) - hash;
}
/* now retrieve the path */
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
beg = http_get_path(txn);
if (!beg)
beg = end;
for (ptr = beg; ptr < end && *ptr != '?'; ptr++);
if (beg < ptr && *beg == '/') {
while (beg < ptr)
hash = *(beg++) + (hash << 6) + (hash << 16) - hash;
}
hash = full_hash(hash);
smp->data.type = SMP_T_SINT;
smp->data.u.sint = hash;
smp->flags = SMP_F_VOL_1ST;
return 1;
}
|
CWE-200
| 6,889 | 15,137 |
94049323427299861729617338627549086701
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
unsigned long len;
unsigned long block1;
char *body;
struct chunk *temp;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
len = http_body_bytes(msg);
body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
block1 = len;
if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
block1 = msg->chn->buf->data + msg->chn->buf->size - body;
if (block1 == len) {
/* buffer is not wrapped (or empty) */
smp->data.type = SMP_T_BIN;
smp->data.u.str.str = body;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_TEST | SMP_F_CONST;
}
else {
/* buffer is wrapped, we need to defragment it */
temp = get_trash_chunk();
memcpy(temp->str, body, block1);
memcpy(temp->str + block1, msg->chn->buf->data, len - block1);
smp->data.type = SMP_T_BIN;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_TEST;
}
return 1;
}
|
CWE-200
| 6,891 | 15,138 |
243822371422236839658820024129471494390
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = http_body_bytes(msg);
smp->flags = SMP_F_VOL_TEST;
return 1;
}
|
CWE-200
| 6,892 | 15,139 |
313914560331332633834782369164175050499
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
unsigned long len;
unsigned long block1;
char *body;
const char *name;
int name_len;
if (!args || (args[0].type && args[0].type != ARGT_STR))
return 0;
name = "";
name_len = 0;
if (args[0].type == ARGT_STR) {
name = args[0].data.str.str;
name_len = args[0].data.str.len;
}
if (!smp->ctx.a[0]) { // first call, find the query string
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
len = http_body_bytes(msg);
body = b_ptr(msg->chn->buf, -http_data_rewind(msg));
block1 = len;
if (block1 > msg->chn->buf->data + msg->chn->buf->size - body)
block1 = msg->chn->buf->data + msg->chn->buf->size - body;
if (block1 == len) {
/* buffer is not wrapped (or empty) */
smp->ctx.a[0] = body;
smp->ctx.a[1] = body + len;
/* Assume that the context is filled with NULL pointer
* before the first call.
* smp->ctx.a[2] = NULL;
* smp->ctx.a[3] = NULL;
*/
}
else {
/* buffer is wrapped, we need to defragment it */
smp->ctx.a[0] = body;
smp->ctx.a[1] = body + block1;
smp->ctx.a[2] = msg->chn->buf->data;
smp->ctx.a[3] = msg->chn->buf->data + ( len - block1 );
}
}
return smp_fetch_param('&', name, name_len, args, smp, kw, private);
}
|
CWE-200
| 6,893 | 15,140 |
279805202004276139958923680960021950288
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
CHECK_HTTP_MESSAGE_FIRST();
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ)
msg = &smp->strm->txn->req;
else
msg = &smp->strm->txn->rsp;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = msg->body_len;
smp->flags = SMP_F_VOL_TEST;
return 1;
}
|
CWE-200
| 6,894 | 15,141 |
95071273985403869655135396326643756378
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_header_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.str = smp->strm->req_cap[idx];
smp->data.u.str.len = strlen(smp->strm->req_cap[idx]);
return 1;
}
|
CWE-200
| 6,895 | 15,142 |
88412978028273777920194393587380596620
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_header_res(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct proxy *fe = strm_fe(smp->strm);
int idx;
if (!args || args->type != ARGT_SINT)
return 0;
idx = args->data.sint;
if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL)
return 0;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->data.u.str.str = smp->strm->res_cap[idx];
smp->data.u.str.len = strlen(smp->strm->res_cap[idx]);
return 1;
}
|
CWE-200
| 6,896 | 15,143 |
54053844634874452463157823784821996925
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct http_txn *txn = smp->strm->txn;
char *ptr;
if (!txn || !txn->uri)
return 0;
ptr = txn->uri;
while (*ptr != ' ' && *ptr != '\0') /* find first space */
ptr++;
temp = get_trash_chunk();
temp->str = txn->uri;
temp->len = ptr - txn->uri;
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,897 | 15,144 |
189094307225651541420799706205913595605
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct http_txn *txn = smp->strm->txn;
char *ptr;
if (!txn || !txn->uri)
return 0;
ptr = txn->uri;
while (*ptr != ' ' && *ptr != '\0') /* find first space */
ptr++;
if (!*ptr)
return 0;
ptr++; /* skip the space */
temp = get_trash_chunk();
ptr = temp->str = http_get_path_from_string(ptr);
if (!ptr)
return 0;
while (*ptr != ' ' && *ptr != '\0') /* find space after URI */
ptr++;
smp->data.u.str = *temp;
smp->data.u.str.len = ptr - temp->str;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,898 | 15,145 |
160436066840133532707057532273492417380
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn = smp->strm->txn;
if (!txn || txn->req.msg_state < HTTP_MSG_HDR_FIRST)
return 0;
if (txn->req.flags & HTTP_MSGF_VER_11)
smp->data.u.str.str = "HTTP/1.1";
else
smp->data.u.str.str = "HTTP/1.0";
smp->data.u.str.len = 8;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,899 | 15,146 |
297415532899476620367441737133256033676
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn = smp->strm->txn;
if (!txn || txn->rsp.msg_state < HTTP_MSG_HDR_FIRST)
return 0;
if (txn->rsp.flags & HTTP_MSGF_VER_11)
smp->data.u.str.str = "HTTP/1.1";
else
smp->data.u.str.str = "HTTP/1.0";
smp->data.u.str.len = 8;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,900 | 15,147 |
149387433338056785196597502161034426391
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_idx *idx;
struct hdr_ctx *ctx = smp->ctx.a[2];
const struct http_msg *msg;
const char *hdr_name;
int hdr_name_len;
char *sol;
int occ = 0;
int found = 0;
if (!args || args->type != ARGT_STR)
return 0;
if (!ctx) {
/* first call */
ctx = &static_hdr_ctx;
ctx->idx = 0;
smp->ctx.a[2] = ctx;
}
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &smp->strm->txn->hdr_idx;
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
msg = &txn->req;
hdr_name = "Cookie";
hdr_name_len = 6;
} else {
msg = &txn->rsp;
hdr_name = "Set-Cookie";
hdr_name_len = 10;
}
if (!occ && !(smp->opt & SMP_OPT_ITERATE))
/* no explicit occurrence and single fetch => last cookie by default */
occ = -1;
/* OK so basically here, either we want only one value and it's the
* last one, or we want to iterate over all of them and we fetch the
* next one.
*/
sol = msg->chn->buf->p;
if (!(smp->flags & SMP_F_NOT_LAST)) {
/* search for the header from the beginning, we must first initialize
* the search parameters.
*/
smp->ctx.a[0] = NULL;
ctx->idx = 0;
}
smp->flags |= SMP_F_VOL_HDR;
while (1) {
/* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */
if (!smp->ctx.a[0]) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx))
goto out;
if (ctx->vlen < args->data.str.len + 1)
continue;
smp->ctx.a[0] = ctx->line + ctx->val;
smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1],
args->data.str.str, args->data.str.len,
(smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
&smp->data.u.str.str,
&smp->data.u.str.len);
if (smp->ctx.a[0]) {
found = 1;
if (occ >= 0) {
/* one value was returned into smp->data.u.str.{str,len} */
smp->flags |= SMP_F_NOT_LAST;
return 1;
}
}
/* if we're looking for last occurrence, let's loop */
}
/* all cookie headers and values were scanned. If we're looking for the
* last occurrence, we may return it now.
*/
out:
smp->flags &= ~SMP_F_NOT_LAST;
return found;
}
|
CWE-200
| 6,901 | 15,148 |
148971775006904259113610176223605221019
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
const char *hdr_name;
int hdr_name_len;
int cnt;
char *val_beg, *val_end;
char *sol;
if (!args || args->type != ARGT_STR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &smp->strm->txn->hdr_idx;
if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
msg = &txn->req;
hdr_name = "Cookie";
hdr_name_len = 6;
} else {
msg = &txn->rsp;
hdr_name = "Set-Cookie";
hdr_name_len = 10;
}
sol = msg->chn->buf->p;
val_end = val_beg = NULL;
ctx.idx = 0;
cnt = 0;
while (1) {
/* Note: val_beg == NULL every time we need to fetch a new header */
if (!val_beg) {
if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx))
break;
if (ctx.vlen < args->data.str.len + 1)
continue;
val_beg = ctx.line + ctx.val;
val_end = val_beg + ctx.vlen;
}
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
while ((val_beg = extract_cookie_value(val_beg, val_end,
args->data.str.str, args->data.str.len,
(smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ,
&smp->data.u.str.str,
&smp->data.u.str.len))) {
cnt++;
}
}
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags |= SMP_F_VOL_HDR;
return 1;
}
|
CWE-200
| 6,902 | 15,149 |
55767037533652949822786554528379007039
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_cookie(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
|
CWE-200
| 6,903 | 15,150 |
252637724203462196540129640777390922360
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx *ctx = smp->ctx.a[0];
const struct http_msg *msg;
int occ = 0;
const char *name_str = NULL;
int name_len = 0;
if (!ctx) {
/* first call */
ctx = &static_hdr_ctx;
ctx->idx = 0;
smp->ctx.a[0] = ctx;
}
if (args) {
if (args[0].type != ARGT_STR)
return 0;
name_str = args[0].data.str.str;
name_len = args[0].data.str.len;
if (args[1].type == ARGT_SINT)
occ = args[1].data.sint;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
if (ctx && !(smp->flags & SMP_F_NOT_LAST))
/* search for header from the beginning */
ctx->idx = 0;
if (!occ && !(smp->opt & SMP_OPT_ITERATE))
/* no explicit occurrence and single fetch => last header by default */
occ = -1;
if (!occ)
/* prepare to report multiple occurrences for ACL fetches */
smp->flags |= SMP_F_NOT_LAST;
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST;
if (http_get_fhdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len))
return 1;
smp->flags &= ~SMP_F_NOT_LAST;
return 0;
}
|
CWE-200
| 6,904 | 15,151 |
151398304716170151683848078034680873089
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
int cnt;
const char *name = NULL;
int len = 0;
if (args && args->type == ARGT_STR) {
name = args->data.str.str;
len = args->data.str.len;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
ctx.idx = 0;
cnt = 0;
while (http_find_full_header2(name, len, msg->chn->buf->p, idx, &ctx))
cnt++;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
|
CWE-200
| 6,905 | 15,152 |
41363484298472275593591436145865044320
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
int cnt;
const char *name = NULL;
int len = 0;
if (args && args->type == ARGT_STR) {
name = args->data.str.str;
len = args->data.str.len;
}
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
ctx.idx = 0;
cnt = 0;
while (http_find_header2(name, len, msg->chn->buf->p, idx, &ctx))
cnt++;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = cnt;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
|
CWE-200
| 6,907 | 15,153 |
235817762685275372931483879935327142238
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret;
while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) {
if (url2ipv4((char *)smp->data.u.str.str, &smp->data.u.ipv4)) {
smp->data.type = SMP_T_IPV4;
break;
} else {
struct chunk *temp = get_trash_chunk();
if (smp->data.u.str.len < temp->size - 1) {
memcpy(temp->str, smp->data.u.str.str, smp->data.u.str.len);
temp->str[smp->data.u.str.len] = '\0';
if (inet_pton(AF_INET6, temp->str, &smp->data.u.ipv6)) {
smp->data.type = SMP_T_IPV6;
break;
}
}
}
/* if the header doesn't match an IP address, fetch next one */
if (!(smp->flags & SMP_F_NOT_LAST))
return 0;
}
return ret;
}
|
CWE-200
| 6,908 | 15,154 |
99589223953735322984359409359978899945
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct hdr_idx *idx;
struct hdr_ctx ctx;
const struct http_msg *msg;
struct chunk *temp;
char del = ',';
if (args && args->type == ARGT_STR)
del = *args[0].data.str.str;
CHECK_HTTP_MESSAGE_FIRST();
idx = &smp->strm->txn->hdr_idx;
msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp;
temp = get_trash_chunk();
ctx.idx = 0;
while (http_find_next_header(msg->chn->buf->p, idx, &ctx)) {
if (temp->len)
temp->str[temp->len++] = del;
memcpy(temp->str + temp->len, ctx.line, ctx.del);
temp->len += ctx.del;
}
smp->data.type = SMP_T_STR;
smp->data.u.str.str = temp->str;
smp->data.u.str.len = temp->len;
smp->flags = SMP_F_VOL_HDR;
return 1;
}
|
CWE-200
| 6,909 | 15,155 |
42074465959965254164545292651658189028
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_hdr(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
|
CWE-200
| 6,910 | 15,156 |
220362166269823949159205055065866654589
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_hdrs(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
struct hdr_idx *idx;
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
idx = &txn->hdr_idx;
msg = &txn->req;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = msg->chn->buf->p + hdr_idx_first_pos(idx);
smp->data.u.str.len = msg->eoh - hdr_idx_first_pos(idx) + 1 +
(msg->chn->buf->p[msg->eoh] == '\r');
return 1;
}
|
CWE-200
| 6,911 | 15,157 |
205419344923558961865946843400990030083
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!args || args->type != ARGT_USR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
if (!get_http_auth(smp->strm))
return 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user,
smp->strm->txn->auth.pass);
return 1;
}
|
CWE-200
| 6,913 | 15,158 |
80998633559992648197989111875973626441
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!args || args->type != ARGT_USR)
return 0;
CHECK_HTTP_MESSAGE_FIRST();
if (!get_http_auth(smp->strm))
return 0;
/* if the user does not belong to the userlist or has a wrong password,
* report that it unconditionally does not match. Otherwise we return
* a string containing the username.
*/
if (!check_user(args->data.usr, smp->strm->txn->auth.user,
smp->strm->txn->auth.pass))
return 0;
/* pat_match_auth() will need the user list */
smp->ctx.a[0] = args->data.usr;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.str = smp->strm->txn->auth.user;
smp->data.u.str.len = strlen(smp->strm->txn->auth.user);
return 1;
}
|
CWE-200
| 6,914 | 15,159 |
73158522984409223452519532318848117853
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST);
return 1;
}
|
CWE-200
| 6,915 | 15,160 |
85641127684687187845610407108073118913
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int meth;
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST_PERM();
txn = smp->strm->txn;
meth = txn->meth;
smp->data.type = SMP_T_METH;
smp->data.u.meth.meth = meth;
if (meth == HTTP_METH_OTHER) {
if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE)
/* ensure the indexes are not affected */
return 0;
smp->flags |= SMP_F_CONST;
smp->data.u.meth.str.len = txn->req.sl.rq.m_l;
smp->data.u.meth.str.str = txn->req.chn->buf->p;
}
smp->flags |= SMP_F_VOL_1ST;
return 1;
}
|
CWE-200
| 6,916 | 15,161 |
212802170790833247868757781382623377422
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private)
{
const char *vstart, *vend;
struct chunk *temp;
const char **chunks = (const char **)smp->ctx.a;
if (!find_next_url_param(chunks,
name, name_len,
&vstart, &vend,
delim))
return 0;
/* Create sample. If the value is contiguous, return the pointer as CONST,
* if the value is wrapped, copy-it in a buffer.
*/
smp->data.type = SMP_T_STR;
if (chunks[2] &&
vstart >= chunks[0] && vstart <= chunks[1] &&
vend >= chunks[2] && vend <= chunks[3]) {
/* Wrapped case. */
temp = get_trash_chunk();
memcpy(temp->str, vstart, chunks[1] - vstart);
memcpy(temp->str + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]);
smp->data.u.str.str = temp->str;
smp->data.u.str.len = ( chunks[1] - vstart ) + ( vend - chunks[2] );
} else {
/* Contiguous case. */
smp->data.u.str.str = (char *)vstart;
smp->data.u.str.len = vend - vstart;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
}
/* Update context, check wrapping. */
chunks[0] = vend;
if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) {
chunks[1] = chunks[3];
chunks[2] = NULL;
}
if (chunks[0] < chunks[1])
smp->flags |= SMP_F_NOT_LAST;
return 1;
}
|
CWE-200
| 6,917 | 15,162 |
306616927854896844516292887013888364323
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l;
ptr = http_get_path(txn);
if (!ptr)
return 0;
/* OK, we got the '/' ! */
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
while (ptr < end && *ptr != '?')
ptr++;
smp->data.u.str.len = ptr - smp->data.u.str.str;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,918 | 15,163 |
275021049912910724353536581950724760042
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
/* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged
* as a layer7 ACL, which involves automatic allocation of hdr_idx.
*/
CHECK_HTTP_MESSAGE_FIRST_PERM();
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
}
|
CWE-200
| 6,919 | 15,164 |
148211887999673898888771951122175273557
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr, *end;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
ptr = txn->req.chn->buf->p + txn->req.sl.rq.u;
end = ptr + txn->req.sl.rq.u_l;
/* look up the '?' */
do {
if (ptr == end)
return 0;
} while (*ptr++ != '?');
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = end - ptr;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,920 | 15,165 |
183019008751362678563916485508527179177
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
len = txn->req.sl.rq.v_l;
ptr = txn->req.chn->buf->p + txn->req.sl.rq.v;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,921 | 15,166 |
255862486080098788262309487528681147720
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.c_l;
ptr = txn->rsp.chn->buf->p + txn->rsp.sl.st.c;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = __strl2ui(ptr, len);
smp->flags = SMP_F_VOL_1ST;
return 1;
}
|
CWE-200
| 6,922 | 15,167 |
172888270819511282569577850436743213502
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
char *ptr;
int len;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
if (txn->rsp.msg_state < HTTP_MSG_BODY)
return 0;
len = txn->rsp.sl.st.v_l;
ptr = txn->rsp.chn->buf->p;
while ((len-- > 0) && (*ptr++ != '/'));
if (len <= 0)
return 0;
smp->data.type = SMP_T_STR;
smp->data.u.str.str = ptr;
smp->data.u.str.len = len;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,923 | 15,168 |
311300808359964254939111448946360011615
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_uniqueid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (LIST_ISEMPTY(&smp->sess->fe->format_unique_id))
return 0;
if (!smp->strm->unique_id) {
if ((smp->strm->unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
return 0;
smp->strm->unique_id[0] = '\0';
}
smp->data.u.str.len = build_logline(smp->strm, smp->strm->unique_id,
UNIQUEID_LEN, &smp->sess->fe->format_unique_id);
smp->data.type = SMP_T_STR;
smp->data.u.str.str = smp->strm->unique_id;
smp->flags = SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,924 | 15,169 |
96652484572028054701870401504550624585
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_txn *txn;
CHECK_HTTP_MESSAGE_FIRST();
txn = smp->strm->txn;
smp->data.type = SMP_T_STR;
smp->data.u.str.len = txn->req.sl.rq.u_l;
smp->data.u.str.str = txn->req.chn->buf->p + txn->req.sl.rq.u;
smp->flags = SMP_F_VOL_1ST | SMP_F_CONST;
return 1;
}
|
CWE-200
| 6,925 | 15,170 |
193797381483711653978804811986403388957
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct chunk *temp;
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
if (!smp_fetch_url32(args, smp, kw, private))
return 0;
temp = get_trash_chunk();
*(unsigned int *)temp->str = htonl(smp->data.u.sint);
temp->len += sizeof(unsigned int);
switch (cli_conn->addr.from.ss_family) {
case AF_INET:
memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4);
temp->len += 4;
break;
case AF_INET6:
memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16);
temp->len += 16;
break;
default:
return 0;
}
smp->data.u.str = *temp;
smp->data.type = SMP_T_BIN;
return 1;
}
|
CWE-200
| 6,927 | 15,171 |
25089167780082869619740227253480556511
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct http_msg *msg;
char delim = '?';
const char *name;
int name_len;
if (!args ||
(args[0].type && args[0].type != ARGT_STR) ||
(args[1].type && args[1].type != ARGT_STR))
return 0;
name = "";
name_len = 0;
if (args->type == ARGT_STR) {
name = args->data.str.str;
name_len = args->data.str.len;
}
if (args[1].type)
delim = *args[1].data.str.str;
if (!smp->ctx.a[0]) { // first call, find the query string
CHECK_HTTP_MESSAGE_FIRST();
msg = &smp->strm->txn->req;
smp->ctx.a[0] = find_param_list(msg->chn->buf->p + msg->sl.rq.u,
msg->sl.rq.u_l, delim);
if (!smp->ctx.a[0])
return 0;
smp->ctx.a[1] = msg->chn->buf->p + msg->sl.rq.u + msg->sl.rq.u_l;
/* Assume that the context is filled with NULL pointer
* before the first call.
* smp->ctx.a[2] = NULL;
* smp->ctx.a[3] = NULL;
*/
}
return smp_fetch_param(delim, name, name_len, args, smp, kw, private);
}
|
CWE-200
| 6,929 | 15,172 |
26842107802969324955871619103825321592
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
int ret = smp_fetch_url_param(args, smp, kw, private);
if (ret > 0) {
smp->data.type = SMP_T_SINT;
smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len);
}
return ret;
}
|
CWE-200
| 6,930 | 15,173 |
89697740798492058446206957772982065466
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int smp_prefetch_http(struct proxy *px, struct stream *s, unsigned int opt,
const struct arg *args, struct sample *smp, int req_vol)
{
struct http_txn *txn;
struct http_msg *msg;
/* Note: it is possible that <s> is NULL when called before stream
* initialization (eg: tcp-request connection), so this function is the
* one responsible for guarding against this case for all HTTP users.
*/
if (!s)
return 0;
if (!s->txn) {
if (unlikely(!http_alloc_txn(s)))
return 0; /* not enough memory */
http_init_txn(s);
}
txn = s->txn;
msg = &txn->req;
/* Check for a dependency on a request */
smp->data.type = SMP_T_BOOL;
if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) {
/* If the buffer does not leave enough free space at the end,
* we must first realign it.
*/
if (s->req.buf->p > s->req.buf->data &&
s->req.buf->i + s->req.buf->p > s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)
buffer_slow_realign(s->req.buf);
if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) {
if (msg->msg_state == HTTP_MSG_ERROR)
return 0;
/* Try to decode HTTP request */
if (likely(msg->next < s->req.buf->i))
http_msg_analyzer(msg, &txn->hdr_idx);
/* Still no valid request ? */
if (unlikely(msg->msg_state < HTTP_MSG_BODY)) {
if ((msg->msg_state == HTTP_MSG_ERROR) ||
buffer_full(s->req.buf, global.tune.maxrewrite)) {
return 0;
}
/* wait for final state */
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
/* OK we just got a valid HTTP request. We have some minor
* preparation to perform so that further checks can rely
* on HTTP tests.
*/
/* If the request was parsed but was too large, we must absolutely
* return an error so that it is not processed. At the moment this
* cannot happen, but if the parsers are to change in the future,
* we want this check to be maintained.
*/
if (unlikely(s->req.buf->i + s->req.buf->p >
s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)) {
msg->err_state = msg->msg_state;
msg->msg_state = HTTP_MSG_ERROR;
smp->data.u.sint = 1;
return 1;
}
txn->meth = find_http_meth(msg->chn->buf->p, msg->sl.rq.m_l);
if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)
s->flags |= SF_REDIRECTABLE;
if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn))
return 0;
}
if (req_vol && txn->rsp.msg_state != HTTP_MSG_RPBEFORE) {
return 0; /* data might have moved and indexes changed */
}
/* otherwise everything's ready for the request */
}
else {
/* Check for a dependency on a response */
if (txn->rsp.msg_state < HTTP_MSG_BODY) {
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
}
}
/* everything's OK */
smp->data.u.sint = 1;
return 1;
}
|
CWE-200
| 6,932 | 15,174 |
157015291506871681864229056081216329386
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend)
{
struct uri_auth *uri_auth = backend->uri_auth;
struct http_msg *msg = &txn->req;
const char *uri = msg->chn->buf->p+ msg->sl.rq.u;
if (!uri_auth)
return 0;
if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST)
return 0;
/* check URI size */
if (uri_auth->uri_len > msg->sl.rq.u_l)
return 0;
if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0)
return 0;
return 1;
}
|
CWE-200
| 6,933 | 15,175 |
222158530214169649384358094138219841274
| null | null | null |
haproxy
|
17514045e5d934dede62116216c1b016fe23dd06
| 0 |
int val_hdr(struct arg *arg, char **err_msg)
{
if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) {
memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY);
return 0;
}
return 1;
}
|
CWE-200
| 6,934 | 15,176 |
232061139687984348409728722959564303672
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_ATSFontGetFileReference( ATSFontRef ats_font_id,
FSRef* ats_font_ref )
{
#if defined( MAC_OS_X_VERSION_10_5 ) && \
( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 )
OSStatus err;
err = ATSFontGetFileReference( ats_font_id, ats_font_ref );
return err;
#elif __LP64__ /* No 64bit Carbon API on legacy platforms */
FT_UNUSED( ats_font_id );
FT_UNUSED( ats_font_ref );
return fnfErr;
#else /* 32bit Carbon API on legacy platforms */
OSStatus err;
FSSpec spec;
err = ATSFontGetFileSpecification( ats_font_id, &spec );
if ( noErr == err )
err = FSpMakeFSRef( &spec, ats_font_ref );
return err;
#endif
}
|
CWE-119
| 6,940 | 15,182 |
91959480180484374557721887732614875855
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_GetFilePath_From_Mac_ATS_Name( const char* fontName,
UInt8* path,
UInt32 maxPathSize,
FT_Long* face_index )
{
FSRef ref;
FT_Error err;
err = FT_GetFileRef_From_Mac_ATS_Name( fontName, &ref, face_index );
if ( err )
return err;
if ( noErr != FSRefMakePath( &ref, path, maxPathSize ) )
return FT_THROW( Unknown_File_Format );
return FT_Err_Ok;
}
|
CWE-119
| 6,942 | 15,183 |
151210597548731849143414619452609103185
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_GetFileRef_From_Mac_ATS_Name( const char* fontName,
FSRef* ats_font_ref,
FT_Long* face_index )
{
CFStringRef cf_fontName;
ATSFontRef ats_font_id;
*face_index = 0;
cf_fontName = CFStringCreateWithCString( NULL, fontName,
kCFStringEncodingMacRoman );
ats_font_id = ATSFontFindFromName( cf_fontName,
kATSOptionFlagsUnRestrictedScope );
CFRelease( cf_fontName );
if ( ats_font_id == 0 || ats_font_id == 0xFFFFFFFFUL )
return FT_THROW( Unknown_File_Format );
if ( noErr != FT_ATSFontGetFileReference( ats_font_id, ats_font_ref ) )
return FT_THROW( Unknown_File_Format );
/* face_index calculation by searching preceding fontIDs */
/* with same FSRef */
{
ATSFontRef id2 = ats_font_id - 1;
FSRef ref2;
while ( id2 > 0 )
{
if ( noErr != FT_ATSFontGetFileReference( id2, &ref2 ) )
break;
if ( noErr != FSCompareFSRefs( ats_font_ref, &ref2 ) )
break;
id2 --;
}
*face_index = ats_font_id - ( id2 + 1 );
}
return FT_Err_Ok;
}
|
CWE-119
| 6,943 | 15,184 |
89956783505736081352594553178705393199
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_GetFile_From_Mac_ATS_Name( const char* fontName,
FSSpec* pathSpec,
FT_Long* face_index )
{
#if ( __LP64__ ) || ( defined( MAC_OS_X_VERSION_10_5 ) && \
( MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_5 ) )
FT_UNUSED( fontName );
FT_UNUSED( pathSpec );
FT_UNUSED( face_index );
return FT_THROW( Unimplemented_Feature );
#else
FSRef ref;
FT_Error err;
err = FT_GetFileRef_From_Mac_ATS_Name( fontName, &ref, face_index );
if ( err )
return err;
if ( noErr != FSGetCatalogInfo( &ref, kFSCatInfoNone, NULL, NULL,
pathSpec, NULL ) )
return FT_THROW( Unknown_File_Format );
return FT_Err_Ok;
#endif
}
|
CWE-119
| 6,944 | 15,185 |
4541349130710221722753117265123926822
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_GetFile_From_Mac_Name( const char* fontName,
FSSpec* pathSpec,
FT_Long* face_index )
{
FT_UNUSED( fontName );
FT_UNUSED( pathSpec );
FT_UNUSED( face_index );
return FT_THROW( Unimplemented_Feature );
}
|
CWE-119
| 6,945 | 15,186 |
283189749237868808575478217587330861155
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face( FT_Library library,
const char* pathname,
FT_Long face_index,
FT_Face* aface )
{
FT_Open_Args args;
FT_Error error;
/* test for valid `library' and `aface' delayed to FT_Open_Face() */
if ( !pathname )
return FT_THROW( Invalid_Argument );
*aface = NULL;
/* try resourcefork based font: LWFN, FFIL */
error = FT_New_Face_From_Resource( library, (UInt8 *)pathname,
face_index, aface );
if ( error != 0 || *aface != NULL )
return error;
/* let it fall through to normal loader (.ttf, .otf, etc.) */
args.flags = FT_OPEN_PATHNAME;
args.pathname = (char*)pathname;
return FT_Open_Face( library, &args, face_index, aface );
}
|
CWE-119
| 6,946 | 15,187 |
76178943800184783589919991541264338188
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face_From_FOND( FT_Library library,
Handle fond,
FT_Long face_index,
FT_Face* aface )
{
short have_sfnt, have_lwfn = 0;
ResID sfnt_id, fond_id;
OSType fond_type;
Str255 fond_name;
Str255 lwfn_file_name;
UInt8 path_lwfn[PATH_MAX];
OSErr err;
FT_Error error = FT_Err_Ok;
GetResInfo( fond, &fond_id, &fond_type, fond_name );
if ( ResError() != noErr || fond_type != TTAG_FOND )
return FT_THROW( Invalid_File_Format );
parse_fond( *fond, &have_sfnt, &sfnt_id, lwfn_file_name, face_index );
if ( lwfn_file_name[0] )
{
ResFileRefNum res;
res = HomeResFile( fond );
if ( noErr != ResError() )
goto found_no_lwfn_file;
{
UInt8 path_fond[PATH_MAX];
FSRef ref;
err = FSGetForkCBInfo( res, kFSInvalidVolumeRefNum,
NULL, NULL, NULL, &ref, NULL );
if ( noErr != err )
goto found_no_lwfn_file;
err = FSRefMakePath( &ref, path_fond, sizeof ( path_fond ) );
if ( noErr != err )
goto found_no_lwfn_file;
error = lookup_lwfn_by_fond( path_fond, lwfn_file_name,
path_lwfn, sizeof ( path_lwfn ) );
if ( !error )
have_lwfn = 1;
}
}
if ( have_lwfn && ( !have_sfnt || PREFER_LWFN ) )
error = FT_New_Face_From_LWFN( library,
path_lwfn,
face_index,
aface );
else
error = FT_THROW( Unknown_File_Format );
found_no_lwfn_file:
if ( have_sfnt && error )
error = FT_New_Face_From_SFNT( library,
sfnt_id,
face_index,
aface );
return error;
}
|
CWE-119
| 6,947 | 15,188 |
183166519705288941509330519825210569638
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face_From_FSRef( FT_Library library,
const FSRef* ref,
FT_Long face_index,
FT_Face* aface )
{
FT_Error error;
FT_Open_Args args;
OSErr err;
UInt8 pathname[PATH_MAX];
if ( !ref )
return FT_THROW( Invalid_Argument );
err = FSRefMakePath( ref, pathname, sizeof ( pathname ) );
if ( err )
error = FT_THROW( Cannot_Open_Resource );
error = FT_New_Face_From_Resource( library, pathname, face_index, aface );
if ( error != 0 || *aface != NULL )
return error;
/* fallback to datafork font */
args.flags = FT_OPEN_PATHNAME;
args.pathname = (char*)pathname;
return FT_Open_Face( library, &args, face_index, aface );
}
|
CWE-119
| 6,948 | 15,189 |
218974366552440674423509814794888807613
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face_From_Resource( FT_Library library,
const UInt8* pathname,
FT_Long face_index,
FT_Face* aface )
{
OSType file_type;
FT_Error error;
/* LWFN is a (very) specific file format, check for it explicitly */
file_type = get_file_type_from_path( pathname );
if ( file_type == TTAG_LWFN )
return FT_New_Face_From_LWFN( library, pathname, face_index, aface );
/* Otherwise the file type doesn't matter (there are more than */
/* `FFIL' and `tfil'). Just try opening it as a font suitcase; */
/* if it works, fine. */
error = FT_New_Face_From_Suitcase( library, pathname, face_index, aface );
if ( error == 0 )
return error;
/* let it fall through to normal loader (.ttf, .otf, etc.); */
/* we signal this by returning no error and no FT_Face */
*aface = NULL;
return 0;
}
|
CWE-119
| 6,950 | 15,190 |
311033239396268139413711499046507709497
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face_From_SFNT( FT_Library library,
ResID sfnt_id,
FT_Long face_index,
FT_Face* aface )
{
Handle sfnt = NULL;
FT_Byte* sfnt_data;
size_t sfnt_size;
FT_Error error = FT_Err_Ok;
FT_Memory memory = library->memory;
int is_cff, is_sfnt_ps;
sfnt = GetResource( TTAG_sfnt, sfnt_id );
if ( sfnt == NULL )
return FT_THROW( Invalid_Handle );
sfnt_size = (FT_ULong)GetHandleSize( sfnt );
if ( FT_ALLOC( sfnt_data, (FT_Long)sfnt_size ) )
{
ReleaseResource( sfnt );
return error;
}
ft_memcpy( sfnt_data, *sfnt, sfnt_size );
ReleaseResource( sfnt );
is_cff = sfnt_size > 4 && !ft_memcmp( sfnt_data, "OTTO", 4 );
is_sfnt_ps = sfnt_size > 4 && !ft_memcmp( sfnt_data, "typ1", 4 );
if ( is_sfnt_ps )
{
FT_Stream stream;
if ( FT_NEW( stream ) )
goto Try_OpenType;
FT_Stream_OpenMemory( stream, sfnt_data, sfnt_size );
if ( !open_face_PS_from_sfnt_stream( library,
stream,
face_index,
0, NULL,
aface ) )
{
FT_Stream_Close( stream );
FT_FREE( stream );
FT_FREE( sfnt_data );
goto Exit;
}
FT_FREE( stream );
}
Try_OpenType:
error = open_face_from_buffer( library,
sfnt_data,
sfnt_size,
face_index,
is_cff ? "cff" : "truetype",
aface );
Exit:
return error;
}
|
CWE-119
| 6,951 | 15,191 |
275673415970653252051380590424490640546
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
FT_New_Face_From_Suitcase( FT_Library library,
const UInt8* pathname,
FT_Long face_index,
FT_Face* aface )
{
FT_Error error = FT_ERR( Cannot_Open_Resource );
ResFileRefNum res_ref;
ResourceIndex res_index;
Handle fond;
short num_faces_in_res;
if ( noErr != FT_FSPathMakeRes( pathname, &res_ref ) )
return FT_THROW( Cannot_Open_Resource );
UseResFile( res_ref );
if ( ResError() )
return FT_THROW( Cannot_Open_Resource );
num_faces_in_res = 0;
for ( res_index = 1; ; ++res_index )
{
short num_faces_in_fond;
fond = Get1IndResource( TTAG_FOND, res_index );
if ( ResError() )
break;
num_faces_in_fond = count_faces( fond, pathname );
num_faces_in_res += num_faces_in_fond;
if ( 0 <= face_index && face_index < num_faces_in_fond && error )
error = FT_New_Face_From_FOND( library, fond, face_index, aface );
face_index -= num_faces_in_fond;
}
CloseResFile( res_ref );
if ( !error && aface && *aface )
(*aface)->num_faces = num_faces_in_res;
return error;
}
|
CWE-119
| 6,952 | 15,192 |
239538310669686027075092267885198282614
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
count_faces( Handle fond,
const UInt8* pathname )
{
ResID sfnt_id;
short have_sfnt, have_lwfn;
Str255 lwfn_file_name;
UInt8 buff[PATH_MAX];
FT_Error err;
short num_faces;
have_sfnt = have_lwfn = 0;
parse_fond( *fond, &have_sfnt, &sfnt_id, lwfn_file_name, 0 );
if ( lwfn_file_name[0] )
{
err = lookup_lwfn_by_fond( pathname, lwfn_file_name,
buff, sizeof ( buff ) );
if ( !err )
have_lwfn = 1;
}
if ( have_lwfn && ( !have_sfnt || PREFER_LWFN ) )
num_faces = 1;
else
num_faces = count_faces_scalable( *fond );
return num_faces;
}
|
CWE-119
| 6,953 | 15,193 |
165069788220906062102668723881777600965
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
count_faces_scalable( char* fond_data )
{
AsscEntry* assoc;
short i, face, face_all;
face_all = EndianS16_BtoN( *( (short *)( fond_data +
sizeof ( FamRec ) ) ) ) + 1;
assoc = (AsscEntry*)( fond_data + sizeof ( FamRec ) + 2 );
face = 0;
for ( i = 0; i < face_all; i++ )
{
if ( 0 == EndianS16_BtoN( assoc[i].fontSize ) )
face++;
}
return face;
}
|
CWE-119
| 6,954 | 15,194 |
41641280158197861504744846788638388835
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
count_faces_sfnt( char* fond_data )
{
/* The count is 1 greater than the value in the FOND. */
/* Isn't that cute? :-) */
return EndianS16_BtoN( *( (short*)( fond_data +
sizeof ( FamRec ) ) ) ) + 1;
}
|
CWE-119
| 6,955 | 15,195 |
9657144181788635474944396980179940968
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
create_lwfn_name( char* ps_name,
Str255 lwfn_file_name )
{
int max = 5, count = 0;
FT_Byte* p = lwfn_file_name;
FT_Byte* q = (FT_Byte*)ps_name;
lwfn_file_name[0] = 0;
while ( *q )
{
if ( ft_isupper( *q ) )
{
if ( count )
max = 3;
count = 0;
}
if ( count < max && ( ft_isalnum( *q ) || *q == '_' ) )
{
*++p = *q;
lwfn_file_name[0]++;
count++;
}
q++;
}
}
|
CWE-119
| 6,956 | 15,196 |
292616554791628054693901478721581620250
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
get_file_type_from_path( const UInt8* pathname )
{
FSRef ref;
FSCatalogInfo info;
if ( noErr != FSPathMakeRef( pathname, &ref, FALSE ) )
return ( OSType ) 0;
if ( noErr != FSGetCatalogInfo( &ref, kFSCatInfoFinderInfo, &info,
NULL, NULL, NULL ) )
return ( OSType ) 0;
return ((FInfo *)(info.finderInfo))->fdType;
}
|
CWE-119
| 6,957 | 15,197 |
207182071999770858881086824718116906218
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
lookup_lwfn_by_fond( const UInt8* path_fond,
ConstStr255Param base_lwfn,
UInt8* path_lwfn,
size_t path_size )
{
FSRef ref, par_ref;
size_t dirname_len;
/* Pathname for FSRef can be in various formats: HFS, HFS+, and POSIX. */
/* We should not extract parent directory by string manipulation. */
if ( noErr != FSPathMakeRef( path_fond, &ref, FALSE ) )
return FT_THROW( Invalid_Argument );
if ( noErr != FSGetCatalogInfo( &ref, kFSCatInfoNone,
NULL, NULL, NULL, &par_ref ) )
return FT_THROW( Invalid_Argument );
if ( noErr != FSRefMakePath( &par_ref, path_lwfn, path_size ) )
return FT_THROW( Invalid_Argument );
if ( ft_strlen( (char *)path_lwfn ) + 1 + base_lwfn[0] > path_size )
return FT_THROW( Invalid_Argument );
/* now we have absolute dirname in path_lwfn */
ft_strcat( (char *)path_lwfn, "/" );
dirname_len = ft_strlen( (char *)path_lwfn );
ft_strcat( (char *)path_lwfn, (char *)base_lwfn + 1 );
path_lwfn[dirname_len + base_lwfn[0]] = '\0';
if ( noErr != FSPathMakeRef( path_lwfn, &ref, FALSE ) )
return FT_THROW( Cannot_Open_Resource );
if ( noErr != FSGetCatalogInfo( &ref, kFSCatInfoNone,
NULL, NULL, NULL, NULL ) )
return FT_THROW( Cannot_Open_Resource );
return FT_Err_Ok;
}
|
CWE-119
| 6,958 | 15,198 |
277258341838928024064771469832296203663
| null | null | null |
savannah
|
18a8f0d9943369449bc4de92d411c78fb08d616c
| 0 |
read_lwfn( FT_Memory memory,
ResFileRefNum res,
FT_Byte** pfb_data,
FT_ULong* size )
{
FT_Error error = FT_Err_Ok;
ResID res_id;
unsigned char *buffer, *p, *size_p = NULL;
FT_ULong total_size = 0;
FT_ULong old_total_size = 0;
FT_ULong post_size, pfb_chunk_size;
Handle post_data;
char code, last_code;
UseResFile( res );
/* First pass: load all POST resources, and determine the size of */
/* the output buffer. */
res_id = 501;
last_code = -1;
for (;;)
{
post_data = Get1Resource( TTAG_POST, res_id++ );
if ( post_data == NULL )
break; /* we are done */
code = (*post_data)[0];
if ( code != last_code )
{
if ( code == 5 )
total_size += 2; /* just the end code */
else
total_size += 6; /* code + 4 bytes chunk length */
}
total_size += GetHandleSize( post_data ) - 2;
last_code = code;
/* detect integer overflows */
if ( total_size < old_total_size )
{
error = FT_THROW( Array_Too_Large );
goto Error;
}
old_total_size = total_size;
}
if ( FT_ALLOC( buffer, (FT_Long)total_size ) )
goto Error;
/* Second pass: append all POST data to the buffer, add PFB fields. */
/* Glue all consecutive chunks of the same type together. */
p = buffer;
res_id = 501;
last_code = -1;
pfb_chunk_size = 0;
for (;;)
{
post_data = Get1Resource( TTAG_POST, res_id++ );
if ( post_data == NULL )
break; /* we are done */
post_size = (FT_ULong)GetHandleSize( post_data ) - 2;
code = (*post_data)[0];
if ( code != last_code )
{
if ( last_code != -1 )
{
/* we are done adding a chunk, fill in the size field */
if ( size_p != NULL )
{
*size_p++ = (FT_Byte)( pfb_chunk_size & 0xFF );
*size_p++ = (FT_Byte)( ( pfb_chunk_size >> 8 ) & 0xFF );
*size_p++ = (FT_Byte)( ( pfb_chunk_size >> 16 ) & 0xFF );
*size_p++ = (FT_Byte)( ( pfb_chunk_size >> 24 ) & 0xFF );
}
pfb_chunk_size = 0;
}
*p++ = 0x80;
if ( code == 5 )
*p++ = 0x03; /* the end */
else if ( code == 2 )
*p++ = 0x02; /* binary segment */
else
*p++ = 0x01; /* ASCII segment */
if ( code != 5 )
{
size_p = p; /* save for later */
p += 4; /* make space for size field */
}
}
ft_memcpy( p, *post_data + 2, post_size );
pfb_chunk_size += post_size;
p += post_size;
last_code = code;
}
*pfb_data = buffer;
*size = total_size;
Error:
CloseResFile( res );
return error;
}
|
CWE-119
| 6,959 | 15,199 |
135164387465633275593374046602548245917
| null | null | null |
savannah
|
ef1eba75187adfac750f326b563fe543dd5ff4e6
| 0 |
pcf_find_property( PCF_Face face,
const FT_String* prop )
{
PCF_Property properties = face->properties;
FT_Bool found = 0;
int i;
for ( i = 0 ; i < face->nprops && !found; i++ )
{
if ( !ft_strcmp( properties[i].name, prop ) )
found = 1;
}
if ( found )
return properties + i - 1;
else
return NULL;
}
|
CWE-189
| 6,960 | 15,200 |
123083139216694883267533633022889229030
| null | null | null |
savannah
|
ef1eba75187adfac750f326b563fe543dd5ff4e6
| 0 |
pcf_get_accel( FT_Stream stream,
PCF_Face face,
FT_ULong type )
{
FT_ULong format, size;
FT_Error error;
PCF_Accel accel = &face->accel;
error = pcf_seek_to_table_type( stream,
face->toc.tables,
face->toc.count,
type,
&format,
&size );
if ( error )
goto Bail;
if ( FT_READ_ULONG_LE( format ) )
goto Bail;
if ( !PCF_FORMAT_MATCH( format, PCF_DEFAULT_FORMAT ) &&
!PCF_FORMAT_MATCH( format, PCF_ACCEL_W_INKBOUNDS ) )
goto Bail;
if ( PCF_BYTE_ORDER( format ) == MSBFirst )
{
if ( FT_STREAM_READ_FIELDS( pcf_accel_msb_header, accel ) )
goto Bail;
}
else
{
if ( FT_STREAM_READ_FIELDS( pcf_accel_header, accel ) )
goto Bail;
}
error = pcf_get_metric( stream,
format & ( ~PCF_FORMAT_MASK ),
&(accel->minbounds) );
if ( error )
goto Bail;
error = pcf_get_metric( stream,
format & ( ~PCF_FORMAT_MASK ),
&(accel->maxbounds) );
if ( error )
goto Bail;
if ( PCF_FORMAT_MATCH( format, PCF_ACCEL_W_INKBOUNDS ) )
{
error = pcf_get_metric( stream,
format & ( ~PCF_FORMAT_MASK ),
&(accel->ink_minbounds) );
if ( error )
goto Bail;
error = pcf_get_metric( stream,
format & ( ~PCF_FORMAT_MASK ),
&(accel->ink_maxbounds) );
if ( error )
goto Bail;
}
else
{
accel->ink_minbounds = accel->minbounds; /* I'm not sure about this */
accel->ink_maxbounds = accel->maxbounds;
}
Bail:
return error;
}
|
CWE-189
| 6,961 | 15,201 |
257326555421263149342894403224554392309
| null | null | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.