project
stringclasses
633 values
commit_id
stringlengths
7
81
target
int64
0
1
func
stringlengths
5
484k
cwe
stringclasses
131 values
big_vul_idx
float64
0
189k
idx
int64
0
522k
hash
stringlengths
34
39
size
float64
1
24k
message
stringlengths
0
11.5k
dataset
stringclasses
1 value
linux
cb3232138e37129e88240a98a1d2aba2187ff57c
1
static int clie_5_attach(struct usb_serial *serial) { struct usb_serial_port *port; unsigned int pipe; int j; /* TH55 registers 2 ports. Communication in from the UX50/TH55 uses bulk_in_endpointAddress from port 0. Communication out to the UX50/TH55 uses bulk_out_endpointAddress from port 1 Lets do a quick and dirty mapping */ /* some sanity check */ if (serial->num_ports < 2) return -1; /* port 0 now uses the modified endpoint Address */ port = serial->port[0]; port->bulk_out_endpointAddress = serial->port[1]->bulk_out_endpointAddress; pipe = usb_sndbulkpipe(serial->dev, port->bulk_out_endpointAddress); for (j = 0; j < ARRAY_SIZE(port->write_urbs); ++j) port->write_urbs[j]->pipe = pipe; return 0; }
180,729
2,296
302546870172646938684143672016916521803
null
null
null
linux
b4a1b4f5047e4f54e194681125c74c0aa64d637d
1
long keyctl_read_key(key_serial_t keyid, char __user *buffer, size_t buflen) { struct key *key; key_ref_t key_ref; long ret; /* find the key first */ key_ref = lookup_user_key(keyid, 0, 0); if (IS_ERR(key_ref)) { ret = -ENOKEY; goto error; } key = key_ref_to_ptr(key_ref); /* see if we can read it directly */ ret = key_permission(key_ref, KEY_NEED_READ); if (ret == 0) goto can_read_key; if (ret != -EACCES) goto error; /* we can't; see if it's searchable from this process's keyrings * - we automatically take account of the fact that it may be * dangling off an instantiation key */ if (!is_key_possessed(key_ref)) { ret = -EACCES; goto error2; } /* the key is probably readable - now try to read it */ can_read_key: ret = key_validate(key); if (ret == 0) { ret = -EOPNOTSUPP; if (key->type->read) { /* read the data with the semaphore held (since we * might sleep) */ down_read(&key->sem); ret = key->type->read(key, buffer, buflen); up_read(&key->sem); } } error2: key_put(key); error: return ret; }
CWE-362
180,730
2,297
182054607697593478153120067337500454875
null
null
null
linux
8e20cf2bce122ce9262d6034ee5d5b76fbb92f96
1
aiptek_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *usbdev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *endpoint; struct aiptek *aiptek; struct input_dev *inputdev; int i; int speeds[] = { 0, AIPTEK_PROGRAMMABLE_DELAY_50, AIPTEK_PROGRAMMABLE_DELAY_400, AIPTEK_PROGRAMMABLE_DELAY_25, AIPTEK_PROGRAMMABLE_DELAY_100, AIPTEK_PROGRAMMABLE_DELAY_200, AIPTEK_PROGRAMMABLE_DELAY_300 }; int err = -ENOMEM; /* programmableDelay is where the command-line specified * delay is kept. We make it the first element of speeds[], * so therefore, your override speed is tried first, then the * remainder. Note that the default value of 400ms will be tried * if you do not specify any command line parameter. */ speeds[0] = programmableDelay; aiptek = kzalloc(sizeof(struct aiptek), GFP_KERNEL); inputdev = input_allocate_device(); if (!aiptek || !inputdev) { dev_warn(&intf->dev, "cannot allocate memory or input device\n"); goto fail1; } aiptek->data = usb_alloc_coherent(usbdev, AIPTEK_PACKET_LENGTH, GFP_ATOMIC, &aiptek->data_dma); if (!aiptek->data) { dev_warn(&intf->dev, "cannot allocate usb buffer\n"); goto fail1; } aiptek->urb = usb_alloc_urb(0, GFP_KERNEL); if (!aiptek->urb) { dev_warn(&intf->dev, "cannot allocate urb\n"); goto fail2; } aiptek->inputdev = inputdev; aiptek->usbdev = usbdev; aiptek->intf = intf; aiptek->ifnum = intf->altsetting[0].desc.bInterfaceNumber; aiptek->inDelay = 0; aiptek->endDelay = 0; aiptek->previousJitterable = 0; aiptek->lastMacro = -1; /* Set up the curSettings struct. Said struct contains the current * programmable parameters. The newSetting struct contains changes * the user makes to the settings via the sysfs interface. Those * changes are not "committed" to curSettings until the user * writes to the sysfs/.../execute file. */ aiptek->curSetting.pointerMode = AIPTEK_POINTER_EITHER_MODE; aiptek->curSetting.coordinateMode = AIPTEK_COORDINATE_ABSOLUTE_MODE; aiptek->curSetting.toolMode = AIPTEK_TOOL_BUTTON_PEN_MODE; aiptek->curSetting.xTilt = AIPTEK_TILT_DISABLE; aiptek->curSetting.yTilt = AIPTEK_TILT_DISABLE; aiptek->curSetting.mouseButtonLeft = AIPTEK_MOUSE_LEFT_BUTTON; aiptek->curSetting.mouseButtonMiddle = AIPTEK_MOUSE_MIDDLE_BUTTON; aiptek->curSetting.mouseButtonRight = AIPTEK_MOUSE_RIGHT_BUTTON; aiptek->curSetting.stylusButtonUpper = AIPTEK_STYLUS_UPPER_BUTTON; aiptek->curSetting.stylusButtonLower = AIPTEK_STYLUS_LOWER_BUTTON; aiptek->curSetting.jitterDelay = jitterDelay; aiptek->curSetting.programmableDelay = programmableDelay; /* Both structs should have equivalent settings */ aiptek->newSetting = aiptek->curSetting; /* Determine the usb devices' physical path. * Asketh not why we always pretend we're using "../input0", * but I suspect this will have to be refactored one * day if a single USB device can be a keyboard & a mouse * & a tablet, and the inputX number actually will tell * us something... */ usb_make_path(usbdev, aiptek->features.usbPath, sizeof(aiptek->features.usbPath)); strlcat(aiptek->features.usbPath, "/input0", sizeof(aiptek->features.usbPath)); /* Set up client data, pointers to open and close routines * for the input device. */ inputdev->name = "Aiptek"; inputdev->phys = aiptek->features.usbPath; usb_to_input_id(usbdev, &inputdev->id); inputdev->dev.parent = &intf->dev; input_set_drvdata(inputdev, aiptek); inputdev->open = aiptek_open; inputdev->close = aiptek_close; /* Now program the capacities of the tablet, in terms of being * an input device. */ for (i = 0; i < ARRAY_SIZE(eventTypes); ++i) __set_bit(eventTypes[i], inputdev->evbit); for (i = 0; i < ARRAY_SIZE(absEvents); ++i) __set_bit(absEvents[i], inputdev->absbit); for (i = 0; i < ARRAY_SIZE(relEvents); ++i) __set_bit(relEvents[i], inputdev->relbit); __set_bit(MSC_SERIAL, inputdev->mscbit); /* Set up key and button codes */ for (i = 0; i < ARRAY_SIZE(buttonEvents); ++i) __set_bit(buttonEvents[i], inputdev->keybit); for (i = 0; i < ARRAY_SIZE(macroKeyEvents); ++i) __set_bit(macroKeyEvents[i], inputdev->keybit); /* * Program the input device coordinate capacities. We do not yet * know what maximum X, Y, and Z values are, so we're putting fake * values in. Later, we'll ask the tablet to put in the correct * values. */ input_set_abs_params(inputdev, ABS_X, 0, 2999, 0, 0); input_set_abs_params(inputdev, ABS_Y, 0, 2249, 0, 0); input_set_abs_params(inputdev, ABS_PRESSURE, 0, 511, 0, 0); input_set_abs_params(inputdev, ABS_TILT_X, AIPTEK_TILT_MIN, AIPTEK_TILT_MAX, 0, 0); input_set_abs_params(inputdev, ABS_TILT_Y, AIPTEK_TILT_MIN, AIPTEK_TILT_MAX, 0, 0); input_set_abs_params(inputdev, ABS_WHEEL, AIPTEK_WHEEL_MIN, AIPTEK_WHEEL_MAX - 1, 0, 0); endpoint = &intf->altsetting[0].endpoint[0].desc; /* Go set up our URB, which is called when the tablet receives * input. */ usb_fill_int_urb(aiptek->urb, aiptek->usbdev, usb_rcvintpipe(aiptek->usbdev, endpoint->bEndpointAddress), aiptek->data, 8, aiptek_irq, aiptek, endpoint->bInterval); aiptek->urb->transfer_dma = aiptek->data_dma; aiptek->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; /* Program the tablet. This sets the tablet up in the mode * specified in newSetting, and also queries the tablet's * physical capacities. * * Sanity check: if a tablet doesn't like the slow programmatic * delay, we often get sizes of 0x0. Let's use that as an indicator * to try faster delays, up to 25 ms. If that logic fails, well, you'll * have to explain to us how your tablet thinks it's 0x0, and yet that's * not an error :-) */ for (i = 0; i < ARRAY_SIZE(speeds); ++i) { aiptek->curSetting.programmableDelay = speeds[i]; (void)aiptek_program_tablet(aiptek); if (input_abs_get_max(aiptek->inputdev, ABS_X) > 0) { dev_info(&intf->dev, "Aiptek using %d ms programming speed\n", aiptek->curSetting.programmableDelay); break; } } /* Murphy says that some day someone will have a tablet that fails the above test. That's you, Frederic Rodrigo */ if (i == ARRAY_SIZE(speeds)) { dev_info(&intf->dev, "Aiptek tried all speeds, no sane response\n"); goto fail3; } /* Associate this driver's struct with the usb interface. */ usb_set_intfdata(intf, aiptek); /* Set up the sysfs files */ err = sysfs_create_group(&intf->dev.kobj, &aiptek_attribute_group); if (err) { dev_warn(&intf->dev, "cannot create sysfs group err: %d\n", err); goto fail3; } /* Register the tablet as an Input Device */ err = input_register_device(aiptek->inputdev); if (err) { dev_warn(&intf->dev, "input_register_device returned err: %d\n", err); goto fail4; } return 0; fail4: sysfs_remove_group(&intf->dev.kobj, &aiptek_attribute_group); fail3: usb_free_urb(aiptek->urb); fail2: usb_free_coherent(usbdev, AIPTEK_PACKET_LENGTH, aiptek->data, aiptek->data_dma); fail1: usb_set_intfdata(intf, NULL); input_free_device(inputdev); kfree(aiptek); return err; }
180,731
2,298
116279422032136146703846531328372054860
null
null
null
linux
0185604c2d82c560dab2f2933a18f797e74ab5a8
1
static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) { mutex_lock(&kvm->arch.vpit->pit_state.lock); memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return 0; }
180,732
2,299
208694431467498242113447724435619413176
null
null
null
linux
0185604c2d82c560dab2f2933a18f797e74ab5a8
1
static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) { int start = 0; u32 prev_legacy, cur_legacy; mutex_lock(&kvm->arch.vpit->pit_state.lock); prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; if (!prev_legacy && cur_legacy) start = 1; memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, sizeof(kvm->arch.vpit->pit_state.channels)); kvm->arch.vpit->pit_state.flags = ps->flags; kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); mutex_unlock(&kvm->arch.vpit->pit_state.lock); return 0; }
180,733
2,300
246557586103247983393786080333386558083
null
null
null
linux
cd4a40174b71acd021877341684d8bb1dc8ea4ae
1
struct vfsmount *collect_mounts(struct path *path) { struct mount *tree; namespace_lock(); tree = copy_tree(real_mount(path->mnt), path->dentry, CL_COPY_ALL | CL_PRIVATE); namespace_unlock(); if (IS_ERR(tree)) return ERR_CAST(tree); return &tree->mnt; }
180,735
2,301
19334538589789937197837029932069005485
null
null
null
linux
cf872776fc84128bb779ce2b83a37c884c3203ae
1
static inline int ldsem_cmpxchg(long *old, long new, struct ld_semaphore *sem) { long tmp = *old; *old = atomic_long_cmpxchg(&sem->count, *old, new); return *old == tmp; }
CWE-362
180,738
2,303
228392180986723328438684157890230086487
null
null
null
linux
a2f18db0c68fec96631c10cad9384c196e9008ac
1
static int nft_flush_table(struct nft_ctx *ctx) { int err; struct nft_chain *chain, *nc; struct nft_set *set, *ns; list_for_each_entry_safe(chain, nc, &ctx->table->chains, list) { ctx->chain = chain; err = nft_delrule_by_chain(ctx); if (err < 0) goto out; err = nft_delchain(ctx); if (err < 0) goto out; } list_for_each_entry_safe(set, ns, &ctx->table->sets, list) { if (set->flags & NFT_SET_ANONYMOUS && !list_empty(&set->bindings)) continue; err = nft_delset(ctx, set); if (err < 0) goto out; } err = nft_deltable(ctx); out: return err; }
CWE-19
180,744
2,308
176778942905014936695932937244012092184
null
null
null
linux
2c5816b4beccc8ba709144539f6fdd764f8fa49c
1
static int cuse_channel_release(struct inode *inode, struct file *file) { struct fuse_dev *fud = file->private_data; struct cuse_conn *cc = fc_to_cc(fud->fc); int rc; /* remove from the conntbl, no more access from this point on */ mutex_lock(&cuse_lock); list_del_init(&cc->list); mutex_unlock(&cuse_lock); /* remove device */ if (cc->dev) device_unregister(cc->dev); if (cc->cdev) { unregister_chrdev_region(cc->cdev->dev, 1); cdev_del(cc->cdev); } rc = fuse_dev_release(inode, file); /* puts the base reference */ return rc; }
CWE-399
180,745
2,309
206651427646572480350187731381483149808
null
null
null
linux
6217e5ede23285ddfee10d2e4ba0cc2d4c046205
1
static int snd_compress_check_input(struct snd_compr_params *params) { /* first let's check the buffer parameter's */ if (params->buffer.fragment_size == 0 || params->buffer.fragments > SIZE_MAX / params->buffer.fragment_size) return -EINVAL; /* now codec parameters */ if (params->codec.id == 0 || params->codec.id > SND_AUDIOCODEC_MAX) return -EINVAL; if (params->codec.ch_in == 0 || params->codec.ch_out == 0) return -EINVAL; return 0; }
180,746
2,310
77147876717907738792002602358531841658
null
null
null
linux
4efbc454ba68def5ef285b26ebfcfdb605b52755
1
static int sched_read_attr(struct sched_attr __user *uattr, struct sched_attr *attr, unsigned int usize) { int ret; if (!access_ok(VERIFY_WRITE, uattr, usize)) return -EFAULT; /* * If we're handed a smaller struct than we know of, * ensure all the unknown bits are 0 - i.e. old * user-space does not get uncomplete information. */ if (usize < sizeof(*attr)) { unsigned char *addr; unsigned char *end; addr = (void *)attr + usize; end = (void *)attr + sizeof(*attr); for (; addr < end; addr++) { if (*addr) goto err_size; } attr->size = usize; } ret = copy_to_user(uattr, attr, usize); if (ret) return -EFAULT; out: return ret; err_size: ret = -E2BIG; goto out; }
CWE-200
180,747
2,311
339536197997710328363394448087627293018
null
null
null
linux
c88e739b1fad662240e99ecbd0bdaac871717987
1
static long __media_device_enum_links(struct media_device *mdev, struct media_links_enum *links) { struct media_entity *entity; entity = find_entity(mdev, links->entity); if (entity == NULL) return -EINVAL; if (links->pads) { unsigned int p; for (p = 0; p < entity->num_pads; p++) { struct media_pad_desc pad; media_device_kpad_to_upad(&entity->pads[p], &pad); if (copy_to_user(&links->pads[p], &pad, sizeof(pad))) return -EFAULT; } } if (links->links) { struct media_link_desc __user *ulink; unsigned int l; for (l = 0, ulink = links->links; l < entity->num_links; l++) { struct media_link_desc link; /* Ignore backlinks. */ if (entity->links[l].source->entity != entity) continue; media_device_kpad_to_upad(entity->links[l].source, &link.source); media_device_kpad_to_upad(entity->links[l].sink, &link.sink); link.flags = entity->links[l].flags; if (copy_to_user(ulink, &link, sizeof(*ulink))) return -EFAULT; ulink++; } } return 0; }
CWE-200
180,748
2,312
154830867138233729337898903656645655475
null
null
null
libgd
4f65a3e4eedaffa1efcf9ee1eb08f0b504fbc31a
1
static inline LineContribType *_gdContributionsCalc(unsigned int line_size, unsigned int src_size, double scale_d, const interpolation_method pFilter) { double width_d; double scale_f_d = 1.0; const double filter_width_d = DEFAULT_BOX_RADIUS; int windows_size; unsigned int u; LineContribType *res; if (scale_d < 1.0) { width_d = filter_width_d / scale_d; scale_f_d = scale_d; } else { width_d= filter_width_d; } windows_size = 2 * (int)ceil(width_d) + 1; res = _gdContributionsAlloc(line_size, windows_size); for (u = 0; u < line_size; u++) { const double dCenter = (double)u / scale_d; /* get the significant edge points affecting the pixel */ register int iLeft = MAX(0, (int)floor (dCenter - width_d)); int iRight = MIN((int)ceil(dCenter + width_d), (int)src_size - 1); double dTotalWeight = 0.0; int iSrc; res->ContribRow[u].Left = iLeft; res->ContribRow[u].Right = iRight; /* Cut edge points to fit in filter window in case of spill-off */ if (iRight - iLeft + 1 > windows_size) { if (iLeft < ((int)src_size - 1 / 2)) { iLeft++; } else { iRight--; } } for (iSrc = iLeft; iSrc <= iRight; iSrc++) { dTotalWeight += (res->ContribRow[u].Weights[iSrc-iLeft] = scale_f_d * (*pFilter)(scale_f_d * (dCenter - (double)iSrc))); } if (dTotalWeight < 0.0) { _gdContributionsFree(res); return NULL; } if (dTotalWeight > 0.0) { for (iSrc = iLeft; iSrc <= iRight; iSrc++) { res->ContribRow[u].Weights[iSrc-iLeft] /= dTotalWeight; } } } return res; }
CWE-125
180,763
2,323
41848651368514129223970481374051132044
null
null
null
Little-CMS
fefaaa43c382eee632ea3ad0cfa915335140e1db
1
cmsPipeline* DefaultICCintents(cmsContext ContextID, cmsUInt32Number nProfiles, cmsUInt32Number TheIntents[], cmsHPROFILE hProfiles[], cmsBool BPC[], cmsFloat64Number AdaptationStates[], cmsUInt32Number dwFlags) { cmsPipeline* Lut = NULL; cmsPipeline* Result; cmsHPROFILE hProfile; cmsMAT3 m; cmsVEC3 off; cmsColorSpaceSignature ColorSpaceIn, ColorSpaceOut, CurrentColorSpace; cmsProfileClassSignature ClassSig; cmsUInt32Number i, Intent; if (nProfiles == 0) return NULL; Result = cmsPipelineAlloc(ContextID, 0, 0); if (Result == NULL) return NULL; CurrentColorSpace = cmsGetColorSpace(hProfiles[0]); for (i=0; i < nProfiles; i++) { cmsBool lIsDeviceLink, lIsInput; hProfile = hProfiles[i]; ClassSig = cmsGetDeviceClass(hProfile); lIsDeviceLink = (ClassSig == cmsSigLinkClass || ClassSig == cmsSigAbstractClass ); if ((i == 0) && !lIsDeviceLink) { lIsInput = TRUE; } else { lIsInput = (CurrentColorSpace != cmsSigXYZData) && (CurrentColorSpace != cmsSigLabData); } Intent = TheIntents[i]; if (lIsInput || lIsDeviceLink) { ColorSpaceIn = cmsGetColorSpace(hProfile); ColorSpaceOut = cmsGetPCS(hProfile); } else { ColorSpaceIn = cmsGetPCS(hProfile); ColorSpaceOut = cmsGetColorSpace(hProfile); } if (!ColorSpaceIsCompatible(ColorSpaceIn, CurrentColorSpace)) { cmsSignalError(ContextID, cmsERROR_COLORSPACE_CHECK, "ColorSpace mismatch"); goto Error; } if (lIsDeviceLink || ((ClassSig == cmsSigNamedColorClass) && (nProfiles == 1))) { Lut = _cmsReadDevicelinkLUT(hProfile, Intent); if (Lut == NULL) goto Error; if (ClassSig == cmsSigAbstractClass && i > 0) { if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; } else { _cmsMAT3identity(&m); _cmsVEC3init(&off, 0, 0, 0); } if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; } else { if (lIsInput) { Lut = _cmsReadInputLUT(hProfile, Intent); if (Lut == NULL) goto Error; } else { Lut = _cmsReadOutputLUT(hProfile, Intent); if (Lut == NULL) goto Error; if (!ComputeConversion(i, hProfiles, Intent, BPC[i], AdaptationStates[i], &m, &off)) goto Error; if (!AddConversion(Result, CurrentColorSpace, ColorSpaceIn, &m, &off)) goto Error; } } if (!cmsPipelineCat(Result, Lut)) goto Error; cmsPipelineFree(Lut); CurrentColorSpace = ColorSpaceOut; } return Result; Error: cmsPipelineFree(Lut); if (Result != NULL) cmsPipelineFree(Result); return NULL; cmsUNUSED_PARAMETER(dwFlags); }
180,764
2,324
120973636847525123043991558312278084903
null
null
null
linux
82981930125abfd39d7c8378a9cfdf5e1be2002b
1
int sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; int val; int valbool; struct linger ling; int ret = 0; /* * Options without arguments */ if (optname == SO_BINDTODEVICE) return sock_bindtodevice(sk, optval, optlen); if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; valbool = val ? 1 : 0; lock_sock(sk); switch (optname) { case SO_DEBUG: if (val && !capable(CAP_NET_ADMIN)) ret = -EACCES; else sock_valbool_flag(sk, SOCK_DBG, valbool); break; case SO_REUSEADDR: sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE); break; case SO_TYPE: case SO_PROTOCOL: case SO_DOMAIN: case SO_ERROR: ret = -ENOPROTOOPT; break; case SO_DONTROUTE: sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool); break; case SO_BROADCAST: sock_valbool_flag(sk, SOCK_BROADCAST, valbool); break; case SO_SNDBUF: /* Don't error on this BSD doesn't and if you think about it this is right. Otherwise apps have to play 'guess the biggest size' games. RCVBUF/SNDBUF are treated in BSD as hints */ if (val > sysctl_wmem_max) val = sysctl_wmem_max; set_sndbuf: sk->sk_userlocks |= SOCK_SNDBUF_LOCK; if ((val * 2) < SOCK_MIN_SNDBUF) sk->sk_sndbuf = SOCK_MIN_SNDBUF; else sk->sk_sndbuf = val * 2; /* * Wake up sending tasks if we * upped the value. */ sk->sk_write_space(sk); break; case SO_SNDBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_sndbuf; case SO_RCVBUF: /* Don't error on this BSD doesn't and if you think about it this is right. Otherwise apps have to play 'guess the biggest size' games. RCVBUF/SNDBUF are treated in BSD as hints */ if (val > sysctl_rmem_max) val = sysctl_rmem_max; set_rcvbuf: sk->sk_userlocks |= SOCK_RCVBUF_LOCK; /* * We double it on the way in to account for * "struct sk_buff" etc. overhead. Applications * assume that the SO_RCVBUF setting they make will * allow that much actual data to be received on that * socket. * * Applications are unaware that "struct sk_buff" and * other overheads allocate from the receive buffer * during socket buffer allocation. * * And after considering the possible alternatives, * returning the value we actually used in getsockopt * is the most desirable behavior. */ if ((val * 2) < SOCK_MIN_RCVBUF) sk->sk_rcvbuf = SOCK_MIN_RCVBUF; else sk->sk_rcvbuf = val * 2; break; case SO_RCVBUFFORCE: if (!capable(CAP_NET_ADMIN)) { ret = -EPERM; break; } goto set_rcvbuf; case SO_KEEPALIVE: #ifdef CONFIG_INET if (sk->sk_protocol == IPPROTO_TCP) tcp_set_keepalive(sk, valbool); #endif sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool); break; case SO_OOBINLINE: sock_valbool_flag(sk, SOCK_URGINLINE, valbool); break; case SO_NO_CHECK: sk->sk_no_check = valbool; break; case SO_PRIORITY: if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) sk->sk_priority = val; else ret = -EPERM; break; case SO_LINGER: if (optlen < sizeof(ling)) { ret = -EINVAL; /* 1003.1g */ break; } if (copy_from_user(&ling, optval, sizeof(ling))) { ret = -EFAULT; break; } if (!ling.l_onoff) sock_reset_flag(sk, SOCK_LINGER); else { #if (BITS_PER_LONG == 32) if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ) sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT; else #endif sk->sk_lingertime = (unsigned int)ling.l_linger * HZ; sock_set_flag(sk, SOCK_LINGER); } break; case SO_BSDCOMPAT: sock_warn_obsolete_bsdism("setsockopt"); break; case SO_PASSCRED: if (valbool) set_bit(SOCK_PASSCRED, &sock->flags); else clear_bit(SOCK_PASSCRED, &sock->flags); break; case SO_TIMESTAMP: case SO_TIMESTAMPNS: if (valbool) { if (optname == SO_TIMESTAMP) sock_reset_flag(sk, SOCK_RCVTSTAMPNS); else sock_set_flag(sk, SOCK_RCVTSTAMPNS); sock_set_flag(sk, SOCK_RCVTSTAMP); sock_enable_timestamp(sk, SOCK_TIMESTAMP); } else { sock_reset_flag(sk, SOCK_RCVTSTAMP); sock_reset_flag(sk, SOCK_RCVTSTAMPNS); } break; case SO_TIMESTAMPING: if (val & ~SOF_TIMESTAMPING_MASK) { ret = -EINVAL; break; } sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE, val & SOF_TIMESTAMPING_TX_HARDWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE, val & SOF_TIMESTAMPING_TX_SOFTWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE, val & SOF_TIMESTAMPING_RX_HARDWARE); if (val & SOF_TIMESTAMPING_RX_SOFTWARE) sock_enable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE); else sock_disable_timestamp(sk, (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)); sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE, val & SOF_TIMESTAMPING_SOFTWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE, val & SOF_TIMESTAMPING_SYS_HARDWARE); sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE, val & SOF_TIMESTAMPING_RAW_HARDWARE); break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; sk->sk_rcvlowat = val ? : 1; break; case SO_RCVTIMEO: ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen); break; case SO_SNDTIMEO: ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen); break; case SO_ATTACH_FILTER: ret = -EINVAL; if (optlen == sizeof(struct sock_fprog)) { struct sock_fprog fprog; ret = -EFAULT; if (copy_from_user(&fprog, optval, sizeof(fprog))) break; ret = sk_attach_filter(&fprog, sk); } break; case SO_DETACH_FILTER: ret = sk_detach_filter(sk); break; case SO_PASSSEC: if (valbool) set_bit(SOCK_PASSSEC, &sock->flags); else clear_bit(SOCK_PASSSEC, &sock->flags); break; case SO_MARK: if (!capable(CAP_NET_ADMIN)) ret = -EPERM; else sk->sk_mark = val; break; /* We implement the SO_SNDLOWAT etc to not be settable (1003.1g 5.3) */ case SO_RXQ_OVFL: sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool); break; case SO_WIFI_STATUS: sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool); break; case SO_PEEK_OFF: if (sock->ops->set_peek_off) sock->ops->set_peek_off(sk, val); else ret = -EOPNOTSUPP; break; case SO_NOFCS: sock_valbool_flag(sk, SOCK_NOFCS, valbool); break; default: ret = -ENOPROTOOPT; break; } release_sock(sk); return ret; }
CWE-119
180,781
2,337
84799346879089591141142253594612624049
null
null
null
linux
b35cc8225845112a616e3a2266d2fde5ab13d3ab
1
static int snd_compr_allocate_buffer(struct snd_compr_stream *stream, struct snd_compr_params *params) { unsigned int buffer_size; void *buffer; buffer_size = params->buffer.fragment_size * params->buffer.fragments; if (stream->ops->copy) { buffer = NULL; /* if copy is defined the driver will be required to copy * the data from core */ } else { buffer = kmalloc(buffer_size, GFP_KERNEL); if (!buffer) return -ENOMEM; } stream->runtime->fragment_size = params->buffer.fragment_size; stream->runtime->fragments = params->buffer.fragments; stream->runtime->buffer = buffer; stream->runtime->buffer_size = buffer_size; return 0; }
180,782
2,338
320223001183825300598401950795056162108
null
null
null
linux
20e1db19db5d6b9e4e83021595eab0dc8f107bef
1
static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct netlink_sock *nlk = nlk_sk(sk); struct sockaddr_nl *addr = msg->msg_name; u32 dst_pid; u32 dst_group; struct sk_buff *skb; int err; struct scm_cookie scm; if (msg->msg_flags&MSG_OOB) return -EOPNOTSUPP; if (NULL == siocb->scm) siocb->scm = &scm; err = scm_send(sock, msg, siocb->scm, true); if (err < 0) return err; if (msg->msg_namelen) { err = -EINVAL; if (addr->nl_family != AF_NETLINK) goto out; dst_pid = addr->nl_pid; dst_group = ffs(addr->nl_groups); err = -EPERM; if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND)) goto out; } else { dst_pid = nlk->dst_pid; dst_group = nlk->dst_group; } if (!nlk->pid) { err = netlink_autobind(sock); if (err) goto out; } err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; err = -ENOBUFS; skb = alloc_skb(len, GFP_KERNEL); if (skb == NULL) goto out; NETLINK_CB(skb).pid = nlk->pid; NETLINK_CB(skb).dst_group = dst_group; memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); err = -EFAULT; if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { kfree_skb(skb); goto out; } err = security_netlink_send(sk, skb); if (err) { kfree_skb(skb); goto out; } if (dst_group) { atomic_inc(&skb->users); netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL); } err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT); out: scm_destroy(siocb->scm); return err; }
CWE-284
180,787
2,342
169493009832141549770812668255774168936
null
null
null
linux
c290f8358acaeffd8e0c551ddcc24d1206143376
1
static int tty_open(struct inode *inode, struct file *filp) { struct tty_struct *tty = NULL; int noctty, retval; struct tty_driver *driver; int index; dev_t device = inode->i_rdev; unsigned saved_flags = filp->f_flags; nonseekable_open(inode, filp); retry_open: noctty = filp->f_flags & O_NOCTTY; index = -1; retval = 0; mutex_lock(&tty_mutex); tty_lock(); if (device == MKDEV(TTYAUX_MAJOR, 0)) { tty = get_current_tty(); if (!tty) { tty_unlock(); mutex_unlock(&tty_mutex); return -ENXIO; } driver = tty_driver_kref_get(tty->driver); index = tty->index; filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */ /* noctty = 1; */ /* FIXME: Should we take a driver reference ? */ tty_kref_put(tty); goto got_driver; } #ifdef CONFIG_VT if (device == MKDEV(TTY_MAJOR, 0)) { extern struct tty_driver *console_driver; driver = tty_driver_kref_get(console_driver); index = fg_console; noctty = 1; goto got_driver; } #endif if (device == MKDEV(TTYAUX_MAJOR, 1)) { struct tty_driver *console_driver = console_device(&index); if (console_driver) { driver = tty_driver_kref_get(console_driver); if (driver) { /* Don't let /dev/console block */ filp->f_flags |= O_NONBLOCK; noctty = 1; goto got_driver; } } tty_unlock(); mutex_unlock(&tty_mutex); return -ENODEV; } driver = get_tty_driver(device, &index); if (!driver) { tty_unlock(); mutex_unlock(&tty_mutex); return -ENODEV; } got_driver: if (!tty) { /* check whether we're reopening an existing tty */ tty = tty_driver_lookup_tty(driver, inode, index); if (IS_ERR(tty)) { tty_unlock(); mutex_unlock(&tty_mutex); return PTR_ERR(tty); } } if (tty) { retval = tty_reopen(tty); if (retval) tty = ERR_PTR(retval); } else tty = tty_init_dev(driver, index, 0); mutex_unlock(&tty_mutex); tty_driver_kref_put(driver); if (IS_ERR(tty)) { tty_unlock(); return PTR_ERR(tty); } retval = tty_add_file(tty, filp); if (retval) { tty_unlock(); tty_release(inode, filp); return retval; } check_tty_count(tty, "tty_open"); if (tty->driver->type == TTY_DRIVER_TYPE_PTY && tty->driver->subtype == PTY_TYPE_MASTER) noctty = 1; #ifdef TTY_DEBUG_HANGUP printk(KERN_DEBUG "opening %s...", tty->name); #endif if (tty->ops->open) retval = tty->ops->open(tty, filp); else retval = -ENODEV; filp->f_flags = saved_flags; if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN)) retval = -EBUSY; if (retval) { #ifdef TTY_DEBUG_HANGUP printk(KERN_DEBUG "error %d in opening %s...", retval, tty->name); #endif tty_unlock(); /* need to call tty_release without BTM */ tty_release(inode, filp); if (retval != -ERESTARTSYS) return retval; if (signal_pending(current)) return retval; schedule(); /* * Need to reset f_op in case a hangup happened. */ tty_lock(); if (filp->f_op == &hung_up_tty_fops) filp->f_op = &tty_fops; tty_unlock(); goto retry_open; } tty_unlock(); mutex_lock(&tty_mutex); tty_lock(); spin_lock_irq(&current->sighand->siglock); if (!noctty && current->signal->leader && !current->signal->tty && tty->session == NULL) __proc_set_tty(current, tty); spin_unlock_irq(&current->sighand->siglock); tty_unlock(); mutex_unlock(&tty_mutex); return 0; }
180,788
2,343
2589888721444243111074919100510851960
null
null
null
linux
ba3021b2c79b2fa9114f92790a99deb27a65b728
1
static int snd_timer_user_tselect(struct file *file, struct snd_timer_select __user *_tselect) { struct snd_timer_user *tu; struct snd_timer_select tselect; char str[32]; int err = 0; tu = file->private_data; if (tu->timeri) { snd_timer_close(tu->timeri); tu->timeri = NULL; } if (copy_from_user(&tselect, _tselect, sizeof(tselect))) { err = -EFAULT; goto __err; } sprintf(str, "application %i", current->pid); if (tselect.id.dev_class != SNDRV_TIMER_CLASS_SLAVE) tselect.id.dev_sclass = SNDRV_TIMER_SCLASS_APPLICATION; err = snd_timer_open(&tu->timeri, str, &tselect.id, current->pid); if (err < 0) goto __err; kfree(tu->queue); tu->queue = NULL; kfree(tu->tqueue); tu->tqueue = NULL; if (tu->tread) { tu->tqueue = kmalloc(tu->queue_size * sizeof(struct snd_timer_tread), GFP_KERNEL); if (tu->tqueue == NULL) err = -ENOMEM; } else { tu->queue = kmalloc(tu->queue_size * sizeof(struct snd_timer_read), GFP_KERNEL); if (tu->queue == NULL) err = -ENOMEM; } if (err < 0) { snd_timer_close(tu->timeri); tu->timeri = NULL; } else { tu->timeri->flags |= SNDRV_TIMER_IFLG_FAST; tu->timeri->callback = tu->tread ? snd_timer_user_tinterrupt : snd_timer_user_interrupt; tu->timeri->ccallback = snd_timer_user_ccallback; tu->timeri->callback_data = (void *)tu; tu->timeri->disconnect = snd_timer_user_disconnect; } __err: return err; }
CWE-200
180,791
2,346
18027996916287278673301734704406442254
null
null
null
linux
36ae3c0a36b7456432fedce38ae2f7bd3e01a563
1
kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) { if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) return -EINVAL; if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) return kvm_irqfd_deassign(kvm, args); return kvm_irqfd_assign(kvm, args); }
CWE-20
180,792
2,347
83207294150061306602211255224566801067
null
null
null
file
35c94dc6acc418f1ad7f6241a6680e5327495793
1
do_bid_note(struct magic_set *ms, unsigned char *nbuf, uint32_t type, int swap __attribute__((__unused__)), uint32_t namesz, uint32_t descsz, size_t noff, size_t doff, int *flags) { if (namesz == 4 && strcmp((char *)&nbuf[noff], "GNU") == 0 && type == NT_GNU_BUILD_ID && (descsz >= 4 || descsz <= 20)) { uint8_t desc[20]; const char *btype; uint32_t i; *flags |= FLAGS_DID_BUILD_ID; switch (descsz) { case 8: btype = "xxHash"; break; case 16: btype = "md5/uuid"; break; case 20: btype = "sha1"; break; default: btype = "unknown"; break; } if (file_printf(ms, ", BuildID[%s]=", btype) == -1) return 1; (void)memcpy(desc, &nbuf[doff], descsz); for (i = 0; i < descsz; i++) if (file_printf(ms, "%02x", desc[i]) == -1) return 1; return 1; } return 0; }
CWE-119
180,800
2,354
125277570129377130993833351272884504631
null
null
null
lynx-snapshots
280a61b300a1614f6037efc0902ff7ecf17146e9
1
void HTML_put_string(HTStructured * me, const char *s) { #ifdef USE_PRETTYSRC char *translated_string = NULL; #endif if (s == NULL || (LYMapsOnly && me->sp[0].tag_number != HTML_OBJECT)) return; #ifdef USE_PRETTYSRC if (psrc_convert_string) { StrAllocCopy(translated_string, s); TRANSLATE_AND_UNESCAPE_ENTITIES(&translated_string, TRUE, FALSE); s = (const char *) translated_string; } #endif switch (me->sp[0].tag_number) { case HTML_COMMENT: break; /* Do Nothing */ case HTML_TITLE: HTChunkPuts(&me->title, s); break; case HTML_STYLE: HTChunkPuts(&me->style_block, s); break; case HTML_SCRIPT: HTChunkPuts(&me->script, s); break; case HTML_PRE: /* Formatted text */ case HTML_LISTING: /* Literal text */ case HTML_XMP: case HTML_PLAINTEXT: /* * We guarantee that the style is up-to-date in begin_litteral */ HText_appendText(me->text, s); break; case HTML_OBJECT: HTChunkPuts(&me->object, s); break; case HTML_TEXTAREA: HTChunkPuts(&me->textarea, s); break; case HTML_SELECT: case HTML_OPTION: HTChunkPuts(&me->option, s); break; case HTML_MATH: HTChunkPuts(&me->math, s); break; default: /* Free format text? */ if (!me->sp->style->freeFormat) { /* * If we are within a preformatted text style not caught by the * cases above (HTML_PRE or similar may not be the last element * pushed on the style stack). - kw */ #ifdef USE_PRETTYSRC if (psrc_view) { /* * We do this so that a raw '\r' in the string will not be * interpreted as an internal request to break a line - passing * '\r' to HText_appendText is treated by it as a request to * insert a blank line - VH */ for (; *s; ++s) HTML_put_character(me, *s); } else #endif HText_appendText(me->text, s); break; } else { const char *p = s; char c; if (me->style_change) { for (; *p && ((*p == '\n') || (*p == '\r') || (*p == ' ') || (*p == '\t')); p++) ; /* Ignore leaders */ if (!*p) break; UPDATE_STYLE; } for (; *p; p++) { if (*p == 13 && p[1] != 10) { /* * Treat any '\r' which is not followed by '\n' as '\n', to * account for macintosh lineend in ALT attributes etc. - * kw */ c = '\n'; } else { c = *p; } if (me->style_change) { if ((c == '\n') || (c == ' ') || (c == '\t')) continue; /* Ignore it */ UPDATE_STYLE; } if (c == '\n') { if (!FIX_JAPANESE_SPACES) { if (me->in_word) { if (HText_getLastChar(me->text) != ' ') HText_appendCharacter(me->text, ' '); me->in_word = NO; } } } else if (c == ' ' || c == '\t') { if (HText_getLastChar(me->text) != ' ') HText_appendCharacter(me->text, ' '); } else if (c == '\r') { /* ignore */ } else { HText_appendCharacter(me->text, c); me->in_word = YES; } /* set the Last Character */ if (c == '\n' || c == '\t') { /* set it to a generic separator */ HText_setLastChar(me->text, ' '); } else if (c == '\r' && HText_getLastChar(me->text) == ' ') { /* * \r's are ignored. In order to keep collapsing spaces * correctly, we must default back to the previous * separator, if there was one. So we set LastChar to a * generic separator. */ HText_setLastChar(me->text, ' '); } else { HText_setLastChar(me->text, c); } } /* for */ } } /* end switch */ #ifdef USE_PRETTYSRC if (psrc_convert_string) { psrc_convert_string = FALSE; FREE(translated_string); } #endif }
CWE-416
180,801
2,355
185287537479326979907025807825206483145
null
null
null
tcmu-runner
e2d953050766ac538615a811c64b34358614edce
1
on_unregister_handler(TCMUService1HandlerManager1 *interface, GDBusMethodInvocation *invocation, gchar *subtype, gpointer user_data) { struct tcmur_handler *handler = find_handler_by_subtype(subtype); struct dbus_info *info = handler->opaque; if (!handler) { g_dbus_method_invocation_return_value(invocation, g_variant_new("(bs)", FALSE, "unknown subtype")); return TRUE; } dbus_unexport_handler(handler); tcmur_unregister_handler(handler); g_bus_unwatch_name(info->watcher_id); g_free(info); g_free(handler); g_dbus_method_invocation_return_value(invocation, g_variant_new("(bs)", TRUE, "succeeded")); return TRUE; }
CWE-20
180,802
2,356
116020867554130668193424324893271725989
null
null
null
tcmu-runner
bb80e9c7a798f035768260ebdadffb6eb0786178
1
on_unregister_handler(TCMUService1HandlerManager1 *interface, GDBusMethodInvocation *invocation, gchar *subtype, gpointer user_data) { struct tcmur_handler *handler = find_handler_by_subtype(subtype); struct dbus_info *info = handler ? handler->opaque : NULL; if (!handler) { g_dbus_method_invocation_return_value(invocation, g_variant_new("(bs)", FALSE, "unknown subtype")); return TRUE; } dbus_unexport_handler(handler); tcmur_unregister_handler(handler); g_bus_unwatch_name(info->watcher_id); g_free(info); g_free(handler); g_dbus_method_invocation_return_value(invocation, g_variant_new("(bs)", TRUE, "succeeded")); return TRUE; }
CWE-476
180,806
2,360
274977298780245980512070718535102508647
null
null
null
tcmu-runner
61bd03e600d2abf309173e9186f4d465bb1b7157
1
static bool glfs_check_config(const char *cfgstring, char **reason) { char *path; glfs_t *fs = NULL; glfs_fd_t *gfd = NULL; gluster_server *hosts = NULL; /* gluster server defination */ bool result = true; path = strchr(cfgstring, '/'); if (!path) { if (asprintf(reason, "No path found") == -1) *reason = NULL; result = false; goto done; } path += 1; /* get past '/' */ fs = tcmu_create_glfs_object(path, &hosts); if (!fs) { tcmu_err("tcmu_create_glfs_object failed\n"); goto done; } gfd = glfs_open(fs, hosts->path, ALLOWED_BSOFLAGS); if (!gfd) { if (asprintf(reason, "glfs_open failed: %m") == -1) *reason = NULL; result = false; goto unref; } if (glfs_access(fs, hosts->path, R_OK|W_OK) == -1) { if (asprintf(reason, "glfs_access file not present, or not writable") == -1) *reason = NULL; result = false; goto unref; } goto done; unref: gluster_cache_refresh(fs, path); done: if (gfd) glfs_close(gfd); gluster_free_server(&hosts); return result; }
CWE-119
180,807
2,361
23917343011042042541314960786542795782
null
null
null
evince
717df38fd8509bf883b70d680c9b1b3cf36732ee
1
comics_check_decompress_command (gchar *mime_type, ComicsDocument *comics_document, GError **error) { gboolean success; gchar *std_out, *std_err; gint retval; GError *err = NULL; /* FIXME, use proper cbr/cbz mime types once they're * included in shared-mime-info */ if (g_content_type_is_a (mime_type, "application/x-cbr") || g_content_type_is_a (mime_type, "application/x-rar")) { /* The RARLAB provides a no-charge proprietary (freeware) * decompress-only client for Linux called unrar. Another * option is a GPLv2-licensed command-line tool developed by * the Gna! project. Confusingly enough, the free software RAR * decoder is also named unrar. For this reason we need to add * some lines for disambiguation. Sorry for the added the * complexity but it's life :) * Finally, some distributions, like Debian, rename this free * option as unrar-free. * */ comics_document->selected_command = g_find_program_in_path ("unrar"); if (comics_document->selected_command) { /* We only use std_err to avoid printing useless error * messages on the terminal */ success = g_spawn_command_line_sync ( comics_document->selected_command, &std_out, &std_err, &retval, &err); if (!success) { g_propagate_error (error, err); g_error_free (err); return FALSE; /* I don't check retval status because RARLAB unrar * doesn't have a way to return 0 without involving an * operation with a file*/ } else if (WIFEXITED (retval)) { if (g_strrstr (std_out,"freeware") != NULL) /* The RARLAB freeware client */ comics_document->command_usage = RARLABS; else /* The Gna! free software client */ comics_document->command_usage = GNAUNRAR; g_free (std_out); g_free (std_err); return TRUE; } } /* The Gna! free software client with Debian naming convention */ comics_document->selected_command = g_find_program_in_path ("unrar-free"); if (comics_document->selected_command) { comics_document->command_usage = GNAUNRAR; return TRUE; } comics_document->selected_command = g_find_program_in_path ("bsdtar"); if (comics_document->selected_command) { comics_document->command_usage = TAR; return TRUE; } } else if (g_content_type_is_a (mime_type, "application/x-cbz") || g_content_type_is_a (mime_type, "application/zip")) { /* InfoZIP's unzip program */ comics_document->selected_command = g_find_program_in_path ("unzip"); comics_document->alternative_command = g_find_program_in_path ("zipnote"); if (comics_document->selected_command && comics_document->alternative_command) { comics_document->command_usage = UNZIP; return TRUE; } /* fallback mode using 7za and 7z from p7zip project */ comics_document->selected_command = g_find_program_in_path ("7za"); if (comics_document->selected_command) { comics_document->command_usage = P7ZIP; return TRUE; } comics_document->selected_command = g_find_program_in_path ("7z"); if (comics_document->selected_command) { comics_document->command_usage = P7ZIP; return TRUE; } comics_document->selected_command = g_find_program_in_path ("bsdtar"); if (comics_document->selected_command) { comics_document->command_usage = TAR; return TRUE; } } else if (g_content_type_is_a (mime_type, "application/x-cb7") || g_content_type_is_a (mime_type, "application/x-7z-compressed")) { /* 7zr, 7za and 7z are the commands from the p7zip project able * to decompress .7z files */ comics_document->selected_command = g_find_program_in_path ("7zr"); if (comics_document->selected_command) { comics_document->command_usage = P7ZIP; return TRUE; } comics_document->selected_command = g_find_program_in_path ("7za"); if (comics_document->selected_command) { comics_document->command_usage = P7ZIP; return TRUE; } comics_document->selected_command = g_find_program_in_path ("7z"); if (comics_document->selected_command) { comics_document->command_usage = P7ZIP; return TRUE; } comics_document->selected_command = g_find_program_in_path ("bsdtar"); if (comics_document->selected_command) { comics_document->command_usage = TAR; return TRUE; } } else if (g_content_type_is_a (mime_type, "application/x-cbt") || g_content_type_is_a (mime_type, "application/x-tar")) { /* tar utility (Tape ARchive) */ comics_document->selected_command = g_find_program_in_path ("tar"); if (comics_document->selected_command) { comics_document->command_usage = TAR; return TRUE; } comics_document->selected_command = g_find_program_in_path ("bsdtar"); if (comics_document->selected_command) { comics_document->command_usage = TAR; return TRUE; } } else { g_set_error (error, EV_DOCUMENT_ERROR, EV_DOCUMENT_ERROR_INVALID, _("Not a comic book MIME type: %s"), mime_type); return FALSE; } g_set_error_literal (error, EV_DOCUMENT_ERROR, EV_DOCUMENT_ERROR_INVALID, _("Can’t find an appropriate command to " "decompress this type of comic book")); return FALSE; }
180,808
2,362
102189984230626422995821779053396632474
null
null
null
linux
ea25f914dc164c8d56b36147ecc86bc65f83c469
1
static int check_stack_boundary(struct bpf_verifier_env *env, int regno, int access_size, bool zero_size_allowed, struct bpf_call_arg_meta *meta) { struct bpf_verifier_state *state = env->cur_state; struct bpf_reg_state *regs = state->regs; int off, i, slot, spi; if (regs[regno].type != PTR_TO_STACK) { /* Allow zero-byte read from NULL, regardless of pointer type */ if (zero_size_allowed && access_size == 0 && register_is_null(regs[regno])) return 0; verbose(env, "R%d type=%s expected=%s\n", regno, reg_type_str[regs[regno].type], reg_type_str[PTR_TO_STACK]); return -EACCES; } /* Only allow fixed-offset stack reads */ if (!tnum_is_const(regs[regno].var_off)) { char tn_buf[48]; tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); verbose(env, "invalid variable stack read R%d var_off=%s\n", regno, tn_buf); } off = regs[regno].off + regs[regno].var_off.value; if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || access_size < 0 || (access_size == 0 && !zero_size_allowed)) { verbose(env, "invalid stack type R%d off=%d access_size=%d\n", regno, off, access_size); return -EACCES; } if (env->prog->aux->stack_depth < -off) env->prog->aux->stack_depth = -off; if (meta && meta->raw_mode) { meta->access_size = access_size; meta->regno = regno; return 0; } for (i = 0; i < access_size; i++) { slot = -(off + i) - 1; spi = slot / BPF_REG_SIZE; if (state->allocated_stack <= slot || state->stack[spi].slot_type[slot % BPF_REG_SIZE] != STACK_MISC) { verbose(env, "invalid indirect read from stack off %d+%d size %d\n", off, i, access_size); return -EACCES; } } return 0; }
CWE-119
180,812
2,366
100968769887024984694199990496086030146
null
null
null
linux
a5ec6ae161d72f01411169a938fa5f8baea16e8f
1
static int check_ptr_alignment(struct bpf_verifier_env *env, const struct bpf_reg_state *reg, int off, int size) { bool strict = env->strict_alignment; const char *pointer_desc = ""; switch (reg->type) { case PTR_TO_PACKET: case PTR_TO_PACKET_META: /* Special case, because of NET_IP_ALIGN. Given metadata sits * right in front, treat it the very same way. */ return check_pkt_ptr_alignment(env, reg, off, size, strict); case PTR_TO_MAP_VALUE: pointer_desc = "value "; break; case PTR_TO_CTX: pointer_desc = "context "; break; case PTR_TO_STACK: pointer_desc = "stack "; break; default: break; } return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, strict); }
CWE-119
180,813
2,367
132971837477051945919058697320929966878
null
null
null
linux
179d1c5602997fef5a940c6ddcf31212cbfebd14
1
static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, struct idpair *idmap) { if (!(rold->live & REG_LIVE_READ)) /* explored state didn't use this */ return true; if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) return true; if (rold->type == NOT_INIT) /* explored state can't have used this */ return true; if (rcur->type == NOT_INIT) return false; switch (rold->type) { case SCALAR_VALUE: if (rcur->type == SCALAR_VALUE) { /* new val must satisfy old val knowledge */ return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); } else { /* if we knew anything about the old value, we're not * equal, because we can't know anything about the * scalar value of the pointer in the new value. */ return rold->umin_value == 0 && rold->umax_value == U64_MAX && rold->smin_value == S64_MIN && rold->smax_value == S64_MAX && tnum_is_unknown(rold->var_off); } case PTR_TO_MAP_VALUE: /* If the new min/max/var_off satisfy the old ones and * everything else matches, we are OK. * We don't care about the 'id' value, because nothing * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) */ return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); case PTR_TO_MAP_VALUE_OR_NULL: /* a PTR_TO_MAP_VALUE could be safe to use as a * PTR_TO_MAP_VALUE_OR_NULL into the same map. * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- * checked, doing so could have affected others with the same * id, and we can't check for that because we lost the id when * we converted to a PTR_TO_MAP_VALUE. */ if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) return false; if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) return false; /* Check our ids match any regs they're supposed to */ return check_ids(rold->id, rcur->id, idmap); case PTR_TO_PACKET_META: case PTR_TO_PACKET: if (rcur->type != rold->type) return false; /* We must have at least as much range as the old ptr * did, so that any accesses which were safe before are * still safe. This is true even if old range < old off, * since someone could have accessed through (ptr - k), or * even done ptr -= k in a register, to get a safe access. */ if (rold->range > rcur->range) return false; /* If the offsets don't match, we can't trust our alignment; * nor can we be sure that we won't fall out of range. */ if (rold->off != rcur->off) return false; /* id relations must be preserved */ if (rold->id && !check_ids(rold->id, rcur->id, idmap)) return false; /* new val must satisfy old val knowledge */ return range_within(rold, rcur) && tnum_in(rold->var_off, rcur->var_off); case PTR_TO_CTX: case CONST_PTR_TO_MAP: case PTR_TO_STACK: case PTR_TO_PACKET_END: /* Only valid matches are exact, which memcmp() above * would have accepted */ default: /* Don't know what's going on, just say it's not safe */ return false; } /* Shouldn't get here; if we do, say it's not safe */ WARN_ON_ONCE(1); return false; }
CWE-119
180,814
2,368
312414542843290372624743195982646413593
null
null
null
linux
4374f256ce8182019353c0c639bb8d0695b4c941
1
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn, struct bpf_reg_state *dst_reg, struct bpf_reg_state src_reg) { struct bpf_reg_state *regs = cur_regs(env); u8 opcode = BPF_OP(insn->code); bool src_known, dst_known; s64 smin_val, smax_val; u64 umin_val, umax_val; if (BPF_CLASS(insn->code) != BPF_ALU64) { /* 32-bit ALU ops are (32,32)->64 */ coerce_reg_to_32(dst_reg); coerce_reg_to_32(&src_reg); } smin_val = src_reg.smin_value; smax_val = src_reg.smax_value; umin_val = src_reg.umin_value; umax_val = src_reg.umax_value; src_known = tnum_is_const(src_reg.var_off); dst_known = tnum_is_const(dst_reg->var_off); switch (opcode) { case BPF_ADD: if (signed_add_overflows(dst_reg->smin_value, smin_val) || signed_add_overflows(dst_reg->smax_value, smax_val)) { dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value += smin_val; dst_reg->smax_value += smax_val; } if (dst_reg->umin_value + umin_val < umin_val || dst_reg->umax_value + umax_val < umax_val) { dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { dst_reg->umin_value += umin_val; dst_reg->umax_value += umax_val; } dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); break; case BPF_SUB: if (signed_sub_overflows(dst_reg->smin_value, smax_val) || signed_sub_overflows(dst_reg->smax_value, smin_val)) { /* Overflow possible, we know nothing */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value -= smax_val; dst_reg->smax_value -= smin_val; } if (dst_reg->umin_value < umax_val) { /* Overflow possible, we know nothing */ dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { /* Cannot overflow (as long as bounds are consistent) */ dst_reg->umin_value -= umax_val; dst_reg->umax_value -= umin_val; } dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); break; case BPF_MUL: dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); if (smin_val < 0 || dst_reg->smin_value < 0) { /* Ain't nobody got time to multiply that sign */ __mark_reg_unbounded(dst_reg); __update_reg_bounds(dst_reg); break; } /* Both values are positive, so we can work with unsigned and * copy the result to signed (unless it exceeds S64_MAX). */ if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { /* Potential overflow, we know nothing */ __mark_reg_unbounded(dst_reg); /* (except what we can learn from the var_off) */ __update_reg_bounds(dst_reg); break; } dst_reg->umin_value *= umin_val; dst_reg->umax_value *= umax_val; if (dst_reg->umax_value > S64_MAX) { /* Overflow possible, we know nothing */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } break; case BPF_AND: if (src_known && dst_known) { __mark_reg_known(dst_reg, dst_reg->var_off.value & src_reg.var_off.value); break; } /* We get our minimum from the var_off, since that's inherently * bitwise. Our maximum is the minimum of the operands' maxima. */ dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); dst_reg->umin_value = dst_reg->var_off.value; dst_reg->umax_value = min(dst_reg->umax_value, umax_val); if (dst_reg->smin_value < 0 || smin_val < 0) { /* Lose signed bounds when ANDing negative numbers, * ain't nobody got time for that. */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { /* ANDing two positives gives a positive, so safe to * cast result into s64. */ dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_OR: if (src_known && dst_known) { __mark_reg_known(dst_reg, dst_reg->var_off.value | src_reg.var_off.value); break; } /* We get our maximum from the var_off, and our minimum is the * maximum of the operands' minima */ dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); dst_reg->umin_value = max(dst_reg->umin_value, umin_val); dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; if (dst_reg->smin_value < 0 || smin_val < 0) { /* Lose signed bounds when ORing negative numbers, * ain't nobody got time for that. */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { /* ORing two positives gives a positive, so safe to * cast result into s64. */ dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_LSH: if (umax_val > 63) { /* Shifts greater than 63 are undefined. This includes * shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; } /* We lose all sign bit information (except what we can pick * up from var_off) */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; /* If we might shift our top bit out, then we know nothing */ if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { dst_reg->umin_value <<= umin_val; dst_reg->umax_value <<= umax_val; } if (src_known) dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); else dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_RSH: if (umax_val > 63) { /* Shifts greater than 63 are undefined. This includes * shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; } /* BPF_RSH is an unsigned shift, so make the appropriate casts */ if (dst_reg->smin_value < 0) { if (umin_val) { /* Sign bit will be cleared */ dst_reg->smin_value = 0; } else { /* Lost sign bit information */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } } else { dst_reg->smin_value = (u64)(dst_reg->smin_value) >> umax_val; } if (src_known) dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); else dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); dst_reg->umin_value >>= umax_val; dst_reg->umax_value >>= umin_val; /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; default: mark_reg_unknown(env, regs, insn->dst_reg); break; } __reg_deduce_bounds(dst_reg); __reg_bound_offset(dst_reg); return 0; }
CWE-119
180,817
2,371
322783137603102715097131954466307591369
null
null
null
linux
468f6eafa6c44cb2c5d8aad35e12f06c240a812a
1
static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, struct bpf_insn *insn, struct bpf_reg_state *dst_reg, struct bpf_reg_state src_reg) { struct bpf_reg_state *regs = cur_regs(env); u8 opcode = BPF_OP(insn->code); bool src_known, dst_known; s64 smin_val, smax_val; u64 umin_val, umax_val; if (BPF_CLASS(insn->code) != BPF_ALU64) { /* 32-bit ALU ops are (32,32)->64 */ coerce_reg_to_size(dst_reg, 4); coerce_reg_to_size(&src_reg, 4); } smin_val = src_reg.smin_value; smax_val = src_reg.smax_value; umin_val = src_reg.umin_value; umax_val = src_reg.umax_value; src_known = tnum_is_const(src_reg.var_off); dst_known = tnum_is_const(dst_reg->var_off); switch (opcode) { case BPF_ADD: if (signed_add_overflows(dst_reg->smin_value, smin_val) || signed_add_overflows(dst_reg->smax_value, smax_val)) { dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value += smin_val; dst_reg->smax_value += smax_val; } if (dst_reg->umin_value + umin_val < umin_val || dst_reg->umax_value + umax_val < umax_val) { dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { dst_reg->umin_value += umin_val; dst_reg->umax_value += umax_val; } dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); break; case BPF_SUB: if (signed_sub_overflows(dst_reg->smin_value, smax_val) || signed_sub_overflows(dst_reg->smax_value, smin_val)) { /* Overflow possible, we know nothing */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value -= smax_val; dst_reg->smax_value -= smin_val; } if (dst_reg->umin_value < umax_val) { /* Overflow possible, we know nothing */ dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { /* Cannot overflow (as long as bounds are consistent) */ dst_reg->umin_value -= umax_val; dst_reg->umax_value -= umin_val; } dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); break; case BPF_MUL: dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); if (smin_val < 0 || dst_reg->smin_value < 0) { /* Ain't nobody got time to multiply that sign */ __mark_reg_unbounded(dst_reg); __update_reg_bounds(dst_reg); break; } /* Both values are positive, so we can work with unsigned and * copy the result to signed (unless it exceeds S64_MAX). */ if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { /* Potential overflow, we know nothing */ __mark_reg_unbounded(dst_reg); /* (except what we can learn from the var_off) */ __update_reg_bounds(dst_reg); break; } dst_reg->umin_value *= umin_val; dst_reg->umax_value *= umax_val; if (dst_reg->umax_value > S64_MAX) { /* Overflow possible, we know nothing */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } break; case BPF_AND: if (src_known && dst_known) { __mark_reg_known(dst_reg, dst_reg->var_off.value & src_reg.var_off.value); break; } /* We get our minimum from the var_off, since that's inherently * bitwise. Our maximum is the minimum of the operands' maxima. */ dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); dst_reg->umin_value = dst_reg->var_off.value; dst_reg->umax_value = min(dst_reg->umax_value, umax_val); if (dst_reg->smin_value < 0 || smin_val < 0) { /* Lose signed bounds when ANDing negative numbers, * ain't nobody got time for that. */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { /* ANDing two positives gives a positive, so safe to * cast result into s64. */ dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_OR: if (src_known && dst_known) { __mark_reg_known(dst_reg, dst_reg->var_off.value | src_reg.var_off.value); break; } /* We get our maximum from the var_off, and our minimum is the * maximum of the operands' minima */ dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); dst_reg->umin_value = max(dst_reg->umin_value, umin_val); dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; if (dst_reg->smin_value < 0 || smin_val < 0) { /* Lose signed bounds when ORing negative numbers, * ain't nobody got time for that. */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; } else { /* ORing two positives gives a positive, so safe to * cast result into s64. */ dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_LSH: if (umax_val > 63) { /* Shifts greater than 63 are undefined. This includes * shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; } /* We lose all sign bit information (except what we can pick * up from var_off) */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; /* If we might shift our top bit out, then we know nothing */ if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { dst_reg->umin_value = 0; dst_reg->umax_value = U64_MAX; } else { dst_reg->umin_value <<= umin_val; dst_reg->umax_value <<= umax_val; } if (src_known) dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); else dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; case BPF_RSH: if (umax_val > 63) { /* Shifts greater than 63 are undefined. This includes * shifts by a negative number. */ mark_reg_unknown(env, regs, insn->dst_reg); break; } /* BPF_RSH is an unsigned shift. If the value in dst_reg might * be negative, then either: * 1) src_reg might be zero, so the sign bit of the result is * unknown, so we lose our signed bounds * 2) it's known negative, thus the unsigned bounds capture the * signed bounds * 3) the signed bounds cross zero, so they tell us nothing * about the result * If the value in dst_reg is known nonnegative, then again the * unsigned bounts capture the signed bounds. * Thus, in all cases it suffices to blow away our signed bounds * and rely on inferring new ones from the unsigned bounds and * var_off of the result. */ dst_reg->smin_value = S64_MIN; dst_reg->smax_value = S64_MAX; if (src_known) dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); else dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); dst_reg->umin_value >>= umax_val; dst_reg->umax_value >>= umin_val; /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); break; default: mark_reg_unknown(env, regs, insn->dst_reg); break; } __reg_deduce_bounds(dst_reg); __reg_bound_offset(dst_reg); return 0; }
CWE-119
180,818
2,372
338721747458807656695851600634646855591
null
null
null
linux
4dca6ea1d9432052afb06baf2e3ae78188a4410b
1
static void construct_get_dest_keyring(struct key **_dest_keyring) { struct request_key_auth *rka; const struct cred *cred = current_cred(); struct key *dest_keyring = *_dest_keyring, *authkey; kenter("%p", dest_keyring); /* find the appropriate keyring */ if (dest_keyring) { /* the caller supplied one */ key_get(dest_keyring); } else { /* use a default keyring; falling through the cases until we * find one that we actually have */ switch (cred->jit_keyring) { case KEY_REQKEY_DEFL_DEFAULT: case KEY_REQKEY_DEFL_REQUESTOR_KEYRING: if (cred->request_key_auth) { authkey = cred->request_key_auth; down_read(&authkey->sem); rka = authkey->payload.data[0]; if (!test_bit(KEY_FLAG_REVOKED, &authkey->flags)) dest_keyring = key_get(rka->dest_keyring); up_read(&authkey->sem); if (dest_keyring) break; } case KEY_REQKEY_DEFL_THREAD_KEYRING: dest_keyring = key_get(cred->thread_keyring); if (dest_keyring) break; case KEY_REQKEY_DEFL_PROCESS_KEYRING: dest_keyring = key_get(cred->process_keyring); if (dest_keyring) break; case KEY_REQKEY_DEFL_SESSION_KEYRING: rcu_read_lock(); dest_keyring = key_get( rcu_dereference(cred->session_keyring)); rcu_read_unlock(); if (dest_keyring) break; case KEY_REQKEY_DEFL_USER_SESSION_KEYRING: dest_keyring = key_get(cred->user->session_keyring); break; case KEY_REQKEY_DEFL_USER_KEYRING: dest_keyring = key_get(cred->user->uid_keyring); break; case KEY_REQKEY_DEFL_GROUP_KEYRING: default: BUG(); } } *_dest_keyring = dest_keyring; kleave(" [dk %d]", key_serial(dest_keyring)); return; }
CWE-862
180,819
2,373
275435868270037711146449830073903331943
null
null
null
linux
af3ff8045bbf3e32f1a448542e73abb4c8ceb6f1
1
static int hmac_create(struct crypto_template *tmpl, struct rtattr **tb) { struct shash_instance *inst; struct crypto_alg *alg; struct shash_alg *salg; int err; int ds; int ss; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH); if (err) return err; salg = shash_attr_alg(tb[1], 0, 0); if (IS_ERR(salg)) return PTR_ERR(salg); err = -EINVAL; ds = salg->digestsize; ss = salg->statesize; alg = &salg->base; if (ds > alg->cra_blocksize || ss < alg->cra_blocksize) goto out_put_alg; inst = shash_alloc_instance("hmac", alg); err = PTR_ERR(inst); if (IS_ERR(inst)) goto out_put_alg; err = crypto_init_shash_spawn(shash_instance_ctx(inst), salg, shash_crypto_instance(inst)); if (err) goto out_free_inst; inst->alg.base.cra_priority = alg->cra_priority; inst->alg.base.cra_blocksize = alg->cra_blocksize; inst->alg.base.cra_alignmask = alg->cra_alignmask; ss = ALIGN(ss, alg->cra_alignmask + 1); inst->alg.digestsize = ds; inst->alg.statesize = ss; inst->alg.base.cra_ctxsize = sizeof(struct hmac_ctx) + ALIGN(ss * 2, crypto_tfm_ctx_alignment()); inst->alg.base.cra_init = hmac_init_tfm; inst->alg.base.cra_exit = hmac_exit_tfm; inst->alg.init = hmac_init; inst->alg.update = hmac_update; inst->alg.final = hmac_final; inst->alg.finup = hmac_finup; inst->alg.export = hmac_export; inst->alg.import = hmac_import; inst->alg.setkey = hmac_setkey; err = shash_register_instance(tmpl, inst); if (err) { out_free_inst: shash_free_instance(shash_crypto_instance(inst)); } out_put_alg: crypto_mod_put(alg); return err; }
CWE-787
180,821
2,375
288299611161677821609080915801291634897
null
null
null
linux
ecaaab5649781c5a0effdaf298a925063020500e
1
static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct blkcipher_walk walk; struct crypto_blkcipher *tfm = desc->tfm; struct salsa20_ctx *ctx = crypto_blkcipher_ctx(tfm); int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, 64); salsa20_ivsetup(ctx, walk.iv); if (likely(walk.nbytes == nbytes)) { salsa20_encrypt_bytes(ctx, walk.src.virt.addr, walk.dst.virt.addr, nbytes); return blkcipher_walk_done(desc, &walk, 0); } while (walk.nbytes >= 64) { salsa20_encrypt_bytes(ctx, walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes - (walk.nbytes % 64)); err = blkcipher_walk_done(desc, &walk, walk.nbytes % 64); } if (walk.nbytes) { salsa20_encrypt_bytes(ctx, walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes); err = blkcipher_walk_done(desc, &walk, 0); } return err; }
CWE-20
180,823
2,377
328829554120722254631759373321712097039
null
null
null
linux
ecaaab5649781c5a0effdaf298a925063020500e
1
static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst, struct scatterlist *src, unsigned int nbytes) { struct blkcipher_walk walk; struct crypto_blkcipher *tfm = desc->tfm; struct salsa20_ctx *ctx = crypto_blkcipher_ctx(tfm); int err; blkcipher_walk_init(&walk, dst, src, nbytes); err = blkcipher_walk_virt_block(desc, &walk, 64); salsa20_ivsetup(ctx, walk.iv); if (likely(walk.nbytes == nbytes)) { salsa20_encrypt_bytes(ctx, walk.dst.virt.addr, walk.src.virt.addr, nbytes); return blkcipher_walk_done(desc, &walk, 0); } while (walk.nbytes >= 64) { salsa20_encrypt_bytes(ctx, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes - (walk.nbytes % 64)); err = blkcipher_walk_done(desc, &walk, walk.nbytes % 64); } if (walk.nbytes) { salsa20_encrypt_bytes(ctx, walk.dst.virt.addr, walk.src.virt.addr, walk.nbytes); err = blkcipher_walk_done(desc, &walk, 0); } return err; }
CWE-20
180,824
2,378
38637576161082233175356705377762150199
null
null
null
linux
8f659a03a0ba9289b9aeb9b4470e6fb263d6f483
1
static int raw_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ipcm_cookie ipc; struct rtable *rt = NULL; struct flowi4 fl4; int free = 0; __be32 daddr; __be32 saddr; u8 tos; int err; struct ip_options_data opt_copy; struct raw_frag_vec rfv; err = -EMSGSIZE; if (len > 0xFFFF) goto out; /* * Check the flags. */ err = -EOPNOTSUPP; if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message */ goto out; /* compatibility */ /* * Get and verify the address. */ if (msg->msg_namelen) { DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); err = -EINVAL; if (msg->msg_namelen < sizeof(*usin)) goto out; if (usin->sin_family != AF_INET) { pr_info_once("%s: %s forgot to set AF_INET. Fix it!\n", __func__, current->comm); err = -EAFNOSUPPORT; if (usin->sin_family) goto out; } daddr = usin->sin_addr.s_addr; /* ANK: I did not forget to get protocol from port field. * I just do not know, who uses this weirdness. * IP_HDRINCL is much more convenient. */ } else { err = -EDESTADDRREQ; if (sk->sk_state != TCP_ESTABLISHED) goto out; daddr = inet->inet_daddr; } ipc.sockc.tsflags = sk->sk_tsflags; ipc.addr = inet->inet_saddr; ipc.opt = NULL; ipc.tx_flags = 0; ipc.ttl = 0; ipc.tos = -1; ipc.oif = sk->sk_bound_dev_if; if (msg->msg_controllen) { err = ip_cmsg_send(sk, msg, &ipc, false); if (unlikely(err)) { kfree(ipc.opt); goto out; } if (ipc.opt) free = 1; } saddr = ipc.addr; ipc.addr = daddr; if (!ipc.opt) { struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt) { memcpy(&opt_copy, inet_opt, sizeof(*inet_opt) + inet_opt->opt.optlen); ipc.opt = &opt_copy.opt; } rcu_read_unlock(); } if (ipc.opt) { err = -EINVAL; /* Linux does not mangle headers on raw sockets, * so that IP options + IP_HDRINCL is non-sense. */ if (inet->hdrincl) goto done; if (ipc.opt->opt.srr) { if (!daddr) goto done; daddr = ipc.opt->opt.faddr; } } tos = get_rtconn_flags(&ipc, sk); if (msg->msg_flags & MSG_DONTROUTE) tos |= RTO_ONLINK; if (ipv4_is_multicast(daddr)) { if (!ipc.oif) ipc.oif = inet->mc_index; if (!saddr) saddr = inet->mc_addr; } else if (!ipc.oif) ipc.oif = inet->uc_index; flowi4_init_output(&fl4, ipc.oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol, inet_sk_flowi_flags(sk) | (inet->hdrincl ? FLOWI_FLAG_KNOWN_NH : 0), daddr, saddr, 0, 0, sk->sk_uid); if (!inet->hdrincl) { rfv.msg = msg; rfv.hlen = 0; err = raw_probe_proto_opt(&rfv, &fl4); if (err) goto done; } security_sk_classify_flow(sk, flowi4_to_flowi(&fl4)); rt = ip_route_output_flow(net, &fl4, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto done; } err = -EACCES; if (rt->rt_flags & RTCF_BROADCAST && !sock_flag(sk, SOCK_BROADCAST)) goto done; if (msg->msg_flags & MSG_CONFIRM) goto do_confirm; back_from_confirm: if (inet->hdrincl) err = raw_send_hdrinc(sk, &fl4, msg, len, &rt, msg->msg_flags, &ipc.sockc); else { sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); if (!ipc.addr) ipc.addr = fl4.daddr; lock_sock(sk); err = ip_append_data(sk, &fl4, raw_getfrag, &rfv, len, 0, &ipc, &rt, msg->msg_flags); if (err) ip_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) { err = ip_push_pending_frames(sk, &fl4); if (err == -ENOBUFS && !inet->recverr) err = 0; } release_sock(sk); } done: if (free) kfree(ipc.opt); ip_rt_put(rt); out: if (err < 0) return err; return len; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(&rt->dst, &fl4.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; }
CWE-362
180,825
2,379
148099251020650172474770082419741037035
null
null
null
heimdal
1a6a6e462dc2ac6111f9e02c6852ddec4849b887
1
_kdc_as_rep(kdc_request_t r, krb5_data *reply, const char *from, struct sockaddr *from_addr, int datagram_reply) { krb5_context context = r->context; krb5_kdc_configuration *config = r->config; KDC_REQ *req = &r->req; KDC_REQ_BODY *b = NULL; AS_REP rep; KDCOptions f; krb5_enctype setype; krb5_error_code ret = 0; Key *skey; int found_pa = 0; int i, flags = HDB_F_FOR_AS_REQ; METHOD_DATA error_method; const PA_DATA *pa; memset(&rep, 0, sizeof(rep)); error_method.len = 0; error_method.val = NULL; /* * Look for FAST armor and unwrap */ ret = _kdc_fast_unwrap_request(r); if (ret) { _kdc_r_log(r, 0, "FAST unwrap request from %s failed: %d", from, ret); goto out; } b = &req->req_body; f = b->kdc_options; if (f.canonicalize) flags |= HDB_F_CANON; if(b->sname == NULL){ ret = KRB5KRB_ERR_GENERIC; _kdc_set_e_text(r, "No server in request"); } else{ ret = _krb5_principalname2krb5_principal (context, &r->server_princ, *(b->sname), b->realm); if (ret == 0) ret = krb5_unparse_name(context, r->server_princ, &r->server_name); } if (ret) { kdc_log(context, config, 0, "AS-REQ malformed server name from %s", from); goto out; } if(b->cname == NULL){ ret = KRB5KRB_ERR_GENERIC; _kdc_set_e_text(r, "No client in request"); } else { ret = _krb5_principalname2krb5_principal (context, &r->client_princ, *(b->cname), b->realm); if (ret) goto out; ret = krb5_unparse_name(context, r->client_princ, &r->client_name); } if (ret) { kdc_log(context, config, 0, "AS-REQ malformed client name from %s", from); goto out; } kdc_log(context, config, 0, "AS-REQ %s from %s for %s", r->client_name, from, r->server_name); /* * */ if (_kdc_is_anonymous(context, r->client_princ)) { if (!_kdc_is_anon_request(b)) { kdc_log(context, config, 0, "Anonymous ticket w/o anonymous flag"); ret = KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN; goto out; } } else if (_kdc_is_anon_request(b)) { kdc_log(context, config, 0, "Request for a anonymous ticket with non " "anonymous client name: %s", r->client_name); ret = KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN; goto out; } /* * */ ret = _kdc_db_fetch(context, config, r->client_princ, HDB_F_GET_CLIENT | flags, NULL, &r->clientdb, &r->client); if(ret == HDB_ERR_NOT_FOUND_HERE) { kdc_log(context, config, 5, "client %s does not have secrets at this KDC, need to proxy", r->client_name); goto out; } else if (ret == HDB_ERR_WRONG_REALM) { char *fixed_client_name = NULL; ret = krb5_unparse_name(context, r->client->entry.principal, &fixed_client_name); if (ret) { goto out; } kdc_log(context, config, 0, "WRONG_REALM - %s -> %s", r->client_name, fixed_client_name); free(fixed_client_name); ret = _kdc_fast_mk_error(context, r, &error_method, r->armor_crypto, &req->req_body, KRB5_KDC_ERR_WRONG_REALM, NULL, r->server_princ, NULL, &r->client->entry.principal->realm, NULL, NULL, reply); goto out; } else if(ret){ const char *msg = krb5_get_error_message(context, ret); kdc_log(context, config, 0, "UNKNOWN -- %s: %s", r->client_name, msg); krb5_free_error_message(context, msg); ret = KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN; goto out; } ret = _kdc_db_fetch(context, config, r->server_princ, HDB_F_GET_SERVER|HDB_F_GET_KRBTGT | flags, NULL, NULL, &r->server); if(ret == HDB_ERR_NOT_FOUND_HERE) { kdc_log(context, config, 5, "target %s does not have secrets at this KDC, need to proxy", r->server_name); goto out; } else if(ret){ const char *msg = krb5_get_error_message(context, ret); kdc_log(context, config, 0, "UNKNOWN -- %s: %s", r->server_name, msg); krb5_free_error_message(context, msg); ret = KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN; goto out; } /* * Select a session enctype from the list of the crypto system * supported enctypes that is supported by the client and is one of * the enctype of the enctype of the service (likely krbtgt). * * The latter is used as a hint of what enctypes all KDC support, * to make sure a newer version of KDC won't generate a session * enctype that an older version of a KDC in the same realm can't * decrypt. */ ret = _kdc_find_etype(context, krb5_principal_is_krbtgt(context, r->server_princ) ? config->tgt_use_strongest_session_key : config->svc_use_strongest_session_key, FALSE, r->client, b->etype.val, b->etype.len, &r->sessionetype, NULL); if (ret) { kdc_log(context, config, 0, "Client (%s) from %s has no common enctypes with KDC " "to use for the session key", r->client_name, from); goto out; } /* * Pre-auth processing */ if(req->padata){ unsigned int n; log_patypes(context, config, req->padata); /* Check if preauth matching */ for (n = 0; !found_pa && n < sizeof(pat) / sizeof(pat[0]); n++) { if (pat[n].validate == NULL) continue; if (r->armor_crypto == NULL && (pat[n].flags & PA_REQ_FAST)) continue; kdc_log(context, config, 5, "Looking for %s pa-data -- %s", pat[n].name, r->client_name); i = 0; pa = _kdc_find_padata(req, &i, pat[n].type); if (pa) { ret = pat[n].validate(r, pa); if (ret != 0) { goto out; } kdc_log(context, config, 0, "%s pre-authentication succeeded -- %s", pat[n].name, r->client_name); found_pa = 1; r->et.flags.pre_authent = 1; } } } if (found_pa == 0) { Key *ckey = NULL; size_t n; for (n = 0; n < sizeof(pat) / sizeof(pat[0]); n++) { if ((pat[n].flags & PA_ANNOUNCE) == 0) continue; ret = krb5_padata_add(context, &error_method, pat[n].type, NULL, 0); if (ret) goto out; } /* * If there is a client key, send ETYPE_INFO{,2} */ ret = _kdc_find_etype(context, config->preauth_use_strongest_session_key, TRUE, r->client, b->etype.val, b->etype.len, NULL, &ckey); if (ret == 0) { /* * RFC4120 requires: * - If the client only knows about old enctypes, then send * both info replies (we send 'info' first in the list). * - If the client is 'modern', because it knows about 'new' * enctype types, then only send the 'info2' reply. * * Before we send the full list of etype-info data, we pick * the client key we would have used anyway below, just pick * that instead. */ if (older_enctype(ckey->key.keytype)) { ret = get_pa_etype_info(context, config, &error_method, ckey); if (ret) goto out; } ret = get_pa_etype_info2(context, config, &error_method, ckey); if (ret) goto out; } /* * send requre preauth is its required or anon is requested, * anon is today only allowed via preauth mechanisms. */ if (require_preauth_p(r) || _kdc_is_anon_request(b)) { ret = KRB5KDC_ERR_PREAUTH_REQUIRED; _kdc_set_e_text(r, "Need to use PA-ENC-TIMESTAMP/PA-PK-AS-REQ"); goto out; } if (ckey == NULL) { ret = KRB5KDC_ERR_CLIENT_NOTYET; _kdc_set_e_text(r, "Doesn't have a client key available"); goto out; } krb5_free_keyblock_contents(r->context, &r->reply_key); ret = krb5_copy_keyblock_contents(r->context, &ckey->key, &r->reply_key); if (ret) goto out; } if (r->clientdb->hdb_auth_status) { r->clientdb->hdb_auth_status(context, r->clientdb, r->client, HDB_AUTH_SUCCESS); } /* * Verify flags after the user been required to prove its identity * with in a preauth mech. */ ret = _kdc_check_access(context, config, r->client, r->client_name, r->server, r->server_name, req, &error_method); if(ret) goto out; /* * Select the best encryption type for the KDC with out regard to * the client since the client never needs to read that data. */ ret = _kdc_get_preferred_key(context, config, r->server, r->server_name, &setype, &skey); if(ret) goto out; if(f.renew || f.validate || f.proxy || f.forwarded || f.enc_tkt_in_skey || (_kdc_is_anon_request(b) && !config->allow_anonymous)) { ret = KRB5KDC_ERR_BADOPTION; _kdc_set_e_text(r, "Bad KDC options"); goto out; } /* * Build reply */ rep.pvno = 5; rep.msg_type = krb_as_rep; if (_kdc_is_anonymous(context, r->client_princ)) { Realm anon_realm=KRB5_ANON_REALM; ret = copy_Realm(&anon_realm, &rep.crealm); } else ret = copy_Realm(&r->client->entry.principal->realm, &rep.crealm); if (ret) goto out; ret = _krb5_principal2principalname(&rep.cname, r->client->entry.principal); if (ret) goto out; rep.ticket.tkt_vno = 5; ret = copy_Realm(&r->server->entry.principal->realm, &rep.ticket.realm); if (ret) goto out; _krb5_principal2principalname(&rep.ticket.sname, r->server->entry.principal); /* java 1.6 expects the name to be the same type, lets allow that * uncomplicated name-types. */ #define CNT(sp,t) (((sp)->sname->name_type) == KRB5_NT_##t) if (CNT(b, UNKNOWN) || CNT(b, PRINCIPAL) || CNT(b, SRV_INST) || CNT(b, SRV_HST) || CNT(b, SRV_XHST)) rep.ticket.sname.name_type = b->sname->name_type; #undef CNT r->et.flags.initial = 1; if(r->client->entry.flags.forwardable && r->server->entry.flags.forwardable) r->et.flags.forwardable = f.forwardable; else if (f.forwardable) { _kdc_set_e_text(r, "Ticket may not be forwardable"); ret = KRB5KDC_ERR_POLICY; goto out; } if(r->client->entry.flags.proxiable && r->server->entry.flags.proxiable) r->et.flags.proxiable = f.proxiable; else if (f.proxiable) { _kdc_set_e_text(r, "Ticket may not be proxiable"); ret = KRB5KDC_ERR_POLICY; goto out; } if(r->client->entry.flags.postdate && r->server->entry.flags.postdate) r->et.flags.may_postdate = f.allow_postdate; else if (f.allow_postdate){ _kdc_set_e_text(r, "Ticket may not be postdate"); ret = KRB5KDC_ERR_POLICY; goto out; } /* check for valid set of addresses */ if(!_kdc_check_addresses(context, config, b->addresses, from_addr)) { _kdc_set_e_text(r, "Bad address list in requested"); ret = KRB5KRB_AP_ERR_BADADDR; goto out; } ret = copy_PrincipalName(&rep.cname, &r->et.cname); if (ret) goto out; ret = copy_Realm(&rep.crealm, &r->et.crealm); if (ret) goto out; { time_t start; time_t t; start = r->et.authtime = kdc_time; if(f.postdated && req->req_body.from){ ALLOC(r->et.starttime); start = *r->et.starttime = *req->req_body.from; r->et.flags.invalid = 1; r->et.flags.postdated = 1; /* XXX ??? */ } _kdc_fix_time(&b->till); t = *b->till; /* be careful not overflowing */ if(r->client->entry.max_life) t = start + min(t - start, *r->client->entry.max_life); if(r->server->entry.max_life) t = start + min(t - start, *r->server->entry.max_life); #if 0 t = min(t, start + realm->max_life); #endif r->et.endtime = t; if(f.renewable_ok && r->et.endtime < *b->till){ f.renewable = 1; if(b->rtime == NULL){ ALLOC(b->rtime); *b->rtime = 0; } if(*b->rtime < *b->till) *b->rtime = *b->till; } if(f.renewable && b->rtime){ t = *b->rtime; if(t == 0) t = MAX_TIME; if(r->client->entry.max_renew) t = start + min(t - start, *r->client->entry.max_renew); if(r->server->entry.max_renew) t = start + min(t - start, *r->server->entry.max_renew); #if 0 t = min(t, start + realm->max_renew); #endif ALLOC(r->et.renew_till); *r->et.renew_till = t; r->et.flags.renewable = 1; } } if (_kdc_is_anon_request(b)) r->et.flags.anonymous = 1; if(b->addresses){ ALLOC(r->et.caddr); copy_HostAddresses(b->addresses, r->et.caddr); } r->et.transited.tr_type = DOMAIN_X500_COMPRESS; krb5_data_zero(&r->et.transited.contents); /* The MIT ASN.1 library (obviously) doesn't tell lengths encoded * as 0 and as 0x80 (meaning indefinite length) apart, and is thus * incapable of correctly decoding SEQUENCE OF's of zero length. * * To fix this, always send at least one no-op last_req * * If there's a pw_end or valid_end we will use that, * otherwise just a dummy lr. */ r->ek.last_req.val = malloc(2 * sizeof(*r->ek.last_req.val)); if (r->ek.last_req.val == NULL) { ret = ENOMEM; goto out; } r->ek.last_req.len = 0; if (r->client->entry.pw_end && (config->kdc_warn_pwexpire == 0 || kdc_time + config->kdc_warn_pwexpire >= *r->client->entry.pw_end)) { r->ek.last_req.val[r->ek.last_req.len].lr_type = LR_PW_EXPTIME; r->ek.last_req.val[r->ek.last_req.len].lr_value = *r->client->entry.pw_end; ++r->ek.last_req.len; } if (r->client->entry.valid_end) { r->ek.last_req.val[r->ek.last_req.len].lr_type = LR_ACCT_EXPTIME; r->ek.last_req.val[r->ek.last_req.len].lr_value = *r->client->entry.valid_end; ++r->ek.last_req.len; } if (r->ek.last_req.len == 0) { r->ek.last_req.val[r->ek.last_req.len].lr_type = LR_NONE; r->ek.last_req.val[r->ek.last_req.len].lr_value = 0; ++r->ek.last_req.len; } r->ek.nonce = b->nonce; if (r->client->entry.valid_end || r->client->entry.pw_end) { ALLOC(r->ek.key_expiration); if (r->client->entry.valid_end) { if (r->client->entry.pw_end) *r->ek.key_expiration = min(*r->client->entry.valid_end, *r->client->entry.pw_end); else *r->ek.key_expiration = *r->client->entry.valid_end; } else *r->ek.key_expiration = *r->client->entry.pw_end; } else r->ek.key_expiration = NULL; r->ek.flags = r->et.flags; r->ek.authtime = r->et.authtime; if (r->et.starttime) { ALLOC(r->ek.starttime); *r->ek.starttime = *r->et.starttime; } r->ek.endtime = r->et.endtime; if (r->et.renew_till) { ALLOC(r->ek.renew_till); *r->ek.renew_till = *r->et.renew_till; } ret = copy_Realm(&rep.ticket.realm, &r->ek.srealm); if (ret) goto out; ret = copy_PrincipalName(&rep.ticket.sname, &r->ek.sname); if (ret) goto out; if(r->et.caddr){ ALLOC(r->ek.caddr); copy_HostAddresses(r->et.caddr, r->ek.caddr); } /* * Check and session and reply keys */ if (r->session_key.keytype == ETYPE_NULL) { ret = krb5_generate_random_keyblock(context, r->sessionetype, &r->session_key); if (ret) goto out; } if (r->reply_key.keytype == ETYPE_NULL) { _kdc_set_e_text(r, "Client have no reply key"); ret = KRB5KDC_ERR_CLIENT_NOTYET; goto out; } ret = copy_EncryptionKey(&r->session_key, &r->et.key); if (ret) goto out; ret = copy_EncryptionKey(&r->session_key, &r->ek.key); if (ret) goto out; if (r->outpadata.len) { ALLOC(rep.padata); if (rep.padata == NULL) { ret = ENOMEM; goto out; } ret = copy_METHOD_DATA(&r->outpadata, rep.padata); if (ret) goto out; } /* Add the PAC */ if (send_pac_p(context, req)) { generate_pac(r, skey); } _kdc_log_timestamp(context, config, "AS-REQ", r->et.authtime, r->et.starttime, r->et.endtime, r->et.renew_till); /* do this as the last thing since this signs the EncTicketPart */ ret = _kdc_add_KRB5SignedPath(context, config, r->server, setype, r->client->entry.principal, NULL, NULL, &r->et); if (ret) goto out; log_as_req(context, config, r->reply_key.keytype, setype, b); /* * We always say we support FAST/enc-pa-rep */ r->et.flags.enc_pa_rep = r->ek.flags.enc_pa_rep = 1; /* * Add REQ_ENC_PA_REP if client supports it */ i = 0; pa = _kdc_find_padata(req, &i, KRB5_PADATA_REQ_ENC_PA_REP); if (pa) { ret = add_enc_pa_rep(r); if (ret) { const char *msg = krb5_get_error_message(r->context, ret); _kdc_r_log(r, 0, "add_enc_pa_rep failed: %s: %d", msg, ret); krb5_free_error_message(r->context, msg); goto out; } } /* * */ ret = _kdc_encode_reply(context, config, r->armor_crypto, req->req_body.nonce, &rep, &r->et, &r->ek, setype, r->server->entry.kvno, &skey->key, r->client->entry.kvno, &r->reply_key, 0, &r->e_text, reply); if (ret) goto out; /* * Check if message too large */ if (datagram_reply && reply->length > config->max_datagram_reply_length) { krb5_data_free(reply); ret = KRB5KRB_ERR_RESPONSE_TOO_BIG; _kdc_set_e_text(r, "Reply packet too large"); } out: free_AS_REP(&rep); /* * In case of a non proxy error, build an error message. */ if(ret != 0 && ret != HDB_ERR_NOT_FOUND_HERE && reply->length == 0) { ret = _kdc_fast_mk_error(context, r, &error_method, r->armor_crypto, &req->req_body, ret, r->e_text, r->server_princ, &r->client_princ->name, &r->client_princ->realm, NULL, NULL, reply); if (ret) goto out2; } out2: free_EncTicketPart(&r->et); free_EncKDCRepPart(&r->ek); free_KDCFastState(&r->fast); if (error_method.len) free_METHOD_DATA(&error_method); if (r->outpadata.len) free_METHOD_DATA(&r->outpadata); if (r->client_princ) { krb5_free_principal(context, r->client_princ); r->client_princ = NULL; } if (r->client_name) { free(r->client_name); r->client_name = NULL; } if (r->server_princ){ krb5_free_principal(context, r->server_princ); r->server_princ = NULL; } if (r->server_name) { free(r->server_name); r->server_name = NULL; } if (r->client) _kdc_free_ent(context, r->client); if (r->server) _kdc_free_ent(context, r->server); if (r->armor_crypto) { krb5_crypto_destroy(r->context, r->armor_crypto); r->armor_crypto = NULL; } krb5_free_keyblock_contents(r->context, &r->reply_key); krb5_free_keyblock_contents(r->context, &r->session_key); return ret; }
CWE-476
180,826
2,380
56768369760868757704328364106042737253
null
null
null
FFmpeg
58cf31cee7a456057f337b3102a03206d833d5e8
1
static void gmc_mmx(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy, int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height) { const int w = 8; const int ix = ox >> (16 + shift); const int iy = oy >> (16 + shift); const int oxs = ox >> 4; const int oys = oy >> 4; const int dxxs = dxx >> 4; const int dxys = dxy >> 4; const int dyxs = dyx >> 4; const int dyys = dyy >> 4; const uint16_t r4[4] = { r, r, r, r }; const uint16_t dxy4[4] = { dxys, dxys, dxys, dxys }; const uint16_t dyy4[4] = { dyys, dyys, dyys, dyys }; const uint64_t shift2 = 2 * shift; #define MAX_STRIDE 4096U #define MAX_H 8U uint8_t edge_buf[(MAX_H + 1) * MAX_STRIDE]; int x, y; const int dxw = (dxx - (1 << (16 + shift))) * (w - 1); const int dyh = (dyy - (1 << (16 + shift))) * (h - 1); const int dxh = dxy * (h - 1); const int dyw = dyx * (w - 1); int need_emu = (unsigned) ix >= width - w || (unsigned) iy >= height - h; if ( // non-constant fullpel offset (3% of blocks) ((ox ^ (ox + dxw)) | (ox ^ (ox + dxh)) | (ox ^ (ox + dxw + dxh)) | (oy ^ (oy + dyw)) | (oy ^ (oy + dyh)) | (oy ^ (oy + dyw + dyh))) >> (16 + shift) || (dxx | dxy | dyx | dyy) & 15 || (need_emu && (h > MAX_H || stride > MAX_STRIDE))) { ff_gmc_c(dst, src, stride, h, ox, oy, dxx, dxy, dyx, dyy, shift, r, width, height); return; } src += ix + iy * stride; if (need_emu) { ff_emulated_edge_mc_8(edge_buf, src, stride, stride, w + 1, h + 1, ix, iy, width, height); src = edge_buf; } __asm__ volatile ( "movd %0, %%mm6 \n\t" "pxor %%mm7, %%mm7 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" :: "r" (1 << shift)); for (x = 0; x < w; x += 4) { uint16_t dx4[4] = { oxs - dxys + dxxs * (x + 0), oxs - dxys + dxxs * (x + 1), oxs - dxys + dxxs * (x + 2), oxs - dxys + dxxs * (x + 3) }; uint16_t dy4[4] = { oys - dyys + dyxs * (x + 0), oys - dyys + dyxs * (x + 1), oys - dyys + dyxs * (x + 2), oys - dyys + dyxs * (x + 3) }; for (y = 0; y < h; y++) { __asm__ volatile ( "movq %0, %%mm4 \n\t" "movq %1, %%mm5 \n\t" "paddw %2, %%mm4 \n\t" "paddw %3, %%mm5 \n\t" "movq %%mm4, %0 \n\t" "movq %%mm5, %1 \n\t" "psrlw $12, %%mm4 \n\t" "psrlw $12, %%mm5 \n\t" : "+m" (*dx4), "+m" (*dy4) : "m" (*dxy4), "m" (*dyy4)); __asm__ volatile ( "movq %%mm6, %%mm2 \n\t" "movq %%mm6, %%mm1 \n\t" "psubw %%mm4, %%mm2 \n\t" "psubw %%mm5, %%mm1 \n\t" "movq %%mm2, %%mm0 \n\t" "movq %%mm4, %%mm3 \n\t" "pmullw %%mm1, %%mm0 \n\t" // (s - dx) * (s - dy) "pmullw %%mm5, %%mm3 \n\t" // dx * dy "pmullw %%mm5, %%mm2 \n\t" // (s - dx) * dy "pmullw %%mm4, %%mm1 \n\t" // dx * (s - dy) "movd %4, %%mm5 \n\t" "movd %3, %%mm4 \n\t" "punpcklbw %%mm7, %%mm5 \n\t" "punpcklbw %%mm7, %%mm4 \n\t" "pmullw %%mm5, %%mm3 \n\t" // src[1, 1] * dx * dy "pmullw %%mm4, %%mm2 \n\t" // src[0, 1] * (s - dx) * dy "movd %2, %%mm5 \n\t" "movd %1, %%mm4 \n\t" "punpcklbw %%mm7, %%mm5 \n\t" "punpcklbw %%mm7, %%mm4 \n\t" "pmullw %%mm5, %%mm1 \n\t" // src[1, 0] * dx * (s - dy) "pmullw %%mm4, %%mm0 \n\t" // src[0, 0] * (s - dx) * (s - dy) "paddw %5, %%mm1 \n\t" "paddw %%mm3, %%mm2 \n\t" "paddw %%mm1, %%mm0 \n\t" "paddw %%mm2, %%mm0 \n\t" "psrlw %6, %%mm0 \n\t" "packuswb %%mm0, %%mm0 \n\t" "movd %%mm0, %0 \n\t" : "=m" (dst[x + y * stride]) : "m" (src[0]), "m" (src[1]), "m" (src[stride]), "m" (src[stride + 1]), "m" (*r4), "m" (shift2)); src += stride; } src += 4 - h * stride; } }
CWE-125
180,827
2,381
53843406165273077727141744678584227428
null
null
null
linux
95a762e2c8c942780948091f8f2a4f32fce1ac6f
1
static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) { struct bpf_reg_state *regs = cur_regs(env); u8 opcode = BPF_OP(insn->code); int err; if (opcode == BPF_END || opcode == BPF_NEG) { if (opcode == BPF_NEG) { if (BPF_SRC(insn->code) != 0 || insn->src_reg != BPF_REG_0 || insn->off != 0 || insn->imm != 0) { verbose(env, "BPF_NEG uses reserved fields\n"); return -EINVAL; } } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0 || (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || BPF_CLASS(insn->code) == BPF_ALU64) { verbose(env, "BPF_END uses reserved fields\n"); return -EINVAL; } } /* check src operand */ err = check_reg_arg(env, insn->dst_reg, SRC_OP); if (err) return err; if (is_pointer_value(env, insn->dst_reg)) { verbose(env, "R%d pointer arithmetic prohibited\n", insn->dst_reg); return -EACCES; } /* check dest operand */ err = check_reg_arg(env, insn->dst_reg, DST_OP); if (err) return err; } else if (opcode == BPF_MOV) { if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0 || insn->off != 0) { verbose(env, "BPF_MOV uses reserved fields\n"); return -EINVAL; } /* check src operand */ err = check_reg_arg(env, insn->src_reg, SRC_OP); if (err) return err; } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0) { verbose(env, "BPF_MOV uses reserved fields\n"); return -EINVAL; } } /* check dest operand */ err = check_reg_arg(env, insn->dst_reg, DST_OP); if (err) return err; if (BPF_SRC(insn->code) == BPF_X) { if (BPF_CLASS(insn->code) == BPF_ALU64) { /* case: R1 = R2 * copy register state to dest reg */ regs[insn->dst_reg] = regs[insn->src_reg]; regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; } else { /* R1 = (u32) R2 */ if (is_pointer_value(env, insn->src_reg)) { verbose(env, "R%d partial copy of pointer\n", insn->src_reg); return -EACCES; } mark_reg_unknown(env, regs, insn->dst_reg); /* high 32 bits are known zero. */ regs[insn->dst_reg].var_off = tnum_cast( regs[insn->dst_reg].var_off, 4); __update_reg_bounds(&regs[insn->dst_reg]); } } else { /* case: R = imm * remember the value we stored into this reg */ regs[insn->dst_reg].type = SCALAR_VALUE; __mark_reg_known(regs + insn->dst_reg, insn->imm); } } else if (opcode > BPF_END) { verbose(env, "invalid BPF_ALU opcode %x\n", opcode); return -EINVAL; } else { /* all other ALU ops: and, sub, xor, add, ... */ if (BPF_SRC(insn->code) == BPF_X) { if (insn->imm != 0 || insn->off != 0) { verbose(env, "BPF_ALU uses reserved fields\n"); return -EINVAL; } /* check src1 operand */ err = check_reg_arg(env, insn->src_reg, SRC_OP); if (err) return err; } else { if (insn->src_reg != BPF_REG_0 || insn->off != 0) { verbose(env, "BPF_ALU uses reserved fields\n"); return -EINVAL; } } /* check src2 operand */ err = check_reg_arg(env, insn->dst_reg, SRC_OP); if (err) return err; if ((opcode == BPF_MOD || opcode == BPF_DIV) && BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { verbose(env, "div by zero\n"); return -EINVAL; } if ((opcode == BPF_LSH || opcode == BPF_RSH || opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; if (insn->imm < 0 || insn->imm >= size) { verbose(env, "invalid shift %d\n", insn->imm); return -EINVAL; } } /* check dest operand */ err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); if (err) return err; return adjust_reg_min_max_vals(env, insn); } return 0; }
CWE-119
180,832
2,385
195502195018736619584634757968225342872
null
null
null
linux
373c4557d2aa362702c4c2d41288fb1e54990b7c
1
static int walk_hugetlb_range(unsigned long addr, unsigned long end, struct mm_walk *walk) { struct vm_area_struct *vma = walk->vma; struct hstate *h = hstate_vma(vma); unsigned long next; unsigned long hmask = huge_page_mask(h); unsigned long sz = huge_page_size(h); pte_t *pte; int err = 0; do { next = hugetlb_entry_end(h, addr, end); pte = huge_pte_offset(walk->mm, addr & hmask, sz); if (pte && walk->hugetlb_entry) err = walk->hugetlb_entry(pte, hmask, addr, next, walk); if (err) break; } while (addr = next, addr != end); return err; }
CWE-200
180,833
2,386
27644966037369065190274352572076611686
null
null
null
collectd
d16c24542b2f96a194d43a73c2e5778822b9cb47
1
static int csnmp_read_table(host_definition_t *host, data_definition_t *data) { struct snmp_pdu *req; struct snmp_pdu *res = NULL; struct variable_list *vb; const data_set_t *ds; size_t oid_list_len = data->values_len + 1; /* Holds the last OID returned by the device. We use this in the GETNEXT * request to proceed. */ oid_t oid_list[oid_list_len]; /* Set to false when an OID has left its subtree so we don't re-request it * again. */ _Bool oid_list_todo[oid_list_len]; int status; size_t i; /* `value_list_head' and `value_list_tail' implement a linked list for each * value. `instance_list_head' and `instance_list_tail' implement a linked * list of * instance names. This is used to jump gaps in the table. */ csnmp_list_instances_t *instance_list_head; csnmp_list_instances_t *instance_list_tail; csnmp_table_values_t **value_list_head; csnmp_table_values_t **value_list_tail; DEBUG("snmp plugin: csnmp_read_table (host = %s, data = %s)", host->name, data->name); if (host->sess_handle == NULL) { DEBUG("snmp plugin: csnmp_read_table: host->sess_handle == NULL"); return (-1); } ds = plugin_get_ds(data->type); if (!ds) { ERROR("snmp plugin: DataSet `%s' not defined.", data->type); return (-1); } if (ds->ds_num != data->values_len) { ERROR("snmp plugin: DataSet `%s' requires %zu values, but config talks " "about %zu", data->type, ds->ds_num, data->values_len); return (-1); } assert(data->values_len > 0); /* We need a copy of all the OIDs, because GETNEXT will destroy them. */ memcpy(oid_list, data->values, data->values_len * sizeof(oid_t)); if (data->instance.oid.oid_len > 0) memcpy(oid_list + data->values_len, &data->instance.oid, sizeof(oid_t)); else /* no InstanceFrom option specified. */ oid_list_len--; for (i = 0; i < oid_list_len; i++) oid_list_todo[i] = 1; /* We're going to construct n linked lists, one for each "value". * value_list_head will contain pointers to the heads of these linked lists, * value_list_tail will contain pointers to the tail of the lists. */ value_list_head = calloc(data->values_len, sizeof(*value_list_head)); value_list_tail = calloc(data->values_len, sizeof(*value_list_tail)); if ((value_list_head == NULL) || (value_list_tail == NULL)) { ERROR("snmp plugin: csnmp_read_table: calloc failed."); sfree(value_list_head); sfree(value_list_tail); return (-1); } instance_list_head = NULL; instance_list_tail = NULL; status = 0; while (status == 0) { int oid_list_todo_num; req = snmp_pdu_create(SNMP_MSG_GETNEXT); if (req == NULL) { ERROR("snmp plugin: snmp_pdu_create failed."); status = -1; break; } oid_list_todo_num = 0; for (i = 0; i < oid_list_len; i++) { /* Do not rerequest already finished OIDs */ if (!oid_list_todo[i]) continue; oid_list_todo_num++; snmp_add_null_var(req, oid_list[i].oid, oid_list[i].oid_len); } if (oid_list_todo_num == 0) { /* The request is still empty - so we are finished */ DEBUG("snmp plugin: all variables have left their subtree"); status = 0; break; } res = NULL; status = snmp_sess_synch_response(host->sess_handle, req, &res); if ((status != STAT_SUCCESS) || (res == NULL)) { char *errstr = NULL; snmp_sess_error(host->sess_handle, NULL, NULL, &errstr); c_complain(LOG_ERR, &host->complaint, "snmp plugin: host %s: snmp_sess_synch_response failed: %s", host->name, (errstr == NULL) ? "Unknown problem" : errstr); if (res != NULL) snmp_free_pdu(res); res = NULL; /* snmp_synch_response already freed our PDU */ req = NULL; sfree(errstr); csnmp_host_close_session(host); status = -1; break; } status = 0; assert(res != NULL); c_release(LOG_INFO, &host->complaint, "snmp plugin: host %s: snmp_sess_synch_response successful.", host->name); vb = res->variables; if (vb == NULL) { status = -1; break; } for (vb = res->variables, i = 0; (vb != NULL); vb = vb->next_variable, i++) { /* Calculate value index from todo list */ while ((i < oid_list_len) && !oid_list_todo[i]) i++; /* An instance is configured and the res variable we process is the * instance value (last index) */ if ((data->instance.oid.oid_len > 0) && (i == data->values_len)) { if ((vb->type == SNMP_ENDOFMIBVIEW) || (snmp_oid_ncompare( data->instance.oid.oid, data->instance.oid.oid_len, vb->name, vb->name_length, data->instance.oid.oid_len) != 0)) { DEBUG("snmp plugin: host = %s; data = %s; Instance left its subtree.", host->name, data->name); oid_list_todo[i] = 0; continue; } /* Allocate a new `csnmp_list_instances_t', insert the instance name and * add it to the list */ if (csnmp_instance_list_add(&instance_list_head, &instance_list_tail, res, host, data) != 0) { ERROR("snmp plugin: host %s: csnmp_instance_list_add failed.", host->name); status = -1; break; } } else /* The variable we are processing is a normal value */ { csnmp_table_values_t *vt; oid_t vb_name; oid_t suffix; int ret; csnmp_oid_init(&vb_name, vb->name, vb->name_length); /* Calculate the current suffix. This is later used to check that the * suffix is increasing. This also checks if we left the subtree */ ret = csnmp_oid_suffix(&suffix, &vb_name, data->values + i); if (ret != 0) { DEBUG("snmp plugin: host = %s; data = %s; i = %zu; " "Value probably left its subtree.", host->name, data->name, i); oid_list_todo[i] = 0; continue; } /* Make sure the OIDs returned by the agent are increasing. Otherwise * our * table matching algorithm will get confused. */ if ((value_list_tail[i] != NULL) && (csnmp_oid_compare(&suffix, &value_list_tail[i]->suffix) <= 0)) { DEBUG("snmp plugin: host = %s; data = %s; i = %zu; " "Suffix is not increasing.", host->name, data->name, i); oid_list_todo[i] = 0; continue; } vt = calloc(1, sizeof(*vt)); if (vt == NULL) { ERROR("snmp plugin: calloc failed."); status = -1; break; } vt->value = csnmp_value_list_to_value(vb, ds->ds[i].type, data->scale, data->shift, host->name, data->name); memcpy(&vt->suffix, &suffix, sizeof(vt->suffix)); vt->next = NULL; if (value_list_tail[i] == NULL) value_list_head[i] = vt; else value_list_tail[i]->next = vt; value_list_tail[i] = vt; } /* Copy OID to oid_list[i] */ memcpy(oid_list[i].oid, vb->name, sizeof(oid) * vb->name_length); oid_list[i].oid_len = vb->name_length; } /* for (vb = res->variables ...) */ if (res != NULL) snmp_free_pdu(res); res = NULL; } /* while (status == 0) */ if (res != NULL) snmp_free_pdu(res); res = NULL; if (req != NULL) snmp_free_pdu(req); req = NULL; if (status == 0) csnmp_dispatch_table(host, data, instance_list_head, value_list_head); /* Free all allocated variables here */ while (instance_list_head != NULL) { csnmp_list_instances_t *next = instance_list_head->next; sfree(instance_list_head); instance_list_head = next; } for (i = 0; i < data->values_len; i++) { while (value_list_head[i] != NULL) { csnmp_table_values_t *next = value_list_head[i]->next; sfree(value_list_head[i]); value_list_head[i] = next; } } sfree(value_list_head); sfree(value_list_tail); return (0); } /* int csnmp_read_table */
CWE-415
180,839
2,392
218389400164176202416425166145247212945
null
null
null
radare2
2ca9ab45891b6ae8e32b6c28c81eebca059cbe5d
1
static const ut8 *r_bin_dwarf_parse_comp_unit(Sdb *s, const ut8 *obuf, RBinDwarfCompUnit *cu, const RBinDwarfDebugAbbrev *da, size_t offset, const ut8 *debug_str, size_t debug_str_len) { const ut8 *buf = obuf, *buf_end = obuf + (cu->hdr.length - 7); ut64 abbr_code; size_t i; if (cu->hdr.length > debug_str_len) { return NULL; } while (buf && buf < buf_end && buf >= obuf) { if (cu->length && cu->capacity == cu->length) { r_bin_dwarf_expand_cu (cu); } buf = r_uleb128 (buf, buf_end - buf, &abbr_code); if (abbr_code > da->length || !buf) { return NULL; } r_bin_dwarf_init_die (&cu->dies[cu->length]); if (!abbr_code) { cu->dies[cu->length].abbrev_code = 0; cu->length++; buf++; continue; } cu->dies[cu->length].abbrev_code = abbr_code; cu->dies[cu->length].tag = da->decls[abbr_code - 1].tag; abbr_code += offset; if (da->capacity < abbr_code) { return NULL; } for (i = 0; i < da->decls[abbr_code - 1].length; i++) { if (cu->dies[cu->length].length == cu->dies[cu->length].capacity) { r_bin_dwarf_expand_die (&cu->dies[cu->length]); } if (i >= cu->dies[cu->length].capacity || i >= da->decls[abbr_code - 1].capacity) { eprintf ("Warning: malformed dwarf attribute capacity doesn't match length\n"); break; } memset (&cu->dies[cu->length].attr_values[i], 0, sizeof (cu->dies[cu->length].attr_values[i])); buf = r_bin_dwarf_parse_attr_value (buf, buf_end - buf, &da->decls[abbr_code - 1].specs[i], &cu->dies[cu->length].attr_values[i], &cu->hdr, debug_str, debug_str_len); if (cu->dies[cu->length].attr_values[i].name == DW_AT_comp_dir) { const char *name = cu->dies[cu->length].attr_values[i].encoding.str_struct.string; sdb_set (s, "DW_AT_comp_dir", name, 0); } cu->dies[cu->length].length++; } cu->length++; } return buf; }
CWE-125
180,842
2,395
96593607869001604723535959978510375078
null
null
null
libav
cd4663dc80323ba64989d0c103d51ad3ee0e9c2f
1
static int smacker_decode_tree(BitstreamContext *bc, HuffContext *hc, uint32_t prefix, int length) { if (!bitstream_read_bit(bc)) { // Leaf if(hc->current >= 256){ av_log(NULL, AV_LOG_ERROR, "Tree size exceeded!\n"); return AVERROR_INVALIDDATA; } if(length){ hc->bits[hc->current] = prefix; hc->lengths[hc->current] = length; } else { hc->bits[hc->current] = 0; hc->lengths[hc->current] = 0; } hc->values[hc->current] = bitstream_read(bc, 8); hc->current++; if(hc->maxlength < length) hc->maxlength = length; return 0; } else { //Node int r; length++; r = smacker_decode_tree(bc, hc, prefix, length); if(r) return r; return smacker_decode_tree(bc, hc, prefix | (1 << (length - 1)), length); } }
CWE-119
180,843
2,396
123413656536164614730473477667931906703
null
null
null
linux
a50829479f58416a013a4ccca791336af3c584c7
1
static void parse_hid_report_descriptor(struct gtco *device, char * report, int length) { struct device *ddev = &device->intf->dev; int x, i = 0; /* Tag primitive vars */ __u8 prefix; __u8 size; __u8 tag; __u8 type; __u8 data = 0; __u16 data16 = 0; __u32 data32 = 0; /* For parsing logic */ int inputnum = 0; __u32 usage = 0; /* Global Values, indexed by TAG */ __u32 globalval[TAG_GLOB_MAX]; __u32 oldval[TAG_GLOB_MAX]; /* Debug stuff */ char maintype = 'x'; char globtype[12]; int indent = 0; char indentstr[10] = ""; dev_dbg(ddev, "======>>>>>>PARSE<<<<<<======\n"); /* Walk this report and pull out the info we need */ while (i < length) { prefix = report[i]; /* Skip over prefix */ i++; /* Determine data size and save the data in the proper variable */ size = PREF_SIZE(prefix); switch (size) { case 1: data = report[i]; break; case 2: data16 = get_unaligned_le16(&report[i]); break; case 3: size = 4; data32 = get_unaligned_le32(&report[i]); break; } /* Skip size of data */ i += size; /* What we do depends on the tag type */ tag = PREF_TAG(prefix); type = PREF_TYPE(prefix); switch (type) { case TYPE_MAIN: strcpy(globtype, ""); switch (tag) { case TAG_MAIN_INPUT: /* * The INPUT MAIN tag signifies this is * information from a report. We need to * figure out what it is and store the * min/max values */ maintype = 'I'; if (data == 2) strcpy(globtype, "Variable"); else if (data == 3) strcpy(globtype, "Var|Const"); dev_dbg(ddev, "::::: Saving Report: %d input #%d Max: 0x%X(%d) Min:0x%X(%d) of %d bits\n", globalval[TAG_GLOB_REPORT_ID], inputnum, globalval[TAG_GLOB_LOG_MAX], globalval[TAG_GLOB_LOG_MAX], globalval[TAG_GLOB_LOG_MIN], globalval[TAG_GLOB_LOG_MIN], globalval[TAG_GLOB_REPORT_SZ] * globalval[TAG_GLOB_REPORT_CNT]); /* We can assume that the first two input items are always the X and Y coordinates. After that, we look for everything else by local usage value */ switch (inputnum) { case 0: /* X coord */ dev_dbg(ddev, "GER: X Usage: 0x%x\n", usage); if (device->max_X == 0) { device->max_X = globalval[TAG_GLOB_LOG_MAX]; device->min_X = globalval[TAG_GLOB_LOG_MIN]; } break; case 1: /* Y coord */ dev_dbg(ddev, "GER: Y Usage: 0x%x\n", usage); if (device->max_Y == 0) { device->max_Y = globalval[TAG_GLOB_LOG_MAX]; device->min_Y = globalval[TAG_GLOB_LOG_MIN]; } break; default: /* Tilt X */ if (usage == DIGITIZER_USAGE_TILT_X) { if (device->maxtilt_X == 0) { device->maxtilt_X = globalval[TAG_GLOB_LOG_MAX]; device->mintilt_X = globalval[TAG_GLOB_LOG_MIN]; } } /* Tilt Y */ if (usage == DIGITIZER_USAGE_TILT_Y) { if (device->maxtilt_Y == 0) { device->maxtilt_Y = globalval[TAG_GLOB_LOG_MAX]; device->mintilt_Y = globalval[TAG_GLOB_LOG_MIN]; } } /* Pressure */ if (usage == DIGITIZER_USAGE_TIP_PRESSURE) { if (device->maxpressure == 0) { device->maxpressure = globalval[TAG_GLOB_LOG_MAX]; device->minpressure = globalval[TAG_GLOB_LOG_MIN]; } } break; } inputnum++; break; case TAG_MAIN_OUTPUT: maintype = 'O'; break; case TAG_MAIN_FEATURE: maintype = 'F'; break; case TAG_MAIN_COL_START: maintype = 'S'; if (data == 0) { dev_dbg(ddev, "======>>>>>> Physical\n"); strcpy(globtype, "Physical"); } else dev_dbg(ddev, "======>>>>>>\n"); /* Indent the debug output */ indent++; for (x = 0; x < indent; x++) indentstr[x] = '-'; indentstr[x] = 0; /* Save global tags */ for (x = 0; x < TAG_GLOB_MAX; x++) oldval[x] = globalval[x]; break; case TAG_MAIN_COL_END: dev_dbg(ddev, "<<<<<<======\n"); maintype = 'E'; indent--; for (x = 0; x < indent; x++) indentstr[x] = '-'; indentstr[x] = 0; /* Copy global tags back */ for (x = 0; x < TAG_GLOB_MAX; x++) globalval[x] = oldval[x]; break; } switch (size) { case 1: dev_dbg(ddev, "%sMAINTAG:(%d) %c SIZE: %d Data: %s 0x%x\n", indentstr, tag, maintype, size, globtype, data); break; case 2: dev_dbg(ddev, "%sMAINTAG:(%d) %c SIZE: %d Data: %s 0x%x\n", indentstr, tag, maintype, size, globtype, data16); break; case 4: dev_dbg(ddev, "%sMAINTAG:(%d) %c SIZE: %d Data: %s 0x%x\n", indentstr, tag, maintype, size, globtype, data32); break; } break; case TYPE_GLOBAL: switch (tag) { case TAG_GLOB_USAGE: /* * First time we hit the global usage tag, * it should tell us the type of device */ if (device->usage == 0) device->usage = data; strcpy(globtype, "USAGE"); break; case TAG_GLOB_LOG_MIN: strcpy(globtype, "LOG_MIN"); break; case TAG_GLOB_LOG_MAX: strcpy(globtype, "LOG_MAX"); break; case TAG_GLOB_PHYS_MIN: strcpy(globtype, "PHYS_MIN"); break; case TAG_GLOB_PHYS_MAX: strcpy(globtype, "PHYS_MAX"); break; case TAG_GLOB_UNIT_EXP: strcpy(globtype, "EXP"); break; case TAG_GLOB_UNIT: strcpy(globtype, "UNIT"); break; case TAG_GLOB_REPORT_SZ: strcpy(globtype, "REPORT_SZ"); break; case TAG_GLOB_REPORT_ID: strcpy(globtype, "REPORT_ID"); /* New report, restart numbering */ inputnum = 0; break; case TAG_GLOB_REPORT_CNT: strcpy(globtype, "REPORT_CNT"); break; case TAG_GLOB_PUSH: strcpy(globtype, "PUSH"); break; case TAG_GLOB_POP: strcpy(globtype, "POP"); break; } /* Check to make sure we have a good tag number so we don't overflow array */ if (tag < TAG_GLOB_MAX) { switch (size) { case 1: dev_dbg(ddev, "%sGLOBALTAG:%s(%d) SIZE: %d Data: 0x%x\n", indentstr, globtype, tag, size, data); globalval[tag] = data; break; case 2: dev_dbg(ddev, "%sGLOBALTAG:%s(%d) SIZE: %d Data: 0x%x\n", indentstr, globtype, tag, size, data16); globalval[tag] = data16; break; case 4: dev_dbg(ddev, "%sGLOBALTAG:%s(%d) SIZE: %d Data: 0x%x\n", indentstr, globtype, tag, size, data32); globalval[tag] = data32; break; } } else { dev_dbg(ddev, "%sGLOBALTAG: ILLEGAL TAG:%d SIZE: %d\n", indentstr, tag, size); } break; case TYPE_LOCAL: switch (tag) { case TAG_GLOB_USAGE: strcpy(globtype, "USAGE"); /* Always 1 byte */ usage = data; break; case TAG_GLOB_LOG_MIN: strcpy(globtype, "MIN"); break; case TAG_GLOB_LOG_MAX: strcpy(globtype, "MAX"); break; default: strcpy(globtype, "UNKNOWN"); break; } switch (size) { case 1: dev_dbg(ddev, "%sLOCALTAG:(%d) %s SIZE: %d Data: 0x%x\n", indentstr, tag, globtype, size, data); break; case 2: dev_dbg(ddev, "%sLOCALTAG:(%d) %s SIZE: %d Data: 0x%x\n", indentstr, tag, globtype, size, data16); break; case 4: dev_dbg(ddev, "%sLOCALTAG:(%d) %s SIZE: %d Data: 0x%x\n", indentstr, tag, globtype, size, data32); break; } break; } } }
CWE-125
180,845
2,397
179175241032229645743598866903702095995
null
null
null
ImageMagick
2130bf6f89ded32ef0c88a11694f107c52566c53
1
static Image *ReadWPGImage(const ImageInfo *image_info, ExceptionInfo *exception) { typedef struct { size_t FileId; MagickOffsetType DataOffset; unsigned int ProductType; unsigned int FileType; unsigned char MajorVersion; unsigned char MinorVersion; unsigned int EncryptKey; unsigned int Reserved; } WPGHeader; typedef struct { unsigned char RecType; size_t RecordLength; } WPGRecord; typedef struct { unsigned char Class; unsigned char RecType; size_t Extension; size_t RecordLength; } WPG2Record; typedef struct { unsigned HorizontalUnits; unsigned VerticalUnits; unsigned char PosSizePrecision; } WPG2Start; typedef struct { unsigned int Width; unsigned int Height; unsigned int Depth; unsigned int HorzRes; unsigned int VertRes; } WPGBitmapType1; typedef struct { unsigned int Width; unsigned int Height; unsigned char Depth; unsigned char Compression; } WPG2BitmapType1; typedef struct { unsigned int RotAngle; unsigned int LowLeftX; unsigned int LowLeftY; unsigned int UpRightX; unsigned int UpRightY; unsigned int Width; unsigned int Height; unsigned int Depth; unsigned int HorzRes; unsigned int VertRes; } WPGBitmapType2; typedef struct { unsigned int StartIndex; unsigned int NumOfEntries; } WPGColorMapRec; /* typedef struct { size_t PS_unknown1; unsigned int PS_unknown2; unsigned int PS_unknown3; } WPGPSl1Record; */ Image *image; unsigned int status; WPGHeader Header; WPGRecord Rec; WPG2Record Rec2; WPG2Start StartWPG; WPGBitmapType1 BitmapHeader1; WPG2BitmapType1 Bitmap2Header1; WPGBitmapType2 BitmapHeader2; WPGColorMapRec WPG_Palette; int i, bpp, WPG2Flags; ssize_t ldblk; size_t one; unsigned char *BImgBuff; tCTM CTM; /*current transform matrix*/ /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); one=1; image=AcquireImage(image_info,exception); image->depth=8; status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } /* Read WPG image. */ Header.FileId=ReadBlobLSBLong(image); Header.DataOffset=(MagickOffsetType) ReadBlobLSBLong(image); Header.ProductType=ReadBlobLSBShort(image); Header.FileType=ReadBlobLSBShort(image); Header.MajorVersion=ReadBlobByte(image); Header.MinorVersion=ReadBlobByte(image); Header.EncryptKey=ReadBlobLSBShort(image); Header.Reserved=ReadBlobLSBShort(image); if (Header.FileId!=0x435057FF || (Header.ProductType>>8)!=0x16) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); if (Header.EncryptKey!=0) ThrowReaderException(CoderError,"EncryptedWPGImageFileNotSupported"); image->columns = 1; image->rows = 1; image->colors = 0; bpp=0; BitmapHeader2.RotAngle=0; Rec2.RecordLength=0; switch(Header.FileType) { case 1: /* WPG level 1 */ while(!EOFBlob(image)) /* object parser loop */ { (void) SeekBlob(image,Header.DataOffset,SEEK_SET); if(EOFBlob(image)) break; Rec.RecType=(i=ReadBlobByte(image)); if(i==EOF) break; Rd_WP_DWORD(image,&Rec.RecordLength); if (Rec.RecordLength > GetBlobSize(image)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); if(EOFBlob(image)) break; Header.DataOffset=TellBlob(image)+Rec.RecordLength; switch(Rec.RecType) { case 0x0B: /* bitmap type 1 */ BitmapHeader1.Width=ReadBlobLSBShort(image); BitmapHeader1.Height=ReadBlobLSBShort(image); if ((BitmapHeader1.Width == 0) || (BitmapHeader1.Height == 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); BitmapHeader1.Depth=ReadBlobLSBShort(image); BitmapHeader1.HorzRes=ReadBlobLSBShort(image); BitmapHeader1.VertRes=ReadBlobLSBShort(image); if(BitmapHeader1.HorzRes && BitmapHeader1.VertRes) { image->units=PixelsPerCentimeterResolution; image->resolution.x=BitmapHeader1.HorzRes/470.0; image->resolution.y=BitmapHeader1.VertRes/470.0; } image->columns=BitmapHeader1.Width; image->rows=BitmapHeader1.Height; bpp=BitmapHeader1.Depth; goto UnpackRaster; case 0x0E: /*Color palette */ WPG_Palette.StartIndex=ReadBlobLSBShort(image); WPG_Palette.NumOfEntries=ReadBlobLSBShort(image); if ((WPG_Palette.NumOfEntries-WPG_Palette.StartIndex) > (Rec2.RecordLength-2-2) / 3) ThrowReaderException(CorruptImageError,"InvalidColormapIndex"); image->colors=WPG_Palette.NumOfEntries; if (!AcquireImageColormap(image,image->colors,exception)) goto NoMemory; for (i=WPG_Palette.StartIndex; i < (int)WPG_Palette.NumOfEntries; i++) { image->colormap[i].red=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); image->colormap[i].green=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); image->colormap[i].blue=ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); } break; case 0x11: /* Start PS l1 */ if(Rec.RecordLength > 8) image=ExtractPostscript(image,image_info, TellBlob(image)+8, /* skip PS header in the wpg */ (ssize_t) Rec.RecordLength-8,exception); break; case 0x14: /* bitmap type 2 */ BitmapHeader2.RotAngle=ReadBlobLSBShort(image); BitmapHeader2.LowLeftX=ReadBlobLSBShort(image); BitmapHeader2.LowLeftY=ReadBlobLSBShort(image); BitmapHeader2.UpRightX=ReadBlobLSBShort(image); BitmapHeader2.UpRightY=ReadBlobLSBShort(image); BitmapHeader2.Width=ReadBlobLSBShort(image); BitmapHeader2.Height=ReadBlobLSBShort(image); if ((BitmapHeader2.Width == 0) || (BitmapHeader2.Height == 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); BitmapHeader2.Depth=ReadBlobLSBShort(image); BitmapHeader2.HorzRes=ReadBlobLSBShort(image); BitmapHeader2.VertRes=ReadBlobLSBShort(image); image->units=PixelsPerCentimeterResolution; image->page.width=(unsigned int) ((BitmapHeader2.LowLeftX-BitmapHeader2.UpRightX)/470.0); image->page.height=(unsigned int) ((BitmapHeader2.LowLeftX-BitmapHeader2.UpRightY)/470.0); image->page.x=(int) (BitmapHeader2.LowLeftX/470.0); image->page.y=(int) (BitmapHeader2.LowLeftX/470.0); if(BitmapHeader2.HorzRes && BitmapHeader2.VertRes) { image->resolution.x=BitmapHeader2.HorzRes/470.0; image->resolution.y=BitmapHeader2.VertRes/470.0; } image->columns=BitmapHeader2.Width; image->rows=BitmapHeader2.Height; bpp=BitmapHeader2.Depth; UnpackRaster: status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) break; if ((image->colors == 0) && (bpp <= 16)) { image->colors=one << bpp; if (!AcquireImageColormap(image,image->colors,exception)) { NoMemory: ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); } /* printf("Load default colormap \n"); */ for (i=0; (i < (int) image->colors) && (i < 256); i++) { image->colormap[i].red=ScaleCharToQuantum(WPG1_Palette[i].Red); image->colormap[i].green=ScaleCharToQuantum(WPG1_Palette[i].Green); image->colormap[i].blue=ScaleCharToQuantum(WPG1_Palette[i].Blue); } } else { if (bpp < 24) if ( (image->colors < (one << bpp)) && (bpp != 24) ) image->colormap=(PixelInfo *) ResizeQuantumMemory( image->colormap,(size_t) (one << bpp), sizeof(*image->colormap)); } if (bpp == 1) { if(image->colormap[0].red==0 && image->colormap[0].green==0 && image->colormap[0].blue==0 && image->colormap[1].red==0 && image->colormap[1].green==0 && image->colormap[1].blue==0) { /* fix crippled monochrome palette */ image->colormap[1].red = image->colormap[1].green = image->colormap[1].blue = QuantumRange; } } if(UnpackWPGRaster(image,bpp,exception) < 0) /* The raster cannot be unpacked */ { DecompressionFailed: ThrowReaderException(CoderError,"UnableToDecompressImage"); } if(Rec.RecType==0x14 && BitmapHeader2.RotAngle!=0 && !image_info->ping) { /* flop command */ if(BitmapHeader2.RotAngle & 0x8000) { Image *flop_image; flop_image = FlopImage(image, exception); if (flop_image != (Image *) NULL) { DuplicateBlob(flop_image,image); ReplaceImageInList(&image,flop_image); } } /* flip command */ if(BitmapHeader2.RotAngle & 0x2000) { Image *flip_image; flip_image = FlipImage(image, exception); if (flip_image != (Image *) NULL) { DuplicateBlob(flip_image,image); ReplaceImageInList(&image,flip_image); } } /* rotate command */ if(BitmapHeader2.RotAngle & 0x0FFF) { Image *rotate_image; rotate_image=RotateImage(image,(BitmapHeader2.RotAngle & 0x0FFF), exception); if (rotate_image != (Image *) NULL) { DuplicateBlob(rotate_image,image); ReplaceImageInList(&image,rotate_image); } } } /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); image->depth=8; if (image->next == (Image *) NULL) goto Finish; image=SyncNextImageInList(image); image->columns=image->rows=1; image->colors=0; break; case 0x1B: /* Postscript l2 */ if(Rec.RecordLength>0x3C) image=ExtractPostscript(image,image_info, TellBlob(image)+0x3C, /* skip PS l2 header in the wpg */ (ssize_t) Rec.RecordLength-0x3C,exception); break; } } break; case 2: /* WPG level 2 */ (void) memset(CTM,0,sizeof(CTM)); StartWPG.PosSizePrecision = 0; while(!EOFBlob(image)) /* object parser loop */ { (void) SeekBlob(image,Header.DataOffset,SEEK_SET); if(EOFBlob(image)) break; Rec2.Class=(i=ReadBlobByte(image)); if(i==EOF) break; Rec2.RecType=(i=ReadBlobByte(image)); if(i==EOF) break; Rd_WP_DWORD(image,&Rec2.Extension); Rd_WP_DWORD(image,&Rec2.RecordLength); if(EOFBlob(image)) break; Header.DataOffset=TellBlob(image)+Rec2.RecordLength; switch(Rec2.RecType) { case 1: StartWPG.HorizontalUnits=ReadBlobLSBShort(image); StartWPG.VerticalUnits=ReadBlobLSBShort(image); StartWPG.PosSizePrecision=ReadBlobByte(image); break; case 0x0C: /* Color palette */ WPG_Palette.StartIndex=ReadBlobLSBShort(image); WPG_Palette.NumOfEntries=ReadBlobLSBShort(image); if ((WPG_Palette.NumOfEntries-WPG_Palette.StartIndex) > (Rec2.RecordLength-2-2) / 3) ThrowReaderException(CorruptImageError,"InvalidColormapIndex"); image->colors=WPG_Palette.NumOfEntries; if (AcquireImageColormap(image,image->colors,exception) == MagickFalse) ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); for (i=WPG_Palette.StartIndex; i < (int)WPG_Palette.NumOfEntries; i++) { image->colormap[i].red=ScaleCharToQuantum((char) ReadBlobByte(image)); image->colormap[i].green=ScaleCharToQuantum((char) ReadBlobByte(image)); image->colormap[i].blue=ScaleCharToQuantum((char) ReadBlobByte(image)); (void) ReadBlobByte(image); /*Opacity??*/ } break; case 0x0E: Bitmap2Header1.Width=ReadBlobLSBShort(image); Bitmap2Header1.Height=ReadBlobLSBShort(image); if ((Bitmap2Header1.Width == 0) || (Bitmap2Header1.Height == 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); Bitmap2Header1.Depth=ReadBlobByte(image); Bitmap2Header1.Compression=ReadBlobByte(image); if(Bitmap2Header1.Compression > 1) continue; /*Unknown compression method */ switch(Bitmap2Header1.Depth) { case 1: bpp=1; break; case 2: bpp=2; break; case 3: bpp=4; break; case 4: bpp=8; break; case 8: bpp=24; break; default: continue; /*Ignore raster with unknown depth*/ } image->columns=Bitmap2Header1.Width; image->rows=Bitmap2Header1.Height; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) break; if ((image->colors == 0) && (bpp != 24)) { image->colors=one << bpp; if (!AcquireImageColormap(image,image->colors,exception)) goto NoMemory; } else { if(bpp < 24) if( image->colors<(one << bpp) && bpp!=24 ) image->colormap=(PixelInfo *) ResizeQuantumMemory( image->colormap,(size_t) (one << bpp), sizeof(*image->colormap)); } switch(Bitmap2Header1.Compression) { case 0: /*Uncompressed raster*/ { ldblk=(ssize_t) ((bpp*image->columns+7)/8); BImgBuff=(unsigned char *) AcquireQuantumMemory((size_t) ldblk+1,sizeof(*BImgBuff)); if (BImgBuff == (unsigned char *) NULL) goto NoMemory; for(i=0; i< (ssize_t) image->rows; i++) { (void) ReadBlob(image,ldblk,BImgBuff); InsertRow(image,BImgBuff,i,bpp,exception); } if(BImgBuff) BImgBuff=(unsigned char *) RelinquishMagickMemory(BImgBuff); break; } case 1: /*RLE for WPG2 */ { if( UnpackWPG2Raster(image,bpp,exception) < 0) goto DecompressionFailed; break; } } if(CTM[0][0]<0 && !image_info->ping) { /*?? RotAngle=360-RotAngle;*/ Image *flop_image; flop_image = FlopImage(image, exception); if (flop_image != (Image *) NULL) { DuplicateBlob(flop_image,image); ReplaceImageInList(&image,flop_image); } /* Try to change CTM according to Flip - I am not sure, must be checked. Tx(0,0)=-1; Tx(1,0)=0; Tx(2,0)=0; Tx(0,1)= 0; Tx(1,1)=1; Tx(2,1)=0; Tx(0,2)=(WPG._2Rect.X_ur+WPG._2Rect.X_ll); Tx(1,2)=0; Tx(2,2)=1; */ } if(CTM[1][1]<0 && !image_info->ping) { /*?? RotAngle=360-RotAngle;*/ Image *flip_image; flip_image = FlipImage(image, exception); if (flip_image != (Image *) NULL) { DuplicateBlob(flip_image,image); ReplaceImageInList(&image,flip_image); } /* Try to change CTM according to Flip - I am not sure, must be checked. float_matrix Tx(3,3); Tx(0,0)= 1; Tx(1,0)= 0; Tx(2,0)=0; Tx(0,1)= 0; Tx(1,1)=-1; Tx(2,1)=0; Tx(0,2)= 0; Tx(1,2)=(WPG._2Rect.Y_ur+WPG._2Rect.Y_ll); Tx(2,2)=1; */ } /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); image->depth=8; if (image->next == (Image *) NULL) goto Finish; image=SyncNextImageInList(image); image->columns=image->rows=1; image->colors=0; break; case 0x12: /* Postscript WPG2*/ i=ReadBlobLSBShort(image); if(Rec2.RecordLength > (unsigned int) i) image=ExtractPostscript(image,image_info, TellBlob(image)+i, /*skip PS header in the wpg2*/ (ssize_t) (Rec2.RecordLength-i-2),exception); break; case 0x1B: /*bitmap rectangle*/ WPG2Flags = LoadWPG2Flags(image,StartWPG.PosSizePrecision,NULL,&CTM); (void) WPG2Flags; break; } } break; default: { ThrowReaderException(CoderError,"DataEncodingSchemeIsNotSupported"); } } Finish: (void) CloseBlob(image); { Image *p; ssize_t scene=0; /* Rewind list, removing any empty images while rewinding. */ p=image; image=NULL; while (p != (Image *) NULL) { Image *tmp=p; if ((p->rows == 0) || (p->columns == 0)) { p=p->previous; DeleteImageFromList(&tmp); } else { image=p; p=p->previous; } } /* Fix scene numbers. */ for (p=image; p != (Image *) NULL; p=p->next) p->scene=(size_t) scene++; } if (image == (Image *) NULL) ThrowReaderException(CorruptImageError, "ImageFileDoesNotContainAnyImageData"); return(image); }
CWE-119
180,846
2,398
159163992560882621855337767657661558656
null
null
null
linux
1c0edc3633b56000e18d82fc241e3995ca18a69e
1
int usb_get_bos_descriptor(struct usb_device *dev) { struct device *ddev = &dev->dev; struct usb_bos_descriptor *bos; struct usb_dev_cap_header *cap; unsigned char *buffer; int length, total_len, num, i; int ret; bos = kzalloc(sizeof(struct usb_bos_descriptor), GFP_KERNEL); if (!bos) return -ENOMEM; /* Get BOS descriptor */ ret = usb_get_descriptor(dev, USB_DT_BOS, 0, bos, USB_DT_BOS_SIZE); if (ret < USB_DT_BOS_SIZE) { dev_err(ddev, "unable to get BOS descriptor\n"); if (ret >= 0) ret = -ENOMSG; kfree(bos); return ret; } length = bos->bLength; total_len = le16_to_cpu(bos->wTotalLength); num = bos->bNumDeviceCaps; kfree(bos); if (total_len < length) return -EINVAL; dev->bos = kzalloc(sizeof(struct usb_host_bos), GFP_KERNEL); if (!dev->bos) return -ENOMEM; /* Now let's get the whole BOS descriptor set */ buffer = kzalloc(total_len, GFP_KERNEL); if (!buffer) { ret = -ENOMEM; goto err; } dev->bos->desc = (struct usb_bos_descriptor *)buffer; ret = usb_get_descriptor(dev, USB_DT_BOS, 0, buffer, total_len); if (ret < total_len) { dev_err(ddev, "unable to get BOS descriptor set\n"); if (ret >= 0) ret = -ENOMSG; goto err; } total_len -= length; for (i = 0; i < num; i++) { buffer += length; cap = (struct usb_dev_cap_header *)buffer; length = cap->bLength; if (total_len < length) break; total_len -= length; if (cap->bDescriptorType != USB_DT_DEVICE_CAPABILITY) { dev_warn(ddev, "descriptor type invalid, skip\n"); continue; } switch (cap->bDevCapabilityType) { case USB_CAP_TYPE_WIRELESS_USB: /* Wireless USB cap descriptor is handled by wusb */ break; case USB_CAP_TYPE_EXT: dev->bos->ext_cap = (struct usb_ext_cap_descriptor *)buffer; break; case USB_SS_CAP_TYPE: dev->bos->ss_cap = (struct usb_ss_cap_descriptor *)buffer; break; case USB_SSP_CAP_TYPE: dev->bos->ssp_cap = (struct usb_ssp_cap_descriptor *)buffer; break; case CONTAINER_ID_TYPE: dev->bos->ss_id = (struct usb_ss_container_id_descriptor *)buffer; break; case USB_PTM_CAP_TYPE: dev->bos->ptm_cap = (struct usb_ptm_cap_descriptor *)buffer; default: break; } } return 0; err: usb_release_bos_descriptor(dev); return ret; }
CWE-125
180,847
2,399
326295248605660377066265869143708055629
null
null
null
linux
2e1c42391ff2556387b3cb6308b24f6f65619feb
1
int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr, struct usb_interface *intf, u8 *buffer, int buflen) { /* duplicates are ignored */ struct usb_cdc_union_desc *union_header = NULL; /* duplicates are not tolerated */ struct usb_cdc_header_desc *header = NULL; struct usb_cdc_ether_desc *ether = NULL; struct usb_cdc_mdlm_detail_desc *detail = NULL; struct usb_cdc_mdlm_desc *desc = NULL; unsigned int elength; int cnt = 0; memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header)); hdr->phonet_magic_present = false; while (buflen > 0) { elength = buffer[0]; if (!elength) { dev_err(&intf->dev, "skipping garbage byte\n"); elength = 1; goto next_desc; } if (buffer[1] != USB_DT_CS_INTERFACE) { dev_err(&intf->dev, "skipping garbage\n"); goto next_desc; } switch (buffer[2]) { case USB_CDC_UNION_TYPE: /* we've found it */ if (elength < sizeof(struct usb_cdc_union_desc)) goto next_desc; if (union_header) { dev_err(&intf->dev, "More than one union descriptor, skipping ...\n"); goto next_desc; } union_header = (struct usb_cdc_union_desc *)buffer; break; case USB_CDC_COUNTRY_TYPE: if (elength < sizeof(struct usb_cdc_country_functional_desc)) goto next_desc; hdr->usb_cdc_country_functional_desc = (struct usb_cdc_country_functional_desc *)buffer; break; case USB_CDC_HEADER_TYPE: if (elength != sizeof(struct usb_cdc_header_desc)) goto next_desc; if (header) return -EINVAL; header = (struct usb_cdc_header_desc *)buffer; break; case USB_CDC_ACM_TYPE: if (elength < sizeof(struct usb_cdc_acm_descriptor)) goto next_desc; hdr->usb_cdc_acm_descriptor = (struct usb_cdc_acm_descriptor *)buffer; break; case USB_CDC_ETHERNET_TYPE: if (elength != sizeof(struct usb_cdc_ether_desc)) goto next_desc; if (ether) return -EINVAL; ether = (struct usb_cdc_ether_desc *)buffer; break; case USB_CDC_CALL_MANAGEMENT_TYPE: if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor)) goto next_desc; hdr->usb_cdc_call_mgmt_descriptor = (struct usb_cdc_call_mgmt_descriptor *)buffer; break; case USB_CDC_DMM_TYPE: if (elength < sizeof(struct usb_cdc_dmm_desc)) goto next_desc; hdr->usb_cdc_dmm_desc = (struct usb_cdc_dmm_desc *)buffer; break; case USB_CDC_MDLM_TYPE: if (elength < sizeof(struct usb_cdc_mdlm_desc *)) goto next_desc; if (desc) return -EINVAL; desc = (struct usb_cdc_mdlm_desc *)buffer; break; case USB_CDC_MDLM_DETAIL_TYPE: if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *)) goto next_desc; if (detail) return -EINVAL; detail = (struct usb_cdc_mdlm_detail_desc *)buffer; break; case USB_CDC_NCM_TYPE: if (elength < sizeof(struct usb_cdc_ncm_desc)) goto next_desc; hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer; break; case USB_CDC_MBIM_TYPE: if (elength < sizeof(struct usb_cdc_mbim_desc)) goto next_desc; hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer; break; case USB_CDC_MBIM_EXTENDED_TYPE: if (elength < sizeof(struct usb_cdc_mbim_extended_desc)) break; hdr->usb_cdc_mbim_extended_desc = (struct usb_cdc_mbim_extended_desc *)buffer; break; case CDC_PHONET_MAGIC_NUMBER: hdr->phonet_magic_present = true; break; default: /* * there are LOTS more CDC descriptors that * could legitimately be found here. */ dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n", buffer[2], elength); goto next_desc; } cnt++; next_desc: buflen -= elength; buffer += elength; } hdr->usb_cdc_union_desc = union_header; hdr->usb_cdc_header_desc = header; hdr->usb_cdc_mdlm_detail_desc = detail; hdr->usb_cdc_mdlm_desc = desc; hdr->usb_cdc_ether_desc = ether; return cnt; }
CWE-119
180,848
2,400
126505036785122092950930144116403378139
null
null
null
linux
f043bfc98c193c284e2cd768fefabe18ac2fed9b
1
static int usbhid_parse(struct hid_device *hid) { struct usb_interface *intf = to_usb_interface(hid->dev.parent); struct usb_host_interface *interface = intf->cur_altsetting; struct usb_device *dev = interface_to_usbdev (intf); struct hid_descriptor *hdesc; u32 quirks = 0; unsigned int rsize = 0; char *rdesc; int ret, n; quirks = usbhid_lookup_quirk(le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); if (quirks & HID_QUIRK_IGNORE) return -ENODEV; /* Many keyboards and mice don't like to be polled for reports, * so we will always set the HID_QUIRK_NOGET flag for them. */ if (interface->desc.bInterfaceSubClass == USB_INTERFACE_SUBCLASS_BOOT) { if (interface->desc.bInterfaceProtocol == USB_INTERFACE_PROTOCOL_KEYBOARD || interface->desc.bInterfaceProtocol == USB_INTERFACE_PROTOCOL_MOUSE) quirks |= HID_QUIRK_NOGET; } if (usb_get_extra_descriptor(interface, HID_DT_HID, &hdesc) && (!interface->desc.bNumEndpoints || usb_get_extra_descriptor(&interface->endpoint[0], HID_DT_HID, &hdesc))) { dbg_hid("class descriptor not present\n"); return -ENODEV; } hid->version = le16_to_cpu(hdesc->bcdHID); hid->country = hdesc->bCountryCode; for (n = 0; n < hdesc->bNumDescriptors; n++) if (hdesc->desc[n].bDescriptorType == HID_DT_REPORT) rsize = le16_to_cpu(hdesc->desc[n].wDescriptorLength); if (!rsize || rsize > HID_MAX_DESCRIPTOR_SIZE) { dbg_hid("weird size of report descriptor (%u)\n", rsize); return -EINVAL; } rdesc = kmalloc(rsize, GFP_KERNEL); if (!rdesc) return -ENOMEM; hid_set_idle(dev, interface->desc.bInterfaceNumber, 0, 0); ret = hid_get_class_descriptor(dev, interface->desc.bInterfaceNumber, HID_DT_REPORT, rdesc, rsize); if (ret < 0) { dbg_hid("reading report descriptor failed\n"); kfree(rdesc); goto err; } ret = hid_parse_report(hid, rdesc, rsize); kfree(rdesc); if (ret) { dbg_hid("parsing report descriptor failed\n"); goto err; } hid->quirks |= quirks; return 0; err: return ret; }
CWE-125
180,849
2,401
185715477481380405991722673664044798446
null
null
null
linux
bd7a3fe770ebd8391d1c7d072ff88e9e76d063eb
1
static int usb_parse_configuration(struct usb_device *dev, int cfgidx, struct usb_host_config *config, unsigned char *buffer, int size) { struct device *ddev = &dev->dev; unsigned char *buffer0 = buffer; int cfgno; int nintf, nintf_orig; int i, j, n; struct usb_interface_cache *intfc; unsigned char *buffer2; int size2; struct usb_descriptor_header *header; int len, retval; u8 inums[USB_MAXINTERFACES], nalts[USB_MAXINTERFACES]; unsigned iad_num = 0; memcpy(&config->desc, buffer, USB_DT_CONFIG_SIZE); if (config->desc.bDescriptorType != USB_DT_CONFIG || config->desc.bLength < USB_DT_CONFIG_SIZE || config->desc.bLength > size) { dev_err(ddev, "invalid descriptor for config index %d: " "type = 0x%X, length = %d\n", cfgidx, config->desc.bDescriptorType, config->desc.bLength); return -EINVAL; } cfgno = config->desc.bConfigurationValue; buffer += config->desc.bLength; size -= config->desc.bLength; nintf = nintf_orig = config->desc.bNumInterfaces; if (nintf > USB_MAXINTERFACES) { dev_warn(ddev, "config %d has too many interfaces: %d, " "using maximum allowed: %d\n", cfgno, nintf, USB_MAXINTERFACES); nintf = USB_MAXINTERFACES; } /* Go through the descriptors, checking their length and counting the * number of altsettings for each interface */ n = 0; for ((buffer2 = buffer, size2 = size); size2 > 0; (buffer2 += header->bLength, size2 -= header->bLength)) { if (size2 < sizeof(struct usb_descriptor_header)) { dev_warn(ddev, "config %d descriptor has %d excess " "byte%s, ignoring\n", cfgno, size2, plural(size2)); break; } header = (struct usb_descriptor_header *) buffer2; if ((header->bLength > size2) || (header->bLength < 2)) { dev_warn(ddev, "config %d has an invalid descriptor " "of length %d, skipping remainder of the config\n", cfgno, header->bLength); break; } if (header->bDescriptorType == USB_DT_INTERFACE) { struct usb_interface_descriptor *d; int inum; d = (struct usb_interface_descriptor *) header; if (d->bLength < USB_DT_INTERFACE_SIZE) { dev_warn(ddev, "config %d has an invalid " "interface descriptor of length %d, " "skipping\n", cfgno, d->bLength); continue; } inum = d->bInterfaceNumber; if ((dev->quirks & USB_QUIRK_HONOR_BNUMINTERFACES) && n >= nintf_orig) { dev_warn(ddev, "config %d has more interface " "descriptors, than it declares in " "bNumInterfaces, ignoring interface " "number: %d\n", cfgno, inum); continue; } if (inum >= nintf_orig) dev_warn(ddev, "config %d has an invalid " "interface number: %d but max is %d\n", cfgno, inum, nintf_orig - 1); /* Have we already encountered this interface? * Count its altsettings */ for (i = 0; i < n; ++i) { if (inums[i] == inum) break; } if (i < n) { if (nalts[i] < 255) ++nalts[i]; } else if (n < USB_MAXINTERFACES) { inums[n] = inum; nalts[n] = 1; ++n; } } else if (header->bDescriptorType == USB_DT_INTERFACE_ASSOCIATION) { if (iad_num == USB_MAXIADS) { dev_warn(ddev, "found more Interface " "Association Descriptors " "than allocated for in " "configuration %d\n", cfgno); } else { config->intf_assoc[iad_num] = (struct usb_interface_assoc_descriptor *)header; iad_num++; } } else if (header->bDescriptorType == USB_DT_DEVICE || header->bDescriptorType == USB_DT_CONFIG) dev_warn(ddev, "config %d contains an unexpected " "descriptor of type 0x%X, skipping\n", cfgno, header->bDescriptorType); } /* for ((buffer2 = buffer, size2 = size); ...) */ size = buffer2 - buffer; config->desc.wTotalLength = cpu_to_le16(buffer2 - buffer0); if (n != nintf) dev_warn(ddev, "config %d has %d interface%s, different from " "the descriptor's value: %d\n", cfgno, n, plural(n), nintf_orig); else if (n == 0) dev_warn(ddev, "config %d has no interfaces?\n", cfgno); config->desc.bNumInterfaces = nintf = n; /* Check for missing interface numbers */ for (i = 0; i < nintf; ++i) { for (j = 0; j < nintf; ++j) { if (inums[j] == i) break; } if (j >= nintf) dev_warn(ddev, "config %d has no interface number " "%d\n", cfgno, i); } /* Allocate the usb_interface_caches and altsetting arrays */ for (i = 0; i < nintf; ++i) { j = nalts[i]; if (j > USB_MAXALTSETTING) { dev_warn(ddev, "too many alternate settings for " "config %d interface %d: %d, " "using maximum allowed: %d\n", cfgno, inums[i], j, USB_MAXALTSETTING); nalts[i] = j = USB_MAXALTSETTING; } len = sizeof(*intfc) + sizeof(struct usb_host_interface) * j; config->intf_cache[i] = intfc = kzalloc(len, GFP_KERNEL); if (!intfc) return -ENOMEM; kref_init(&intfc->ref); } /* FIXME: parse the BOS descriptor */ /* Skip over any Class Specific or Vendor Specific descriptors; * find the first interface descriptor */ config->extra = buffer; i = find_next_descriptor(buffer, size, USB_DT_INTERFACE, USB_DT_INTERFACE, &n); config->extralen = i; if (n > 0) dev_dbg(ddev, "skipped %d descriptor%s after %s\n", n, plural(n), "configuration"); buffer += i; size -= i; /* Parse all the interface/altsetting descriptors */ while (size > 0) { retval = usb_parse_interface(ddev, cfgno, config, buffer, size, inums, nalts); if (retval < 0) return retval; buffer += retval; size -= retval; } /* Check for missing altsettings */ for (i = 0; i < nintf; ++i) { intfc = config->intf_cache[i]; for (j = 0; j < intfc->num_altsetting; ++j) { for (n = 0; n < intfc->num_altsetting; ++n) { if (intfc->altsetting[n].desc. bAlternateSetting == j) break; } if (n >= intfc->num_altsetting) dev_warn(ddev, "config %d interface %d has no " "altsetting %d\n", cfgno, inums[i], j); } } return 0; }
CWE-119
180,851
2,402
240764745726812281413181367713856263063
null
null
null
linux
bfc81a8bc18e3c4ba0cbaa7666ff76be2f998991
1
static int snd_usb_create_streams(struct snd_usb_audio *chip, int ctrlif) { struct usb_device *dev = chip->dev; struct usb_host_interface *host_iface; struct usb_interface_descriptor *altsd; void *control_header; int i, protocol; /* find audiocontrol interface */ host_iface = &usb_ifnum_to_if(dev, ctrlif)->altsetting[0]; control_header = snd_usb_find_csint_desc(host_iface->extra, host_iface->extralen, NULL, UAC_HEADER); altsd = get_iface_desc(host_iface); protocol = altsd->bInterfaceProtocol; if (!control_header) { dev_err(&dev->dev, "cannot find UAC_HEADER\n"); return -EINVAL; } switch (protocol) { default: dev_warn(&dev->dev, "unknown interface protocol %#02x, assuming v1\n", protocol); /* fall through */ case UAC_VERSION_1: { struct uac1_ac_header_descriptor *h1 = control_header; if (!h1->bInCollection) { dev_info(&dev->dev, "skipping empty audio interface (v1)\n"); return -EINVAL; } if (h1->bLength < sizeof(*h1) + h1->bInCollection) { dev_err(&dev->dev, "invalid UAC_HEADER (v1)\n"); return -EINVAL; } for (i = 0; i < h1->bInCollection; i++) snd_usb_create_stream(chip, ctrlif, h1->baInterfaceNr[i]); break; } case UAC_VERSION_2: { struct usb_interface_assoc_descriptor *assoc = usb_ifnum_to_if(dev, ctrlif)->intf_assoc; if (!assoc) { /* * Firmware writers cannot count to three. So to find * the IAD on the NuForce UDH-100, also check the next * interface. */ struct usb_interface *iface = usb_ifnum_to_if(dev, ctrlif + 1); if (iface && iface->intf_assoc && iface->intf_assoc->bFunctionClass == USB_CLASS_AUDIO && iface->intf_assoc->bFunctionProtocol == UAC_VERSION_2) assoc = iface->intf_assoc; } if (!assoc) { dev_err(&dev->dev, "Audio class v2 interfaces need an interface association\n"); return -EINVAL; } for (i = 0; i < assoc->bInterfaceCount; i++) { int intf = assoc->bFirstInterface + i; if (intf != ctrlif) snd_usb_create_stream(chip, ctrlif, intf); } break; } } return 0; }
CWE-125
180,853
2,403
17984538902999569946368924950222980008
null
null
null
linux
fc27fe7e8deef2f37cba3f2be2d52b6ca5eb9d57
1
static int snd_seq_device_dev_free(struct snd_device *device) { struct snd_seq_device *dev = device->device_data; put_device(&dev->dev); return 0; }
CWE-416
180,854
2,404
27591105700120663554036974683684216243
null
null
null
linux
299d7572e46f98534033a9e65973f13ad1ce9047
1
static int usb_console_setup(struct console *co, char *options) { struct usbcons_info *info = &usbcons_info; int baud = 9600; int bits = 8; int parity = 'n'; int doflow = 0; int cflag = CREAD | HUPCL | CLOCAL; char *s; struct usb_serial *serial; struct usb_serial_port *port; int retval; struct tty_struct *tty = NULL; struct ktermios dummy; if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while (*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s++ - '0'; if (*s) doflow = (*s++ == 'r'); } /* Sane default */ if (baud == 0) baud = 9600; switch (bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch (parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; /* * no need to check the index here: if the index is wrong, console * code won't call us */ port = usb_serial_port_get_by_minor(co->index); if (port == NULL) { /* no device is connected yet, sorry :( */ pr_err("No USB device connected to ttyUSB%i\n", co->index); return -ENODEV; } serial = port->serial; retval = usb_autopm_get_interface(serial->interface); if (retval) goto error_get_interface; tty_port_tty_set(&port->port, NULL); info->port = port; ++port->port.count; if (!tty_port_initialized(&port->port)) { if (serial->type->set_termios) { /* * allocate a fake tty so the driver can initialize * the termios structure, then later call set_termios to * configure according to command line arguments */ tty = kzalloc(sizeof(*tty), GFP_KERNEL); if (!tty) { retval = -ENOMEM; goto reset_open_count; } kref_init(&tty->kref); tty->driver = usb_serial_tty_driver; tty->index = co->index; init_ldsem(&tty->ldisc_sem); spin_lock_init(&tty->files_lock); INIT_LIST_HEAD(&tty->tty_files); kref_get(&tty->driver->kref); __module_get(tty->driver->owner); tty->ops = &usb_console_fake_tty_ops; tty_init_termios(tty); tty_port_tty_set(&port->port, tty); } /* only call the device specific open if this * is the first time the port is opened */ retval = serial->type->open(NULL, port); if (retval) { dev_err(&port->dev, "could not open USB console port\n"); goto fail; } if (serial->type->set_termios) { tty->termios.c_cflag = cflag; tty_termios_encode_baud_rate(&tty->termios, baud, baud); memset(&dummy, 0, sizeof(struct ktermios)); serial->type->set_termios(tty, port, &dummy); tty_port_tty_set(&port->port, NULL); tty_kref_put(tty); } tty_port_set_initialized(&port->port, 1); } /* Now that any required fake tty operations are completed restore * the tty port count */ --port->port.count; /* The console is special in terms of closing the device so * indicate this port is now acting as a system console. */ port->port.console = 1; mutex_unlock(&serial->disc_mutex); return retval; fail: tty_port_tty_set(&port->port, NULL); tty_kref_put(tty); reset_open_count: port->port.count = 0; usb_autopm_put_interface(serial->interface); error_get_interface: usb_serial_put(serial); mutex_unlock(&serial->disc_mutex); return retval; }
CWE-416
180,859
2,409
315797150859318089009247205537515770557
null
null
null
radare2
62e39f34b2705131a2d08aff0c2e542c6a52cf0e
1
static Sdb *store_versioninfo_gnu_verdef(ELFOBJ *bin, Elf_(Shdr) *shdr, int sz) { const char *section_name = ""; const char *link_section_name = ""; char *end = NULL; Elf_(Shdr) *link_shdr = NULL; ut8 dfs[sizeof (Elf_(Verdef))] = {0}; Sdb *sdb; int cnt, i; if (shdr->sh_link > bin->ehdr.e_shnum) { return false; } link_shdr = &bin->shdr[shdr->sh_link]; if (shdr->sh_size < 1 || shdr->sh_size > SIZE_MAX) { return false; } Elf_(Verdef) *defs = calloc (shdr->sh_size, sizeof (char)); if (!defs) { return false; } if (bin->shstrtab && shdr->sh_name < bin->shstrtab_size) { section_name = &bin->shstrtab[shdr->sh_name]; } if (link_shdr && bin->shstrtab && link_shdr->sh_name < bin->shstrtab_size) { link_section_name = &bin->shstrtab[link_shdr->sh_name]; } if (!defs) { bprintf ("Warning: Cannot allocate memory (Check Elf_(Verdef))\n"); return NULL; } sdb = sdb_new0 (); end = (char *)defs + shdr->sh_size; sdb_set (sdb, "section_name", section_name, 0); sdb_num_set (sdb, "entries", shdr->sh_info, 0); sdb_num_set (sdb, "addr", shdr->sh_addr, 0); sdb_num_set (sdb, "offset", shdr->sh_offset, 0); sdb_num_set (sdb, "link", shdr->sh_link, 0); sdb_set (sdb, "link_section_name", link_section_name, 0); for (cnt = 0, i = 0; i >= 0 && cnt < shdr->sh_info && ((char *)defs + i < end); ++cnt) { Sdb *sdb_verdef = sdb_new0 (); char *vstart = ((char*)defs) + i; char key[32] = {0}; Elf_(Verdef) *verdef = (Elf_(Verdef)*)vstart; Elf_(Verdaux) aux = {0}; int j = 0; int isum = 0; r_buf_read_at (bin->b, shdr->sh_offset + i, dfs, sizeof (Elf_(Verdef))); verdef->vd_version = READ16 (dfs, j) verdef->vd_flags = READ16 (dfs, j) verdef->vd_ndx = READ16 (dfs, j) verdef->vd_cnt = READ16 (dfs, j) verdef->vd_hash = READ32 (dfs, j) verdef->vd_aux = READ32 (dfs, j) verdef->vd_next = READ32 (dfs, j) int vdaux = verdef->vd_aux; if (vdaux < 1) { sdb_free (sdb_verdef); goto out_error; } vstart += vdaux; if (vstart > end || vstart + sizeof (Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); goto out_error; } j = 0; aux.vda_name = READ32 (vstart, j) aux.vda_next = READ32 (vstart, j) isum = i + verdef->vd_aux; if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); goto out_error; } sdb_num_set (sdb_verdef, "idx", i, 0); sdb_num_set (sdb_verdef, "vd_version", verdef->vd_version, 0); sdb_num_set (sdb_verdef, "vd_ndx", verdef->vd_ndx, 0); sdb_num_set (sdb_verdef, "vd_cnt", verdef->vd_cnt, 0); sdb_set (sdb_verdef, "vda_name", &bin->dynstr[aux.vda_name], 0); sdb_set (sdb_verdef, "flags", get_ver_flags (verdef->vd_flags), 0); for (j = 1; j < verdef->vd_cnt; ++j) { int k; Sdb *sdb_parent = sdb_new0 (); isum += aux.vda_next; vstart += aux.vda_next; if (vstart > end || vstart + sizeof(Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } k = 0; aux.vda_name = READ32 (vstart, k) aux.vda_next = READ32 (vstart, k) if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } sdb_num_set (sdb_parent, "idx", isum, 0); sdb_num_set (sdb_parent, "parent", j, 0); sdb_set (sdb_parent, "vda_name", &bin->dynstr[aux.vda_name], 0); snprintf (key, sizeof (key), "parent%d", j - 1); sdb_ns_set (sdb_verdef, key, sdb_parent); } snprintf (key, sizeof (key), "verdef%d", cnt); sdb_ns_set (sdb, key, sdb_verdef); if (!verdef->vd_next) { sdb_free (sdb_verdef); goto out_error; } if ((st32)verdef->vd_next < 1) { eprintf ("Warning: Invalid vd_next in the ELF version\n"); break; } i += verdef->vd_next; } free (defs); return sdb; out_error: free (defs); sdb_free (sdb); return NULL; }
CWE-476
180,860
2,410
256945349868002668483144656008195023828
null
null
null
radare2
0b973e28166636e0ff1fad80baa0385c9c09c53a
1
static Sdb *store_versioninfo_gnu_verdef(ELFOBJ *bin, Elf_(Shdr) *shdr, int sz) { const char *section_name = ""; const char *link_section_name = ""; char *end = NULL; Elf_(Shdr) *link_shdr = NULL; ut8 dfs[sizeof (Elf_(Verdef))] = {0}; Sdb *sdb; int cnt, i; if (shdr->sh_link > bin->ehdr.e_shnum) { return false; } link_shdr = &bin->shdr[shdr->sh_link]; if (shdr->sh_size < 1) { return false; } Elf_(Verdef) *defs = calloc (shdr->sh_size, sizeof (char)); if (!defs) { return false; } if (bin->shstrtab && shdr->sh_name < bin->shstrtab_size) { section_name = &bin->shstrtab[shdr->sh_name]; } if (link_shdr && bin->shstrtab && link_shdr->sh_name < bin->shstrtab_size) { link_section_name = &bin->shstrtab[link_shdr->sh_name]; } if (!defs) { bprintf ("Warning: Cannot allocate memory (Check Elf_(Verdef))\n"); return NULL; } sdb = sdb_new0 (); end = (char *)defs + shdr->sh_size; sdb_set (sdb, "section_name", section_name, 0); sdb_num_set (sdb, "entries", shdr->sh_info, 0); sdb_num_set (sdb, "addr", shdr->sh_addr, 0); sdb_num_set (sdb, "offset", shdr->sh_offset, 0); sdb_num_set (sdb, "link", shdr->sh_link, 0); sdb_set (sdb, "link_section_name", link_section_name, 0); for (cnt = 0, i = 0; i >= 0 && cnt < shdr->sh_info && ((char *)defs + i < end); ++cnt) { Sdb *sdb_verdef = sdb_new0 (); char *vstart = ((char*)defs) + i; char key[32] = {0}; Elf_(Verdef) *verdef = (Elf_(Verdef)*)vstart; Elf_(Verdaux) aux = {0}; int j = 0; int isum = 0; r_buf_read_at (bin->b, shdr->sh_offset + i, dfs, sizeof (Elf_(Verdef))); verdef->vd_version = READ16 (dfs, j) verdef->vd_flags = READ16 (dfs, j) verdef->vd_ndx = READ16 (dfs, j) verdef->vd_cnt = READ16 (dfs, j) verdef->vd_hash = READ32 (dfs, j) verdef->vd_aux = READ32 (dfs, j) verdef->vd_next = READ32 (dfs, j) int vdaux = verdef->vd_aux; if (vdaux < 1) { sdb_free (sdb_verdef); goto out_error; } vstart += vdaux; if (vstart > end || vstart + sizeof (Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); goto out_error; } j = 0; aux.vda_name = READ32 (vstart, j) aux.vda_next = READ32 (vstart, j) isum = i + verdef->vd_aux; if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); goto out_error; } sdb_num_set (sdb_verdef, "idx", i, 0); sdb_num_set (sdb_verdef, "vd_version", verdef->vd_version, 0); sdb_num_set (sdb_verdef, "vd_ndx", verdef->vd_ndx, 0); sdb_num_set (sdb_verdef, "vd_cnt", verdef->vd_cnt, 0); sdb_set (sdb_verdef, "vda_name", &bin->dynstr[aux.vda_name], 0); sdb_set (sdb_verdef, "flags", get_ver_flags (verdef->vd_flags), 0); for (j = 1; j < verdef->vd_cnt; ++j) { int k; Sdb *sdb_parent = sdb_new0 (); isum += aux.vda_next; vstart += aux.vda_next; if (vstart > end || vstart + sizeof(Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } k = 0; aux.vda_name = READ32 (vstart, k) aux.vda_next = READ32 (vstart, k) if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } sdb_num_set (sdb_parent, "idx", isum, 0); sdb_num_set (sdb_parent, "parent", j, 0); sdb_set (sdb_parent, "vda_name", &bin->dynstr[aux.vda_name], 0); snprintf (key, sizeof (key), "parent%d", j - 1); sdb_ns_set (sdb_verdef, key, sdb_parent); } snprintf (key, sizeof (key), "verdef%d", cnt); sdb_ns_set (sdb, key, sdb_verdef); if (!verdef->vd_next) { sdb_free (sdb_verdef); goto out_error; } if ((st32)verdef->vd_next < 1) { eprintf ("Warning: Invalid vd_next in the ELF version\n"); break; } i += verdef->vd_next; } free (defs); return sdb; out_error: free (defs); sdb_free (sdb); return NULL; }
CWE-119
180,861
2,411
14868589566797490319741247466536626347
null
null
null
radare2
0b973e28166636e0ff1fad80baa0385c9c09c53a
1
static Sdb *store_versioninfo_gnu_verneed(ELFOBJ *bin, Elf_(Shdr) *shdr, int sz) { ut8 *end, *need = NULL; const char *section_name = ""; Elf_(Shdr) *link_shdr = NULL; const char *link_section_name = ""; Sdb *sdb_vernaux = NULL; Sdb *sdb_version = NULL; Sdb *sdb = NULL; int i, cnt; if (!bin || !bin->dynstr) { return NULL; } if (shdr->sh_link > bin->ehdr.e_shnum) { return NULL; } if (shdr->sh_size < 1) { return NULL; } sdb = sdb_new0 (); if (!sdb) { return NULL; } link_shdr = &bin->shdr[shdr->sh_link]; if (bin->shstrtab && shdr->sh_name < bin->shstrtab_size) { section_name = &bin->shstrtab[shdr->sh_name]; } if (bin->shstrtab && link_shdr->sh_name < bin->shstrtab_size) { link_section_name = &bin->shstrtab[link_shdr->sh_name]; } if (!(need = (ut8*) calloc (R_MAX (1, shdr->sh_size), sizeof (ut8)))) { bprintf ("Warning: Cannot allocate memory for Elf_(Verneed)\n"); goto beach; } end = need + shdr->sh_size; sdb_set (sdb, "section_name", section_name, 0); sdb_num_set (sdb, "num_entries", shdr->sh_info, 0); sdb_num_set (sdb, "addr", shdr->sh_addr, 0); sdb_num_set (sdb, "offset", shdr->sh_offset, 0); sdb_num_set (sdb, "link", shdr->sh_link, 0); sdb_set (sdb, "link_section_name", link_section_name, 0); if (shdr->sh_offset > bin->size || shdr->sh_offset + shdr->sh_size > bin->size) { goto beach; } if (shdr->sh_offset + shdr->sh_size < shdr->sh_size) { goto beach; } i = r_buf_read_at (bin->b, shdr->sh_offset, need, shdr->sh_size); if (i < 0) goto beach; for (i = 0, cnt = 0; cnt < shdr->sh_info; ++cnt) { int j, isum; ut8 *vstart = need + i; Elf_(Verneed) vvn = {0}; if (vstart + sizeof (Elf_(Verneed)) > end) { goto beach; } Elf_(Verneed) *entry = &vvn; char key[32] = {0}; sdb_version = sdb_new0 (); if (!sdb_version) { goto beach; } j = 0; vvn.vn_version = READ16 (vstart, j) vvn.vn_cnt = READ16 (vstart, j) vvn.vn_file = READ32 (vstart, j) vvn.vn_aux = READ32 (vstart, j) vvn.vn_next = READ32 (vstart, j) sdb_num_set (sdb_version, "vn_version", entry->vn_version, 0); sdb_num_set (sdb_version, "idx", i, 0); if (entry->vn_file > bin->dynstr_size) { goto beach; } { char *s = r_str_ndup (&bin->dynstr[entry->vn_file], 16); sdb_set (sdb_version, "file_name", s, 0); free (s); } sdb_num_set (sdb_version, "cnt", entry->vn_cnt, 0); st32 vnaux = entry->vn_aux; if (vnaux < 1) { goto beach; } vstart += vnaux; for (j = 0, isum = i + entry->vn_aux; j < entry->vn_cnt && vstart + sizeof (Elf_(Vernaux)) <= end; ++j) { int k; Elf_(Vernaux) * aux = NULL; Elf_(Vernaux) vaux = {0}; sdb_vernaux = sdb_new0 (); if (!sdb_vernaux) { goto beach; } aux = (Elf_(Vernaux)*)&vaux; k = 0; vaux.vna_hash = READ32 (vstart, k) vaux.vna_flags = READ16 (vstart, k) vaux.vna_other = READ16 (vstart, k) vaux.vna_name = READ32 (vstart, k) vaux.vna_next = READ32 (vstart, k) if (aux->vna_name > bin->dynstr_size) { goto beach; } sdb_num_set (sdb_vernaux, "idx", isum, 0); if (aux->vna_name > 0 && aux->vna_name + 8 < bin->dynstr_size) { char name [16]; strncpy (name, &bin->dynstr[aux->vna_name], sizeof (name)-1); name[sizeof(name)-1] = 0; sdb_set (sdb_vernaux, "name", name, 0); } sdb_set (sdb_vernaux, "flags", get_ver_flags (aux->vna_flags), 0); sdb_num_set (sdb_vernaux, "version", aux->vna_other, 0); isum += aux->vna_next; vstart += aux->vna_next; snprintf (key, sizeof (key), "vernaux%d", j); sdb_ns_set (sdb_version, key, sdb_vernaux); } if ((int)entry->vn_next < 0) { bprintf ("Invalid vn_next\n"); break; } i += entry->vn_next; snprintf (key, sizeof (key), "version%d", cnt ); sdb_ns_set (sdb, key, sdb_version); if (!entry->vn_next) { break; } } free (need); return sdb; beach: free (need); sdb_free (sdb_vernaux); sdb_free (sdb_version); sdb_free (sdb); return NULL; }
CWE-119
180,862
2,412
239473085722377722115401106929450483795
null
null
null
radare2
44ded3ff35b8264f54b5a900cab32ec489d9e5b9
1
static Sdb *store_versioninfo_gnu_verdef(ELFOBJ *bin, Elf_(Shdr) *shdr, int sz) { const char *section_name = ""; const char *link_section_name = ""; char *end = NULL; Elf_(Shdr) *link_shdr = NULL; ut8 dfs[sizeof (Elf_(Verdef))] = {0}; Sdb *sdb; int cnt, i; if (shdr->sh_link > bin->ehdr.e_shnum) { return false; } link_shdr = &bin->shdr[shdr->sh_link]; if (shdr->sh_size < 1) { return false; } Elf_(Verdef) *defs = calloc (shdr->sh_size, sizeof (char)); if (!defs) { return false; } if (bin->shstrtab && shdr->sh_name < bin->shstrtab_size) { section_name = &bin->shstrtab[shdr->sh_name]; } if (link_shdr && bin->shstrtab && link_shdr->sh_name < bin->shstrtab_size) { link_section_name = &bin->shstrtab[link_shdr->sh_name]; } if (!defs) { bprintf ("Warning: Cannot allocate memory (Check Elf_(Verdef))\n"); return NULL; } sdb = sdb_new0 (); end = (char *)defs + shdr->sh_size; sdb_set (sdb, "section_name", section_name, 0); sdb_num_set (sdb, "entries", shdr->sh_info, 0); sdb_num_set (sdb, "addr", shdr->sh_addr, 0); sdb_num_set (sdb, "offset", shdr->sh_offset, 0); sdb_num_set (sdb, "link", shdr->sh_link, 0); sdb_set (sdb, "link_section_name", link_section_name, 0); for (cnt = 0, i = 0; i >= 0 && cnt < shdr->sh_info && ((char *)defs + i < end); ++cnt) { Sdb *sdb_verdef = sdb_new0 (); char *vstart = ((char*)defs) + i; char key[32] = {0}; Elf_(Verdef) *verdef = (Elf_(Verdef)*)vstart; Elf_(Verdaux) aux = {0}; int j = 0; int isum = 0; r_buf_read_at (bin->b, shdr->sh_offset + i, dfs, sizeof (Elf_(Verdef))); verdef->vd_version = READ16 (dfs, j) verdef->vd_flags = READ16 (dfs, j) verdef->vd_ndx = READ16 (dfs, j) verdef->vd_cnt = READ16 (dfs, j) verdef->vd_hash = READ32 (dfs, j) verdef->vd_aux = READ32 (dfs, j) verdef->vd_next = READ32 (dfs, j) vstart += verdef->vd_aux; if (vstart > end || vstart + sizeof (Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); goto out_error; } j = 0; aux.vda_name = READ32 (vstart, j) aux.vda_next = READ32 (vstart, j) isum = i + verdef->vd_aux; if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); goto out_error; } sdb_num_set (sdb_verdef, "idx", i, 0); sdb_num_set (sdb_verdef, "vd_version", verdef->vd_version, 0); sdb_num_set (sdb_verdef, "vd_ndx", verdef->vd_ndx, 0); sdb_num_set (sdb_verdef, "vd_cnt", verdef->vd_cnt, 0); sdb_set (sdb_verdef, "vda_name", &bin->dynstr[aux.vda_name], 0); sdb_set (sdb_verdef, "flags", get_ver_flags (verdef->vd_flags), 0); for (j = 1; j < verdef->vd_cnt; ++j) { int k; Sdb *sdb_parent = sdb_new0 (); isum += aux.vda_next; vstart += aux.vda_next; if (vstart > end || vstart + sizeof(Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } k = 0; aux.vda_name = READ32 (vstart, k) aux.vda_next = READ32 (vstart, k) if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } sdb_num_set (sdb_parent, "idx", isum, 0); sdb_num_set (sdb_parent, "parent", j, 0); sdb_set (sdb_parent, "vda_name", &bin->dynstr[aux.vda_name], 0); snprintf (key, sizeof (key), "parent%d", j - 1); sdb_ns_set (sdb_verdef, key, sdb_parent); } snprintf (key, sizeof (key), "verdef%d", cnt); sdb_ns_set (sdb, key, sdb_verdef); if (!verdef->vd_next) { sdb_free (sdb_verdef); goto out_error; } if ((st32)verdef->vd_next < 1) { eprintf ("Warning: Invalid vd_next in the ELF version\n"); break; } i += verdef->vd_next; } free (defs); return sdb; out_error: free (defs); sdb_free (sdb); return NULL; }
CWE-125
180,883
2,428
289574171374133833673846841637084736705
null
null
null
shadowsocks-libev
c67d275803dc6ea22c558d06b1f7ba9f94cd8de3
1
build_config(char *prefix, struct server *server) { char *path = NULL; int path_size = strlen(prefix) + strlen(server->port) + 20; path = ss_malloc(path_size); snprintf(path, path_size, "%s/.shadowsocks_%s.conf", prefix, server->port); FILE *f = fopen(path, "w+"); if (f == NULL) { if (verbose) { LOGE("unable to open config file"); } ss_free(path); return; } fprintf(f, "{\n"); fprintf(f, "\"server_port\":%d,\n", atoi(server->port)); fprintf(f, "\"password\":\"%s\"", server->password); if (server->fast_open[0]) fprintf(f, ",\n\"fast_open\": %s", server->fast_open); if (server->mode) fprintf(f, ",\n\"mode\":\"%s\"", server->mode); if (server->method) fprintf(f, ",\n\"method\":\"%s\"", server->method); if (server->plugin) fprintf(f, ",\n\"plugin\":\"%s\"", server->plugin); if (server->plugin_opts) fprintf(f, ",\n\"plugin_opts\":\"%s\"", server->plugin_opts); fprintf(f, "\n}\n"); fclose(f); ss_free(path); }
CWE-78
180,885
2,429
329376205814019093954971990828971672620
null
null
null
shadowsocks-libev
c67d275803dc6ea22c558d06b1f7ba9f94cd8de3
1
construct_command_line(struct manager_ctx *manager, struct server *server) { static char cmd[BUF_SIZE]; char *method = manager->method; int i; build_config(working_dir, server); if (server->method) method = server->method; memset(cmd, 0, BUF_SIZE); snprintf(cmd, BUF_SIZE, "%s -m %s --manager-address %s -f %s/.shadowsocks_%s.pid -c %s/.shadowsocks_%s.conf", executable, method, manager->manager_address, working_dir, server->port, working_dir, server->port); if (manager->acl != NULL) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --acl %s", manager->acl); } if (manager->timeout != NULL) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -t %s", manager->timeout); } #ifdef HAVE_SETRLIMIT if (manager->nofile) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -n %d", manager->nofile); } #endif if (manager->user != NULL) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -a %s", manager->user); } if (manager->verbose) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -v"); } if (server->mode == NULL && manager->mode == UDP_ONLY) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -U"); } if (server->mode == NULL && manager->mode == TCP_AND_UDP) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -u"); } if (server->fast_open[0] == 0 && manager->fast_open) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --fast-open"); } if (manager->ipv6first) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -6"); } if (manager->mtu) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --mtu %d", manager->mtu); } if (server->plugin == NULL && manager->plugin) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --plugin \"%s\"", manager->plugin); } if (server->plugin_opts == NULL && manager->plugin_opts) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --plugin-opts \"%s\"", manager->plugin_opts); } for (i = 0; i < manager->nameserver_num; i++) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -d %s", manager->nameservers[i]); } for (i = 0; i < manager->host_num; i++) { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " -s %s", manager->hosts[i]); } { int len = strlen(cmd); snprintf(cmd + len, BUF_SIZE - len, " --reuse-port"); } if (verbose) { LOGI("cmd: %s", cmd); } return cmd; }
CWE-78
180,886
2,430
56556845946959241723985189303974958310
null
null
null
src
a6981567e8e215acc1ef690c8dbb30f2d9b00a19
1
process_open(u_int32_t id) { u_int32_t pflags; Attrib a; char *name; int r, handle, fd, flags, mode, status = SSH2_FX_FAILURE; if ((r = sshbuf_get_cstring(iqueue, &name, NULL)) != 0 || (r = sshbuf_get_u32(iqueue, &pflags)) != 0 || /* portable flags */ (r = decode_attrib(iqueue, &a)) != 0) fatal("%s: buffer error: %s", __func__, ssh_err(r)); debug3("request %u: open flags %d", id, pflags); flags = flags_from_portable(pflags); mode = (a.flags & SSH2_FILEXFER_ATTR_PERMISSIONS) ? a.perm : 0666; logit("open \"%s\" flags %s mode 0%o", name, string_from_portable(pflags), mode); if (readonly && ((flags & O_ACCMODE) == O_WRONLY || (flags & O_ACCMODE) == O_RDWR)) { verbose("Refusing open request in read-only mode"); status = SSH2_FX_PERMISSION_DENIED; } else { fd = open(name, flags, mode); if (fd < 0) { status = errno_to_portable(errno); } else { handle = handle_new(HANDLE_FILE, name, fd, flags, NULL); if (handle < 0) { close(fd); } else { send_handle(id, handle); status = SSH2_FX_OK; } } } if (status != SSH2_FX_OK) send_status(id, status); free(name); }
CWE-269
180,887
2,431
7430065301267818646405159117640857338
null
null
null
linux
71bb99a02b32b4cc4265118e85f6035ca72923f0
1
int bnep_add_connection(struct bnep_connadd_req *req, struct socket *sock) { struct net_device *dev; struct bnep_session *s, *ss; u8 dst[ETH_ALEN], src[ETH_ALEN]; int err; BT_DBG(""); baswap((void *) dst, &l2cap_pi(sock->sk)->chan->dst); baswap((void *) src, &l2cap_pi(sock->sk)->chan->src); /* session struct allocated as private part of net_device */ dev = alloc_netdev(sizeof(struct bnep_session), (*req->device) ? req->device : "bnep%d", NET_NAME_UNKNOWN, bnep_net_setup); if (!dev) return -ENOMEM; down_write(&bnep_session_sem); ss = __bnep_get_session(dst); if (ss && ss->state == BT_CONNECTED) { err = -EEXIST; goto failed; } s = netdev_priv(dev); /* This is rx header therefore addresses are swapped. * ie. eh.h_dest is our local address. */ memcpy(s->eh.h_dest, &src, ETH_ALEN); memcpy(s->eh.h_source, &dst, ETH_ALEN); memcpy(dev->dev_addr, s->eh.h_dest, ETH_ALEN); s->dev = dev; s->sock = sock; s->role = req->role; s->state = BT_CONNECTED; s->msg.msg_flags = MSG_NOSIGNAL; #ifdef CONFIG_BT_BNEP_MC_FILTER /* Set default mc filter */ set_bit(bnep_mc_hash(dev->broadcast), (ulong *) &s->mc_filter); #endif #ifdef CONFIG_BT_BNEP_PROTO_FILTER /* Set default protocol filter */ bnep_set_default_proto_filter(s); #endif SET_NETDEV_DEV(dev, bnep_get_device(s)); SET_NETDEV_DEVTYPE(dev, &bnep_type); err = register_netdev(dev); if (err) goto failed; __bnep_link_session(s); __module_get(THIS_MODULE); s->task = kthread_run(bnep_session, s, "kbnepd %s", dev->name); if (IS_ERR(s->task)) { /* Session thread start failed, gotta cleanup. */ module_put(THIS_MODULE); unregister_netdev(dev); __bnep_unlink_session(s); err = PTR_ERR(s->task); goto failed; } up_write(&bnep_session_sem); strcpy(req->device, dev->name); return 0; failed: up_write(&bnep_session_sem); free_netdev(dev); return err; }
CWE-20
180,888
2,432
246459063774981644660060171161081083217
null
null
null
linux
4971613c1639d8e5f102c4e797c3bf8f83a5a69e
1
static int packet_do_bind(struct sock *sk, const char *name, int ifindex, __be16 proto) { struct packet_sock *po = pkt_sk(sk); struct net_device *dev_curr; __be16 proto_curr; bool need_rehook; struct net_device *dev = NULL; int ret = 0; bool unlisted = false; if (po->fanout) return -EINVAL; lock_sock(sk); spin_lock(&po->bind_lock); rcu_read_lock(); if (name) { dev = dev_get_by_name_rcu(sock_net(sk), name); if (!dev) { ret = -ENODEV; goto out_unlock; } } else if (ifindex) { dev = dev_get_by_index_rcu(sock_net(sk), ifindex); if (!dev) { ret = -ENODEV; goto out_unlock; } } if (dev) dev_hold(dev); proto_curr = po->prot_hook.type; dev_curr = po->prot_hook.dev; need_rehook = proto_curr != proto || dev_curr != dev; if (need_rehook) { if (po->running) { rcu_read_unlock(); __unregister_prot_hook(sk, true); rcu_read_lock(); dev_curr = po->prot_hook.dev; if (dev) unlisted = !dev_get_by_index_rcu(sock_net(sk), dev->ifindex); } po->num = proto; po->prot_hook.type = proto; if (unlikely(unlisted)) { dev_put(dev); po->prot_hook.dev = NULL; po->ifindex = -1; packet_cached_dev_reset(po); } else { po->prot_hook.dev = dev; po->ifindex = dev ? dev->ifindex : 0; packet_cached_dev_assign(po, dev); } } if (dev_curr) dev_put(dev_curr); if (proto == 0 || !need_rehook) goto out_unlock; if (!unlisted && (!dev || (dev->flags & IFF_UP))) { register_prot_hook(sk); } else { sk->sk_err = ENETDOWN; if (!sock_flag(sk, SOCK_DEAD)) sk->sk_error_report(sk); } out_unlock: rcu_read_unlock(); spin_unlock(&po->bind_lock); release_sock(sk); return ret; }
CWE-362
180,889
2,433
113256036162153374580649847624008527748
null
null
null
linux
814fb7bb7db5433757d76f4c4502c96fc53b0b5e
1
int xstateregs_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct fpu *fpu = &target->thread.fpu; struct xregs_state *xsave; int ret; if (!boot_cpu_has(X86_FEATURE_XSAVE)) return -ENODEV; /* * A whole standard-format XSAVE buffer is needed: */ if ((pos != 0) || (count < fpu_user_xstate_size)) return -EFAULT; xsave = &fpu->state.xsave; fpu__activate_fpstate_write(fpu); if (boot_cpu_has(X86_FEATURE_XSAVES)) { if (kbuf) ret = copy_kernel_to_xstate(xsave, kbuf); else ret = copy_user_to_xstate(xsave, ubuf); } else { ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1); } /* * In case of failure, mark all states as init: */ if (ret) fpstate_init(&fpu->state); /* * mxcsr reserved bits must be masked to zero for security reasons. */ xsave->i387.mxcsr &= mxcsr_feature_mask; xsave->header.xfeatures &= xfeatures_mask; /* * These bits must be zero. */ memset(&xsave->header.reserved, 0, 48); return ret; }
CWE-200
180,890
2,434
29945451952694289181987195058974996252
null
null
null
linux
814fb7bb7db5433757d76f4c4502c96fc53b0b5e
1
static int __fpu__restore_sig(void __user *buf, void __user *buf_fx, int size) { int ia32_fxstate = (buf != buf_fx); struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; int state_size = fpu_kernel_xstate_size; u64 xfeatures = 0; int fx_only = 0; ia32_fxstate &= (IS_ENABLED(CONFIG_X86_32) || IS_ENABLED(CONFIG_IA32_EMULATION)); if (!buf) { fpu__clear(fpu); return 0; } if (!access_ok(VERIFY_READ, buf, size)) return -EACCES; fpu__activate_curr(fpu); if (!static_cpu_has(X86_FEATURE_FPU)) return fpregs_soft_set(current, NULL, 0, sizeof(struct user_i387_ia32_struct), NULL, buf) != 0; if (use_xsave()) { struct _fpx_sw_bytes fx_sw_user; if (unlikely(check_for_xstate(buf_fx, buf_fx, &fx_sw_user))) { /* * Couldn't find the extended state information in the * memory layout. Restore just the FP/SSE and init all * the other extended state. */ state_size = sizeof(struct fxregs_state); fx_only = 1; trace_x86_fpu_xstate_check_failed(fpu); } else { state_size = fx_sw_user.xstate_size; xfeatures = fx_sw_user.xfeatures; } } if (ia32_fxstate) { /* * For 32-bit frames with fxstate, copy the user state to the * thread's fpu state, reconstruct fxstate from the fsave * header. Sanitize the copied state etc. */ struct fpu *fpu = &tsk->thread.fpu; struct user_i387_ia32_struct env; int err = 0; /* * Drop the current fpu which clears fpu->fpstate_active. This ensures * that any context-switch during the copy of the new state, * avoids the intermediate state from getting restored/saved. * Thus avoiding the new restored state from getting corrupted. * We will be ready to restore/save the state only after * fpu->fpstate_active is again set. */ fpu__drop(fpu); if (using_compacted_format()) err = copy_user_to_xstate(&fpu->state.xsave, buf_fx); else err = __copy_from_user(&fpu->state.xsave, buf_fx, state_size); if (err || __copy_from_user(&env, buf, sizeof(env))) { fpstate_init(&fpu->state); trace_x86_fpu_init_state(fpu); err = -1; } else { sanitize_restored_xstate(tsk, &env, xfeatures, fx_only); } fpu->fpstate_active = 1; preempt_disable(); fpu__restore(fpu); preempt_enable(); return err; } else { /* * For 64-bit frames and 32-bit fsave frames, restore the user * state to the registers directly (with exceptions handled). */ user_fpu_begin(); if (copy_user_to_fpregs_zeroing(buf_fx, xfeatures, fx_only)) { fpu__clear(fpu); return -1; } } return 0; }
CWE-200
180,891
2,435
182906564625953418159746819992845637632
null
null
null
radare2
21a6f570ba33fa9f52f1bba87f07acc4e8c178f4
1
static Sdb *store_versioninfo_gnu_verdef(ELFOBJ *bin, Elf_(Shdr) *shdr, int sz) { const char *section_name = ""; const char *link_section_name = ""; char *end = NULL; Elf_(Shdr) *link_shdr = NULL; ut8 dfs[sizeof (Elf_(Verdef))] = {0}; Sdb *sdb; int cnt, i; if (shdr->sh_link > bin->ehdr.e_shnum) { return false; } link_shdr = &bin->shdr[shdr->sh_link]; if (shdr->sh_size < 1) { return false; } Elf_(Verdef) *defs = calloc (shdr->sh_size, sizeof (char)); if (!defs) { return false; } if (bin->shstrtab && shdr->sh_name < bin->shstrtab_size) { section_name = &bin->shstrtab[shdr->sh_name]; } if (link_shdr && bin->shstrtab && link_shdr->sh_name < bin->shstrtab_size) { link_section_name = &bin->shstrtab[link_shdr->sh_name]; } if (!defs) { bprintf ("Warning: Cannot allocate memory (Check Elf_(Verdef))\n"); return NULL; } sdb = sdb_new0 (); end = (char *)defs + shdr->sh_size; sdb_set (sdb, "section_name", section_name, 0); sdb_num_set (sdb, "entries", shdr->sh_info, 0); sdb_num_set (sdb, "addr", shdr->sh_addr, 0); sdb_num_set (sdb, "offset", shdr->sh_offset, 0); sdb_num_set (sdb, "link", shdr->sh_link, 0); sdb_set (sdb, "link_section_name", link_section_name, 0); for (cnt = 0, i = 0; cnt < shdr->sh_info && ((char *)defs + i < end); ++cnt) { Sdb *sdb_verdef = sdb_new0 (); char *vstart = ((char*)defs) + i; char key[32] = {0}; Elf_(Verdef) *verdef = (Elf_(Verdef)*)vstart; Elf_(Verdaux) aux = {0}; int j = 0; int isum = 0; r_buf_read_at (bin->b, shdr->sh_offset + i, dfs, sizeof (Elf_(Verdef))); verdef->vd_version = READ16 (dfs, j) verdef->vd_flags = READ16 (dfs, j) verdef->vd_ndx = READ16 (dfs, j) verdef->vd_cnt = READ16 (dfs, j) verdef->vd_hash = READ32 (dfs, j) verdef->vd_aux = READ32 (dfs, j) verdef->vd_next = READ32 (dfs, j) vstart += verdef->vd_aux; if (vstart > end || vstart + sizeof (Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); goto out_error; } j = 0; aux.vda_name = READ32 (vstart, j) aux.vda_next = READ32 (vstart, j) isum = i + verdef->vd_aux; if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); goto out_error; } sdb_num_set (sdb_verdef, "idx", i, 0); sdb_num_set (sdb_verdef, "vd_version", verdef->vd_version, 0); sdb_num_set (sdb_verdef, "vd_ndx", verdef->vd_ndx, 0); sdb_num_set (sdb_verdef, "vd_cnt", verdef->vd_cnt, 0); sdb_set (sdb_verdef, "vda_name", &bin->dynstr[aux.vda_name], 0); sdb_set (sdb_verdef, "flags", get_ver_flags (verdef->vd_flags), 0); for (j = 1; j < verdef->vd_cnt; ++j) { int k; Sdb *sdb_parent = sdb_new0 (); isum += aux.vda_next; vstart += aux.vda_next; if (vstart > end || vstart + sizeof(Elf_(Verdaux)) > end) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } k = 0; aux.vda_name = READ32 (vstart, k) aux.vda_next = READ32 (vstart, k) if (aux.vda_name > bin->dynstr_size) { sdb_free (sdb_verdef); sdb_free (sdb_parent); goto out_error; } sdb_num_set (sdb_parent, "idx", isum, 0); sdb_num_set (sdb_parent, "parent", j, 0); sdb_set (sdb_parent, "vda_name", &bin->dynstr[aux.vda_name], 0); snprintf (key, sizeof (key), "parent%d", j - 1); sdb_ns_set (sdb_verdef, key, sdb_parent); } snprintf (key, sizeof (key), "verdef%d", cnt); sdb_ns_set (sdb, key, sdb_verdef); if (!verdef->vd_next) { sdb_free (sdb_verdef); goto out_error; } i += verdef->vd_next; } free (defs); return sdb; out_error: free (defs); sdb_free (sdb); return NULL; }
CWE-119
180,892
2,436
243866778000885346195425595121235671831
null
null
null
suricata
47afc577ff763150f9b47f10331f5ef9eb847a57
1
int DetectEngineContentInspection(DetectEngineCtx *de_ctx, DetectEngineThreadCtx *det_ctx, const Signature *s, const SigMatchData *smd, Flow *f, uint8_t *buffer, uint32_t buffer_len, uint32_t stream_start_offset, uint8_t inspection_mode, void *data) { SCEnter(); KEYWORD_PROFILING_START; det_ctx->inspection_recursion_counter++; if (det_ctx->inspection_recursion_counter == de_ctx->inspection_recursion_limit) { det_ctx->discontinue_matching = 1; KEYWORD_PROFILING_END(det_ctx, smd->type, 0); SCReturnInt(0); } if (smd == NULL || buffer_len == 0) { KEYWORD_PROFILING_END(det_ctx, smd->type, 0); SCReturnInt(0); } /* \todo unify this which is phase 2 of payload inspection unification */ if (smd->type == DETECT_CONTENT) { DetectContentData *cd = (DetectContentData *)smd->ctx; SCLogDebug("inspecting content %"PRIu32" buffer_len %"PRIu32, cd->id, buffer_len); /* we might have already have this content matched by the mpm. * (if there is any other reason why we'd want to avoid checking * it here, please fill it in) */ /* rule parsers should take care of this */ #ifdef DEBUG BUG_ON(cd->depth != 0 && cd->depth <= cd->offset); #endif /* search for our pattern, checking the matches recursively. * if we match we look for the next SigMatch as well */ uint8_t *found = NULL; uint32_t offset = 0; uint32_t depth = buffer_len; uint32_t prev_offset = 0; /**< used in recursive searching */ uint32_t prev_buffer_offset = det_ctx->buffer_offset; do { if ((cd->flags & DETECT_CONTENT_DISTANCE) || (cd->flags & DETECT_CONTENT_WITHIN)) { SCLogDebug("det_ctx->buffer_offset %"PRIu32, det_ctx->buffer_offset); offset = prev_buffer_offset; depth = buffer_len; int distance = cd->distance; if (cd->flags & DETECT_CONTENT_DISTANCE) { if (cd->flags & DETECT_CONTENT_DISTANCE_BE) { distance = det_ctx->bj_values[cd->distance]; } if (distance < 0 && (uint32_t)(abs(distance)) > offset) offset = 0; else offset += distance; SCLogDebug("cd->distance %"PRIi32", offset %"PRIu32", depth %"PRIu32, distance, offset, depth); } if (cd->flags & DETECT_CONTENT_WITHIN) { if (cd->flags & DETECT_CONTENT_WITHIN_BE) { if ((int32_t)depth > (int32_t)(prev_buffer_offset + det_ctx->bj_values[cd->within] + distance)) { depth = prev_buffer_offset + det_ctx->bj_values[cd->within] + distance; } } else { if ((int32_t)depth > (int32_t)(prev_buffer_offset + cd->within + distance)) { depth = prev_buffer_offset + cd->within + distance; } SCLogDebug("cd->within %"PRIi32", det_ctx->buffer_offset %"PRIu32", depth %"PRIu32, cd->within, prev_buffer_offset, depth); } if (stream_start_offset != 0 && prev_buffer_offset == 0) { if (depth <= stream_start_offset) { goto no_match; } else if (depth >= (stream_start_offset + buffer_len)) { ; } else { depth = depth - stream_start_offset; } } } if (cd->flags & DETECT_CONTENT_DEPTH_BE) { if ((det_ctx->bj_values[cd->depth] + prev_buffer_offset) < depth) { depth = prev_buffer_offset + det_ctx->bj_values[cd->depth]; } } else { if (cd->depth != 0) { if ((cd->depth + prev_buffer_offset) < depth) { depth = prev_buffer_offset + cd->depth; } SCLogDebug("cd->depth %"PRIu32", depth %"PRIu32, cd->depth, depth); } } if (cd->flags & DETECT_CONTENT_OFFSET_BE) { if (det_ctx->bj_values[cd->offset] > offset) offset = det_ctx->bj_values[cd->offset]; } else { if (cd->offset > offset) { offset = cd->offset; SCLogDebug("setting offset %"PRIu32, offset); } } } else { /* implied no relative matches */ /* set depth */ if (cd->flags & DETECT_CONTENT_DEPTH_BE) { depth = det_ctx->bj_values[cd->depth]; } else { if (cd->depth != 0) { depth = cd->depth; } } if (stream_start_offset != 0 && cd->flags & DETECT_CONTENT_DEPTH) { if (depth <= stream_start_offset) { goto no_match; } else if (depth >= (stream_start_offset + buffer_len)) { ; } else { depth = depth - stream_start_offset; } } /* set offset */ if (cd->flags & DETECT_CONTENT_OFFSET_BE) offset = det_ctx->bj_values[cd->offset]; else offset = cd->offset; prev_buffer_offset = 0; } /* update offset with prev_offset if we're searching for * matches after the first occurence. */ SCLogDebug("offset %"PRIu32", prev_offset %"PRIu32, offset, prev_offset); if (prev_offset != 0) offset = prev_offset; SCLogDebug("offset %"PRIu32", depth %"PRIu32, offset, depth); if (depth > buffer_len) depth = buffer_len; /* if offset is bigger than depth we can never match on a pattern. * We can however, "match" on a negated pattern. */ if (offset > depth || depth == 0) { if (cd->flags & DETECT_CONTENT_NEGATED) { goto match; } else { goto no_match; } } uint8_t *sbuffer = buffer + offset; uint32_t sbuffer_len = depth - offset; uint32_t match_offset = 0; SCLogDebug("sbuffer_len %"PRIu32, sbuffer_len); #ifdef DEBUG BUG_ON(sbuffer_len > buffer_len); #endif /* \todo Add another optimization here. If cd->content_len is * greater than sbuffer_len found is anyways NULL */ /* do the actual search */ found = SpmScan(cd->spm_ctx, det_ctx->spm_thread_ctx, sbuffer, sbuffer_len); /* next we evaluate the result in combination with the * negation flag. */ SCLogDebug("found %p cd negated %s", found, cd->flags & DETECT_CONTENT_NEGATED ? "true" : "false"); if (found == NULL && !(cd->flags & DETECT_CONTENT_NEGATED)) { goto no_match; } else if (found == NULL && (cd->flags & DETECT_CONTENT_NEGATED)) { goto match; } else if (found != NULL && (cd->flags & DETECT_CONTENT_NEGATED)) { SCLogDebug("content %"PRIu32" matched at offset %"PRIu32", but negated so no match", cd->id, match_offset); /* don't bother carrying recursive matches now, for preceding * relative keywords */ if (DETECT_CONTENT_IS_SINGLE(cd)) det_ctx->discontinue_matching = 1; goto no_match; } else { match_offset = (uint32_t)((found - buffer) + cd->content_len); SCLogDebug("content %"PRIu32" matched at offset %"PRIu32"", cd->id, match_offset); det_ctx->buffer_offset = match_offset; /* Match branch, add replace to the list if needed */ if (cd->flags & DETECT_CONTENT_REPLACE) { if (inspection_mode == DETECT_ENGINE_CONTENT_INSPECTION_MODE_PAYLOAD) { /* we will need to replace content if match is confirmed */ det_ctx->replist = DetectReplaceAddToList(det_ctx->replist, found, cd); } else { SCLogWarning(SC_ERR_INVALID_VALUE, "Can't modify payload without packet"); } } if (!(cd->flags & DETECT_CONTENT_RELATIVE_NEXT)) { SCLogDebug("no relative match coming up, so this is a match"); goto match; } /* bail out if we have no next match. Technically this is an * error, as the current cd has the DETECT_CONTENT_RELATIVE_NEXT * flag set. */ if (smd->is_last) { goto no_match; } SCLogDebug("content %"PRIu32, cd->id); KEYWORD_PROFILING_END(det_ctx, smd->type, 1); /* see if the next buffer keywords match. If not, we will * search for another occurence of this content and see * if the others match then until we run out of matches */ int r = DetectEngineContentInspection(de_ctx, det_ctx, s, smd+1, f, buffer, buffer_len, stream_start_offset, inspection_mode, data); if (r == 1) { SCReturnInt(1); } if (det_ctx->discontinue_matching) goto no_match; /* set the previous match offset to the start of this match + 1 */ prev_offset = (match_offset - (cd->content_len - 1)); SCLogDebug("trying to see if there is another match after prev_offset %"PRIu32, prev_offset); } } while(1); } else if (smd->type == DETECT_ISDATAAT) { SCLogDebug("inspecting isdataat"); DetectIsdataatData *id = (DetectIsdataatData *)smd->ctx; if (id->flags & ISDATAAT_RELATIVE) { if (det_ctx->buffer_offset + id->dataat > buffer_len) { SCLogDebug("det_ctx->buffer_offset + id->dataat %"PRIu32" > %"PRIu32, det_ctx->buffer_offset + id->dataat, buffer_len); if (id->flags & ISDATAAT_NEGATED) goto match; goto no_match; } else { SCLogDebug("relative isdataat match"); if (id->flags & ISDATAAT_NEGATED) goto no_match; goto match; } } else { if (id->dataat < buffer_len) { SCLogDebug("absolute isdataat match"); if (id->flags & ISDATAAT_NEGATED) goto no_match; goto match; } else { SCLogDebug("absolute isdataat mismatch, id->isdataat %"PRIu32", buffer_len %"PRIu32"", id->dataat, buffer_len); if (id->flags & ISDATAAT_NEGATED) goto match; goto no_match; } } } else if (smd->type == DETECT_PCRE) { SCLogDebug("inspecting pcre"); DetectPcreData *pe = (DetectPcreData *)smd->ctx; uint32_t prev_buffer_offset = det_ctx->buffer_offset; uint32_t prev_offset = 0; int r = 0; det_ctx->pcre_match_start_offset = 0; do { Packet *p = NULL; if (inspection_mode == DETECT_ENGINE_CONTENT_INSPECTION_MODE_PAYLOAD) p = (Packet *)data; r = DetectPcrePayloadMatch(det_ctx, s, smd, p, f, buffer, buffer_len); if (r == 0) { goto no_match; } if (!(pe->flags & DETECT_PCRE_RELATIVE_NEXT)) { SCLogDebug("no relative match coming up, so this is a match"); goto match; } KEYWORD_PROFILING_END(det_ctx, smd->type, 1); /* save it, in case we need to do a pcre match once again */ prev_offset = det_ctx->pcre_match_start_offset; /* see if the next payload keywords match. If not, we will * search for another occurence of this pcre and see * if the others match, until we run out of matches */ r = DetectEngineContentInspection(de_ctx, det_ctx, s, smd+1, f, buffer, buffer_len, stream_start_offset, inspection_mode, data); if (r == 1) { SCReturnInt(1); } if (det_ctx->discontinue_matching) goto no_match; det_ctx->buffer_offset = prev_buffer_offset; det_ctx->pcre_match_start_offset = prev_offset; } while (1); } else if (smd->type == DETECT_BYTETEST) { DetectBytetestData *btd = (DetectBytetestData *)smd->ctx; uint8_t flags = btd->flags; int32_t offset = btd->offset; uint64_t value = btd->value; if (flags & DETECT_BYTETEST_OFFSET_BE) { offset = det_ctx->bj_values[offset]; } if (flags & DETECT_BYTETEST_VALUE_BE) { value = det_ctx->bj_values[value]; } /* if we have dce enabled we will have to use the endianness * specified by the dce header */ if (flags & DETECT_BYTETEST_DCE && data != NULL) { DCERPCState *dcerpc_state = (DCERPCState *)data; /* enable the endianness flag temporarily. once we are done * processing we reset the flags to the original value*/ flags |= ((dcerpc_state->dcerpc.dcerpchdr.packed_drep[0] & 0x10) ? DETECT_BYTETEST_LITTLE: 0); } if (DetectBytetestDoMatch(det_ctx, s, smd->ctx, buffer, buffer_len, flags, offset, value) != 1) { goto no_match; } goto match; } else if (smd->type == DETECT_BYTEJUMP) { DetectBytejumpData *bjd = (DetectBytejumpData *)smd->ctx; uint8_t flags = bjd->flags; int32_t offset = bjd->offset; if (flags & DETECT_BYTEJUMP_OFFSET_BE) { offset = det_ctx->bj_values[offset]; } /* if we have dce enabled we will have to use the endianness * specified by the dce header */ if (flags & DETECT_BYTEJUMP_DCE && data != NULL) { DCERPCState *dcerpc_state = (DCERPCState *)data; /* enable the endianness flag temporarily. once we are done * processing we reset the flags to the original value*/ flags |= ((dcerpc_state->dcerpc.dcerpchdr.packed_drep[0] & 0x10) ? DETECT_BYTEJUMP_LITTLE: 0); } if (DetectBytejumpDoMatch(det_ctx, s, smd->ctx, buffer, buffer_len, flags, offset) != 1) { goto no_match; } goto match; } else if (smd->type == DETECT_BYTE_EXTRACT) { DetectByteExtractData *bed = (DetectByteExtractData *)smd->ctx; uint8_t endian = bed->endian; /* if we have dce enabled we will have to use the endianness * specified by the dce header */ if ((bed->flags & DETECT_BYTE_EXTRACT_FLAG_ENDIAN) && endian == DETECT_BYTE_EXTRACT_ENDIAN_DCE && data != NULL) { DCERPCState *dcerpc_state = (DCERPCState *)data; /* enable the endianness flag temporarily. once we are done * processing we reset the flags to the original value*/ endian |= ((dcerpc_state->dcerpc.dcerpchdr.packed_drep[0] == 0x10) ? DETECT_BYTE_EXTRACT_ENDIAN_LITTLE : DETECT_BYTE_EXTRACT_ENDIAN_BIG); } if (DetectByteExtractDoMatch(det_ctx, smd, s, buffer, buffer_len, &det_ctx->bj_values[bed->local_id], endian) != 1) { goto no_match; } goto match; /* we should never get here, but bail out just in case */ } else if (smd->type == DETECT_AL_URILEN) { SCLogDebug("inspecting uri len"); int r = 0; DetectUrilenData *urilend = (DetectUrilenData *) smd->ctx; switch (urilend->mode) { case DETECT_URILEN_EQ: if (buffer_len == urilend->urilen1) r = 1; break; case DETECT_URILEN_LT: if (buffer_len < urilend->urilen1) r = 1; break; case DETECT_URILEN_GT: if (buffer_len > urilend->urilen1) r = 1; break; case DETECT_URILEN_RA: if (buffer_len > urilend->urilen1 && buffer_len < urilend->urilen2) { r = 1; } break; } if (r == 1) { goto match; } det_ctx->discontinue_matching = 0; goto no_match; #ifdef HAVE_LUA } else if (smd->type == DETECT_LUA) { SCLogDebug("lua starting"); if (DetectLuaMatchBuffer(det_ctx, s, smd, buffer, buffer_len, det_ctx->buffer_offset, f) != 1) { SCLogDebug("lua no_match"); goto no_match; } SCLogDebug("lua match"); goto match; #endif /* HAVE_LUA */ } else if (smd->type == DETECT_BASE64_DECODE) { if (DetectBase64DecodeDoMatch(det_ctx, s, smd, buffer, buffer_len)) { if (s->sm_arrays[DETECT_SM_LIST_BASE64_DATA] != NULL) { KEYWORD_PROFILING_END(det_ctx, smd->type, 1); if (DetectBase64DataDoMatch(de_ctx, det_ctx, s, f)) { /* Base64 is a terminal list. */ goto final_match; } } } } else { SCLogDebug("sm->type %u", smd->type); #ifdef DEBUG BUG_ON(1); #endif } no_match: KEYWORD_PROFILING_END(det_ctx, smd->type, 0); SCReturnInt(0); match: /* this sigmatch matched, inspect the next one. If it was the last, * the buffer portion of the signature matched. */ if (!smd->is_last) { KEYWORD_PROFILING_END(det_ctx, smd->type, 1); int r = DetectEngineContentInspection(de_ctx, det_ctx, s, smd+1, f, buffer, buffer_len, stream_start_offset, inspection_mode, data); SCReturnInt(r); } final_match: KEYWORD_PROFILING_END(det_ctx, smd->type, 1); SCReturnInt(1); }
180,893
2,437
254926862513297039733671762108012735541
null
null
null
linux
ac64115a66c18c01745bbd3c47a36b124e5fd8c0
1
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) { int r; /* Assume we're using HV mode when the HV module is loaded */ int hv_enabled = kvmppc_hv_ops ? 1 : 0; if (kvm) { /* * Hooray - we know which VM type we're running on. Depend on * that rather than the guess above. */ hv_enabled = is_kvmppc_hv_enabled(kvm); } switch (ext) { #ifdef CONFIG_BOOKE case KVM_CAP_PPC_BOOKE_SREGS: case KVM_CAP_PPC_BOOKE_WATCHDOG: case KVM_CAP_PPC_EPR: #else case KVM_CAP_PPC_SEGSTATE: case KVM_CAP_PPC_HIOR: case KVM_CAP_PPC_PAPR: #endif case KVM_CAP_PPC_UNSET_IRQ: case KVM_CAP_PPC_IRQ_LEVEL: case KVM_CAP_ENABLE_CAP: case KVM_CAP_ENABLE_CAP_VM: case KVM_CAP_ONE_REG: case KVM_CAP_IOEVENTFD: case KVM_CAP_DEVICE_CTRL: case KVM_CAP_IMMEDIATE_EXIT: r = 1; break; case KVM_CAP_PPC_PAIRED_SINGLES: case KVM_CAP_PPC_OSI: case KVM_CAP_PPC_GET_PVINFO: #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC) case KVM_CAP_SW_TLB: #endif /* We support this only for PR */ r = !hv_enabled; break; #ifdef CONFIG_KVM_MPIC case KVM_CAP_IRQ_MPIC: r = 1; break; #endif #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_SPAPR_TCE: case KVM_CAP_SPAPR_TCE_64: /* fallthrough */ case KVM_CAP_SPAPR_TCE_VFIO: case KVM_CAP_PPC_RTAS: case KVM_CAP_PPC_FIXUP_HCALL: case KVM_CAP_PPC_ENABLE_HCALL: #ifdef CONFIG_KVM_XICS case KVM_CAP_IRQ_XICS: #endif r = 1; break; case KVM_CAP_PPC_ALLOC_HTAB: r = hv_enabled; break; #endif /* CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_SMT: r = 0; if (kvm) { if (kvm->arch.emul_smt_mode > 1) r = kvm->arch.emul_smt_mode; else r = kvm->arch.smt_mode; } else if (hv_enabled) { if (cpu_has_feature(CPU_FTR_ARCH_300)) r = 1; else r = threads_per_subcore; } break; case KVM_CAP_PPC_SMT_POSSIBLE: r = 1; if (hv_enabled) { if (!cpu_has_feature(CPU_FTR_ARCH_300)) r = ((threads_per_subcore << 1) - 1); else /* P9 can emulate dbells, so allow any mode */ r = 8 | 4 | 2 | 1; } break; case KVM_CAP_PPC_RMA: r = 0; break; case KVM_CAP_PPC_HWRNG: r = kvmppc_hwrng_present(); break; case KVM_CAP_PPC_MMU_RADIX: r = !!(hv_enabled && radix_enabled()); break; case KVM_CAP_PPC_MMU_HASH_V3: r = !!(hv_enabled && !radix_enabled() && cpu_has_feature(CPU_FTR_ARCH_300)); break; #endif case KVM_CAP_SYNC_MMU: #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE r = hv_enabled; #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER) r = 1; #else r = 0; #endif break; #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_HTAB_FD: r = hv_enabled; break; #endif case KVM_CAP_NR_VCPUS: /* * Recommending a number of CPUs is somewhat arbitrary; we * return the number of present CPUs for -HV (since a host * will have secondary threads "offline"), and for other KVM * implementations just count online CPUs. */ if (hv_enabled) r = num_present_cpus(); else r = num_online_cpus(); break; case KVM_CAP_NR_MEMSLOTS: r = KVM_USER_MEM_SLOTS; break; case KVM_CAP_MAX_VCPUS: r = KVM_MAX_VCPUS; break; #ifdef CONFIG_PPC_BOOK3S_64 case KVM_CAP_PPC_GET_SMMU_INFO: r = 1; break; case KVM_CAP_SPAPR_MULTITCE: r = 1; break; case KVM_CAP_SPAPR_RESIZE_HPT: /* Disable this on POWER9 until code handles new HPTE format */ r = !!hv_enabled && !cpu_has_feature(CPU_FTR_ARCH_300); break; #endif #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE case KVM_CAP_PPC_FWNMI: r = hv_enabled; break; #endif case KVM_CAP_PPC_HTM: r = cpu_has_feature(CPU_FTR_TM_COMP) && is_kvmppc_hv_enabled(kvm); break; default: r = 0; break; } return r; }
CWE-476
180,896
2,438
78468150303237020119497747580724675131
null
null
null
ImageMagick
9fd10cf630832b36a588c1545d8736539b2f1fb5
1
static Image *ReadGIFImage(const ImageInfo *image_info,ExceptionInfo *exception) { #define BitSet(byte,bit) (((byte) & (bit)) == (bit)) #define LSBFirstOrder(x,y) (((y) << 8) | (x)) Image *image, *meta_image; int number_extensionss=0; MagickBooleanType status; RectangleInfo page; register ssize_t i; register unsigned char *p; size_t delay, dispose, duration, global_colors, image_count, iterations, one; ssize_t count, opacity; unsigned char background, c, flag, *global_colormap, buffer[257]; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } /* Determine if this a GIF file. */ count=ReadBlob(image,6,buffer); if ((count != 6) || ((LocaleNCompare((char *) buffer,"GIF87",5) != 0) && (LocaleNCompare((char *) buffer,"GIF89",5) != 0))) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); page.width=ReadBlobLSBShort(image); page.height=ReadBlobLSBShort(image); flag=(unsigned char) ReadBlobByte(image); background=(unsigned char) ReadBlobByte(image); c=(unsigned char) ReadBlobByte(image); /* reserved */ one=1; global_colors=one << (((size_t) flag & 0x07)+1); global_colormap=(unsigned char *) AcquireQuantumMemory((size_t) MagickMax(global_colors,256),3UL*sizeof(*global_colormap)); if (global_colormap == (unsigned char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); if (BitSet((int) flag,0x80) != 0) { count=ReadBlob(image,(size_t) (3*global_colors),global_colormap); if (count != (ssize_t) (3*global_colors)) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); ThrowReaderException(CorruptImageError,"InsufficientImageDataInFile"); } } delay=0; dispose=0; duration=0; iterations=1; opacity=(-1); image_count=0; meta_image=AcquireImage(image_info,exception); /* metadata container */ for ( ; ; ) { count=ReadBlob(image,1,&c); if (count != 1) break; if (c == (unsigned char) ';') break; /* terminator */ if (c == (unsigned char) '!') { /* GIF Extension block. */ count=ReadBlob(image,1,&c); if (count != 1) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(CorruptImageError, "UnableToReadExtensionBlock"); } switch (c) { case 0xf9: { /* Read graphics control extension. */ while (ReadBlobBlock(image,buffer) != 0) ; dispose=(size_t) (buffer[0] >> 2); delay=(size_t) ((buffer[2] << 8) | buffer[1]); if ((ssize_t) (buffer[0] & 0x01) == 0x01) opacity=(ssize_t) buffer[3]; break; } case 0xfe: { char *comments; size_t length; /* Read comment extension. */ comments=AcquireString((char *) NULL); for (length=0; ; length+=count) { count=(ssize_t) ReadBlobBlock(image,buffer); if (count == 0) break; buffer[count]='\0'; (void) ConcatenateString(&comments,(const char *) buffer); } (void) SetImageProperty(meta_image,"comment",comments,exception); comments=DestroyString(comments); break; } case 0xff: { MagickBooleanType loop; /* Read Netscape Loop extension. */ loop=MagickFalse; if (ReadBlobBlock(image,buffer) != 0) loop=LocaleNCompare((char *) buffer,"NETSCAPE2.0",11) == 0 ? MagickTrue : MagickFalse; if (loop != MagickFalse) { while (ReadBlobBlock(image,buffer) != 0) iterations=(size_t) ((buffer[2] << 8) | buffer[1]); break; } else { char name[MagickPathExtent]; int block_length, info_length, reserved_length; MagickBooleanType i8bim, icc, iptc, magick; StringInfo *profile; unsigned char *info; /* Store GIF application extension as a generic profile. */ icc=LocaleNCompare((char *) buffer,"ICCRGBG1012",11) == 0 ? MagickTrue : MagickFalse; magick=LocaleNCompare((char *) buffer,"ImageMagick",11) == 0 ? MagickTrue : MagickFalse; i8bim=LocaleNCompare((char *) buffer,"MGK8BIM0000",11) == 0 ? MagickTrue : MagickFalse; iptc=LocaleNCompare((char *) buffer,"MGKIPTC0000",11) == 0 ? MagickTrue : MagickFalse; number_extensionss++; (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Reading GIF application extension"); info=(unsigned char *) AcquireQuantumMemory(255UL, sizeof(*info)); if (info == (unsigned char *) NULL) { meta_image=DestroyImage(meta_image); ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); } reserved_length=255; for (info_length=0; ; ) { block_length=(int) ReadBlobBlock(image,&info[info_length]); if (block_length == 0) break; info_length+=block_length; if (info_length > (reserved_length-255)) { reserved_length+=4096; info=(unsigned char *) ResizeQuantumMemory(info,(size_t) reserved_length,sizeof(*info)); if (info == (unsigned char *) NULL) { meta_image=DestroyImage(meta_image); ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); } } } profile=BlobToStringInfo(info,(size_t) info_length); if (profile == (StringInfo *) NULL) { meta_image=DestroyImage(meta_image); ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); } if (i8bim != MagickFalse) (void) CopyMagickString(name,"8bim",sizeof(name)); else if (icc != MagickFalse) (void) CopyMagickString(name,"icc",sizeof(name)); else if (iptc != MagickFalse) (void) CopyMagickString(name,"iptc",sizeof(name)); else if (magick != MagickFalse) { (void) CopyMagickString(name,"magick",sizeof(name)); meta_image->gamma=StringToDouble((char *) info+6, (char **) NULL); } else (void) FormatLocaleString(name,sizeof(name),"gif:%.11s", buffer); info=(unsigned char *) RelinquishMagickMemory(info); if (magick == MagickFalse) (void) SetImageProfile(meta_image,name,profile,exception); profile=DestroyStringInfo(profile); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " profile name=%s",name); } break; } default: { while (ReadBlobBlock(image,buffer) != 0) ; break; } } } if (c != (unsigned char) ',') continue; if (image_count != 0) { /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); if (GetNextImageInList(image) == (Image *) NULL) { image=DestroyImageList(image); global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); return((Image *) NULL); } image=SyncNextImageInList(image); } image_count++; /* Read image attributes. */ meta_image->scene=image->scene; (void) CloneImageProperties(image,meta_image); DestroyImageProperties(meta_image); (void) CloneImageProfiles(image,meta_image); DestroyImageProfiles(meta_image); image->storage_class=PseudoClass; image->compression=LZWCompression; page.x=(ssize_t) ReadBlobLSBShort(image); page.y=(ssize_t) ReadBlobLSBShort(image); image->columns=ReadBlobLSBShort(image); image->rows=ReadBlobLSBShort(image); image->depth=8; flag=(unsigned char) ReadBlobByte(image); image->interlace=BitSet((int) flag,0x40) != 0 ? GIFInterlace : NoInterlace; image->colors=BitSet((int) flag,0x80) == 0 ? global_colors : one << ((size_t) (flag & 0x07)+1); if (opacity >= (ssize_t) image->colors) opacity=(-1); image->page.width=page.width; image->page.height=page.height; image->page.y=page.y; image->page.x=page.x; image->delay=delay; image->ticks_per_second=100; image->dispose=(DisposeType) dispose; image->iterations=iterations; image->alpha_trait=opacity >= 0 ? BlendPixelTrait : UndefinedPixelTrait; delay=0; dispose=0; if ((image->columns == 0) || (image->rows == 0)) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(CorruptImageError,"NegativeOrZeroImageSize"); } /* Inititialize colormap. */ if (AcquireImageColormap(image,image->colors,exception) == MagickFalse) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } if (BitSet((int) flag,0x80) == 0) { /* Use global colormap. */ p=global_colormap; for (i=0; i < (ssize_t) image->colors; i++) { image->colormap[i].red=(double) ScaleCharToQuantum(*p++); image->colormap[i].green=(double) ScaleCharToQuantum(*p++); image->colormap[i].blue=(double) ScaleCharToQuantum(*p++); if (i == opacity) { image->colormap[i].alpha=(double) TransparentAlpha; image->transparent_color=image->colormap[opacity]; } } image->background_color=image->colormap[MagickMin((ssize_t) background, (ssize_t) image->colors-1)]; } else { unsigned char *colormap; /* Read local colormap. */ colormap=(unsigned char *) AcquireQuantumMemory(image->colors,3* sizeof(*colormap)); if (colormap == (unsigned char *) NULL) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } count=ReadBlob(image,(3*image->colors)*sizeof(*colormap),colormap); if (count != (ssize_t) (3*image->colors)) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); colormap=(unsigned char *) RelinquishMagickMemory(colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(CorruptImageError, "InsufficientImageDataInFile"); } p=colormap; for (i=0; i < (ssize_t) image->colors; i++) { image->colormap[i].red=(double) ScaleCharToQuantum(*p++); image->colormap[i].green=(double) ScaleCharToQuantum(*p++); image->colormap[i].blue=(double) ScaleCharToQuantum(*p++); if (i == opacity) image->colormap[i].alpha=(double) TransparentAlpha; } colormap=(unsigned char *) RelinquishMagickMemory(colormap); } if (image->gamma == 1.0) { for (i=0; i < (ssize_t) image->colors; i++) if (IsPixelInfoGray(image->colormap+i) == MagickFalse) break; (void) SetImageColorspace(image,i == (ssize_t) image->colors ? GRAYColorspace : RGBColorspace,exception); } if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0)) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) return(DestroyImageList(image)); /* Decode image. */ if (image_info->ping != MagickFalse) status=PingGIFImage(image,exception); else status=DecodeImage(image,opacity,exception); if ((image_info->ping == MagickFalse) && (status == MagickFalse)) { global_colormap=(unsigned char *) RelinquishMagickMemory( global_colormap); meta_image=DestroyImage(meta_image); ThrowReaderException(CorruptImageError,"CorruptImage"); } duration+=image->delay*image->iterations; if (image_info->number_scenes != 0) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; opacity=(-1); status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) image->scene- 1,image->scene); if (status == MagickFalse) break; } image->duration=duration; meta_image=DestroyImage(meta_image); global_colormap=(unsigned char *) RelinquishMagickMemory(global_colormap); if ((image->columns == 0) || (image->rows == 0)) ThrowReaderException(CorruptImageError,"NegativeOrZeroImageSize"); (void) CloseBlob(image); return(GetFirstImageInList(image)); }
CWE-200
180,897
2,439
49173632362171761388319546200503138873
null
null
null
linux
71105998845fb012937332fe2e806d443c09e026
1
static int snd_seq_ioctl_create_port(struct snd_seq_client *client, void *arg) { struct snd_seq_port_info *info = arg; struct snd_seq_client_port *port; struct snd_seq_port_callback *callback; /* it is not allowed to create the port for an another client */ if (info->addr.client != client->number) return -EPERM; port = snd_seq_create_port(client, (info->flags & SNDRV_SEQ_PORT_FLG_GIVEN_PORT) ? info->addr.port : -1); if (port == NULL) return -ENOMEM; if (client->type == USER_CLIENT && info->kernel) { snd_seq_delete_port(client, port->addr.port); return -EINVAL; } if (client->type == KERNEL_CLIENT) { if ((callback = info->kernel) != NULL) { if (callback->owner) port->owner = callback->owner; port->private_data = callback->private_data; port->private_free = callback->private_free; port->event_input = callback->event_input; port->c_src.open = callback->subscribe; port->c_src.close = callback->unsubscribe; port->c_dest.open = callback->use; port->c_dest.close = callback->unuse; } } info->addr = port->addr; snd_seq_set_port_info(port, info); snd_seq_system_client_ev_port_start(port->addr.client, port->addr.port); return 0; }
CWE-416
180,900
2,442
335970720208132724311839258626111729110
null
null
null
linux
71105998845fb012937332fe2e806d443c09e026
1
struct snd_seq_client_port *snd_seq_create_port(struct snd_seq_client *client, int port) { unsigned long flags; struct snd_seq_client_port *new_port, *p; int num = -1; /* sanity check */ if (snd_BUG_ON(!client)) return NULL; if (client->num_ports >= SNDRV_SEQ_MAX_PORTS) { pr_warn("ALSA: seq: too many ports for client %d\n", client->number); return NULL; } /* create a new port */ new_port = kzalloc(sizeof(*new_port), GFP_KERNEL); if (!new_port) return NULL; /* failure, out of memory */ /* init port data */ new_port->addr.client = client->number; new_port->addr.port = -1; new_port->owner = THIS_MODULE; sprintf(new_port->name, "port-%d", num); snd_use_lock_init(&new_port->use_lock); port_subs_info_init(&new_port->c_src); port_subs_info_init(&new_port->c_dest); num = port >= 0 ? port : 0; mutex_lock(&client->ports_mutex); write_lock_irqsave(&client->ports_lock, flags); list_for_each_entry(p, &client->ports_list_head, list) { if (p->addr.port > num) break; if (port < 0) /* auto-probe mode */ num = p->addr.port + 1; } /* insert the new port */ list_add_tail(&new_port->list, &p->list); client->num_ports++; new_port->addr.port = num; /* store the port number in the port */ write_unlock_irqrestore(&client->ports_lock, flags); mutex_unlock(&client->ports_mutex); sprintf(new_port->name, "port-%d", num); return new_port; }
CWE-416
180,901
2,443
153601357183929501043255702282709207630
null
null
null
linux
94f1bb15bed84ad6c893916b7e7b9db6f1d7eec6
1
static int rngapi_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen) { u8 *buf = NULL; u8 *src = (u8 *)seed; int err; if (slen) { buf = kmalloc(slen, GFP_KERNEL); if (!buf) return -ENOMEM; memcpy(buf, seed, slen); src = buf; } err = crypto_old_rng_alg(tfm)->rng_reset(tfm, src, slen); kzfree(buf); return err; }
CWE-476
180,906
2,448
261910434330675911398440622191523259704
null
null
null
linux
df80cd9b28b9ebaa284a41df611dbf3a2d05ca74
1
int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp) { struct sctp_association *asoc = sctp_id2assoc(sk, id); struct sctp_sock *sp = sctp_sk(sk); struct socket *sock; int err = 0; if (!asoc) return -EINVAL; /* If there is a thread waiting on more sndbuf space for * sending on this asoc, it cannot be peeled. */ if (waitqueue_active(&asoc->wait)) return -EBUSY; /* An association cannot be branched off from an already peeled-off * socket, nor is this supported for tcp style sockets. */ if (!sctp_style(sk, UDP)) return -EINVAL; /* Create a new socket. */ err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); if (err < 0) return err; sctp_copy_sock(sock->sk, sk, asoc); /* Make peeled-off sockets more like 1-1 accepted sockets. * Set the daddr and initialize id to something more random */ sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk); /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); *sockp = sock; return err; }
CWE-416
180,908
2,450
74326315358449763506207584151691485221
null
null
null
linux
2fae9e5a7babada041e2e161699ade2447a01989
1
static int tower_probe (struct usb_interface *interface, const struct usb_device_id *id) { struct device *idev = &interface->dev; struct usb_device *udev = interface_to_usbdev(interface); struct lego_usb_tower *dev = NULL; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor* endpoint; struct tower_get_version_reply get_version_reply; int i; int retval = -ENOMEM; int result; /* allocate memory for our device state and initialize it */ dev = kmalloc (sizeof(struct lego_usb_tower), GFP_KERNEL); if (!dev) goto exit; mutex_init(&dev->lock); dev->udev = udev; dev->open_count = 0; dev->read_buffer = NULL; dev->read_buffer_length = 0; dev->read_packet_length = 0; spin_lock_init (&dev->read_buffer_lock); dev->packet_timeout_jiffies = msecs_to_jiffies(packet_timeout); dev->read_last_arrival = jiffies; init_waitqueue_head (&dev->read_wait); init_waitqueue_head (&dev->write_wait); dev->interrupt_in_buffer = NULL; dev->interrupt_in_endpoint = NULL; dev->interrupt_in_urb = NULL; dev->interrupt_in_running = 0; dev->interrupt_in_done = 0; dev->interrupt_out_buffer = NULL; dev->interrupt_out_endpoint = NULL; dev->interrupt_out_urb = NULL; dev->interrupt_out_busy = 0; iface_desc = interface->cur_altsetting; /* set up the endpoint information */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; if (usb_endpoint_xfer_int(endpoint)) { if (usb_endpoint_dir_in(endpoint)) dev->interrupt_in_endpoint = endpoint; else dev->interrupt_out_endpoint = endpoint; } } if(dev->interrupt_in_endpoint == NULL) { dev_err(idev, "interrupt in endpoint not found\n"); goto error; } if (dev->interrupt_out_endpoint == NULL) { dev_err(idev, "interrupt out endpoint not found\n"); goto error; } dev->read_buffer = kmalloc (read_buffer_size, GFP_KERNEL); if (!dev->read_buffer) goto error; dev->interrupt_in_buffer = kmalloc (usb_endpoint_maxp(dev->interrupt_in_endpoint), GFP_KERNEL); if (!dev->interrupt_in_buffer) goto error; dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_in_urb) goto error; dev->interrupt_out_buffer = kmalloc (write_buffer_size, GFP_KERNEL); if (!dev->interrupt_out_buffer) goto error; dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL); if (!dev->interrupt_out_urb) goto error; dev->interrupt_in_interval = interrupt_in_interval ? interrupt_in_interval : dev->interrupt_in_endpoint->bInterval; dev->interrupt_out_interval = interrupt_out_interval ? interrupt_out_interval : dev->interrupt_out_endpoint->bInterval; /* we can register the device now, as it is ready */ usb_set_intfdata (interface, dev); retval = usb_register_dev (interface, &tower_class); if (retval) { /* something prevented us from registering this driver */ dev_err(idev, "Not able to get a minor for this device.\n"); usb_set_intfdata (interface, NULL); goto error; } dev->minor = interface->minor; /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "LEGO USB Tower #%d now attached to major " "%d minor %d\n", (dev->minor - LEGO_USB_TOWER_MINOR_BASE), USB_MAJOR, dev->minor); /* get the firmware version and log it */ result = usb_control_msg (udev, usb_rcvctrlpipe(udev, 0), LEGO_USB_TOWER_REQUEST_GET_VERSION, USB_TYPE_VENDOR | USB_DIR_IN | USB_RECIP_DEVICE, 0, 0, &get_version_reply, sizeof(get_version_reply), 1000); if (result < 0) { dev_err(idev, "LEGO USB Tower get version control request failed\n"); retval = result; goto error; } dev_info(&interface->dev, "LEGO USB Tower firmware version is %d.%d " "build %d\n", get_version_reply.major, get_version_reply.minor, le16_to_cpu(get_version_reply.build_no)); exit: return retval; error: tower_delete(dev); return retval; }
CWE-476
180,909
2,451
118264152329955412359409976629846966857
null
null
null
ImageMagick
ef8f40689ac452398026c07da41656a7c87e4683
1
static Image *ReadYUVImage(const ImageInfo *image_info,ExceptionInfo *exception) { Image *chroma_image, *image, *resize_image; InterlaceType interlace; MagickBooleanType status; register const Quantum *chroma_pixels; register ssize_t x; register Quantum *q; register unsigned char *p; ssize_t count, horizontal_factor, vertical_factor, y; size_t length, quantum; unsigned char *scanline; /* Allocate image structure. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); if ((image->columns == 0) || (image->rows == 0)) ThrowReaderException(OptionError,"MustSpecifyImageSize"); status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) return(DestroyImageList(image)); quantum=(ssize_t) (image->depth <= 8 ? 1 : 2); interlace=image_info->interlace; horizontal_factor=2; vertical_factor=2; if (image_info->sampling_factor != (char *) NULL) { GeometryInfo geometry_info; MagickStatusType flags; flags=ParseGeometry(image_info->sampling_factor,&geometry_info); horizontal_factor=(ssize_t) geometry_info.rho; vertical_factor=(ssize_t) geometry_info.sigma; if ((flags & SigmaValue) == 0) vertical_factor=horizontal_factor; if ((horizontal_factor != 1) && (horizontal_factor != 2) && (vertical_factor != 1) && (vertical_factor != 2)) ThrowReaderException(CorruptImageError,"UnexpectedSamplingFactor"); } if ((interlace == UndefinedInterlace) || ((interlace == NoInterlace) && (vertical_factor == 2))) { interlace=NoInterlace; /* CCIR 4:2:2 */ if (vertical_factor == 2) interlace=PlaneInterlace; /* CCIR 4:1:1 */ } if (interlace != PartitionInterlace) { /* Open image file. */ status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } if (DiscardBlobBytes(image,(MagickSizeType) image->offset) == MagickFalse) ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); } /* Allocate memory for a scanline. */ if (interlace == NoInterlace) scanline=(unsigned char *) AcquireQuantumMemory((size_t) (2UL* image->columns+2UL),(size_t) quantum*sizeof(*scanline)); else scanline=(unsigned char *) AcquireQuantumMemory(image->columns, (size_t) quantum*sizeof(*scanline)); if (scanline == (unsigned char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); status=MagickTrue; do { chroma_image=CloneImage(image,(image->columns+horizontal_factor-1)/ horizontal_factor,(image->rows+vertical_factor-1)/vertical_factor, MagickTrue,exception); if (chroma_image == (Image *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); /* Convert raster image to pixel packets. */ if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0)) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) break; if (interlace == PartitionInterlace) { AppendImageFormat("Y",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } } for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *chroma_pixels; if (interlace == NoInterlace) { if ((y > 0) || (GetPreviousImageInList(image) == (Image *) NULL)) { length=2*quantum*image->columns; count=ReadBlob(image,length,scanline); if (count != (ssize_t) length) { status=MagickFalse; ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } p=scanline; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; chroma_pixels=QueueAuthenticPixels(chroma_image,0,y, chroma_image->columns,1,exception); if (chroma_pixels == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x+=2) { SetPixelRed(chroma_image,0,chroma_pixels); if (quantum == 1) SetPixelGreen(chroma_image,ScaleCharToQuantum(*p++), chroma_pixels); else { SetPixelGreen(chroma_image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),chroma_pixels); p+=2; } if (quantum == 1) SetPixelRed(image,ScaleCharToQuantum(*p++),q); else { SetPixelRed(image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),q); p+=2; } SetPixelGreen(image,0,q); SetPixelBlue(image,0,q); q+=GetPixelChannels(image); SetPixelGreen(image,0,q); SetPixelBlue(image,0,q); if (quantum == 1) SetPixelBlue(chroma_image,ScaleCharToQuantum(*p++),chroma_pixels); else { SetPixelBlue(chroma_image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),chroma_pixels); p+=2; } if (quantum == 1) SetPixelRed(image,ScaleCharToQuantum(*p++),q); else { SetPixelRed(image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),q); p+=2; } chroma_pixels+=GetPixelChannels(chroma_image); q+=GetPixelChannels(image); } } else { if ((y > 0) || (GetPreviousImageInList(image) == (Image *) NULL)) { length=quantum*image->columns; count=ReadBlob(image,length,scanline); if (count != (ssize_t) length) { status=MagickFalse; ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } p=scanline; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { if (quantum == 1) SetPixelRed(image,ScaleCharToQuantum(*p++),q); else { SetPixelRed(image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),q); p+=2; } SetPixelGreen(image,0,q); SetPixelBlue(image,0,q); q+=GetPixelChannels(image); } } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (interlace == NoInterlace) if (SyncAuthenticPixels(chroma_image,exception) == MagickFalse) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } if (interlace == PartitionInterlace) { (void) CloseBlob(image); AppendImageFormat("U",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } } if (interlace != NoInterlace) { for (y=0; y < (ssize_t) chroma_image->rows; y++) { length=quantum*chroma_image->columns; count=ReadBlob(image,length,scanline); if (count != (ssize_t) length) { status=MagickFalse; ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } p=scanline; q=QueueAuthenticPixels(chroma_image,0,y,chroma_image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) chroma_image->columns; x++) { SetPixelRed(chroma_image,0,q); if (quantum == 1) SetPixelGreen(chroma_image,ScaleCharToQuantum(*p++),q); else { SetPixelGreen(chroma_image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),q); p+=2; } SetPixelBlue(chroma_image,0,q); q+=GetPixelChannels(chroma_image); } if (SyncAuthenticPixels(chroma_image,exception) == MagickFalse) break; } if (interlace == PartitionInterlace) { (void) CloseBlob(image); AppendImageFormat("V",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } } for (y=0; y < (ssize_t) chroma_image->rows; y++) { length=quantum*chroma_image->columns; count=ReadBlob(image,length,scanline); if (count != (ssize_t) length) { status=MagickFalse; ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } p=scanline; q=GetAuthenticPixels(chroma_image,0,y,chroma_image->columns,1, exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) chroma_image->columns; x++) { if (quantum == 1) SetPixelBlue(chroma_image,ScaleCharToQuantum(*p++),q); else { SetPixelBlue(chroma_image,ScaleShortToQuantum(((*p) << 8) | *(p+1)),q); p+=2; } q+=GetPixelChannels(chroma_image); } if (SyncAuthenticPixels(chroma_image,exception) == MagickFalse) break; } } /* Scale image. */ resize_image=ResizeImage(chroma_image,image->columns,image->rows, TriangleFilter,exception); chroma_image=DestroyImage(chroma_image); if (resize_image == (Image *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); chroma_pixels=GetVirtualPixels(resize_image,0,y,resize_image->columns,1, exception); if ((q == (Quantum *) NULL) || (chroma_pixels == (const Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelGreen(image,GetPixelGreen(resize_image,chroma_pixels),q); SetPixelBlue(image,GetPixelBlue(resize_image,chroma_pixels),q); chroma_pixels+=GetPixelChannels(resize_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } resize_image=DestroyImage(resize_image); if (SetImageColorspace(image,YCbCrColorspace,exception) == MagickFalse) break; if (interlace == PartitionInterlace) (void) CopyMagickString(image->filename,image_info->filename, MagickPathExtent); if (EOFBlob(image) != MagickFalse) { ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); break; } /* Proceed to next image. */ if (image_info->number_scenes != 0) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; if (interlace == NoInterlace) count=ReadBlob(image,(size_t) (2*quantum*image->columns),scanline); else count=ReadBlob(image,(size_t) quantum*image->columns,scanline); if (count != 0) { /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); if (GetNextImageInList(image) == (Image *) NULL) { image=DestroyImageList(image); return((Image *) NULL); } image=SyncNextImageInList(image); status=SetImageProgress(image,LoadImagesTag,TellBlob(image), GetBlobSize(image)); if (status == MagickFalse) break; } } while (count != 0); scanline=(unsigned char *) RelinquishMagickMemory(scanline); (void) CloseBlob(image); if (status == MagickFalse) return(DestroyImageList(image)); return(GetFirstImageInList(image)); }
CWE-772
180,910
2,452
147391551823955436154635701582525000724
null
null
null
ImageMagick
241988ca28139ad970c1d9717c419f41e360ddb0
1
static Image *ReadYCBCRImage(const ImageInfo *image_info, ExceptionInfo *exception) { const unsigned char *pixels; Image *canvas_image, *image; MagickBooleanType status; MagickOffsetType scene; QuantumInfo *quantum_info; QuantumType quantum_type; register const Quantum *p; register ssize_t i, x; register Quantum *q; size_t length; ssize_t count, y; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); if ((image->columns == 0) || (image->rows == 0)) ThrowReaderException(OptionError,"MustSpecifyImageSize"); status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) return(DestroyImageList(image)); SetImageColorspace(image,YCbCrColorspace,exception); if (image_info->interlace != PartitionInterlace) { status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } if (DiscardBlobBytes(image,image->offset) == MagickFalse) ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); } /* Create virtual canvas to support cropping (i.e. image.rgb[100x100+10+20]). */ canvas_image=CloneImage(image,image->extract_info.width,1,MagickFalse, exception); (void) SetImageVirtualPixelMethod(canvas_image,BlackVirtualPixelMethod, exception); quantum_info=AcquireQuantumInfo(image_info,canvas_image); if (quantum_info == (QuantumInfo *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); quantum_type=RGBQuantum; if (LocaleCompare(image_info->magick,"YCbCrA") == 0) { quantum_type=RGBAQuantum; image->alpha_trait=BlendPixelTrait; } pixels=(const unsigned char *) NULL; if (image_info->number_scenes != 0) while (image->scene < image_info->scene) { /* Skip to next image. */ image->scene++; length=GetQuantumExtent(canvas_image,quantum_info,quantum_type); for (y=0; y < (ssize_t) image->rows; y++) { pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); if (count != (ssize_t) length) break; } } count=0; length=0; scene=0; do { /* Read pixels to virtual canvas image then push to image. */ if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0)) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) { quantum_info=DestroyQuantumInfo(quantum_info); return(DestroyImageList(image)); } SetImageColorspace(image,YCbCrColorspace,exception); switch (image_info->interlace) { case NoInterlace: default: { /* No interlacing: YCbCrYCbCrYCbCrYCbCrYCbCrYCbCr... */ if (scene == 0) { length=GetQuantumExtent(canvas_image,quantum_info,quantum_type); pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,quantum_type,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=QueueAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(image,GetPixelRed(canvas_image,p),q); SetPixelGreen(image,GetPixelGreen(canvas_image,p),q); SetPixelBlue(image,GetPixelBlue(canvas_image,p),q); if (image->alpha_trait != UndefinedPixelTrait) SetPixelAlpha(image,GetPixelAlpha(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } break; } case LineInterlace: { static QuantumType quantum_types[4] = { RedQuantum, GreenQuantum, BlueQuantum, OpacityQuantum }; /* Line interlacing: YYY...CbCbCb...CrCrCr...YYY...CbCbCb...CrCrCr... */ if (scene == 0) { length=GetQuantumExtent(canvas_image,quantum_info,RedQuantum); pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } for (y=0; y < (ssize_t) image->extract_info.height; y++) { for (i=0; i < (image->alpha_trait != UndefinedPixelTrait ? 4 : 3); i++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } quantum_type=quantum_types[i]; q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,quantum_type,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x, 0,canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { switch (quantum_type) { case RedQuantum: { SetPixelRed(image,GetPixelRed(canvas_image,p),q); break; } case GreenQuantum: { SetPixelGreen(image,GetPixelGreen(canvas_image,p),q); break; } case BlueQuantum: { SetPixelBlue(image,GetPixelBlue(canvas_image,p),q); break; } case OpacityQuantum: { SetPixelAlpha(image,GetPixelAlpha(canvas_image,p),q); break; } default: break; } p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } break; } case PlaneInterlace: { /* Plane interlacing: YYYYYY...CbCbCbCbCbCb...CrCrCrCrCrCr... */ if (scene == 0) { length=GetQuantumExtent(canvas_image,quantum_info,RedQuantum); pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,RedQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(image,GetPixelRed(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,1,5); if (status == MagickFalse) break; } for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,GreenQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelGreen(image,GetPixelGreen(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,2,5); if (status == MagickFalse) break; } for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,BlueQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelBlue(image,GetPixelBlue(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,3,5); if (status == MagickFalse) break; } if (image->alpha_trait != UndefinedPixelTrait) { for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,AlphaQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image, canvas_image->extract_info.x,0,canvas_image->columns,1, exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelAlpha(image,GetPixelAlpha(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,4,5); if (status == MagickFalse) break; } } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,5,5); if (status == MagickFalse) break; } break; } case PartitionInterlace: { /* Partition interlacing: YYYYYY..., CbCbCbCbCbCb..., CrCrCrCrCrCr... */ AppendImageFormat("Y",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { canvas_image=DestroyImageList(canvas_image); image=DestroyImageList(image); return((Image *) NULL); } if (DiscardBlobBytes(image,image->offset) == MagickFalse) ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); length=GetQuantumExtent(canvas_image,quantum_info,RedQuantum); for (i=0; i < (ssize_t) scene; i++) for (y=0; y < (ssize_t) image->extract_info.height; y++) { pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,RedQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(image,GetPixelRed(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,1,5); if (status == MagickFalse) break; } (void) CloseBlob(image); AppendImageFormat("Cb",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { canvas_image=DestroyImageList(canvas_image); image=DestroyImageList(image); return((Image *) NULL); } length=GetQuantumExtent(canvas_image,quantum_info,GreenQuantum); for (i=0; i < (ssize_t) scene; i++) for (y=0; y < (ssize_t) image->extract_info.height; y++) { pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,GreenQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelGreen(image,GetPixelGreen(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,2,5); if (status == MagickFalse) break; } (void) CloseBlob(image); AppendImageFormat("Cr",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { canvas_image=DestroyImageList(canvas_image); image=DestroyImageList(image); return((Image *) NULL); } length=GetQuantumExtent(canvas_image,quantum_info,BlueQuantum); for (i=0; i < (ssize_t) scene; i++) for (y=0; y < (ssize_t) image->extract_info.height; y++) { pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,BlueQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0, canvas_image->columns,1,exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelBlue(image,GetPixelBlue(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,3,5); if (status == MagickFalse) break; } if (image->alpha_trait != UndefinedPixelTrait) { (void) CloseBlob(image); AppendImageFormat("A",image->filename); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { canvas_image=DestroyImageList(canvas_image); image=DestroyImageList(image); return((Image *) NULL); } length=GetQuantumExtent(canvas_image,quantum_info,AlphaQuantum); for (i=0; i < (ssize_t) scene; i++) for (y=0; y < (ssize_t) image->extract_info.height; y++) { pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); for (y=0; y < (ssize_t) image->extract_info.height; y++) { if (count != (ssize_t) length) { ThrowFileException(exception,CorruptImageError, "UnexpectedEndOfFile",image->filename); break; } q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1, exception); if (q == (Quantum *) NULL) break; length=ImportQuantumPixels(canvas_image,(CacheView *) NULL, quantum_info,BlueQuantum,pixels,exception); if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse) break; if (((y-image->extract_info.y) >= 0) && ((y-image->extract_info.y) < (ssize_t) image->rows)) { p=GetVirtualPixels(canvas_image, canvas_image->extract_info.x,0,canvas_image->columns,1, exception); q=GetAuthenticPixels(image,0,y-image->extract_info.y, image->columns,1,exception); if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelAlpha(image,GetPixelAlpha(canvas_image,p),q); p+=GetPixelChannels(canvas_image); q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } pixels=(const unsigned char *) ReadBlobStream(image,length, GetQuantumPixels(quantum_info),&count); } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,4,5); if (status == MagickFalse) break; } } if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,5,5); if (status == MagickFalse) break; } break; } } SetQuantumImageType(image,quantum_type); /* Proceed to next image. */ if (image_info->number_scenes != 0) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; if (count == (ssize_t) length) { /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); if (GetNextImageInList(image) == (Image *) NULL) { image=DestroyImageList(image); return((Image *) NULL); } image=SyncNextImageInList(image); status=SetImageProgress(image,LoadImagesTag,TellBlob(image), GetBlobSize(image)); if (status == MagickFalse) break; } scene++; } while (count == (ssize_t) length); quantum_info=DestroyQuantumInfo(quantum_info); canvas_image=DestroyImage(canvas_image); (void) CloseBlob(image); return(GetFirstImageInList(image)); }
CWE-772
180,911
2,453
326645646455820724744297621007624025134
null
null
null
linux
3e0097499839e0fe3af380410eababe5a47c4cf9
1
sg_ioctl(struct file *filp, unsigned int cmd_in, unsigned long arg) { void __user *p = (void __user *)arg; int __user *ip = p; int result, val, read_only; Sg_device *sdp; Sg_fd *sfp; Sg_request *srp; unsigned long iflags; if ((!(sfp = (Sg_fd *) filp->private_data)) || (!(sdp = sfp->parentdp))) return -ENXIO; SCSI_LOG_TIMEOUT(3, sg_printk(KERN_INFO, sdp, "sg_ioctl: cmd=0x%x\n", (int) cmd_in)); read_only = (O_RDWR != (filp->f_flags & O_ACCMODE)); switch (cmd_in) { case SG_IO: if (atomic_read(&sdp->detaching)) return -ENODEV; if (!scsi_block_when_processing_errors(sdp->device)) return -ENXIO; if (!access_ok(VERIFY_WRITE, p, SZ_SG_IO_HDR)) return -EFAULT; result = sg_new_write(sfp, filp, p, SZ_SG_IO_HDR, 1, read_only, 1, &srp); if (result < 0) return result; result = wait_event_interruptible(sfp->read_wait, (srp_done(sfp, srp) || atomic_read(&sdp->detaching))); if (atomic_read(&sdp->detaching)) return -ENODEV; write_lock_irq(&sfp->rq_list_lock); if (srp->done) { srp->done = 2; write_unlock_irq(&sfp->rq_list_lock); result = sg_new_read(sfp, p, SZ_SG_IO_HDR, srp); return (result < 0) ? result : 0; } srp->orphan = 1; write_unlock_irq(&sfp->rq_list_lock); return result; /* -ERESTARTSYS because signal hit process */ case SG_SET_TIMEOUT: result = get_user(val, ip); if (result) return result; if (val < 0) return -EIO; if (val >= mult_frac((s64)INT_MAX, USER_HZ, HZ)) val = min_t(s64, mult_frac((s64)INT_MAX, USER_HZ, HZ), INT_MAX); sfp->timeout_user = val; sfp->timeout = mult_frac(val, HZ, USER_HZ); return 0; case SG_GET_TIMEOUT: /* N.B. User receives timeout as return value */ /* strange ..., for backward compatibility */ return sfp->timeout_user; case SG_SET_FORCE_LOW_DMA: /* * N.B. This ioctl never worked properly, but failed to * return an error value. So returning '0' to keep compability * with legacy applications. */ return 0; case SG_GET_LOW_DMA: return put_user((int) sdp->device->host->unchecked_isa_dma, ip); case SG_GET_SCSI_ID: if (!access_ok(VERIFY_WRITE, p, sizeof (sg_scsi_id_t))) return -EFAULT; else { sg_scsi_id_t __user *sg_idp = p; if (atomic_read(&sdp->detaching)) return -ENODEV; __put_user((int) sdp->device->host->host_no, &sg_idp->host_no); __put_user((int) sdp->device->channel, &sg_idp->channel); __put_user((int) sdp->device->id, &sg_idp->scsi_id); __put_user((int) sdp->device->lun, &sg_idp->lun); __put_user((int) sdp->device->type, &sg_idp->scsi_type); __put_user((short) sdp->device->host->cmd_per_lun, &sg_idp->h_cmd_per_lun); __put_user((short) sdp->device->queue_depth, &sg_idp->d_queue_depth); __put_user(0, &sg_idp->unused[0]); __put_user(0, &sg_idp->unused[1]); return 0; } case SG_SET_FORCE_PACK_ID: result = get_user(val, ip); if (result) return result; sfp->force_packid = val ? 1 : 0; return 0; case SG_GET_PACK_ID: if (!access_ok(VERIFY_WRITE, ip, sizeof (int))) return -EFAULT; read_lock_irqsave(&sfp->rq_list_lock, iflags); list_for_each_entry(srp, &sfp->rq_list, entry) { if ((1 == srp->done) && (!srp->sg_io_owned)) { read_unlock_irqrestore(&sfp->rq_list_lock, iflags); __put_user(srp->header.pack_id, ip); return 0; } } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); __put_user(-1, ip); return 0; case SG_GET_NUM_WAITING: read_lock_irqsave(&sfp->rq_list_lock, iflags); val = 0; list_for_each_entry(srp, &sfp->rq_list, entry) { if ((1 == srp->done) && (!srp->sg_io_owned)) ++val; } read_unlock_irqrestore(&sfp->rq_list_lock, iflags); return put_user(val, ip); case SG_GET_SG_TABLESIZE: return put_user(sdp->sg_tablesize, ip); case SG_SET_RESERVED_SIZE: result = get_user(val, ip); if (result) return result; if (val < 0) return -EINVAL; val = min_t(int, val, max_sectors_bytes(sdp->device->request_queue)); mutex_lock(&sfp->f_mutex); if (val != sfp->reserve.bufflen) { if (sfp->mmap_called || sfp->res_in_use) { mutex_unlock(&sfp->f_mutex); return -EBUSY; } sg_remove_scat(sfp, &sfp->reserve); sg_build_reserve(sfp, val); } mutex_unlock(&sfp->f_mutex); return 0; case SG_GET_RESERVED_SIZE: val = min_t(int, sfp->reserve.bufflen, max_sectors_bytes(sdp->device->request_queue)); return put_user(val, ip); case SG_SET_COMMAND_Q: result = get_user(val, ip); if (result) return result; sfp->cmd_q = val ? 1 : 0; return 0; case SG_GET_COMMAND_Q: return put_user((int) sfp->cmd_q, ip); case SG_SET_KEEP_ORPHAN: result = get_user(val, ip); if (result) return result; sfp->keep_orphan = val; return 0; case SG_GET_KEEP_ORPHAN: return put_user((int) sfp->keep_orphan, ip); case SG_NEXT_CMD_LEN: result = get_user(val, ip); if (result) return result; if (val > SG_MAX_CDB_SIZE) return -ENOMEM; sfp->next_cmd_len = (val > 0) ? val : 0; return 0; case SG_GET_VERSION_NUM: return put_user(sg_version_num, ip); case SG_GET_ACCESS_COUNT: /* faked - we don't have a real access count anymore */ val = (sdp->device ? 1 : 0); return put_user(val, ip); case SG_GET_REQUEST_TABLE: if (!access_ok(VERIFY_WRITE, p, SZ_SG_REQ_INFO * SG_MAX_QUEUE)) return -EFAULT; else { sg_req_info_t *rinfo; rinfo = kmalloc(SZ_SG_REQ_INFO * SG_MAX_QUEUE, GFP_KERNEL); if (!rinfo) return -ENOMEM; read_lock_irqsave(&sfp->rq_list_lock, iflags); sg_fill_request_table(sfp, rinfo); read_unlock_irqrestore(&sfp->rq_list_lock, iflags); result = __copy_to_user(p, rinfo, SZ_SG_REQ_INFO * SG_MAX_QUEUE); result = result ? -EFAULT : 0; kfree(rinfo); return result; } case SG_EMULATED_HOST: if (atomic_read(&sdp->detaching)) return -ENODEV; return put_user(sdp->device->host->hostt->emulated, ip); case SCSI_IOCTL_SEND_COMMAND: if (atomic_read(&sdp->detaching)) return -ENODEV; if (read_only) { unsigned char opcode = WRITE_6; Scsi_Ioctl_Command __user *siocp = p; if (copy_from_user(&opcode, siocp->data, 1)) return -EFAULT; if (sg_allow_access(filp, &opcode)) return -EPERM; } return sg_scsi_ioctl(sdp->device->request_queue, NULL, filp->f_mode, p); case SG_SET_DEBUG: result = get_user(val, ip); if (result) return result; sdp->sgdebug = (char) val; return 0; case BLKSECTGET: return put_user(max_sectors_bytes(sdp->device->request_queue), ip); case BLKTRACESETUP: return blk_trace_setup(sdp->device->request_queue, sdp->disk->disk_name, MKDEV(SCSI_GENERIC_MAJOR, sdp->index), NULL, p); case BLKTRACESTART: return blk_trace_startstop(sdp->device->request_queue, 1); case BLKTRACESTOP: return blk_trace_startstop(sdp->device->request_queue, 0); case BLKTRACETEARDOWN: return blk_trace_remove(sdp->device->request_queue); case SCSI_IOCTL_GET_IDLUN: case SCSI_IOCTL_GET_BUS_NUMBER: case SCSI_IOCTL_PROBE_HOST: case SG_GET_TRANSFORM: case SG_SCSI_RESET: if (atomic_read(&sdp->detaching)) return -ENODEV; break; default: if (read_only) return -EPERM; /* don't know so take safe approach */ break; } result = scsi_ioctl_block_when_processing_errors(sdp->device, cmd_in, filp->f_flags & O_NDELAY); if (result) return result; return scsi_ioctl(sdp->device, cmd_in, p); }
CWE-200
180,913
2,455
130633992931209771359171915915220469283
null
null
null
weechat
f105c6f0b56fb5687b2d2aedf37cb1d1b434d556
1
logger_get_mask_expanded (struct t_gui_buffer *buffer, const char *mask) { char *mask2, *mask_decoded, *mask_decoded2, *mask_decoded3, *mask_decoded4; char *mask_decoded5; const char *dir_separator; int length; time_t seconds; struct tm *date_tmp; mask2 = NULL; mask_decoded = NULL; mask_decoded2 = NULL; mask_decoded3 = NULL; mask_decoded4 = NULL; mask_decoded5 = NULL; dir_separator = weechat_info_get ("dir_separator", ""); if (!dir_separator) return NULL; /* * we first replace directory separator (commonly '/') by \01 because * buffer mask can contain this char, and will be replaced by replacement * char ('_' by default) */ mask2 = weechat_string_replace (mask, dir_separator, "\01"); if (!mask2) goto end; mask_decoded = weechat_buffer_string_replace_local_var (buffer, mask2); if (!mask_decoded) goto end; mask_decoded2 = weechat_string_replace (mask_decoded, dir_separator, weechat_config_string (logger_config_file_replacement_char)); if (!mask_decoded2) goto end; #ifdef __CYGWIN__ mask_decoded3 = weechat_string_replace (mask_decoded2, "\\", weechat_config_string (logger_config_file_replacement_char)); #else mask_decoded3 = strdup (mask_decoded2); #endif /* __CYGWIN__ */ if (!mask_decoded3) goto end; /* restore directory separator */ mask_decoded4 = weechat_string_replace (mask_decoded3, "\01", dir_separator); if (!mask_decoded4) goto end; /* replace date/time specifiers in mask */ length = strlen (mask_decoded4) + 256 + 1; mask_decoded5 = malloc (length); if (!mask_decoded5) goto end; seconds = time (NULL); date_tmp = localtime (&seconds); mask_decoded5[0] = '\0'; strftime (mask_decoded5, length - 1, mask_decoded4, date_tmp); /* convert to lower case? */ if (weechat_config_boolean (logger_config_file_name_lower_case)) weechat_string_tolower (mask_decoded5); if (weechat_logger_plugin->debug) { weechat_printf_date_tags (NULL, 0, "no_log", "%s: buffer = \"%s\", mask = \"%s\", " "decoded mask = \"%s\"", LOGGER_PLUGIN_NAME, weechat_buffer_get_string (buffer, "name"), mask, mask_decoded5); } end: if (mask2) free (mask2); if (mask_decoded) free (mask_decoded); if (mask_decoded2) free (mask_decoded2); if (mask_decoded3) free (mask_decoded3); if (mask_decoded4) free (mask_decoded4); return mask_decoded5; }
CWE-119
180,917
2,458
35719065491166298989169814145776903181
null
null
null
libarchive
5562545b5562f6d12a4ef991fae158bf4ccf92b6
1
read_header(struct archive_read *a, struct archive_entry *entry, char head_type) { const void *h; const char *p, *endp; struct rar *rar; struct rar_header rar_header; struct rar_file_header file_header; int64_t header_size; unsigned filename_size, end; char *filename; char *strp; char packed_size[8]; char unp_size[8]; int ttime; struct archive_string_conv *sconv, *fn_sconv; unsigned long crc32_val; int ret = (ARCHIVE_OK), ret2; rar = (struct rar *)(a->format->data); /* Setup a string conversion object for non-rar-unicode filenames. */ sconv = rar->opt_sconv; if (sconv == NULL) { if (!rar->init_default_conversion) { rar->sconv_default = archive_string_default_conversion_for_read( &(a->archive)); rar->init_default_conversion = 1; } sconv = rar->sconv_default; } if ((h = __archive_read_ahead(a, 7, NULL)) == NULL) return (ARCHIVE_FATAL); p = h; memcpy(&rar_header, p, sizeof(rar_header)); rar->file_flags = archive_le16dec(rar_header.flags); header_size = archive_le16dec(rar_header.size); if (header_size < (int64_t)sizeof(file_header) + 7) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid header size"); return (ARCHIVE_FATAL); } crc32_val = crc32(0, (const unsigned char *)p + 2, 7 - 2); __archive_read_consume(a, 7); if (!(rar->file_flags & FHD_SOLID)) { rar->compression_method = 0; rar->packed_size = 0; rar->unp_size = 0; rar->mtime = 0; rar->ctime = 0; rar->atime = 0; rar->arctime = 0; rar->mode = 0; memset(&rar->salt, 0, sizeof(rar->salt)); rar->atime = 0; rar->ansec = 0; rar->ctime = 0; rar->cnsec = 0; rar->mtime = 0; rar->mnsec = 0; rar->arctime = 0; rar->arcnsec = 0; } else { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "RAR solid archive support unavailable."); return (ARCHIVE_FATAL); } if ((h = __archive_read_ahead(a, (size_t)header_size - 7, NULL)) == NULL) return (ARCHIVE_FATAL); /* File Header CRC check. */ crc32_val = crc32(crc32_val, h, (unsigned)(header_size - 7)); if ((crc32_val & 0xffff) != archive_le16dec(rar_header.crc)) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Header CRC error"); return (ARCHIVE_FATAL); } /* If no CRC error, Go on parsing File Header. */ p = h; endp = p + header_size - 7; memcpy(&file_header, p, sizeof(file_header)); p += sizeof(file_header); rar->compression_method = file_header.method; ttime = archive_le32dec(file_header.file_time); rar->mtime = get_time(ttime); rar->file_crc = archive_le32dec(file_header.file_crc); if (rar->file_flags & FHD_PASSWORD) { archive_entry_set_is_data_encrypted(entry, 1); rar->has_encrypted_entries = 1; archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "RAR encryption support unavailable."); /* Since it is only the data part itself that is encrypted we can at least extract information about the currently processed entry and don't need to return ARCHIVE_FATAL here. */ /*return (ARCHIVE_FATAL);*/ } if (rar->file_flags & FHD_LARGE) { memcpy(packed_size, file_header.pack_size, 4); memcpy(packed_size + 4, p, 4); /* High pack size */ p += 4; memcpy(unp_size, file_header.unp_size, 4); memcpy(unp_size + 4, p, 4); /* High unpack size */ p += 4; rar->packed_size = archive_le64dec(&packed_size); rar->unp_size = archive_le64dec(&unp_size); } else { rar->packed_size = archive_le32dec(file_header.pack_size); rar->unp_size = archive_le32dec(file_header.unp_size); } if (rar->packed_size < 0 || rar->unp_size < 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid sizes specified."); return (ARCHIVE_FATAL); } rar->bytes_remaining = rar->packed_size; /* TODO: RARv3 subblocks contain comments. For now the complete block is * consumed at the end. */ if (head_type == NEWSUB_HEAD) { size_t distance = p - (const char *)h; header_size += rar->packed_size; /* Make sure we have the extended data. */ if ((h = __archive_read_ahead(a, (size_t)header_size - 7, NULL)) == NULL) return (ARCHIVE_FATAL); p = h; endp = p + header_size - 7; p += distance; } filename_size = archive_le16dec(file_header.name_size); if (p + filename_size > endp) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid filename size"); return (ARCHIVE_FATAL); } if (rar->filename_allocated < filename_size * 2 + 2) { char *newptr; size_t newsize = filename_size * 2 + 2; newptr = realloc(rar->filename, newsize); if (newptr == NULL) { archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory."); return (ARCHIVE_FATAL); } rar->filename = newptr; rar->filename_allocated = newsize; } filename = rar->filename; memcpy(filename, p, filename_size); filename[filename_size] = '\0'; if (rar->file_flags & FHD_UNICODE) { if (filename_size != strlen(filename)) { unsigned char highbyte, flagbits, flagbyte; unsigned fn_end, offset; end = filename_size; fn_end = filename_size * 2; filename_size = 0; offset = (unsigned)strlen(filename) + 1; highbyte = *(p + offset++); flagbits = 0; flagbyte = 0; while (offset < end && filename_size < fn_end) { if (!flagbits) { flagbyte = *(p + offset++); flagbits = 8; } flagbits -= 2; switch((flagbyte >> flagbits) & 3) { case 0: filename[filename_size++] = '\0'; filename[filename_size++] = *(p + offset++); break; case 1: filename[filename_size++] = highbyte; filename[filename_size++] = *(p + offset++); break; case 2: filename[filename_size++] = *(p + offset + 1); filename[filename_size++] = *(p + offset); offset += 2; break; case 3: { char extra, high; uint8_t length = *(p + offset++); if (length & 0x80) { extra = *(p + offset++); high = (char)highbyte; } else extra = high = 0; length = (length & 0x7f) + 2; while (length && filename_size < fn_end) { unsigned cp = filename_size >> 1; filename[filename_size++] = high; filename[filename_size++] = p[cp] + extra; length--; } } break; } } if (filename_size > fn_end) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid filename"); return (ARCHIVE_FATAL); } filename[filename_size++] = '\0'; filename[filename_size++] = '\0'; /* Decoded unicode form is UTF-16BE, so we have to update a string * conversion object for it. */ if (rar->sconv_utf16be == NULL) { rar->sconv_utf16be = archive_string_conversion_from_charset( &a->archive, "UTF-16BE", 1); if (rar->sconv_utf16be == NULL) return (ARCHIVE_FATAL); } fn_sconv = rar->sconv_utf16be; strp = filename; while (memcmp(strp, "\x00\x00", 2)) { if (!memcmp(strp, "\x00\\", 2)) *(strp + 1) = '/'; strp += 2; } p += offset; } else { /* * If FHD_UNICODE is set but no unicode data, this file name form * is UTF-8, so we have to update a string conversion object for * it accordingly. */ if (rar->sconv_utf8 == NULL) { rar->sconv_utf8 = archive_string_conversion_from_charset( &a->archive, "UTF-8", 1); if (rar->sconv_utf8 == NULL) return (ARCHIVE_FATAL); } fn_sconv = rar->sconv_utf8; while ((strp = strchr(filename, '\\')) != NULL) *strp = '/'; p += filename_size; } } else { fn_sconv = sconv; while ((strp = strchr(filename, '\\')) != NULL) *strp = '/'; p += filename_size; } /* Split file in multivolume RAR. No more need to process header. */ if (rar->filename_save && filename_size == rar->filename_save_size && !memcmp(rar->filename, rar->filename_save, filename_size + 1)) { __archive_read_consume(a, header_size - 7); rar->cursor++; if (rar->cursor >= rar->nodes) { rar->nodes++; if ((rar->dbo = realloc(rar->dbo, sizeof(*rar->dbo) * rar->nodes)) == NULL) { archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory."); return (ARCHIVE_FATAL); } rar->dbo[rar->cursor].header_size = header_size; rar->dbo[rar->cursor].start_offset = -1; rar->dbo[rar->cursor].end_offset = -1; } if (rar->dbo[rar->cursor].start_offset < 0) { rar->dbo[rar->cursor].start_offset = a->filter->position; rar->dbo[rar->cursor].end_offset = rar->dbo[rar->cursor].start_offset + rar->packed_size; } return ret; } rar->filename_save = (char*)realloc(rar->filename_save, filename_size + 1); memcpy(rar->filename_save, rar->filename, filename_size + 1); rar->filename_save_size = filename_size; /* Set info for seeking */ free(rar->dbo); if ((rar->dbo = calloc(1, sizeof(*rar->dbo))) == NULL) { archive_set_error(&a->archive, ENOMEM, "Couldn't allocate memory."); return (ARCHIVE_FATAL); } rar->dbo[0].header_size = header_size; rar->dbo[0].start_offset = -1; rar->dbo[0].end_offset = -1; rar->cursor = 0; rar->nodes = 1; if (rar->file_flags & FHD_SALT) { if (p + 8 > endp) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid header size"); return (ARCHIVE_FATAL); } memcpy(rar->salt, p, 8); p += 8; } if (rar->file_flags & FHD_EXTTIME) { if (read_exttime(p, rar, endp) < 0) { archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Invalid header size"); return (ARCHIVE_FATAL); } } __archive_read_consume(a, header_size - 7); rar->dbo[0].start_offset = a->filter->position; rar->dbo[0].end_offset = rar->dbo[0].start_offset + rar->packed_size; switch(file_header.host_os) { case OS_MSDOS: case OS_OS2: case OS_WIN32: rar->mode = archive_le32dec(file_header.file_attr); if (rar->mode & FILE_ATTRIBUTE_DIRECTORY) rar->mode = AE_IFDIR | S_IXUSR | S_IXGRP | S_IXOTH; else rar->mode = AE_IFREG; rar->mode |= S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; break; case OS_UNIX: case OS_MAC_OS: case OS_BEOS: rar->mode = archive_le32dec(file_header.file_attr); break; default: archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Unknown file attributes from RAR file's host OS"); return (ARCHIVE_FATAL); } rar->bytes_uncopied = rar->bytes_unconsumed = 0; rar->lzss.position = rar->offset = 0; rar->offset_seek = 0; rar->dictionary_size = 0; rar->offset_outgoing = 0; rar->br.cache_avail = 0; rar->br.avail_in = 0; rar->crc_calculated = 0; rar->entry_eof = 0; rar->valid = 1; rar->is_ppmd_block = 0; rar->start_new_table = 1; free(rar->unp_buffer); rar->unp_buffer = NULL; rar->unp_offset = 0; rar->unp_buffer_size = UNP_BUFFER_SIZE; memset(rar->lengthtable, 0, sizeof(rar->lengthtable)); __archive_ppmd7_functions.Ppmd7_Free(&rar->ppmd7_context, &g_szalloc); rar->ppmd_valid = rar->ppmd_eod = 0; /* Don't set any archive entries for non-file header types */ if (head_type == NEWSUB_HEAD) return ret; archive_entry_set_mtime(entry, rar->mtime, rar->mnsec); archive_entry_set_ctime(entry, rar->ctime, rar->cnsec); archive_entry_set_atime(entry, rar->atime, rar->ansec); archive_entry_set_size(entry, rar->unp_size); archive_entry_set_mode(entry, rar->mode); if (archive_entry_copy_pathname_l(entry, filename, filename_size, fn_sconv)) { if (errno == ENOMEM) { archive_set_error(&a->archive, ENOMEM, "Can't allocate memory for Pathname"); return (ARCHIVE_FATAL); } archive_set_error(&a->archive, ARCHIVE_ERRNO_FILE_FORMAT, "Pathname cannot be converted from %s to current locale.", archive_string_conversion_charset_name(fn_sconv)); ret = (ARCHIVE_WARN); } if (((rar->mode) & AE_IFMT) == AE_IFLNK) { /* Make sure a symbolic-link file does not have its body. */ rar->bytes_remaining = 0; archive_entry_set_size(entry, 0); /* Read a symbolic-link name. */ if ((ret2 = read_symlink_stored(a, entry, sconv)) < (ARCHIVE_WARN)) return ret2; if (ret > ret2) ret = ret2; } if (rar->bytes_remaining == 0) rar->entry_eof = 1; return ret; }
CWE-125
180,926
2,466
235065171922180775195963116640254758392
null
null
null
linux
edbd58be15a957f6a760c4a514cd475217eb97fd
1
static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct packet_sock *po; struct sockaddr_ll *sll; union tpacket_uhdr h; u8 *skb_head = skb->data; int skb_len = skb->len; unsigned int snaplen, res; unsigned long status = TP_STATUS_USER; unsigned short macoff, netoff, hdrlen; struct sk_buff *copy_skb = NULL; struct timespec ts; __u32 ts_status; bool is_drop_n_account = false; /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT. * We may add members to them until current aligned size without forcing * userspace to call getsockopt(..., PACKET_HDRLEN, ...). */ BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32); BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48); if (skb->pkt_type == PACKET_LOOPBACK) goto drop; sk = pt->af_packet_priv; po = pkt_sk(sk); if (!net_eq(dev_net(dev), sock_net(sk))) goto drop; if (dev->header_ops) { if (sk->sk_type != SOCK_DGRAM) skb_push(skb, skb->data - skb_mac_header(skb)); else if (skb->pkt_type == PACKET_OUTGOING) { /* Special case: outgoing packets have ll header at head */ skb_pull(skb, skb_network_offset(skb)); } } snaplen = skb->len; res = run_filter(skb, sk, snaplen); if (!res) goto drop_n_restore; if (skb->ip_summed == CHECKSUM_PARTIAL) status |= TP_STATUS_CSUMNOTREADY; else if (skb->pkt_type != PACKET_OUTGOING && (skb->ip_summed == CHECKSUM_COMPLETE || skb_csum_unnecessary(skb))) status |= TP_STATUS_CSUM_VALID; if (snaplen > res) snaplen = res; if (sk->sk_type == SOCK_DGRAM) { macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + po->tp_reserve; } else { unsigned int maclen = skb_network_offset(skb); netoff = TPACKET_ALIGN(po->tp_hdrlen + (maclen < 16 ? 16 : maclen)) + po->tp_reserve; if (po->has_vnet_hdr) netoff += sizeof(struct virtio_net_hdr); macoff = netoff - maclen; } if (po->tp_version <= TPACKET_V2) { if (macoff + snaplen > po->rx_ring.frame_size) { if (po->copy_thresh && atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { if (skb_shared(skb)) { copy_skb = skb_clone(skb, GFP_ATOMIC); } else { copy_skb = skb_get(skb); skb_head = skb->data; } if (copy_skb) skb_set_owner_r(copy_skb, sk); } snaplen = po->rx_ring.frame_size - macoff; if ((int)snaplen < 0) snaplen = 0; } } else if (unlikely(macoff + snaplen > GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) { u32 nval; nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff; pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n", snaplen, nval, macoff); snaplen = nval; if (unlikely((int)snaplen < 0)) { snaplen = 0; macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len; } } spin_lock(&sk->sk_receive_queue.lock); h.raw = packet_current_rx_frame(po, skb, TP_STATUS_KERNEL, (macoff+snaplen)); if (!h.raw) goto drop_n_account; if (po->tp_version <= TPACKET_V2) { packet_increment_rx_head(po, &po->rx_ring); /* * LOSING will be reported till you read the stats, * because it's COR - Clear On Read. * Anyways, moving it for V1/V2 only as V3 doesn't need this * at packet level. */ if (po->stats.stats1.tp_drops) status |= TP_STATUS_LOSING; } po->stats.stats1.tp_packets++; if (copy_skb) { status |= TP_STATUS_COPY; __skb_queue_tail(&sk->sk_receive_queue, copy_skb); } spin_unlock(&sk->sk_receive_queue.lock); if (po->has_vnet_hdr) { if (virtio_net_hdr_from_skb(skb, h.raw + macoff - sizeof(struct virtio_net_hdr), vio_le(), true)) { spin_lock(&sk->sk_receive_queue.lock); goto drop_n_account; } } skb_copy_bits(skb, 0, h.raw + macoff, snaplen); if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp))) getnstimeofday(&ts); status |= ts_status; switch (po->tp_version) { case TPACKET_V1: h.h1->tp_len = skb->len; h.h1->tp_snaplen = snaplen; h.h1->tp_mac = macoff; h.h1->tp_net = netoff; h.h1->tp_sec = ts.tv_sec; h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC; hdrlen = sizeof(*h.h1); break; case TPACKET_V2: h.h2->tp_len = skb->len; h.h2->tp_snaplen = snaplen; h.h2->tp_mac = macoff; h.h2->tp_net = netoff; h.h2->tp_sec = ts.tv_sec; h.h2->tp_nsec = ts.tv_nsec; if (skb_vlan_tag_present(skb)) { h.h2->tp_vlan_tci = skb_vlan_tag_get(skb); h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto); status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID; } else { h.h2->tp_vlan_tci = 0; h.h2->tp_vlan_tpid = 0; } memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding)); hdrlen = sizeof(*h.h2); break; case TPACKET_V3: /* tp_nxt_offset,vlan are already populated above. * So DONT clear those fields here */ h.h3->tp_status |= status; h.h3->tp_len = skb->len; h.h3->tp_snaplen = snaplen; h.h3->tp_mac = macoff; h.h3->tp_net = netoff; h.h3->tp_sec = ts.tv_sec; h.h3->tp_nsec = ts.tv_nsec; memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding)); hdrlen = sizeof(*h.h3); break; default: BUG(); } sll = h.raw + TPACKET_ALIGN(hdrlen); sll->sll_halen = dev_parse_header(skb, sll->sll_addr); sll->sll_family = AF_PACKET; sll->sll_hatype = dev->type; sll->sll_protocol = skb->protocol; sll->sll_pkttype = skb->pkt_type; if (unlikely(po->origdev)) sll->sll_ifindex = orig_dev->ifindex; else sll->sll_ifindex = dev->ifindex; smp_mb(); #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 if (po->tp_version <= TPACKET_V2) { u8 *start, *end; end = (u8 *) PAGE_ALIGN((unsigned long) h.raw + macoff + snaplen); for (start = h.raw; start < end; start += PAGE_SIZE) flush_dcache_page(pgv_to_page(start)); } smp_wmb(); #endif if (po->tp_version <= TPACKET_V2) { __packet_set_status(po, h.raw, status); sk->sk_data_ready(sk); } else { prb_clear_blk_fill_status(&po->rx_ring); } drop_n_restore: if (skb_head != skb->data && skb_shared(skb)) { skb->data = skb_head; skb->len = skb_len; } drop: if (!is_drop_n_account) consume_skb(skb); else kfree_skb(skb); return 0; drop_n_account: is_drop_n_account = true; po->stats.stats1.tp_drops++; spin_unlock(&sk->sk_receive_queue.lock); sk->sk_data_ready(sk); kfree_skb(copy_skb); goto drop_n_restore; }
CWE-119
180,927
2,467
149788728253827179499794841470743763164
null
null
null
cyrus-imapd
6bd33275368edfa71ae117de895488584678ac79
1
static int mboxlist_do_find(struct find_rock *rock, const strarray_t *patterns) { const char *userid = rock->userid; int isadmin = rock->isadmin; int crossdomains = config_getswitch(IMAPOPT_CROSSDOMAINS); char inbox[MAX_MAILBOX_BUFFER]; size_t inboxlen = 0; size_t prefixlen, len; size_t domainlen = 0; size_t userlen = userid ? strlen(userid) : 0; char domainpat[MAX_MAILBOX_BUFFER]; /* do intra-domain fetches only */ char commonpat[MAX_MAILBOX_BUFFER]; int r = 0; int i; const char *p; if (patterns->count < 1) return 0; /* nothing to do */ for (i = 0; i < patterns->count; i++) { glob *g = glob_init(strarray_nth(patterns, i), rock->namespace->hier_sep); ptrarray_append(&rock->globs, g); } if (config_virtdomains && userid && (p = strchr(userid, '@'))) { userlen = p - userid; domainlen = strlen(p); /* includes separator */ snprintf(domainpat, sizeof(domainpat), "%s!", p+1); } else domainpat[0] = '\0'; /* calculate the inbox (with trailing .INBOX. for later use) */ if (userid && (!(p = strchr(userid, rock->namespace->hier_sep)) || ((p - userid) > (int)userlen)) && strlen(userid)+7 < MAX_MAILBOX_BUFFER) { char *t, *tmpuser = NULL; const char *inboxuser; if (domainlen) snprintf(inbox, sizeof(inbox), "%s!", userid+userlen+1); if (rock->namespace->hier_sep == '/' && (p = strchr(userid, '.'))) { tmpuser = xmalloc(userlen); memcpy(tmpuser, userid, userlen); t = tmpuser + (p - userid); while(t < (tmpuser + userlen)) { if (*t == '.') *t = '^'; t++; } inboxuser = tmpuser; } else inboxuser = userid; snprintf(inbox+domainlen, sizeof(inbox)-domainlen, "user.%.*s.INBOX.", (int)userlen, inboxuser); free(tmpuser); inboxlen = strlen(inbox) - 7; } else { userid = 0; } /* Find the common search prefix of all patterns */ const char *firstpat = strarray_nth(patterns, 0); for (prefixlen = 0; firstpat[prefixlen]; prefixlen++) { if (prefixlen >= MAX_MAILBOX_NAME) { r = IMAP_MAILBOX_BADNAME; goto done; } char c = firstpat[prefixlen]; for (i = 1; i < patterns->count; i++) { const char *pat = strarray_nth(patterns, i); if (pat[prefixlen] != c) break; } if (i < patterns->count) break; if (c == '*' || c == '%' || c == '?') break; commonpat[prefixlen] = c; } commonpat[prefixlen] = '\0'; if (patterns->count == 1) { /* Skip pattern which matches shared namespace prefix */ if (!strcmp(firstpat+prefixlen, "%")) rock->singlepercent = 2; /* output prefix regardless */ if (!strcmp(firstpat+prefixlen, "*%")) rock->singlepercent = 1; } /* * Personal (INBOX) namespace (only if not admin) */ if (userid && !isadmin) { /* first the INBOX */ rock->mb_category = MBNAME_INBOX; r = cyrusdb_forone(rock->db, inbox, inboxlen, &find_p, &find_cb, rock, NULL); if (r == CYRUSDB_DONE) r = 0; if (r) goto done; if (rock->namespace->isalt) { /* do exact INBOX subs before resetting the namebuffer */ rock->mb_category = MBNAME_INBOXSUB; r = cyrusdb_foreach(rock->db, inbox, inboxlen+7, &find_p, &find_cb, rock, NULL); if (r == CYRUSDB_DONE) r = 0; if (r) goto done; /* reset the the namebuffer */ r = (*rock->proc)(NULL, rock->procrock); if (r) goto done; } /* iterate through all the mailboxes under the user's inbox */ rock->mb_category = MBNAME_OWNER; r = cyrusdb_foreach(rock->db, inbox, inboxlen+1, &find_p, &find_cb, rock, NULL); if (r == CYRUSDB_DONE) r = 0; if (r) goto done; /* "Alt Prefix" folders */ if (rock->namespace->isalt) { /* reset the the namebuffer */ r = (*rock->proc)(NULL, rock->procrock); if (r) goto done; rock->mb_category = MBNAME_ALTINBOX; /* special case user.foo.INBOX. If we're singlepercent == 2, this could return DONE, in which case we don't need to foreach the rest of the altprefix space */ r = cyrusdb_forone(rock->db, inbox, inboxlen+6, &find_p, &find_cb, rock, NULL); if (r == CYRUSDB_DONE) goto skipalt; if (r) goto done; /* special case any other altprefix stuff */ rock->mb_category = MBNAME_ALTPREFIX; r = cyrusdb_foreach(rock->db, inbox, inboxlen+1, &find_p, &find_cb, rock, NULL); skipalt: /* we got a done, so skip out of the foreach early */ if (r == CYRUSDB_DONE) r = 0; if (r) goto done; } } /* * Other Users namespace * * If "Other Users*" can match pattern, search for those mailboxes next */ if (isadmin || rock->namespace->accessible[NAMESPACE_USER]) { len = strlen(rock->namespace->prefix[NAMESPACE_USER]); if (len) len--; // trailing separator if (!strncmp(rock->namespace->prefix[NAMESPACE_USER], commonpat, MIN(len, prefixlen))) { if (prefixlen < len) { /* we match all users */ strlcpy(domainpat+domainlen, "user.", sizeof(domainpat)-domainlen); } else { /* just those in this prefix */ strlcpy(domainpat+domainlen, "user.", sizeof(domainpat)-domainlen); strlcpy(domainpat+domainlen+5, commonpat+len+1, sizeof(domainpat)-domainlen-5); } rock->mb_category = MBNAME_OTHERUSER; /* because of how domains work, with crossdomains or admin you can't prefix at all :( */ size_t thislen = (isadmin || crossdomains) ? 0 : strlen(domainpat); /* reset the the namebuffer */ r = (*rock->proc)(NULL, rock->procrock); if (r) goto done; r = mboxlist_find_category(rock, domainpat, thislen); if (r) goto done; } } /* * Shared namespace * * search for all remaining mailboxes. * just bother looking at the ones that have the same pattern prefix. */ if (isadmin || rock->namespace->accessible[NAMESPACE_SHARED]) { len = strlen(rock->namespace->prefix[NAMESPACE_SHARED]); if (len) len--; // trailing separator if (!strncmp(rock->namespace->prefix[NAMESPACE_SHARED], commonpat, MIN(len, prefixlen))) { rock->mb_category = MBNAME_SHARED; /* reset the the namebuffer */ r = (*rock->proc)(NULL, rock->procrock); if (r) goto done; /* iterate through all the non-user folders on the server */ r = mboxlist_find_category(rock, domainpat, domainlen); if (r) goto done; } } /* finish with a reset call always */ r = (*rock->proc)(NULL, rock->procrock); done: for (i = 0; i < rock->globs.count; i++) { glob *g = ptrarray_nth(&rock->globs, i); glob_free(&g); } ptrarray_fini(&rock->globs); return r; }
CWE-20
180,929
2,468
31191443814716249258193312186143626475
null
null
null
FFmpeg
9cb4eb772839c5e1de2855d126bf74ff16d13382
1
static int read_tfra(MOVContext *mov, AVIOContext *f) { MOVFragmentIndex* index = NULL; int version, fieldlength, i, j; int64_t pos = avio_tell(f); uint32_t size = avio_rb32(f); void *tmp; if (avio_rb32(f) != MKBETAG('t', 'f', 'r', 'a')) { return 1; } av_log(mov->fc, AV_LOG_VERBOSE, "found tfra\n"); index = av_mallocz(sizeof(MOVFragmentIndex)); if (!index) { return AVERROR(ENOMEM); } tmp = av_realloc_array(mov->fragment_index_data, mov->fragment_index_count + 1, sizeof(MOVFragmentIndex*)); if (!tmp) { av_freep(&index); return AVERROR(ENOMEM); } mov->fragment_index_data = tmp; mov->fragment_index_data[mov->fragment_index_count++] = index; version = avio_r8(f); avio_rb24(f); index->track_id = avio_rb32(f); fieldlength = avio_rb32(f); index->item_count = avio_rb32(f); index->items = av_mallocz_array( index->item_count, sizeof(MOVFragmentIndexItem)); if (!index->items) { index->item_count = 0; return AVERROR(ENOMEM); } for (i = 0; i < index->item_count; i++) { int64_t time, offset; if (version == 1) { time = avio_rb64(f); offset = avio_rb64(f); } else { time = avio_rb32(f); offset = avio_rb32(f); } index->items[i].time = time; index->items[i].moof_offset = offset; for (j = 0; j < ((fieldlength >> 4) & 3) + 1; j++) avio_r8(f); for (j = 0; j < ((fieldlength >> 2) & 3) + 1; j++) avio_r8(f); for (j = 0; j < ((fieldlength >> 0) & 3) + 1; j++) avio_r8(f); } avio_seek(f, pos + size, SEEK_SET); return 0; }
CWE-834
180,931
2,469
104151479220480277467624481026090813390
null
null
null
ImageMagick
f68a98a9d385838a1c73ec960a14102949940a64
1
static MagickBooleanType ReadPSDLayersInternal(Image *image, const ImageInfo *image_info,const PSDInfo *psd_info, const MagickBooleanType skip_layers,ExceptionInfo *exception) { char type[4]; LayerInfo *layer_info; MagickSizeType size; MagickBooleanType status; register ssize_t i; ssize_t count, j, number_layers; size=GetPSDSize(psd_info,image); if (size == 0) { /* Skip layers & masks. */ (void) ReadBlobLong(image); count=ReadBlob(image,4,(unsigned char *) type); ReversePSDString(image,type,4); status=MagickFalse; if ((count == 0) || (LocaleNCompare(type,"8BIM",4) != 0)) return(MagickTrue); else { count=ReadBlob(image,4,(unsigned char *) type); ReversePSDString(image,type,4); if ((count != 0) && (LocaleNCompare(type,"Lr16",4) == 0)) size=GetPSDSize(psd_info,image); else return(MagickTrue); } } status=MagickTrue; if (size != 0) { layer_info=(LayerInfo *) NULL; number_layers=(short) ReadBlobShort(image); if (number_layers < 0) { /* The first alpha channel in the merged result contains the transparency data for the merged result. */ number_layers=MagickAbsoluteValue(number_layers); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " negative layer count corrected for"); image->matte=MagickTrue; } /* We only need to know if the image has an alpha channel */ if (skip_layers != MagickFalse) return(MagickTrue); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image contains %.20g layers",(double) number_layers); if (number_layers == 0) ThrowBinaryException(CorruptImageError,"InvalidNumberOfLayers", image->filename); layer_info=(LayerInfo *) AcquireQuantumMemory((size_t) number_layers, sizeof(*layer_info)); if (layer_info == (LayerInfo *) NULL) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " allocation of LayerInfo failed"); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } (void) ResetMagickMemory(layer_info,0,(size_t) number_layers* sizeof(*layer_info)); for (i=0; i < number_layers; i++) { ssize_t x, y; if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " reading layer #%.20g",(double) i+1); layer_info[i].page.y=ReadBlobSignedLong(image); layer_info[i].page.x=ReadBlobSignedLong(image); y=ReadBlobSignedLong(image); x=ReadBlobSignedLong(image); layer_info[i].page.width=(size_t) (x-layer_info[i].page.x); layer_info[i].page.height=(size_t) (y-layer_info[i].page.y); layer_info[i].channels=ReadBlobShort(image); if (layer_info[i].channels > MaxPSDChannels) { layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError,"MaximumChannelsExceeded", image->filename); } if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " offset(%.20g,%.20g), size(%.20g,%.20g), channels=%.20g", (double) layer_info[i].page.x,(double) layer_info[i].page.y, (double) layer_info[i].page.height,(double) layer_info[i].page.width,(double) layer_info[i].channels); for (j=0; j < (ssize_t) layer_info[i].channels; j++) { layer_info[i].channel_info[j].type=(short) ReadBlobShort(image); layer_info[i].channel_info[j].size=(size_t) GetPSDSize(psd_info, image); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " channel[%.20g]: type=%.20g, size=%.20g",(double) j, (double) layer_info[i].channel_info[j].type, (double) layer_info[i].channel_info[j].size); } count=ReadBlob(image,4,(unsigned char *) type); ReversePSDString(image,type,4); if ((count == 0) || (LocaleNCompare(type,"8BIM",4) != 0)) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer type was %.4s instead of 8BIM", type); layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError,"ImproperImageHeader", image->filename); } (void) ReadBlob(image,4,(unsigned char *) layer_info[i].blendkey); ReversePSDString(image,layer_info[i].blendkey,4); layer_info[i].opacity=(Quantum) ScaleCharToQuantum((unsigned char) ReadBlobByte(image)); layer_info[i].clipping=(unsigned char) ReadBlobByte(image); layer_info[i].flags=(unsigned char) ReadBlobByte(image); layer_info[i].visible=!(layer_info[i].flags & 0x02); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " blend=%.4s, opacity=%.20g, clipping=%s, flags=%d, visible=%s", layer_info[i].blendkey,(double) layer_info[i].opacity, layer_info[i].clipping ? "true" : "false",layer_info[i].flags, layer_info[i].visible ? "true" : "false"); (void) ReadBlobByte(image); /* filler */ size=ReadBlobLong(image); if (size != 0) { MagickSizeType combined_length, length; if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer contains additional info"); length=ReadBlobLong(image); combined_length=length+4; if (length != 0) { /* Layer mask info. */ layer_info[i].mask.page.y=ReadBlobSignedLong(image); layer_info[i].mask.page.x=ReadBlobSignedLong(image); layer_info[i].mask.page.height=(size_t) (ReadBlobSignedLong(image)- layer_info[i].mask.page.y); layer_info[i].mask.page.width=(size_t) (ReadBlobSignedLong(image)- layer_info[i].mask.page.x); layer_info[i].mask.background=(unsigned char) ReadBlobByte( image); layer_info[i].mask.flags=(unsigned char) ReadBlobByte(image); if (!(layer_info[i].mask.flags & 0x01)) { layer_info[i].mask.page.y=layer_info[i].mask.page.y- layer_info[i].page.y; layer_info[i].mask.page.x=layer_info[i].mask.page.x- layer_info[i].page.x; } if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer mask: offset(%.20g,%.20g), size(%.20g,%.20g), length=%.20g", (double) layer_info[i].mask.page.x,(double) layer_info[i].mask.page.y,(double) layer_info[i].mask.page.width, (double) layer_info[i].mask.page.height,(double) ((MagickOffsetType) length)-18); /* Skip over the rest of the layer mask information. */ if (DiscardBlobBytes(image,(MagickSizeType) (length-18)) == MagickFalse) { layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError,"UnexpectedEndOfFile", image->filename); } } length=ReadBlobLong(image); combined_length+=length+4; if (length != 0) { /* Layer blending ranges info. */ if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer blending ranges: length=%.20g",(double) ((MagickOffsetType) length)); /* We read it, but don't use it... */ for (j=0; j < (ssize_t) length; j+=8) { size_t blend_source=ReadBlobLong(image); size_t blend_dest=ReadBlobLong(image); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " source(%x), dest(%x)",(unsigned int) blend_source,(unsigned int) blend_dest); } } /* Layer name. */ length=(MagickSizeType) (unsigned char) ReadBlobByte(image); combined_length+=length+1; if (length > 0) (void) ReadBlob(image,(size_t) length++,layer_info[i].name); layer_info[i].name[length]='\0'; if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer name: %s",layer_info[i].name); if ((length % 4) != 0) { length=4-(length % 4); combined_length+=length; /* Skip over the padding of the layer name */ if (DiscardBlobBytes(image,length) == MagickFalse) { layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError, "UnexpectedEndOfFile",image->filename); } } length=(MagickSizeType) size-combined_length; if (length > 0) { unsigned char *info; if (length > GetBlobSize(image)) { layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError, "InsufficientImageDataInFile",image->filename); } layer_info[i].info=AcquireStringInfo((const size_t) length); info=GetStringInfoDatum(layer_info[i].info); (void) ReadBlob(image,(const size_t) length,info); } } } for (i=0; i < number_layers; i++) { if ((layer_info[i].page.width == 0) || (layer_info[i].page.height == 0)) { if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " layer data is empty"); if (layer_info[i].info != (StringInfo *) NULL) layer_info[i].info=DestroyStringInfo(layer_info[i].info); continue; } /* Allocate layered image. */ layer_info[i].image=CloneImage(image,layer_info[i].page.width, layer_info[i].page.height,MagickFalse,exception); if (layer_info[i].image == (Image *) NULL) { layer_info=DestroyLayerInfo(layer_info,number_layers); if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " allocation of image for layer %.20g failed",(double) i); ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); } if (layer_info[i].info != (StringInfo *) NULL) { (void) SetImageProfile(layer_info[i].image,"psd:additional-info", layer_info[i].info); layer_info[i].info=DestroyStringInfo(layer_info[i].info); } } if (image_info->ping == MagickFalse) { for (i=0; i < number_layers; i++) { if (layer_info[i].image == (Image *) NULL) { for (j=0; j < layer_info[i].channels; j++) { if (DiscardBlobBytes(image,(MagickSizeType) layer_info[i].channel_info[j].size) == MagickFalse) { layer_info=DestroyLayerInfo(layer_info,number_layers); ThrowBinaryException(CorruptImageError, "UnexpectedEndOfFile",image->filename); } } continue; } if (image->debug != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " reading data for layer %.20g",(double) i); status=ReadPSDLayer(image,image_info,psd_info,&layer_info[i], exception); if (status == MagickFalse) break; status=SetImageProgress(image,LoadImagesTag,i,(MagickSizeType) number_layers); if (status == MagickFalse) break; } } if (status != MagickFalse) { for (i=0; i < number_layers; i++) { if (layer_info[i].image == (Image *) NULL) { for (j=i; j < number_layers - 1; j++) layer_info[j] = layer_info[j+1]; number_layers--; i--; } } if (number_layers > 0) { for (i=0; i < number_layers; i++) { if (i > 0) layer_info[i].image->previous=layer_info[i-1].image; if (i < (number_layers-1)) layer_info[i].image->next=layer_info[i+1].image; layer_info[i].image->page=layer_info[i].page; } image->next=layer_info[0].image; layer_info[0].image->previous=image; } layer_info=(LayerInfo *) RelinquishMagickMemory(layer_info); } else layer_info=DestroyLayerInfo(layer_info,number_layers); } return(status); }
CWE-834
180,932
2,470
271878235127622347145764433416134657647
null
null
null
ImageMagick
48bcf7c39302cdf9b0d9202ad03bf1b95152c44d
1
static Image *ReadTXTImage(const ImageInfo *image_info,ExceptionInfo *exception) { char colorspace[MaxTextExtent], text[MaxTextExtent]; Image *image; IndexPacket *indexes; long x_offset, y_offset; MagickBooleanType status; MagickPixelPacket pixel; QuantumAny range; register ssize_t i, x; register PixelPacket *q; ssize_t count, type, y; unsigned long depth, height, max_value, width; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickSignature); image=AcquireImage(image_info); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } (void) ResetMagickMemory(text,0,sizeof(text)); (void) ReadBlobString(image,text); if (LocaleNCompare((char *) text,MagickID,strlen(MagickID)) != 0) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); do { width=0; height=0; max_value=0; *colorspace='\0'; count=(ssize_t) sscanf(text+32,"%lu,%lu,%lu,%s",&width,&height,&max_value, colorspace); if ((count != 4) || (width == 0) || (height == 0) || (max_value == 0)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); image->columns=width; image->rows=height; for (depth=1; (GetQuantumRange(depth)+1) < max_value; depth++) if (depth >= 64) break; image->depth=depth; status=SetImageExtent(image,image->columns,image->rows); if (status == MagickFalse) { InheritException(exception,&image->exception); return(DestroyImageList(image)); } LocaleLower(colorspace); i=(ssize_t) strlen(colorspace)-1; image->matte=MagickFalse; if ((i > 0) && (colorspace[i] == 'a')) { colorspace[i]='\0'; image->matte=MagickTrue; } type=ParseCommandOption(MagickColorspaceOptions,MagickFalse,colorspace); if (type < 0) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); image->colorspace=(ColorspaceType) type; (void) ResetMagickMemory(&pixel,0,sizeof(pixel)); (void) SetImageBackgroundColor(image); range=GetQuantumRange(image->depth); for (y=0; y < (ssize_t) image->rows; y++) { double blue, green, index, opacity, red; red=0.0; green=0.0; blue=0.0; index=0.0; opacity=0.0; for (x=0; x < (ssize_t) image->columns; x++) { if (ReadBlobString(image,text) == (char *) NULL) break; switch (image->colorspace) { case GRAYColorspace: { if (image->matte != MagickFalse) { (void) sscanf(text,"%ld,%ld: (%lf%*[%,]%lf%*[%,]",&x_offset, &y_offset,&red,&opacity); green=red; blue=red; break; } (void) sscanf(text,"%ld,%ld: (%lf%*[%,]",&x_offset,&y_offset,&red); green=red; blue=red; break; } case CMYKColorspace: { if (image->matte != MagickFalse) { (void) sscanf(text, "%ld,%ld: (%lf%*[%,]%lf%*[%,]%lf%*[%,]%lf%*[%,]%lf%*[%,]", &x_offset,&y_offset,&red,&green,&blue,&index,&opacity); break; } (void) sscanf(text, "%ld,%ld: (%lf%*[%,]%lf%*[%,]%lf%*[%,]%lf%*[%,]",&x_offset, &y_offset,&red,&green,&blue,&index); break; } default: { if (image->matte != MagickFalse) { (void) sscanf(text, "%ld,%ld: (%lf%*[%,]%lf%*[%,]%lf%*[%,]%lf%*[%,]", &x_offset,&y_offset,&red,&green,&blue,&opacity); break; } (void) sscanf(text,"%ld,%ld: (%lf%*[%,]%lf%*[%,]%lf%*[%,]", &x_offset,&y_offset,&red,&green,&blue); break; } } if (strchr(text,'%') != (char *) NULL) { red*=0.01*range; green*=0.01*range; blue*=0.01*range; index*=0.01*range; opacity*=0.01*range; } if (image->colorspace == LabColorspace) { green+=(range+1)/2.0; blue+=(range+1)/2.0; } pixel.red=(MagickRealType) ScaleAnyToQuantum((QuantumAny) (red+0.5), range); pixel.green=(MagickRealType) ScaleAnyToQuantum((QuantumAny) (green+0.5), range); pixel.blue=(MagickRealType) ScaleAnyToQuantum((QuantumAny) (blue+0.5), range); pixel.index=(MagickRealType) ScaleAnyToQuantum((QuantumAny) (index+0.5), range); pixel.opacity=(MagickRealType) ScaleAnyToQuantum((QuantumAny) (opacity+ 0.5),range); q=GetAuthenticPixels(image,(ssize_t) x_offset,(ssize_t) y_offset,1,1, exception); if (q == (PixelPacket *) NULL) continue; SetPixelRed(q,pixel.red); SetPixelGreen(q,pixel.green); SetPixelBlue(q,pixel.blue); if (image->colorspace == CMYKColorspace) { indexes=GetAuthenticIndexQueue(image); SetPixelIndex(indexes,pixel.index); } if (image->matte != MagickFalse) SetPixelAlpha(q,pixel.opacity); if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } if (EOFBlob(image) != MagickFalse) { ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); break; } (void) ReadBlobString(image,text); if (LocaleNCompare((char *) text,MagickID,strlen(MagickID)) == 0) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) { image=DestroyImageList(image); return((Image *) NULL); } image=SyncNextImageInList(image); status=SetImageProgress(image,LoadImagesTag,TellBlob(image), GetBlobSize(image)); if (status == MagickFalse) break; } } while (LocaleNCompare((char *) text,MagickID,strlen(MagickID)) == 0); (void) CloseBlob(image); return(GetFirstImageInList(image)); }
CWE-190
180,933
2,471
274340999401530161051584456391486580030
null
null
null
FFmpeg
900f39692ca0337a98a7cf047e4e2611071810c2
1
static int mxf_read_index_entry_array(AVIOContext *pb, MXFIndexTableSegment *segment) { int i, length; segment->nb_index_entries = avio_rb32(pb); length = avio_rb32(pb); if (!(segment->temporal_offset_entries=av_calloc(segment->nb_index_entries, sizeof(*segment->temporal_offset_entries))) || !(segment->flag_entries = av_calloc(segment->nb_index_entries, sizeof(*segment->flag_entries))) || !(segment->stream_offset_entries = av_calloc(segment->nb_index_entries, sizeof(*segment->stream_offset_entries)))) { av_freep(&segment->temporal_offset_entries); av_freep(&segment->flag_entries); return AVERROR(ENOMEM); } for (i = 0; i < segment->nb_index_entries; i++) { segment->temporal_offset_entries[i] = avio_r8(pb); avio_r8(pb); /* KeyFrameOffset */ segment->flag_entries[i] = avio_r8(pb); segment->stream_offset_entries[i] = avio_rb64(pb); avio_skip(pb, length - 11); } return 0; }
CWE-834
180,937
2,473
286445280203623570598089851909985716539
null
null
null
FFmpeg
9d00fb9d70ee8c0cc7002b89318c5be00f1bbdad
1
static int mxf_read_primer_pack(void *arg, AVIOContext *pb, int tag, int size, UID uid, int64_t klv_offset) { MXFContext *mxf = arg; int item_num = avio_rb32(pb); int item_len = avio_rb32(pb); if (item_len != 18) { avpriv_request_sample(pb, "Primer pack item length %d", item_len); return AVERROR_PATCHWELCOME; } if (item_num > 65536) { av_log(mxf->fc, AV_LOG_ERROR, "item_num %d is too large\n", item_num); return AVERROR_INVALIDDATA; } if (mxf->local_tags) av_log(mxf->fc, AV_LOG_VERBOSE, "Multiple primer packs\n"); av_free(mxf->local_tags); mxf->local_tags_count = 0; mxf->local_tags = av_calloc(item_num, item_len); if (!mxf->local_tags) return AVERROR(ENOMEM); mxf->local_tags_count = item_num; avio_read(pb, mxf->local_tags, item_num*item_len); return 0; }
CWE-20
180,938
2,474
249405188241146026680734084412863536752
null
null
null
libarchive
fa7438a0ff4033e4741c807394a9af6207940d71
1
atol8(const char *p, size_t char_cnt) { int64_t l; int digit; l = 0; while (char_cnt-- > 0) { if (*p >= '0' && *p <= '7') digit = *p - '0'; else break; p++; l <<= 3; l |= digit; } return (l); }
CWE-125
180,940
2,476
223379998720734366501523041321530169470
null
null
null
openjpeg
afb308b9ccbe129608c9205cf3bb39bbefad90b9
1
static OPJ_BOOL opj_tcd_code_block_enc_allocate_data(opj_tcd_cblk_enc_t * p_code_block) { OPJ_UINT32 l_data_size; /* The +1 is needed for https://github.com/uclouvain/openjpeg/issues/835 */ l_data_size = 1 + (OPJ_UINT32)((p_code_block->x1 - p_code_block->x0) * (p_code_block->y1 - p_code_block->y0) * (OPJ_INT32)sizeof(OPJ_UINT32)); if (l_data_size > p_code_block->data_size) { if (p_code_block->data) { /* We refer to data - 1 since below we incremented it */ opj_free(p_code_block->data - 1); } p_code_block->data = (OPJ_BYTE*) opj_malloc(l_data_size + 1); if (! p_code_block->data) { p_code_block->data_size = 0U; return OPJ_FALSE; } p_code_block->data_size = l_data_size; /* We reserve the initial byte as a fake byte to a non-FF value */ /* and increment the data pointer, so that opj_mqc_init_enc() */ /* can do bp = data - 1, and opj_mqc_byteout() can safely dereference */ /* it. */ p_code_block->data[0] = 0; p_code_block->data += 1; /*why +1 ?*/ } return OPJ_TRUE; }
CWE-119
180,941
2,477
311894405046094402134295855217155957334
null
null
null
linux
197e7e521384a23b9e585178f3f11c9fa08274b9
1
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, const void __user * __user *, pages, const int __user *, nodes, int __user *, status, int, flags) { const struct cred *cred = current_cred(), *tcred; struct task_struct *task; struct mm_struct *mm; int err; nodemask_t task_nodes; /* Check flags */ if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) return -EINVAL; if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) return -EPERM; /* Find the mm_struct */ rcu_read_lock(); task = pid ? find_task_by_vpid(pid) : current; if (!task) { rcu_read_unlock(); return -ESRCH; } get_task_struct(task); /* * Check if this process has the right to modify the specified * process. The right exists if the process has administrative * capabilities, superuser privileges or the same * userid as the target process. */ tcred = __task_cred(task); if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && !capable(CAP_SYS_NICE)) { rcu_read_unlock(); err = -EPERM; goto out; } rcu_read_unlock(); err = security_task_movememory(task); if (err) goto out; task_nodes = cpuset_mems_allowed(task); mm = get_task_mm(task); put_task_struct(task); if (!mm) return -EINVAL; if (nodes) err = do_pages_move(mm, task_nodes, nr_pages, pages, nodes, status, flags); else err = do_pages_stat(mm, nr_pages, pages, status); mmput(mm); return err; out: put_task_struct(task); return err; }
CWE-200
180,942
2,478
333020230899744479196439444734213940999
null
null
null
linux
499350a5a6e7512d9ed369ed63a4244b6536f4f8
1
int tcp_disconnect(struct sock *sk, int flags) { struct inet_sock *inet = inet_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); int err = 0; int old_state = sk->sk_state; if (old_state != TCP_CLOSE) tcp_set_state(sk, TCP_CLOSE); /* ABORT function of RFC793 */ if (old_state == TCP_LISTEN) { inet_csk_listen_stop(sk); } else if (unlikely(tp->repair)) { sk->sk_err = ECONNABORTED; } else if (tcp_need_reset(old_state) || (tp->snd_nxt != tp->write_seq && (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { /* The last check adjusts for discrepancy of Linux wrt. RFC * states */ tcp_send_active_reset(sk, gfp_any()); sk->sk_err = ECONNRESET; } else if (old_state == TCP_SYN_SENT) sk->sk_err = ECONNRESET; tcp_clear_xmit_timers(sk); __skb_queue_purge(&sk->sk_receive_queue); tcp_write_queue_purge(sk); tcp_fastopen_active_disable_ofo_check(sk); skb_rbtree_purge(&tp->out_of_order_queue); inet->inet_dport = 0; if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) inet_reset_saddr(sk); sk->sk_shutdown = 0; sock_reset_flag(sk, SOCK_DONE); tp->srtt_us = 0; tp->write_seq += tp->max_window + 2; if (tp->write_seq == 0) tp->write_seq = 1; icsk->icsk_backoff = 0; tp->snd_cwnd = 2; icsk->icsk_probes_out = 0; tp->packets_out = 0; tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; tp->snd_cwnd_cnt = 0; tp->window_clamp = 0; tcp_set_ca_state(sk, TCP_CA_Open); tcp_clear_retrans(tp); inet_csk_delack_init(sk); tcp_init_send_head(sk); memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); __sk_dst_reset(sk); tcp_saved_syn_free(tp); /* Clean up fastopen related fields */ tcp_free_fastopen_req(tp); inet->defer_connect = 0; WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); sk->sk_error_report(sk); return err; }
CWE-369
180,944
2,479
261705518300475045878184848177140313645
null
null
null
FFmpeg
7e80b63ecd259d69d383623e75b318bf2bd491f6
1
static int cine_read_header(AVFormatContext *avctx) { AVIOContext *pb = avctx->pb; AVStream *st; unsigned int version, compression, offImageHeader, offSetup, offImageOffsets, biBitCount, length, CFA; int vflip; char *description; uint64_t i; st = avformat_new_stream(avctx, NULL); if (!st) return AVERROR(ENOMEM); st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; st->codecpar->codec_id = AV_CODEC_ID_RAWVIDEO; st->codecpar->codec_tag = 0; /* CINEFILEHEADER structure */ avio_skip(pb, 4); // Type, Headersize compression = avio_rl16(pb); version = avio_rl16(pb); if (version != 1) { avpriv_request_sample(avctx, "unknown version %i", version); return AVERROR_INVALIDDATA; } avio_skip(pb, 12); // FirstMovieImage, TotalImageCount, FirstImageNumber st->duration = avio_rl32(pb); offImageHeader = avio_rl32(pb); offSetup = avio_rl32(pb); offImageOffsets = avio_rl32(pb); avio_skip(pb, 8); // TriggerTime /* BITMAPINFOHEADER structure */ avio_seek(pb, offImageHeader, SEEK_SET); avio_skip(pb, 4); //biSize st->codecpar->width = avio_rl32(pb); st->codecpar->height = avio_rl32(pb); if (avio_rl16(pb) != 1) // biPlanes return AVERROR_INVALIDDATA; biBitCount = avio_rl16(pb); if (biBitCount != 8 && biBitCount != 16 && biBitCount != 24 && biBitCount != 48) { avpriv_request_sample(avctx, "unsupported biBitCount %i", biBitCount); return AVERROR_INVALIDDATA; } switch (avio_rl32(pb)) { case BMP_RGB: vflip = 0; break; case 0x100: /* BI_PACKED */ st->codecpar->codec_tag = MKTAG('B', 'I', 'T', 0); vflip = 1; break; default: avpriv_request_sample(avctx, "unknown bitmap compression"); return AVERROR_INVALIDDATA; } avio_skip(pb, 4); // biSizeImage /* parse SETUP structure */ avio_seek(pb, offSetup, SEEK_SET); avio_skip(pb, 140); // FrameRatae16 .. descriptionOld if (avio_rl16(pb) != 0x5453) return AVERROR_INVALIDDATA; length = avio_rl16(pb); if (length < 0x163C) { avpriv_request_sample(avctx, "short SETUP header"); return AVERROR_INVALIDDATA; } avio_skip(pb, 616); // Binning .. bFlipH if (!avio_rl32(pb) ^ vflip) { st->codecpar->extradata = av_strdup("BottomUp"); st->codecpar->extradata_size = 9; } avio_skip(pb, 4); // Grid avpriv_set_pts_info(st, 64, 1, avio_rl32(pb)); avio_skip(pb, 20); // Shutter .. bEnableColor set_metadata_int(&st->metadata, "camera_version", avio_rl32(pb), 0); set_metadata_int(&st->metadata, "firmware_version", avio_rl32(pb), 0); set_metadata_int(&st->metadata, "software_version", avio_rl32(pb), 0); set_metadata_int(&st->metadata, "recording_timezone", avio_rl32(pb), 0); CFA = avio_rl32(pb); set_metadata_int(&st->metadata, "brightness", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "contrast", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "gamma", avio_rl32(pb), 1); avio_skip(pb, 12 + 16); // Reserved1 .. AutoExpRect set_metadata_float(&st->metadata, "wbgain[0].r", av_int2float(avio_rl32(pb)), 1); set_metadata_float(&st->metadata, "wbgain[0].b", av_int2float(avio_rl32(pb)), 1); avio_skip(pb, 36); // WBGain[1].. WBView st->codecpar->bits_per_coded_sample = avio_rl32(pb); if (compression == CC_RGB) { if (biBitCount == 8) { st->codecpar->format = AV_PIX_FMT_GRAY8; } else if (biBitCount == 16) { st->codecpar->format = AV_PIX_FMT_GRAY16LE; } else if (biBitCount == 24) { st->codecpar->format = AV_PIX_FMT_BGR24; } else if (biBitCount == 48) { st->codecpar->format = AV_PIX_FMT_BGR48LE; } else { avpriv_request_sample(avctx, "unsupported biBitCount %i", biBitCount); return AVERROR_INVALIDDATA; } } else if (compression == CC_UNINT) { switch (CFA & 0xFFFFFF) { case CFA_BAYER: if (biBitCount == 8) { st->codecpar->format = AV_PIX_FMT_BAYER_GBRG8; } else if (biBitCount == 16) { st->codecpar->format = AV_PIX_FMT_BAYER_GBRG16LE; } else { avpriv_request_sample(avctx, "unsupported biBitCount %i", biBitCount); return AVERROR_INVALIDDATA; } break; case CFA_BAYERFLIP: if (biBitCount == 8) { st->codecpar->format = AV_PIX_FMT_BAYER_RGGB8; } else if (biBitCount == 16) { st->codecpar->format = AV_PIX_FMT_BAYER_RGGB16LE; } else { avpriv_request_sample(avctx, "unsupported biBitCount %i", biBitCount); return AVERROR_INVALIDDATA; } break; default: avpriv_request_sample(avctx, "unsupported Color Field Array (CFA) %i", CFA & 0xFFFFFF); return AVERROR_INVALIDDATA; } } else { //CC_LEAD avpriv_request_sample(avctx, "unsupported compression %i", compression); return AVERROR_INVALIDDATA; } avio_skip(pb, 668); // Conv8Min ... Sensor set_metadata_int(&st->metadata, "shutter_ns", avio_rl32(pb), 0); avio_skip(pb, 24); // EDRShutterNs ... ImHeightAcq #define DESCRIPTION_SIZE 4096 description = av_malloc(DESCRIPTION_SIZE + 1); if (!description) return AVERROR(ENOMEM); i = avio_get_str(pb, DESCRIPTION_SIZE, description, DESCRIPTION_SIZE + 1); if (i < DESCRIPTION_SIZE) avio_skip(pb, DESCRIPTION_SIZE - i); if (description[0]) av_dict_set(&st->metadata, "description", description, AV_DICT_DONT_STRDUP_VAL); else av_free(description); avio_skip(pb, 1176); // RisingEdge ... cmUser set_metadata_int(&st->metadata, "enable_crop", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "crop_left", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "crop_top", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "crop_right", avio_rl32(pb), 1); set_metadata_int(&st->metadata, "crop_bottom", avio_rl32(pb), 1); /* parse image offsets */ avio_seek(pb, offImageOffsets, SEEK_SET); for (i = 0; i < st->duration; i++) av_add_index_entry(st, avio_rl64(pb), i, 0, 0, AVINDEX_KEYFRAME); return 0; }
CWE-834
180,945
2,480
237724750006394289755951196084490226718
null
null
null
FFmpeg
7ec414892ddcad88313848494b6fc5f437c9ca4a
1
static int read_data(void *opaque, uint8_t *buf, int buf_size) { struct playlist *v = opaque; HLSContext *c = v->parent->priv_data; int ret, i; int just_opened = 0; restart: if (!v->needed) return AVERROR_EOF; if (!v->input) { int64_t reload_interval; struct segment *seg; /* Check that the playlist is still needed before opening a new * segment. */ if (v->ctx && v->ctx->nb_streams) { v->needed = 0; for (i = 0; i < v->n_main_streams; i++) { if (v->main_streams[i]->discard < AVDISCARD_ALL) { v->needed = 1; break; } } } if (!v->needed) { av_log(v->parent, AV_LOG_INFO, "No longer receiving playlist %d\n", v->index); return AVERROR_EOF; } /* If this is a live stream and the reload interval has elapsed since * the last playlist reload, reload the playlists now. */ reload_interval = default_reload_interval(v); reload: if (!v->finished && av_gettime_relative() - v->last_load_time >= reload_interval) { if ((ret = parse_playlist(c, v->url, v, NULL)) < 0) { av_log(v->parent, AV_LOG_WARNING, "Failed to reload playlist %d\n", v->index); return ret; } /* If we need to reload the playlist again below (if * there's still no more segments), switch to a reload * interval of half the target duration. */ reload_interval = v->target_duration / 2; } if (v->cur_seq_no < v->start_seq_no) { av_log(NULL, AV_LOG_WARNING, "skipping %d segments ahead, expired from playlists\n", v->start_seq_no - v->cur_seq_no); v->cur_seq_no = v->start_seq_no; } if (v->cur_seq_no >= v->start_seq_no + v->n_segments) { if (v->finished) return AVERROR_EOF; while (av_gettime_relative() - v->last_load_time < reload_interval) { if (ff_check_interrupt(c->interrupt_callback)) return AVERROR_EXIT; av_usleep(100*1000); } /* Enough time has elapsed since the last reload */ goto reload; } seg = current_segment(v); /* load/update Media Initialization Section, if any */ ret = update_init_section(v, seg); if (ret) return ret; ret = open_input(c, v, seg); if (ret < 0) { if (ff_check_interrupt(c->interrupt_callback)) return AVERROR_EXIT; av_log(v->parent, AV_LOG_WARNING, "Failed to open segment of playlist %d\n", v->index); v->cur_seq_no += 1; goto reload; } just_opened = 1; } if (v->init_sec_buf_read_offset < v->init_sec_data_len) { /* Push init section out first before first actual segment */ int copy_size = FFMIN(v->init_sec_data_len - v->init_sec_buf_read_offset, buf_size); memcpy(buf, v->init_sec_buf, copy_size); v->init_sec_buf_read_offset += copy_size; return copy_size; } ret = read_from_url(v, current_segment(v), buf, buf_size, READ_NORMAL); if (ret > 0) { if (just_opened && v->is_id3_timestamped != 0) { /* Intercept ID3 tags here, elementary audio streams are required * to convey timestamps using them in the beginning of each segment. */ intercept_id3(v, buf, buf_size, &ret); } return ret; } ff_format_io_close(v->parent, &v->input); v->cur_seq_no++; c->cur_seq_no = v->cur_seq_no; goto restart; }
CWE-835
180,946
2,481
113402367066446233577404734885364428310
null
null
null
FFmpeg
7f9ec5593e04827249e7aeb466da06a98a0d7329
1
static int asf_read_marker(AVFormatContext *s, int64_t size) { AVIOContext *pb = s->pb; ASFContext *asf = s->priv_data; int i, count, name_len, ret; char name[1024]; avio_rl64(pb); // reserved 16 bytes avio_rl64(pb); // ... count = avio_rl32(pb); // markers count avio_rl16(pb); // reserved 2 bytes name_len = avio_rl16(pb); // name length for (i = 0; i < name_len; i++) avio_r8(pb); // skip the name for (i = 0; i < count; i++) { int64_t pres_time; int name_len; avio_rl64(pb); // offset, 8 bytes pres_time = avio_rl64(pb); // presentation time pres_time -= asf->hdr.preroll * 10000; avio_rl16(pb); // entry length avio_rl32(pb); // send time avio_rl32(pb); // flags name_len = avio_rl32(pb); // name length if ((ret = avio_get_str16le(pb, name_len * 2, name, sizeof(name))) < name_len) avio_skip(pb, name_len - ret); avpriv_new_chapter(s, i, (AVRational) { 1, 10000000 }, pres_time, AV_NOPTS_VALUE, name); } return 0; }
CWE-834
180,947
2,482
331068034171760210133845430622582820934
null
null
null
FFmpeg
96f24d1bee7fe7bac08e2b7c74db1a046c9dc0de
1
static av_cold int rl2_read_header(AVFormatContext *s) { AVIOContext *pb = s->pb; AVStream *st; unsigned int frame_count; unsigned int audio_frame_counter = 0; unsigned int video_frame_counter = 0; unsigned int back_size; unsigned short sound_rate; unsigned short rate; unsigned short channels; unsigned short def_sound_size; unsigned int signature; unsigned int pts_den = 11025; /* video only case */ unsigned int pts_num = 1103; unsigned int* chunk_offset = NULL; int* chunk_size = NULL; int* audio_size = NULL; int i; int ret = 0; avio_skip(pb,4); /* skip FORM tag */ back_size = avio_rl32(pb); /**< get size of the background frame */ signature = avio_rb32(pb); avio_skip(pb, 4); /* data size */ frame_count = avio_rl32(pb); /* disallow back_sizes and frame_counts that may lead to overflows later */ if(back_size > INT_MAX/2 || frame_count > INT_MAX / sizeof(uint32_t)) return AVERROR_INVALIDDATA; avio_skip(pb, 2); /* encoding method */ sound_rate = avio_rl16(pb); rate = avio_rl16(pb); channels = avio_rl16(pb); def_sound_size = avio_rl16(pb); /** setup video stream */ st = avformat_new_stream(s, NULL); if(!st) return AVERROR(ENOMEM); st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; st->codecpar->codec_id = AV_CODEC_ID_RL2; st->codecpar->codec_tag = 0; /* no fourcc */ st->codecpar->width = 320; st->codecpar->height = 200; /** allocate and fill extradata */ st->codecpar->extradata_size = EXTRADATA1_SIZE; if(signature == RLV3_TAG && back_size > 0) st->codecpar->extradata_size += back_size; if(ff_get_extradata(s, st->codecpar, pb, st->codecpar->extradata_size) < 0) return AVERROR(ENOMEM); /** setup audio stream if present */ if(sound_rate){ if (!channels || channels > 42) { av_log(s, AV_LOG_ERROR, "Invalid number of channels: %d\n", channels); return AVERROR_INVALIDDATA; } pts_num = def_sound_size; pts_den = rate; st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); st->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; st->codecpar->codec_id = AV_CODEC_ID_PCM_U8; st->codecpar->codec_tag = 1; st->codecpar->channels = channels; st->codecpar->bits_per_coded_sample = 8; st->codecpar->sample_rate = rate; st->codecpar->bit_rate = st->codecpar->channels * st->codecpar->sample_rate * st->codecpar->bits_per_coded_sample; st->codecpar->block_align = st->codecpar->channels * st->codecpar->bits_per_coded_sample / 8; avpriv_set_pts_info(st,32,1,rate); } avpriv_set_pts_info(s->streams[0], 32, pts_num, pts_den); chunk_size = av_malloc(frame_count * sizeof(uint32_t)); audio_size = av_malloc(frame_count * sizeof(uint32_t)); chunk_offset = av_malloc(frame_count * sizeof(uint32_t)); if(!chunk_size || !audio_size || !chunk_offset){ av_free(chunk_size); av_free(audio_size); av_free(chunk_offset); return AVERROR(ENOMEM); } /** read offset and size tables */ for(i=0; i < frame_count;i++) chunk_size[i] = avio_rl32(pb); for(i=0; i < frame_count;i++) chunk_offset[i] = avio_rl32(pb); for(i=0; i < frame_count;i++) audio_size[i] = avio_rl32(pb) & 0xFFFF; /** build the sample index */ for(i=0;i<frame_count;i++){ if(chunk_size[i] < 0 || audio_size[i] > chunk_size[i]){ ret = AVERROR_INVALIDDATA; break; } if(sound_rate && audio_size[i]){ av_add_index_entry(s->streams[1], chunk_offset[i], audio_frame_counter,audio_size[i], 0, AVINDEX_KEYFRAME); audio_frame_counter += audio_size[i] / channels; } av_add_index_entry(s->streams[0], chunk_offset[i] + audio_size[i], video_frame_counter,chunk_size[i]-audio_size[i],0,AVINDEX_KEYFRAME); ++video_frame_counter; } av_free(chunk_size); av_free(audio_size); av_free(chunk_offset); return ret; }
CWE-834
180,948
2,483
106964341680444639909267595463429633575
null
null
null
FFmpeg
4f05e2e2dc1a89f38cd9f0960a6561083d714f1e
1
static int mv_read_header(AVFormatContext *avctx) { MvContext *mv = avctx->priv_data; AVIOContext *pb = avctx->pb; AVStream *ast = NULL, *vst = NULL; //initialization to suppress warning int version, i; int ret; avio_skip(pb, 4); version = avio_rb16(pb); if (version == 2) { uint64_t timestamp; int v; avio_skip(pb, 22); /* allocate audio track first to prevent unnecessary seeking * (audio packet always precede video packet for a given frame) */ ast = avformat_new_stream(avctx, NULL); if (!ast) return AVERROR(ENOMEM); vst = avformat_new_stream(avctx, NULL); if (!vst) return AVERROR(ENOMEM); avpriv_set_pts_info(vst, 64, 1, 15); vst->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; vst->avg_frame_rate = av_inv_q(vst->time_base); vst->nb_frames = avio_rb32(pb); v = avio_rb32(pb); switch (v) { case 1: vst->codecpar->codec_id = AV_CODEC_ID_MVC1; break; case 2: vst->codecpar->format = AV_PIX_FMT_ARGB; vst->codecpar->codec_id = AV_CODEC_ID_RAWVIDEO; break; default: avpriv_request_sample(avctx, "Video compression %i", v); break; } vst->codecpar->codec_tag = 0; vst->codecpar->width = avio_rb32(pb); vst->codecpar->height = avio_rb32(pb); avio_skip(pb, 12); ast->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; ast->nb_frames = vst->nb_frames; ast->codecpar->sample_rate = avio_rb32(pb); if (ast->codecpar->sample_rate <= 0) { av_log(avctx, AV_LOG_ERROR, "Invalid sample rate %d\n", ast->codecpar->sample_rate); return AVERROR_INVALIDDATA; } avpriv_set_pts_info(ast, 33, 1, ast->codecpar->sample_rate); if (set_channels(avctx, ast, avio_rb32(pb)) < 0) return AVERROR_INVALIDDATA; v = avio_rb32(pb); if (v == AUDIO_FORMAT_SIGNED) { ast->codecpar->codec_id = AV_CODEC_ID_PCM_S16BE; } else { avpriv_request_sample(avctx, "Audio compression (format %i)", v); } avio_skip(pb, 12); var_read_metadata(avctx, "title", 0x80); var_read_metadata(avctx, "comment", 0x100); avio_skip(pb, 0x80); timestamp = 0; for (i = 0; i < vst->nb_frames; i++) { uint32_t pos = avio_rb32(pb); uint32_t asize = avio_rb32(pb); uint32_t vsize = avio_rb32(pb); avio_skip(pb, 8); av_add_index_entry(ast, pos, timestamp, asize, 0, AVINDEX_KEYFRAME); av_add_index_entry(vst, pos + asize, i, vsize, 0, AVINDEX_KEYFRAME); timestamp += asize / (ast->codecpar->channels * 2); } } else if (!version && avio_rb16(pb) == 3) { avio_skip(pb, 4); if ((ret = read_table(avctx, NULL, parse_global_var)) < 0) return ret; if (mv->nb_audio_tracks > 1) { avpriv_request_sample(avctx, "Multiple audio streams support"); return AVERROR_PATCHWELCOME; } else if (mv->nb_audio_tracks) { ast = avformat_new_stream(avctx, NULL); if (!ast) return AVERROR(ENOMEM); ast->codecpar->codec_type = AVMEDIA_TYPE_AUDIO; if ((read_table(avctx, ast, parse_audio_var)) < 0) return ret; if (mv->acompression == 100 && mv->aformat == AUDIO_FORMAT_SIGNED && ast->codecpar->bits_per_coded_sample == 16) { ast->codecpar->codec_id = AV_CODEC_ID_PCM_S16BE; } else { avpriv_request_sample(avctx, "Audio compression %i (format %i, sr %i)", mv->acompression, mv->aformat, ast->codecpar->bits_per_coded_sample); ast->codecpar->codec_id = AV_CODEC_ID_NONE; } if (ast->codecpar->channels <= 0) { av_log(avctx, AV_LOG_ERROR, "No valid channel count found.\n"); return AVERROR_INVALIDDATA; } } if (mv->nb_video_tracks > 1) { avpriv_request_sample(avctx, "Multiple video streams support"); return AVERROR_PATCHWELCOME; } else if (mv->nb_video_tracks) { vst = avformat_new_stream(avctx, NULL); if (!vst) return AVERROR(ENOMEM); vst->codecpar->codec_type = AVMEDIA_TYPE_VIDEO; if ((ret = read_table(avctx, vst, parse_video_var))<0) return ret; } if (mv->nb_audio_tracks) read_index(pb, ast); if (mv->nb_video_tracks) read_index(pb, vst); } else { avpriv_request_sample(avctx, "Version %i", version); return AVERROR_PATCHWELCOME; } return 0; }
CWE-834
180,949
2,484
61768510921436960692985129912388758664
null
null
null
FFmpeg
124eb202e70678539544f6268efc98131f19fa49
1
static int ivr_read_header(AVFormatContext *s) { unsigned tag, type, len, tlen, value; int i, j, n, count, nb_streams = 0, ret; uint8_t key[256], val[256]; AVIOContext *pb = s->pb; AVStream *st; int64_t pos, offset, temp; pos = avio_tell(pb); tag = avio_rl32(pb); if (tag == MKTAG('.','R','1','M')) { if (avio_rb16(pb) != 1) return AVERROR_INVALIDDATA; if (avio_r8(pb) != 1) return AVERROR_INVALIDDATA; len = avio_rb32(pb); avio_skip(pb, len); avio_skip(pb, 5); temp = avio_rb64(pb); while (!avio_feof(pb) && temp) { offset = temp; temp = avio_rb64(pb); } avio_skip(pb, offset - avio_tell(pb)); if (avio_r8(pb) != 1) return AVERROR_INVALIDDATA; len = avio_rb32(pb); avio_skip(pb, len); if (avio_r8(pb) != 2) return AVERROR_INVALIDDATA; avio_skip(pb, 16); pos = avio_tell(pb); tag = avio_rl32(pb); } if (tag != MKTAG('.','R','E','C')) return AVERROR_INVALIDDATA; if (avio_r8(pb) != 0) return AVERROR_INVALIDDATA; count = avio_rb32(pb); for (i = 0; i < count; i++) { if (avio_feof(pb)) return AVERROR_INVALIDDATA; type = avio_r8(pb); tlen = avio_rb32(pb); avio_get_str(pb, tlen, key, sizeof(key)); len = avio_rb32(pb); if (type == 5) { avio_get_str(pb, len, val, sizeof(val)); av_log(s, AV_LOG_DEBUG, "%s = '%s'\n", key, val); } else if (type == 4) { av_log(s, AV_LOG_DEBUG, "%s = '0x", key); for (j = 0; j < len; j++) av_log(s, AV_LOG_DEBUG, "%X", avio_r8(pb)); av_log(s, AV_LOG_DEBUG, "'\n"); } else if (len == 4 && type == 3 && !strncmp(key, "StreamCount", tlen)) { nb_streams = value = avio_rb32(pb); } else if (len == 4 && type == 3) { value = avio_rb32(pb); av_log(s, AV_LOG_DEBUG, "%s = %d\n", key, value); } else { av_log(s, AV_LOG_DEBUG, "Skipping unsupported key: %s\n", key); avio_skip(pb, len); } } for (n = 0; n < nb_streams; n++) { st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); st->priv_data = ff_rm_alloc_rmstream(); if (!st->priv_data) return AVERROR(ENOMEM); if (avio_r8(pb) != 1) return AVERROR_INVALIDDATA; count = avio_rb32(pb); for (i = 0; i < count; i++) { if (avio_feof(pb)) return AVERROR_INVALIDDATA; type = avio_r8(pb); tlen = avio_rb32(pb); avio_get_str(pb, tlen, key, sizeof(key)); len = avio_rb32(pb); if (type == 5) { avio_get_str(pb, len, val, sizeof(val)); av_log(s, AV_LOG_DEBUG, "%s = '%s'\n", key, val); } else if (type == 4 && !strncmp(key, "OpaqueData", tlen)) { ret = ffio_ensure_seekback(pb, 4); if (ret < 0) return ret; if (avio_rb32(pb) == MKBETAG('M', 'L', 'T', 'I')) { ret = rm_read_multi(s, pb, st, NULL); } else { avio_seek(pb, -4, SEEK_CUR); ret = ff_rm_read_mdpr_codecdata(s, pb, st, st->priv_data, len, NULL); } if (ret < 0) return ret; } else if (type == 4) { int j; av_log(s, AV_LOG_DEBUG, "%s = '0x", key); for (j = 0; j < len; j++) av_log(s, AV_LOG_DEBUG, "%X", avio_r8(pb)); av_log(s, AV_LOG_DEBUG, "'\n"); } else if (len == 4 && type == 3 && !strncmp(key, "Duration", tlen)) { st->duration = avio_rb32(pb); } else if (len == 4 && type == 3) { value = avio_rb32(pb); av_log(s, AV_LOG_DEBUG, "%s = %d\n", key, value); } else { av_log(s, AV_LOG_DEBUG, "Skipping unsupported key: %s\n", key); avio_skip(pb, len); } } } if (avio_r8(pb) != 6) return AVERROR_INVALIDDATA; avio_skip(pb, 12); avio_skip(pb, avio_rb64(pb) + pos - avio_tell(s->pb)); if (avio_r8(pb) != 8) return AVERROR_INVALIDDATA; avio_skip(pb, 8); return 0; }
CWE-834
180,950
2,485
335515859715972202389525914039584515273
null
null
null
openjpeg
e5285319229a5d77bf316bb0d3a6cbd3cb8666d9
1
opj_image_t* pgxtoimage(const char *filename, opj_cparameters_t *parameters) { FILE *f = NULL; int w, h, prec; int i, numcomps, max; OPJ_COLOR_SPACE color_space; opj_image_cmptparm_t cmptparm; /* maximum of 1 component */ opj_image_t * image = NULL; int adjustS, ushift, dshift, force8; char endian1, endian2, sign; char signtmp[32]; char temp[32]; int bigendian; opj_image_comp_t *comp = NULL; numcomps = 1; color_space = OPJ_CLRSPC_GRAY; memset(&cmptparm, 0, sizeof(opj_image_cmptparm_t)); max = 0; f = fopen(filename, "rb"); if (!f) { fprintf(stderr, "Failed to open %s for reading !\n", filename); return NULL; } fseek(f, 0, SEEK_SET); if (fscanf(f, "PG%[ \t]%c%c%[ \t+-]%d%[ \t]%d%[ \t]%d", temp, &endian1, &endian2, signtmp, &prec, temp, &w, temp, &h) != 9) { fclose(f); fprintf(stderr, "ERROR: Failed to read the right number of element from the fscanf() function!\n"); return NULL; } i = 0; sign = '+'; while (signtmp[i] != '\0') { if (signtmp[i] == '-') { sign = '-'; } i++; } fgetc(f); if (endian1 == 'M' && endian2 == 'L') { bigendian = 1; } else if (endian2 == 'M' && endian1 == 'L') { bigendian = 0; } else { fclose(f); fprintf(stderr, "Bad pgx header, please check input file\n"); return NULL; } /* initialize image component */ cmptparm.x0 = (OPJ_UINT32)parameters->image_offset_x0; cmptparm.y0 = (OPJ_UINT32)parameters->image_offset_y0; cmptparm.w = !cmptparm.x0 ? (OPJ_UINT32)((w - 1) * parameters->subsampling_dx + 1) : cmptparm.x0 + (OPJ_UINT32)(w - 1) * (OPJ_UINT32)parameters->subsampling_dx + 1; cmptparm.h = !cmptparm.y0 ? (OPJ_UINT32)((h - 1) * parameters->subsampling_dy + 1) : cmptparm.y0 + (OPJ_UINT32)(h - 1) * (OPJ_UINT32)parameters->subsampling_dy + 1; if (sign == '-') { cmptparm.sgnd = 1; } else { cmptparm.sgnd = 0; } if (prec < 8) { force8 = 1; ushift = 8 - prec; dshift = prec - ushift; if (cmptparm.sgnd) { adjustS = (1 << (prec - 1)); } else { adjustS = 0; } cmptparm.sgnd = 0; prec = 8; } else { ushift = dshift = force8 = adjustS = 0; } cmptparm.prec = (OPJ_UINT32)prec; cmptparm.bpp = (OPJ_UINT32)prec; cmptparm.dx = (OPJ_UINT32)parameters->subsampling_dx; cmptparm.dy = (OPJ_UINT32)parameters->subsampling_dy; /* create the image */ image = opj_image_create((OPJ_UINT32)numcomps, &cmptparm, color_space); if (!image) { fclose(f); return NULL; } /* set image offset and reference grid */ image->x0 = cmptparm.x0; image->y0 = cmptparm.x0; image->x1 = cmptparm.w; image->y1 = cmptparm.h; /* set image data */ comp = &image->comps[0]; for (i = 0; i < w * h; i++) { int v; if (force8) { v = readuchar(f) + adjustS; v = (v << ushift) + (v >> dshift); comp->data[i] = (unsigned char)v; if (v > max) { max = v; } continue; } if (comp->prec == 8) { if (!comp->sgnd) { v = readuchar(f); } else { v = (char) readuchar(f); } } else if (comp->prec <= 16) { if (!comp->sgnd) { v = readushort(f, bigendian); } else { v = (short) readushort(f, bigendian); } } else { if (!comp->sgnd) { v = (int)readuint(f, bigendian); } else { v = (int) readuint(f, bigendian); } } if (v > max) { max = v; } comp->data[i] = v; } fclose(f); comp->bpp = (OPJ_UINT32)int_floorlog2(max) + 1; return image; }
CWE-787
180,951
2,486
218417184881972252840459772900542074139
null
null
null
openjpeg
2cd30c2b06ce332dede81cccad8b334cde997281
1
opj_image_t* tgatoimage(const char *filename, opj_cparameters_t *parameters) { FILE *f; opj_image_t *image; unsigned int image_width, image_height, pixel_bit_depth; unsigned int x, y; int flip_image = 0; opj_image_cmptparm_t cmptparm[4]; /* maximum 4 components */ int numcomps; OPJ_COLOR_SPACE color_space; OPJ_BOOL mono ; OPJ_BOOL save_alpha; int subsampling_dx, subsampling_dy; int i; f = fopen(filename, "rb"); if (!f) { fprintf(stderr, "Failed to open %s for reading !!\n", filename); return 0; } if (!tga_readheader(f, &pixel_bit_depth, &image_width, &image_height, &flip_image)) { fclose(f); return NULL; } /* We currently only support 24 & 32 bit tga's ... */ if (!((pixel_bit_depth == 24) || (pixel_bit_depth == 32))) { fclose(f); return NULL; } /* initialize image components */ memset(&cmptparm[0], 0, 4 * sizeof(opj_image_cmptparm_t)); mono = (pixel_bit_depth == 8) || (pixel_bit_depth == 16); /* Mono with & without alpha. */ save_alpha = (pixel_bit_depth == 16) || (pixel_bit_depth == 32); /* Mono with alpha, or RGB with alpha */ if (mono) { color_space = OPJ_CLRSPC_GRAY; numcomps = save_alpha ? 2 : 1; } else { numcomps = save_alpha ? 4 : 3; color_space = OPJ_CLRSPC_SRGB; } subsampling_dx = parameters->subsampling_dx; subsampling_dy = parameters->subsampling_dy; for (i = 0; i < numcomps; i++) { cmptparm[i].prec = 8; cmptparm[i].bpp = 8; cmptparm[i].sgnd = 0; cmptparm[i].dx = (OPJ_UINT32)subsampling_dx; cmptparm[i].dy = (OPJ_UINT32)subsampling_dy; cmptparm[i].w = image_width; cmptparm[i].h = image_height; } /* create the image */ image = opj_image_create((OPJ_UINT32)numcomps, &cmptparm[0], color_space); if (!image) { fclose(f); return NULL; } /* set image offset and reference grid */ image->x0 = (OPJ_UINT32)parameters->image_offset_x0; image->y0 = (OPJ_UINT32)parameters->image_offset_y0; image->x1 = !image->x0 ? (OPJ_UINT32)(image_width - 1) * (OPJ_UINT32)subsampling_dx + 1 : image->x0 + (OPJ_UINT32)(image_width - 1) * (OPJ_UINT32)subsampling_dx + 1; image->y1 = !image->y0 ? (OPJ_UINT32)(image_height - 1) * (OPJ_UINT32)subsampling_dy + 1 : image->y0 + (OPJ_UINT32)(image_height - 1) * (OPJ_UINT32)subsampling_dy + 1; /* set image data */ for (y = 0; y < image_height; y++) { int index; if (flip_image) { index = (int)((image_height - y - 1) * image_width); } else { index = (int)(y * image_width); } if (numcomps == 3) { for (x = 0; x < image_width; x++) { unsigned char r, g, b; if (!fread(&b, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } if (!fread(&g, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } if (!fread(&r, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } image->comps[0].data[index] = r; image->comps[1].data[index] = g; image->comps[2].data[index] = b; index++; } } else if (numcomps == 4) { for (x = 0; x < image_width; x++) { unsigned char r, g, b, a; if (!fread(&b, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } if (!fread(&g, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } if (!fread(&r, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } if (!fread(&a, 1, 1, f)) { fprintf(stderr, "\nError: fread return a number of element different from the expected.\n"); opj_image_destroy(image); fclose(f); return NULL; } image->comps[0].data[index] = r; image->comps[1].data[index] = g; image->comps[2].data[index] = b; image->comps[3].data[index] = a; index++; } } else { fprintf(stderr, "Currently unsupported bit depth : %s\n", filename); } } fclose(f); return image; }
CWE-787
180,954
2,489
91259858852872254645568346681525420670
null
null
null
mbedtls
d15795acd5074e0b44e71f7ede8bdfe1b48591fc
1
int mbedtls_x509_crt_verify_with_profile( mbedtls_x509_crt *crt, mbedtls_x509_crt *trust_ca, mbedtls_x509_crl *ca_crl, const mbedtls_x509_crt_profile *profile, const char *cn, uint32_t *flags, int (*f_vrfy)(void *, mbedtls_x509_crt *, int, uint32_t *), void *p_vrfy ) { size_t cn_len; int ret; int pathlen = 0, selfsigned = 0; mbedtls_x509_crt *parent; mbedtls_x509_name *name; mbedtls_x509_sequence *cur = NULL; mbedtls_pk_type_t pk_type; if( profile == NULL ) return( MBEDTLS_ERR_X509_BAD_INPUT_DATA ); *flags = 0; if( cn != NULL ) { name = &crt->subject; cn_len = strlen( cn ); if( crt->ext_types & MBEDTLS_X509_EXT_SUBJECT_ALT_NAME ) { cur = &crt->subject_alt_names; while( cur != NULL ) { if( cur->buf.len == cn_len && x509_memcasecmp( cn, cur->buf.p, cn_len ) == 0 ) break; if( cur->buf.len > 2 && memcmp( cur->buf.p, "*.", 2 ) == 0 && x509_check_wildcard( cn, &cur->buf ) == 0 ) { break; } cur = cur->next; } if( cur == NULL ) *flags |= MBEDTLS_X509_BADCERT_CN_MISMATCH; } else { while( name != NULL ) { if( MBEDTLS_OID_CMP( MBEDTLS_OID_AT_CN, &name->oid ) == 0 ) { if( name->val.len == cn_len && x509_memcasecmp( name->val.p, cn, cn_len ) == 0 ) break; if( name->val.len > 2 && memcmp( name->val.p, "*.", 2 ) == 0 && x509_check_wildcard( cn, &name->val ) == 0 ) break; } name = name->next; } if( name == NULL ) *flags |= MBEDTLS_X509_BADCERT_CN_MISMATCH; } } /* Check the type and size of the key */ pk_type = mbedtls_pk_get_type( &crt->pk ); if( x509_profile_check_pk_alg( profile, pk_type ) != 0 ) *flags |= MBEDTLS_X509_BADCERT_BAD_PK; if( x509_profile_check_key( profile, pk_type, &crt->pk ) != 0 ) *flags |= MBEDTLS_X509_BADCERT_BAD_KEY; /* Look for a parent in trusted CAs */ for( parent = trust_ca; parent != NULL; parent = parent->next ) { if( x509_crt_check_parent( crt, parent, 0, pathlen == 0 ) == 0 ) break; } if( parent != NULL ) { ret = x509_crt_verify_top( crt, parent, ca_crl, profile, pathlen, selfsigned, flags, f_vrfy, p_vrfy ); if( ret != 0 ) return( ret ); } else { /* Look for a parent upwards the chain */ for( parent = crt->next; parent != NULL; parent = parent->next ) if( x509_crt_check_parent( crt, parent, 0, pathlen == 0 ) == 0 ) break; /* Are we part of the chain or at the top? */ if( parent != NULL ) { ret = x509_crt_verify_child( crt, parent, trust_ca, ca_crl, profile, pathlen, selfsigned, flags, f_vrfy, p_vrfy ); if( ret != 0 ) return( ret ); } else { ret = x509_crt_verify_top( crt, trust_ca, ca_crl, profile, pathlen, selfsigned, flags, f_vrfy, p_vrfy ); if( ret != 0 ) return( ret ); } } if( *flags != 0 ) return( MBEDTLS_ERR_X509_CERT_VERIFY_FAILED ); return( 0 ); }
CWE-287
180,955
2,490
207213925191051561649166193472608984073
null
null
null
tcpdump
3c4d7c0ee30a30e5abff3d6d9586a3753101faf5
1
rt6_print(netdissect_options *ndo, register const u_char *bp, const u_char *bp2 _U_) { register const struct ip6_rthdr *dp; register const struct ip6_rthdr0 *dp0; register const u_char *ep; int i, len; register const struct in6_addr *addr; dp = (const struct ip6_rthdr *)bp; len = dp->ip6r_len; /* 'ep' points to the end of available data. */ ep = ndo->ndo_snapend; ND_TCHECK(dp->ip6r_segleft); ND_PRINT((ndo, "srcrt (len=%d", dp->ip6r_len)); /*)*/ ND_PRINT((ndo, ", type=%d", dp->ip6r_type)); ND_PRINT((ndo, ", segleft=%d", dp->ip6r_segleft)); switch (dp->ip6r_type) { case IPV6_RTHDR_TYPE_0: case IPV6_RTHDR_TYPE_2: /* Mobile IPv6 ID-20 */ dp0 = (const struct ip6_rthdr0 *)dp; ND_TCHECK(dp0->ip6r0_reserved); if (dp0->ip6r0_reserved || ndo->ndo_vflag) { ND_PRINT((ndo, ", rsv=0x%0x", EXTRACT_32BITS(&dp0->ip6r0_reserved))); } if (len % 2 == 1) goto trunc; len >>= 1; addr = &dp0->ip6r0_addr[0]; for (i = 0; i < len; i++) { if ((const u_char *)(addr + 1) > ep) goto trunc; ND_PRINT((ndo, ", [%d]%s", i, ip6addr_string(ndo, addr))); addr++; } /*(*/ ND_PRINT((ndo, ") ")); return((dp0->ip6r0_len + 1) << 3); break; default: goto trunc; break; } trunc: ND_PRINT((ndo, "[|srcrt]")); return -1; }
CWE-125
180,956
2,491
311722369782944901497183929225399832994
null
null
null
linux
a6e544b0a88b53114bfa5a57e21b7be7a8dfc9d0
1
bool __skb_flow_dissect(const struct sk_buff *skb, struct flow_dissector *flow_dissector, void *target_container, void *data, __be16 proto, int nhoff, int hlen) { struct flow_dissector_key_control *key_control; struct flow_dissector_key_basic *key_basic; struct flow_dissector_key_addrs *key_addrs; struct flow_dissector_key_ports *key_ports; struct flow_dissector_key_tags *key_tags; struct flow_dissector_key_keyid *key_keyid; u8 ip_proto = 0; if (!data) { data = skb->data; proto = skb->protocol; nhoff = skb_network_offset(skb); hlen = skb_headlen(skb); } /* It is ensured by skb_flow_dissector_init() that control key will * be always present. */ key_control = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CONTROL, target_container); /* It is ensured by skb_flow_dissector_init() that basic key will * be always present. */ key_basic = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_BASIC, target_container); if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct ethhdr *eth = eth_hdr(skb); struct flow_dissector_key_eth_addrs *key_eth_addrs; key_eth_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS, target_container); memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs)); } again: switch (proto) { case htons(ETH_P_IP): { const struct iphdr *iph; struct iphdr _iph; ip: iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph || iph->ihl < 5) return false; nhoff += iph->ihl * 4; ip_proto = iph->protocol; if (ip_is_fragment(iph)) ip_proto = 0; if (!skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) break; key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS, target_container); memcpy(&key_addrs->v4addrs, &iph->saddr, sizeof(key_addrs->v4addrs)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; break; } case htons(ETH_P_IPV6): { const struct ipv6hdr *iph; struct ipv6hdr _iph; __be32 flow_label; ipv6: iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph); if (!iph) return false; ip_proto = iph->nexthdr; nhoff += sizeof(struct ipv6hdr); if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) { struct flow_dissector_key_ipv6_addrs *key_ipv6_addrs; key_ipv6_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_IPV6_ADDRS, target_container); memcpy(key_ipv6_addrs, &iph->saddr, sizeof(*key_ipv6_addrs)); key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; } flow_label = ip6_flowlabel(iph); if (flow_label) { if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_FLOW_LABEL, target_container); key_tags->flow_label = ntohl(flow_label); } } break; } case htons(ETH_P_8021AD): case htons(ETH_P_8021Q): { const struct vlan_hdr *vlan; struct vlan_hdr _vlan; vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan), data, hlen, &_vlan); if (!vlan) return false; if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_VLANID)) { key_tags = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_VLANID, target_container); key_tags->vlan_id = skb_vlan_tag_get_id(skb); } proto = vlan->h_vlan_encapsulated_proto; nhoff += sizeof(*vlan); goto again; } case htons(ETH_P_PPP_SES): { struct { struct pppoe_hdr hdr; __be16 proto; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return false; proto = hdr->proto; nhoff += PPPOE_SES_HLEN; switch (proto) { case htons(PPP_IP): goto ip; case htons(PPP_IPV6): goto ipv6; default: return false; } } case htons(ETH_P_TIPC): { struct { __be32 pre[3]; __be32 srcnode; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return false; key_basic->n_proto = proto; key_control->thoff = (u16)nhoff; if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TIPC_ADDRS)) { key_addrs = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_TIPC_ADDRS, target_container); key_addrs->tipcaddrs.srcnode = hdr->srcnode; key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS; } return true; } case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): { struct mpls_label *hdr, _hdr[2]; mpls: hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return false; if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) { if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_MPLS_ENTROPY, target_container); key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK); } key_basic->n_proto = proto; key_basic->ip_proto = ip_proto; key_control->thoff = (u16)nhoff; return true; } return true; } case htons(ETH_P_FCOE): key_control->thoff = (u16)(nhoff + FCOE_HEADER_LEN); /* fall through */ default: return false; } ip_proto_again: switch (ip_proto) { case IPPROTO_GRE: { struct gre_hdr { __be16 flags; __be16 proto; } *hdr, _hdr; hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr); if (!hdr) return false; /* * Only look inside GRE if version zero and no * routing */ if (hdr->flags & (GRE_VERSION | GRE_ROUTING)) break; proto = hdr->proto; nhoff += 4; if (hdr->flags & GRE_CSUM) nhoff += 4; if (hdr->flags & GRE_KEY) { const __be32 *keyid; __be32 _keyid; keyid = __skb_header_pointer(skb, nhoff, sizeof(_keyid), data, hlen, &_keyid); if (!keyid) return false; if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID)) { key_keyid = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_GRE_KEYID, target_container); key_keyid->keyid = *keyid; } nhoff += 4; } if (hdr->flags & GRE_SEQ) nhoff += 4; if (proto == htons(ETH_P_TEB)) { const struct ethhdr *eth; struct ethhdr _eth; eth = __skb_header_pointer(skb, nhoff, sizeof(_eth), data, hlen, &_eth); if (!eth) return false; proto = eth->h_proto; nhoff += sizeof(*eth); } goto again; } case NEXTHDR_HOP: case NEXTHDR_ROUTING: case NEXTHDR_DEST: { u8 _opthdr[2], *opthdr; if (proto != htons(ETH_P_IPV6)) break; opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr), data, hlen, &_opthdr); if (!opthdr) return false; ip_proto = opthdr[0]; nhoff += (opthdr[1] + 1) << 3; goto ip_proto_again; } case IPPROTO_IPIP: proto = htons(ETH_P_IP); goto ip; case IPPROTO_IPV6: proto = htons(ETH_P_IPV6); goto ipv6; case IPPROTO_MPLS: proto = htons(ETH_P_MPLS_UC); goto mpls; default: break; } key_basic->n_proto = proto; key_basic->ip_proto = ip_proto; key_control->thoff = (u16)nhoff; if (skb_flow_dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS)) { key_ports = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_PORTS, target_container); key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto, data, hlen); } return true; }
CWE-20
180,957
2,492
89513863866329190439338015798431515656
null
null
null
acpica
37f2c716f2c6ab14c3ba557a539c3ee3224931b5
1
AcpiNsEvaluate ( ACPI_EVALUATE_INFO *Info) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE (NsEvaluate); if (!Info) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (!Info->Node) { /* * Get the actual namespace node for the target object if we * need to. Handles these cases: * * 1) Null node, valid pathname from root (absolute path) * 2) Node and valid pathname (path relative to Node) * 3) Node, Null pathname */ Status = AcpiNsGetNode (Info->PrefixNode, Info->RelativePathname, ACPI_NS_NO_UPSEARCH, &Info->Node); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* * For a method alias, we must grab the actual method node so that * proper scoping context will be established before execution. */ if (AcpiNsGetType (Info->Node) == ACPI_TYPE_LOCAL_METHOD_ALIAS) { Info->Node = ACPI_CAST_PTR ( ACPI_NAMESPACE_NODE, Info->Node->Object); } /* Complete the info block initialization */ Info->ReturnObject = NULL; Info->NodeFlags = Info->Node->Flags; Info->ObjDesc = AcpiNsGetAttachedObject (Info->Node); ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "%s [%p] Value %p\n", Info->RelativePathname, Info->Node, AcpiNsGetAttachedObject (Info->Node))); /* Get info if we have a predefined name (_HID, etc.) */ Info->Predefined = AcpiUtMatchPredefinedMethod (Info->Node->Name.Ascii); /* Get the full pathname to the object, for use in warning messages */ Info->FullPathname = AcpiNsGetNormalizedPathname (Info->Node, TRUE); if (!Info->FullPathname) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Count the number of arguments being passed in */ Info->ParamCount = 0; if (Info->Parameters) { while (Info->Parameters[Info->ParamCount]) { Info->ParamCount++; } /* Warn on impossible argument count */ if (Info->ParamCount > ACPI_METHOD_NUM_ARGS) { ACPI_WARN_PREDEFINED ((AE_INFO, Info->FullPathname, ACPI_WARN_ALWAYS, "Excess arguments (%u) - using only %u", Info->ParamCount, ACPI_METHOD_NUM_ARGS)); Info->ParamCount = ACPI_METHOD_NUM_ARGS; } } /* * For predefined names: Check that the declared argument count * matches the ACPI spec -- otherwise this is a BIOS error. */ AcpiNsCheckAcpiCompliance (Info->FullPathname, Info->Node, Info->Predefined); /* * For all names: Check that the incoming argument count for * this method/object matches the actual ASL/AML definition. */ AcpiNsCheckArgumentCount (Info->FullPathname, Info->Node, Info->ParamCount, Info->Predefined); /* For predefined names: Typecheck all incoming arguments */ AcpiNsCheckArgumentTypes (Info); /* * Three major evaluation cases: * * 1) Object types that cannot be evaluated by definition * 2) The object is a control method -- execute it * 3) The object is not a method -- just return it's current value */ switch (AcpiNsGetType (Info->Node)) { case ACPI_TYPE_DEVICE: case ACPI_TYPE_EVENT: case ACPI_TYPE_MUTEX: case ACPI_TYPE_REGION: case ACPI_TYPE_THERMAL: case ACPI_TYPE_LOCAL_SCOPE: /* * 1) Disallow evaluation of certain object types. For these, * object evaluation is undefined and not supported. */ ACPI_ERROR ((AE_INFO, "%s: Evaluation of object type [%s] is not supported", Info->FullPathname, AcpiUtGetTypeName (Info->Node->Type))); Status = AE_TYPE; goto Cleanup; case ACPI_TYPE_METHOD: /* * 2) Object is a control method - execute it */ /* Verify that there is a method object associated with this node */ if (!Info->ObjDesc) { ACPI_ERROR ((AE_INFO, "%s: Method has no attached sub-object", Info->FullPathname)); Status = AE_NULL_OBJECT; goto Cleanup; } ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "**** Execute method [%s] at AML address %p length %X\n", Info->FullPathname, Info->ObjDesc->Method.AmlStart + 1, Info->ObjDesc->Method.AmlLength - 1)); /* * Any namespace deletion must acquire both the namespace and * interpreter locks to ensure that no thread is using the portion of * the namespace that is being deleted. * * Execute the method via the interpreter. The interpreter is locked * here before calling into the AML parser */ AcpiExEnterInterpreter (); Status = AcpiPsExecuteMethod (Info); AcpiExExitInterpreter (); break; default: /* * 3) All other non-method objects -- get the current object value */ /* * Some objects require additional resolution steps (e.g., the Node * may be a field that must be read, etc.) -- we can't just grab * the object out of the node. * * Use ResolveNodeToValue() to get the associated value. * * NOTE: we can get away with passing in NULL for a walk state because * the Node is guaranteed to not be a reference to either a method * local or a method argument (because this interface is never called * from a running method.) * * Even though we do not directly invoke the interpreter for object * resolution, we must lock it because we could access an OpRegion. * The OpRegion access code assumes that the interpreter is locked. */ AcpiExEnterInterpreter (); /* TBD: ResolveNodeToValue has a strange interface, fix */ Info->ReturnObject = ACPI_CAST_PTR (ACPI_OPERAND_OBJECT, Info->Node); Status = AcpiExResolveNodeToValue (ACPI_CAST_INDIRECT_PTR ( ACPI_NAMESPACE_NODE, &Info->ReturnObject), NULL); AcpiExExitInterpreter (); if (ACPI_FAILURE (Status)) { Info->ReturnObject = NULL; goto Cleanup; } ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "Returned object %p [%s]\n", Info->ReturnObject, AcpiUtGetObjectTypeName (Info->ReturnObject))); Status = AE_CTRL_RETURN_VALUE; /* Always has a "return value" */ break; } /* * For predefined names, check the return value against the ACPI * specification. Some incorrect return value types are repaired. */ (void) AcpiNsCheckReturnValue (Info->Node, Info, Info->ParamCount, Status, &Info->ReturnObject); /* Check if there is a return value that must be dealt with */ if (Status == AE_CTRL_RETURN_VALUE) { /* If caller does not want the return value, delete it */ if (Info->Flags & ACPI_IGNORE_RETURN_VALUE) { AcpiUtRemoveReference (Info->ReturnObject); Info->ReturnObject = NULL; } /* Map AE_CTRL_RETURN_VALUE to AE_OK, we are done with it */ Status = AE_OK; } ACPI_DEBUG_PRINT ((ACPI_DB_NAMES, "*** Completed evaluation of object %s ***\n", Info->RelativePathname)); Cleanup: /* * Namespace was unlocked by the handling AcpiNs* function, so we * just free the pathname and return */ ACPI_FREE (Info->FullPathname); Info->FullPathname = NULL; return_ACPI_STATUS (Status); }
CWE-200
180,958
2,493
336314678589934849627990055483348133351
null
null
null