Dataset Viewer
Auto-converted to Parquet
0
list
1
list
2
list
3
list
4
list
5
list
6
list
7
list
8
list
9
list
10
list
11
list
12
list
13
list
14
list
15
list
16
list
17
list
18
list
19
list
20
list
21
list
22
list
23
list
24
list
25
list
26
list
27
list
28
list
29
list
30
list
31
list
32
list
33
list
34
list
35
list
36
list
37
list
38
list
39
list
40
list
41
list
42
list
43
list
44
list
45
list
46
list
47
list
48
list
49
list
50
list
51
list
52
list
53
list
54
list
55
list
56
list
57
list
58
list
59
list
60
list
61
list
62
list
63
list
64
list
65
list
66
list
67
list
68
list
69
list
70
list
71
list
72
list
73
list
74
list
75
list
76
list
77
list
78
list
79
list
80
list
81
list
82
list
83
list
84
list
85
list
86
list
87
list
88
list
89
list
90
list
91
list
92
list
93
list
94
list
95
list
96
list
97
list
98
list
99
list
100
list
101
list
102
list
103
list
104
list
105
list
106
list
107
list
108
list
109
list
110
list
111
list
112
list
113
list
114
list
115
list
116
list
117
list
118
list
119
list
120
list
121
list
122
list
123
list
124
list
125
list
126
list
127
list
128
list
129
list
130
list
131
list
132
list
133
list
134
list
135
list
136
list
137
list
138
list
139
list
140
list
141
list
142
list
143
list
144
list
145
list
146
list
147
list
148
list
149
list
150
list
151
list
152
list
153
list
154
list
155
list
156
list
157
list
158
list
159
list
160
list
161
list
162
list
163
list
164
list
165
list
166
list
167
list
168
list
169
list
170
list
171
list
172
list
173
list
174
list
175
list
176
list
177
list
178
list
179
list
180
list
181
list
182
list
183
list
184
list
185
list
186
list
187
list
188
list
189
list
190
list
191
list
192
list
193
list
194
list
195
list
196
list
197
list
198
list
199
list
200
list
201
list
202
list
203
list
204
list
205
list
206
list
207
list
208
list
209
list
210
list
211
list
212
list
213
list
214
list
215
list
216
list
217
list
218
list
219
list
220
list
221
list
222
list
223
list
224
list
225
list
226
list
227
list
228
list
229
list
230
list
231
list
232
list
233
list
234
list
235
list
236
list
237
list
238
list
239
list
240
list
241
list
242
list
243
list
244
list
245
list
246
list
247
list
248
list
249
list
250
list
251
list
252
list
253
list
254
list
255
list
256
list
257
list
258
list
259
list
260
list
261
list
262
list
263
list
264
list
265
list
266
list
267
list
268
list
269
list
270
list
271
list
272
list
273
list
274
list
275
list
276
list
277
list
278
list
279
list
280
list
281
list
282
list
283
list
284
list
285
list
286
list
287
list
288
list
289
list
290
list
291
list
292
list
293
list
294
list
295
list
296
list
297
list
298
list
299
list
300
list
301
list
302
list
303
list
304
list
305
list
306
list
307
list
308
list
309
list
310
list
311
list
312
list
313
list
314
list
315
list
316
list
317
list
318
list
319
list
320
list
321
list
322
list
323
list
324
list
325
list
326
list
327
list
328
list
329
list
330
list
331
list
332
list
333
list
334
list
335
list
336
list
337
list
338
list
339
list
340
list
341
list
342
list
343
list
344
list
345
list
346
list
347
list
348
list
349
list
350
list
351
list
352
list
353
list
354
list
355
list
356
list
357
list
358
list
359
list
360
list
361
list
362
list
363
list
364
list
365
list
366
list
367
list
368
list
369
list
370
list
371
list
372
list
373
list
374
list
375
list
376
list
377
list
378
list
379
list
380
list
381
list
382
list
383
list
384
list
385
list
386
list
387
list
388
list
389
list
390
list
391
list
392
list
393
list
394
list
395
list
396
list
397
list
398
list
399
list
400
list
401
list
402
list
403
list
404
list
405
list
406
list
407
list
408
list
409
list
410
list
411
list
412
list
413
list
414
list
415
list
416
list
417
list
418
list
419
list
420
list
421
list
422
list
423
list
424
list
425
list
426
list
427
list
428
list
429
list
430
list
431
list
432
list
433
list
434
list
435
list
436
list
437
list
438
list
439
list
440
list
441
list
442
list
443
list
444
list
445
list
446
list
447
list
448
list
449
list
450
list
451
list
452
list
453
list
454
list
455
list
456
list
457
list
458
list
459
list
460
list
461
list
462
list
463
list
464
list
465
list
466
list
467
list
468
list
469
list
470
list
471
list
472
list
473
list
474
list
475
list
476
list
477
list
478
list
479
list
480
list
481
list
482
list
483
list
484
list
485
list
486
list
487
list
488
list
489
list
490
list
491
list
492
list
493
list
494
list
495
list
496
list
497
list
498
list
499
list
500
list
501
list
502
list
503
list
504
list
505
list
506
list
507
list
508
list
509
list
510
list
511
list
512
list
513
list
514
list
515
list
516
list
517
list
518
list
519
list
520
list
521
list
522
list
523
list
524
list
525
list
526
list
527
list
528
list
529
list
530
list
531
list
532
list
533
list
534
list
535
list
536
list
537
list
538
list
539
list
540
list
541
list
542
list
543
list
544
list
545
list
546
list
547
list
548
list
549
list
550
list
551
list
552
list
553
list
554
list
555
list
556
list
557
list
558
list
559
list
560
list
561
list
562
list
563
list
564
list
565
list
566
list
567
list
568
list
569
list
570
list
571
list
572
list
573
list
574
list
575
list
576
list
577
list
578
list
579
list
580
list
581
list
582
list
583
list
584
list
585
list
586
list
587
list
588
list
589
list
590
list
591
list
592
list
593
list
594
list
595
list
596
list
597
list
598
list
599
list
600
list
601
list
602
list
603
list
604
list
605
list
606
list
607
list
608
list
609
list
610
list
611
list
612
list
613
list
614
list
615
list
616
list
617
list
618
list
619
list
620
list
621
list
622
list
623
list
624
list
625
list
626
list
627
list
628
list
629
list
630
list
631
list
632
list
633
list
634
list
635
list
636
list
637
list
638
list
639
list
640
list
641
list
642
list
643
list
644
list
645
list
646
list
647
list
648
list
649
list
650
list
651
list
652
list
653
list
654
list
655
list
656
list
657
list
658
list
659
list
660
list
661
list
662
list
663
list
664
list
665
list
666
list
667
list
668
list
669
list
670
list
671
list
672
list
673
list
674
list
675
list
676
list
677
list
678
list
679
list
680
list
681
list
682
list
683
list
684
list
685
list
686
list
687
list
688
list
689
list
690
list
691
list
692
list
693
list
694
list
695
list
696
list
697
list
698
list
699
list
700
list
701
list
702
list
703
list
704
list
705
list
706
list
707
list
708
list
709
list
710
list
711
list
712
list
713
list
714
list
715
list
716
list
717
list
718
list
719
list
720
list
721
list
722
list
723
list
724
list
725
list
726
list
727
list
728
list
729
list
730
list
731
list
732
list
733
list
734
list
735
list
736
list
737
list
738
list
739
list
740
list
741
list
742
list
743
list
744
list
745
list
746
list
747
list
748
list
749
list
750
list
751
list
752
list
753
list
754
list
755
list
756
list
757
list
758
list
759
list
760
list
761
list
762
list
763
list
764
list
765
list
766
list
767
list
768
list
769
list
770
list
771
list
772
list
773
list
774
list
775
list
776
list
777
list
778
list
779
list
780
list
781
list
782
list
783
list
784
list
785
list
786
list
787
list
788
list
789
list
790
list
791
list
792
list
793
list
794
list
795
list
796
list
797
list
798
list
799
list
800
list
801
list
802
list
803
list
804
list
805
list
806
list
807
list
808
list
809
list
810
list
811
list
812
list
813
list
814
list
815
list
816
list
817
list
818
list
819
list
820
list
821
list
822
list
823
list
824
list
825
list
826
list
827
list
828
list
829
list
830
list
831
list
832
list
833
list
834
list
835
list
836
list
837
list
838
list
839
list
840
list
841
list
842
list
843
list
844
list
845
list
846
list
847
list
848
list
849
list
850
list
851
list
852
list
853
list
854
list
855
list
856
list
857
list
858
list
859
list
860
list
861
list
862
list
863
list
864
list
865
list
866
list
867
list
868
list
869
list
870
list
871
list
872
list
873
list
874
list
875
list
876
list
877
list
878
list
879
list
880
list
881
list
882
list
883
list
884
list
885
list
886
list
887
list
888
list
889
list
890
list
891
list
892
list
893
list
894
list
895
list
896
list
897
list
898
list
899
list
900
list
901
list
902
list
903
list
904
list
905
list
906
list
907
list
908
list
909
list
910
list
911
list
912
list
913
list
914
list
915
list
916
list
917
list
918
list
919
list
920
list
921
list
922
list
923
list
924
list
925
list
926
list
927
list
928
list
929
list
930
list
931
list
932
list
933
list
934
list
935
list
936
list
937
list
938
list
939
list
940
list
941
list
942
list
943
list
944
list
945
list
946
list
947
list
948
list
949
list
950
list
951
list
952
list
953
list
954
list
955
list
956
list
957
list
958
list
959
list
960
list
961
list
962
list
963
list
964
list
965
list
966
list
967
list
968
list
969
list
970
list
971
list
972
list
973
list
974
list
975
list
976
list
977
list
978
list
979
list
980
list
981
list
982
list
983
list
984
list
985
list
986
list
987
list
988
list
989
list
990
list
991
list
992
list
993
list
994
list
995
list
996
list
997
list
998
list
999
list
[ "n01440764", "tench" ]
[ "n01443537", "goldfish" ]
[ "n01484850", "great white shark" ]
[ "n01491361", "tiger shark" ]
[ "n01494475", "hammerhead" ]
[ "n01496331", "electric ray" ]
[ "n01498041", "stingray" ]
[ "n01514668", "cock" ]
[ "n01514859", "hen" ]
[ "n01518878", "ostrich" ]
[ "n01530575", "brambling" ]
[ "n01531178", "goldfinch" ]
[ "n01532829", "house finch" ]
[ "n01534433", "junco" ]
[ "n01537544", "indigo bunting" ]
[ "n01558993", "robin" ]
[ "n01560419", "bulbul" ]
[ "n01580077", "jay" ]
[ "n01582220", "magpie" ]
[ "n01592084", "chickadee" ]
[ "n01601694", "water ouzel" ]
[ "n01608432", "kite" ]
[ "n01614925", "bald eagle" ]
[ "n01616318", "vulture" ]
[ "n01622779", "great grey owl" ]
[ "n01629819", "European fire salamander" ]
[ "n01630670", "common newt" ]
[ "n01631663", "eft" ]
[ "n01632458", "spotted salamander" ]
[ "n01632777", "axolotl" ]
[ "n01641577", "bullfrog" ]
[ "n01644373", "tree frog" ]
[ "n01644900", "tailed frog" ]
[ "n01664065", "loggerhead" ]
[ "n01665541", "leatherback turtle" ]
[ "n01667114", "mud turtle" ]
[ "n01667778", "terrapin" ]
[ "n01669191", "box turtle" ]
[ "n01675722", "banded gecko" ]
[ "n01677366", "common iguana" ]
[ "n01682714", "American chameleon" ]
[ "n01685808", "whiptail" ]
[ "n01687978", "agama" ]
[ "n01688243", "frilled lizard" ]
[ "n01689811", "alligator lizard" ]
[ "n01692333", "Gila monster" ]
[ "n01693334", "green lizard" ]
[ "n01694178", "African chameleon" ]
[ "n01695060", "Komodo dragon" ]
[ "n01697457", "African crocodile" ]
[ "n01698640", "American alligator" ]
[ "n01704323", "triceratops" ]
[ "n01728572", "thunder snake" ]
[ "n01728920", "ringneck snake" ]
[ "n01729322", "hognose snake" ]
[ "n01729977", "green snake" ]
[ "n01734418", "king snake" ]
[ "n01735189", "garter snake" ]
[ "n01737021", "water snake" ]
[ "n01739381", "vine snake" ]
[ "n01740131", "night snake" ]
[ "n01742172", "boa constrictor" ]
[ "n01744401", "rock python" ]
[ "n01748264", "Indian cobra" ]
[ "n01749939", "green mamba" ]
[ "n01751748", "sea snake" ]
[ "n01753488", "horned viper" ]
[ "n01755581", "diamondback" ]
[ "n01756291", "sidewinder" ]
[ "n01768244", "trilobite" ]
[ "n01770081", "harvestman" ]
[ "n01770393", "scorpion" ]
[ "n01773157", "black and gold garden spider" ]
[ "n01773549", "barn spider" ]
[ "n01773797", "garden spider" ]
[ "n01774384", "black widow" ]
[ "n01774750", "tarantula" ]
[ "n01775062", "wolf spider" ]
[ "n01776313", "tick" ]
[ "n01784675", "centipede" ]
[ "n01795545", "black grouse" ]
[ "n01796340", "ptarmigan" ]
[ "n01797886", "ruffed grouse" ]
[ "n01798484", "prairie chicken" ]
[ "n01806143", "peacock" ]
[ "n01806567", "quail" ]
[ "n01807496", "partridge" ]
[ "n01817953", "African grey" ]
[ "n01818515", "macaw" ]
[ "n01819313", "sulphur-crested cockatoo" ]
[ "n01820546", "lorikeet" ]
[ "n01824575", "coucal" ]
[ "n01828970", "bee eater" ]
[ "n01829413", "hornbill" ]
[ "n01833805", "hummingbird" ]
[ "n01843065", "jacamar" ]
[ "n01843383", "toucan" ]
[ "n01847000", "drake" ]
[ "n01855032", "red-breasted merganser" ]
[ "n01855672", "goose" ]
[ "n01860187", "black swan" ]
[ "n01871265", "tusker" ]
[ "n01872401", "echidna" ]
[ "n01873310", "platypus" ]
[ "n01877812", "wallaby" ]
[ "n01882714", "koala" ]
[ "n01883070", "wombat" ]
[ "n01910747", "jellyfish" ]
[ "n01914609", "sea anemone" ]
[ "n01917289", "brain coral" ]
[ "n01924916", "flatworm" ]
[ "n01930112", "nematode" ]
[ "n01943899", "conch" ]
[ "n01944390", "snail" ]
[ "n01945685", "slug" ]
[ "n01950731", "sea slug" ]
[ "n01955084", "chiton" ]
[ "n01968897", "chambered nautilus" ]
[ "n01978287", "Dungeness crab" ]
[ "n01978455", "rock crab" ]
[ "n01980166", "fiddler crab" ]
[ "n01981276", "king crab" ]
[ "n01983481", "American lobster" ]
[ "n01984695", "spiny lobster" ]
[ "n01985128", "crayfish" ]
[ "n01986214", "hermit crab" ]
[ "n01990800", "isopod" ]
[ "n02002556", "white stork" ]
[ "n02002724", "black stork" ]
[ "n02006656", "spoonbill" ]
[ "n02007558", "flamingo" ]
[ "n02009229", "little blue heron" ]
[ "n02009912", "American egret" ]
[ "n02011460", "bittern" ]
[ "n02012849", "crane" ]
[ "n02013706", "limpkin" ]
[ "n02017213", "European gallinule" ]
[ "n02018207", "American coot" ]
[ "n02018795", "bustard" ]
[ "n02025239", "ruddy turnstone" ]
[ "n02027492", "red-backed sandpiper" ]
[ "n02028035", "redshank" ]
[ "n02033041", "dowitcher" ]
[ "n02037110", "oystercatcher" ]
[ "n02051845", "pelican" ]
[ "n02056570", "king penguin" ]
[ "n02058221", "albatross" ]
[ "n02066245", "grey whale" ]
[ "n02071294", "killer whale" ]
[ "n02074367", "dugong" ]
[ "n02077923", "sea lion" ]
[ "n02085620", "Chihuahua" ]
[ "n02085782", "Japanese spaniel" ]
[ "n02085936", "Maltese dog" ]
[ "n02086079", "Pekinese" ]
[ "n02086240", "Shih-Tzu" ]
[ "n02086646", "Blenheim spaniel" ]
[ "n02086910", "papillon" ]
[ "n02087046", "toy terrier" ]
[ "n02087394", "Rhodesian ridgeback" ]
[ "n02088094", "Afghan hound" ]
[ "n02088238", "basset" ]
[ "n02088364", "beagle" ]
[ "n02088466", "bloodhound" ]
[ "n02088632", "bluetick" ]
[ "n02089078", "black-and-tan coonhound" ]
[ "n02089867", "Walker hound" ]
[ "n02089973", "English foxhound" ]
[ "n02090379", "redbone" ]
[ "n02090622", "borzoi" ]
[ "n02090721", "Irish wolfhound" ]
[ "n02091032", "Italian greyhound" ]
[ "n02091134", "whippet" ]
[ "n02091244", "Ibizan hound" ]
[ "n02091467", "Norwegian elkhound" ]
[ "n02091635", "otterhound" ]
[ "n02091831", "Saluki" ]
[ "n02092002", "Scottish deerhound" ]
[ "n02092339", "Weimaraner" ]
[ "n02093256", "Staffordshire bullterrier" ]
[ "n02093428", "American Staffordshire terrier" ]
[ "n02093647", "Bedlington terrier" ]
[ "n02093754", "Border terrier" ]
[ "n02093859", "Kerry blue terrier" ]
[ "n02093991", "Irish terrier" ]
[ "n02094114", "Norfolk terrier" ]
[ "n02094258", "Norwich terrier" ]
[ "n02094433", "Yorkshire terrier" ]
[ "n02095314", "wire-haired fox terrier" ]
[ "n02095570", "Lakeland terrier" ]
[ "n02095889", "Sealyham terrier" ]
[ "n02096051", "Airedale" ]
[ "n02096177", "cairn" ]
[ "n02096294", "Australian terrier" ]
[ "n02096437", "Dandie Dinmont" ]
[ "n02096585", "Boston bull" ]
[ "n02097047", "miniature schnauzer" ]
[ "n02097130", "giant schnauzer" ]
[ "n02097209", "standard schnauzer" ]
[ "n02097298", "Scotch terrier" ]
[ "n02097474", "Tibetan terrier" ]
[ "n02097658", "silky terrier" ]
[ "n02098105", "soft-coated wheaten terrier" ]
[ "n02098286", "West Highland white terrier" ]
[ "n02098413", "Lhasa" ]
[ "n02099267", "flat-coated retriever" ]
[ "n02099429", "curly-coated retriever" ]
[ "n02099601", "golden retriever" ]
[ "n02099712", "Labrador retriever" ]
[ "n02099849", "Chesapeake Bay retriever" ]
[ "n02100236", "German short-haired pointer" ]
[ "n02100583", "vizsla" ]
[ "n02100735", "English setter" ]
[ "n02100877", "Irish setter" ]
[ "n02101006", "Gordon setter" ]
[ "n02101388", "Brittany spaniel" ]
[ "n02101556", "clumber" ]
[ "n02102040", "English springer" ]
[ "n02102177", "Welsh springer spaniel" ]
[ "n02102318", "cocker spaniel" ]
[ "n02102480", "Sussex spaniel" ]
[ "n02102973", "Irish water spaniel" ]
[ "n02104029", "kuvasz" ]
[ "n02104365", "schipperke" ]
[ "n02105056", "groenendael" ]
[ "n02105162", "malinois" ]
[ "n02105251", "briard" ]
[ "n02105412", "kelpie" ]
[ "n02105505", "komondor" ]
[ "n02105641", "Old English sheepdog" ]
[ "n02105855", "Shetland sheepdog" ]
[ "n02106030", "collie" ]
[ "n02106166", "Border collie" ]
[ "n02106382", "Bouvier des Flandres" ]
[ "n02106550", "Rottweiler" ]
[ "n02106662", "German shepherd" ]
[ "n02107142", "Doberman" ]
[ "n02107312", "miniature pinscher" ]
[ "n02107574", "Greater Swiss Mountain dog" ]
[ "n02107683", "Bernese mountain dog" ]
[ "n02107908", "Appenzeller" ]
[ "n02108000", "EntleBucher" ]
[ "n02108089", "boxer" ]
[ "n02108422", "bull mastiff" ]
[ "n02108551", "Tibetan mastiff" ]
[ "n02108915", "French bulldog" ]
[ "n02109047", "Great Dane" ]
[ "n02109525", "Saint Bernard" ]
[ "n02109961", "Eskimo dog" ]
[ "n02110063", "malamute" ]
[ "n02110185", "Siberian husky" ]
[ "n02110341", "dalmatian" ]
[ "n02110627", "affenpinscher" ]
[ "n02110806", "basenji" ]
[ "n02110958", "pug" ]
[ "n02111129", "Leonberg" ]
[ "n02111277", "Newfoundland" ]
[ "n02111500", "Great Pyrenees" ]
[ "n02111889", "Samoyed" ]
[ "n02112018", "Pomeranian" ]
[ "n02112137", "chow" ]
[ "n02112350", "keeshond" ]
[ "n02112706", "Brabancon griffon" ]
[ "n02113023", "Pembroke" ]
[ "n02113186", "Cardigan" ]
[ "n02113624", "toy poodle" ]
[ "n02113712", "miniature poodle" ]
[ "n02113799", "standard poodle" ]
[ "n02113978", "Mexican hairless" ]
[ "n02114367", "timber wolf" ]
[ "n02114548", "white wolf" ]
[ "n02114712", "red wolf" ]
[ "n02114855", "coyote" ]
[ "n02115641", "dingo" ]
[ "n02115913", "dhole" ]
[ "n02116738", "African hunting dog" ]
[ "n02117135", "hyena" ]
[ "n02119022", "red fox" ]
[ "n02119789", "kit fox" ]
[ "n02120079", "Arctic fox" ]
[ "n02120505", "grey fox" ]
[ "n02123045", "tabby" ]
[ "n02123159", "tiger cat" ]
[ "n02123394", "Persian cat" ]
[ "n02123597", "Siamese cat" ]
[ "n02124075", "Egyptian cat" ]
[ "n02125311", "cougar" ]
[ "n02127052", "lynx" ]
[ "n02128385", "leopard" ]
[ "n02128757", "snow leopard" ]
[ "n02128925", "jaguar" ]
[ "n02129165", "lion" ]
[ "n02129604", "tiger" ]
[ "n02130308", "cheetah" ]
[ "n02132136", "brown bear" ]
[ "n02133161", "American black bear" ]
[ "n02134084", "ice bear" ]
[ "n02134418", "sloth bear" ]
[ "n02137549", "mongoose" ]
[ "n02138441", "meerkat" ]
[ "n02165105", "tiger beetle" ]
[ "n02165456", "ladybug" ]
[ "n02167151", "ground beetle" ]
[ "n02168699", "long-horned beetle" ]
[ "n02169497", "leaf beetle" ]
[ "n02172182", "dung beetle" ]
[ "n02174001", "rhinoceros beetle" ]
[ "n02177972", "weevil" ]
[ "n02190166", "fly" ]
[ "n02206856", "bee" ]
[ "n02219486", "ant" ]
[ "n02226429", "grasshopper" ]
[ "n02229544", "cricket" ]
[ "n02231487", "walking stick" ]
[ "n02233338", "cockroach" ]
[ "n02236044", "mantis" ]
[ "n02256656", "cicada" ]
[ "n02259212", "leafhopper" ]
[ "n02264363", "lacewing" ]
[ "n02268443", "dragonfly" ]
[ "n02268853", "damselfly" ]
[ "n02276258", "admiral" ]
[ "n02277742", "ringlet" ]
[ "n02279972", "monarch" ]
[ "n02280649", "cabbage butterfly" ]
[ "n02281406", "sulphur butterfly" ]
[ "n02281787", "lycaenid" ]
[ "n02317335", "starfish" ]
[ "n02319095", "sea urchin" ]
[ "n02321529", "sea cucumber" ]
[ "n02325366", "wood rabbit" ]
[ "n02326432", "hare" ]
[ "n02328150", "Angora" ]
[ "n02342885", "hamster" ]
[ "n02346627", "porcupine" ]
[ "n02356798", "fox squirrel" ]
[ "n02361337", "marmot" ]
[ "n02363005", "beaver" ]
[ "n02364673", "guinea pig" ]
[ "n02389026", "sorrel" ]
[ "n02391049", "zebra" ]
[ "n02395406", "hog" ]
[ "n02396427", "wild boar" ]
[ "n02397096", "warthog" ]
[ "n02398521", "hippopotamus" ]
[ "n02403003", "ox" ]
[ "n02408429", "water buffalo" ]
[ "n02410509", "bison" ]
[ "n02412080", "ram" ]
[ "n02415577", "bighorn" ]
[ "n02417914", "ibex" ]
[ "n02422106", "hartebeest" ]
[ "n02422699", "impala" ]
[ "n02423022", "gazelle" ]
[ "n02437312", "Arabian camel" ]
[ "n02437616", "llama" ]
[ "n02441942", "weasel" ]
[ "n02442845", "mink" ]
[ "n02443114", "polecat" ]
[ "n02443484", "black-footed ferret" ]
[ "n02444819", "otter" ]
[ "n02445715", "skunk" ]
[ "n02447366", "badger" ]
[ "n02454379", "armadillo" ]
[ "n02457408", "three-toed sloth" ]
[ "n02480495", "orangutan" ]
[ "n02480855", "gorilla" ]
[ "n02481823", "chimpanzee" ]
[ "n02483362", "gibbon" ]
[ "n02483708", "siamang" ]
[ "n02484975", "guenon" ]
[ "n02486261", "patas" ]
[ "n02486410", "baboon" ]
[ "n02487347", "macaque" ]
[ "n02488291", "langur" ]
[ "n02488702", "colobus" ]
[ "n02489166", "proboscis monkey" ]
[ "n02490219", "marmoset" ]
[ "n02492035", "capuchin" ]
[ "n02492660", "howler monkey" ]
[ "n02493509", "titi" ]
[ "n02493793", "spider monkey" ]
[ "n02494079", "squirrel monkey" ]
[ "n02497673", "Madagascar cat" ]
[ "n02500267", "indri" ]
[ "n02504013", "Indian elephant" ]
[ "n02504458", "African elephant" ]
[ "n02509815", "lesser panda" ]
[ "n02510455", "giant panda" ]
[ "n02514041", "barracouta" ]
[ "n02526121", "eel" ]
[ "n02536864", "coho" ]
[ "n02606052", "rock beauty" ]
[ "n02607072", "anemone fish" ]
[ "n02640242", "sturgeon" ]
[ "n02641379", "gar" ]
[ "n02643566", "lionfish" ]
[ "n02655020", "puffer" ]
[ "n02666196", "abacus" ]
[ "n02667093", "abaya" ]
[ "n02669723", "academic gown" ]
[ "n02672831", "accordion" ]
[ "n02676566", "acoustic guitar" ]
[ "n02687172", "aircraft carrier" ]
[ "n02690373", "airliner" ]
[ "n02692877", "airship" ]
[ "n02699494", "altar" ]
[ "n02701002", "ambulance" ]
[ "n02704792", "amphibian" ]
[ "n02708093", "analog clock" ]
[ "n02727426", "apiary" ]
[ "n02730930", "apron" ]
[ "n02747177", "ashcan" ]
[ "n02749479", "assault rifle" ]
[ "n02769748", "backpack" ]
[ "n02776631", "bakery" ]
[ "n02777292", "balance beam" ]
[ "n02782093", "balloon" ]
[ "n02783161", "ballpoint" ]
[ "n02786058", "Band Aid" ]
[ "n02787622", "banjo" ]
[ "n02788148", "bannister" ]
[ "n02790996", "barbell" ]
[ "n02791124", "barber chair" ]
[ "n02791270", "barbershop" ]
[ "n02793495", "barn" ]
[ "n02794156", "barometer" ]
[ "n02795169", "barrel" ]
[ "n02797295", "barrow" ]
[ "n02799071", "baseball" ]
[ "n02802426", "basketball" ]
[ "n02804414", "bassinet" ]
[ "n02804610", "bassoon" ]
[ "n02807133", "bathing cap" ]
[ "n02808304", "bath towel" ]
[ "n02808440", "bathtub" ]
[ "n02814533", "beach wagon" ]
[ "n02814860", "beacon" ]
[ "n02815834", "beaker" ]
[ "n02817516", "bearskin" ]
[ "n02823428", "beer bottle" ]
[ "n02823750", "beer glass" ]
[ "n02825657", "bell cote" ]
[ "n02834397", "bib" ]
[ "n02835271", "bicycle-built-for-two" ]
[ "n02837789", "bikini" ]
[ "n02840245", "binder" ]
[ "n02841315", "binoculars" ]
[ "n02843684", "birdhouse" ]
[ "n02859443", "boathouse" ]
[ "n02860847", "bobsled" ]
[ "n02865351", "bolo tie" ]
[ "n02869837", "bonnet" ]
[ "n02870880", "bookcase" ]
[ "n02871525", "bookshop" ]
[ "n02877765", "bottlecap" ]
[ "n02879718", "bow" ]
[ "n02883205", "bow tie" ]
[ "n02892201", "brass" ]
[ "n02892767", "brassiere" ]
[ "n02894605", "breakwater" ]
[ "n02895154", "breastplate" ]
[ "n02906734", "broom" ]
[ "n02909870", "bucket" ]
[ "n02910353", "buckle" ]
[ "n02916936", "bulletproof vest" ]
[ "n02917067", "bullet train" ]
[ "n02927161", "butcher shop" ]
[ "n02930766", "cab" ]
[ "n02939185", "caldron" ]
[ "n02948072", "candle" ]
[ "n02950826", "cannon" ]
[ "n02951358", "canoe" ]
[ "n02951585", "can opener" ]
[ "n02963159", "cardigan" ]
[ "n02965783", "car mirror" ]
[ "n02966193", "carousel" ]
[ "n02966687", "carpenter's kit" ]
[ "n02971356", "carton" ]
[ "n02974003", "car wheel" ]
[ "n02977058", "cash machine" ]
[ "n02978881", "cassette" ]
[ "n02979186", "cassette player" ]
[ "n02980441", "castle" ]
[ "n02981792", "catamaran" ]
[ "n02988304", "CD player" ]
[ "n02992211", "cello" ]
[ "n02992529", "cellular telephone" ]
[ "n02999410", "chain" ]
[ "n03000134", "chainlink fence" ]
[ "n03000247", "chain mail" ]
[ "n03000684", "chain saw" ]
[ "n03014705", "chest" ]
[ "n03016953", "chiffonier" ]
[ "n03017168", "chime" ]
[ "n03018349", "china cabinet" ]
[ "n03026506", "Christmas stocking" ]
[ "n03028079", "church" ]
[ "n03032252", "cinema" ]
[ "n03041632", "cleaver" ]
[ "n03042490", "cliff dwelling" ]
[ "n03045698", "cloak" ]
[ "n03047690", "clog" ]
[ "n03062245", "cocktail shaker" ]
[ "n03063599", "coffee mug" ]
[ "n03063689", "coffeepot" ]
[ "n03065424", "coil" ]
[ "n03075370", "combination lock" ]
[ "n03085013", "computer keyboard" ]
[ "n03089624", "confectionery" ]
[ "n03095699", "container ship" ]
[ "n03100240", "convertible" ]
[ "n03109150", "corkscrew" ]
[ "n03110669", "cornet" ]
[ "n03124043", "cowboy boot" ]
[ "n03124170", "cowboy hat" ]
[ "n03125729", "cradle" ]
[ "n03126707", "crane" ]
[ "n03127747", "crash helmet" ]
[ "n03127925", "crate" ]
[ "n03131574", "crib" ]
[ "n03133878", "Crock Pot" ]
[ "n03134739", "croquet ball" ]
[ "n03141823", "crutch" ]
[ "n03146219", "cuirass" ]
[ "n03160309", "dam" ]
[ "n03179701", "desk" ]
[ "n03180011", "desktop computer" ]
[ "n03187595", "dial telephone" ]
[ "n03188531", "diaper" ]
[ "n03196217", "digital clock" ]
[ "n03197337", "digital watch" ]
[ "n03201208", "dining table" ]
[ "n03207743", "dishrag" ]
[ "n03207941", "dishwasher" ]
[ "n03208938", "disk brake" ]
[ "n03216828", "dock" ]
[ "n03218198", "dogsled" ]
[ "n03220513", "dome" ]
[ "n03223299", "doormat" ]
[ "n03240683", "drilling platform" ]
[ "n03249569", "drum" ]
[ "n03250847", "drumstick" ]
[ "n03255030", "dumbbell" ]
[ "n03259280", "Dutch oven" ]
[ "n03271574", "electric fan" ]
[ "n03272010", "electric guitar" ]
[ "n03272562", "electric locomotive" ]
[ "n03290653", "entertainment center" ]
[ "n03291819", "envelope" ]
[ "n03297495", "espresso maker" ]
[ "n03314780", "face powder" ]
[ "n03325584", "feather boa" ]
[ "n03337140", "file" ]
[ "n03344393", "fireboat" ]
[ "n03345487", "fire engine" ]
[ "n03347037", "fire screen" ]
[ "n03355925", "flagpole" ]
[ "n03372029", "flute" ]
[ "n03376595", "folding chair" ]
[ "n03379051", "football helmet" ]
[ "n03384352", "forklift" ]
[ "n03388043", "fountain" ]
[ "n03388183", "fountain pen" ]
[ "n03388549", "four-poster" ]
[ "n03393912", "freight car" ]
[ "n03394916", "French horn" ]
[ "n03400231", "frying pan" ]
[ "n03404251", "fur coat" ]
[ "n03417042", "garbage truck" ]
[ "n03424325", "gasmask" ]
[ "n03425413", "gas pump" ]
[ "n03443371", "goblet" ]
[ "n03444034", "go-kart" ]
[ "n03445777", "golf ball" ]
[ "n03445924", "golfcart" ]
[ "n03447447", "gondola" ]
[ "n03447721", "gong" ]
[ "n03450230", "gown" ]
[ "n03452741", "grand piano" ]
[ "n03457902", "greenhouse" ]
[ "n03459775", "grille" ]
[ "n03461385", "grocery store" ]
[ "n03467068", "guillotine" ]
[ "n03476684", "hair slide" ]
[ "n03476991", "hair spray" ]
[ "n03478589", "half track" ]
[ "n03481172", "hammer" ]
[ "n03482405", "hamper" ]
[ "n03483316", "hand blower" ]
[ "n03485407", "hand-held computer" ]
[ "n03485794", "handkerchief" ]
[ "n03492542", "hard disc" ]
[ "n03494278", "harmonica" ]
[ "n03495258", "harp" ]
[ "n03496892", "harvester" ]
[ "n03498962", "hatchet" ]
[ "n03527444", "holster" ]
[ "n03529860", "home theater" ]
[ "n03530642", "honeycomb" ]
[ "n03532672", "hook" ]
[ "n03534580", "hoopskirt" ]
[ "n03535780", "horizontal bar" ]
[ "n03538406", "horse cart" ]
[ "n03544143", "hourglass" ]
[ "n03584254", "iPod" ]
[ "n03584829", "iron" ]
[ "n03590841", "jack-o'-lantern" ]
[ "n03594734", "jean" ]
[ "n03594945", "jeep" ]
[ "n03595614", "jersey" ]
[ "n03598930", "jigsaw puzzle" ]
[ "n03599486", "jinrikisha" ]
[ "n03602883", "joystick" ]
[ "n03617480", "kimono" ]
[ "n03623198", "knee pad" ]
[ "n03627232", "knot" ]
[ "n03630383", "lab coat" ]
[ "n03633091", "ladle" ]
[ "n03637318", "lampshade" ]
[ "n03642806", "laptop" ]
[ "n03649909", "lawn mower" ]
[ "n03657121", "lens cap" ]
[ "n03658185", "letter opener" ]
[ "n03661043", "library" ]
[ "n03662601", "lifeboat" ]
[ "n03666591", "lighter" ]
[ "n03670208", "limousine" ]
[ "n03673027", "liner" ]
[ "n03676483", "lipstick" ]
[ "n03680355", "Loafer" ]
[ "n03690938", "lotion" ]
[ "n03691459", "loudspeaker" ]
[ "n03692522", "loupe" ]
[ "n03697007", "lumbermill" ]
[ "n03706229", "magnetic compass" ]
[ "n03709823", "mailbag" ]
[ "n03710193", "mailbox" ]
[ "n03710637", "maillot" ]
[ "n03710721", "maillot" ]
[ "n03717622", "manhole cover" ]
[ "n03720891", "maraca" ]
[ "n03721384", "marimba" ]
[ "n03724870", "mask" ]
[ "n03729826", "matchstick" ]
[ "n03733131", "maypole" ]
[ "n03733281", "maze" ]
[ "n03733805", "measuring cup" ]
[ "n03742115", "medicine chest" ]
[ "n03743016", "megalith" ]
[ "n03759954", "microphone" ]
[ "n03761084", "microwave" ]
[ "n03763968", "military uniform" ]
[ "n03764736", "milk can" ]
[ "n03769881", "minibus" ]
[ "n03770439", "miniskirt" ]
[ "n03770679", "minivan" ]
[ "n03773504", "missile" ]
[ "n03775071", "mitten" ]
[ "n03775546", "mixing bowl" ]
[ "n03776460", "mobile home" ]
[ "n03777568", "Model T" ]
[ "n03777754", "modem" ]
[ "n03781244", "monastery" ]
[ "n03782006", "monitor" ]
[ "n03785016", "moped" ]
[ "n03786901", "mortar" ]
[ "n03787032", "mortarboard" ]
[ "n03788195", "mosque" ]
[ "n03788365", "mosquito net" ]
[ "n03791053", "motor scooter" ]
[ "n03792782", "mountain bike" ]
[ "n03792972", "mountain tent" ]
[ "n03793489", "mouse" ]
[ "n03794056", "mousetrap" ]
[ "n03796401", "moving van" ]
[ "n03803284", "muzzle" ]
[ "n03804744", "nail" ]
[ "n03814639", "neck brace" ]
[ "n03814906", "necklace" ]
[ "n03825788", "nipple" ]
[ "n03832673", "notebook" ]
[ "n03837869", "obelisk" ]
[ "n03838899", "oboe" ]
[ "n03840681", "ocarina" ]
[ "n03841143", "odometer" ]
[ "n03843555", "oil filter" ]
[ "n03854065", "organ" ]
[ "n03857828", "oscilloscope" ]
[ "n03866082", "overskirt" ]
[ "n03868242", "oxcart" ]
[ "n03868863", "oxygen mask" ]
[ "n03871628", "packet" ]
[ "n03873416", "paddle" ]
[ "n03874293", "paddlewheel" ]
[ "n03874599", "padlock" ]
[ "n03876231", "paintbrush" ]
[ "n03877472", "pajama" ]
[ "n03877845", "palace" ]
[ "n03884397", "panpipe" ]
[ "n03887697", "paper towel" ]
[ "n03888257", "parachute" ]
[ "n03888605", "parallel bars" ]
[ "n03891251", "park bench" ]
[ "n03891332", "parking meter" ]
[ "n03895866", "passenger car" ]
[ "n03899768", "patio" ]
[ "n03902125", "pay-phone" ]
[ "n03903868", "pedestal" ]
[ "n03908618", "pencil box" ]
[ "n03908714", "pencil sharpener" ]
[ "n03916031", "perfume" ]
[ "n03920288", "Petri dish" ]
[ "n03924679", "photocopier" ]
[ "n03929660", "pick" ]
[ "n03929855", "pickelhaube" ]
[ "n03930313", "picket fence" ]
[ "n03930630", "pickup" ]
[ "n03933933", "pier" ]
[ "n03935335", "piggy bank" ]
[ "n03937543", "pill bottle" ]
[ "n03938244", "pillow" ]
[ "n03942813", "ping-pong ball" ]
[ "n03944341", "pinwheel" ]
[ "n03947888", "pirate" ]
[ "n03950228", "pitcher" ]
[ "n03954731", "plane" ]
[ "n03956157", "planetarium" ]
[ "n03958227", "plastic bag" ]
[ "n03961711", "plate rack" ]
[ "n03967562", "plow" ]
[ "n03970156", "plunger" ]
[ "n03976467", "Polaroid camera" ]
[ "n03976657", "pole" ]
[ "n03977966", "police van" ]
[ "n03980874", "poncho" ]
[ "n03982430", "pool table" ]
[ "n03983396", "pop bottle" ]
[ "n03991062", "pot" ]
[ "n03992509", "potter's wheel" ]
[ "n03995372", "power drill" ]
[ "n03998194", "prayer rug" ]
[ "n04004767", "printer" ]
[ "n04005630", "prison" ]
[ "n04008634", "projectile" ]
[ "n04009552", "projector" ]
[ "n04019541", "puck" ]
[ "n04023962", "punching bag" ]
[ "n04026417", "purse" ]
[ "n04033901", "quill" ]
[ "n04033995", "quilt" ]
[ "n04037443", "racer" ]
[ "n04039381", "racket" ]
[ "n04040759", "radiator" ]
[ "n04041544", "radio" ]
[ "n04044716", "radio telescope" ]
[ "n04049303", "rain barrel" ]
[ "n04065272", "recreational vehicle" ]
[ "n04067472", "reel" ]
[ "n04069434", "reflex camera" ]
[ "n04070727", "refrigerator" ]
[ "n04074963", "remote control" ]
[ "n04081281", "restaurant" ]
[ "n04086273", "revolver" ]
[ "n04090263", "rifle" ]
[ "n04099969", "rocking chair" ]
[ "n04111531", "rotisserie" ]
[ "n04116512", "rubber eraser" ]
[ "n04118538", "rugby ball" ]
[ "n04118776", "rule" ]
[ "n04120489", "running shoe" ]
[ "n04125021", "safe" ]
[ "n04127249", "safety pin" ]
[ "n04131690", "saltshaker" ]
[ "n04133789", "sandal" ]
[ "n04136333", "sarong" ]
[ "n04141076", "sax" ]
[ "n04141327", "scabbard" ]
[ "n04141975", "scale" ]
[ "n04146614", "school bus" ]
[ "n04147183", "schooner" ]
[ "n04149813", "scoreboard" ]
[ "n04152593", "screen" ]
[ "n04153751", "screw" ]
[ "n04154565", "screwdriver" ]
[ "n04162706", "seat belt" ]
[ "n04179913", "sewing machine" ]
[ "n04192698", "shield" ]
[ "n04200800", "shoe shop" ]
[ "n04201297", "shoji" ]
[ "n04204238", "shopping basket" ]
[ "n04204347", "shopping cart" ]
[ "n04208210", "shovel" ]
[ "n04209133", "shower cap" ]
[ "n04209239", "shower curtain" ]
[ "n04228054", "ski" ]
[ "n04229816", "ski mask" ]
[ "n04235860", "sleeping bag" ]
[ "n04238763", "slide rule" ]
[ "n04239074", "sliding door" ]
[ "n04243546", "slot" ]
[ "n04251144", "snorkel" ]
[ "n04252077", "snowmobile" ]
[ "n04252225", "snowplow" ]
[ "n04254120", "soap dispenser" ]
[ "n04254680", "soccer ball" ]
[ "n04254777", "sock" ]
[ "n04258138", "solar dish" ]
[ "n04259630", "sombrero" ]
[ "n04263257", "soup bowl" ]
[ "n04264628", "space bar" ]
[ "n04265275", "space heater" ]
[ "n04266014", "space shuttle" ]
[ "n04270147", "spatula" ]
[ "n04273569", "speedboat" ]
[ "n04275548", "spider web" ]
[ "n04277352", "spindle" ]
[ "n04285008", "sports car" ]
[ "n04286575", "spotlight" ]
[ "n04296562", "stage" ]
[ "n04310018", "steam locomotive" ]
[ "n04311004", "steel arch bridge" ]
[ "n04311174", "steel drum" ]
[ "n04317175", "stethoscope" ]
[ "n04325704", "stole" ]
[ "n04326547", "stone wall" ]
[ "n04328186", "stopwatch" ]
[ "n04330267", "stove" ]
[ "n04332243", "strainer" ]
[ "n04335435", "streetcar" ]
[ "n04336792", "stretcher" ]
[ "n04344873", "studio couch" ]
[ "n04346328", "stupa" ]
[ "n04347754", "submarine" ]
[ "n04350905", "suit" ]
[ "n04355338", "sundial" ]
[ "n04355933", "sunglass" ]
[ "n04356056", "sunglasses" ]
[ "n04357314", "sunscreen" ]
[ "n04366367", "suspension bridge" ]
[ "n04367480", "swab" ]
[ "n04370456", "sweatshirt" ]
[ "n04371430", "swimming trunks" ]
[ "n04371774", "swing" ]
[ "n04372370", "switch" ]
[ "n04376876", "syringe" ]
[ "n04380533", "table lamp" ]
[ "n04389033", "tank" ]
[ "n04392985", "tape player" ]
[ "n04398044", "teapot" ]
[ "n04399382", "teddy" ]
[ "n04404412", "television" ]
[ "n04409515", "tennis ball" ]
[ "n04417672", "thatch" ]
[ "n04418357", "theater curtain" ]
[ "n04423845", "thimble" ]
[ "n04428191", "thresher" ]
[ "n04429376", "throne" ]
[ "n04435653", "tile roof" ]
[ "n04442312", "toaster" ]
[ "n04443257", "tobacco shop" ]
[ "n04447861", "toilet seat" ]
[ "n04456115", "torch" ]
[ "n04458633", "totem pole" ]
[ "n04461696", "tow truck" ]
[ "n04462240", "toyshop" ]
[ "n04465501", "tractor" ]
[ "n04467665", "trailer truck" ]
[ "n04476259", "tray" ]
[ "n04479046", "trench coat" ]
[ "n04482393", "tricycle" ]
[ "n04483307", "trimaran" ]
[ "n04485082", "tripod" ]
[ "n04486054", "triumphal arch" ]
[ "n04487081", "trolleybus" ]
[ "n04487394", "trombone" ]
[ "n04493381", "tub" ]
[ "n04501370", "turnstile" ]
[ "n04505470", "typewriter keyboard" ]
[ "n04507155", "umbrella" ]
[ "n04509417", "unicycle" ]
[ "n04515003", "upright" ]
[ "n04517823", "vacuum" ]
[ "n04522168", "vase" ]
[ "n04523525", "vault" ]
[ "n04525038", "velvet" ]
[ "n04525305", "vending machine" ]
[ "n04532106", "vestment" ]
[ "n04532670", "viaduct" ]
[ "n04536866", "violin" ]
[ "n04540053", "volleyball" ]
[ "n04542943", "waffle iron" ]
[ "n04548280", "wall clock" ]
[ "n04548362", "wallet" ]
[ "n04550184", "wardrobe" ]
[ "n04552348", "warplane" ]
[ "n04553703", "washbasin" ]
[ "n04554684", "washer" ]
[ "n04557648", "water bottle" ]
[ "n04560804", "water jug" ]
[ "n04562935", "water tower" ]
[ "n04579145", "whiskey jug" ]
[ "n04579432", "whistle" ]
[ "n04584207", "wig" ]
[ "n04589890", "window screen" ]
[ "n04590129", "window shade" ]
[ "n04591157", "Windsor tie" ]
[ "n04591713", "wine bottle" ]
[ "n04592741", "wing" ]
[ "n04596742", "wok" ]
[ "n04597913", "wooden spoon" ]
[ "n04599235", "wool" ]
[ "n04604644", "worm fence" ]
[ "n04606251", "wreck" ]
[ "n04612504", "yawl" ]
[ "n04613696", "yurt" ]
[ "n06359193", "web site" ]
[ "n06596364", "comic book" ]
[ "n06785654", "crossword puzzle" ]
[ "n06794110", "street sign" ]
[ "n06874185", "traffic light" ]
[ "n07248320", "book jacket" ]
[ "n07565083", "menu" ]
[ "n07579787", "plate" ]
[ "n07583066", "guacamole" ]
[ "n07584110", "consomme" ]
[ "n07590611", "hot pot" ]
[ "n07613480", "trifle" ]
[ "n07614500", "ice cream" ]
[ "n07615774", "ice lolly" ]
[ "n07684084", "French loaf" ]
[ "n07693725", "bagel" ]
[ "n07695742", "pretzel" ]
[ "n07697313", "cheeseburger" ]
[ "n07697537", "hotdog" ]
[ "n07711569", "mashed potato" ]
[ "n07714571", "head cabbage" ]
[ "n07714990", "broccoli" ]
[ "n07715103", "cauliflower" ]
[ "n07716358", "zucchini" ]
[ "n07716906", "spaghetti squash" ]
[ "n07717410", "acorn squash" ]
[ "n07717556", "butternut squash" ]
[ "n07718472", "cucumber" ]
[ "n07718747", "artichoke" ]
[ "n07720875", "bell pepper" ]
[ "n07730033", "cardoon" ]
[ "n07734744", "mushroom" ]
[ "n07742313", "Granny Smith" ]
[ "n07745940", "strawberry" ]
[ "n07747607", "orange" ]
[ "n07749582", "lemon" ]
[ "n07753113", "fig" ]
[ "n07753275", "pineapple" ]
[ "n07753592", "banana" ]
[ "n07754684", "jackfruit" ]
[ "n07760859", "custard apple" ]
[ "n07768694", "pomegranate" ]
[ "n07802026", "hay" ]
[ "n07831146", "carbonara" ]
[ "n07836838", "chocolate sauce" ]
[ "n07860988", "dough" ]
[ "n07871810", "meat loaf" ]
[ "n07873807", "pizza" ]
[ "n07875152", "potpie" ]
[ "n07880968", "burrito" ]
[ "n07892512", "red wine" ]
[ "n07920052", "espresso" ]
[ "n07930864", "cup" ]
[ "n07932039", "eggnog" ]
[ "n09193705", "alp" ]
[ "n09229709", "bubble" ]
[ "n09246464", "cliff" ]
[ "n09256479", "coral reef" ]
[ "n09288635", "geyser" ]
[ "n09332890", "lakeside" ]
[ "n09399592", "promontory" ]
[ "n09421951", "sandbar" ]
[ "n09428293", "seashore" ]
[ "n09468604", "valley" ]
[ "n09472597", "volcano" ]
[ "n09835506", "ballplayer" ]
[ "n10148035", "groom" ]
[ "n10565667", "scuba diver" ]
[ "n11879895", "rapeseed" ]
[ "n11939491", "daisy" ]
[ "n12057211", "yellow lady's slipper" ]
[ "n12144580", "corn" ]
[ "n12267677", "acorn" ]
[ "n12620546", "hip" ]
[ "n12768682", "buckeye" ]
[ "n12985857", "coral fungus" ]
[ "n12998815", "agaric" ]
[ "n13037406", "gyromitra" ]
[ "n13040303", "stinkhorn" ]
[ "n13044778", "earthstar" ]
[ "n13052670", "hen-of-the-woods" ]
[ "n13054560", "bolete" ]
[ "n13133613", "ear" ]
[ "n15075141", "toilet tissue" ]

Nano ImageNet-C (Severity 5)

This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption severity level 5. It is designed for efficient testing and validation of model robustness.

这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 5 的图像。它旨在用于高效地测试和验证模型的鲁棒性。

How to Generate / 如何生成

This dataset was generated using the create_nano_dataset.py script included in this repository. To ensure reproducibility, the following parameters were used:

本数据集使用此仓库中包含的 create_nano_dataset.py 脚本生成。为确保可复现性,生成时使用了以下参数:

  • Source Dataset / 源数据集: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。
  • Random Seed / 随机种子: 7600
  • Python Version / Python 版本: 3.10.14

Dataset Structure / 数据集结构

The dataset is provided as a single .tar file named nano-imagenet-c.tar in the webdataset format. The internal structure preserves the original ImageNet-C hierarchy: corruption_type/class_name/image.jpg.

数据集以 webdataset 格式打包在名为 nano-imagenet-c.tar 的单个 .tar 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:corruption_type/class_name/image.jpg

Citation / 引用

If you use this dataset, please cite the original ImageNet-C paper:

如果您使用此数据集,请引用原始 ImageNet-C 的论文:

@inproceedings{danhendrycks2019robustness,
  title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
  author={Dan Hendrycks and Thomas Dietterich},
  booktitle={International Conference on Learning Representations},
  year={2019},
  url={https://openreview.net/forum?id=HJz6tiCqYm},
}
Downloads last month
22