nano-imagenet-c / create_nano_dataset.py
niuniandaji's picture
Upload create_nano_dataset.py with huggingface_hub
9fea522 verified
raw
history blame
9.48 kB
import argparse
import os
import random
import shutil
from tqdm import tqdm
import webdataset as wds
from huggingface_hub import HfApi, HfFolder
def sample_and_copy_files(source_dir, output_dir, num_samples, seed, scan_report_interval):
"""
Scans a source directory, randomly samples image files, and copies them
to an output directory, preserving the original structure.
IMPORTANT: This script is currently hardcoded to only sample images from
corruption severity level 5.
"""
print(f"1. Scanning for image files in '{source_dir}'...")
all_files = []
count = 0
for root, _, files in os.walk(source_dir):
# HARDCODED FILTER: Only include files from severity level 5 directories.
# We check if '5' is a component of the directory path.
path_parts = root.split(os.sep)
if '5' in path_parts:
for file in files:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):
all_files.append(os.path.join(root, file))
count += 1
if count > 0 and count % scan_report_interval == 0:
print(f" ...scanned {count} images (from severity 5)...")
if not all_files:
print(f"Error: No image files found for severity level 5 in '{source_dir}'. Exiting.")
return False
print(f"Found {len(all_files)} total images.")
# Sort the file list to ensure reproducibility across different systems.
# The order of files returned by os.walk is not guaranteed to be the same.
all_files.sort()
print(f"2. Randomly sampling {num_samples} images (seed={seed})...")
# Set the random seed for reproducibility.
# Note: For 100% identical results, the same version of Python should be used
# (e.g., this script was created using Python 3.10.14), as the underlying
# algorithm for the 'random' module can change between versions.
random.seed(seed)
num_to_sample = min(num_samples, len(all_files))
sampled_files = random.sample(all_files, num_to_sample)
print(f"Selected {len(sampled_files)} files to copy.")
print(f"3. Copying files to '{output_dir}'...")
if os.path.exists(output_dir):
print(f"Output directory '{output_dir}' already exists. Removing it.")
shutil.rmtree(output_dir)
os.makedirs(output_dir)
for file_path in tqdm(sampled_files, desc="Copying files"):
relative_path = os.path.relpath(file_path, source_dir)
dest_path = os.path.join(output_dir, relative_path)
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
shutil.copy(file_path, dest_path)
print("File copying complete.")
return True
def generate_readme_content(repo_id, seed, python_version, tar_filename, script_filename):
"""
Generates the content for the README.md file for the Hugging Face dataset.
"""
return f"""---
license: mit
tags:
- image-classification
- computer-vision
- imagenet-c
---
# Nano ImageNet-C (Severity 5)
This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption **severity level 5**. It is designed for efficient testing and validation of model robustness.
这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 **5** 的图像。它旨在用于高效地测试和验证模型的鲁棒性。
## How to Generate / 如何生成
This dataset was generated using the `{script_filename}` script included in this repository. To ensure reproducibility, the following parameters were used:
本数据集使用此仓库中包含的 `{script_filename}` 脚本生成。为确保可复现性,生成时使用了以下参数:
- **Source Dataset / 源数据集**: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。
- **Random Seed / 随机种子**: `{seed}`
- **Python Version / Python 版本**: `{python_version}`
## Dataset Structure / 数据集结构
The dataset is provided as a single `.tar` file named `{tar_filename}` in the `webdataset` format. The internal structure preserves the original ImageNet-C hierarchy: `corruption_type/class_name/image.jpg`.
数据集以 `webdataset` 格式打包在名为 `{tar_filename}` 的单个 `.tar` 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:`corruption_type/class_name/image.jpg`。
## Citation / 引用
If you use this dataset, please cite the original ImageNet-C paper:
如果您使用此数据集,请引用原始 ImageNet-C 的论文:
```bibtex
@inproceedings{{danhendrycks2019robustness,
title={{Benchmarking Neural Network Robustness to Common Corruptions and Perturbations}},
author={{Dan Hendrycks and Thomas Dietterich}},
booktitle={{International Conference on Learning Representations}},
year={{2019}},
url={{https://openreview.net/forum?id=HJz6tiCqYm}},
}}
```
"""
def package_with_webdataset(output_dir, tar_path):
"""
Packages the contents of a directory into a single .tar file using webdataset.
"""
print(f"4. Packaging '{output_dir}' into '{tar_path}'...")
with wds.TarWriter(tar_path) as sink:
for root, _, files in tqdm(list(os.walk(output_dir)), desc="Packaging files"):
for file in files:
file_path = os.path.join(root, file)
with open(file_path, "rb") as stream:
content = stream.read()
relative_path = os.path.relpath(file_path, output_dir)
key, ext = os.path.splitext(relative_path)
extension = ext.lstrip('.')
sink.write({
"__key__": key,
extension: content
})
print("Packaging complete.")
def upload_to_hf(tar_path, readme_path, script_path, repo_id):
"""
Uploads a file to a specified Hugging Face Hub repository.
"""
print(f"5. Uploading files to Hugging Face Hub repository: {repo_id}...")
if HfFolder.get_token() is None:
print("Hugging Face token not found. Please log in using `huggingface-cli login` first.")
return
try:
api = HfApi()
print(f"Creating repository '{repo_id}' (if it doesn't exist)...")
api.create_repo(repo_id, repo_type="dataset", exist_ok=True)
print("Uploading README.md...")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=repo_id,
repo_type="dataset"
)
script_filename = os.path.basename(script_path)
print(f"Uploading generation script '{script_filename}'...")
api.upload_file(
path_or_fileobj=script_path,
path_in_repo=script_filename,
repo_id=repo_id,
repo_type="dataset"
)
tar_filename = os.path.basename(tar_path)
print(f"Uploading dataset file '{tar_filename}'...")
api.upload_file(
path_or_fileobj=tar_path,
path_in_repo=tar_filename,
repo_id=repo_id,
repo_type="dataset"
)
print("Upload successful!")
print(f"Dataset available at: https://huggingface.co/datasets/{repo_id}")
except Exception as e:
print(f"An error occurred during upload: {e}")
def main():
"""
Main function to orchestrate the dataset creation, packaging, and upload process.
"""
parser = argparse.ArgumentParser(description="Create, package, and upload a smaller version of an image dataset.")
parser.add_argument("--source_dir", type=str, default="./data/ImageNet-C", help="Path to the source dataset.")
parser.add_argument("--output_dir", type=str, default="./data/nano-ImageNet-C", help="Path to save the new sampled dataset.")
parser.add_argument("--num_samples", type=int, default=5000, help="Number of images to sample.")
parser.add_argument("--seed", type=int, default=7600, help="Random seed for reproducibility.")
parser.add_argument("--repo_id", type=str, default="niuniandaji/nano-imagenet-c", help="The Hugging Face Hub repository ID.")
parser.add_argument("--tar_path", type=str, default="./data/nano-ImageNet-C.tar", help="Path to save the final webdataset archive.")
parser.add_argument("--scan_report_interval", type=int, default=50000, help="How often to report progress during file scanning.")
args = parser.parse_args()
print("--- Starting Dataset Creation Process ---")
print("IMPORTANT: The script is configured to sample ONLY from severity level 5.")
# Generate README content
script_filename = os.path.basename(__file__)
readme_content = generate_readme_content(
args.repo_id,
args.seed,
"3.10.14",
os.path.basename(args.tar_path),
script_filename
)
# Write README to a local file
readme_path = "README.md"
with open(readme_path, "w", encoding="utf-8") as f:
f.write(readme_content)
print(f"Generated README.md for the dataset.")
if sample_and_copy_files(args.source_dir, args.output_dir, args.num_samples, args.seed, args.scan_report_interval):
package_with_webdataset(args.output_dir, args.tar_path)
upload_to_hf(args.tar_path, readme_path, script_filename, args.repo_id)
print("--- Process Finished ---")
if __name__ == "__main__":
main()