|
import argparse |
|
import os |
|
import random |
|
import shutil |
|
from tqdm import tqdm |
|
import webdataset as wds |
|
from huggingface_hub import HfApi, HfFolder |
|
|
|
def sample_and_copy_files(source_dir, output_dir, num_samples, seed, scan_report_interval): |
|
""" |
|
Scans a source directory, randomly samples image files, and copies them |
|
to an output directory, preserving the original structure. |
|
|
|
IMPORTANT: This script is currently hardcoded to only sample images from |
|
corruption severity level 5. |
|
""" |
|
print(f"1. Scanning for image files in '{source_dir}'...") |
|
all_files = [] |
|
count = 0 |
|
for root, _, files in os.walk(source_dir): |
|
|
|
|
|
path_parts = root.split(os.sep) |
|
if '5' in path_parts: |
|
for file in files: |
|
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')): |
|
all_files.append(os.path.join(root, file)) |
|
count += 1 |
|
if count > 0 and count % scan_report_interval == 0: |
|
print(f" ...scanned {count} images (from severity 5)...") |
|
|
|
if not all_files: |
|
print(f"Error: No image files found for severity level 5 in '{source_dir}'. Exiting.") |
|
return False |
|
|
|
print(f"Found {len(all_files)} total images.") |
|
|
|
|
|
|
|
all_files.sort() |
|
|
|
print(f"2. Randomly sampling {num_samples} images (seed={seed})...") |
|
|
|
|
|
|
|
|
|
random.seed(seed) |
|
num_to_sample = min(num_samples, len(all_files)) |
|
sampled_files = random.sample(all_files, num_to_sample) |
|
print(f"Selected {len(sampled_files)} files to copy.") |
|
|
|
print(f"3. Copying files to '{output_dir}'...") |
|
if os.path.exists(output_dir): |
|
print(f"Output directory '{output_dir}' already exists. Removing it.") |
|
shutil.rmtree(output_dir) |
|
os.makedirs(output_dir) |
|
|
|
for file_path in tqdm(sampled_files, desc="Copying files"): |
|
relative_path = os.path.relpath(file_path, source_dir) |
|
dest_path = os.path.join(output_dir, relative_path) |
|
os.makedirs(os.path.dirname(dest_path), exist_ok=True) |
|
shutil.copy(file_path, dest_path) |
|
|
|
print("File copying complete.") |
|
return True |
|
|
|
def generate_readme_content(repo_id, seed, python_version, tar_filename, script_filename): |
|
""" |
|
Generates the content for the README.md file for the Hugging Face dataset. |
|
""" |
|
return f"""--- |
|
license: mit |
|
tags: |
|
- image-classification |
|
- computer-vision |
|
- imagenet-c |
|
--- |
|
|
|
# Nano ImageNet-C (Severity 5) |
|
|
|
This is a randomly sampled subset of the ImageNet-C dataset, containing 5,000 images exclusively from corruption **severity level 5**. It is designed for efficient testing and validation of model robustness. |
|
|
|
这是一个从 ImageNet-C 数据集中随机抽样的子集,包含 5000 张仅来自损坏等级为 **5** 的图像。它旨在用于高效地测试和验证模型的鲁棒性。 |
|
|
|
## How to Generate / 如何生成 |
|
|
|
This dataset was generated using the `{script_filename}` script included in this repository. To ensure reproducibility, the following parameters were used: |
|
|
|
本数据集使用此仓库中包含的 `{script_filename}` 脚本生成。为确保可复现性,生成时使用了以下参数: |
|
|
|
- **Source Dataset / 源数据集**: The full ImageNet-C dataset is required. / 需要完整的 ImageNet-C 数据集。 |
|
- **Random Seed / 随机种子**: `{seed}` |
|
- **Python Version / Python 版本**: `{python_version}` |
|
|
|
## Dataset Structure / 数据集结构 |
|
|
|
The dataset is provided as a single `.tar` file named `{tar_filename}` in the `webdataset` format. The internal structure preserves the original ImageNet-C hierarchy: `corruption_type/class_name/image.jpg`. |
|
|
|
数据集以 `webdataset` 格式打包在名为 `{tar_filename}` 的单个 `.tar` 文件中。其内部结构保留了原始 ImageNet-C 的层次结构:`corruption_type/class_name/image.jpg`。 |
|
|
|
## Citation / 引用 |
|
|
|
If you use this dataset, please cite the original ImageNet-C paper: |
|
|
|
如果您使用此数据集,请引用原始 ImageNet-C 的论文: |
|
|
|
```bibtex |
|
@inproceedings{{danhendrycks2019robustness, |
|
title={{Benchmarking Neural Network Robustness to Common Corruptions and Perturbations}}, |
|
author={{Dan Hendrycks and Thomas Dietterich}}, |
|
booktitle={{International Conference on Learning Representations}}, |
|
year={{2019}}, |
|
url={{https://openreview.net/forum?id=HJz6tiCqYm}}, |
|
}} |
|
``` |
|
""" |
|
|
|
def package_with_webdataset(output_dir, tar_path): |
|
""" |
|
Packages the contents of a directory into a single .tar file using webdataset. |
|
""" |
|
print(f"4. Packaging '{output_dir}' into '{tar_path}'...") |
|
|
|
with wds.TarWriter(tar_path) as sink: |
|
for root, _, files in tqdm(list(os.walk(output_dir)), desc="Packaging files"): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
with open(file_path, "rb") as stream: |
|
content = stream.read() |
|
|
|
relative_path = os.path.relpath(file_path, output_dir) |
|
key, ext = os.path.splitext(relative_path) |
|
extension = ext.lstrip('.') |
|
|
|
sink.write({ |
|
"__key__": key, |
|
extension: content |
|
}) |
|
|
|
print("Packaging complete.") |
|
|
|
def upload_to_hf(tar_path, readme_path, script_path, repo_id): |
|
""" |
|
Uploads a file to a specified Hugging Face Hub repository. |
|
""" |
|
print(f"5. Uploading files to Hugging Face Hub repository: {repo_id}...") |
|
|
|
if HfFolder.get_token() is None: |
|
print("Hugging Face token not found. Please log in using `huggingface-cli login` first.") |
|
return |
|
|
|
try: |
|
api = HfApi() |
|
print(f"Creating repository '{repo_id}' (if it doesn't exist)...") |
|
api.create_repo(repo_id, repo_type="dataset", exist_ok=True) |
|
|
|
print("Uploading README.md...") |
|
api.upload_file( |
|
path_or_fileobj=readme_path, |
|
path_in_repo="README.md", |
|
repo_id=repo_id, |
|
repo_type="dataset" |
|
) |
|
|
|
script_filename = os.path.basename(script_path) |
|
print(f"Uploading generation script '{script_filename}'...") |
|
api.upload_file( |
|
path_or_fileobj=script_path, |
|
path_in_repo=script_filename, |
|
repo_id=repo_id, |
|
repo_type="dataset" |
|
) |
|
|
|
tar_filename = os.path.basename(tar_path) |
|
print(f"Uploading dataset file '{tar_filename}'...") |
|
api.upload_file( |
|
path_or_fileobj=tar_path, |
|
path_in_repo=tar_filename, |
|
repo_id=repo_id, |
|
repo_type="dataset" |
|
) |
|
print("Upload successful!") |
|
print(f"Dataset available at: https://huggingface.co/datasets/{repo_id}") |
|
except Exception as e: |
|
print(f"An error occurred during upload: {e}") |
|
|
|
def main(): |
|
""" |
|
Main function to orchestrate the dataset creation, packaging, and upload process. |
|
""" |
|
parser = argparse.ArgumentParser(description="Create, package, and upload a smaller version of an image dataset.") |
|
parser.add_argument("--source_dir", type=str, default="./data/ImageNet-C", help="Path to the source dataset.") |
|
parser.add_argument("--output_dir", type=str, default="./data/nano-ImageNet-C", help="Path to save the new sampled dataset.") |
|
parser.add_argument("--num_samples", type=int, default=5000, help="Number of images to sample.") |
|
parser.add_argument("--seed", type=int, default=7600, help="Random seed for reproducibility.") |
|
parser.add_argument("--repo_id", type=str, default="niuniandaji/nano-imagenet-c", help="The Hugging Face Hub repository ID.") |
|
parser.add_argument("--tar_path", type=str, default="./data/nano-ImageNet-C.tar", help="Path to save the final webdataset archive.") |
|
parser.add_argument("--scan_report_interval", type=int, default=50000, help="How often to report progress during file scanning.") |
|
args = parser.parse_args() |
|
|
|
print("--- Starting Dataset Creation Process ---") |
|
print("IMPORTANT: The script is configured to sample ONLY from severity level 5.") |
|
|
|
|
|
script_filename = os.path.basename(__file__) |
|
readme_content = generate_readme_content( |
|
args.repo_id, |
|
args.seed, |
|
"3.10.14", |
|
os.path.basename(args.tar_path), |
|
script_filename |
|
) |
|
|
|
|
|
readme_path = "README.md" |
|
with open(readme_path, "w", encoding="utf-8") as f: |
|
f.write(readme_content) |
|
print(f"Generated README.md for the dataset.") |
|
|
|
if sample_and_copy_files(args.source_dir, args.output_dir, args.num_samples, args.seed, args.scan_report_interval): |
|
package_with_webdataset(args.output_dir, args.tar_path) |
|
upload_to_hf(args.tar_path, readme_path, script_filename, args.repo_id) |
|
|
|
print("--- Process Finished ---") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|