Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 81, in _split_generators
                  first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 55, in _get_pipeline_from_tar
                  current_example[field_name] = cls.DECODERS[data_extension](current_example[field_name])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 302, in npy_loads
                  return numpy.lib.format.read_array(stream, allow_pickle=False)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/numpy/lib/format.py", line 782, in read_array
                  version = read_magic(fp)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/numpy/lib/format.py", line 238, in read_magic
                  raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2]))
              ValueError: the magic string is not correct; expected b'\x93NUMPY', got b'\x80\x04\x95\xa3\x00\x00'
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

README — Loading things_eeg_2 from nonarjb/alignvis

This repo hosts WebDataset shard sets under things_eeg_2/:

  • things_eeg_2-images-*.tar — images
  • things_eeg_2-image_embeddings-*.tar — vector embeddings (.npy/.npz)
  • things_eeg_2-preprocessed_eeg-*.tar — EEG arrays (.npy/.npz)

Inside each shard, the WebDataset __key__ is the file’s relative path under the top folder (without extension). To reconstruct the original relative path, use:

rel_path = "<top>/" + __key__ + "." + <ext>

(e.g., images/training_images/01133_raincoat/raincoat_01s.jpg)

To use the other dataset (things_meg), just replace dataset_dir="things_eeg_2" with dataset_dir="things_meg" in the examples below.


Install

pip install webdataset huggingface_hub pillow torch tqdm
# Optional: faster transfers for big files
pip install -U hf_transfer && export HF_HUB_ENABLE_HF_TRANSFER=1

Helper: list shard URLs from the Hub

Create utils_hf_wds.py:

# utils_hf_wds.py
from huggingface_hub import HfFileSystem, hf_hub_url

def hf_tar_urls(repo_id: str, dataset_dir: str, top: str, revision: str = "main"):
    """
    Return sorted 'resolve/<revision>' URLs for shards matching:
        <dataset_dir>/<dataset_dir>-<top>-*.tar
    Example: things_eeg_2/things_eeg_2-images-000000.tar
    """
    fs = HfFileSystem()
    pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar"
    hf_paths = sorted(fs.glob(pattern))  # hf://datasets/<repo_id>/...
    rel_paths = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths]
    return [
        hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision)
        for p in rel_paths
    ]

A) Images (PIL) with original relative paths

import io
from PIL import Image
import torch, webdataset as wds
from utils_hf_wds import hf_tar_urls

REPO = "nonarjb/alignvis"

def make_images_loader(dataset_dir="things_eeg_2", batch_size=16, num_workers=4):
    urls = hf_tar_urls(REPO, dataset_dir, top="images")
    if not urls: raise RuntimeError("No image shards found")

    def pick_image(s):
        for ext in ("jpg","jpeg","png"):
            if ext in s:
                s["img_bytes"] = s[ext]
                s["rel_path"] = f"images/{s['__key__']}.{ext}"
                return s
        return None

    ds = (wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue)
            .map(pick_image).select(lambda s: s is not None)
            .map(lambda s: (s["rel_path"], Image.open(io.BytesIO(s["img_bytes"])).convert("RGB"))))

    return torch.utils.data.DataLoader(
        ds, batch_size=batch_size, num_workers=num_workers, collate_fn=lambda b: b
    )

loader = make_images_loader()
rel_path, pil_img = next(iter(loader))[0]
print(rel_path, pil_img.size)  # e.g. images/training_images/.../raincoat_01s.jpg (W, H)

B) Image embeddings (.npy/.npz) → torch.Tensor

import io, numpy as np
import torch, webdataset as wds
from utils_hf_wds import hf_tar_urls

REPO = "nonarjb/alignvis"

# Heuristics for dict-like payloads
CANDIDATE_KEYS = ("embedding", "emb", "vector", "feat", "features", "clip", "image", "text")

def _first_numeric_from_npz(npz, prefer_key=None):
    if prefer_key and prefer_key in npz:
        return np.asarray(npz[prefer_key])
    # try direct numeric arrays
    for k in npz.files:
        a = npz[k]
        if isinstance(a, np.ndarray) and np.issubdtype(a.dtype, np.number):
            return a
    # try dict-like entries with known keys
    for k in npz.files:
        a = npz[k]
        if isinstance(a, dict):
            for ck in CANDIDATE_KEYS:
                if ck in a:
                    return np.asarray(a[ck])
    return None

def _load_numeric_vector(payload: bytes, ext: str, prefer_key: str | None = None):
    """Return 1D float32 vector or None if not numeric."""
    bio = io.BytesIO(payload)
    try:
        arr = np.load(bio, allow_pickle=False)
    except ValueError as e:
        if "Object arrays" in str(e):
            bio.seek(0)
            obj = np.load(bio, allow_pickle=True)
            if isinstance(obj, dict):
                for ck in CANDIDATE_KEYS:
                    if ck in obj:
                        arr = obj[ck]; break
                else:
                    return None
            elif isinstance(obj, (list, tuple)):
                arr = np.asarray(obj)
            else:
                return None
        else:
            raise
    arr = np.asarray(arr)
    if not np.issubdtype(arr.dtype, np.number):
        try:
            arr = arr.astype(np.float32)
        except Exception:
            return None
    return arr.reshape(-1).astype(np.float32)

def make_embeddings_loader(
    dataset_dir="things_eeg_2",
    batch_size=64,
    num_workers=4,
    prefer_key: str | None = None,   # e.g., "embedding" if you know the field name
):
    urls = hf_tar_urls(REPO, dataset_dir, top="image_embeddings")
    if not urls:
        raise RuntimeError("No embedding shards found")

    def pick_payload(s):
        for ext in ("npy", "npz"):
            if ext in s:
                s["__ext__"] = ext
                s["payload"] = s[ext]
                s["rel_path"] = f"image_embeddings/{s['__key__']}.{ext}"
                return s
        return None

    def decode_vec(s):
        vec = _load_numeric_vector(s["payload"], s["__ext__"], prefer_key=prefer_key)
        if vec is None:
            # skip non-numeric payloads
            return None
        return (s["rel_path"], torch.from_numpy(vec))

    ds = (
        wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue)
        .map(pick_payload).select(lambda s: s is not None)
        .map(decode_vec).select(lambda x: x is not None)
    )

    # Collate into a batch tensor; all vectors must have same dim
    def collate(batch):
        paths, vecs = zip(*batch)
        D = vecs[0].numel()
        vecs = [v.view(-1) for v in vecs if v.numel() == D]
        paths = [p for (p, v) in batch if v.numel() == D]
        return list(paths), torch.stack(vecs, dim=0)

    return torch.utils.data.DataLoader(ds, batch_size=batch_size, num_workers=num_workers, collate_fn=collate)

# ---- try it (set num_workers=0 first if you want easier debugging) ----
if __name__ == "__main__":
    paths, X = next(iter(make_embeddings_loader(num_workers=0, prefer_key=None)))
    print(len(paths), X.shape)

C) EEG (.npy/.npz) — ragged-friendly (returns list of arrays)

import io, re
import webdataset as wds
from huggingface_hub import HfFileSystem, hf_hub_url
import numpy as np

REPO_ID = "nonarjb/alignvis"   # your dataset repo on HF
REVISION = "main"
DATASET_DIR = "things_eeg_2"   # the folder inside the repo

def _hf_eeg_urls(repo_id=REPO_ID, dataset_dir=DATASET_DIR, revision=REVISION):
    """Collect EEG shard URLs for both possible top folders."""
    fs = HfFileSystem()
    urls = []
    for top in ("Preprocessed_data_250Hz", "preprocessed_eeg"):
        pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar"
        hf_paths = sorted(fs.glob(pattern))
        rel = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths]
        urls += [hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision) for p in rel]
    return urls

def _load_subject_eeg_from_hf(subject_id: int, split: str):
    """
    Returns (subject_eeg_data, ch_names) for a given subject+split
    by streaming the per-subject .npy/.npz from HF shards.
    """
    urls = _hf_eeg_urls()
    if not urls:
        raise RuntimeError("No EEG shards found in HF repo")
    filebase = "preprocessed_eeg_training" if split == "train" else "preprocessed_eeg_test"
    key_prefix = f"sub-{subject_id:02d}/"

    ds = wds.WebDataset(urls, shardshuffle=False)
    for s in ds:
        # find the per-subject file
        if ("npy" in s or "npz" in s) and s["__key__"].startswith(key_prefix) and s["__key__"].endswith(filebase):
            ext = "npz" if "npz" in s else "npy"
            payload = s[ext]
            bio = io.BytesIO(payload)

            # load with safe first, fallback to pickle (original code used allow_pickle=True)
            if ext == "npz":
                try:
                    z = np.load(bio, allow_pickle=False)
                except Exception:
                    bio.seek(0); z = np.load(bio, allow_pickle=True)
                # prefer exact fields as in your original code
                eeg_data = z["preprocessed_eeg_data"]
                ch_names = z["ch_names"] if "ch_names" in z else None
            else:  # npy
                try:
                    obj = np.load(bio, allow_pickle=False)
                except ValueError:
                    bio.seek(0); obj = np.load(bio, allow_pickle=True)

                # obj could be dict-like or 0-d object holding a dict
                if isinstance(obj, dict):
                    eeg_data = obj["preprocessed_eeg_data"]
                    ch_names = obj.get("ch_names")
                elif isinstance(obj, np.ndarray) and obj.dtype == object and obj.shape == ():
                    d = obj.item()
                    eeg_data = d["preprocessed_eeg_data"]
                    ch_names = d.get("ch_names")
                else:
                    # if it’s already a numeric array (unlikely for your case)
                    eeg_data = obj
                    ch_names = None

            return np.asarray(eeg_data), ch_names

    raise FileNotFoundError(f"Subject file not found in HF shards: {key_prefix}{filebase}.(npy|npz)")


subject_eeg_data, ch_names = _load_subject_eeg_from_hf(subject_id=1, split="train")
print(subject_eeg_data.shape)
print(ch_names)

If some .npy were saved as object-dtype, resave as numeric arrays; otherwise you must load with allow_pickle=True (only if you trust the data).


D) Download, untar, and use locally (byte-identical files)

# 1) Download the dataset subtree
from huggingface_hub import snapshot_download
local_root = snapshot_download(
    "nonarjb/alignvis", repo_type="dataset", allow_patterns=["things_eeg_2/**"]
)

# 2) Untar to a restore directory (keys preserved under each top folder)
import tarfile, glob, pathlib

restore_root = pathlib.Path("./restore/things_eeg_2")

for top in ("images", "image_embeddings", "preprocessed_eeg"):
    (restore_root / top).mkdir(parents=True, exist_ok=True)
    for t in glob.glob(f"{local_root}/things_eeg_2/things_eeg_2-{top}-*.tar"):
        with tarfile.open(t) as tf:
            tf.extractall(restore_root / top)

print("Restored under:", restore_root)

Now the folder tree mirrors the original:

# Example local usage
from PIL import Image
import numpy as np

img = Image.open("./restore/things_eeg_2/images/training_images/01133_raincoat/raincoat_01s.jpg")
vec = np.load("./restore/things_eeg_2/image_embeddings/some/file.npy")
eeg = np.load("./restore/things_eeg_2/preprocessed_eeg/s01/run3/segment_0001.npy", allow_pickle=False)

Notes

  • WebDataset can also read local shards by passing file:// URLs instead of https://.
  • If your shards are named differently, tweak hf_tar_urls(..., top="...") and the rel_path prefixes (images/, image_embeddings/, preprocessed_eeg/).
  • To batch EEG tensors, implement padding in the collate function.
Downloads last month
691