File size: 11,446 Bytes
7955a8e 9034ee7 7955a8e 9034ee7 7955a8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
# README — Loading `things_eeg_2` from `nonarjb/alignvis`
This repo hosts WebDataset shard sets under `things_eeg_2/`:
* `things_eeg_2-images-*.tar` — images
* `things_eeg_2-image_embeddings-*.tar` — vector embeddings (`.npy/.npz`)
* `things_eeg_2-preprocessed_eeg-*.tar` — EEG arrays (`.npy/.npz`)
Inside each shard, the WebDataset `__key__` is the file’s **relative path under the top folder (without extension)**.
To reconstruct the original relative path, use:
```
rel_path = "<top>/" + __key__ + "." + <ext>
```
(e.g., `images/training_images/01133_raincoat/raincoat_01s.jpg`)
> To use the **other dataset** (`things_meg`), just replace `dataset_dir="things_eeg_2"` with `dataset_dir="things_meg"` in the examples below.
---
## Install
```bash
pip install webdataset huggingface_hub pillow torch tqdm
# Optional: faster transfers for big files
pip install -U hf_transfer && export HF_HUB_ENABLE_HF_TRANSFER=1
```
---
## Helper: list shard URLs from the Hub
Create `utils_hf_wds.py`:
```python
# utils_hf_wds.py
from huggingface_hub import HfFileSystem, hf_hub_url
def hf_tar_urls(repo_id: str, dataset_dir: str, top: str, revision: str = "main"):
"""
Return sorted 'resolve/<revision>' URLs for shards matching:
<dataset_dir>/<dataset_dir>-<top>-*.tar
Example: things_eeg_2/things_eeg_2-images-000000.tar
"""
fs = HfFileSystem()
pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar"
hf_paths = sorted(fs.glob(pattern)) # hf://datasets/<repo_id>/...
rel_paths = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths]
return [
hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision)
for p in rel_paths
]
```
---
## A) Images (PIL) with original relative paths
```python
import io
from PIL import Image
import torch, webdataset as wds
from utils_hf_wds import hf_tar_urls
REPO = "nonarjb/alignvis"
def make_images_loader(dataset_dir="things_eeg_2", batch_size=16, num_workers=4):
urls = hf_tar_urls(REPO, dataset_dir, top="images")
if not urls: raise RuntimeError("No image shards found")
def pick_image(s):
for ext in ("jpg","jpeg","png"):
if ext in s:
s["img_bytes"] = s[ext]
s["rel_path"] = f"images/{s['__key__']}.{ext}"
return s
return None
ds = (wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue)
.map(pick_image).select(lambda s: s is not None)
.map(lambda s: (s["rel_path"], Image.open(io.BytesIO(s["img_bytes"])).convert("RGB"))))
return torch.utils.data.DataLoader(
ds, batch_size=batch_size, num_workers=num_workers, collate_fn=lambda b: b
)
loader = make_images_loader()
rel_path, pil_img = next(iter(loader))[0]
print(rel_path, pil_img.size) # e.g. images/training_images/.../raincoat_01s.jpg (W, H)
```
---
## B) Image embeddings (`.npy/.npz`) → `torch.Tensor`
```python
import io, numpy as np
import torch, webdataset as wds
from utils_hf_wds import hf_tar_urls
REPO = "nonarjb/alignvis"
# Heuristics for dict-like payloads
CANDIDATE_KEYS = ("embedding", "emb", "vector", "feat", "features", "clip", "image", "text")
def _first_numeric_from_npz(npz, prefer_key=None):
if prefer_key and prefer_key in npz:
return np.asarray(npz[prefer_key])
# try direct numeric arrays
for k in npz.files:
a = npz[k]
if isinstance(a, np.ndarray) and np.issubdtype(a.dtype, np.number):
return a
# try dict-like entries with known keys
for k in npz.files:
a = npz[k]
if isinstance(a, dict):
for ck in CANDIDATE_KEYS:
if ck in a:
return np.asarray(a[ck])
return None
def _load_numeric_vector(payload: bytes, ext: str, prefer_key: str | None = None):
"""Return 1D float32 vector or None if not numeric."""
bio = io.BytesIO(payload)
try:
arr = np.load(bio, allow_pickle=False)
except ValueError as e:
if "Object arrays" in str(e):
bio.seek(0)
obj = np.load(bio, allow_pickle=True)
if isinstance(obj, dict):
for ck in CANDIDATE_KEYS:
if ck in obj:
arr = obj[ck]; break
else:
return None
elif isinstance(obj, (list, tuple)):
arr = np.asarray(obj)
else:
return None
else:
raise
arr = np.asarray(arr)
if not np.issubdtype(arr.dtype, np.number):
try:
arr = arr.astype(np.float32)
except Exception:
return None
return arr.reshape(-1).astype(np.float32)
def make_embeddings_loader(
dataset_dir="things_eeg_2",
batch_size=64,
num_workers=4,
prefer_key: str | None = None, # e.g., "embedding" if you know the field name
):
urls = hf_tar_urls(REPO, dataset_dir, top="image_embeddings")
if not urls:
raise RuntimeError("No embedding shards found")
def pick_payload(s):
for ext in ("npy", "npz"):
if ext in s:
s["__ext__"] = ext
s["payload"] = s[ext]
s["rel_path"] = f"image_embeddings/{s['__key__']}.{ext}"
return s
return None
def decode_vec(s):
vec = _load_numeric_vector(s["payload"], s["__ext__"], prefer_key=prefer_key)
if vec is None:
# skip non-numeric payloads
return None
return (s["rel_path"], torch.from_numpy(vec))
ds = (
wds.WebDataset(urls, shardshuffle=False, handler=wds.handlers.warn_and_continue)
.map(pick_payload).select(lambda s: s is not None)
.map(decode_vec).select(lambda x: x is not None)
)
# Collate into a batch tensor; all vectors must have same dim
def collate(batch):
paths, vecs = zip(*batch)
D = vecs[0].numel()
vecs = [v.view(-1) for v in vecs if v.numel() == D]
paths = [p for (p, v) in batch if v.numel() == D]
return list(paths), torch.stack(vecs, dim=0)
return torch.utils.data.DataLoader(ds, batch_size=batch_size, num_workers=num_workers, collate_fn=collate)
# ---- try it (set num_workers=0 first if you want easier debugging) ----
if __name__ == "__main__":
paths, X = next(iter(make_embeddings_loader(num_workers=0, prefer_key=None)))
print(len(paths), X.shape)
```
---
## C) EEG (`.npy/.npz`) — ragged-friendly (returns list of arrays)
```python
import io, re
import webdataset as wds
from huggingface_hub import HfFileSystem, hf_hub_url
import numpy as np
REPO_ID = "nonarjb/alignvis" # your dataset repo on HF
REVISION = "main"
DATASET_DIR = "things_eeg_2" # the folder inside the repo
def _hf_eeg_urls(repo_id=REPO_ID, dataset_dir=DATASET_DIR, revision=REVISION):
"""Collect EEG shard URLs for both possible top folders."""
fs = HfFileSystem()
urls = []
for top in ("Preprocessed_data_250Hz", "preprocessed_eeg"):
pattern = f"datasets/{repo_id}/{dataset_dir}/{dataset_dir}-{top}-*.tar"
hf_paths = sorted(fs.glob(pattern))
rel = [p.split(f"datasets/{repo_id}/", 1)[1] for p in hf_paths]
urls += [hf_hub_url(repo_id, filename=p, repo_type="dataset", revision=revision) for p in rel]
return urls
def _load_subject_eeg_from_hf(subject_id: int, split: str):
"""
Returns (subject_eeg_data, ch_names) for a given subject+split
by streaming the per-subject .npy/.npz from HF shards.
"""
urls = _hf_eeg_urls()
if not urls:
raise RuntimeError("No EEG shards found in HF repo")
filebase = "preprocessed_eeg_training" if split == "train" else "preprocessed_eeg_test"
key_prefix = f"sub-{subject_id:02d}/"
ds = wds.WebDataset(urls, shardshuffle=False)
for s in ds:
# find the per-subject file
if ("npy" in s or "npz" in s) and s["__key__"].startswith(key_prefix) and s["__key__"].endswith(filebase):
ext = "npz" if "npz" in s else "npy"
payload = s[ext]
bio = io.BytesIO(payload)
# load with safe first, fallback to pickle (original code used allow_pickle=True)
if ext == "npz":
try:
z = np.load(bio, allow_pickle=False)
except Exception:
bio.seek(0); z = np.load(bio, allow_pickle=True)
# prefer exact fields as in your original code
eeg_data = z["preprocessed_eeg_data"]
ch_names = z["ch_names"] if "ch_names" in z else None
else: # npy
try:
obj = np.load(bio, allow_pickle=False)
except ValueError:
bio.seek(0); obj = np.load(bio, allow_pickle=True)
# obj could be dict-like or 0-d object holding a dict
if isinstance(obj, dict):
eeg_data = obj["preprocessed_eeg_data"]
ch_names = obj.get("ch_names")
elif isinstance(obj, np.ndarray) and obj.dtype == object and obj.shape == ():
d = obj.item()
eeg_data = d["preprocessed_eeg_data"]
ch_names = d.get("ch_names")
else:
# if it’s already a numeric array (unlikely for your case)
eeg_data = obj
ch_names = None
return np.asarray(eeg_data), ch_names
raise FileNotFoundError(f"Subject file not found in HF shards: {key_prefix}{filebase}.(npy|npz)")
subject_eeg_data, ch_names = _load_subject_eeg_from_hf(subject_id=1, split="train")
print(subject_eeg_data.shape)
print(ch_names)
```
> If some `.npy` were saved as **object-dtype**, resave as numeric arrays; otherwise you must load with `allow_pickle=True` (only if you trust the data).
---
## D) Download, **untar**, and use locally (byte-identical files)
```python
# 1) Download the dataset subtree
from huggingface_hub import snapshot_download
local_root = snapshot_download(
"nonarjb/alignvis", repo_type="dataset", allow_patterns=["things_eeg_2/**"]
)
# 2) Untar to a restore directory (keys preserved under each top folder)
import tarfile, glob, pathlib
restore_root = pathlib.Path("./restore/things_eeg_2")
for top in ("images", "image_embeddings", "preprocessed_eeg"):
(restore_root / top).mkdir(parents=True, exist_ok=True)
for t in glob.glob(f"{local_root}/things_eeg_2/things_eeg_2-{top}-*.tar"):
with tarfile.open(t) as tf:
tf.extractall(restore_root / top)
print("Restored under:", restore_root)
```
Now the folder tree mirrors the original:
```python
# Example local usage
from PIL import Image
import numpy as np
img = Image.open("./restore/things_eeg_2/images/training_images/01133_raincoat/raincoat_01s.jpg")
vec = np.load("./restore/things_eeg_2/image_embeddings/some/file.npy")
eeg = np.load("./restore/things_eeg_2/preprocessed_eeg/s01/run3/segment_0001.npy", allow_pickle=False)
```
---
### Notes
* WebDataset can also read **local** shards by passing `file://` URLs instead of `https://`.
* If your shards are named differently, tweak `hf_tar_urls(..., top="...")` and the `rel_path` prefixes (`images/`, `image_embeddings/`, `preprocessed_eeg/`).
* To batch EEG tensors, implement padding in the `collate` function.
|