|
--- |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: |
|
- data/recitation_0/train/*.parquet |
|
- data/recitation_1/train/*.parquet |
|
- data/recitation_2/train/*.parquet |
|
- data/recitation_3/train/*.parquet |
|
- data/recitation_5/train/*.parquet |
|
- data/recitation_6/train/*.parquet |
|
- data/recitation_7/train/*.parquet |
|
- split: validation |
|
path: |
|
- data/recitation_0/validation/*.parquet |
|
- data/recitation_1/validation/*.parquet |
|
- data/recitation_2/validation/*.parquet |
|
- data/recitation_3/validation/*.parquet |
|
- data/recitation_5/validation/*.parquet |
|
- data/recitation_6/validation/*.parquet |
|
- data/recitation_7/validation/*.parquet |
|
- split: test |
|
path: |
|
- data/recitation_8/train/*.parquet |
|
- data/recitation_8/validation/*.parquet |
|
dataset_info: |
|
splits: |
|
- name: train |
|
num_examples: 54823 |
|
- name: test |
|
num_examples: 8787 |
|
- name: validation |
|
num_examples: 7175 |
|
featrues: |
|
- dtype: string |
|
name: aya_name |
|
- dtype: string |
|
name: aya_id |
|
- dtype: string |
|
name: reciter_name |
|
- dtype: int32 |
|
name: recitation_id |
|
- dtype: string |
|
name: url |
|
- dtype: |
|
audio: |
|
decode: false |
|
sampling_rate: 16000 |
|
name: audio |
|
- dtype: float32 |
|
name: duration |
|
- dtype: float32 |
|
name: speed |
|
- dtype: |
|
array2_d: |
|
dtype: float32 |
|
shape: |
|
- null |
|
- 2 |
|
name: speech_intervals |
|
- dtype: bool |
|
name: is_interval_complete |
|
- dtype: bool |
|
name: is_augmented |
|
- dtype: |
|
array2_d: |
|
dtype: float32 |
|
shape: |
|
- null |
|
- 2 |
|
name: input_features |
|
- dtype: |
|
array2_d: |
|
dtype: int32 |
|
shape: |
|
- null |
|
- 1 |
|
name: attention_mask |
|
- dtype: |
|
array2_d: |
|
dtype: int32 |
|
shape: |
|
- null |
|
- 1 |
|
name: labels |
|
language: |
|
- ar |
|
license: mit |
|
task_categories: |
|
- automatic-speech-recognition |
|
tags: |
|
- quran |
|
- arabic |
|
- speech-segmentation |
|
- audio-segmentation |
|
- audio |
|
--- |
|
|
|
# Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning |
|
|
|
[Paper](https://huggingface.co/papers/2509.00094) | [Project Page](https://obadx.github.io/prepare-quran-dataset/) | [Code](https://github.com/obadx/recitations-segmenter) |
|
|
|
## Introduction |
|
This dataset is developed as part of the research presented in the paper "Automatic Pronunciation Error Detection and Correction of the Holy Quran's Learners Using Deep Learning". The work introduces a 98% automated pipeline to produce high-quality Quranic datasets, comprising over 850 hours of audio (~300K annotated utterances). This dataset supports a novel ASR-based approach for pronunciation error detection, utilizing a custom Quran Phonetic Script (QPS) designed to encode Tajweed rules. |
|
|
|
## Recitation Segmentations Dataset |
|
|
|
This is a modified version of [this dataset](https://huggingface.co/datasets/obadx/recitation-segmentation) with these modifications: |
|
* adding augmentation to the speed of the recitations utterance with column `speed` reflects the speed from 0.8 to 1.5 on 40% of the dataset using [audumentations](https://iver56.github.io/audiomentations/). |
|
* adding data augmentation with [audiomentations](https://iver56.github.io/audiomentations/) on 40% of the dataset to prepare it for training the recitations spliter. |
|
|
|
The codes for building this dataset is available at [github](https://github.com/obadx/recitations-segmenter) |
|
|
|
## Results |
|
The model trained with this dataset achieved the following results on an unseen test set: |
|
|
|
| Metric | Value | |
|
|-----------|--------| |
|
| Accuracy | 0.9958 | |
|
| F1 | 0.9964 | |
|
| Loss | 0.0132 | |
|
| Precision | 0.9976 | |
|
| Recall | 0.9951 | |
|
|
|
## Sample Usage |
|
|
|
Below is a Python example demonstrating how to use the `recitations-segmenter` library (developed alongside this dataset) to segment Holy Quran recitations. |
|
|
|
First, ensure you have the necessary Python packages and `ffmpeg`/`libsndfile` installed: |
|
|
|
#### Linux |
|
|
|
```bash |
|
sudo apt-get update |
|
sudo apt-get install -y ffmpeg libsndfile1 portaudio19-dev |
|
``` |
|
|
|
#### Winodws & Mac |
|
|
|
You can create an `anaconda` environment and then download these two libraries: |
|
|
|
```bash |
|
conda create -n segment python=3.12 |
|
conda activate segment |
|
conda install -c conda-forge ffmpeg libsndfile |
|
``` |
|
|
|
Install the library using pip: |
|
```bash |
|
pip install recitations-segmenter |
|
``` |
|
|
|
Then, you can run the following Python script: |
|
|
|
```python |
|
from pathlib import Path |
|
|
|
from recitations_segmenter import segment_recitations, read_audio, clean_speech_intervals |
|
from transformers import AutoFeatureExtractor, AutoModelForAudioFrameClassification |
|
import torch |
|
|
|
if __name__ == '__main__': |
|
device = torch.device('cuda') |
|
dtype = torch.bfloat16 |
|
|
|
processor = AutoFeatureExtractor.from_pretrained( |
|
"obadx/recitation-segmenter-v2") |
|
model = AutoModelForAudioFrameClassification.from_pretrained( |
|
"obadx/recitation-segmenter-v2", |
|
) |
|
|
|
model.to(device, dtype=dtype) |
|
|
|
# Change this to the file pathes of Holy Quran recitations |
|
# File pathes with the Holy Quran Recitations |
|
file_pathes = [ |
|
'./assets/dussary_002282.mp3', |
|
'./assets/hussary_053001.mp3', |
|
] |
|
waves = [read_audio(p) for p in file_pathes] |
|
|
|
# Extracting speech inervals in samples according to 16000 Sample rate |
|
sampled_outputs = segment_recitations( |
|
waves, |
|
model, |
|
processor, |
|
device=device, |
|
dtype=dtype, |
|
batch_size=8, |
|
) |
|
|
|
for out, path in zip(sampled_outputs, file_pathes): |
|
# Clean The speech intervals by: |
|
# * merging small silence durations |
|
# * remove small speech durations |
|
# * add padding to each speech duration |
|
# Raises: |
|
# * NoSpeechIntervals: if the wav is complete silence |
|
# * TooHighMinSpeechDruation: if `min_speech_duration` is too high which |
|
# resuls for deleting all speech intervals |
|
clean_out = clean_speech_intervals( |
|
out.speech_intervals, |
|
out.is_complete, |
|
min_silence_duration_ms=30, |
|
min_speech_duration_ms=30, |
|
pad_duration_ms=30, |
|
return_seconds=True, |
|
) |
|
|
|
print(f'Speech Intervals of: {Path(path).name}: ') |
|
print(clean_out.clean_speech_intervals) |
|
print(f'Is Recitation Complete: {clean_out.is_complete}') |
|
print('-' * 40) |
|
``` |
|
|
|
## License |
|
|
|
This dataset is licensed under the [MIT](https://mit-license.org/) |