Datasets:
language: | |
- en | |
license: cc0-1.0 | |
size_categories: | |
- 1K<n<10K | |
source_datasets: storytracer/LoC-PD-Books | |
task_categories: | |
- text-generation | |
- feature-extraction | |
dataset_info: | |
- config_name: default | |
features: | |
- name: lccn | |
dtype: string | |
- name: title | |
dtype: string | |
- name: author | |
dtype: string | |
- name: year | |
dtype: int64 | |
- name: page_count | |
dtype: int64 | |
- name: filename | |
dtype: string | |
- name: text | |
dtype: string | |
- name: label | |
dtype: string | |
- name: score | |
dtype: float64 | |
splits: | |
- name: train | |
num_bytes: 2788098633.628336 | |
num_examples: 8816 | |
download_size: 1435586557 | |
dataset_size: 2788098633.628336 | |
- config_name: en-clean | |
features: | |
- name: lccn | |
dtype: string | |
- name: title | |
dtype: string | |
- name: author | |
dtype: string | |
- name: year | |
dtype: int64 | |
- name: page_count | |
dtype: int64 | |
- name: filename | |
dtype: string | |
- name: text | |
dtype: string | |
- name: score | |
dtype: float64 | |
splits: | |
- name: train | |
num_bytes: 1906155961.9587114 | |
num_examples: 6399 | |
download_size: 1055862380 | |
dataset_size: 1906155961.9587114 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
- config_name: en-clean | |
data_files: | |
- split: train | |
path: en-clean/train-* | |
tags: | |
- books | |
# LoC-PD-Books: preprocessed | |
This is the `storytracer/LoC-PD-Books` dataset with the following preprocessing steps: | |
- apply [clean-text](https://pypi.org/project/clean-text/) package keeping casing and newlines | |
- drop OCR garbled text in first few lines of each example | |
- fix (most) 'hard' newlines w/ regex similar to [gutenberg clean](https://huggingface.co/datasets/BEE-spoke-data/gutenberg-en-v1-clean) | |
- 'grade' first 512 tokens of each book with [this quantized model](https://huggingface.co/pszemraj/gibberish_detector_onnx-quant-avx512_vnni); keep examples from labels `clean` (all) and `mild gibberish` w/ score 0.9 or higher | |
--- | |