rainym00d's picture
Upload folder using huggingface_hub
c96df66 verified
import re
import string
from collections import Counter
from typing import Dict, List
import jieba
from fuzzywuzzy import fuzz
from rouge import Rouge
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return "".join(text.split())
def remove_punc(text):
cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."
all_punctuation = set(string.punctuation + cn_punctuation)
return "".join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
class Metric:
@classmethod
def compute(cls, predictions: List[str], answers: List[List[str]], metric_list: List[str], **kwargs) -> Dict[str, float]:
metric_list = [metric.lower() for metric in metric_list]
cls._check_metric_list(metric_list)
result = {}
for metric in metric_list:
total_score = 0
for idx, (prediction, ground_truths) in enumerate(zip(predictions, answers)):
score = 0
for ground_truth in ground_truths:
score = max(score, getattr(cls, metric)(prediction, ground_truth, all_classes=kwargs["all_classes"][idx]))
total_score += score
result[metric] = total_score / len(predictions)
return result
@staticmethod
def _check_metric_list(metric_list: List[str]):
for metric in metric_list:
assert hasattr(Metric, metric), f"Metric {metric} not found"
@staticmethod
def rouge_score(prediction: str, ground_truth: str, **kwargs) -> float:
rouge = Rouge()
try:
scores = rouge.get_scores([prediction], [ground_truth], avg=True)
except:
return 0.0
return scores["rouge-l"]["f"]
@staticmethod
def rouge_zh_score(prediction: str, ground_truth: str, **kwargs) -> float:
prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
score = Metric.rouge_score(prediction, ground_truth)
return score
@staticmethod
def f1_score(prediction: str, ground_truth: str, **kwargs) -> float:
common = Counter(prediction) & Counter(ground_truth)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(ground_truth)
f1 = (2 * precision * recall) / (precision + recall)
return f1
@staticmethod
def qa_f1_score(prediction: str, ground_truth: str, **kwargs) -> float:
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
return Metric.f1_score(prediction_tokens, ground_truth_tokens)
@staticmethod
def qa_f1_zh_score(prediction, ground_truth, **kwargs):
prediction_tokens = list(jieba.cut(prediction, cut_all=False))
ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
prediction_tokens = [normalize_zh_answer(token) for token in prediction_tokens]
ground_truth_tokens = [normalize_zh_answer(token) for token in ground_truth_tokens]
prediction_tokens = [token for token in prediction_tokens if len(token) > 0]
ground_truth_tokens = [token for token in ground_truth_tokens if len(token) > 0]
return Metric.f1_score(prediction_tokens, ground_truth_tokens)
@staticmethod
def classification_score(prediction: str, ground_truth: str, **kwargs) -> float:
em_match_list = []
all_classes = kwargs["all_classes"]
for class_name in all_classes:
if class_name in prediction:
em_match_list.append(class_name)
for match_term in em_match_list:
if match_term in ground_truth and match_term != ground_truth:
em_match_list.remove(match_term)
if ground_truth in em_match_list:
score = (1.0 / len(em_match_list))
else:
score = 0.0
return score
@staticmethod
def retrieval_score(prediction: str, ground_truth: str, **kwargs) -> float:
pattern = r'Paragraph (\d+)'
matches = re.findall(pattern, ground_truth)
ground_truth_id = matches[0]
numbers = re.findall(r"\d+", prediction)
right_num = 0
for number in numbers:
if str(number) == str(ground_truth_id):
right_num += 1
final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
return float(final_score)
@staticmethod
def retrieval_zh_score(prediction: str, ground_truth: str, **kwargs) -> float:
pattern = r'段落(\d+)'
matches = re.findall(pattern, ground_truth)
ground_truth_id = matches[0]
numbers = re.findall(r"\d+", prediction)
right_num = 0
for number in numbers:
if str(number) == str(ground_truth_id):
right_num += 1
final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
return float(final_score)
@staticmethod
def count_score(prediction: str, ground_truth: str, **kwargs) -> float:
numbers = re.findall(r"\d+", prediction)
right_num = 0
for number in numbers:
if str(number) == str(ground_truth):
right_num += 1
final_score = 0.0 if len(numbers) == 0 else right_num / len(numbers)
return float(final_score)
@staticmethod
def code_edit_sim(prediction: str, ground_truth: str, **kwargs) -> float:
all_lines = prediction.lstrip('\n').split('\n')
prediction = ""
for line in all_lines:
if ('`' not in line) and ('#' not in line) and ('//' not in line):
prediction = line
break
return (fuzz.ratio(prediction, ground_truth) / 100)