|
import math |
|
import os |
|
|
|
import torch |
|
import torch.nn as nn |
|
from accelerate import Accelerator |
|
from tqdm import tqdm |
|
from transformers import AutoTokenizer, LlamaForCausalLM, AutoModelForCausalLM |
|
|
|
from src.model.super_tokenizer import SuperTokenizer |
|
|
|
DTYPE_DICT = { |
|
"bf16": torch.bfloat16, |
|
"fp16": torch.float16, |
|
"fp32": torch.float32, |
|
} |
|
|
|
|
|
class LM(nn.Module): |
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
super_tokenizer_name_or_path: str, |
|
cache_dir: str = None, |
|
super_tokenizer_num_hidden_layers: int = 6, |
|
use_flash_attention_2: bool = True, |
|
is_model_frozen: bool = True, |
|
dtype: str = "bf16", |
|
device_map=None, |
|
accelerator: Accelerator = None, |
|
): |
|
super().__init__() |
|
|
|
|
|
if dtype not in DTYPE_DICT: |
|
raise ValueError(f"dtype must be one of {DTYPE_DICT.keys()}") |
|
dtype = DTYPE_DICT[dtype] |
|
|
|
|
|
self.model = LlamaForCausalLM.from_pretrained( |
|
model_name_or_path, |
|
cache_dir=cache_dir, |
|
local_files_only=True, |
|
torch_dtype=dtype, |
|
use_flash_attention_2=use_flash_attention_2, |
|
device_map=device_map, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.super_tokenizer = None |
|
if super_tokenizer_name_or_path != "no": |
|
self.super_tokenizer = SuperTokenizer.from_pretrained( |
|
super_tokenizer_name_or_path, |
|
cache_dir=cache_dir, |
|
local_files_only=True, |
|
torch_dtype=dtype, |
|
device_map=device_map, |
|
num_hidden_layers=super_tokenizer_num_hidden_layers, |
|
) |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
"meta-llama/Llama-2-7b-chat-hf", |
|
cache_dir=cache_dir, |
|
local_files_only=True, |
|
use_fast=False, |
|
) |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
|
|
|
|
self.is_model_frozen = is_model_frozen |
|
if self.is_model_frozen: |
|
self.freeze_model() |
|
|
|
|
|
self.accelerator = accelerator |
|
if device_map is None: |
|
if self.accelerator is not None: |
|
device = self.accelerator.device |
|
else: |
|
device = torch.device("cpu") |
|
|
|
self.model.to(device) |
|
if self.super_tokenizer is not None: |
|
self.super_tokenizer.to(device) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
super_input_ids=None, |
|
super_attention_mask=None, |
|
placeholder_indices=None, |
|
super_token_indices=None, |
|
labels=None, |
|
): |
|
inputs_embeds = self.prepare_model_inputs_embeds( |
|
input_ids, |
|
super_input_ids, |
|
super_attention_mask, |
|
placeholder_indices, |
|
super_token_indices, |
|
) |
|
|
|
output = self.model( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
labels=labels, |
|
) |
|
|
|
return output |
|
|
|
def prepare_model_inputs_embeds( |
|
self, |
|
input_ids=None, |
|
super_input_ids=None, |
|
super_attention_mask=None, |
|
placeholder_indices=None, |
|
super_token_indices=None, |
|
): |
|
inputs_embeds = self.model.get_input_embeddings()(input_ids) |
|
|
|
if self.super_tokenizer is not None and len(super_token_indices) != 0: |
|
super_inputs_embeds = self.super_tokenizer( |
|
super_input_ids, |
|
super_attention_mask, |
|
super_token_indices, |
|
) |
|
|
|
inputs_embeds = inputs_embeds.type_as(super_inputs_embeds) |
|
cur_idx = 0 |
|
for i, idx_lst in enumerate(placeholder_indices): |
|
if len(idx_lst) == 0: |
|
continue |
|
|
|
inputs_embeds[i][idx_lst] = super_inputs_embeds[cur_idx:cur_idx + len(idx_lst)] |
|
cur_idx += len(idx_lst) |
|
|
|
return inputs_embeds |
|
|
|
@torch.no_grad() |
|
def generate(self, dataloader, return_new_tokens_only=True, decode=True, **gen_kwargs): |
|
self.eval() |
|
|
|
all_generations = [] |
|
for _, inputs in enumerate(tqdm(dataloader, desc='Generate')): |
|
inputs = self._move_to_device(inputs) |
|
input_ids = inputs["input_ids"] |
|
attention_mask = inputs["attention_mask"] |
|
super_input_ids = inputs["super_input_ids"] |
|
super_attention_mask = inputs["super_attention_mask"] |
|
placeholder_indices = inputs["placeholder_indices"] |
|
super_token_indices = inputs["super_token_indices"] |
|
|
|
inputs_embeds = self.prepare_model_inputs_embeds( |
|
input_ids=input_ids, |
|
super_input_ids=super_input_ids, |
|
super_attention_mask=super_attention_mask, |
|
placeholder_indices=placeholder_indices, |
|
super_token_indices=super_token_indices, |
|
) |
|
|
|
|
|
outputs = self.model.generate( |
|
input_ids=input_ids, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
use_cache=True, |
|
**gen_kwargs, |
|
) |
|
|
|
if return_new_tokens_only: |
|
start_idx = input_ids.shape[1] |
|
outputs = outputs[:, start_idx:] |
|
|
|
if self.accelerator is not None: |
|
outputs = outputs.contiguous() |
|
|
|
outputs = self.accelerator.pad_across_processes(outputs, pad_index=self.tokenizer.pad_token_id, dim=1) |
|
outputs = self.accelerator.gather_for_metrics(outputs) |
|
|
|
outputs = outputs.tolist() |
|
if decode: |
|
outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
all_generations.extend(outputs) |
|
|
|
return all_generations |
|
|
|
@torch.no_grad() |
|
def compute_perplexity(self, dataloader): |
|
self.eval() |
|
|
|
all_nlls = [] |
|
for inputs in tqdm(dataloader): |
|
inputs = self._move_to_device(inputs) |
|
outputs = self.forward(**inputs) |
|
nll = outputs.loss |
|
|
|
if self.accelerator is not None: |
|
nll = self.accelerator.gather_for_metrics(nll).mean() |
|
|
|
all_nlls.append(nll.tolist()) |
|
|
|
perplexity = math.exp(sum(all_nlls) / len(all_nlls)) |
|
|
|
return perplexity |
|
|
|
def freeze_model(self): |
|
self.is_model_frozen = True |
|
for _, param in self.model.named_parameters(): |
|
param.requires_grad = False |
|
|
|
def _move_to_device(self, inputs): |
|
for k, v in inputs.items(): |
|
if isinstance(v, torch.Tensor): |
|
inputs[k] = v.to(self.device) |
|
return inputs |
|
|
|
@property |
|
def device(self): |
|
if self.accelerator is not None: |
|
return self.accelerator.device |
|
else: |
|
return torch.device("cpu") |
|
|
|
def gradient_checkpointing_enable(self): |
|
self.model.gradient_checkpointing_enable() |
|
self.super_tokenizer.gradient_checkpointing_enable() |
|
|
|
def save(self, output_dir, deepspeed=False): |
|
if self.super_tokenizer is not None: |
|
self.super_tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer")) |
|
self.tokenizer.save_pretrained(os.path.join(output_dir, "super_tokenizer")) |
|
|
|
if not self.is_model_frozen: |
|
self.model.save_pretrained( |
|
os.path.join(output_dir, "model") |
|
) |
|
self.tokenizer.save_pretrained( |
|
os.path.join(output_dir, "model") |
|
) |