|
from PIL import Image |
|
import datasets |
|
import zipfile |
|
import os |
|
|
|
|
|
class AWA2(datasets.GeneratorBasedBuilder): |
|
""" |
|
The Animals with Attributes 2 (AwA2) dataset provides images across 50 animal classes, useful for attribute-based classification |
|
and zero-shot learning research. See https://cvml.ista.ac.at/AwA2/ for more information. |
|
""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="""The AWA2 dataset is an image classification dataset with images of 50 classes, primarily used in attribute-based image recognition research. See https://cvml.ista.ac.at/AwA2/ for more information.""", |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=['antelope', 'grizzly+bear', 'killer+whale', 'beaver', |
|
'dalmatian', 'persian+cat', 'horse', 'german+shepherd', |
|
'blue+whale', 'siamese+cat', 'skunk', 'mole', 'tiger', |
|
'hippopotamus', 'leopard', 'moose', 'spider+monkey', |
|
'humpback+whale', 'elephant', 'gorilla', 'ox', 'fox', 'sheep', |
|
'seal', 'chimpanzee', 'hamster', 'squirrel', 'rhinoceros', |
|
'rabbit', 'bat', 'giraffe', 'wolf', 'chihuahua', 'rat', |
|
'weasel', 'otter', 'buffalo', 'zebra', 'giant+panda', 'deer', |
|
'bobcat', 'pig', 'lion', 'mouse', 'polar+bear', 'collie', |
|
'walrus', 'raccoon', 'cow', 'dolphin']), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage="https://cvml.ista.ac.at/AwA2/", |
|
citation="""@ARTICLE{8413121, |
|
author={Xian, Yongqin and Lampert, Christoph H. and Schiele, Bernt and Akata, Zeynep}, |
|
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, |
|
title={Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly}, |
|
year={2019}, |
|
volume={41}, |
|
number={9}, |
|
pages={2251-2265}, |
|
keywords={Semantics;Visualization;Task analysis;Training;Fish;Protocols;Learning systems;Generalized zero-shot learning;transductive learning;image classification;weakly-supervised learning}, |
|
doi={10.1109/TPAMI.2018.2857768}}""" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
archive_path = dl_manager.download({ |
|
"data": "https://cvml.ista.ac.at/AwA2/AwA2-data.zip" |
|
}) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"archive_paths": archive_path} |
|
) |
|
] |
|
|
|
def _generate_examples(self, archive_path): |
|
|
|
with zipfile.ZipFile(archive_path, "r") as z: |
|
|
|
class_names = self._info().features["label"].names |
|
|
|
|
|
label_mapping = {name: idx for idx, name in enumerate(class_names)} |
|
|
|
root_dir = "Animals_with_Attributes2/JPEGImages/" |
|
for class_name in class_names: |
|
class_dir = os.path.join(root_dir, class_name) |
|
|
|
|
|
for image_path in z.namelist(): |
|
if image_path.startswith(class_dir) and image_path.endswith(".jpg"): |
|
with z.open(image_path) as image_file: |
|
image = Image.open(image_file).convert("RGB") |
|
label = label_mapping[class_name] |
|
yield image_path, {"image": image, "label": label} |
|
|