Datasets:
index
int64 | image_name
string | visible_image
unknown | infrared_image
unknown | question
string | segmentation
unknown |
|---|---|---|---|---|---|
0 |
00329
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nLT955NlSXYfCLq++j4dOrWqrCwtuhsNNhSHoBiQwHB(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMy923LcuLalDZBMnSW7anfEjn7/x/u7q2ydbCmTxH/(...TRUNCATED) |
Tall pole in the center
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
1 |
00971
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nJT9abrsuo4EigWY2wPz5wl4/lN5Jwn/QBcAmOuWVef(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMR92ZbjSI6sM0K5Z9ds//+Ld+mqyso1eB98hAbNDOY(...TRUNCATED) |
Sky above the building
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
2 |
01121
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nJz97ZLmOA8rgJGeflO5/wtJKrd3zrSZH7RgCKA8m3h(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMz9XXbkSnIsjAaK3L1brTOAM/8xfktaUncV7gNEb4O(...TRUNCATED) |
the car parked on the far right
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
3 |
00458D
| "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAAAB3RJTUUH5QgSAzcw9KXahQAAIABJREFUeJzsvVuTJcdxJvi5e0R(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAAAAAAQuoM4AAAAB3RJTUUH5QgXBzAp71i8bAAAIABJREFUeJycve2O5EiSLXaOmbs(...TRUNCATED) |
The leftmost car
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDQ4MCwgNjQwKSwgfSA(...TRUNCATED) |
4 |
01406
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMz9Ta8sO44eCpORkWvvU+hyowEP3PbEQHtiwH/93sH(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMT9y5bjurIkioIzo/o16v8/dWXyNrjDp9FegCLXPhe(...TRUNCATED) |
all cars on road
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
5 |
01027
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nIz9S5ckO3ImCH4iUDVzj3svM8msWdSwq+qwFt2r6dP(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nJyd23bmuJGlAeqXlFlVdnv6rp9h3v+5ZvWyXZlKScR(...TRUNCATED) |
Center truck near the trees
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
6 |
00413D
| "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAIAAAC6s0uzAAAAB3RJTUUH5QgSAzcnd3ZfQgAAIABJREFUeJzsvVuPZElyJvaZmbu(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAAAAAAQuoM4AAAAB3RJTUUH5QgXBzAmf+eh/QAAIABJREFUeJy8vdmWJMluJCgQmEV(...TRUNCATED) |
The cars on the right
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDQ4MCwgNjQwKSwgfSA(...TRUNCATED) |
7 |
00733
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nIz9W5MsSXIeCH6qZh6Zp6ovZAPYlsEIuTuyQz7tisz(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nNT9W3MmPXIdCieKx+6Z2bItSwo7/E/9bx2OcMjeVni(...TRUNCATED) |
Leftmost two vegetation behind the car
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
8 |
01068
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nIz9WdMtSXIYiLl7ROY559vuVlXd1dULq5tAYyFAEtw(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nMS9W7Mlt3ElDOyzz7W7eRVFUrI9MiVr5Ilw2DGj//8(...TRUNCATED) |
Person on the left sidewalk
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
9 |
01267
| "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nLT92ZvlOJIviBnA5ezuHu6xZEZkVlVnVVd192j03au(...TRUNCATED) | "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAIAAAAVFBUnAAEAAElEQVR4nJz927LlOJKkCRuWLz/EITtzZkRGZN7/8aanOqsiI9w(...TRUNCATED) |
Rightmost person near the road
| "k05VTVBZAQB2AHsnZGVzY3InOiAnfHUxJywgJ2ZvcnRyYW5fb3JkZXInOiBGYWxzZSwgJ3NoYXBlJzogKDYwMCwgODAwKSwgfSA(...TRUNCATED) |
MM-RIS: Multimodal Referring Image Segmentation Dataset
The MM-RIS dataset was introduced in the paper RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation.
This large-scale benchmark supports the multimodal referring image segmentation (RIS) task by providing a goal-aligned approach to supervise and evaluate how effectively natural language contributes to infrared and visible image fusion outcomes.
Paper
Code
The official code repository for the associated RIS-FUSION project can be found on GitHub: https://github.com/SijuMa2003/RIS-FUSION
Introduction
Text-driven infrared and visible image fusion has gained attention for enabling natural language to guide the fusion process. However, existing methods often lack a goal-aligned task to supervise and evaluate how effectively the input text contributes to the fusion outcome.
We observe that referring image segmentation (RIS) and text-driven fusion share a common objective: highlighting the object referred to by the text. Motivated by this, we propose RIS-FUSION, a cascaded framework that unifies fusion and RIS through joint optimization.
To support the multimodal referring image segmentation task, we introduce MM-RIS, a large-scale benchmark with 12.5k training and 3.5k testing triplets, each consisting of an infrared-visible image pair, a segmentation mask, and a referring expression.
Dataset Structure
The MM-RIS dataset is available in this Hugging Face repository and consists of the following Parquet files:
mm_ris_test.parquetmm_ris_val.parquetmm_ris_train_part1.parquetmm_ris_train_part2.parquet
These files together comprise 12.5k training and 3.5k testing triplets. Each triplet includes an infrared image, a visible image, a segmentation mask, and a natural language referring expression.
Sample Usage
To prepare the MM-RIS dataset for use with the RIS-FUSION code, you will need to download all the dataset files from this repository and merge the training partitions.
Download the dataset files: Download
mm_ris_test.parquet,mm_ris_val.parquet,mm_ris_train_part1.parquet, andmm_ris_train_part2.parquetfrom this Hugging Face repository and place them under adata/directory in your project, ideally within a cloned RIS-FUSION GitHub repository.Merge partitioned parquet files: The RIS-FUSION GitHub repository provides a script to merge the partitioned training data. Assuming you have cloned the repository and placed the parquet files in
./data/:python ./data/merge_parquet.pyThis script will combine
mm_ris_train_part1.parquetandmm_ris_train_part2.parquetinto a singlemm_ris_train.parquetfile.
Once the dataset is prepared, you can use it for training and testing models as shown in the examples below.
Training Example
python train_with_lavt.py \
--train_parquet ./data/mm_ris_train.parquet \
--val_parquet ./data/mm_ris_val.parquet \
--prefusion_model unet_fuser --prefusion_base_ch 32 \
--epochs 10 -b 16 -j 16 \
--img_size 480 \
--swin_type base \
--pretrained_swin_weights ./pretrained_weights/swin_base_patch4_window12_384_22k.pth \
--bert_tokenizer ./bert/pretrained_weights/bert-base-uncased \
--ck_bert ./bert/pretrained_weights/bert-base-uncased \
--init_from_lavt_one ./pretrained_weights/lavt_one_8_cards_ImgNet22KPre_swin-base-window12_refcoco+_adamw_b32lr0.00005wd1e-2_E40.pth \
--lr_seg 5e-5 --wd_seg 1e-2 --lr_pf 1e-4 --wd_pf 1e-2 \
--lambda_prefusion 3.0 \
--w_sobel_vis 0.0 \
--w_sobel_ir 1.0 \
--w_grad 1.0 \
--w_ssim_vis 0.5 \
--w_ssim_ir 0.0 \
--w_mse_vis 0.5 \
--w_mse_ir 2.0
--eval_vis_dir ./eval_vis \
--output-dir ./ckpts/risfusion
Testing Example
python test.py \
--ckpt ./ckpts/risfusion/model_best_lavt.pth \
--test_parquet ./data/mm_ris_test.parquet \
--out_dir ./your_output_dir \
--bert_tokenizer ./bert/pretrained_weights/bert-base-uncased \
--ck_bert ./bert/pretrained_weights/bert-base-uncased
Citation
If you find this dataset or the associated paper useful, please consider citing:
@article{RIS-FUSION2025,
title = {RIS-FUSION: Rethinking Text-Driven Infrared and Visible Image Fusion from the Perspective of Referring Image Segmentation},
author = {Ma, Siju and Gong, Changsiyu and Fan, Xiaofeng and Ma, Yong and Jiang, Chengjie},
journal = {...},
year = {2025}
}
Acknowledgements
- Downloads last month
- 27