Code
stringlengths
103
85.9k
Summary
listlengths
0
94
Please provide a description of the function:def QA_fetch_get_option_50etf_contract_time_to_market(): ''' #🛠todo 获取期权合约的上市日期 ? 暂时没有。 :return: list Series ''' result = QA_fetch_get_option_list('tdx') # pprint.pprint(result) # category market code name desc code ''' fix here : See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy result['meaningful_name'] = None C:\work_new\QUANTAXIS\QUANTAXIS\QAFetch\QATdx.py:1468: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead ''' # df = pd.DataFrame() rows = [] result['meaningful_name'] = None for idx in result.index: # pprint.pprint((idx)) strCategory = result.loc[idx, "category"] strMarket = result.loc[idx, "market"] strCode = result.loc[idx, "code"] # 10001215 strName = result.loc[idx, 'name'] # 510050C9M03200 strDesc = result.loc[idx, 'desc'] # 10001215 if strName.startswith("510050"): # print(strCategory,' ', strMarket, ' ', strCode, ' ', strName, ' ', strDesc, ) if strName.startswith("510050C"): putcall = '50ETF,认购期权' elif strName.startswith("510050P"): putcall = '50ETF,认沽期权' else: putcall = "Unkown code name : " + strName expireMonth = strName[7:8] if expireMonth == 'A': expireMonth = "10月" elif expireMonth == 'B': expireMonth = "11月" elif expireMonth == 'C': expireMonth = "12月" else: expireMonth = expireMonth + '月' # 第12位期初设为“M”,并根据合约调整次数按照“A”至“Z”依序变更,如变更为“A”表示期权合约发生首次调整,变更为“B”表示期权合约发生第二次调整,依此类推; # fix here : M ?? if strName[8:9] == "M": adjust = "未调整" elif strName[8:9] == 'A': adjust = " 第1次调整" elif strName[8:9] == 'B': adjust = " 第2调整" elif strName[8:9] == 'C': adjust = " 第3次调整" elif strName[8:9] == 'D': adjust = " 第4次调整" elif strName[8:9] == 'E': adjust = " 第5次调整" elif strName[8:9] == 'F': adjust = " 第6次调整" elif strName[8:9] == 'G': adjust = " 第7次调整" elif strName[8:9] == 'H': adjust = " 第8次调整" elif strName[8:9] == 'I': adjust = " 第9次调整" elif strName[8:9] == 'J': adjust = " 第10次调整" else: adjust = " 第10次以上的调整,调整代码 %s" + strName[8:9] executePrice = strName[9:] result.loc[idx, 'meaningful_name'] = '%s,到期月份:%s,%s,行权价:%s' % ( putcall, expireMonth, adjust, executePrice) row = result.loc[idx] rows.append(row) return rows
[]
Please provide a description of the function:def QA_fetch_get_commodity_option_CF_contract_time_to_market(): ''' 铜期权 CU 开头 上期证 豆粕 M开头 大商所 白糖 SR开头 郑商所 测试中发现,行情不太稳定 ? 是 通达信 IP 的问题 ? ''' result = QA_fetch_get_option_list('tdx') # pprint.pprint(result) # category market code name desc code # df = pd.DataFrame() rows = [] result['meaningful_name'] = None for idx in result.index: # pprint.pprint((idx)) strCategory = result.loc[idx, "category"] strMarket = result.loc[idx, "market"] strCode = result.loc[idx, "code"] # strName = result.loc[idx, 'name'] # strDesc = result.loc[idx, 'desc'] # # 如果同时获取, 不同的 期货交易所数据, pytdx会 connection close 连接中断? # if strName.startswith("CU") or strName.startswith("M") or strName.startswith('SR'): if strName.startswith("CF"): # print(strCategory,' ', strMarket, ' ', strCode, ' ', strName, ' ', strDesc, ) row = result.loc[idx] rows.append(row) return rows pass
[]
Please provide a description of the function:def QA_fetch_get_exchangerate_list(ip=None, port=None): global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list return extension_market_list.query('market==10 or market==11').query('category==4')
[ "汇率列表\n\n Keyword Arguments:\n ip {[type]} -- [description] (default: {None})\n port {[type]} -- [description] (default: {None})\n\n ## 汇率 EXCHANGERATE\n 10 4 基本汇率 FE\n 11 4 交叉汇率 FX\n\n\n " ]
Please provide a description of the function:def QA_fetch_get_future_day(code, start_date, end_date, frequence='day', ip=None, port=None): '期货数据 日线' ip, port = get_extensionmarket_ip(ip, port) apix = TdxExHq_API() start_date = str(start_date)[0:10] today_ = datetime.date.today() lens = QA_util_get_trade_gap(start_date, today_) global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list with apix.connect(ip, port): code_market = extension_market_list.query( 'code=="{}"'.format(code)).iloc[0] data = pd.concat( [apix.to_df(apix.get_instrument_bars( _select_type(frequence), int(code_market.market), str(code), (int(lens / 700) - i) * 700, 700)) for i in range(int(lens / 700) + 1)], axis=0) try: # 获取商品期货会报None data = data.assign(date=data['datetime'].apply(lambda x: str(x[0:10]))).assign(code=str(code)) \ .assign(date_stamp=data['datetime'].apply(lambda x: QA_util_date_stamp(str(x)[0:10]))).set_index('date', drop=False, inplace=False) except Exception as exp: print("code is ", code) print(exp.__str__) return None return data.drop(['year', 'month', 'day', 'hour', 'minute', 'datetime'], axis=1)[start_date:end_date].assign( date=data['date'].apply(lambda x: str(x)[0:10]))
[]
Please provide a description of the function:def QA_fetch_get_future_min(code, start, end, frequence='1min', ip=None, port=None): '期货数据 分钟线' ip, port = get_extensionmarket_ip(ip, port) apix = TdxExHq_API() type_ = '' start_date = str(start)[0:10] today_ = datetime.date.today() lens = QA_util_get_trade_gap(start_date, today_) global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list if str(frequence) in ['5', '5m', '5min', 'five']: frequence, type_ = 0, '5min' lens = 48 * lens * 2.5 elif str(frequence) in ['1', '1m', '1min', 'one']: frequence, type_ = 8, '1min' lens = 240 * lens * 2.5 elif str(frequence) in ['15', '15m', '15min', 'fifteen']: frequence, type_ = 1, '15min' lens = 16 * lens * 2.5 elif str(frequence) in ['30', '30m', '30min', 'half']: frequence, type_ = 2, '30min' lens = 8 * lens * 2.5 elif str(frequence) in ['60', '60m', '60min', '1h']: frequence, type_ = 3, '60min' lens = 4 * lens * 2.5 if lens > 20800: lens = 20800 # print(lens) with apix.connect(ip, port): code_market = extension_market_list.query( 'code=="{}"'.format(code)).iloc[0] data = pd.concat([apix.to_df(apix.get_instrument_bars(frequence, int(code_market.market), str( code), (int(lens / 700) - i) * 700, 700)) for i in range(int(lens / 700) + 1)], axis=0) # print(data) # print(data.datetime) data = data \ .assign(tradetime=data['datetime'].apply(str), code=str(code)) \ .assign(datetime=pd.to_datetime(data['datetime'].apply(QA_util_future_to_realdatetime, 1))) \ .drop(['year', 'month', 'day', 'hour', 'minute'], axis=1, inplace=False) \ .assign(date=data['datetime'].apply(lambda x: str(x)[0:10])) \ .assign(date_stamp=data['datetime'].apply(lambda x: QA_util_date_stamp(x))) \ .assign(time_stamp=data['datetime'].apply(lambda x: QA_util_time_stamp(x))) \ .assign(type=type_).set_index('datetime', drop=False, inplace=False) return data.assign(datetime=data['datetime'].apply(lambda x: str(x)))[start:end].sort_index()
[]
Please provide a description of the function:def QA_fetch_get_future_transaction(code, start, end, retry=4, ip=None, port=None): '期货历史成交分笔' ip, port = get_extensionmarket_ip(ip, port) apix = TdxExHq_API() global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list real_start, real_end = QA_util_get_real_datelist(start, end) if real_start is None: return None real_id_range = [] with apix.connect(ip, port): code_market = extension_market_list.query( 'code=="{}"'.format(code)).iloc[0] data = pd.DataFrame() for index_ in range(trade_date_sse.index(real_start), trade_date_sse.index(real_end) + 1): try: data_ = __QA_fetch_get_future_transaction( code, trade_date_sse[index_], retry, int(code_market.market), apix) if len(data_) < 1: return None except Exception as e: print(e) QA_util_log_info('Wrong in Getting {} history transaction data in day {}'.format( code, trade_date_sse[index_])) else: QA_util_log_info('Successfully Getting {} history transaction data in day {}'.format( code, trade_date_sse[index_])) data = data.append(data_) if len(data) > 0: return data.assign(datetime=data['datetime'].apply(lambda x: str(x)[0:19])) else: return None
[]
Please provide a description of the function:def QA_fetch_get_future_transaction_realtime(code, ip=None, port=None): '期货历史成交分笔' ip, port = get_extensionmarket_ip(ip, port) apix = TdxExHq_API() global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list code_market = extension_market_list.query( 'code=="{}"'.format(code)).iloc[0] with apix.connect(ip, port): data = pd.DataFrame() data = pd.concat([apix.to_df(apix.get_transaction_data( int(code_market.market), code, (30 - i) * 1800)) for i in range(31)], axis=0) return data.assign(datetime=pd.to_datetime(data['date'])).assign(date=lambda x: str(x)[0:10]) \ .assign(code=str(code)).assign(order=range(len(data.index))).set_index('datetime', drop=False, inplace=False)
[]
Please provide a description of the function:def QA_fetch_get_future_realtime(code, ip=None, port=None): '期货实时价格' ip, port = get_extensionmarket_ip(ip, port) apix = TdxExHq_API() global extension_market_list extension_market_list = QA_fetch_get_extensionmarket_list( ) if extension_market_list is None else extension_market_list __data = pd.DataFrame() code_market = extension_market_list.query( 'code=="{}"'.format(code)).iloc[0] with apix.connect(ip, port): __data = apix.to_df(apix.get_instrument_quote( int(code_market.market), code)) __data['datetime'] = datetime.datetime.now() # data = __data[['datetime', 'active1', 'active2', 'last_close', 'code', 'open', 'high', 'low', 'price', 'cur_vol', # 's_vol', 'b_vol', 'vol', 'ask1', 'ask_vol1', 'bid1', 'bid_vol1', 'ask2', 'ask_vol2', # 'bid2', 'bid_vol2', 'ask3', 'ask_vol3', 'bid3', 'bid_vol3', 'ask4', # 'ask_vol4', 'bid4', 'bid_vol4', 'ask5', 'ask_vol5', 'bid5', 'bid_vol5']] return __data.set_index(['datetime', 'code'])
[]
Please provide a description of the function:def concat(lists): return lists[0].new( pd.concat([lists.data for lists in lists]).drop_duplicates() )
[ "类似于pd.concat 用于合并一个list里面的多个DataStruct,会自动去重\n\n\n\n Arguments:\n lists {[type]} -- [DataStruct1,DataStruct2,....,DataStructN]\n\n Returns:\n [type] -- new DataStruct\n " ]
Please provide a description of the function:def datastruct_formater( data, frequence=FREQUENCE.DAY, market_type=MARKET_TYPE.STOCK_CN, default_header=[] ): if isinstance(data, list): try: res = pd.DataFrame(data, columns=default_header) if frequence is FREQUENCE.DAY: if market_type is MARKET_TYPE.STOCK_CN: return QA_DataStruct_Stock_day( res.assign(date=pd.to_datetime(res.date) ).set_index(['date', 'code'], drop=False), dtype='stock_day' ) elif frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: if market_type is MARKET_TYPE.STOCK_CN: return QA_DataStruct_Stock_min( res.assign(datetime=pd.to_datetime(res.datetime) ).set_index(['datetime', 'code'], drop=False), dtype='stock_min' ) except: pass elif isinstance(data, np.ndarray): try: res = pd.DataFrame(data, columns=default_header) if frequence is FREQUENCE.DAY: if market_type is MARKET_TYPE.STOCK_CN: return QA_DataStruct_Stock_day( res.assign(date=pd.to_datetime(res.date) ).set_index(['date', 'code'], drop=False), dtype='stock_day' ) elif frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: if market_type is MARKET_TYPE.STOCK_CN: return QA_DataStruct_Stock_min( res.assign(datetime=pd.to_datetime(res.datetime) ).set_index(['datetime', 'code'], drop=False), dtype='stock_min' ) except: pass elif isinstance(data, pd.DataFrame): index = data.index if isinstance(index, pd.MultiIndex): pass elif isinstance(index, pd.DatetimeIndex): pass elif isinstance(index, pd.Index): pass
[ "一个任意格式转化为DataStruct的方法\n \n Arguments:\n data {[type]} -- [description]\n \n Keyword Arguments:\n frequence {[type]} -- [description] (default: {FREQUENCE.DAY})\n market_type {[type]} -- [description] (default: {MARKET_TYPE.STOCK_CN})\n default_header {list} -- [description] (default: {[]})\n \n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def from_tushare(dataframe, dtype='day'): if dtype in ['day']: return QA_DataStruct_Stock_day( dataframe.assign(date=pd.to_datetime(dataframe.date) ).set_index(['date', 'code'], drop=False), dtype='stock_day' ) elif dtype in ['min']: return QA_DataStruct_Stock_min( dataframe.assign(datetime=pd.to_datetime(dataframe.datetime) ).set_index(['datetime', 'code'], drop=False), dtype='stock_min' )
[ "dataframe from tushare\n\n Arguments:\n dataframe {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QDS_StockDayWarpper(func): def warpper(*args, **kwargs): data = func(*args, **kwargs) if isinstance(data.index, pd.MultiIndex): return QA_DataStruct_Stock_day(data) else: return QA_DataStruct_Stock_day( data.assign(date=pd.to_datetime(data.date) ).set_index(['date', 'code'], drop=False), dtype='stock_day' ) return warpper
[ "\n 日线QDS装饰器\n " ]
Please provide a description of the function:def QDS_StockMinWarpper(func, *args, **kwargs): def warpper(*args, **kwargs): data = func(*args, **kwargs) if isinstance(data.index, pd.MultiIndex): return QA_DataStruct_Stock_min(data) else: return QA_DataStruct_Stock_min( data.assign(datetime=pd.to_datetime(data.datetime) ).set_index(['datetime', 'code'], drop=False), dtype='stock_min' ) return warpper
[ "\n 分钟线QDS装饰器\n " ]
Please provide a description of the function:def QA_fetch_get_stock_adj(code, end=''): pro = get_pro() adj = pro.adj_factor(ts_code=code, trade_date=end) return adj
[ "获取股票的复权因子\n \n Arguments:\n code {[type]} -- [description]\n \n Keyword Arguments:\n end {str} -- [description] (default: {''})\n \n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def cover_time(date): datestr = str(date)[0:8] date = time.mktime(time.strptime(datestr, '%Y%m%d')) return date
[ "\n 字符串 '20180101' 转变成 float 类型时间 类似 time.time() 返回的类型\n :param date: 字符串str -- 格式必须是 20180101 ,长度8\n :return: 类型float\n " ]
Please provide a description of the function:def new(self, data): temp = copy(self) temp.__init__(data) return temp
[ "通过data新建一个stock_block\n\n Arguments:\n data {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def view_code(self): return self.data.groupby(level=1).apply( lambda x: [item for item in x.index.remove_unused_levels().levels[0]] )
[ "按股票排列的查看blockname的视图\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def get_code(self, code): # code= [code] if isinstance(code,str) else return self.new(self.data.loc[(slice(None), code), :])
[ "getcode 获取某一只股票的板块\n\n Arguments:\n code {str} -- 股票代码\n\n Returns:\n DataStruct -- [description]\n " ]
Please provide a description of the function:def get_block(self, block_name): # block_name = [block_name] if isinstance( # block_name, str) else block_name # return QA_DataStruct_Stock_block(self.data[self.data.blockname.apply(lambda x: x in block_name)]) return self.new(self.data.loc[(block_name, slice(None)), :])
[ "getblock 获取板块, block_name是list或者是单个str\n\n Arguments:\n block_name {[type]} -- [description]\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def get_both_code(self, code): return self.new(self.data.loc[(slice(None), code), :])
[ "get_both_code 获取几个股票相同的版块\n \n Arguments:\n code {[type]} -- [description]\n \n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_get_tick(code, start, end, market): res = None if market == MARKET_TYPE.STOCK_CN: res = QATdx.QA_fetch_get_stock_transaction(code, start, end) elif market == MARKET_TYPE.FUTURE_CN: res = QATdx.QA_fetch_get_future_transaction(code, start, end) return res
[ "\n 统一的获取期货/股票tick的接口\n " ]
Please provide a description of the function:def QA_get_realtime(code, market): res = None if market == MARKET_TYPE.STOCK_CN: res = QATdx.QA_fetch_get_stock_realtime(code) elif market == MARKET_TYPE.FUTURE_CN: res = QATdx.QA_fetch_get_future_realtime(code) return res
[ "\n 统一的获取期货/股票实时行情的接口\n " ]
Please provide a description of the function:def QA_quotation(code, start, end, frequence, market, source=DATASOURCE.TDX, output=OUTPUT_FORMAT.DATAFRAME): res = None if market == MARKET_TYPE.STOCK_CN: if frequence == FREQUENCE.DAY: if source == DATASOURCE.MONGO: try: res = QAQueryAdv.QA_fetch_stock_day_adv(code, start, end) except: res = None if source == DATASOURCE.TDX or res == None: res = QATdx.QA_fetch_get_stock_day(code, start, end, '00') res = QA_DataStruct_Stock_day(res.set_index(['date', 'code'])) elif source == DATASOURCE.TUSHARE: res = QATushare.QA_fetch_get_stock_day(code, start, end, '00') elif frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: if source == DATASOURCE.MONGO: try: res = QAQueryAdv.QA_fetch_stock_min_adv( code, start, end, frequence=frequence) except: res = None if source == DATASOURCE.TDX or res == None: res = QATdx.QA_fetch_get_stock_min( code, start, end, frequence=frequence) res = QA_DataStruct_Stock_min( res.set_index(['datetime', 'code'])) elif market == MARKET_TYPE.FUTURE_CN: if frequence == FREQUENCE.DAY: if source == DATASOURCE.MONGO: try: res = QAQueryAdv.QA_fetch_future_day_adv(code, start, end) except: res = None if source == DATASOURCE.TDX or res == None: res = QATdx.QA_fetch_get_future_day(code, start, end) res = QA_DataStruct_Future_day(res.set_index(['date', 'code'])) elif frequence in [FREQUENCE.ONE_MIN, FREQUENCE.FIVE_MIN, FREQUENCE.FIFTEEN_MIN, FREQUENCE.THIRTY_MIN, FREQUENCE.SIXTY_MIN]: if source == DATASOURCE.MONGO: try: res = QAQueryAdv.QA_fetch_future_min_adv( code, start, end, frequence=frequence) except: res = None if source == DATASOURCE.TDX or res == None: res = QATdx.QA_fetch_get_future_min( code, start, end, frequence=frequence) res = QA_DataStruct_Future_min( res.set_index(['datetime', 'code'])) # 指数代码和股票代码是冲突重复的, sh000001 上证指数 000001 是不同的 elif market == MARKET_TYPE.INDEX_CN: if frequence == FREQUENCE.DAY: if source == DATASOURCE.MONGO: res = QAQueryAdv.QA_fetch_index_day_adv(code, start, end) elif market == MARKET_TYPE.OPTION_CN: if source == DATASOURCE.MONGO: #res = QAQueryAdv.QA_fetch_option_day_adv(code, start, end) raise NotImplementedError('CURRENT NOT FINISH THIS METHOD') # print(type(res)) if output is OUTPUT_FORMAT.DATAFRAME: return res.data elif output is OUTPUT_FORMAT.DATASTRUCT: return res elif output is OUTPUT_FORMAT.NDARRAY: return res.to_numpy() elif output is OUTPUT_FORMAT.JSON: return res.to_json() elif output is OUTPUT_FORMAT.LIST: return res.to_list()
[ "一个统一的获取k线的方法\n 如果使用mongo,从本地数据库获取,失败则在线获取\n\n Arguments:\n code {str/list} -- 期货/股票的代码\n start {str} -- 开始日期\n end {str} -- 结束日期\n frequence {enum} -- 频率 QA.FREQUENCE\n market {enum} -- 市场 QA.MARKET_TYPE\n source {enum} -- 来源 QA.DATASOURCE\n output {enum} -- 输出类型 QA.OUTPUT_FORMAT\n " ]
Please provide a description of the function:def QA_util_random_with_zh_stock_code(stockNumber=10): ''' 随机生成股票代码 :param stockNumber: 生成个数 :return: ['60XXXX', '00XXXX', '300XXX'] ''' codeList = [] pt = 0 for i in range(stockNumber): if pt == 0: #print("random 60XXXX") iCode = random.randint(600000, 609999) aCode = "%06d" % iCode elif pt == 1: #print("random 00XXXX") iCode = random.randint(600000, 600999) aCode = "%06d" % iCode elif pt == 2: #print("random 00XXXX") iCode = random.randint(2000, 9999) aCode = "%06d" % iCode elif pt == 3: #print("random 300XXX") iCode = random.randint(300000, 300999) aCode = "%06d" % iCode elif pt == 4: #print("random 00XXXX") iCode = random.randint(2000, 2999) aCode = "%06d" % iCode pt = (pt + 1) % 5 codeList.append(aCode) return codeList
[]
Please provide a description of the function:def QA_util_random_with_topic(topic='Acc', lens=8): _list = [chr(i) for i in range(65, 91)] + [chr(i) for i in range(97, 123) ] + [str(i) for i in range(10)] num = random.sample(_list, lens) return '{}_{}'.format(topic, ''.join(num))
[ "\n 生成account随机值\n\n Acc+4数字id+4位大小写随机\n\n " ]
Please provide a description of the function:def update_pos(self, price, amount, towards): temp_cost = amount*price * \ self.market_preset.get('unit_table', 1) # if towards == ORDER_DIRECTION.SELL_CLOSE: if towards == ORDER_DIRECTION.BUY: # 股票模式/ 期货买入开仓 self.volume_long_today += amount elif towards == ORDER_DIRECTION.SELL: # 股票卖出模式: # 今日买入仓位不能卖出 if self.volume_long_his > amount: self.volume_long_his -= amount elif towards == ORDER_DIRECTION.BUY_OPEN: # 增加保证金 self.margin_long += temp_cost * \ self.market_preset['buy_frozen_coeff'] # 重算开仓均价 self.open_price_long = ( self.open_price_long * self.volume_long + amount*price) / (amount + self.volume_long) # 重算持仓均价 self.position_price_long = ( self.position_price_long * self.volume_long + amount * price) / (amount + self.volume_long) # 增加今仓数量 ==> 会自动增加volume_long self.volume_long_today += amount # self.open_cost_long += temp_cost elif towards == ORDER_DIRECTION.SELL_OPEN: # 增加保证金 self.margin_short += temp_cost * \ self.market_preset['sell_frozen_coeff'] # 重新计算开仓/持仓成本 self.open_price_short = ( self.open_price_short * self.volume_short + amount*price) / (amount + self.volume_short) self.position_price_short = ( self.position_price_short * self.volume_short + amount * price) / (amount + self.volume_short) self.open_cost_short += temp_cost self.volume_short_today += amount elif towards == ORDER_DIRECTION.BUY_CLOSETODAY: if self.volume_short_today > amount: self.position_cost_short = self.position_cost_short * \ (self.volume_short-amount)/self.volume_short self.open_cost_short = self.open_cost_short * \ (self.volume_short-amount)/self.volume_short self.volume_short_today -= amount # close_profit = (self.position_price_short - price) * volume * position->ins->volume_multiple; #self.volume_short_frozen_today += amount # 释放保证金 # TODO # self.margin_short #self.open_cost_short = price* amount elif towards == ORDER_DIRECTION.SELL_CLOSETODAY: if self.volume_long_today > amount: self.position_cost_long = self.position_cost_long * \ (self.volume_long - amount)/self.volume_long self.open_cost_long = self.open_cost_long * \ (self.volume_long-amount)/self.volume_long self.volume_long_today -= amount elif towards == ORDER_DIRECTION.BUY_CLOSE: # 有昨仓先平昨仓 self.position_cost_short = self.position_cost_short * \ (self.volume_short-amount)/self.volume_short self.open_cost_short = self.open_cost_short * \ (self.volume_short-amount)/self.volume_short if self.volume_short_his >= amount: self.volume_short_his -= amount else: self.volume_short_today -= (amount - self.volume_short_his) self.volume_short_his = 0 elif towards == ORDER_DIRECTION.SELL_CLOSE: # 有昨仓先平昨仓 self.position_cost_long = self.position_cost_long * \ (self.volume_long - amount)/self.volume_long self.open_cost_long = self.open_cost_long * \ (self.volume_long-amount)/self.volume_long if self.volume_long_his >= amount: self.volume_long_his -= amount else: self.volume_long_today -= (amount - self.volume_long_his) self.volume_long_his -= amount
[ "支持股票/期货的更新仓位\n\n Arguments:\n price {[type]} -- [description]\n amount {[type]} -- [description]\n towards {[type]} -- [description]\n\n margin: 30080\n margin_long: 0\n margin_short: 30080\n open_cost_long: 0\n open_cost_short: 419100\n open_price_long: 4193\n open_price_short: 4191\n position_cost_long: 0\n position_cost_short: 419100\n position_price_long: 4193\n position_price_short: 4191\n position_profit: -200\n position_profit_long: 0\n position_profit_short: -200\n " ]
Please provide a description of the function:def settle(self): self.volume_long_his += self.volume_long_today self.volume_long_today = 0 self.volume_long_frozen_today = 0 self.volume_short_his += self.volume_short_today self.volume_short_today = 0 self.volume_short_frozen_today = 0
[ "收盘后的结算事件\n " ]
Please provide a description of the function:def close_available(self): return { 'volume_long': self.volume_long - self.volume_long_frozen, 'volume_short': self.volume_short - self.volume_short_frozen }
[ "可平仓数量\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def orderAction(self, order:QA_Order): return self.pms[order.code][order.order_id].receive_order(order)
[ "\n 委托回报\n " ]
Please provide a description of the function:def QA_SU_save_stock_min(client=DATABASE, ui_log=None, ui_progress=None): # 导入聚宽模块且进行登录 try: import jqdatasdk # 请自行将 JQUSERNAME 和 JQUSERPASSWD 修改为自己的账号密码 jqdatasdk.auth("JQUSERNAME", "JQUSERPASSWD") except: raise ModuleNotFoundError # 股票代码格式化 code_list = list( map( lambda x: x + ".XSHG" if x[0] == "6" else x + ".XSHE", QA_fetch_get_stock_list().code.unique().tolist(), )) coll = client.stock_min coll.create_index([ ("code", pymongo.ASCENDING), ("time_stamp", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING), ]) err = [] def __transform_jq_to_qa(df, code, type_): if df is None or len(df) == 0: raise ValueError("没有聚宽数据") df = df.reset_index().rename(columns={ "index": "datetime", "volume": "vol", "money": "amount" }) df["code"] = code df["date"] = df.datetime.map(str).str.slice(0, 10) df = df.set_index("datetime", drop=False) df["date_stamp"] = df["date"].apply(lambda x: QA_util_date_stamp(x)) df["time_stamp"] = ( df["datetime"].map(str).apply(lambda x: QA_util_time_stamp(x))) df["type"] = type_ return df[[ "open", "close", "high", "low", "vol", "amount", "datetime", "code", "date", "date_stamp", "time_stamp", "type", ]] def __saving_work(code, coll): QA_util_log_info( "##JOB03 Now Saving STOCK_MIN ==== {}".format(code), ui_log=ui_log) try: for type_ in ["1min", "5min", "15min", "30min", "60min"]: col_filter = {"code": str(code)[0:6], "type": type_} ref_ = coll.find(col_filter) end_time = str(now_time())[0:19] if coll.count_documents(col_filter) > 0: start_time = ref_[coll.count_documents( col_filter) - 1]["datetime"] QA_util_log_info( "##JOB03.{} Now Saving {} from {} to {} == {}".format( ["1min", "5min", "15min", "30min", "60min"].index(type_), str(code)[0:6], start_time, end_time, type_, ), ui_log=ui_log, ) if start_time != end_time: df = jqdatasdk.get_price( security=code, start_date=start_time, end_date=end_time, frequency=type_.split("min")[0]+"m", ) __data = __transform_jq_to_qa( df, code=code[:6], type_=type_) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data)[1::]) else: start_time = "2015-01-01 09:30:00" QA_util_log_info( "##JOB03.{} Now Saving {} from {} to {} == {}".format( ["1min", "5min", "15min", "30min", "60min"].index(type_), str(code)[0:6], start_time, end_time, type_, ), ui_log=ui_log, ) if start_time != end_time: __data == __transform_jq_to_qa( jqdatasdk.get_price( security=code, start_date=start_time, end_date=end_time, frequency=type_.split("min")[0]+"m", ), code=code[:6], type_=type_ ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data)[1::]) except Exception as e: QA_util_log_info(e, ui_log=ui_log) err.append(code) QA_util_log_info(err, ui_log=ui_log) # 聚宽之多允许三个线程连接 executor = ThreadPoolExecutor(max_workers=2) res = { executor.submit(__saving_work, code_list[i_], coll) for i_ in range(len(code_list)) } count = 0 for i_ in concurrent.futures.as_completed(res): QA_util_log_info( 'The {} of Total {}'.format(count, len(code_list)), ui_log=ui_log ) strProgress = "DOWNLOAD PROGRESS {} ".format( str(float(count / len(code_list) * 100))[0:4] + "%") intProgress = int(count / len(code_list) * 10000.0) QA_util_log_info( strProgress, ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgress ) count = count + 1 if len(err) < 1: QA_util_log_info("SUCCESS", ui_log=ui_log) else: QA_util_log_info(" ERROR CODE \n ", ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "\n 聚宽实现方式\n save current day's stock_min data\n ", "\n 处理 jqdata 分钟数据为 qa 格式,并存入数据库\n 1. jdatasdk 数据格式:\n open close high low volume money\n 2018-12-03 09:31:00 10.59 10.61 10.61 10.59 8339100.0 88377836.0\n 2. 与 QUANTAXIS.QAFetch.QATdx.QA_fetch_get_stock_min 获取数据进行匹配,具体处理详见相应源码\n\n open close high low vol amount ...\n datetime\n 2018-12-03 09:31:00 10.99 10.90 10.99 10.90 2.211700e+06 2.425626e+07 ...\n " ]
Please provide a description of the function:def execute(command, shell=None, working_dir=".", echo=False, echo_indent=0): if shell is None: shell = True if isinstance(command, str) else False p = Popen(command, stdin=PIPE, stdout=PIPE, stderr=STDOUT, shell=shell, cwd=working_dir) if echo: stdout = "" while p.poll() is None: # This blocks until it receives a newline. line = p.stdout.readline() print(" " * echo_indent, line, end="") stdout += line # Read any last bits line = p.stdout.read() print(" " * echo_indent, line, end="") print() stdout += line else: stdout, _ = p.communicate() return (p.returncode, stdout)
[ "Execute a command on the command-line.\n :param str,list command: The command to run\n :param bool shell: Whether or not to use the shell. This is optional; if\n ``command`` is a basestring, shell will be set to True, otherwise it will\n be false. You can override this behavior by setting this parameter\n directly.\n :param str working_dir: The directory in which to run the command.\n :param bool echo: Whether or not to print the output from the command to\n stdout.\n :param int echo_indent: Any number of spaces to indent the echo for clarity\n :returns: tuple: (return code, stdout)\n Example\n >>> from executor import execute\n >>> return_code, text = execute(\"dir\")\n " ]
Please provide a description of the function:def QA_data_calc_marketvalue(data, xdxr): '使用数据库数据计算复权' mv = xdxr.query('category!=6').loc[:, ['shares_after', 'liquidity_after']].dropna() res = pd.concat([data, mv], axis=1) res = res.assign( shares=res.shares_after.fillna(method='ffill'), lshares=res.liquidity_after.fillna(method='ffill') ) return res.assign(mv=res.close*res.shares*10000, liquidity_mv=res.close*res.lshares*10000).drop(['shares_after', 'liquidity_after'], axis=1)\ .loc[(slice(data.index.remove_unused_levels().levels[0][0],data.index.remove_unused_levels().levels[0][-1]),slice(None)),:]
[]
Please provide a description of the function:def MACD_JCSC(dataframe, SHORT=12, LONG=26, M=9): CLOSE = dataframe.close DIFF = QA.EMA(CLOSE, SHORT) - QA.EMA(CLOSE, LONG) DEA = QA.EMA(DIFF, M) MACD = 2*(DIFF-DEA) CROSS_JC = QA.CROSS(DIFF, DEA) CROSS_SC = QA.CROSS(DEA, DIFF) ZERO = 0 return pd.DataFrame({'DIFF': DIFF, 'DEA': DEA, 'MACD': MACD, 'CROSS_JC': CROSS_JC, 'CROSS_SC': CROSS_SC, 'ZERO': ZERO})
[ "\n 1.DIF向上突破DEA,买入信号参考。\n 2.DIF向下跌破DEA,卖出信号参考。\n " ]
Please provide a description of the function:def _create(self, cache_file): conn = sqlite3.connect(cache_file) cur = conn.cursor() cur.execute("PRAGMA foreign_keys = ON") cur.execute(''' CREATE TABLE jobs( hash TEXT NOT NULL UNIQUE PRIMARY KEY, description TEXT NOT NULL, last_run REAL, next_run REAL, last_run_result INTEGER)''') cur.execute(''' CREATE TABLE history( hash TEXT, description TEXT, time REAL, result INTEGER, FOREIGN KEY(hash) REFERENCES jobs(hash))''') conn.commit() conn.close()
[ "Create the tables needed to store the information." ]
Please provide a description of the function:def get(self, id): self.cur.execute("SELECT * FROM jobs WHERE hash=?", (id,)) item = self.cur.fetchone() if item: return dict(zip( ("id", "description", "last-run", "next-run", "last-run-result"), item)) return None
[ "Retrieves the job with the selected ID.\n :param str id: The ID of the job\n :returns: The dictionary of the job if found, None otherwise\n " ]
Please provide a description of the function:def update(self, job): self.cur.execute('''UPDATE jobs SET last_run=?,next_run=?,last_run_result=? WHERE hash=?''', ( job["last-run"], job["next-run"], job["last-run-result"], job["id"]))
[ "Update last_run, next_run, and last_run_result for an existing job.\n :param dict job: The job dictionary\n :returns: True\n " ]
Please provide a description of the function:def add_job(self, job): self.cur.execute("INSERT INTO jobs VALUES(?,?,?,?,?)", ( job["id"], job["description"], job["last-run"], job["next-run"], job["last-run-result"])) return True
[ "Adds a new job into the cache.\n :param dict job: The job dictionary\n :returns: True\n " ]
Please provide a description of the function:def add_result(self, job): self.cur.execute( "INSERT INTO history VALUES(?,?,?,?)", (job["id"], job["description"], job["last-run"], job["last-run-result"])) return True
[ "Adds a job run result to the history table.\n :param dict job: The job dictionary\n :returns: True\n " ]
Please provide a description of the function:def QA_data_tick_resample_1min(tick, type_='1min', if_drop=True): tick = tick.assign(amount=tick.price * tick.vol) resx = pd.DataFrame() _dates = set(tick.date) for date in sorted(list(_dates)): _data = tick.loc[tick.date == date] # morning min bar _data1 = _data[time(9, 25):time(11, 30)].resample( type_, closed='left', base=30, loffset=type_ ).apply( { 'price': 'ohlc', 'vol': 'sum', 'code': 'last', 'amount': 'sum' } ) _data1.columns = _data1.columns.droplevel(0) # do fix on the first and last bar # 某些股票某些日期没有集合竞价信息,譬如 002468 在 2017 年 6 月 5 日的数据 if len(_data.loc[time(9, 25):time(9, 25)]) > 0: _data1.loc[time(9, 31):time(9, 31), 'open'] = _data1.loc[time(9, 26):time(9, 26), 'open'].values _data1.loc[time(9, 31):time(9, 31), 'high'] = _data1.loc[time(9, 26):time(9, 31), 'high'].max() _data1.loc[time(9, 31):time(9, 31), 'low'] = _data1.loc[time(9, 26):time(9, 31), 'low'].min() _data1.loc[time(9, 31):time(9, 31), 'vol'] = _data1.loc[time(9, 26):time(9, 31), 'vol'].sum() _data1.loc[time(9, 31):time(9, 31), 'amount'] = _data1.loc[time(9, 26):time(9, 31), 'amount'].sum() # 通达信分笔数据有的有 11:30 数据,有的没有 if len(_data.loc[time(11, 30):time(11, 30)]) > 0: _data1.loc[time(11, 30):time(11, 30), 'high'] = _data1.loc[time(11, 30):time(11, 31), 'high'].max() _data1.loc[time(11, 30):time(11, 30), 'low'] = _data1.loc[time(11, 30):time(11, 31), 'low'].min() _data1.loc[time(11, 30):time(11, 30), 'close'] = _data1.loc[time(11, 31):time(11, 31), 'close'].values _data1.loc[time(11, 30):time(11, 30), 'vol'] = _data1.loc[time(11, 30):time(11, 31), 'vol'].sum() _data1.loc[time(11, 30):time(11, 30), 'amount'] = _data1.loc[time(11, 30):time(11, 31), 'amount'].sum() _data1 = _data1.loc[time(9, 31):time(11, 30)] # afternoon min bar _data2 = _data[time(13, 0):time(15, 0)].resample( type_, closed='left', base=30, loffset=type_ ).apply( { 'price': 'ohlc', 'vol': 'sum', 'code': 'last', 'amount': 'sum' } ) _data2.columns = _data2.columns.droplevel(0) # 沪市股票在 2018-08-20 起,尾盘 3 分钟集合竞价 if (pd.Timestamp(date) < pd.Timestamp('2018-08-20')) and (tick.code.iloc[0][0] == '6'): # 避免出现 tick 数据没有 1:00 的值 if len(_data.loc[time(13, 0):time(13, 0)]) > 0: _data2.loc[time(15, 0):time(15, 0), 'high'] = _data2.loc[time(15, 0):time(15, 1), 'high'].max() _data2.loc[time(15, 0):time(15, 0), 'low'] = _data2.loc[time(15, 0):time(15, 1), 'low'].min() _data2.loc[time(15, 0):time(15, 0), 'close'] = _data2.loc[time(15, 1):time(15, 1), 'close'].values else: # 避免出现 tick 数据没有 15:00 的值 if len(_data.loc[time(13, 0):time(13, 0)]) > 0: _data2.loc[time(15, 0):time(15, 0)] = _data2.loc[time(15, 1):time(15, 1)].values _data2 = _data2.loc[time(13, 1):time(15, 0)] resx = resx.append(_data1).append(_data2) resx['vol'] = resx['vol'] * 100.0 resx['volume'] = resx['vol'] resx['type'] = '1min' if if_drop: resx = resx.dropna() return resx.reset_index().drop_duplicates().set_index(['datetime', 'code'])
[ "\n tick 采样为 分钟数据\n 1. 仅使用将 tick 采样为 1 分钟数据\n 2. 仅测试过,与通达信 1 分钟数据达成一致\n 3. 经测试,可以匹配 QA.QA_fetch_get_stock_transaction 得到的数据,其他类型数据未测试\n demo:\n df = QA.QA_fetch_get_stock_transaction(package='tdx', code='000001', \n start='2018-08-01 09:25:00',\n end='2018-08-03 15:00:00')\n df_min = QA_data_tick_resample_1min(df)\n " ]
Please provide a description of the function:def QA_data_tick_resample(tick, type_='1min'): tick = tick.assign(amount=tick.price * tick.vol) resx = pd.DataFrame() _temp = set(tick.index.date) for item in _temp: _data = tick.loc[str(item)] _data1 = _data[time(9, 31):time(11, 30)].resample( type_, closed='right', base=30, loffset=type_ ).apply( { 'price': 'ohlc', 'vol': 'sum', 'code': 'last', 'amount': 'sum' } ) _data2 = _data[time(13, 1):time(15, 0)].resample( type_, closed='right', loffset=type_ ).apply( { 'price': 'ohlc', 'vol': 'sum', 'code': 'last', 'amount': 'sum' } ) resx = resx.append(_data1).append(_data2) resx.columns = resx.columns.droplevel(0) return resx.reset_index().drop_duplicates().set_index(['datetime', 'code'])
[ "tick采样成任意级别分钟线\n\n Arguments:\n tick {[type]} -- transaction\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_data_ctptick_resample(tick, type_='1min'): resx = pd.DataFrame() _temp = set(tick.TradingDay) for item in _temp: _data = tick.query('TradingDay=="{}"'.format(item)) try: _data.loc[time(20, 0):time(21, 0), 'volume'] = 0 except: pass _data.volume = _data.volume.diff() _data = _data.assign(amount=_data.LastPrice * _data.volume) _data0 = _data[time(0, 0):time(2, 30)].resample( type_, closed='right', base=30, loffset=type_ ).apply( { 'LastPrice': 'ohlc', 'volume': 'sum', 'code': 'last', 'amount': 'sum' } ) _data1 = _data[time(9, 0):time(11, 30)].resample( type_, closed='right', base=30, loffset=type_ ).apply( { 'LastPrice': 'ohlc', 'volume': 'sum', 'code': 'last', 'amount': 'sum' } ) _data2 = _data[time(13, 1):time(15, 0)].resample( type_, closed='right', base=30, loffset=type_ ).apply( { 'LastPrice': 'ohlc', 'volume': 'sum', 'code': 'last', 'amount': 'sum' } ) _data3 = _data[time(21, 0):time(23, 59)].resample( type_, closed='left', loffset=type_ ).apply( { 'LastPrice': 'ohlc', 'volume': 'sum', 'code': 'last', 'amount': 'sum' } ) resx = resx.append(_data0).append(_data1).append(_data2).append(_data3) resx.columns = resx.columns.droplevel(0) return resx.reset_index().drop_duplicates().set_index(['datetime', 'code']).sort_index()
[ "tick采样成任意级别分钟线\n\n Arguments:\n tick {[type]} -- transaction\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_data_min_resample(min_data, type_='5min'): try: min_data = min_data.reset_index().set_index('datetime', drop=False) except: min_data = min_data.set_index('datetime', drop=False) CONVERSION = { 'code': 'first', 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'vol': 'sum', 'amount': 'sum' } if 'vol' in min_data.columns else { 'code': 'first', 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'volume': 'sum', 'amount': 'sum' } resx = pd.DataFrame() for item in set(min_data.index.date): min_data_p = min_data.loc[str(item)] n = min_data_p['{} 21:00:00'.format(item):].resample( type_, base=30, closed='right', loffset=type_ ).apply(CONVERSION) d = min_data_p[:'{} 11:30:00'.format(item)].resample( type_, base=30, closed='right', loffset=type_ ).apply(CONVERSION) f = min_data_p['{} 13:00:00'.format(item):].resample( type_, closed='right', loffset=type_ ).apply(CONVERSION) resx = resx.append(d).append(f) return resx.dropna().reset_index().set_index(['datetime', 'code'])
[ "分钟线采样成大周期\n\n\n 分钟线采样成子级别的分钟线\n\n\n time+ OHLC==> resample\n Arguments:\n min {[type]} -- [description]\n raw_type {[type]} -- [description]\n new_type {[type]} -- [description]\n " ]
Please provide a description of the function:def QA_data_futuremin_resample(min_data, type_='5min'): min_data.tradeime = pd.to_datetime(min_data.tradetime) CONVERSION = { 'code': 'first', 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'trade': 'sum', 'tradetime': 'last', 'date': 'last' } resx = min_data.resample( type_, closed='right', loffset=type_ ).apply(CONVERSION) return resx.dropna().reset_index().set_index(['datetime', 'code'])
[ "期货分钟线采样成大周期\n\n\n 分钟线采样成子级别的分钟线\n\n future:\n\n vol ==> trade\n amount X\n " ]
Please provide a description of the function:def QA_data_day_resample(day_data, type_='w'): # return day_data_p.assign(open=day_data.open.resample(type_).first(),high=day_data.high.resample(type_).max(),low=day_data.low.resample(type_).min(),\ # vol=day_data.vol.resample(type_).sum() if 'vol' in day_data.columns else day_data.volume.resample(type_).sum(),\ # amount=day_data.amount.resample(type_).sum()).dropna().set_index('date') try: day_data = day_data.reset_index().set_index('date', drop=False) except: day_data = day_data.set_index('date', drop=False) CONVERSION = { 'code': 'first', 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'vol': 'sum', 'amount': 'sum' } if 'vol' in day_data.columns else { 'code': 'first', 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'volume': 'sum', 'amount': 'sum' } return day_data.resample( type_, closed='right' ).apply(CONVERSION).dropna().reset_index().set_index(['date', 'code'])
[ "日线降采样\n\n Arguments:\n day_data {[type]} -- [description]\n\n Keyword Arguments:\n type_ {str} -- [description] (default: {'w'})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_SU_save_stock_info(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_stock_info(client=client)
[ "save stock info\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_list(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_stock_list(client=client)
[ "save stock_list\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_index_list(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_index_list(client=client)
[ "save index_list\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_etf_list(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_etf_list(client=client)
[ "save etf_list\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_future_day(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_future_day(client=client)
[ "save future_day\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_future_day_all(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_future_day_all(client=client)
[ "save future_day_all\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_future_min(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_future_min(client=client)
[ "save future_min\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_future_min_all(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_future_min_all(client=client)
[ "[summary]\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_day(engine, client=DATABASE, paralleled=False): engine = select_save_engine(engine, paralleled=paralleled) engine.QA_SU_save_stock_day(client=client)
[ "save stock_day\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_option_commodity_min(engine, client=DATABASE): ''' :param engine: :param client: :return: ''' engine = select_save_engine(engine) engine.QA_SU_save_option_commodity_min(client=client)
[]
Please provide a description of the function:def QA_SU_save_option_commodity_day(engine, client=DATABASE): ''' :param engine: :param client: :return: ''' engine = select_save_engine(engine) engine.QA_SU_save_option_commodity_day(client=client)
[]
Please provide a description of the function:def QA_SU_save_stock_min(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_stock_min(client=client)
[ "save stock_min\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_index_day(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_index_day(client=client)
[ "save index_day\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_index_min(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_index_min(client=client)
[ "save index_min\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_etf_day(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_etf_day(client=client)
[ "save etf_day\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_etf_min(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_etf_min(client=client)
[ "save etf_min\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_xdxr(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_stock_xdxr(client=client)
[ "save stock_xdxr\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_block(engine, client=DATABASE): engine = select_save_engine(engine) engine.QA_SU_save_stock_block(client=client)
[ "save stock_block\n\n Arguments:\n engine {[type]} -- [description]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def select_save_engine(engine, paralleled=False): ''' select save_engine , tushare ts Tushare 使用 Tushare 免费数据接口, tdx 使用通达信数据接口 :param engine: 字符串Str :param paralleled: 是否并行处理;默认为False :return: sts means save_tushare_py or stdx means save_tdx_py ''' if engine in ['tushare', 'ts', 'Tushare']: return sts elif engine in ['tdx']: if paralleled: return stdx_parallelism else: return stdx elif engine in ['gm', 'goldenminer']: return sgm elif engine in ['jq', 'joinquant']: return sjq else: print('QA Error QASU.main.py call select_save_engine with parameter %s is None of thshare, ts, Thshare, or tdx', engine)
[]
Please provide a description of the function:def QA_fetch_stock_day(code, start, end, format='numpy', frequence='day', collections=DATABASE.stock_day): start = str(start)[0:10] end = str(end)[0:10] #code= [code] if isinstance(code,str) else code # code checking code = QA_util_code_tolist(code) if QA_util_date_valid(end): cursor = collections.find({ 'code': {'$in': code}, "date_stamp": { "$lte": QA_util_date_stamp(end), "$gte": QA_util_date_stamp(start)}}, {"_id": 0}, batch_size=10000) #res=[QA_util_dict_remove_key(data, '_id') for data in cursor] res = pd.DataFrame([item for item in cursor]) try: res = res.assign(volume=res.vol, date=pd.to_datetime( res.date)).drop_duplicates((['date', 'code'])).query('volume>1').set_index('date', drop=False) res = res.ix[:, ['code', 'open', 'high', 'low', 'close', 'volume', 'amount', 'date']] except: res = None if format in ['P', 'p', 'pandas', 'pd']: return res elif format in ['json', 'dict']: return QA_util_to_json_from_pandas(res) # 多种数据格式 elif format in ['n', 'N', 'numpy']: return numpy.asarray(res) elif format in ['list', 'l', 'L']: return numpy.asarray(res).tolist() else: print("QA Error QA_fetch_stock_day format parameter %s is none of \"P, p, pandas, pd , json, dict , n, N, numpy, list, l, L, !\" " % format) return None else: QA_util_log_info( 'QA Error QA_fetch_stock_day data parameter start=%s end=%s is not right' % (start, end))
[ "'获取股票日线'\n\n Returns:\n [type] -- [description]\n\n 感谢@几何大佬的提示\n https://docs.mongodb.com/manual/tutorial/project-fields-from-query-results/#return-the-specified-fields-and-the-id-field-only\n\n " ]
Please provide a description of the function:def QA_fetch_stock_min(code, start, end, format='numpy', frequence='1min', collections=DATABASE.stock_min): '获取股票分钟线' if frequence in ['1min', '1m']: frequence = '1min' elif frequence in ['5min', '5m']: frequence = '5min' elif frequence in ['15min', '15m']: frequence = '15min' elif frequence in ['30min', '30m']: frequence = '30min' elif frequence in ['60min', '60m']: frequence = '60min' else: print("QA Error QA_fetch_stock_min parameter frequence=%s is none of 1min 1m 5min 5m 15min 15m 30min 30m 60min 60m" % frequence) __data = [] # code checking code = QA_util_code_tolist(code) cursor = collections.find({ 'code': {'$in': code}, "time_stamp": { "$gte": QA_util_time_stamp(start), "$lte": QA_util_time_stamp(end) }, 'type': frequence }, {"_id": 0}, batch_size=10000) res = pd.DataFrame([item for item in cursor]) try: res = res.assign(volume=res.vol, datetime=pd.to_datetime( res.datetime)).query('volume>1').drop_duplicates(['datetime', 'code']).set_index('datetime', drop=False) # return res except: res = None if format in ['P', 'p', 'pandas', 'pd']: return res elif format in ['json', 'dict']: return QA_util_to_json_from_pandas(res) # 多种数据格式 elif format in ['n', 'N', 'numpy']: return numpy.asarray(res) elif format in ['list', 'l', 'L']: return numpy.asarray(res).tolist() else: print("QA Error QA_fetch_stock_min format parameter %s is none of \"P, p, pandas, pd , json, dict , n, N, numpy, list, l, L, !\" " % format) return None
[]
Please provide a description of the function:def QA_fetch_stock_list(collections=DATABASE.stock_list): '获取股票列表' return pd.DataFrame([item for item in collections.find()]).drop('_id', axis=1, inplace=False).set_index('code', drop=False)
[]
Please provide a description of the function:def QA_fetch_etf_list(collections=DATABASE.etf_list): '获取ETF列表' return pd.DataFrame([item for item in collections.find()]).drop('_id', axis=1, inplace=False).set_index('code', drop=False)
[]
Please provide a description of the function:def QA_fetch_index_list(collections=DATABASE.index_list): '获取指数列表' return pd.DataFrame([item for item in collections.find()]).drop('_id', axis=1, inplace=False).set_index('code', drop=False)
[]
Please provide a description of the function:def QA_fetch_stock_terminated(collections=DATABASE.stock_terminated): '获取股票基本信息 , 已经退市的股票列表' # 🛠todo 转变成 dataframe 类型数据 return pd.DataFrame([item for item in collections.find()]).drop('_id', axis=1, inplace=False).set_index('code', drop=False)
[]
Please provide a description of the function:def QA_fetch_stock_basic_info_tushare(collections=DATABASE.stock_info_tushare): ''' purpose: tushare 股票列表数据库 code,代码 name,名称 industry,所属行业 area,地区 pe,市盈率 outstanding,流通股本(亿) totals,总股本(亿) totalAssets,总资产(万) liquidAssets,流动资产 fixedAssets,固定资产 reserved,公积金 reservedPerShare,每股公积金 esp,每股收益 bvps,每股净资 pb,市净率 timeToMarket,上市日期 undp,未分利润 perundp, 每股未分配 rev,收入同比(%) profit,利润同比(%) gpr,毛利率(%) npr,净利润率(%) holders,股东人数 add by tauruswang, :param collections: stock_info_tushare 集合 :return: ''' '获取股票基本信息' items = [item for item in collections.find()] # 🛠todo 转变成 dataframe 类型数据 return items
[]
Please provide a description of the function:def QA_fetch_stock_full(date, format='numpy', collections=DATABASE.stock_day): '获取全市场的某一日的数据' Date = str(date)[0:10] if QA_util_date_valid(Date) is True: __data = [] for item in collections.find({ "date_stamp": QA_util_date_stamp(Date)}, batch_size=10000): __data.append([str(item['code']), float(item['open']), float(item['high']), float( item['low']), float(item['close']), float(item['vol']), item['date']]) # 多种数据格式 if format in ['n', 'N', 'numpy']: __data = numpy.asarray(__data) elif format in ['list', 'l', 'L']: __data = __data elif format in ['P', 'p', 'pandas', 'pd']: __data = DataFrame(__data, columns=[ 'code', 'open', 'high', 'low', 'close', 'volume', 'date']) __data['date'] = pd.to_datetime(__data['date']) __data = __data.set_index('date', drop=False) else: print("QA Error QA_fetch_stock_full format parameter %s is none of \"P, p, pandas, pd , json, dict , n, N, numpy, list, l, L, !\" " % format) return __data else: QA_util_log_info( 'QA Error QA_fetch_stock_full data parameter date=%s not right' % date)
[]
Please provide a description of the function:def QA_fetch_index_min( code, start, end, format='numpy', frequence='1min', collections=DATABASE.index_min): '获取股票分钟线' if frequence in ['1min', '1m']: frequence = '1min' elif frequence in ['5min', '5m']: frequence = '5min' elif frequence in ['15min', '15m']: frequence = '15min' elif frequence in ['30min', '30m']: frequence = '30min' elif frequence in ['60min', '60m']: frequence = '60min' __data = [] code = QA_util_code_tolist(code) cursor = collections.find({ 'code': {'$in': code}, "time_stamp": { "$gte": QA_util_time_stamp(start), "$lte": QA_util_time_stamp(end) }, 'type': frequence }, {"_id": 0}, batch_size=10000) if format in ['dict', 'json']: return [data for data in cursor] # for item in cursor: __data = pd.DataFrame([item for item in cursor]) __data = __data.assign(datetime=pd.to_datetime(__data['datetime'])) # __data.append([str(item['code']), float(item['open']), float(item['high']), float( # item['low']), float(item['close']), int(item['up_count']), int(item['down_count']), float(item['vol']), float(item['amount']), item['datetime'], item['time_stamp'], item['date'], item['type']]) # __data = DataFrame(__data, columns=[ # 'code', 'open', 'high', 'low', 'close', 'up_count', 'down_count', 'volume', 'amount', 'datetime', 'time_stamp', 'date', 'type']) # __data['datetime'] = pd.to_datetime(__data['datetime']) __data = __data.set_index('datetime', drop=False) if format in ['numpy', 'np', 'n']: return numpy.asarray(__data) elif format in ['list', 'l', 'L']: return numpy.asarray(__data).tolist() elif format in ['P', 'p', 'pandas', 'pd']: return __data
[]
Please provide a description of the function:def QA_fetch_future_min( code, start, end, format='numpy', frequence='1min', collections=DATABASE.future_min): '获取股票分钟线' if frequence in ['1min', '1m']: frequence = '1min' elif frequence in ['5min', '5m']: frequence = '5min' elif frequence in ['15min', '15m']: frequence = '15min' elif frequence in ['30min', '30m']: frequence = '30min' elif frequence in ['60min', '60m']: frequence = '60min' __data = [] code = QA_util_code_tolist(code, auto_fill=False) cursor = collections.find({ 'code': {'$in': code}, "time_stamp": { "$gte": QA_util_time_stamp(start), "$lte": QA_util_time_stamp(end) }, 'type': frequence }, batch_size=10000) if format in ['dict', 'json']: return [data for data in cursor] for item in cursor: __data.append([str(item['code']), float(item['open']), float(item['high']), float( item['low']), float(item['close']), float(item['position']), float(item['price']), float(item['trade']), item['datetime'], item['tradetime'], item['time_stamp'], item['date'], item['type']]) __data = DataFrame(__data, columns=[ 'code', 'open', 'high', 'low', 'close', 'position', 'price', 'trade', 'datetime', 'tradetime', 'time_stamp', 'date', 'type']) __data['datetime'] = pd.to_datetime(__data['datetime']) __data = __data.set_index('datetime', drop=False) if format in ['numpy', 'np', 'n']: return numpy.asarray(__data) elif format in ['list', 'l', 'L']: return numpy.asarray(__data).tolist() elif format in ['P', 'p', 'pandas', 'pd']: return __data
[]
Please provide a description of the function:def QA_fetch_future_list(collections=DATABASE.future_list): '获取期货列表' return pd.DataFrame([item for item in collections.find()]).drop('_id', axis=1, inplace=False).set_index('code', drop=False)
[]
Please provide a description of the function:def QA_fetch_ctp_tick(code, start, end, frequence, format='pd', collections=DATABASE.ctp_tick): code = QA_util_code_tolist(code, auto_fill=False) cursor = collections.find({ 'InstrumentID': {'$in': code}, "time_stamp": { "$gte": QA_util_time_stamp(start), "$lte": QA_util_time_stamp(end) }, 'type': frequence }, {"_id": 0}, batch_size=10000) hq = pd.DataFrame([data for data in cursor]).replace(1.7976931348623157e+308, numpy.nan).replace('', numpy.nan).dropna(axis=1) p1 = hq.loc[:, ['ActionDay', 'AskPrice1', 'AskVolume1', 'AveragePrice', 'BidPrice1', 'BidVolume1', 'HighestPrice', 'InstrumentID', 'LastPrice', 'OpenInterest', 'TradingDay', 'UpdateMillisec', 'UpdateTime', 'Volume']] p1 = p1.assign(datetime=p1.ActionDay.apply(QA_util_date_int2str)+' '+p1.UpdateTime + (p1.UpdateMillisec/1000000).apply(lambda x: str('%.6f' % x)[1:]), code=p1.InstrumentID) p1.datetime = pd.to_datetime(p1.datetime) return p1.set_index(p1.datetime)
[ "仅供存储的ctp tick使用\n\n Arguments:\n code {[type]} -- [description]\n\n Keyword Arguments:\n format {str} -- [description] (default: {'pd'})\n collections {[type]} -- [description] (default: {DATABASE.ctp_tick})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_fetch_stock_xdxr(code, format='pd', collections=DATABASE.stock_xdxr): '获取股票除权信息/数据库' code = QA_util_code_tolist(code) data = pd.DataFrame([item for item in collections.find( {'code': {'$in': code}}, batch_size=10000)]).drop(['_id'], axis=1) data['date'] = pd.to_datetime(data['date']) return data.set_index('date', drop=False)
[]
Please provide a description of the function:def QA_fetch_quotations(date=datetime.date.today(), db=DATABASE): '获取全部实时5档行情的存储结果' try: collections = db.get_collection( 'realtime_{}'.format(date)) data = pd.DataFrame([item for item in collections.find( {}, {"_id": 0}, batch_size=10000)]) return data.assign(date=pd.to_datetime(data.datetime.apply(lambda x: str(x)[0:10]))).assign(datetime=pd.to_datetime(data.datetime)).set_index(['datetime', 'code'], drop=False).sort_index() except Exception as e: raise e
[]
Please provide a description of the function:def QA_fetch_account(message={}, db=DATABASE): collection = DATABASE.account return [res for res in collection.find(message, {"_id": 0})]
[ "get the account\n\n Arguments:\n query_mes {[type]} -- [description]\n\n Keyword Arguments:\n collection {[type]} -- [description] (default: {DATABASE})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_fetch_risk(message={}, params={"_id": 0, 'assets': 0, 'timeindex': 0, 'totaltimeindex': 0, 'benchmark_assets': 0, 'month_profit': 0}, db=DATABASE): collection = DATABASE.risk return [res for res in collection.find(message, params)]
[ "get the risk message\n\n Arguments:\n query_mes {[type]} -- [description]\n\n Keyword Arguments:\n collection {[type]} -- [description] (default: {DATABASE})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_fetch_user(user_cookie, db=DATABASE): collection = DATABASE.account return [res for res in collection.find({'user_cookie': user_cookie}, {"_id": 0})]
[ "\n get the user\n\n Arguments:\n user_cookie : str the unique cookie_id for a user\n Keyword Arguments:\n db: database for query\n\n Returns:\n list --- [ACCOUNT]\n " ]
Please provide a description of the function:def QA_fetch_strategy(message={}, db=DATABASE): collection = DATABASE.strategy return [res for res in collection.find(message, {"_id": 0})]
[ "get the account\n\n Arguments:\n query_mes {[type]} -- [description]\n\n Keyword Arguments:\n collection {[type]} -- [description] (default: {DATABASE})\n\n Returns:\n [type] -- [description]\n " ]
Please provide a description of the function:def QA_fetch_lhb(date, db=DATABASE): '获取某一天龙虎榜数据' try: collections = db.lhb return pd.DataFrame([item for item in collections.find( {'date': date}, {"_id": 0})]).set_index('code', drop=False).sort_index() except Exception as e: raise e
[]
Please provide a description of the function:def QA_fetch_financial_report(code, report_date, ltype='EN', db=DATABASE): if isinstance(code, str): code = [code] if isinstance(report_date, str): report_date = [QA_util_date_str2int(report_date)] elif isinstance(report_date, int): report_date = [report_date] elif isinstance(report_date, list): report_date = [QA_util_date_str2int(item) for item in report_date] collection = db.financial num_columns = [item[:3] for item in list(financial_dict.keys())] CH_columns = [item[3:] for item in list(financial_dict.keys())] EN_columns = list(financial_dict.values()) #num_columns.extend(['283', '_id', 'code', 'report_date']) # CH_columns.extend(['283', '_id', 'code', 'report_date']) #CH_columns = pd.Index(CH_columns) #EN_columns = list(financial_dict.values()) #EN_columns.extend(['283', '_id', 'code', 'report_date']) #EN_columns = pd.Index(EN_columns) try: if code is not None and report_date is not None: data = [item for item in collection.find( {'code': {'$in': code}, 'report_date': {'$in': report_date}}, {"_id": 0}, batch_size=10000)] elif code is None and report_date is not None: data = [item for item in collection.find( {'report_date': {'$in': report_date}}, {"_id": 0}, batch_size=10000)] elif code is not None and report_date is None: data = [item for item in collection.find( {'code': {'$in': code}}, {"_id": 0}, batch_size=10000)] else: data = [item for item in collection.find({}, {"_id": 0})] if len(data) > 0: res_pd = pd.DataFrame(data) if ltype in ['CH', 'CN']: cndict = dict(zip(num_columns, CH_columns)) cndict['283'] = '283' try: cndict['284'] = '284' cndict['285'] = '285' cndict['286'] = '286' except: pass cndict['code'] = 'code' cndict['report_date'] = 'report_date' res_pd.columns = res_pd.columns.map(lambda x: cndict[x]) elif ltype is 'EN': endict = dict(zip(num_columns, EN_columns)) endict['283'] = '283' try: endict['284'] = '284' endict['285'] = '285' endict['286'] = '286' except: pass endict['code'] = 'code' endict['report_date'] = 'report_date' res_pd.columns = res_pd.columns.map(lambda x: endict[x]) if res_pd.report_date.dtype == numpy.int64: res_pd.report_date = pd.to_datetime( res_pd.report_date.apply(QA_util_date_int2str)) else: res_pd.report_date = pd.to_datetime(res_pd.report_date) return res_pd.replace(-4.039810335e+34, numpy.nan).set_index(['report_date', 'code'], drop=False) else: return None except Exception as e: raise e
[ "获取专业财务报表\n Arguments:\n code {[type]} -- [description]\n report_date {[type]} -- [description]\n Keyword Arguments:\n ltype {str} -- [description] (default: {'EN'})\n db {[type]} -- [description] (default: {DATABASE})\n Raises:\n e -- [description]\n Returns:\n pd.DataFrame -- [description]\n " ]
Please provide a description of the function:def QA_fetch_stock_divyield(code, start, end=None, format='pd', collections=DATABASE.stock_divyield): '获取股票日线' #code= [code] if isinstance(code,str) else code # code checking code = QA_util_code_tolist(code) if QA_util_date_valid(end): __data = [] cursor = collections.find({ 'a_stockcode': {'$in': code}, "dir_dcl_date": { "$lte": end, "$gte": start}}, {"_id": 0}, batch_size=10000) #res=[QA_util_dict_remove_key(data, '_id') for data in cursor] res = pd.DataFrame([item for item in cursor]) try: res = res.drop_duplicates( (['dir_dcl_date', 'a_stockcode'])) res = res.ix[:, ['a_stockcode', 'a_stocksname', 'div_info', 'div_type_code', 'bonus_shr', 'cash_bt', 'cap_shr', 'epsp', 'ps_cr', 'ps_up', 'reg_date', 'dir_dcl_date', 'a_stockcode1', 'ex_divi_date', 'prg']] except: res = None if format in ['P', 'p', 'pandas', 'pd']: return res elif format in ['json', 'dict']: return QA_util_to_json_from_pandas(res) # 多种数据格式 elif format in ['n', 'N', 'numpy']: return numpy.asarray(res) elif format in ['list', 'l', 'L']: return numpy.asarray(res).tolist() else: print("QA Error QA_fetch_stock_divyield format parameter %s is none of \"P, p, pandas, pd , json, dict , n, N, numpy, list, l, L, !\" " % format) return None else: QA_util_log_info( 'QA Error QA_fetch_stock_divyield data parameter start=%s end=%s is not right' % (start, end))
[]
Please provide a description of the function:def QA_SU_save_stock_day(client=DATABASE, ui_log=None, ui_progress=None): ''' save stock_day 保存日线数据 :param client: :param ui_log: 给GUI qt 界面使用 :param ui_progress: 给GUI qt 界面使用 :param ui_progress_int_value: 给GUI qt 界面使用 ''' stock_list = QA_fetch_get_stock_list().code.unique().tolist() coll_stock_day = client.stock_day coll_stock_day.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] def __saving_work(code, coll_stock_day): try: QA_util_log_info( '##JOB01 Now Saving STOCK_DAY==== {}'.format(str(code)), ui_log ) # 首选查找数据库 是否 有 这个代码的数据 ref = coll_stock_day.find({'code': str(code)[0:6]}) end_date = str(now_time())[0:10] # 当前数据库已经包含了这个代码的数据, 继续增量更新 # 加入这个判断的原因是因为如果股票是刚上市的 数据库会没有数据 所以会有负索引问题出现 if ref.count() > 0: # 接着上次获取的日期继续更新 start_date = ref[ref.count() - 1]['date'] QA_util_log_info( 'UPDATE_STOCK_DAY \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log ) if start_date != end_date: coll_stock_day.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_stock_day( str(code), QA_util_get_next_day(start_date), end_date, '00' ) ) ) # 当前数据库中没有这个代码的股票数据, 从1990-01-01 开始下载所有的数据 else: start_date = '1990-01-01' QA_util_log_info( 'UPDATE_STOCK_DAY \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log ) if start_date != end_date: coll_stock_day.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_stock_day( str(code), start_date, end_date, '00' ) ) ) except Exception as error0: print(error0) err.append(str(code)) for item in range(len(stock_list)): QA_util_log_info('The {} of Total {}'.format(item, len(stock_list))) strProgressToLog = 'DOWNLOAD PROGRESS {} {}'.format( str(float(item / len(stock_list) * 100))[0:4] + '%', ui_log ) intProgressToLog = int(float(item / len(stock_list) * 100)) QA_util_log_info( strProgressToLog, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgressToLog ) __saving_work(stock_list[item], coll_stock_day) if len(err) < 1: QA_util_log_info('SUCCESS save stock day ^_^', ui_log) else: QA_util_log_info('ERROR CODE \n ', ui_log) QA_util_log_info(err, ui_log)
[]
Please provide a description of the function:def QA_SU_save_stock_week(client=DATABASE, ui_log=None, ui_progress=None): stock_list = QA_fetch_get_stock_list().code.unique().tolist() coll_stock_week = client.stock_week coll_stock_week.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] def __saving_work(code, coll_stock_week): try: QA_util_log_info( '##JOB01 Now Saving STOCK_WEEK==== {}'.format(str(code)), ui_log=ui_log ) ref = coll_stock_week.find({'code': str(code)[0:6]}) end_date = str(now_time())[0:10] if ref.count() > 0: # 加入这个判断的原因是因为如果股票是刚上市的 数据库会没有数据 所以会有负索引问题出现 start_date = ref[ref.count() - 1]['date'] QA_util_log_info( 'UPDATE_STOCK_WEEK \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log=ui_log ) if start_date != end_date: coll_stock_week.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_stock_day( str(code), QA_util_get_next_day(start_date), end_date, '00', frequence='week' ) ) ) else: start_date = '1990-01-01' QA_util_log_info( 'UPDATE_STOCK_WEEK \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log=ui_log ) if start_date != end_date: coll_stock_week.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_stock_day( str(code), start_date, end_date, '00', frequence='week' ) ) ) except: err.append(str(code)) for item in range(len(stock_list)): QA_util_log_info( 'The {} of Total {}'.format(item, len(stock_list)), ui_log=ui_log ) strProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(item / len(stock_list) * 100))[0:4] + '%' ) intProgress = int(float(item / len(stock_list) * 100)) QA_util_log_info( strProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgress ) __saving_work(stock_list[item], coll_stock_week) if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save stock_week\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_xdxr(client=DATABASE, ui_log=None, ui_progress=None): stock_list = QA_fetch_get_stock_list().code.unique().tolist() # client.drop_collection('stock_xdxr') try: coll = client.stock_xdxr coll.create_index( [('code', pymongo.ASCENDING), ('date', pymongo.ASCENDING)], unique=True ) except: client.drop_collection('stock_xdxr') coll = client.stock_xdxr coll.create_index( [('code', pymongo.ASCENDING), ('date', pymongo.ASCENDING)], unique=True ) err = [] def __saving_work(code, coll): QA_util_log_info( '##JOB02 Now Saving XDXR INFO ==== {}'.format(str(code)), ui_log=ui_log ) try: coll.insert_many( QA_util_to_json_from_pandas(QA_fetch_get_stock_xdxr(str(code))), ordered=False ) except: err.append(str(code)) for i_ in range(len(stock_list)): QA_util_log_info( 'The {} of Total {}'.format(i_, len(stock_list)), ui_log=ui_log ) strLogInfo = 'DOWNLOAD PROGRESS {} '.format( str(float(i_ / len(stock_list) * 100))[0:4] + '%' ) intLogProgress = int(float(i_ / len(stock_list) * 100)) QA_util_log_info( strLogInfo, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) __saving_work(stock_list[i_], coll)
[ "[summary]\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_min(client=DATABASE, ui_log=None, ui_progress=None): stock_list = QA_fetch_get_stock_list().code.unique().tolist() coll = client.stock_min coll.create_index( [ ('code', pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING), ('date_stamp', pymongo.ASCENDING) ] ) err = [] def __saving_work(code, coll): QA_util_log_info( '##JOB03 Now Saving STOCK_MIN ==== {}'.format(str(code)), ui_log=ui_log ) try: for type in ['1min', '5min', '15min', '30min', '60min']: ref_ = coll.find({'code': str(code)[0:6], 'type': type}) end_time = str(now_time())[0:19] if ref_.count() > 0: start_time = ref_[ref_.count() - 1]['datetime'] QA_util_log_info( '##JOB03.{} Now Saving {} from {} to {} =={} '.format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_stock_min( str(code), start_time, end_time, type ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data)[1::] ) else: start_time = '2015-01-01' QA_util_log_info( '##JOB03.{} Now Saving {} from {} to {} =={} '.format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_stock_min( str(code), start_time, end_time, type ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data) ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) err.append(code) QA_util_log_info(err, ui_log=ui_log) executor = ThreadPoolExecutor(max_workers=4) # executor.map((__saving_work, stock_list[i_], coll),URLS) res = { executor.submit(__saving_work, stock_list[i_], coll) for i_ in range(len(stock_list)) } count = 0 for i_ in concurrent.futures.as_completed(res): QA_util_log_info( 'The {} of Total {}'.format(count, len(stock_list)), ui_log=ui_log ) strProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(count / len(stock_list) * 100))[0:4] + '%' ) intProgress = int(count / len(stock_list) * 10000.0) QA_util_log_info( strProgress, ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgress ) count = count + 1 if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save stock_min\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_index_day(client=DATABASE, ui_log=None, ui_progress=None): __index_list = QA_fetch_get_stock_list('index') coll = client.index_day coll.create_index( [('code', pymongo.ASCENDING), ('date_stamp', pymongo.ASCENDING)] ) err = [] def __saving_work(code, coll): try: ref_ = coll.find({'code': str(code)[0:6]}) end_time = str(now_time())[0:10] if ref_.count() > 0: start_time = ref_[ref_.count() - 1]['date'] QA_util_log_info( '##JOB04 Now Saving INDEX_DAY==== \n Trying updating {} from {} to {}' .format(code, start_time, end_time), ui_log=ui_log ) if start_time != end_time: coll.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_index_day( str(code), QA_util_get_next_day(start_time), end_time ) ) ) else: try: start_time = '1990-01-01' QA_util_log_info( '##JOB04 Now Saving INDEX_DAY==== \n Trying updating {} from {} to {}' .format(code, start_time, end_time), ui_log=ui_log ) coll.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_index_day( str(code), start_time, end_time ) ) ) except: start_time = '2009-01-01' QA_util_log_info( '##JOB04 Now Saving INDEX_DAY==== \n Trying updating {} from {} to {}' .format(code, start_time, end_time), ui_log=ui_log ) coll.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_index_day( str(code), start_time, end_time ) ) ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) err.append(str(code)) QA_util_log_info(err, ui_log=ui_log) for i_ in range(len(__index_list)): # __saving_work('000001') QA_util_log_info( 'The {} of Total {}'.format(i_, len(__index_list)), ui_log=ui_log ) strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(i_ / len(__index_list) * 100))[0:4] + '%' ) intLogProgress = int(float(i_ / len(__index_list) * 10000.0)) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) __saving_work(__index_list.index[i_][0], coll) if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save index_day\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_index_min(client=DATABASE, ui_log=None, ui_progress=None): __index_list = QA_fetch_get_stock_list('index') coll = client.index_min coll.create_index( [ ('code', pymongo.ASCENDING), ('time_stamp', pymongo.ASCENDING), ('date_stamp', pymongo.ASCENDING) ] ) err = [] def __saving_work(code, coll): QA_util_log_info( '##JOB05 Now Saving Index_MIN ==== {}'.format(str(code)), ui_log=ui_log ) try: for type in ['1min', '5min', '15min', '30min', '60min']: ref_ = coll.find({'code': str(code)[0:6], 'type': type}) end_time = str(now_time())[0:19] if ref_.count() > 0: start_time = ref_[ref_.count() - 1]['datetime'] QA_util_log_info( '##JOB05.{} Now Saving {} from {} to {} =={} '.format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_index_min( str(code), start_time, end_time, type ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data[1::]) ) else: start_time = '2015-01-01' QA_util_log_info( '##JOB05.{} Now Saving {} from {} to {} =={} '.format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_index_min( str(code), start_time, end_time, type ) if len(__data) > 1: coll.insert_many( QA_util_to_json_from_pandas(__data) ) except: err.append(code) executor = ThreadPoolExecutor(max_workers=4) res = { executor.submit(__saving_work, __index_list.index[i_][0], coll) for i_ in range(len(__index_list)) } # multi index ./. count = 0 for i_ in concurrent.futures.as_completed(res): strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(count / len(__index_list) * 100))[0:4] + '%' ) intLogProgress = int(float(count / len(__index_list) * 10000.0)) QA_util_log_info( 'The {} of Total {}'.format(count, len(__index_list)), ui_log=ui_log ) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) count = count + 1 if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save index_min\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_list(client=DATABASE, ui_log=None, ui_progress=None): client.drop_collection('stock_list') coll = client.stock_list coll.create_index('code') try: # 🛠todo 这个应该是第一个任务 JOB01, 先更新股票列表!! QA_util_log_info( '##JOB08 Now Saving STOCK_LIST ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=5000 ) stock_list_from_tdx = QA_fetch_get_stock_list() pandas_data = QA_util_to_json_from_pandas(stock_list_from_tdx) coll.insert_many(pandas_data) QA_util_log_info( "完成股票列表获取", ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=10000 ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) print(" Error save_tdx.QA_SU_save_stock_list exception!") pass
[ "save stock_list\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_etf_list(client=DATABASE, ui_log=None, ui_progress=None): try: QA_util_log_info( '##JOB16 Now Saving ETF_LIST ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=5000 ) etf_list_from_tdx = QA_fetch_get_stock_list(type_="etf") pandas_data = QA_util_to_json_from_pandas(etf_list_from_tdx) if len(pandas_data) > 0: # 获取到数据后才进行drop collection 操作 client.drop_collection('etf_list') coll = client.etf_list coll.create_index('code') coll.insert_many(pandas_data) QA_util_log_info( "完成ETF列表获取", ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=10000 ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) print(" Error save_tdx.QA_SU_save_etf_list exception!") pass
[ "save etf_list\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_block(client=DATABASE, ui_log=None, ui_progress=None): client.drop_collection('stock_block') coll = client.stock_block coll.create_index('code') try: QA_util_log_info( '##JOB09 Now Saving STOCK_BlOCK ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=5000 ) coll.insert_many( QA_util_to_json_from_pandas(QA_fetch_get_stock_block('tdx')) ) QA_util_log_info( 'tdx Block ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=5000 ) # 🛠todo fixhere here 获取同花顺板块, 还是调用tdx的 coll.insert_many( QA_util_to_json_from_pandas(QA_fetch_get_stock_block('ths')) ) QA_util_log_info( 'ths Block ====', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=8000 ) QA_util_log_info( '完成股票板块获取=', ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=10000 ) except Exception as e: QA_util_log_info(e, ui_log=ui_log) print(" Error save_tdx.QA_SU_save_stock_block exception!") pass
[ "save stock_block\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_info(client=DATABASE, ui_log=None, ui_progress=None): client.drop_collection('stock_info') stock_list = QA_fetch_get_stock_list().code.unique().tolist() coll = client.stock_info coll.create_index('code') err = [] def __saving_work(code, coll): QA_util_log_info( '##JOB10 Now Saving STOCK INFO ==== {}'.format(str(code)), ui_log=ui_log ) try: coll.insert_many( QA_util_to_json_from_pandas(QA_fetch_get_stock_info(str(code))) ) except: err.append(str(code)) for i_ in range(len(stock_list)): # __saving_work('000001') strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(i_ / len(stock_list) * 100))[0:4] + '%' ) intLogProgress = int(float(i_ / len(stock_list) * 10000.0)) QA_util_log_info('The {} of Total {}'.format(i_, len(stock_list))) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) __saving_work(stock_list[i_], coll) if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save stock_info\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_stock_transaction( client=DATABASE, ui_log=None, ui_progress=None ): stock_list = QA_fetch_get_stock_list().code.unique().tolist() coll = client.stock_transaction coll.create_index('code') err = [] def __saving_work(code): QA_util_log_info( '##JOB11 Now Saving STOCK_TRANSACTION ==== {}'.format(str(code)), ui_log=ui_log ) try: coll.insert_many( QA_util_to_json_from_pandas( # 🛠todo str(stock_list[code]) 参数不对? QA_fetch_get_stock_transaction( str(code), '1990-01-01', str(now_time())[0:10] ) ) ) except: err.append(str(code)) for i_ in range(len(stock_list)): # __saving_work('000001') QA_util_log_info( 'The {} of Total {}'.format(i_, len(stock_list)), ui_log=ui_log ) strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(i_ / len(stock_list) * 100))[0:4] + '%' ) intLogProgress = int(float(i_ / len(stock_list) * 10000.0)) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) __saving_work(stock_list[i_]) if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[ "save stock_transaction\n\n Keyword Arguments:\n client {[type]} -- [description] (default: {DATABASE})\n " ]
Please provide a description of the function:def QA_SU_save_option_commodity_day( client=DATABASE, ui_log=None, ui_progress=None ): ''' :param client: :return: ''' _save_option_commodity_cu_day( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_m_day( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_sr_day( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_ru_day( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_cf_day( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_c_day( client=client, ui_log=ui_log, ui_progress=ui_progress )
[]
Please provide a description of the function:def QA_SU_save_option_commodity_min( client=DATABASE, ui_log=None, ui_progress=None ): ''' :param client: :return: ''' # 测试中发现, 一起回去,容易出现错误,每次获取一个品种后 ,更换服务ip继续获取 ? _save_option_commodity_cu_min( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_sr_min( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_m_min( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_ru_min( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_cf_min( client=client, ui_log=ui_log, ui_progress=ui_progress ) _save_option_commodity_c_min( client=client, ui_log=ui_log, ui_progress=ui_progress )
[]
Please provide a description of the function:def QA_SU_save_option_min(client=DATABASE, ui_log=None, ui_progress=None): ''' :param client: :return: ''' option_contract_list = QA_fetch_get_option_contract_time_to_market() coll_option_min = client.option_day_min coll_option_min.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] # 索引 code err = [] def __saving_work(code, coll): QA_util_log_info( '##JOB13 Now Saving Option 50ETF MIN ==== {}'.format(str(code)), ui_log=ui_log ) try: for type in ['1min', '5min', '15min', '30min', '60min']: ref_ = coll.find({'code': str(code)[0:8], 'type': type}) end_time = str(now_time())[0:19] if ref_.count() > 0: start_time = ref_[ref_.count() - 1]['datetime'] QA_util_log_info( '##JOB13.{} Now Saving Option 50ETF {} from {} to {} =={} ' .format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_future_min( str(code), start_time, end_time, type ) if len(__data) > 1: QA_util_log_info( " 写入 新增历史合约记录数 {} ".format(len(__data)) ) coll.insert_many( QA_util_to_json_from_pandas(__data[1::]) ) else: start_time = '2015-01-01' QA_util_log_info( '##JOB13.{} Now Option 50ETF {} from {} to {} =={} ' .format( ['1min', '5min', '15min', '30min', '60min'].index(type), str(code), start_time, end_time, type ), ui_log=ui_log ) if start_time != end_time: __data = QA_fetch_get_future_min( str(code), start_time, end_time, type ) if len(__data) > 1: QA_util_log_info( " 写入 新增合约记录数 {} ".format(len(__data)) ) coll.insert_many( QA_util_to_json_from_pandas(__data) ) except: err.append(code) executor = ThreadPoolExecutor(max_workers=4) res = { executor.submit( __saving_work, option_contract_list[i_]["code"], coll_option_min ) for i_ in range(len(option_contract_list)) } # multi index ./. count = 0 for i_ in concurrent.futures.as_completed(res): QA_util_log_info( 'The {} of Total {}'.format(count, len(option_contract_list)), ui_log=ui_log ) strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(count / len(option_contract_list) * 100))[0:4] + '%' ) intLogProgress = int(float(count / len(option_contract_list) * 10000.0)) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) count = count + 1 if len(err) < 1: QA_util_log_info('SUCCESS', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[]
Please provide a description of the function:def QA_SU_save_option_day(client=DATABASE, ui_log=None, ui_progress=None): ''' :param client: :return: ''' option_contract_list = QA_fetch_get_option_50etf_contract_time_to_market() coll_option_day = client.option_day coll_option_day.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] # 索引 code def __saving_work(code, coll_option_day): try: QA_util_log_info( '##JOB12 Now Saving OPTION_DAY==== {}'.format(str(code)), ui_log=ui_log ) # 首选查找数据库 是否 有 这个代码的数据 # 期权代码 从 10000001 开始编码 10001228 ref = coll_option_day.find({'code': str(code)[0:8]}) end_date = str(now_time())[0:10] # 当前数据库已经包含了这个代码的数据, 继续增量更新 # 加入这个判断的原因是因为如果是刚上市的 数据库会没有数据 所以会有负索引问题出现 if ref.count() > 0: # 接着上次获取的日期继续更新 start_date = ref[ref.count() - 1]['date'] QA_util_log_info( ' 上次获取期权日线数据的最后日期是 {}'.format(start_date), ui_log=ui_log ) QA_util_log_info( 'UPDATE_OPTION_DAY \n 从上一次下载数据开始继续 Trying update {} from {} to {}' .format(code, start_date, end_date), ui_log=ui_log ) if start_date != end_date: start_date0 = QA_util_get_next_day(start_date) df0 = QA_fetch_get_option_day( code=code, start_date=start_date0, end_date=end_date, frequence='day', ip=None, port=None ) retCount = df0.iloc[:, 0].size QA_util_log_info( "日期从开始{}-结束{} , 合约代码{} , 返回了{}条记录 , 准备写入数据库".format( start_date0, end_date, code, retCount ), ui_log=ui_log ) coll_option_day.insert_many( QA_util_to_json_from_pandas(df0) ) else: QA_util_log_info( "^已经获取过这天的数据了^ {}".format(start_date), ui_log=ui_log ) else: start_date = '1990-01-01' QA_util_log_info( 'UPDATE_OPTION_DAY \n 从新开始下载数据 Trying update {} from {} to {}' .format(code, start_date, end_date), ui_log=ui_log ) if start_date != end_date: df0 = QA_fetch_get_option_day( code=code, start_date=start_date, end_date=end_date, frequence='day', ip=None, port=None ) retCount = df0.iloc[:, 0].size QA_util_log_info( "日期从开始{}-结束{} , 合约代码{} , 获取了{}条记录 , 准备写入数据库^_^ ".format( start_date, end_date, code, retCount ), ui_log=ui_log ) coll_option_day.insert_many( QA_util_to_json_from_pandas(df0) ) else: QA_util_log_info( "*已经获取过这天的数据了* {}".format(start_date), ui_log=ui_log ) except Exception as error0: print(error0) err.append(str(code)) for item in range(len(option_contract_list)): QA_util_log_info( 'The {} of Total {}'.format(item, len(option_contract_list)), ui_log=ui_log ) strLogProgress = 'DOWNLOAD PROGRESS {} '.format( str(float(item / len(option_contract_list) * 100))[0:4] + '%' ) intLogProgress = int(float(item / len(option_contract_list) * 10000.0)) QA_util_log_info( strLogProgress, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intLogProgress ) __saving_work(option_contract_list[item].code, coll_option_day) if len(err) < 1: QA_util_log_info('SUCCESS save option day ^_^ ', ui_log=ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log=ui_log) QA_util_log_info(err, ui_log=ui_log)
[]
Please provide a description of the function:def QA_SU_save_future_day(client=DATABASE, ui_log=None, ui_progress=None): ''' save future_day 保存日线数据 :param client: :param ui_log: 给GUI qt 界面使用 :param ui_progress: 给GUI qt 界面使用 :param ui_progress_int_value: 给GUI qt 界面使用 :return: ''' future_list = [ item for item in QA_fetch_get_future_list().code.unique().tolist() if str(item)[-2:] in ['L8', 'L9'] ] coll_future_day = client.future_day coll_future_day.create_index( [("code", pymongo.ASCENDING), ("date_stamp", pymongo.ASCENDING)] ) err = [] def __saving_work(code, coll_future_day): try: QA_util_log_info( '##JOB12 Now Saving Future_DAY==== {}'.format(str(code)), ui_log ) # 首选查找数据库 是否 有 这个代码的数据 ref = coll_future_day.find({'code': str(code)[0:4]}) end_date = str(now_time())[0:10] # 当前数据库已经包含了这个代码的数据, 继续增量更新 # 加入这个判断的原因是因为如果股票是刚上市的 数据库会没有数据 所以会有负索引问题出现 if ref.count() > 0: # 接着上次获取的日期继续更新 start_date = ref[ref.count() - 1]['date'] QA_util_log_info( 'UPDATE_Future_DAY \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log ) if start_date != end_date: coll_future_day.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_future_day( str(code), QA_util_get_next_day(start_date), end_date ) ) ) # 当前数据库中没有这个代码的股票数据, 从1990-01-01 开始下载所有的数据 else: start_date = '2001-01-01' QA_util_log_info( 'UPDATE_Future_DAY \n Trying updating {} from {} to {}' .format(code, start_date, end_date), ui_log ) if start_date != end_date: coll_future_day.insert_many( QA_util_to_json_from_pandas( QA_fetch_get_future_day( str(code), start_date, end_date ) ) ) except Exception as error0: print(error0) err.append(str(code)) for item in range(len(future_list)): QA_util_log_info('The {} of Total {}'.format(item, len(future_list))) strProgressToLog = 'DOWNLOAD PROGRESS {} {}'.format( str(float(item / len(future_list) * 100))[0:4] + '%', ui_log ) intProgressToLog = int(float(item / len(future_list) * 100)) QA_util_log_info( strProgressToLog, ui_log=ui_log, ui_progress=ui_progress, ui_progress_int_value=intProgressToLog ) __saving_work(future_list[item], coll_future_day) if len(err) < 1: QA_util_log_info('SUCCESS save future day ^_^', ui_log) else: QA_util_log_info(' ERROR CODE \n ', ui_log) QA_util_log_info(err, ui_log)
[]