text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
(required). * **memory** (*Tensor*) -- the sequence from the last layer of the encoder (required). * **tgt_mask** (*Optional**[**Tensor**]*) -- the mask for the tgt sequence (optional). * **memory_mask** (*Optional**[**Tensor**]*) -- the mask for the memory sequence (optional). * **tgt_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the tgt keys per batch (optional). * **memory_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the memory keys per batch (optional). Return type: *Tensor* Shape: see the docs in Transformer class.
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoder.html
pytorch docs
avg_pool3d class torch.ao.nn.quantized.functional.avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) Applies 3D average-pooling operation in kD \ times kH \times kW regions by step size sD \times sH \times sW steps. The number of output features is equal to the number of input planes. Note: The input quantization parameters propagate to the output. Parameters: * input -- quantized input tensor (\text{minibatch} , \text{in_channels} , iH , iW) * **kernel_size** -- size of the pooling region. Can be a single number or a tuple *(kD, kH, kW)* * **stride** -- stride of the pooling operation. Can be a single number or a tuple *(sD, sH, sW)*. Default: "kernel_size" * **padding** -- implicit zero paddings on both sides of the input. Can be a single number or a tuple *(padD, padH, padW)*. Default: 0
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.avg_pool3d.html
pytorch docs
Default: 0 * **ceil_mode** -- when True, will use *ceil* instead of *floor* in the formula to compute the output shape. Default: "False" * **count_include_pad** -- when True, will include the zero- padding in the averaging calculation. Default: "True" * **divisor_override** -- if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.avg_pool3d.html
pytorch docs
torch.Tensor.nan_to_num Tensor.nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor See "torch.nan_to_num()".
https://pytorch.org/docs/stable/generated/torch.Tensor.nan_to_num.html
pytorch docs
torch.nn.functional.dropout torch.nn.functional.dropout(input, p=0.5, training=True, inplace=False) During training, randomly zeroes some of the elements of the input tensor with probability "p" using samples from a Bernoulli distribution. See "Dropout" for details. Parameters: * p (float) -- probability of an element to be zeroed. Default: 0.5 * **training** (*bool*) -- apply dropout if is "True". Default: "True" * **inplace** (*bool*) -- If set to "True", will do this operation in-place. Default: "False" Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.dropout.html
pytorch docs
torch.Tensor.dot Tensor.dot(other) -> Tensor See "torch.dot()"
https://pytorch.org/docs/stable/generated/torch.Tensor.dot.html
pytorch docs
torch.Tensor.fmin Tensor.fmin(other) -> Tensor See "torch.fmin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.fmin.html
pytorch docs
torch.Tensor.expand Tensor.expand(*sizes) -> Tensor Returns a new view of the "self" tensor with singleton dimensions expanded to a larger size. Passing -1 as the size for a dimension means not changing the size of that dimension. Tensor can be also expanded to a larger number of dimensions, and the new ones will be appended at the front. For the new dimensions, the size cannot be set to -1. Expanding a tensor does not allocate new memory, but only creates a new view on the existing tensor where a dimension of size one is expanded to a larger size by setting the "stride" to 0. Any dimension of size 1 can be expanded to an arbitrary value without allocating new memory. Parameters: sizes (torch.Size or int...*) -- the desired expanded size Warning: More than one element of an expanded tensor may refer to a single memory location. As a result, in-place operations (especially
https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html
pytorch docs
ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example: >>> x = torch.tensor([[1], [2], [3]]) >>> x.size() torch.Size([3, 1]) >>> x.expand(3, 4) tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]]) >>> x.expand(-1, 4) # -1 means not changing the size of that dimension tensor([[ 1, 1, 1, 1], [ 2, 2, 2, 2], [ 3, 3, 3, 3]])
https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html
pytorch docs
RReLU class torch.nn.RReLU(lower=0.125, upper=0.3333333333333333, inplace=False) Applies the randomized leaky rectified liner unit function, element-wise, as described in the paper: Empirical Evaluation of Rectified Activations in Convolutional Network. The function is defined as: \text{RReLU}(x) = \begin{cases} x & \text{if } x \geq 0 \\ ax & \text{ otherwise } \end{cases} where a is randomly sampled from uniform distribution \mathcal{U}(\text{lower}, \text{upper}). See: https://arxiv.org/pdf/1505.00853.pdf Parameters: * lower (float) -- lower bound of the uniform distribution. Default: \frac{1}{8} * **upper** (*float*) -- upper bound of the uniform distribution. Default: \frac{1}{3} * **inplace** (*bool*) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image]
https://pytorch.org/docs/stable/generated/torch.nn.RReLU.html
pytorch docs
[image] Examples: >>> m = nn.RReLU(0.1, 0.3) >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.RReLU.html
pytorch docs
torch.Tensor.transpose_ Tensor.transpose_(dim0, dim1) -> Tensor In-place version of "transpose()"
https://pytorch.org/docs/stable/generated/torch.Tensor.transpose_.html
pytorch docs
torch.nn.functional.max_unpool1d torch.nn.functional.max_unpool1d(input, indices, kernel_size, stride=None, padding=0, output_size=None) Computes a partial inverse of "MaxPool1d". See "MaxUnpool1d" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.max_unpool1d.html
pytorch docs
torch.nn.functional.linear torch.nn.functional.linear(input, weight, bias=None) -> Tensor Applies a linear transformation to the incoming data: y = xA^T + b. This operation supports 2-D "weight" with sparse layout Warning: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports TensorFloat32. Shape: * Input: (*, in\_features) where *** means any number of additional dimensions, including none * Weight: (out\_features, in\_features) or (in\_features) * Bias: (out\_features) or () * Output: (*, out\_features) or (*), based on the shape of the weight
https://pytorch.org/docs/stable/generated/torch.nn.functional.linear.html
pytorch docs
torch.nansum torch.nansum(input, *, dtype=None) -> Tensor Returns the sum of all elements, treating Not a Numbers (NaNs) as zero. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Example: >>> a = torch.tensor([1., 2., float('nan'), 4.]) >>> torch.nansum(a) tensor(7.) torch.nansum(input, dim, keepdim=False, *, dtype=None) -> Tensor Returns the sum of each row of the "input" tensor in the given dimension "dim", treating Not a Numbers (NaNs) as zero. If "dim" is a list of dimensions, reduce over all of them. If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1.
https://pytorch.org/docs/stable/generated/torch.nansum.html
pytorch docs
Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- the dimension or dimensions to reduce. If "None", all dimensions are reduced. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Example: >>> torch.nansum(torch.tensor([1., float("nan")])) 1.0 >>> a = torch.tensor([[1, 2], [3., float("nan")]]) >>> torch.nansum(a) tensor(6.) >>> torch.nansum(a, dim=0) tensor([4., 2.]) >>> torch.nansum(a, dim=1)
https://pytorch.org/docs/stable/generated/torch.nansum.html
pytorch docs
torch.nansum(a, dim=1) tensor([3., 3.])
https://pytorch.org/docs/stable/generated/torch.nansum.html
pytorch docs
torch.Tensor.maximum Tensor.maximum(other) -> Tensor See "torch.maximum()"
https://pytorch.org/docs/stable/generated/torch.Tensor.maximum.html
pytorch docs
torch.t torch.t(input) -> Tensor Expects "input" to be <= 2-D tensor and transposes dimensions 0 and 1. 0-D and 1-D tensors are returned as is. When input is a 2-D tensor this is equivalent to "transpose(input, 0, 1)". Parameters: input (Tensor) -- the input tensor. Example: >>> x = torch.randn(()) >>> x tensor(0.1995) >>> torch.t(x) tensor(0.1995) >>> x = torch.randn(3) >>> x tensor([ 2.4320, -0.4608, 0.7702]) >>> torch.t(x) tensor([ 2.4320, -0.4608, 0.7702]) >>> x = torch.randn(2, 3) >>> x tensor([[ 0.4875, 0.9158, -0.5872], [ 0.3938, -0.6929, 0.6932]]) >>> torch.t(x) tensor([[ 0.4875, 0.3938], [ 0.9158, -0.6929], [-0.5872, 0.6932]]) See also "torch.transpose()".
https://pytorch.org/docs/stable/generated/torch.t.html
pytorch docs
torch.Tensor.lt_ Tensor.lt_(other) -> Tensor In-place version of "lt()".
https://pytorch.org/docs/stable/generated/torch.Tensor.lt_.html
pytorch docs
torch.nn.functional.binary_cross_entropy torch.nn.functional.binary_cross_entropy(input, target, weight=None, size_average=None, reduce=None, reduction='mean') Function that measures the Binary Cross Entropy between the target and input probabilities. See "BCELoss" for details. Parameters: * input (Tensor) -- Tensor of arbitrary shape as probabilities. * **target** (*Tensor*) -- Tensor of the same shape as input with values between 0 and 1. * **weight** (*Tensor**, **optional*) -- a manual rescaling weight if provided it's repeated to match input tensor shape * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each
https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy.html
pytorch docs
minibatch. Ignored when reduce is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Return type: Tensor Examples:
https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy.html
pytorch docs
Return type: Tensor Examples: >>> input = torch.randn(3, 2, requires_grad=True) >>> target = torch.rand(3, 2, requires_grad=False) >>> loss = F.binary_cross_entropy(torch.sigmoid(input), target) >>> loss.backward()
https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy.html
pytorch docs
torch.fmin torch.fmin(input, other, *, out=None) -> Tensor Computes the element-wise minimum of "input" and "other". This is like "torch.minimum()" except it handles NaNs differently: if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the minimum. Only if both elements are NaN is NaN propagated. This function is a wrapper around C++'s "std::fmin" and is similar to NumPy's "fmin" function. Supports broadcasting to a common shape, type promotion, and integer and floating-point inputs. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')]) >>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')]) >>> torch.fmin(a, b) tensor([-9.3000, 0.1000, 2.1000, nan])
https://pytorch.org/docs/stable/generated/torch.fmin.html
pytorch docs
torch.min torch.min(input) -> Tensor Returns the minimum value of all elements in the "input" tensor. Warning: This function produces deterministic (sub)gradients unlike "min(dim=0)" Parameters: input (Tensor) -- the input tensor. Example: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750) torch.min(input, dim, keepdim=False, *, out=None) Returns a namedtuple "(values, indices)" where "values" is the minimum value of each row of the "input" tensor in the given dimension "dim". And "indices" is the index location of each minimum value found (argmin). If "keepdim" is "True", the output tensors are of the same size as "input" except in the dimension "dim" where they are of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensors having 1 fewer dimension than "input". Note:
https://pytorch.org/docs/stable/generated/torch.min.html
pytorch docs
Note: If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: out (tuple, optional) -- the tuple of two output tensors (min, min_indices) Example: >>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) torch.min(input, other, *, out=None) -> Tensor See "torch.minimum()".
https://pytorch.org/docs/stable/generated/torch.min.html
pytorch docs
torch.Tensor.remainder Tensor.remainder(divisor) -> Tensor See "torch.remainder()"
https://pytorch.org/docs/stable/generated/torch.Tensor.remainder.html
pytorch docs
torch._assert torch._assert(condition, message) A wrapper around Python's assert which is symbolically traceable.
https://pytorch.org/docs/stable/generated/torch._assert.html
pytorch docs
torch.foreach_log10 torch.foreach_log10(self: List[Tensor]) -> None Apply "torch.log10()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_log10_.html
pytorch docs
torch.Tensor.argsort Tensor.argsort(dim=- 1, descending=False) -> LongTensor See "torch.argsort()"
https://pytorch.org/docs/stable/generated/torch.Tensor.argsort.html
pytorch docs
CosineAnnealingWarmRestarts class torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False) Set the learning rate of each parameter group using a cosine annealing schedule, where \eta_{max} is set to the initial lr, T_{cur} is the number of epochs since the last restart and T_{i} is the number of epochs between two warm restarts in SGDR: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{i}}\pi\right)\right) When T_{cur}=T_{i}, set \eta_t = \eta_{min}. When T_{cur}=0 after restart, set \eta_t=\eta_{max}. It has been proposed in SGDR: Stochastic Gradient Descent with Warm Restarts. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **T_0** (*int*) -- Number of iterations for the first restart. * **T_mult** (*int**, **optional*) -- A factor increases T_{i} after a restart. Default: 1.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
pytorch docs
after a restart. Default: 1. * **eta_min** (*float**, **optional*) -- Minimum learning rate. Default: 0. * **last_epoch** (*int**, **optional*) -- The index of last epoch. Default: -1. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". get_last_lr() Return last computed learning rate by current scheduler. load_state_dict(state_dict) Loads the schedulers state. Parameters: **state_dict** (*dict*) -- scheduler state. Should be an object returned from a call to "state_dict()". print_lr(is_verbose, group, lr, epoch=None) Display the current learning rate. state_dict() Returns the state of the scheduler as a "dict". It contains an entry for every variable in self.__dict__ which is not the optimizer. step(epoch=None) Step could be called after every batch update -[ Example ]-
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
pytorch docs
-[ Example ]- >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> iters = len(dataloader) >>> for epoch in range(20): >>> for i, sample in enumerate(dataloader): >>> inputs, labels = sample['inputs'], sample['labels'] >>> optimizer.zero_grad() >>> outputs = net(inputs) >>> loss = criterion(outputs, labels) >>> loss.backward() >>> optimizer.step() >>> scheduler.step(epoch + i / iters) This function can be called in an interleaved way. -[ Example ]- >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> for epoch in range(20): >>> scheduler.step() >>> scheduler.step(26) >>> scheduler.step() # scheduler.step(27), instead of scheduler(20)
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingWarmRestarts.html
pytorch docs
torch.inverse torch.inverse(input, *, out=None) -> Tensor Alias for "torch.linalg.inv()"
https://pytorch.org/docs/stable/generated/torch.inverse.html
pytorch docs
upsample_bilinear class torch.ao.nn.quantized.functional.upsample_bilinear(input, size=None, scale_factor=None) Upsamples the input, using bilinear upsampling. Warning: This function is deprecated in favor of "torch.nn.quantized.functional.interpolate()". This is equivalent with "nn.quantized.functional.interpolate(..., mode='bilinear', align_corners=True)". Note: The input quantization parameters propagate to the output. Note: Only 2D inputs are supported Parameters: * input (Tensor) -- quantized input * **size** (*int** or **Tuple**[**int**, **int**]*) -- output spatial size. * **scale_factor** (*int** or **Tuple**[**int**, **int**]*) -- multiplier for spatial size
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.upsample_bilinear.html
pytorch docs
torch.Tensor.diagonal_scatter Tensor.diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor See "torch.diagonal_scatter()"
https://pytorch.org/docs/stable/generated/torch.Tensor.diagonal_scatter.html
pytorch docs
torch.unflatten torch.unflatten(input, dim, sizes) -> Tensor Expands a dimension of the input tensor over multiple dimensions. See also: "torch.flatten()" the inverse of this function. It coalesces several dimensions into one. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- Dimension to be unflattened, specified as an index into "input.shape". * **sizes** (*Tuple**[**int**]*) -- New shape of the unflattened dimension. One of its elements can be *-1* in which case the corresponding output dimension is inferred. Otherwise, the product of "sizes" *must* equal "input.shape[dim]". Returns: A View of input with the specified dimension unflattened. Examples:: >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape torch.Size([3, 2, 2, 1])
https://pytorch.org/docs/stable/generated/torch.unflatten.html
pytorch docs
torch.Size([3, 2, 2, 1]) >>> torch.unflatten(torch.randn(5, 12, 3), -1, (2, 2, 3, 1, 1)).shape torch.Size([5, 2, 2, 3, 1, 1, 3])
https://pytorch.org/docs/stable/generated/torch.unflatten.html
pytorch docs
torch.nn.functional.interpolate torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False) Down/up samples the input to either the given "size" or the given "scale_factor" The algorithm used for interpolation is determined by "mode". Currently temporal, spatial and volumetric sampling are supported, i.e. expected inputs are 3-D, 4-D or 5-D in shape. The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width. The modes available for resizing are: nearest, linear (3D- only), bilinear, bicubic (4D-only), trilinear (5D-only), area, nearest-exact Parameters: * input (Tensor) -- the input tensor * **size** (*int** or **Tuple**[**int**] or **Tuple**[**int**, **int**] or **Tuple**[**int**, **int**, **int**]*) -- output spatial size.
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
pytorch docs
spatial size. * **scale_factor** (*float** or **Tuple**[**float**]*) -- multiplier for spatial size. If *scale_factor* is a tuple, its length has to match the number of spatial dimensions; *input.dim() - 2*. * **mode** (*str*) -- algorithm used for upsampling: "'nearest'" | "'linear'" | "'bilinear'" | "'bicubic'" | "'trilinear'" | "'area'" | "'nearest-exact'". Default: "'nearest'" * **align_corners** (*bool**, **optional*) -- Geometrically, we consider the pixels of the input and output as squares rather than points. If set to "True", the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to "False", the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
pytorch docs
independent of input size when "scale_factor" is kept the same. This only has an effect when "mode" is "'linear'", "'bilinear'", "'bicubic'" or "'trilinear'". Default: "False" * **recompute_scale_factor** (*bool**, **optional*) -- recompute the scale_factor for use in the interpolation calculation. If *recompute_scale_factor* is "True", then *scale_factor* must be passed in and *scale_factor* is used to compute the output *size*. The computed output *size* will be used to infer new scales for the interpolation. Note that when *scale_factor* is floating-point, it may differ from the recomputed *scale_factor* due to rounding and precision issues. If *recompute_scale_factor* is "False", then *size* or *scale_factor* will be used directly for interpolation. Default: "None". * **antialias** (*bool**, **optional*) -- flag to apply anti-
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
pytorch docs
aliasing. Default: "False". Using anti-alias option together with "align_corners=False", interpolation result would match Pillow result for downsampling operation. Supported modes: "'bilinear'", "'bicubic'". Return type: Tensor Note: With "mode='bicubic'", it's possible to cause overshoot, in other words it can produce negative values or values greater than 255 for images. Explicitly call "result.clamp(min=0, max=255)" if you want to reduce the overshoot when displaying the image. Note: Mode "mode='nearest-exact'" matches Scikit-Image and PIL nearest neighbours interpolation algorithms and fixes known issues with "mode='nearest'". This mode is introduced to keep backward compatibility. Mode "mode='nearest'" matches buggy OpenCV's "INTER_NEAREST" interpolation algorithm. Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
pytorch docs
information.
https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html
pytorch docs
torch.not_equal torch.not_equal(input, other, *, out=None) -> Tensor Alias for "torch.ne()".
https://pytorch.org/docs/stable/generated/torch.not_equal.html
pytorch docs
LPPool2d class torch.nn.LPPool2d(norm_type, kernel_size, stride=None, ceil_mode=False) Applies a 2D power-average pooling over an input signal composed of several input planes. On each window, the function computed is: f(X) = \sqrt[p]{\sum_{x \in X} x^{p}} At p = \infty, one gets Max Pooling At p = 1, one gets Sum Pooling (which is proportional to average pooling) The parameters "kernel_size", "stride" can either be: * a single "int" -- in which case the same value is used for the height and width dimension * a "tuple" of two ints -- in which case, the first *int* is used for the height dimension, and the second *int* for the width dimension Note: If the sum to the power of *p* is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case. Parameters: * kernel_size (Union[int, Tuple[int*,
https://pytorch.org/docs/stable/generated/torch.nn.LPPool2d.html
pytorch docs
int]*]) -- the size of the window * **stride** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- the stride of the window. Default value is "kernel_size" * **ceil_mode** (*bool*) -- when True, will use *ceil* instead of *floor* to compute the output shape Shape: * Input: (N, C, H_{in}, W_{in}) * Output: (N, C, H_{out}, W_{out}), where H_{out} = \left\lfloor\frac{H_{in} - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor W_{out} = \left\lfloor\frac{W_{in} - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor Examples: >>> # power-2 pool of square window of size=3, stride=2 >>> m = nn.LPPool2d(2, 3, stride=2) >>> # pool of non-square window of power 1.2 >>> m = nn.LPPool2d(1.2, (3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.LPPool2d.html
pytorch docs
default_histogram_observer torch.quantization.observer.default_histogram_observer alias of functools.partial(, quant_min=0, quant_max=127){}
https://pytorch.org/docs/stable/generated/torch.quantization.observer.default_histogram_observer.html
pytorch docs
torch.Tensor.cumsum_ Tensor.cumsum_(dim, dtype=None) -> Tensor In-place version of "cumsum()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cumsum_.html
pytorch docs
PixelShuffle class torch.nn.PixelShuffle(upscale_factor) Rearranges elements in a tensor of shape (, C \times r^2, H, W) to a tensor of shape (, C, H \times r, W \times r), where r is an upscale factor. This is useful for implementing efficient sub-pixel convolution with a stride of 1/r. See the paper: Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network by Shi et. al (2016) for more details. Parameters: upscale_factor (int) -- factor to increase spatial resolution by Shape: * Input: (*, C_{in}, H_{in}, W_{in}), where * is zero or more batch dimensions * Output: (*, C_{out}, H_{out}, W_{out}), where C_{out} = C_{in} \div \text{upscale\_factor}^2 H_{out} = H_{in} \times \text{upscale\_factor} W_{out} = W_{in} \times \text{upscale\_factor} Examples: >>> pixel_shuffle = nn.PixelShuffle(3) >>> input = torch.randn(1, 9, 4, 4)
https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
pytorch docs
input = torch.randn(1, 9, 4, 4) >>> output = pixel_shuffle(input) >>> print(output.size()) torch.Size([1, 1, 12, 12])
https://pytorch.org/docs/stable/generated/torch.nn.PixelShuffle.html
pytorch docs
default_histogram_fake_quant torch.quantization.fake_quantize.default_histogram_fake_quant alias of functools.partial(, observer=, quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True){}
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.default_histogram_fake_quant.html
pytorch docs
torch.Tensor.min Tensor.min(dim=None, keepdim=False) See "torch.min()"
https://pytorch.org/docs/stable/generated/torch.Tensor.min.html
pytorch docs
Conv3d class torch.ao.nn.qat.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', qconfig=None, device=None, dtype=None) A Conv3d module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as torch.nn.Conv3d, please see https ://pytorch.org/docs/stable/nn.html?highlight=conv3d#torch.nn.Conv3d for documentation. Similar to torch.nn.Conv3d, with FakeQuantize modules initialized to default. Variables: weight_fake_quant -- fake quant module for weight
https://pytorch.org/docs/stable/generated/torch.ao.nn.qat.Conv3d.html
pytorch docs
PoissonNLLLoss class torch.nn.PoissonNLLLoss(log_input=True, full=False, size_average=None, eps=1e-08, reduce=None, reduction='mean') Negative log likelihood loss with Poisson distribution of target. The loss can be described as: \text{target} \sim \mathrm{Poisson}(\text{input}) \text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input}) + \log(\text{target!}) The last term can be omitted or approximated with Stirling formula. The approximation is used for target values more than 1. For targets less or equal to 1 zeros are added to the loss. Parameters: * log_input (bool, optional) -- if "True" the loss is computed as \exp(\text{input}) - \text{target}\text{input}, if "False" the loss is \text{input} - \text{target}\log(\text{input}+\text{eps}). * **full** (*bool**, **optional*) --
https://pytorch.org/docs/stable/generated/torch.nn.PoissonNLLLoss.html
pytorch docs
full (bool, optional) -- whether to compute full loss, i. e. to add the Stirling approximation term \text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}). size_average (bool, optional) -- Deprecated (see "reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" eps (float, optional) -- Small value to avoid evaluation of \log(0) when "log_input = False". Default: 1e-8 reduce (bool, optional) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on
https://pytorch.org/docs/stable/generated/torch.nn.PoissonNLLLoss.html
pytorch docs
"size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Examples: >>> loss = nn.PoissonNLLLoss() >>> log_input = torch.randn(5, 2, requires_grad=True) >>> target = torch.randn(5, 2) >>> output = loss(log_input, target) >>> output.backward() Shape: * Input: (*), where * means any number of dimensions. * Target: (*), same shape as the input.
https://pytorch.org/docs/stable/generated/torch.nn.PoissonNLLLoss.html
pytorch docs
Target: (*), same shape as the input. Output: scalar by default. If "reduction" is "'none'", then (*), the same shape as the input.
https://pytorch.org/docs/stable/generated/torch.nn.PoissonNLLLoss.html
pytorch docs
torch._foreach_acos torch._foreach_acos(self: List[Tensor]) -> List[Tensor] Apply "torch.acos()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_acos.html
pytorch docs
torch.bincount torch.bincount(input, weights=None, minlength=0) -> Tensor Count the frequency of each value in an array of non-negative ints. The number of bins (size 1) is one larger than the largest value in "input" unless "input" is empty, in which case the result is a tensor of size 0. If "minlength" is specified, the number of bins is at least "minlength" and if "input" is empty, then the result is tensor of size "minlength" filled with zeros. If "n" is the value at position "i", "out[n] += weights[i]" if "weights" is specified else "out[n] += 1". Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information. Parameters: * input (Tensor) -- 1-d int tensor * **weights** (*Tensor*) -- optional, weight for each value in the input tensor. Should be of same size as input tensor.
https://pytorch.org/docs/stable/generated/torch.bincount.html
pytorch docs
minlength (int) -- optional, minimum number of bins. Should be non-negative. Returns: a tensor of shape "Size([max(input) + 1])" if "input" is non- empty, else "Size(0)" Return type: output (Tensor) Example: >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) >>> weights = torch.linspace(0, 1, steps=5) >>> input, weights (tensor([4, 3, 6, 3, 4]), tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> torch.bincount(input) tensor([0, 0, 0, 2, 2, 0, 1]) >>> input.bincount(weights) tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
https://pytorch.org/docs/stable/generated/torch.bincount.html
pytorch docs
torch.tril torch.tril(input, diagonal=0, *, out=None) -> Tensor Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices "input", the other elements of the result tensor "out" are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. The argument "diagonal" controls which diagonal to consider. If "diagonal" = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices \lbrace (i, i) \rbrace for i \in [0, \min{d_{1}, d_{2}} - 1] where d_{1}, d_{2} are the dimensions of the matrix. Parameters: * input (Tensor) -- the input tensor. * **diagonal** (*int**, **optional*) -- the diagonal to consider Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.tril.html
pytorch docs
Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(3, 3) >>> a tensor([[-1.0813, -0.8619, 0.7105], [ 0.0935, 0.1380, 2.2112], [-0.3409, -0.9828, 0.0289]]) >>> torch.tril(a) tensor([[-1.0813, 0.0000, 0.0000], [ 0.0935, 0.1380, 0.0000], [-0.3409, -0.9828, 0.0289]]) >>> b = torch.randn(4, 6) >>> b tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) >>> torch.tril(b, diagonal=1) tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000],
https://pytorch.org/docs/stable/generated/torch.tril.html
pytorch docs
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) >>> torch.tril(b, diagonal=-1) tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]])
https://pytorch.org/docs/stable/generated/torch.tril.html
pytorch docs
torch._foreach_expm1 torch._foreach_expm1(self: List[Tensor]) -> List[Tensor] Apply "torch.expm1()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_expm1.html
pytorch docs
torch.cuda.max_memory_allocated torch.cuda.max_memory_allocated(device=None) Returns the maximum GPU memory occupied by tensors in bytes for a given device. By default, this returns the peak allocated memory since the beginning of this program. "reset_peak_memory_stats()" can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak allocated memory usage of each iteration in a training loop. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Return type: int Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_allocated.html
pytorch docs
torch.cuda.caching_allocator_delete torch.cuda.caching_allocator_delete(mem_ptr) Deletes memory allocated using the CUDA memory allocator. Memory allocated with "caching_allocator_alloc()". is freed here. The associated device and stream are tracked inside the allocator. Parameters: mem_ptr (int) -- memory address to be freed by the allocator. Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.caching_allocator_delete.html
pytorch docs
torch.Tensor.multinomial Tensor.multinomial(num_samples, replacement=False, *, generator=None) -> Tensor See "torch.multinomial()"
https://pytorch.org/docs/stable/generated/torch.Tensor.multinomial.html
pytorch docs
torch.foreach_zero torch.foreach_zero(self: List[Tensor]) -> None Apply "torch.zero()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_zero_.html
pytorch docs
torch.Tensor.round_ Tensor.round_(decimals=0) -> Tensor In-place version of "round()"
https://pytorch.org/docs/stable/generated/torch.Tensor.round_.html
pytorch docs
torch.Tensor.msort Tensor.msort() -> Tensor See "torch.msort()"
https://pytorch.org/docs/stable/generated/torch.Tensor.msort.html
pytorch docs
torch.Tensor.resolve_conj Tensor.resolve_conj() -> Tensor See "torch.resolve_conj()"
https://pytorch.org/docs/stable/generated/torch.Tensor.resolve_conj.html
pytorch docs
LazyConvTranspose1d class torch.nn.LazyConvTranspose1d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) A "torch.nn.ConvTranspose1d" module with lazy initialization of the "in_channels" argument of the "ConvTranspose1d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight and bias. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * out_channels (int) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- "dilation * (kernel_size - 1) - padding" zero-padding will be added to
https://pytorch.org/docs/stable/generated/torch.nn.LazyConvTranspose1d.html
pytorch docs
both sides of the input. Default: 0 * **output_padding** (*int** or **tuple**, **optional*) -- Additional size added to one side of the output shape. Default: 0 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 See also: "torch.nn.ConvTranspose1d" and "torch.nn.modules.lazy.LazyModuleMixin" cls_to_become alias of "ConvTranspose1d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyConvTranspose1d.html
pytorch docs
torch.Tensor.erfinv_ Tensor.erfinv_() -> Tensor In-place version of "erfinv()"
https://pytorch.org/docs/stable/generated/torch.Tensor.erfinv_.html
pytorch docs
torch.Tensor.rot90 Tensor.rot90(k, dims) -> Tensor See "torch.rot90()"
https://pytorch.org/docs/stable/generated/torch.Tensor.rot90.html
pytorch docs
torch.Tensor.tril_ Tensor.tril_(diagonal=0) -> Tensor In-place version of "tril()"
https://pytorch.org/docs/stable/generated/torch.Tensor.tril_.html
pytorch docs
torch.Tensor.float Tensor.float(memory_format=torch.preserve_format) -> Tensor "self.float()" is equivalent to "self.to(torch.float32)". See "to()". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.Tensor.float.html
pytorch docs
Embedding class torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None) A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. Parameters: * num_embeddings (int) -- size of the dictionary of embeddings * **embedding_dim** (*int*) -- the size of each embedding vector * **padding_idx** (*int**, **optional*) -- If specified, the entries at "padding_idx" do not contribute to the gradient; therefore, the embedding vector at "padding_idx" is not updated during training, i.e. it remains as a fixed "pad". For a newly constructed Embedding, the embedding vector at
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
"padding_idx" will default to all zeros, but can be updated to another value to be used as the padding vector. * **max_norm** (*float**, **optional*) -- If given, each embedding vector with norm larger than "max_norm" is renormalized to have norm "max_norm". * **norm_type** (*float**, **optional*) -- The p of the p-norm to compute for the "max_norm" option. Default "2". * **scale_grad_by_freq** (*bool**, **optional*) -- If given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default "False". * **sparse** (*bool**, **optional*) -- If "True", gradient w.r.t. "weight" matrix will be a sparse tensor. See Notes for more details regarding sparse gradients. Variables: weight (Tensor) -- the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from \mathcal{N}(0, 1) Shape:
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
\mathcal{N}(0, 1) Shape: * Input: (*), IntTensor or LongTensor of arbitrary shape containing the indices to extract * Output: (*, H), where *** is the input shape and H=\text{embedding\_dim} Note: Keep in mind that only a limited number of optimizers support sparse gradients: currently it's "optim.SGD" (*CUDA* and *CPU*), "optim.SparseAdam" (*CUDA* and *CPU*) and "optim.Adagrad" (*CPU*) Note: When "max_norm" is not "None", "Embedding"'s forward method will modify the "weight" tensor in-place. Since tensors needed for gradient computations cannot be modified in-place, performing a differentiable operation on "Embedding.weight" before calling "Embedding"'s forward method requires cloning "Embedding.weight" when "max_norm" is not "None". For example: n, d, m = 3, 5, 7 embedding = nn.Embedding(n, d, max_norm=True) W = torch.randn((m, d), requires_grad=True) idx = torch.tensor([1, 2])
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
idx = torch.tensor([1, 2]) a = embedding.weight.clone() @ W.t() # weight must be cloned for this to be differentiable b = embedding(idx) @ W.t() # modifies weight in-place out = (a.unsqueeze(0) + b.unsqueeze(1)) loss = out.sigmoid().prod() loss.backward() Examples: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding = nn.Embedding(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]) >>> embedding(input) tensor([[[-0.0251, -1.6902, 0.7172], [-0.6431, 0.0748, 0.6969], [ 1.4970, 1.3448, -0.9685], [-0.3677, -2.7265, -0.1685]], [[ 1.4970, 1.3448, -0.9685], [ 0.4362, -0.4004, 0.9400], [-0.6431, 0.0748, 0.6969], [ 0.9124, -2.3616, 1.1151]]]) >>> # example with padding_idx >>> embedding = nn.Embedding(10, 3, padding_idx=0)
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
input = torch.LongTensor([[0, 2, 0, 5]]) >>> embedding(input) tensor([[[ 0.0000, 0.0000, 0.0000], [ 0.1535, -2.0309, 0.9315], [ 0.0000, 0.0000, 0.0000], [-0.1655, 0.9897, 0.0635]]]) >>> # example of changing `pad` vector >>> padding_idx = 0 >>> embedding = nn.Embedding(3, 3, padding_idx=padding_idx) >>> embedding.weight Parameter containing: tensor([[ 0.0000, 0.0000, 0.0000], [-0.7895, -0.7089, -0.0364], [ 0.6778, 0.5803, 0.2678]], requires_grad=True) >>> with torch.no_grad(): ... embedding.weight[padding_idx] = torch.ones(3) >>> embedding.weight Parameter containing: tensor([[ 1.0000, 1.0000, 1.0000], [-0.7895, -0.7089, -0.0364], [ 0.6778, 0.5803, 0.2678]], requires_grad=True)
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
classmethod from_pretrained(embeddings, freeze=True, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False) Creates Embedding instance from given 2-dimensional FloatTensor. Parameters: * **embeddings** (*Tensor*) -- FloatTensor containing weights for the Embedding. First dimension is being passed to Embedding as "num_embeddings", second as "embedding_dim". * **freeze** (*bool**, **optional*) -- If "True", the tensor does not get updated in the learning process. Equivalent to "embedding.weight.requires_grad = False". Default: "True" * **padding_idx** (*int**, **optional*) -- If specified, the entries at "padding_idx" do not contribute to the gradient; therefore, the embedding vector at "padding_idx" is not updated during training, i.e. it remains as a fixed "pad". * **max_norm** (*float**, **optional*) -- See module
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
initialization documentation. * **norm_type** (*float**, **optional*) -- See module initialization documentation. Default "2". * **scale_grad_by_freq** (*bool**, **optional*) -- See module initialization documentation. Default "False". * **sparse** (*bool**, **optional*) -- See module initialization documentation. Examples: >>> # FloatTensor containing pretrained weights >>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]]) >>> embedding = nn.Embedding.from_pretrained(weight) >>> # Get embeddings for index 1 >>> input = torch.LongTensor([1]) >>> embedding(input) tensor([[ 4.0000, 5.1000, 6.3000]])
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
pytorch docs
torch.Tensor.amax Tensor.amax(dim=None, keepdim=False) -> Tensor See "torch.amax()"
https://pytorch.org/docs/stable/generated/torch.Tensor.amax.html
pytorch docs
torch.sparse_csc_tensor torch.sparse_csc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a sparse tensor in CSC (Compressed Sparse Column) with specified values at the given "ccol_indices" and "row_indices". Sparse matrix multiplication operations in CSC format are typically faster than that for sparse tensors in COO format. Make you have a look at the note on the data type of the indices. Note: If the "device" argument is not specified the device of the given "values" and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Parameters: * ccol_indices (array_like) -- (B+1)-dimensional array of size "(*batchsize, ncols + 1)". The last element of each
https://pytorch.org/docs/stable/generated/torch.sparse_csc_tensor.html
pytorch docs
batch is the number of non-zeros. This tensor encodes the index in values and row_indices depending on where the given column starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given column. * **row_indices** (*array_like*) -- Row co-ordinates of each element in values. (B+1)-dimensional tensor with the same length as values. * **values** (*array_list*) -- Initial values for the tensor. Can be a list, tuple, NumPy "ndarray", scalar, and other types that represents a (1+K)-dimensional tensor where "K" is the number of dense dimensions. * **size** (list, tuple, "torch.Size", optional) -- Size of the sparse tensor: "(*batchsize, nrows, ncols, *densesize)". If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.sparse_csc_tensor.html
pytorch docs
Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if None, infers data type from "values". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **check_invariants** (*bool**, **optional*) -- If sparse tensor invariants are checked. Default: as returned by "torch.sparse.check_sparse_tensor_invariants.is_enabled()", initially False. Example:: >>> ccol_indices = [0, 2, 4] >>> row_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4]
https://pytorch.org/docs/stable/generated/torch.sparse_csc_tensor.html
pytorch docs
values = [1, 2, 3, 4] >>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), ... torch.tensor(row_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(ccol_indices=tensor([0, 2, 4]), row_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csc)
https://pytorch.org/docs/stable/generated/torch.sparse_csc_tensor.html
pytorch docs
torch.Tensor.trace Tensor.trace() -> Tensor See "torch.trace()"
https://pytorch.org/docs/stable/generated/torch.Tensor.trace.html
pytorch docs
torch.cuda.memory_summary torch.cuda.memory_summary(device=None, abbreviated=False) Returns a human-readable printout of the current memory allocator statistics for a given device. This can be useful to display periodically during training, or when handling out-of-memory exceptions. Parameters: * device (torch.device or int, optional) -- selected device. Returns printout for the current device, given by "current_device()", if "device" is "None" (default). * **abbreviated** (*bool**, **optional*) -- whether to return an abbreviated summary (default: False). Return type: str Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.memory_summary.html
pytorch docs
torch.diff torch.diff(input, n=1, dim=- 1, prepend=None, append=None) -> Tensor Computes the n-th forward difference along the given dimension. The first-order differences are given by out[i] = input[i + 1] - input[i]. Higher-order differences are calculated by using "torch.diff()" recursively. Parameters: * input (Tensor) -- the tensor to compute the differences on * **n** (*int**, **optional*) -- the number of times to recursively compute the difference * **dim** (*int**, **optional*) -- the dimension to compute the difference along. Default is the last dimension. * **prepend** (*Tensor**, **optional*) -- values to prepend or append to "input" along "dim" before computing the difference. Their dimensions must be equivalent to that of input, and their shapes must match input's shape except on "dim". * **append** (*Tensor**, **optional*) -- values to prepend or
https://pytorch.org/docs/stable/generated/torch.diff.html
pytorch docs
append to "input" along "dim" before computing the difference. Their dimensions must be equivalent to that of input, and their shapes must match input's shape except on "dim". Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([1, 3, 2]) >>> torch.diff(a) tensor([ 2, -1]) >>> b = torch.tensor([4, 5]) >>> torch.diff(a, append=b) tensor([ 2, -1, 2, 1]) >>> c = torch.tensor([[1, 2, 3], [3, 4, 5]]) >>> torch.diff(c, dim=0) tensor([[2, 2, 2]]) >>> torch.diff(c, dim=1) tensor([[1, 1], [1, 1]])
https://pytorch.org/docs/stable/generated/torch.diff.html
pytorch docs
torch.Tensor.eq_ Tensor.eq_(other) -> Tensor In-place version of "eq()"
https://pytorch.org/docs/stable/generated/torch.Tensor.eq_.html
pytorch docs
torch.addbmm torch.addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor Performs a batch matrix-matrix product of matrices stored in "batch1" and "batch2", with a reduced add step (all matrix multiplications get accumulated along the first dimension). "input" is added to the final result. "batch1" and "batch2" must be 3-D tensors each containing the same number of matrices. If "batch1" is a (b \times n \times m) tensor, "batch2" is a (b \times m \times p) tensor, "input" must be broadcastable with a (n \times p) tensor and "out" will be a (n \times p) tensor. out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) If "beta" is 0, then "input" will be ignored, and nan and inf in it will not be propagated. For inputs of type FloatTensor or DoubleTensor, arguments "beta" and "alpha" must be real numbers, otherwise they should be integers.
https://pytorch.org/docs/stable/generated/torch.addbmm.html
pytorch docs
integers. This operator supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Parameters: * batch1 (Tensor) -- the first batch of matrices to be multiplied * **batch2** (*Tensor*) -- the second batch of matrices to be multiplied Keyword Arguments: * beta (Number, optional) -- multiplier for "input" (\beta) * **input** (*Tensor*) -- matrix to be added * **alpha** (*Number**, **optional*) -- multiplier for *batch1 @ batch2* (\alpha) * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
https://pytorch.org/docs/stable/generated/torch.addbmm.html
pytorch docs
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
https://pytorch.org/docs/stable/generated/torch.addbmm.html
pytorch docs
ScriptModule class torch.jit.ScriptModule A wrapper around C++ "torch::jit::Module". "ScriptModule"s contain methods, attributes, parameters, and constants. These can be accessed the same way as on a normal "nn.Module". add_module(name, module) Adds a child module to the current module. The module can be accessed as an attribute using the given name. Parameters: * **name** (*str*) -- name of the child module. The child module can be accessed from this module using the given name * **module** (*Module*) -- child module to be added to the module. apply(fn) Applies "fn" recursively to every submodule (as returned by ".children()") as well as self. Typical use includes initializing the parameters of a model (see also torch.nn.init). Parameters: **fn** ("Module" -> None) -- function to be applied to each submodule Returns: self Return type:
https://pytorch.org/docs/stable/generated/torch.jit.ScriptModule.html
pytorch docs
Returns: self Return type: Module Example: >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) bfloat16() Casts all floating point parameters and buffers to "bfloat16" datatype. Note:
https://pytorch.org/docs/stable/generated/torch.jit.ScriptModule.html
pytorch docs
datatype. Note: This method modifies the module in-place. Returns: self Return type: Module buffers(recurse=True) Returns an iterator over module buffers. Parameters: **recurse** (*bool*) -- if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Yields: *torch.Tensor* -- module buffer Return type: *Iterator*[*Tensor*] Example: >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L) children() Returns an iterator over immediate children modules. Yields: *Module* -- a child module Return type: *Iterator*[*Module*] property code Returns a pretty-printed representation (as valid Python syntax)
https://pytorch.org/docs/stable/generated/torch.jit.ScriptModule.html
pytorch docs