Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Russian
Size:
< 1K
Libraries:
Datasets
pandas
License:
File size: 4,884 Bytes
f608e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
task_categories:
- question-answering
language:
- ru
pretty_name: T-math
size_categories:
- n<1K
dataset_info:
  features:
  - name: question
    dtype: string
  - name: verifiable_answer
    dtype: string
  - name: year
    dtype: string
  - name: grade
    dtype: string
  - name: full_answer
    dtype: string
  - name: solutions
    list: string
  - name: task_complexity
    dtype: string
  - name: olympiad
    dtype: string
  splits:
  - name: train
    num_bytes: 510955
    num_examples: 331
  download_size: 228445
  dataset_size: 510955
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


# 🧮 T-Math
**T-Math** is a dataset of Russian math olympiad problems created to assess the reasoning capabilities of large language models (LLMs) in mathematics.  
It includes 331 problems from the [All-Russian School Olympiad](https://vos.olimpiada.ru/) and the [Moscow Olympiad](https://mos.olimpiada.ru) for high school students, covering the period from 1998 to 2025.  
The tasks and their ground-truth answers were extracted automatically and subsequently verified by human assessors.

Key features:
- Challenging problems that require multi-step reasoning (median completion length for Qwen3-32B is 16K tokens), sourced from top-tier Russian olympiads
- Easily verifiable: answers are numeric-only and checked using the `math_verify` library to compare mathematical expressions
- Not yet saturated, even by frontier reasoning models such as Gemini 2.5 Pro and DeepSeek R1
- Contains 331 samples — the largest Russian math olympiad-level benchmark — making it more statistically robust compared to smaller datasets like the 30-sample AIME benchmark


## 📊 Evaluation Results

|Model|pass@1|
|--|--|
|o4-mini-high|**0.73**|
|DeepSeek-R1-0528|<ins>0.71</ins>|
|Gemini-2.5-Pro|0.70|
|Claude Sonnet 4|0.56|
|T-pro-it-2.0|0.54|
|Qwen3-32B|0.53|


## 🗂️ Filtering procedure

The text was extracted from PDFs using [Qwen/Qwen2.5-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct). Tasks, along with their ground-truth and verifiable (numeric) answers, were extracted via LLM calls.
We filtered out invalid questions using an LLM based on the following criteria:
- Tasks requiring multiple answers
- Tasks without a single correct answer
- Theorem-like tasks where the main goal is proving a statement, making automatic verification non-trivial
- Tasks with non-numeric answers, to simplify answer comparison
- Tasks that cannot be solved without access to an accompanying image

Next, we removed tasks of moderate difficulty where Qwen3-8B achieved a 100% pass@16 rate, as they offer limited value for benchmarking reasoning.
Finally, both the questions and the verifiable answers were manually reviewed by assessors to ensure consistency with the original sources.


## 🛠️ How to use
Add the following system prompt to guide the model to return the final answer in a \boxed{} tag, making it easier to parse:
```
Решите следующую математическую задачу эффективно и ясно. Последняя строка вашего ответа должна иметь следующий формат:
'Таким образом, окончательный ответ: $\boxed{ОТВЕТ}$.' (без кавычек), где ОТВЕТ - это просто окончательное число или выражение, решающее задачу.
Думайте шаг за шагом перед ответом.
```

You can then use the following code snippet with the math_verify library to compare mathematical expressions:
```python
from math_verify import LatexExtractionConfig, parse, verify
from latex2sympy2_extended import NormalizationConfig


def accuracy_reward(completion: str, solution: str) -> float:
    """Reward function that checks if the completion matches the ground truth."""
    # parse the gold solution (assumed to always succeed)
    gold_parsed = parse(solution, extraction_mode="first_match")

    # parse the model’s completion with the same LaTeX extraction settings
    answer_parsed = parse(
        completion,
        extraction_config=[
            LatexExtractionConfig(
                normalization_config=NormalizationConfig(
                    nits=False,
                    malformed_operators=False,
                    basic_latex=True,
                    equations=True,
                    boxed="all",
                    units=True,
                )
            )
        ],
        extraction_mode="first_match",
    )

    # verify and return binary reward; on error, print and give 0.0
    try:
        return float(verify(gold_parsed, answer_parsed))
    except Exception as e:
        print(f"verify failed: {e}, answer: {answer_parsed}, gold: {gold_parsed}")
        return 0.0


```