file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Analysis/NormedSpace/MStructure.lean
IsLprojection.mul
[ { "state_after": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\n⊢ ∀ (x : X), ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\n⊢ IsLprojection X (P * Q)", "tactic": "refine' ⟨IsIdempotentElem.mul_of_commute (h₁.commute h₂) h₁.proj h₂.proj, _⟩" }, { "state_after": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\n⊢ ∀ (x : X), ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "tactic": "intro x" }, { "state_after": "case refine'_1\nX : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ ≤ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖\n\ncase refine'_2\nX : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ ≤ ‖x‖", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "tactic": "refine' le_antisymm _ _" }, { "state_after": "no goals", "state_before": "case refine'_1\nX : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ ≤ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "tactic": "calc\n ‖x‖ = ‖(P * Q) • x + (x - (P * Q) • x)‖ := by rw [add_sub_cancel'_right ((P * Q) • x) x]\n _ ≤ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖ := by apply norm_add_le\n _ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ := by rw [sub_smul, one_smul]" }, { "state_after": "no goals", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ = ‖(P * Q) • x + (x - (P * Q) • x)‖", "tactic": "rw [add_sub_cancel'_right ((P * Q) • x) x]" }, { "state_after": "no goals", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖(P * Q) • x + (x - (P * Q) • x)‖ ≤ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖", "tactic": "apply norm_add_le" }, { "state_after": "no goals", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖(P * Q) • x‖ + ‖x - (P * Q) • x‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "tactic": "rw [sub_smul, one_smul]" }, { "state_after": "no goals", "state_before": "case refine'_2\nX : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ ≤ ‖x‖", "tactic": "calc\n ‖x‖ = ‖P • Q • x‖ + (‖Q • x - P • Q • x‖ + ‖x - Q • x‖) := by\n rw [h₂.Lnorm x, h₁.Lnorm (Q • x), sub_smul, one_smul, sub_smul, one_smul, add_assoc]\n _ ≥ ‖P • Q • x‖ + ‖Q • x - P • Q • x + (x - Q • x)‖ :=\n ((add_le_add_iff_left ‖P • Q • x‖).mpr (norm_add_le (Q • x - P • Q • x) (x - Q • x)))\n _ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖ := by\n rw [sub_add_sub_cancel', sub_smul, one_smul, mul_smul]" }, { "state_after": "no goals", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖x‖ = ‖P • Q • x‖ + (‖Q • x - P • Q • x‖ + ‖x - Q • x‖)", "tactic": "rw [h₂.Lnorm x, h₁.Lnorm (Q • x), sub_smul, one_smul, sub_smul, one_smul, add_assoc]" }, { "state_after": "no goals", "state_before": "X : Type u_2\ninst✝³ : NormedAddCommGroup X\nM : Type u_1\ninst✝² : Ring M\ninst✝¹ : Module M X\ninst✝ : FaithfulSMul M X\nP Q : M\nh₁ : IsLprojection X P\nh₂ : IsLprojection X Q\nx : X\n⊢ ‖P • Q • x‖ + ‖Q • x - P • Q • x + (x - Q • x)‖ = ‖(P * Q) • x‖ + ‖(1 - P * Q) • x‖", "tactic": "rw [sub_add_sub_cancel', sub_smul, one_smul, mul_smul]" } ]
[ 165, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 150, 1 ]
Mathlib/Data/Nat/Totient.lean
Nat.totient_prime
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : Prime p\n⊢ φ p = p - 1", "tactic": "rw [← pow_one p, totient_prime_pow hp] <;> simp" } ]
[ 229, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/CategoryTheory/Generator.lean
CategoryTheory.IsCospearator.isCodetector
[]
[ 453, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 452, 1 ]
Mathlib/MeasureTheory/Covering/Differentiation.lean
VitaliFamily.withDensity_le_mul
[ { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have t_ne_zero' : t ≠ 0 := (zero_lt_one.trans ht).ne'" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have t_ne_zero : (t : ℝ≥0∞) ≠ 0 := by simpa only [ENNReal.coe_eq_zero, Ne.def] using t_ne_zero'" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "let ν := μ.withDensity (v.limRatioMeas hρ)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "let f := v.limRatioMeas hρ" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have f_meas : Measurable f := v.limRatioMeas_measurable hρ" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have A : ν (s ∩ f ⁻¹' {0}) ≤ ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' {0}) := by\n apply le_trans _ (zero_le _)\n have M : MeasurableSet (s ∩ f ⁻¹' {0}) := hs.inter (f_meas (measurableSet_singleton _))\n simp only [nonpos_iff_eq_zero, M, withDensity_apply, lintegral_eq_zero_iff f_meas]\n apply (ae_restrict_iff' M).2\n exact eventually_of_forall fun x hx => hx.2" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have B : ν (s ∩ f ⁻¹' {∞}) ≤ ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' {∞}) := by\n apply le_trans (le_of_eq _) (zero_le _)\n apply withDensity_absolutelyContinuous μ _\n rw [← nonpos_iff_eq_zero]\n exact (measure_mono (inter_subset_right _ _)).trans (v.measure_limRatioMeas_top hρ).le" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nC : ∀ (n : ℤ), ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "have C :\n ∀ n : ℤ,\n ν (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) ≤\n ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) := by\n intro n\n let I := Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))\n have M : MeasurableSet (s ∩ f ⁻¹' I) := hs.inter (f_meas measurableSet_Ico)\n simp only [M, withDensity_apply, coe_nnreal_smul_apply]\n calc\n (∫⁻ x in s ∩ f ⁻¹' I, f x ∂μ) ≤ ∫⁻ x in s ∩ f ⁻¹' I, (t : ℝ≥0∞) ^ (n + 1) ∂μ :=\n lintegral_mono_ae ((ae_restrict_iff' M).2 (eventually_of_forall fun x hx => hx.2.2.le))\n _ = (t : ℝ≥0∞) ^ (n + 1) * μ (s ∩ f ⁻¹' I) := by\n simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter]\n _ = (t : ℝ≥0∞) ^ (2 : ℤ) * ((t : ℝ≥0∞) ^ (n - 1) * μ (s ∩ f ⁻¹' I)) := by\n rw [← mul_assoc, ← ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top]\n congr 2\n abel\n _ ≤ (t : ℝ≥0∞) ^ 2 * ρ (s ∩ f ⁻¹' I) := by\n refine' mul_le_mul_left' _ _\n rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne']\n apply v.mul_measure_le_of_subset_lt_limRatioMeas hρ\n intro x hx\n apply lt_of_lt_of_le _ hx.2.1\n rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne', ENNReal.coe_lt_coe, sub_eq_add_neg,\n zpow_add₀ t_ne_zero']\n conv_rhs => rw [← mul_one (t ^ n)]\n refine' mul_lt_mul' le_rfl _ (zero_le _) (NNReal.zpow_pos t_ne_zero' _)\n rw [zpow_neg_one]\n exact inv_lt_one ht" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nC : ∀ (n : ℤ), ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))\n⊢ ↑↑(withDensity μ (limRatioMeas v hρ)) s ≤ ↑t ^ 2 * ↑↑ρ s", "tactic": "calc\n ν s =\n ν (s ∩ f ⁻¹' {0}) + ν (s ∩ f ⁻¹' {∞}) +\n ∑' n : ℤ, ν (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) :=\n measure_eq_measure_preimage_add_measure_tsum_Ico_zpow ν f_meas hs ht\n _ ≤\n ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' {0}) + ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' {∞}) +\n ∑' n : ℤ, ((t : ℝ≥0∞) ^ 2 • ρ) (s ∩ f ⁻¹' Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))) :=\n (add_le_add (add_le_add A B) (ENNReal.tsum_le_tsum C))\n _ = ((t : ℝ≥0∞) ^ 2 • ρ) s :=\n (measure_eq_measure_preimage_add_measure_tsum_Ico_zpow ((t : ℝ≥0∞) ^ 2 • ρ) f_meas hs ht).symm" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\n⊢ ↑t ≠ 0", "tactic": "simpa only [ENNReal.coe_eq_zero, Ne.def] using t_ne_zero'" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\n⊢ ↑↑ν (s ∩ f ⁻¹' {0}) ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\n⊢ ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})", "tactic": "apply le_trans _ (zero_le _)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ ↑↑ν (s ∩ f ⁻¹' {0}) ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\n⊢ ↑↑ν (s ∩ f ⁻¹' {0}) ≤ 0", "tactic": "have M : MeasurableSet (s ∩ f ⁻¹' {0}) := hs.inter (f_meas (measurableSet_singleton _))" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ limRatioMeas v hρ =ᶠ[ae (Measure.restrict μ (s ∩ limRatioMeas v hρ ⁻¹' {0}))] 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ ↑↑ν (s ∩ f ⁻¹' {0}) ≤ 0", "tactic": "simp only [nonpos_iff_eq_zero, M, withDensity_apply, lintegral_eq_zero_iff f_meas]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ s ∩ f ⁻¹' {0} → limRatioMeas v hρ x = OfNat.ofNat 0 x", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ limRatioMeas v hρ =ᶠ[ae (Measure.restrict μ (s ∩ limRatioMeas v hρ ⁻¹' {0}))] 0", "tactic": "apply (ae_restrict_iff' M).2" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nM : MeasurableSet (s ∩ f ⁻¹' {0})\n⊢ ∀ᵐ (x : α) ∂μ, x ∈ s ∩ f ⁻¹' {0} → limRatioMeas v hρ x = OfNat.ofNat 0 x", "tactic": "exact eventually_of_forall fun x hx => hx.2" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑ν (s ∩ f ⁻¹' {⊤}) = 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})", "tactic": "apply le_trans (le_of_eq _) (zero_le _)" }, { "state_after": "case a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) = 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑ν (s ∩ f ⁻¹' {⊤}) = 0", "tactic": "apply withDensity_absolutelyContinuous μ _" }, { "state_after": "case a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) ≤ 0", "state_before": "case a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) = 0", "tactic": "rw [← nonpos_iff_eq_zero]" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\n⊢ ↑↑μ (s ∩ f ⁻¹' {⊤}) ≤ 0", "tactic": "exact (measure_mono (inter_subset_right _ _)).trans (v.measure_limRatioMeas_top hρ).le" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\n⊢ ∀ (n : ℤ), ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "tactic": "intro n" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "tactic": "let I := Ico ((t : ℝ≥0∞) ^ n) ((t : ℝ≥0∞) ^ (n + 1))" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "tactic": "have M : MeasurableSet (s ∩ f ⁻¹' I) := hs.inter (f_meas measurableSet_Ico)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ (∫⁻ (a : α) in s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)), limRatioMeas v hρ a ∂μ) ≤\n ↑↑(↑t ^ 2 • ρ) (s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑↑ν (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1))) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "tactic": "simp only [M, withDensity_apply, coe_nnreal_smul_apply]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ (∫⁻ (a : α) in s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)), limRatioMeas v hρ a ∂μ) ≤\n ↑↑(↑t ^ 2 • ρ) (s ∩ limRatioMeas v hρ ⁻¹' Ico (↑t ^ n) (↑t ^ (n + 1)))", "tactic": "calc\n (∫⁻ x in s ∩ f ⁻¹' I, f x ∂μ) ≤ ∫⁻ x in s ∩ f ⁻¹' I, (t : ℝ≥0∞) ^ (n + 1) ∂μ :=\n lintegral_mono_ae ((ae_restrict_iff' M).2 (eventually_of_forall fun x hx => hx.2.2.le))\n _ = (t : ℝ≥0∞) ^ (n + 1) * μ (s ∩ f ⁻¹' I) := by\n simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter]\n _ = (t : ℝ≥0∞) ^ (2 : ℤ) * ((t : ℝ≥0∞) ^ (n - 1) * μ (s ∩ f ⁻¹' I)) := by\n rw [← mul_assoc, ← ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top]\n congr 2\n abel\n _ ≤ (t : ℝ≥0∞) ^ 2 * ρ (s ∩ f ⁻¹' I) := by\n refine' mul_le_mul_left' _ _\n rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne']\n apply v.mul_measure_le_of_subset_lt_limRatioMeas hρ\n intro x hx\n apply lt_of_lt_of_le _ hx.2.1\n rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne', ENNReal.coe_lt_coe, sub_eq_add_neg,\n zpow_add₀ t_ne_zero']\n conv_rhs => rw [← mul_one (t ^ n)]\n refine' mul_lt_mul' le_rfl _ (zero_le _) (NNReal.zpow_pos t_ne_zero' _)\n rw [zpow_neg_one]\n exact inv_lt_one ht" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ (∫⁻ (x : α) in s ∩ f ⁻¹' I, ↑t ^ (n + 1) ∂μ) = ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I)", "tactic": "simp only [lintegral_const, MeasurableSet.univ, Measure.restrict_apply, univ_inter]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I) = ↑t ^ (2 + (n - 1)) * ↑↑μ (s ∩ f ⁻¹' I)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I) = ↑t ^ 2 * (↑t ^ (n - 1) * ↑↑μ (s ∩ f ⁻¹' I))", "tactic": "rw [← mul_assoc, ← ENNReal.zpow_add t_ne_zero ENNReal.coe_ne_top]" }, { "state_after": "case e_a.e_a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ n + 1 = 2 + (n - 1)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ (n + 1) * ↑↑μ (s ∩ f ⁻¹' I) = ↑t ^ (2 + (n - 1)) * ↑↑μ (s ∩ f ⁻¹' I)", "tactic": "congr 2" }, { "state_after": "no goals", "state_before": "case e_a.e_a\nα : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ n + 1 = 2 + (n - 1)", "tactic": "abel" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ (n - 1) * ↑↑μ (s ∩ f ⁻¹' I) ≤ ↑↑ρ (s ∩ f ⁻¹' I)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ 2 * (↑t ^ (n - 1) * ↑↑μ (s ∩ f ⁻¹' I)) ≤ ↑t ^ 2 * ↑↑ρ (s ∩ f ⁻¹' I)", "tactic": "refine' mul_le_mul_left' _ _" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑(t ^ (n - 1)) * ↑↑μ (s ∩ f ⁻¹' I) ≤ ↑↑ρ (s ∩ f ⁻¹' I)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑t ^ (n - 1) * ↑↑μ (s ∩ f ⁻¹' I) ≤ ↑↑ρ (s ∩ f ⁻¹' I)", "tactic": "rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne']" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ s ∩ f ⁻¹' I ⊆ {x | ↑(t ^ (n - 1)) < limRatioMeas v hρ x}", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ ↑(t ^ (n - 1)) * ↑↑μ (s ∩ f ⁻¹' I) ≤ ↑↑ρ (s ∩ f ⁻¹' I)", "tactic": "apply v.mul_measure_le_of_subset_lt_limRatioMeas hρ" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ x ∈ {x | ↑(t ^ (n - 1)) < limRatioMeas v hρ x}", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\n⊢ s ∩ f ⁻¹' I ⊆ {x | ↑(t ^ (n - 1)) < limRatioMeas v hρ x}", "tactic": "intro x hx" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ ↑(t ^ (n - 1)) < ↑t ^ n", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ x ∈ {x | ↑(t ^ (n - 1)) < limRatioMeas v hρ x}", "tactic": "apply lt_of_lt_of_le _ hx.2.1" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ n * t ^ (-1) < t ^ n", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ ↑(t ^ (n - 1)) < ↑t ^ n", "tactic": "rw [← ENNReal.coe_zpow (zero_lt_one.trans ht).ne', ENNReal.coe_lt_coe, sub_eq_add_neg,\n zpow_add₀ t_ne_zero']" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ n * t ^ (-1) < t ^ n * 1", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ n * t ^ (-1) < t ^ n", "tactic": "conv_rhs => rw [← mul_one (t ^ n)]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ (-1) < 1", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ n * t ^ (-1) < t ^ n * 1", "tactic": "refine' mul_lt_mul' le_rfl _ (zero_le _) (NNReal.zpow_pos t_ne_zero' _)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t⁻¹ < 1", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t ^ (-1) < 1", "tactic": "rw [zpow_neg_one]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\nm0 : MeasurableSpace α\nμ : MeasureTheory.Measure α\nv : VitaliFamily μ\nE : Type ?u.4684926\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : SecondCountableTopology α\ninst✝² : BorelSpace α\ninst✝¹ : IsLocallyFiniteMeasure μ\nρ : MeasureTheory.Measure α\ninst✝ : IsLocallyFiniteMeasure ρ\nhρ : ρ ≪ μ\ns : Set α\nhs : MeasurableSet s\nt : ℝ≥0\nht : 1 < t\nt_ne_zero' : t ≠ 0\nt_ne_zero : ↑t ≠ 0\nν : MeasureTheory.Measure α := withDensity μ (limRatioMeas v hρ)\nf : α → ℝ≥0∞ := limRatioMeas v hρ\nf_meas : Measurable f\nA : ↑↑ν (s ∩ f ⁻¹' {0}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {0})\nB : ↑↑ν (s ∩ f ⁻¹' {⊤}) ≤ ↑↑(↑t ^ 2 • ρ) (s ∩ f ⁻¹' {⊤})\nn : ℤ\nI : Set ℝ≥0∞ := Ico (↑t ^ n) (↑t ^ (n + 1))\nM : MeasurableSet (s ∩ f ⁻¹' I)\nx : α\nhx : x ∈ s ∩ f ⁻¹' I\n⊢ t⁻¹ < 1", "tactic": "exact inv_lt_one ht" } ]
[ 608, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/Data/Nat/Choose/Basic.lean
Nat.factorial_mul_factorial_dvd_factorial_add
[ { "state_after": "i j : ℕ\nthis : i ! * (i + j - i)! ∣ (i + j)!\n⊢ i ! * j ! ∣ (i + j)!\n\ncase this\ni j : ℕ\n⊢ i ! * (i + j - i)! ∣ (i + j)!", "state_before": "i j : ℕ\n⊢ i ! * j ! ∣ (i + j)!", "tactic": "suffices : i ! * (i + j - i) ! ∣ (i + j)!" }, { "state_after": "case this\ni j : ℕ\n⊢ i ! * (i + j - i)! ∣ (i + j)!", "state_before": "i j : ℕ\nthis : i ! * (i + j - i)! ∣ (i + j)!\n⊢ i ! * j ! ∣ (i + j)!\n\ncase this\ni j : ℕ\n⊢ i ! * (i + j - i)! ∣ (i + j)!", "tactic": ". rwa [add_tsub_cancel_left i j] at this" }, { "state_after": "no goals", "state_before": "case this\ni j : ℕ\n⊢ i ! * (i + j - i)! ∣ (i + j)!", "tactic": "exact factorial_mul_factorial_dvd_factorial (Nat.le_add_right _ _)" }, { "state_after": "no goals", "state_before": "i j : ℕ\nthis : i ! * (i + j - i)! ∣ (i + j)!\n⊢ i ! * j ! ∣ (i + j)!", "tactic": "rwa [add_tsub_cancel_left i j] at this" } ]
[ 191, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 188, 1 ]
Mathlib/Data/Real/Irrational.lean
Irrational.add_cases
[ { "state_after": "q : ℚ\nx y : ℝ\n⊢ ¬x + y ∈ Set.range Rat.cast → ¬x ∈ Set.range Rat.cast ∨ ¬y ∈ Set.range Rat.cast", "state_before": "q : ℚ\nx y : ℝ\n⊢ Irrational (x + y) → Irrational x ∨ Irrational y", "tactic": "delta Irrational" }, { "state_after": "q : ℚ\nx y : ℝ\n⊢ x ∈ Set.range Rat.cast ∧ y ∈ Set.range Rat.cast → x + y ∈ Set.range Rat.cast", "state_before": "q : ℚ\nx y : ℝ\n⊢ ¬x + y ∈ Set.range Rat.cast → ¬x ∈ Set.range Rat.cast ∨ ¬y ∈ Set.range Rat.cast", "tactic": "contrapose!" }, { "state_after": "case intro.intro.intro\nq rx ry : ℚ\n⊢ ↑rx + ↑ry ∈ Set.range Rat.cast", "state_before": "q : ℚ\nx y : ℝ\n⊢ x ∈ Set.range Rat.cast ∧ y ∈ Set.range Rat.cast → x + y ∈ Set.range Rat.cast", "tactic": "rintro ⟨⟨rx, rfl⟩, ⟨ry, rfl⟩⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nq rx ry : ℚ\n⊢ ↑rx + ↑ry ∈ Set.range Rat.cast", "tactic": "exact ⟨rx + ry, cast_add rx ry⟩" } ]
[ 209, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_biUnion₀
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1022236\nδ : Type ?u.1022239\nm : MeasurableSpace α\nμ ν : Measure α\nt : Set β\ns : β → Set α\nht : Set.Countable t\nhm : ∀ (i : β), i ∈ t → NullMeasurableSet (s i)\nhd : Set.Pairwise t (AEDisjoint μ on s)\nf : α → ℝ≥0∞\nthis : Encodable ↑t\n⊢ (∫⁻ (a : α) in ⋃ (i : β) (_ : i ∈ t), s i, f a ∂μ) = ∑' (i : ↑t), ∫⁻ (a : α) in s ↑i, f a ∂μ", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1022236\nδ : Type ?u.1022239\nm : MeasurableSpace α\nμ ν : Measure α\nt : Set β\ns : β → Set α\nht : Set.Countable t\nhm : ∀ (i : β), i ∈ t → NullMeasurableSet (s i)\nhd : Set.Pairwise t (AEDisjoint μ on s)\nf : α → ℝ≥0∞\n⊢ (∫⁻ (a : α) in ⋃ (i : β) (_ : i ∈ t), s i, f a ∂μ) = ∑' (i : ↑t), ∫⁻ (a : α) in s ↑i, f a ∂μ", "tactic": "haveI := ht.toEncodable" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.1022236\nδ : Type ?u.1022239\nm : MeasurableSpace α\nμ ν : Measure α\nt : Set β\ns : β → Set α\nht : Set.Countable t\nhm : ∀ (i : β), i ∈ t → NullMeasurableSet (s i)\nhd : Set.Pairwise t (AEDisjoint μ on s)\nf : α → ℝ≥0∞\nthis : Encodable ↑t\n⊢ (∫⁻ (a : α) in ⋃ (i : β) (_ : i ∈ t), s i, f a ∂μ) = ∑' (i : ↑t), ∫⁻ (a : α) in s ↑i, f a ∂μ", "tactic": "rw [biUnion_eq_iUnion, lintegral_iUnion₀ (SetCoe.forall'.1 hm) (hd.subtype _ _)]" } ]
[ 1200, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1196, 1 ]
Mathlib/LinearAlgebra/DirectSum/Finsupp.lean
finsuppTensorFinsupp'_single_tmul_single
[ { "state_after": "case h.mk\nR : Type u\nM : Type v\nN : Type w\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nS : Type u_1\ninst✝ : CommRing S\nα : Type u_2\nβ : Type u_3\na : α\nb : β\nr₁ r₂ : S\na' : α\nb' : β\n⊢ ↑(↑(finsuppTensorFinsupp' S α β) (Finsupp.single a r₁ ⊗ₜ[S] Finsupp.single b r₂)) (a', b') =\n ↑(Finsupp.single (a, b) (r₁ * r₂)) (a', b')", "state_before": "R : Type u\nM : Type v\nN : Type w\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nS : Type u_1\ninst✝ : CommRing S\nα : Type u_2\nβ : Type u_3\na : α\nb : β\nr₁ r₂ : S\n⊢ ↑(finsuppTensorFinsupp' S α β) (Finsupp.single a r₁ ⊗ₜ[S] Finsupp.single b r₂) = Finsupp.single (a, b) (r₁ * r₂)", "tactic": "ext ⟨a', b'⟩" }, { "state_after": "no goals", "state_before": "case h.mk\nR : Type u\nM : Type v\nN : Type w\ninst✝⁵ : Ring R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : AddCommGroup N\ninst✝¹ : Module R N\nS : Type u_1\ninst✝ : CommRing S\nα : Type u_2\nβ : Type u_3\na : α\nb : β\nr₁ r₂ : S\na' : α\nb' : β\n⊢ ↑(↑(finsuppTensorFinsupp' S α β) (Finsupp.single a r₁ ⊗ₜ[S] Finsupp.single b r₂)) (a', b') =\n ↑(Finsupp.single (a, b) (r₁ * r₂)) (a', b')", "tactic": "aesop (add norm [Finsupp.single_apply])" } ]
[ 107, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 103, 1 ]
Mathlib/MeasureTheory/Integral/IntegrableOn.lean
MeasureTheory.integrable_indicator_iff
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1634475\nE : Type u_2\nF : Type ?u.1634481\ninst✝¹ : MeasurableSpace α\ninst✝ : NormedAddCommGroup E\nf g : α → E\ns t : Set α\nμ ν : Measure α\nhs : MeasurableSet s\n⊢ Integrable (indicator s f) ↔ IntegrableOn f s", "tactic": "simp [IntegrableOn, Integrable, HasFiniteIntegral, nnnorm_indicator_eq_indicator_nnnorm,\n ENNReal.coe_indicator, lintegral_indicator _ hs, aestronglyMeasurable_indicator_iff hs]" } ]
[ 263, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Algebra/GroupPower/Basic.lean
pow_ite
[ { "state_after": "no goals", "state_before": "α : Type ?u.44\nM : Type u\nN : Type v\nG : Type w\nH : Type x\nA : Type y\nB : Type z\nR : Type u₁\nS : Type u₂\ninst✝¹ : Pow M ℕ\nP : Prop\ninst✝ : Decidable P\na : M\nb c : ℕ\n⊢ (a ^ if P then b else c) = if P then a ^ b else a ^ c", "tactic": "split_ifs <;> rfl" } ]
[ 56, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.Compacts.coe_map
[]
[ 141, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 1 ]
Mathlib/Order/LocallyFinite.lean
WithBot.Icc_bot_coe
[]
[ 1156, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1155, 1 ]
Mathlib/RingTheory/GradedAlgebra/Radical.lean
Ideal.IsPrime.homogeneousCore
[ { "state_after": "case I_ne_top\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\n⊢ (Ideal.homogeneousCore 𝒜 I).toSubmodule ≠ ⊤\n\ncase homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\n⊢ ∀ {x y : A},\n Homogeneous 𝒜 x →\n Homogeneous 𝒜 y →\n x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule →\n x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "state_before": "ι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\n⊢ IsPrime (HomogeneousIdeal.toIdeal (Ideal.homogeneousCore 𝒜 I))", "tactic": "apply (Ideal.homogeneousCore 𝒜 I).is_homogeneous'.isPrime_of_homogeneous_mem_or_mem" }, { "state_after": "case homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\n⊢ x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "state_before": "case homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\n⊢ ∀ {x y : A},\n Homogeneous 𝒜 x →\n Homogeneous 𝒜 y →\n x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule →\n x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "tactic": "rintro x y hx hy hxy" }, { "state_after": "case homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "state_before": "case homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\n⊢ x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "tactic": "have H := h.mem_or_mem (Ideal.toIdeal_homogeneousCore_le 𝒜 I hxy)" }, { "state_after": "case homogeneous_mem_or_mem.refine'_1\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ x ∈ I → x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\n\ncase homogeneous_mem_or_mem.refine'_2\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ y ∈ I → y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "state_before": "case homogeneous_mem_or_mem\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule ∨ y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "tactic": "refine' H.imp _ _" }, { "state_after": "no goals", "state_before": "case I_ne_top\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\n⊢ (Ideal.homogeneousCore 𝒜 I).toSubmodule ≠ ⊤", "tactic": "exact ne_top_of_le_ne_top h.ne_top (Ideal.toIdeal_homogeneousCore_le 𝒜 I)" }, { "state_after": "no goals", "state_before": "case homogeneous_mem_or_mem.refine'_1\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ x ∈ I → x ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "tactic": "exact Ideal.mem_homogeneousCore_of_homogeneous_of_mem hx" }, { "state_after": "no goals", "state_before": "case homogeneous_mem_or_mem.refine'_2\nι : Type u_2\nσ : Type u_3\nA : Type u_1\ninst✝⁴ : CommRing A\ninst✝³ : LinearOrderedCancelAddCommMonoid ι\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\nI : Ideal A\nh : IsPrime I\nx y : A\nhx : Homogeneous 𝒜 x\nhy : Homogeneous 𝒜 y\nhxy : x * y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule\nH : x ∈ I ∨ y ∈ I\n⊢ y ∈ I → y ∈ (Ideal.homogeneousCore 𝒜 I).toSubmodule", "tactic": "exact Ideal.mem_homogeneousCore_of_homogeneous_of_mem hy" } ]
[ 166, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 158, 1 ]
Mathlib/Data/Set/Basic.lean
Set.inter_univ
[]
[ 1002, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1001, 1 ]
Mathlib/Topology/QuasiSeparated.lean
isQuasiSeparated_univ
[]
[ 66, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Algebra/Order/Monoid/WithTop.lean
WithTop.one_ne_top
[]
[ 107, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.map_add
[]
[ 246, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 11 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.toFun_eq_coe
[]
[ 450, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 1 ]
Mathlib/Data/Set/Image.lean
Function.Injective.mem_set_image
[]
[ 226, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/CategoryTheory/Generator.lean
CategoryTheory.hasInitial_of_isCoseparating
[ { "state_after": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis : HasProductsOfShape (↑𝒢) C\n⊢ HasInitial C", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\n⊢ HasInitial C", "tactic": "haveI : HasProductsOfShape 𝒢 C := hasProductsOfShape_of_small C 𝒢" }, { "state_after": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝ : HasProductsOfShape (↑𝒢) C\nthis : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\n⊢ HasInitial C", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis : HasProductsOfShape (↑𝒢) C\n⊢ HasInitial C", "tactic": "haveI := fun A => hasProductsOfShape_of_small.{v₁} C (ΣG : 𝒢, A ⟶ (G : C))" }, { "state_after": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\n⊢ HasInitial C", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝ : HasProductsOfShape (↑𝒢) C\nthis : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\n⊢ HasInitial C", "tactic": "letI := completeLatticeOfCompleteSemilatticeInf (Subobject (piObj (Subtype.val : 𝒢 → C)))" }, { "state_after": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\n⊢ (A : C) → Unique (Subobject.underlying.obj ⊥ ⟶ A)", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\n⊢ HasInitial C", "tactic": "suffices ∀ A : C, Unique (((⊥ : Subobject (piObj (Subtype.val : 𝒢 → C))) : C) ⟶ A) by\n exact hasInitial_of_unique ((⊥ : Subobject (piObj (Subtype.val : 𝒢 → C))) : C)" }, { "state_after": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\n⊢ Subobject.underlying.obj ⊥ ⟶ A\n\ncase refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\n⊢ f = default", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\n⊢ (A : C) → Unique (Subobject.underlying.obj ⊥ ⟶ A)", "tactic": "refine' fun A => ⟨⟨_⟩, fun f => _⟩" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝² : HasProductsOfShape (↑𝒢) C\nthis✝¹ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis✝ : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nthis : (A : C) → Unique (Subobject.underlying.obj ⊥ ⟶ A)\n⊢ HasInitial C", "tactic": "exact hasInitial_of_unique ((⊥ : Subobject (piObj (Subtype.val : 𝒢 → C))) : C)" }, { "state_after": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "state_before": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "tactic": "let s := Pi.lift fun f : ΣG : 𝒢, A ⟶ (G : C) => id (Pi.π (Subtype.val : 𝒢 → C)) f.1" }, { "state_after": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\nt : A ⟶ ∏ fun b => ↑b.fst := Pi.lift Sigma.snd\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "state_before": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "tactic": "let t := Pi.lift (@Sigma.snd 𝒢 fun G => A ⟶ (G : C))" }, { "state_after": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝² : HasProductsOfShape (↑𝒢) C\nthis✝¹ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis✝ : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\nt : A ⟶ ∏ fun b => ↑b.fst := Pi.lift Sigma.snd\nthis : Mono t\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "state_before": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\nt : A ⟶ ∏ fun b => ↑b.fst := Pi.lift Sigma.snd\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "tactic": "haveI : Mono t := (isCoseparating_iff_mono 𝒢).1 h𝒢 A" }, { "state_after": "no goals", "state_before": "case refine'_1\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝² : HasProductsOfShape (↑𝒢) C\nthis✝¹ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis✝ : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\ns : ∏ Subtype.val ⟶ ∏ fun f => ↑f.fst := Pi.lift fun f => id (Pi.π Subtype.val) f.fst\nt : A ⟶ ∏ fun b => ↑b.fst := Pi.lift Sigma.snd\nthis : Mono t\n⊢ Subobject.underlying.obj ⊥ ⟶ A", "tactic": "exact Subobject.ofLEMk _ (pullback.fst : pullback s t ⟶ _) bot_le ≫ pullback.snd" }, { "state_after": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\n⊢ ∀ (g : Subobject.underlying.obj ⊥ ⟶ A), f = g", "state_before": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\n⊢ f = default", "tactic": "suffices ∀ (g : Subobject.underlying.obj ⊥ ⟶ A ), f = g by\n apply this" }, { "state_after": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\n⊢ f = g", "state_before": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\n⊢ ∀ (g : Subobject.underlying.obj ⊥ ⟶ A), f = g", "tactic": "intro g" }, { "state_after": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\n⊢ IsSplitEpi (equalizer.ι f g)", "state_before": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\n⊢ f = g", "tactic": "suffices IsSplitEpi (equalizer.ι f g) by exact eq_of_epi_equalizer" }, { "state_after": "no goals", "state_before": "case refine'_2\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\n⊢ IsSplitEpi (equalizer.ι f g)", "tactic": "exact IsSplitEpi.mk' ⟨Subobject.ofLEMk _ (equalizer.ι f g ≫ Subobject.arrow _) bot_le, by\n ext\n simp⟩" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝² : HasProductsOfShape (↑𝒢) C\nthis✝¹ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis✝ : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\nthis : ∀ (g : Subobject.underlying.obj ⊥ ⟶ A), f = g\n⊢ f = default", "tactic": "apply this" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝² : HasProductsOfShape (↑𝒢) C\nthis✝¹ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis✝ : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\nthis : IsSplitEpi (equalizer.ι f g)\n⊢ f = g", "tactic": "exact eq_of_epi_equalizer" }, { "state_after": "case h.h\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\nb✝ : { x // x ∈ 𝒢 }\n⊢ ((Subobject.ofLEMk ⊥ (equalizer.ι f g ≫ Subobject.arrow ⊥)\n (_ : ⊥ ≤ Subobject.mk (equalizer.ι f g ≫ Subobject.arrow ⊥)) ≫\n equalizer.ι f g) ≫\n Subobject.arrow ⊥) ≫\n Pi.π Subtype.val b✝ =\n (𝟙 (Subobject.underlying.obj ⊥) ≫ Subobject.arrow ⊥) ≫ Pi.π Subtype.val b✝", "state_before": "C : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\n⊢ Subobject.ofLEMk ⊥ (equalizer.ι f g ≫ Subobject.arrow ⊥)\n (_ : ⊥ ≤ Subobject.mk (equalizer.ι f g ≫ Subobject.arrow ⊥)) ≫\n equalizer.ι f g =\n 𝟙 (Subobject.underlying.obj ⊥)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h.h\nC : Type u₁\ninst✝⁴ : Category C\nD : Type u₂\ninst✝³ : Category D\ninst✝² : WellPowered C\ninst✝¹ : HasLimits C\n𝒢 : Set C\ninst✝ : Small ↑𝒢\nh𝒢 : IsCoseparating 𝒢\nthis✝¹ : HasProductsOfShape (↑𝒢) C\nthis✝ : ∀ (A : C), HasProductsOfShape ((G : ↑𝒢) × (A ⟶ ↑G)) C\nthis : CompleteLattice (Subobject (∏ Subtype.val)) :=\n completeLatticeOfCompleteSemilatticeInf (Subobject (∏ Subtype.val))\nA : C\nf : Subobject.underlying.obj ⊥ ⟶ A\ng : Subobject.underlying.obj ⊥ ⟶ A\nb✝ : { x // x ∈ 𝒢 }\n⊢ ((Subobject.ofLEMk ⊥ (equalizer.ι f g ≫ Subobject.arrow ⊥)\n (_ : ⊥ ≤ Subobject.mk (equalizer.ι f g ≫ Subobject.arrow ⊥)) ≫\n equalizer.ι f g) ≫\n Subobject.arrow ⊥) ≫\n Pi.π Subtype.val b✝ =\n (𝟙 (Subobject.underlying.obj ⊥) ≫ Subobject.arrow ⊥) ≫ Pi.π Subtype.val b✝", "tactic": "simp" } ]
[ 303, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/Order/Filter/Archimedean.lean
tendsto_nat_cast_atTop_iff
[]
[ 37, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 35, 1 ]
Mathlib/NumberTheory/LegendreSymbol/MulCharacter.lean
MulChar.map_one
[]
[ 270, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 11 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.Subgraph.spanningCoe_le_of_le
[]
[ 611, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 610, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.one_apply_eq
[]
[ 541, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 540, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.mem_sInf
[]
[ 732, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 731, 1 ]
Mathlib/Topology/FiberBundle/Trivialization.lean
Trivialization.preimage_subset_source
[]
[ 445, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 444, 1 ]
Mathlib/Topology/SubsetProperties.lean
IsCompact.disjoint_nhdsSet_left
[ { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\n⊢ Disjoint (𝓝ˢ s) l", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\n⊢ Disjoint (𝓝ˢ s) l ↔ ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l", "tactic": "refine' ⟨fun h x hx => h.mono_left <| nhds_le_nhdsSet hx, fun H => _⟩" }, { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhxU : ∀ (x : α), x ∈ s → x ∈ U x ∧ IsOpen (U x)\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\n⊢ Disjoint (𝓝ˢ s) l", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\n⊢ Disjoint (𝓝ˢ s) l", "tactic": "choose! U hxU hUl using fun x hx => (nhds_basis_opens x).disjoint_iff_left.1 (H x hx)" }, { "state_after": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\n⊢ Disjoint (𝓝ˢ s) l", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhxU : ∀ (x : α), x ∈ s → x ∈ U x ∧ IsOpen (U x)\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\n⊢ Disjoint (𝓝ˢ s) l", "tactic": "choose hxU hUo using hxU" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ Disjoint (𝓝ˢ s) l", "state_before": "α : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\n⊢ Disjoint (𝓝ˢ s) l", "tactic": "rcases hs.elim_nhds_subcover U fun x hx => (hUo x hx).mem_nhds (hxU x hx) with ⟨t, hts, hst⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ (⋃ (x : α) (_ : x ∈ t), U x)ᶜ ∈ l", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ Disjoint (𝓝ˢ s) l", "tactic": "refine'\n (hasBasis_nhdsSet _).disjoint_iff_left.2\n ⟨⋃ x ∈ t, U x, ⟨isOpen_biUnion fun x hx => hUo x (hts x hx), hst⟩, _⟩" }, { "state_after": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ ∀ (i : α), i ∈ t → U iᶜ ∈ l", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ (⋃ (x : α) (_ : x ∈ t), U x)ᶜ ∈ l", "tactic": "rw [compl_iUnion₂, biInter_finset_mem]" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u\nβ : Type v\nι : Type ?u.16218\nπ : ι → Type ?u.16223\ninst✝¹ : TopologicalSpace α\ninst✝ : TopologicalSpace β\ns t✝ : Set α\nl : Filter α\nhs : IsCompact s\nH : ∀ (x : α), x ∈ s → Disjoint (𝓝 x) l\nU : α → Set α\nhUl : ∀ (x : α), x ∈ s → U xᶜ ∈ l\nhxU : ∀ (x : α), x ∈ s → x ∈ U x\nhUo : ∀ (x : α), x ∈ s → IsOpen (U x)\nt : Finset α\nhts : ∀ (x : α), x ∈ t → x ∈ s\nhst : s ⊆ ⋃ (x : α) (_ : x ∈ t), U x\n⊢ ∀ (i : α), i ∈ t → U iᶜ ∈ l", "tactic": "exact fun x hx => hUl x (hts x hx)" } ]
[ 228, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 218, 1 ]
Mathlib/MeasureTheory/Group/Measure.lean
MeasureTheory.Measure.measurePreserving_mul_right_inv
[]
[ 475, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 473, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
AddSubgroup.pointwise_smul_le_iff₀
[]
[ 552, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 550, 1 ]
Mathlib/Data/Vector/Basic.lean
Vector.not_empty_toList
[ { "state_after": "no goals", "state_before": "n : ℕ\nα : Type u_1\nv : Vector α (n + 1)\n⊢ ¬List.isEmpty (toList v) = true", "tactic": "simp only [empty_toList_eq_ff, Bool.coe_sort_false, not_false_iff]" } ]
[ 220, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/Real.lean
Real.rpow_lt_rpow
[ { "state_after": "x y z : ℝ\nhx : 0 = x ∨ 0 < x\nhxy : x < y\nhz : 0 < z\n⊢ x ^ z < y ^ z", "state_before": "x y z : ℝ\nhx : 0 ≤ x\nhxy : x < y\nhz : 0 < z\n⊢ x ^ z < y ^ z", "tactic": "rw [le_iff_eq_or_lt] at hx" }, { "state_after": "case inl\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 = x\n⊢ x ^ z < y ^ z\n\ncase inr\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 < x\n⊢ x ^ z < y ^ z", "state_before": "x y z : ℝ\nhx : 0 = x ∨ 0 < x\nhxy : x < y\nhz : 0 < z\n⊢ x ^ z < y ^ z", "tactic": "cases' hx with hx hx" }, { "state_after": "case inl\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 = x\n⊢ 0 < y ^ z", "state_before": "case inl\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 = x\n⊢ x ^ z < y ^ z", "tactic": "rw [← hx, zero_rpow (ne_of_gt hz)]" }, { "state_after": "no goals", "state_before": "case inl\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 = x\n⊢ 0 < y ^ z", "tactic": "exact rpow_pos_of_pos (by rwa [← hx] at hxy) _" }, { "state_after": "no goals", "state_before": "x y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 = x\n⊢ 0 < y", "tactic": "rwa [← hx] at hxy" }, { "state_after": "case inr\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 < x\n⊢ log x * z < log y * z", "state_before": "case inr\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 < x\n⊢ x ^ z < y ^ z", "tactic": "rw [rpow_def_of_pos hx, rpow_def_of_pos (lt_trans hx hxy), exp_lt_exp]" }, { "state_after": "no goals", "state_before": "case inr\nx y z : ℝ\nhxy : x < y\nhz : 0 < z\nhx : 0 < x\n⊢ log x * z < log y * z", "tactic": "exact mul_lt_mul_of_pos_right (log_lt_log hx hxy) hz" } ]
[ 419, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 414, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
ContDiffWithinAt.ccosh
[]
[ 502, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 500, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.max_mem_image_coe
[]
[ 1525, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1523, 1 ]
Mathlib/Data/Option/NAry.lean
Option.map₂_swap
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf✝ : α → β → γ\na✝ : Option α\nb✝ : Option β\nc : Option γ\nf : α → β → γ\na : Option α\nb : Option β\n⊢ map₂ f a b = map₂ (fun a b => f b a) b a", "tactic": "cases a <;> cases b <;> rfl" } ]
[ 90, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/CategoryTheory/Abelian/NonPreadditive.lean
CategoryTheory.NonPreadditiveAbelian.add_comp
[ { "state_after": "no goals", "state_before": "C : Type u\ninst✝¹ : Category C\ninst✝ : NonPreadditiveAbelian C\nX Y Z : C\nf g : X ⟶ Y\nh : Y ⟶ Z\n⊢ (f + g) ≫ h = f ≫ h + g ≫ h", "tactic": "rw [add_def, sub_comp, neg_def, sub_comp, zero_comp, add_def, neg_def]" } ]
[ 444, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/CategoryTheory/Sites/Sheaf.lean
CategoryTheory.Presheaf.IsSheaf.hom_ext
[]
[ 242, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 239, 1 ]
Mathlib/FieldTheory/Fixed.lean
FixedPoints.minpoly.irreducible
[]
[ 253, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 252, 1 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.InfiniteNeg.neg
[]
[ 463, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 462, 1 ]
Mathlib/RingTheory/UniqueFactorizationDomain.lean
Associates.dvd_count_of_dvd_count_mul
[ { "state_after": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : a = 0\n⊢ k ∣ count p (factors a)\n\ncase neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\n⊢ k ∣ count p (factors a)", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\n⊢ k ∣ count p (factors a)", "tactic": "by_cases ha : a = 0" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nhz : count p (factors a) = 0\n⊢ k ∣ count p (factors a)\n\ncase neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nh : count p (factors b) = 0\n⊢ k ∣ count p (factors a)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\n⊢ k ∣ count p (factors a)", "tactic": "cases' count_of_coprime ha hb hab hp with hz h" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : a = 0\n⊢ k ∣ count p (factors a)", "tactic": "simpa [*] using habk" }, { "state_after": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nhz : count p (factors a) = 0\n⊢ k ∣ 0", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nhz : count p (factors a) = 0\n⊢ k ∣ count p (factors a)", "tactic": "rw [hz]" }, { "state_after": "no goals", "state_before": "case neg.inl\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nhz : count p (factors a) = 0\n⊢ k ∣ 0", "tactic": "exact dvd_zero k" }, { "state_after": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors a) + 0\nha : ¬a = 0\nh : count p (factors b) = 0\n⊢ k ∣ count p (factors a)", "state_before": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors (a * b))\nha : ¬a = 0\nh : count p (factors b) = 0\n⊢ k ∣ count p (factors a)", "tactic": "rw [count_mul ha hb hp, h] at habk" }, { "state_after": "no goals", "state_before": "case neg.inr\nα : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ndec_irr : (p : Associates α) → Decidable (Irreducible p)\ninst✝ : UniqueFactorizationMonoid α\ndec : DecidableEq α\ndec' : DecidableEq (Associates α)\na b : Associates α\nhb : b ≠ 0\np : Associates α\nhp : Irreducible p\nhab : ∀ (d : Associates α), d ∣ a → d ∣ b → ¬Prime d\nk : ℕ\nhabk : k ∣ count p (factors a) + 0\nha : ¬a = 0\nh : count p (factors b) = 0\n⊢ k ∣ count p (factors a)", "tactic": "exact habk" } ]
[ 1785, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1776, 1 ]
Mathlib/LinearAlgebra/Basic.lean
Submodule.mem_left_iff_eq_zero_of_disjoint
[]
[ 679, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 677, 1 ]
Mathlib/RingTheory/MvPolynomial/Homogeneous.lean
MvPolynomial.IsHomogeneous.prod
[ { "state_after": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)", "state_before": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\nh : ∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)\n⊢ IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)", "tactic": "revert h" }, { "state_after": "case refine'_1\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ (∀ (i : ι), i ∈ ∅ → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in ∅, φ i) (∑ i in ∅, n i)\n\ncase refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n ((∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)) →\n (∀ (i : ι), i ∈ insert a s → IsHomogeneous (φ i) (n i)) →\n IsHomogeneous (∏ i in insert a s, φ i) (∑ i in insert a s, n i)", "state_before": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)", "tactic": "refine' Finset.induction_on s _ _" }, { "state_after": "case refine'_1\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\nh✝ : ∀ (i : ι), i ∈ ∅ → IsHomogeneous (φ i) (n i)\n⊢ IsHomogeneous (∏ i in ∅, φ i) (∑ i in ∅, n i)", "state_before": "case refine'_1\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ (∀ (i : ι), i ∈ ∅ → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in ∅, φ i) (∑ i in ∅, n i)", "tactic": "intro" }, { "state_after": "no goals", "state_before": "case refine'_1\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\nh✝ : ∀ (i : ι), i ∈ ∅ → IsHomogeneous (φ i) (n i)\n⊢ IsHomogeneous (∏ i in ∅, φ i) (∑ i in ∅, n i)", "tactic": "simp only [isHomogeneous_one, Finset.sum_empty, Finset.prod_empty]" }, { "state_after": "case refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ IsHomogeneous (∏ i in insert i s, φ i) (∑ i in insert i s, n i)", "state_before": "case refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n ((∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)) →\n (∀ (i : ι), i ∈ insert a s → IsHomogeneous (φ i) (n i)) →\n IsHomogeneous (∏ i in insert a s, φ i) (∑ i in insert a s, n i)", "tactic": "intro i s his IH h" }, { "state_after": "case refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ IsHomogeneous (φ i * ∏ i in s, φ i) (n i + ∑ i in s, n i)", "state_before": "case refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ IsHomogeneous (∏ i in insert i s, φ i) (∑ i in insert i s, n i)", "tactic": "simp only [his, Finset.prod_insert, Finset.sum_insert, not_false_iff]" }, { "state_after": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ ∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)", "state_before": "case refine'_2\nσ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ IsHomogeneous (φ i * ∏ i in s, φ i) (n i + ∑ i in s, n i)", "tactic": "apply (h i (Finset.mem_insert_self _ _)).mul (IH _)" }, { "state_after": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\nj : ι\nhjs : j ∈ s\n⊢ IsHomogeneous (φ j) (n j)", "state_before": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\n⊢ ∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)", "tactic": "intro j hjs" }, { "state_after": "no goals", "state_before": "σ : Type u_2\nτ : Type ?u.161634\nR : Type u_3\nS : Type ?u.161640\ninst✝ : CommSemiring R\nφ✝ ψ : MvPolynomial σ R\nm n✝ : ℕ\nι : Type u_1\ns✝ : Finset ι\nφ : ι → MvPolynomial σ R\nn : ι → ℕ\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nIH : (∀ (i : ι), i ∈ s → IsHomogeneous (φ i) (n i)) → IsHomogeneous (∏ i in s, φ i) (∑ i in s, n i)\nh : ∀ (i_1 : ι), i_1 ∈ insert i s → IsHomogeneous (φ i_1) (n i_1)\nj : ι\nhjs : j ∈ s\n⊢ IsHomogeneous (φ j) (n j)", "tactic": "exact h j (Finset.mem_insert_of_mem hjs)" } ]
[ 205, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Basic.lean
BoxIntegral.Prepartition.ext
[]
[ 113, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Algebra/Order/Monoid/Lemmas.lean
eq_one_of_mul_le_one_right
[]
[ 1180, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1179, 1 ]
Mathlib/Data/QPF/Univariate/Basic.lean
Qpf.has_good_supp_iff
[ { "state_after": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\n⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) →\n ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\n\ncase mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\n⊢ (∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ) →\n ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\n⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) ↔\n ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "constructor" }, { "state_after": "case mpr.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u", "state_before": "case mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\n⊢ (∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ) →\n ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u", "tactic": "rintro ⟨a, f, xeq, h⟩ p" }, { "state_after": "case mpr.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔ ∀ (u : α), u ∈ supp x → p u", "state_before": "case mpr.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u", "tactic": "rw [liftp_iff]" }, { "state_after": "case mpr.intro.intro.intro.mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α), u ∈ supp x → p u\n\ncase mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∀ (u : α), u ∈ supp x → p u) → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)", "state_before": "case mpr.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) ↔ ∀ (u : α), u ∈ supp x → p u", "tactic": "constructor" }, { "state_after": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\n⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)", "state_before": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∀ (u : α), u ∈ supp x → p u) → ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)", "tactic": "intro h'" }, { "state_after": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\n⊢ ∀ (i : PFunctor.B (P F) a), p (f i)", "state_before": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\n⊢ ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)", "tactic": "refine' ⟨a, f, xeq.symm, _⟩" }, { "state_after": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ p (f i)", "state_before": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\n⊢ ∀ (i : PFunctor.B (P F) a), p (f i)", "tactic": "intro i" }, { "state_after": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ f i ∈ supp x", "state_before": "case mpr.intro.intro.intro.mpr\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ p (f i)", "tactic": "apply h'" }, { "state_after": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ ∀ (a : (P F).A) (f_1 : PFunctor.B (P F) a → α), abs { fst := a, snd := f_1 } = x → f i ∈ f_1 '' univ", "state_before": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ f i ∈ supp x", "tactic": "rw [mem_supp]" }, { "state_after": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : abs { fst := a', snd := f' } = x\n⊢ f i ∈ f' '' univ", "state_before": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\n⊢ ∀ (a : (P F).A) (f_1 : PFunctor.B (P F) a → α), abs { fst := a, snd := f_1 } = x → f i ∈ f_1 '' univ", "tactic": "intro a' f' xeq'" }, { "state_after": "case mpr.intro.intro.intro.mpr.a.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : abs { fst := a', snd := f' } = x\n⊢ f i ∈ f '' univ", "state_before": "case mpr.intro.intro.intro.mpr.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : abs { fst := a', snd := f' } = x\n⊢ f i ∈ f' '' univ", "tactic": "apply h a' f' xeq'" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro.mpr.a.a\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\nh' : ∀ (u : α), u ∈ supp x → p u\ni : PFunctor.B (P F) a\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : abs { fst := a', snd := f' } = x\n⊢ f i ∈ f '' univ", "tactic": "apply mem_image_of_mem _ (mem_univ _)" }, { "state_after": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "state_before": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\n⊢ (∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u) →\n ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "intro h" }, { "state_after": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "state_before": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "have : Liftp (supp x) x := by rw [h]; intro u; exact id" }, { "state_after": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis✝ : Liftp (supp x) x\nthis : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "state_before": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "rw [liftp_iff] at this" }, { "state_after": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "state_before": "case mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis✝ : Liftp (supp x) x\nthis : ∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "rcases this with ⟨a, f, xeq, h'⟩" }, { "state_after": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "state_before": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∃ a f,\n abs { fst := a, snd := f } = x ∧\n ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "refine' ⟨a, f, xeq.symm, _⟩" }, { "state_after": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\n⊢ f '' univ ⊆ f' '' univ", "state_before": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\n⊢ ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ", "tactic": "intro a' f' h''" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\n⊢ u ∈ f' '' univ", "state_before": "case mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\n⊢ f '' univ ⊆ f' '' univ", "tactic": "rintro u ⟨i, _, hfi⟩" }, { "state_after": "case mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis✝ : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\nthis : u ∈ supp x\n⊢ u ∈ f' '' univ", "state_before": "case mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\n⊢ u ∈ f' '' univ", "tactic": "have : u ∈ supp x := by rw [← hfi]; apply h'" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis✝ : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\nthis : u ∈ supp x\n⊢ u ∈ f' '' univ", "tactic": "exact (mem_supp x u).mp this _ _ h''" }, { "state_after": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\n⊢ ∀ (u : α), u ∈ supp x → supp x u", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\n⊢ Liftp (supp x) x", "tactic": "rw [h]" }, { "state_after": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nu : α\n⊢ u ∈ supp x → supp x u", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\n⊢ ∀ (u : α), u ∈ supp x → supp x u", "tactic": "intro u" }, { "state_after": "no goals", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nu : α\n⊢ u ∈ supp x → supp x u", "tactic": "exact id" }, { "state_after": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\n⊢ f i ∈ supp x", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\n⊢ u ∈ supp x", "tactic": "rw [← hfi]" }, { "state_after": "no goals", "state_before": "F : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\nh : ∀ (p : α → Prop), Liftp p x ↔ ∀ (u : α), u ∈ supp x → p u\nthis : Liftp (supp x) x\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : x = abs { fst := a, snd := f }\nh' : ∀ (i : PFunctor.B (P F) a), supp x (f i)\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nh'' : abs { fst := a', snd := f' } = x\nu : α\ni : PFunctor.B (P F) a\nleft✝ : i ∈ univ\nhfi : f i = u\n⊢ f i ∈ supp x", "tactic": "apply h'" }, { "state_after": "case mpr.intro.intro.intro.mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\n⊢ p u", "state_before": "case mpr.intro.intro.intro.mp\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\n⊢ (∃ a f, x = abs { fst := a, snd := f } ∧ ∀ (i : PFunctor.B (P F) a), p (f i)) → ∀ (u : α), u ∈ supp x → p u", "tactic": "rintro ⟨a', f', xeq', h'⟩ u usuppx" }, { "state_after": "case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\ni : PFunctor.B (P F) a'\nleft✝ : i ∈ univ\nf'ieq : f' i = u\n⊢ p u", "state_before": "case mpr.intro.intro.intro.mp.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\n⊢ p u", "tactic": "rcases (mem_supp x u).mp usuppx a' f' xeq'.symm with ⟨i, _, f'ieq⟩" }, { "state_after": "case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\ni : PFunctor.B (P F) a'\nleft✝ : i ∈ univ\nf'ieq : f' i = u\n⊢ p (f' i)", "state_before": "case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\ni : PFunctor.B (P F) a'\nleft✝ : i ∈ univ\nf'ieq : f' i = u\n⊢ p u", "tactic": "rw [← f'ieq]" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro.intro.mp.intro.intro.intro.intro.intro\nF : Type u → Type u\ninst✝ : Functor F\nq : Qpf F\nα : Type u\nx : F α\na : (P F).A\nf : PFunctor.B (P F) a → α\nxeq : abs { fst := a, snd := f } = x\nh : ∀ (a' : (P F).A) (f' : PFunctor.B (P F) a' → α), abs { fst := a', snd := f' } = x → f '' univ ⊆ f' '' univ\np : α → Prop\na' : (P F).A\nf' : PFunctor.B (P F) a' → α\nxeq' : x = abs { fst := a', snd := f' }\nh' : ∀ (i : PFunctor.B (P F) a'), p (f' i)\nu : α\nusuppx : u ∈ supp x\ni : PFunctor.B (P F) a'\nleft✝ : i ∈ univ\nf'ieq : f' i = u\n⊢ p (f' i)", "tactic": "apply h'" } ]
[ 655, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 632, 1 ]
Mathlib/Init/Algebra/Order.lean
lt_iff_not_ge
[]
[ 368, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/Tactic/Ring/Basic.lean
Mathlib.Tactic.Ring.add_pos_right
[]
[ 613, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 613, 1 ]
Mathlib/Topology/Algebra/Module/FiniteDimension.lean
FiniteDimensional.nonempty_continuousLinearEquiv_of_finrank_eq
[]
[ 417, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 415, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.map_eq_bot_iff_of_injective
[ { "state_after": "no goals", "state_before": "G : Type u_1\nG' : Type ?u.556305\ninst✝³ : Group G\ninst✝² : Group G'\nA : Type ?u.556314\ninst✝¹ : AddGroup A\nN : Type u_2\ninst✝ : Group N\nH : Subgroup G\nf : G →* N\nhf : Injective ↑f\n⊢ map f H = ⊥ ↔ H = ⊥", "tactic": "rw [map_eq_bot_iff, f.ker_eq_bot_iff.mpr hf, le_bot_iff]" } ]
[ 2964, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2963, 1 ]
Mathlib/CategoryTheory/Subobject/Basic.lean
CategoryTheory.Subobject.ofLEMk_comp_ofMkLE
[ { "state_after": "C : Type u₁\ninst✝² : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A : C\nX : Subobject B\nf : A ⟶ B\ninst✝ : Mono f\nY : Subobject B\nh₁ : X ≤ mk f\nh₂ : mk f ≤ Y\n⊢ underlying.map (LE.le.hom h₁ ≫ LE.le.hom h₂) = underlying.map (LE.le.hom (_ : X ≤ Y))", "state_before": "C : Type u₁\ninst✝² : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A : C\nX : Subobject B\nf : A ⟶ B\ninst✝ : Mono f\nY : Subobject B\nh₁ : X ≤ mk f\nh₂ : mk f ≤ Y\n⊢ ofLEMk X f h₁ ≫ ofMkLE f Y h₂ = ofLE X Y (_ : X ≤ Y)", "tactic": "simp only [ofMkLE, ofLEMk, ofLE, ← Functor.map_comp underlying, assoc, Iso.hom_inv_id_assoc]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nX✝ Y✝ Z : C\nD : Type u₂\ninst✝¹ : Category D\nB A : C\nX : Subobject B\nf : A ⟶ B\ninst✝ : Mono f\nY : Subobject B\nh₁ : X ≤ mk f\nh₂ : mk f ≤ Y\n⊢ underlying.map (LE.le.hom h₁ ≫ LE.le.hom h₂) = underlying.map (LE.le.hom (_ : X ≤ Y))", "tactic": "congr 1" } ]
[ 406, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 403, 1 ]
Mathlib/Algebra/MonoidAlgebra/Support.lean
AddMonoidAlgebra.support_single_mul
[]
[ 137, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 134, 1 ]
Mathlib/Analysis/SpecialFunctions/Pow/NNReal.lean
NNReal.rpow_le_one
[]
[ 205, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 204, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.toNNReal_sum
[ { "state_after": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\n⊢ ∀ (x : α), x ∈ s → f x = ↑(ENNReal.toNNReal (f x))\n\nα : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\n⊢ ∑ a in s, f a ≠ ⊤", "state_before": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\n⊢ ENNReal.toNNReal (∑ a in s, f a) = ∑ a in s, ENNReal.toNNReal (f a)", "tactic": "rw [← coe_eq_coe, coe_toNNReal, coe_finset_sum, sum_congr rfl]" }, { "state_after": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\nx : α\nhx : x ∈ s\n⊢ f x = ↑(ENNReal.toNNReal (f x))", "state_before": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\n⊢ ∀ (x : α), x ∈ s → f x = ↑(ENNReal.toNNReal (f x))", "tactic": "intro x hx" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\nx : α\nhx : x ∈ s\n⊢ f x = ↑(ENNReal.toNNReal (f x))", "tactic": "exact (coe_toNNReal (hf x hx)).symm" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.202901\na b c d : ℝ≥0∞\nr p q : ℝ≥0\ns : Finset α\nf : α → ℝ≥0∞\nhf : ∀ (a : α), a ∈ s → f a ≠ ⊤\n⊢ ∑ a in s, f a ≠ ⊤", "tactic": "exact (sum_lt_top hf).ne" } ]
[ 1247, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1242, 1 ]
Mathlib/Analysis/Calculus/FDerivMeasurable.lean
FDerivMeasurableAux.differentiable_set_subset_d
[ { "state_after": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\n⊢ x ∈ D f K", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\n⊢ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K} ⊆ D f K", "tactic": "intro x hx" }, { "state_after": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\n⊢ ∀ (i : ℕ), x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ i)", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\n⊢ x ∈ D f K", "tactic": "rw [D, mem_iInter]" }, { "state_after": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\n⊢ ∀ (i : ℕ), x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ i)", "tactic": "intro e" }, { "state_after": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "tactic": "have : (0 : ℝ) < (1 / 2) ^ e := pow_pos (by norm_num) _" }, { "state_after": "case intro.intro\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "tactic": "rcases mem_a_of_differentiable this hx.1 with ⟨R, R_pos, hR⟩" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "state_before": "case intro.intro\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "tactic": "obtain ⟨n, hn⟩ : ∃ n : ℕ, (1 / 2) ^ n < R :=\n exists_pow_lt_of_lt_one R_pos (by norm_num : (1 : ℝ) / 2 < 1)" }, { "state_after": "case intro.intro.intro\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\n⊢ ∃ i,\n ∀ (i_1 : ℕ),\n i_1 ≥ i →\n ∀ (i_3 : ℕ), i_3 ≥ i → ∃ i h, x ∈ A f i ((1 / 2) ^ i_1) ((1 / 2) ^ e) ∧ x ∈ A f i ((1 / 2) ^ i_3) ((1 / 2) ^ e)", "state_before": "case intro.intro.intro\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\n⊢ x ∈ ⋃ (n : ℕ), ⋂ (p : ℕ) (_ : p ≥ n) (q : ℕ) (_ : q ≥ n), B f K ((1 / 2) ^ p) ((1 / 2) ^ q) ((1 / 2) ^ e)", "tactic": "simp only [mem_iUnion, mem_iInter, B, mem_inter_iff]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\n⊢ 0 < 1 / 2", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\n⊢ 1 / 2 < 1", "tactic": "norm_num" }, { "state_after": "case intro.intro.intro.refine'_2\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ (1 / 2) ^ q ≤ (1 / 2) ^ n", "state_before": "case intro.intro.intro.refine'_2\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ x ∈ A f (fderiv 𝕜 f x) ((1 / 2) ^ q) ((1 / 2) ^ e)", "tactic": "refine' hR _ ⟨pow_pos (by norm_num) _, lt_of_le_of_lt _ hn⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.refine'_2\n𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ (1 / 2) ^ q ≤ (1 / 2) ^ n", "tactic": "exact pow_le_pow_of_le_one (by norm_num) (by norm_num) (by assumption)" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ 0 < 1 / 2", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ 0 ≤ 1 / 2", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ 1 / 2 ≤ 1", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\ninst✝⁴ : NontriviallyNormedField 𝕜\nE : Type u_1\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedSpace 𝕜 E\nF : Type u_3\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace 𝕜 F\nf : E → F\nK : Set (E →L[𝕜] F)\nx : E\nhx : x ∈ {x | DifferentiableAt 𝕜 f x ∧ fderiv 𝕜 f x ∈ K}\ne : ℕ\nthis : 0 < (1 / 2) ^ e\nR : ℝ\nR_pos : R > 0\nhR : ∀ (r : ℝ), r ∈ Ioo 0 R → x ∈ A f (fderiv 𝕜 f x) r ((1 / 2) ^ e)\nn : ℕ\nhn : (1 / 2) ^ n < R\np : ℕ\nhp : p ≥ n\nq : ℕ\nhq : q ≥ n\n⊢ n ≤ q", "tactic": "assumption" } ]
[ 223, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Order/WithBot.lean
WithTop.le_toDual_iff
[]
[ 803, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/Combinatorics/Additive/RuzsaCovering.lean
Finset.exists_subset_mul_div
[ { "state_after": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ∈ C\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\n⊢ ∃ u, card u * card t ≤ card (s * t) ∧ s ⊆ u * t / t", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\n⊢ ∃ u, card u * card t ≤ card (s * t) ∧ s ⊆ u * t / t", "tactic": "obtain ⟨u, hu, hCmax⟩ := C.exists_maximal (filter_nonempty_iff.2\n ⟨∅, empty_mem_powerset _, by rw [coe_empty]; exact Set.pairwiseDisjoint_empty⟩)" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\n⊢ ∃ u, card u * card t ≤ card (s * t) ∧ s ⊆ u * t / t", "state_before": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ∈ C\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\n⊢ ∃ u, card u * card t ≤ card (s * t) ∧ s ⊆ u * t / t", "tactic": "rw [mem_filter, mem_powerset] at hu" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\n⊢ a ∈ u * t / t", "state_before": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\n⊢ ∃ u, card u * card t ≤ card (s * t) ∧ s ⊆ u * t / t", "tactic": "refine' ⟨u,\n (card_mul_iff.2 <| pairwiseDisjoint_smul_iff.1 hu.2).ge.trans\n (card_le_of_subset <| mul_subset_mul_right hu.1),\n fun a ha ↦ _⟩" }, { "state_after": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\n⊢ a ∈ u * (t / t)", "state_before": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\n⊢ a ∈ u * t / t", "tactic": "rw [mul_div_assoc]" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : a ∈ u\n⊢ a ∈ u * (t / t)\n\ncase neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\n⊢ a ∈ u * (t / t)", "state_before": "case intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\n⊢ a ∈ u * (t / t)", "tactic": "by_cases hau : a ∈ u" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)\n\ncase neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ¬∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\n⊢ a ∈ u * (t / t)", "tactic": "by_cases H : ∀ b ∈ u, Disjoint (a • t) (b • t)" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∃ b, b ∈ u ∧ ¬Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ¬∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)", "tactic": "push_neg at H" }, { "state_after": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∃ b, b ∈ u ∧ ∃ a_1, a⁻¹ • a_1 ∈ t ∧ b⁻¹ • a_1 ∈ t\n⊢ a ∈ u * (t / t)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∃ b, b ∈ u ∧ ¬Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)", "tactic": "simp_rw [not_disjoint_iff, ← inv_smul_mem_iff] at H" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ a ∈ u * (t / t)", "state_before": "case neg\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∃ b, b ∈ u ∧ ∃ a_1, a⁻¹ • a_1 ∈ t ∧ b⁻¹ • a_1 ∈ t\n⊢ a ∈ u * (t / t)", "tactic": "obtain ⟨b, hb, c, hc₁, hc₂⟩ := H" }, { "state_after": "case neg.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ a / b ∈ t / t", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ a ∈ u * (t / t)", "tactic": "refine' mem_mul.2 ⟨b, a / b, hb, _, by simp⟩" }, { "state_after": "no goals", "state_before": "case neg.intro.intro.intro.intro\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ a / b ∈ t / t", "tactic": "exact mem_div.2 ⟨_, _, hc₂, hc₁, by simp [div_eq_mul_inv a b, mul_comm]⟩" }, { "state_after": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\n⊢ Set.PairwiseDisjoint ∅ fun x => x • t", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\n⊢ Set.PairwiseDisjoint ↑∅ fun x => x • t", "tactic": "rw [coe_empty]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\n⊢ Set.PairwiseDisjoint ∅ fun x => x • t", "tactic": "exact Set.pairwiseDisjoint_empty" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : a ∈ u\n⊢ a ∈ u * (t / t)", "tactic": "exact subset_mul_left _ ht.one_mem_div hau" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ insert a u ∈ C", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ a ∈ u * (t / t)", "tactic": "refine' (hCmax _ _ <| ssubset_insert hau).elim" }, { "state_after": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ (a ∈ s ∧ u ⊆ s) ∧ Set.PairwiseDisjoint (insert a ↑u) fun x => x • t", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ insert a u ∈ C", "tactic": "rw [mem_filter, mem_powerset, insert_subset, coe_insert]" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nH : ∀ (b : α), b ∈ u → Disjoint (a • t) (b • t)\n⊢ (a ∈ s ∧ u ⊆ s) ∧ Set.PairwiseDisjoint (insert a ↑u) fun x => x • t", "tactic": "exact ⟨⟨ha, hu.1⟩, hu.2.insert fun _ hb _ ↦ H _ hb⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ b * (a / b) = a", "tactic": "simp" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DecidableEq α\ninst✝ : CommGroup α\ns t : Finset α\nht : Finset.Nonempty t\nthis : (u : Set α) → Decidable (Set.PairwiseDisjoint u fun x => x • t)\nC : Finset (Finset α) := filter (fun u => Set.PairwiseDisjoint ↑u fun x => x • t) (powerset s)\nu : Finset α\nhu : u ⊆ s ∧ Set.PairwiseDisjoint ↑u fun x => x • t\nhCmax : ∀ (x : Finset α), x ∈ C → ¬u < x\na : α\nha : a ∈ s\nhau : ¬a ∈ u\nb : α\nhb : b ∈ u\nc : α\nhc₁ : a⁻¹ • c ∈ t\nhc₂ : b⁻¹ • c ∈ t\n⊢ b⁻¹ • c / a⁻¹ • c = a / b", "tactic": "simp [div_eq_mul_inv a b, mul_comm]" } ]
[ 55, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/ModelTheory/Satisfiability.lean
FirstOrder.Language.Theory.SemanticallyEquivalent.not
[ { "state_after": "L : Language\nT : Theory L\nα : Type w\nn : ℕ\nφ ψ : BoundedFormula L α n\nh : SemanticallyEquivalent T φ ψ\n⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), ¬BoundedFormula.Realize φ v xs ↔ ¬BoundedFormula.Realize ψ v xs", "state_before": "L : Language\nT : Theory L\nα : Type w\nn : ℕ\nφ ψ : BoundedFormula L α n\nh : SemanticallyEquivalent T φ ψ\n⊢ SemanticallyEquivalent T (∼φ) ∼ψ", "tactic": "simp_rw [SemanticallyEquivalent, ModelsBoundedFormula, BoundedFormula.realize_iff,\n BoundedFormula.realize_not]" }, { "state_after": "no goals", "state_before": "L : Language\nT : Theory L\nα : Type w\nn : ℕ\nφ ψ : BoundedFormula L α n\nh : SemanticallyEquivalent T φ ψ\n⊢ ∀ (M : ModelType T) (v : α → ↑M) (xs : Fin n → ↑M), ¬BoundedFormula.Realize φ v xs ↔ ¬BoundedFormula.Realize ψ v xs", "tactic": "exact fun M v xs => not_congr h.realize_bd_iff" } ]
[ 482, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 478, 11 ]
Mathlib/Topology/Order.lean
eq_of_nhds_eq_nhds
[]
[ 311, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 309, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.ae_eq_set_union
[]
[ 508, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/Topology/Basic.lean
ClusterPt.map
[]
[ 1618, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1616, 1 ]
Mathlib/NumberTheory/BernoulliPolynomials.lean
Polynomial.bernoulli_eq_sub_sum
[ { "state_after": "no goals", "state_before": "n : ℕ\n⊢ ↑(succ n) • bernoulli n = ↑(monomial n) ↑(succ n) - ∑ k in range n, ↑(Nat.choose (n + 1) k) • bernoulli k", "tactic": "rw [Nat.cast_succ, ← sum_bernoulli n, sum_range_succ, add_sub_cancel', choose_succ_self_right,\n Nat.cast_succ]" } ]
[ 160, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Topology/Sequences.lean
IsSeqCompact.exists_tendsto_of_frequently_mem
[]
[ 331, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/BinaryProducts.lean
CategoryTheory.Limits.coprod.desc_comp_assoc
[ { "state_after": "no goals", "state_before": "C✝ : Type u\ninst✝² : Category C✝\nX✝ Y✝ : C✝\nC : Type u\ninst✝¹ : Category C\nV W X Y : C\ninst✝ : HasBinaryCoproduct X Y\nf : V ⟶ W\ng : X ⟶ V\nh : Y ⟶ V\nZ : C\nl : W ⟶ Z\n⊢ desc g h ≫ f ≫ l = desc (g ≫ f) (h ≫ f) ≫ l", "tactic": "simp" } ]
[ 835, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 833, 1 ]
Mathlib/LinearAlgebra/Isomorphisms.lean
Submodule.card_quotient_mul_card_quotient
[ { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\nM₂ : Type ?u.157808\nM₃ : Type ?u.157811\ninst✝⁹ : Ring R\ninst✝⁸ : AddCommGroup M\ninst✝⁷ : AddCommGroup M₂\ninst✝⁶ : AddCommGroup M₃\ninst✝⁵ : Module R M\ninst✝⁴ : Module R M₂\ninst✝³ : Module R M₃\nf : M →ₗ[R] M₂\nS✝ T✝ : Submodule R M\nh : S✝ ≤ T✝\nS T : Submodule R M\nhST : T ≤ S\ninst✝² : DecidablePred fun x => x ∈ map (mkQ T) S\ninst✝¹ : Fintype (M ⧸ S)\ninst✝ : Fintype (M ⧸ T)\n⊢ Fintype.card { x // x ∈ map (mkQ T) S } * Fintype.card (M ⧸ S) = Fintype.card (M ⧸ T)", "tactic": "rw [Submodule.card_eq_card_quotient_mul_card (map T.mkQ S),\n Fintype.card_eq.mpr ⟨(quotientQuotientEquivQuotient T S hST).toEquiv⟩]" } ]
[ 195, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 191, 1 ]
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
AEMeasurable.comp_measurable
[]
[ 166, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 164, 1 ]
Mathlib/Logic/Basic.lean
exists_or_eq_right
[]
[ 793, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 793, 9 ]
Mathlib/CategoryTheory/Adjunction/Mates.lean
CategoryTheory.transferNatTransSelf_adjunction_id
[ { "state_after": "C : Type u₁\nD : Type u₂\ninst✝¹ : Category C\ninst✝ : Category D\nL₁ L₂ L₃ : C ⥤ D\nR₁ R₂ R₃ : D ⥤ C\nadj₁ : L₁ ⊣ R₁\nadj₂ : L₂ ⊣ R₂\nadj₃ : L₃ ⊣ R₃\nL R : C ⥤ C\nadj : L ⊣ R\nf : 𝟭 C ⟶ L\nX : C\n⊢ 𝟙 (R.obj X) ≫ (𝟙 (R.obj X) ≫ (𝟙 (R.obj X) ≫ f.app (R.obj X) ≫ 𝟙 (L.obj (R.obj X))) ≫ adj.counit.app X) ≫ 𝟙 X =\n f.app (R.obj X) ≫ adj.counit.app X", "state_before": "C : Type u₁\nD : Type u₂\ninst✝¹ : Category C\ninst✝ : Category D\nL₁ L₂ L₃ : C ⥤ D\nR₁ R₂ R₃ : D ⥤ C\nadj₁ : L₁ ⊣ R₁\nadj₂ : L₂ ⊣ R₂\nadj₃ : L₃ ⊣ R₃\nL R : C ⥤ C\nadj : L ⊣ R\nf : 𝟭 C ⟶ L\nX : C\n⊢ (↑(transferNatTransSelf adj Adjunction.id) f).app X = f.app (R.obj X) ≫ adj.counit.app X", "tactic": "dsimp [transferNatTransSelf, transferNatTrans, Adjunction.id]" }, { "state_after": "no goals", "state_before": "C : Type u₁\nD : Type u₂\ninst✝¹ : Category C\ninst✝ : Category D\nL₁ L₂ L₃ : C ⥤ D\nR₁ R₂ R₃ : D ⥤ C\nadj₁ : L₁ ⊣ R₁\nadj₂ : L₂ ⊣ R₂\nadj₃ : L₃ ⊣ R₃\nL R : C ⥤ C\nadj : L ⊣ R\nf : 𝟭 C ⟶ L\nX : C\n⊢ 𝟙 (R.obj X) ≫ (𝟙 (R.obj X) ≫ (𝟙 (R.obj X) ≫ f.app (R.obj X) ≫ 𝟙 (L.obj (R.obj X))) ≫ adj.counit.app X) ≫ 𝟙 X =\n f.app (R.obj X) ≫ adj.counit.app X", "tactic": "simp only [comp_id, id_comp]" } ]
[ 211, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/SetTheory/Ordinal/Exponential.lean
Ordinal.log_nonempty
[]
[ 263, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/Data/SetLike/Basic.lean
SetLike.forall
[]
[ 133, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 132, 11 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.sumCoords_reindex
[ { "state_after": "case h\nι : Type u_4\nι' : Type u_3\nR : Type u_1\nR₂ : Type ?u.370286\nK : Type ?u.370289\nM : Type u_2\nM' : Type ?u.370295\nM'' : Type ?u.370298\nV : Type u\nV' : Type ?u.370303\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx✝ : M\nb' : Basis ι' R M'\ne : ι ≃ ι'\nx : M\n⊢ ↑(sumCoords (reindex b e)) x = ↑(sumCoords b) x", "state_before": "ι : Type u_4\nι' : Type u_3\nR : Type u_1\nR₂ : Type ?u.370286\nK : Type ?u.370289\nM : Type u_2\nM' : Type ?u.370295\nM'' : Type ?u.370298\nV : Type u\nV' : Type ?u.370303\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx : M\nb' : Basis ι' R M'\ne : ι ≃ ι'\n⊢ sumCoords (reindex b e) = sumCoords b", "tactic": "ext x" }, { "state_after": "case h\nι : Type u_4\nι' : Type u_3\nR : Type u_1\nR₂ : Type ?u.370286\nK : Type ?u.370289\nM : Type u_2\nM' : Type ?u.370295\nM'' : Type ?u.370298\nV : Type u\nV' : Type ?u.370303\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx✝ : M\nb' : Basis ι' R M'\ne : ι ≃ ι'\nx : M\n⊢ (Finsupp.sum (Finsupp.mapDomain (↑e) (↑b.repr x)) fun x => id) = Finsupp.sum (↑b.repr x) fun x => id", "state_before": "case h\nι : Type u_4\nι' : Type u_3\nR : Type u_1\nR₂ : Type ?u.370286\nK : Type ?u.370289\nM : Type u_2\nM' : Type ?u.370295\nM'' : Type ?u.370298\nV : Type u\nV' : Type ?u.370303\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx✝ : M\nb' : Basis ι' R M'\ne : ι ≃ ι'\nx : M\n⊢ ↑(sumCoords (reindex b e)) x = ↑(sumCoords b) x", "tactic": "simp only [coe_sumCoords, repr_reindex]" }, { "state_after": "no goals", "state_before": "case h\nι : Type u_4\nι' : Type u_3\nR : Type u_1\nR₂ : Type ?u.370286\nK : Type ?u.370289\nM : Type u_2\nM' : Type ?u.370295\nM'' : Type ?u.370298\nV : Type u\nV' : Type ?u.370303\ninst✝⁴ : Semiring R\ninst✝³ : AddCommMonoid M\ninst✝² : Module R M\ninst✝¹ : AddCommMonoid M'\ninst✝ : Module R M'\nb b₁ : Basis ι R M\ni : ι\nc : R\nx✝ : M\nb' : Basis ι' R M'\ne : ι ≃ ι'\nx : M\n⊢ (Finsupp.sum (Finsupp.mapDomain (↑e) (↑b.repr x)) fun x => id) = Finsupp.sum (↑b.repr x) fun x => id", "tactic": "exact Finsupp.sum_mapDomain_index (fun _ => rfl) fun _ _ _ => rfl" } ]
[ 454, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean
InnerProductGeometry.norm_sub_eq_abs_sub_norm_of_angle_eq_zero
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ x y : V\nh : angle x y = 0\n⊢ ‖x‖ ^ 2 - 2 * (‖x‖ * ‖y‖) + ‖y‖ ^ 2 = (‖x‖ - ‖y‖) ^ 2", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ x y : V\nh : angle x y = 0\n⊢ ‖x - y‖ = abs (‖x‖ - ‖y‖)", "tactic": "rw [← sq_eq_sq (norm_nonneg (x - y)) (abs_nonneg (‖x‖ - ‖y‖)), norm_sub_pow_two_real,\n inner_eq_mul_norm_of_angle_eq_zero h, sq_abs (‖x‖ - ‖y‖)]" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y✝ x y : V\nh : angle x y = 0\n⊢ ‖x‖ ^ 2 - 2 * (‖x‖ * ‖y‖) + ‖y‖ ^ 2 = (‖x‖ - ‖y‖) ^ 2", "tactic": "ring" } ]
[ 292, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.subNat_mk
[]
[ 1586, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1584, 1 ]
Mathlib/Data/List/Basic.lean
List.indexOf_le_length
[ { "state_after": "case nil\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\n⊢ indexOf a [] ≤ length []\n\ncase cons\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\n⊢ indexOf a (b :: l) ≤ length (b :: l)", "state_before": "ι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\nl : List α\n⊢ indexOf a l ≤ length l", "tactic": "induction' l with b l ih" }, { "state_after": "case cons\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1", "state_before": "case cons\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\n⊢ indexOf a (b :: l) ≤ length (b :: l)", "tactic": "simp only [length, indexOf_cons]" }, { "state_after": "case pos\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : a = b\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1\n\ncase neg\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : ¬a = b\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1", "state_before": "case cons\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1", "tactic": "by_cases h : a = b" }, { "state_after": "case neg\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : ¬a = b\n⊢ succ (indexOf a l) ≤ length l + 1", "state_before": "case neg\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : ¬a = b\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1", "tactic": "rw [if_neg h]" }, { "state_after": "no goals", "state_before": "case neg\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : ¬a = b\n⊢ succ (indexOf a l) ≤ length l + 1", "tactic": "exact succ_le_succ ih" }, { "state_after": "no goals", "state_before": "case nil\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na : α\n⊢ indexOf a [] ≤ length []", "tactic": "rfl" }, { "state_after": "case pos\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : a = b\n⊢ 0 ≤ length l + 1", "state_before": "case pos\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : a = b\n⊢ (if a = b then 0 else succ (indexOf a l)) ≤ length l + 1", "tactic": "rw [if_pos h]" }, { "state_after": "no goals", "state_before": "case pos\nι : Type ?u.80422\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\ninst✝ : DecidableEq α\na b : α\nl : List α\nih : indexOf a l ≤ length l\nh : a = b\n⊢ 0 ≤ length l + 1", "tactic": "exact Nat.zero_le _" } ]
[ 1204, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1198, 1 ]
Mathlib/Algebra/DirectSum/Module.lean
DirectSum.IsInternal.addSubgroup_independent
[]
[ 434, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 432, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.sin_pi_sub
[]
[ 259, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
Module.End.generalizedEigenspace_le_generalizedEigenspace_finrank
[]
[ 375, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 373, 1 ]
Mathlib/RingTheory/FreeCommRing.lean
FreeRing.coe_add
[]
[ 350, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 349, 11 ]
Mathlib/Algebra/Order/UpperLower.lean
upperClosure_mul_distrib
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : OrderedCommGroup α\ns t : Set α\na : α\n⊢ ↑(upperClosure (s * t)) = ↑(upperClosure s * upperClosure t)", "tactic": "rw [UpperSet.coe_mul, mul_upperClosure, upperClosure_mul, UpperSet.upperClosure]" } ]
[ 320, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 318, 1 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.groupSmul_apply
[]
[ 1232, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1228, 1 ]
Mathlib/Algebra/Support.lean
Function.mulSupport_one_sub'
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type ?u.118394\nA : Type ?u.118397\nB : Type ?u.118400\nM : Type ?u.118403\nN : Type ?u.118406\nP : Type ?u.118409\nR : Type u_1\nS : Type ?u.118415\nG : Type ?u.118418\nM₀ : Type ?u.118421\nG₀ : Type ?u.118424\nι : Sort ?u.118427\ninst✝¹ : One R\ninst✝ : AddGroup R\nf : α → R\n⊢ mulSupport (1 - f) = support f", "tactic": "rw [sub_eq_add_neg, mulSupport_one_add', support_neg']" } ]
[ 434, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 433, 1 ]
Mathlib/Combinatorics/SetFamily/Intersecting.lean
Set.Intersecting.isUpperSet'
[ { "state_after": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ b ∈ ↑s", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na b c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\n⊢ IsUpperSet ↑s", "tactic": "rintro a b hab ha" }, { "state_after": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ b ∈ ↑(Insert.insert b s)\n\nα : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ Intersecting ↑(Insert.insert b s)", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ b ∈ ↑s", "tactic": "rw [h (Insert.insert b s) _ (Finset.subset_insert _ _)]" }, { "state_after": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ Intersecting (Insert.insert b ↑s)", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ Intersecting ↑(Insert.insert b s)", "tactic": "rw [coe_insert]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ Intersecting (Insert.insert b ↑s)", "tactic": "exact\n hs.insert (mt (eq_bot_mono hab) <| hs.ne_bot ha) fun c hc hbc => hs ha hc <| hbc.mono_left hab" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : SemilatticeInf α\ninst✝ : OrderBot α\ns✝ t : Set α\na✝ b✝ c : α\ns : Finset α\nhs : Intersecting ↑s\nh : ∀ (t : Finset α), Intersecting ↑t → s ⊆ t → s = t\na b : α\nhab : a ≤ b\nha : a ∈ ↑s\n⊢ b ∈ ↑(Insert.insert b s)", "tactic": "exact mem_insert_self _ _" } ]
[ 133, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/CategoryTheory/Equivalence.lean
CategoryTheory.Equivalence.inverse_counitInv_comp
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ (e.unitIso.app (e.inverse.obj Y) ≪≫ e.inverse.mapIso (e.counitIso.app Y)).hom =\n (Iso.refl ((𝟭 C).obj (e.inverse.obj Y))).hom", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ e.inverse.map ((counitInv e).app Y) ≫ (unitInv e).app (e.inverse.obj Y) = 𝟙 (e.inverse.obj Y)", "tactic": "erw [Iso.inv_eq_inv (e.unitIso.app (e.inverse.obj Y) ≪≫ e.inverse.mapIso (e.counitIso.app Y))\n (Iso.refl _)]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\ne : C ≌ D\nY : D\n⊢ (e.unitIso.app (e.inverse.obj Y) ≪≫ e.inverse.mapIso (e.counitIso.app Y)).hom =\n (Iso.refl ((𝟭 C).obj (e.inverse.obj Y))).hom", "tactic": "exact e.unit_inverse_comp Y" } ]
[ 212, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Std/Data/List/Lemmas.lean
List.chain_cons
[ { "state_after": "no goals", "state_before": "α : Type u_1\nR : α → α → Prop\na b : α\nl : List α\np : Chain R a (b :: l)\n⊢ R a b ∧ Chain R b l", "tactic": "cases p with | cons n p => exact ⟨n, p⟩" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u_1\nR : α → α → Prop\na b : α\nl : List α\nn : R a b\np : Chain R b l\n⊢ R a b ∧ Chain R b l", "tactic": "exact ⟨n, p⟩" } ]
[ 1778, 26 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1776, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.isCycleOn_swap
[ { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na b x y : α\ninst✝ : DecidableEq α\nhab : a ≠ b\n⊢ a ∈ {a, b}", "tactic": "simp" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na b x y : α\ninst✝ : DecidableEq α\nhab : a ≠ b\n⊢ b ∈ {a, b}", "tactic": "simp" }, { "state_after": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na b x✝ y✝ : α\ninst✝ : DecidableEq α\nhab : a ≠ b\nx : α\nhx : x = a ∨ x = b\ny : α\nhy : y = a ∨ y = b\n⊢ SameCycle (swap a b) x y", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na b x✝ y✝ : α\ninst✝ : DecidableEq α\nhab : a ≠ b\nx : α\nhx : x ∈ {a, b}\ny : α\nhy : y ∈ {a, b}\n⊢ SameCycle (swap a b) x y", "tactic": "rw [Set.mem_insert_iff, Set.mem_singleton_iff] at hx hy" }, { "state_after": "case inl.inl\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nb x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : y ≠ b\n⊢ SameCycle (swap y b) y y\n\ncase inl.inr\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : x ≠ y\n⊢ SameCycle (swap x y) x y\n\ncase inr.inl\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : y ≠ x\n⊢ SameCycle (swap y x) x y\n\ncase inr.inr\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : a ≠ y\n⊢ SameCycle (swap a y) y y", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na b x✝ y✝ : α\ninst✝ : DecidableEq α\nhab : a ≠ b\nx : α\nhx : x = a ∨ x = b\ny : α\nhy : y = a ∨ y = b\n⊢ SameCycle (swap a b) x y", "tactic": "obtain rfl | rfl := hx <;> obtain rfl | rfl := hy" }, { "state_after": "no goals", "state_before": "case inl.inl\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nb x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : y ≠ b\n⊢ SameCycle (swap y b) y y", "tactic": "exact ⟨0, by rw [zpow_zero, coe_one, id.def]⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nb x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : y ≠ b\n⊢ ↑(swap y b ^ 0) y = y", "tactic": "rw [zpow_zero, coe_one, id.def]" }, { "state_after": "no goals", "state_before": "case inl.inr\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : x ≠ y\n⊢ SameCycle (swap x y) x y", "tactic": "exact ⟨1, by rw [zpow_one, swap_apply_left]⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : x ≠ y\n⊢ ↑(swap x y ^ 1) x = y", "tactic": "rw [zpow_one, swap_apply_left]" }, { "state_after": "no goals", "state_before": "case inr.inl\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : y ≠ x\n⊢ SameCycle (swap y x) x y", "tactic": "exact ⟨1, by rw [zpow_one, swap_apply_right]⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\nx✝ y✝ : α\ninst✝ : DecidableEq α\nx y : α\nhab : y ≠ x\n⊢ ↑(swap y x ^ 1) x = y", "tactic": "rw [zpow_one, swap_apply_right]" }, { "state_after": "no goals", "state_before": "case inr.inr\nι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : a ≠ y\n⊢ SameCycle (swap a y) y y", "tactic": "exact ⟨0, by rw [zpow_zero, coe_one, id.def]⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.1649642\nα : Type u_1\nβ : Type ?u.1649648\nf g : Perm α\ns t : Set α\na x y✝ : α\ninst✝ : DecidableEq α\ny : α\nhab : a ≠ y\n⊢ ↑(swap a y ^ 0) y = y", "tactic": "rw [zpow_zero, coe_one, id.def]" } ]
[ 802, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 795, 1 ]
Mathlib/ModelTheory/LanguageMap.lean
FirstOrder.Language.withConstants_relMap_sum_inl
[]
[ 518, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 516, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.count_le_of_le
[]
[ 2367, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2366, 1 ]
Mathlib/LinearAlgebra/Matrix/Adjugate.lean
Matrix.cramer_transpose_apply
[ { "state_after": "no goals", "state_before": "m : Type u\nn : Type v\nα : Type w\ninst✝⁴ : DecidableEq n\ninst✝³ : Fintype n\ninst✝² : DecidableEq m\ninst✝¹ : Fintype m\ninst✝ : CommRing α\nA : Matrix n n α\nb : n → α\ni : n\n⊢ ↑(cramer Aᵀ) b i = det (updateRow A i b)", "tactic": "rw [cramer_apply, updateColumn_transpose, det_transpose]" } ]
[ 107, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/MeasureTheory/Group/Prod.lean
MeasureTheory.measurePreserving_mul_prod_inv
[ { "state_after": "case h.e'_5\nG : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\n⊢ (fun z => (z.snd * z.fst, z.fst⁻¹)) = (fun z => (z.snd, z.snd⁻¹ * z.fst)) ∘ fun z => (z.snd, z.snd * z.fst)", "state_before": "G : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\n⊢ MeasurePreserving fun z => (z.snd * z.fst, z.fst⁻¹)", "tactic": "convert (measurePreserving_prod_inv_mul_swap ν μ).comp (measurePreserving_prod_mul_swap μ ν)\n using 1" }, { "state_after": "case h.e'_5.h.mk\nG : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\nx y : G\n⊢ ((x, y).snd * (x, y).fst, (x, y).fst⁻¹) =\n ((fun z => (z.snd, z.snd⁻¹ * z.fst)) ∘ fun z => (z.snd, z.snd * z.fst)) (x, y)", "state_before": "case h.e'_5\nG : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\n⊢ (fun z => (z.snd * z.fst, z.fst⁻¹)) = (fun z => (z.snd, z.snd⁻¹ * z.fst)) ∘ fun z => (z.snd, z.snd * z.fst)", "tactic": "ext1 ⟨x, y⟩" }, { "state_after": "no goals", "state_before": "case h.e'_5.h.mk\nG : Type u_1\ninst✝⁷ : MeasurableSpace G\ninst✝⁶ : Group G\ninst✝⁵ : MeasurableMul₂ G\nμ ν : Measure G\ninst✝⁴ : SigmaFinite ν\ninst✝³ : SigmaFinite μ\ns : Set G\ninst✝² : MeasurableInv G\ninst✝¹ : IsMulLeftInvariant μ\ninst✝ : IsMulLeftInvariant ν\nx y : G\n⊢ ((x, y).snd * (x, y).fst, (x, y).fst⁻¹) =\n ((fun z => (z.snd, z.snd⁻¹ * z.fst)) ∘ fun z => (z.snd, z.snd * z.fst)) (x, y)", "tactic": "simp_rw [Function.comp_apply, mul_inv_rev, inv_mul_cancel_right]" } ]
[ 156, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 1 ]
Mathlib/Topology/Basic.lean
DenseRange.dense_image
[]
[ 1827, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1825, 1 ]
Mathlib/Order/Antichain.lean
IsStrongAntichain.eq
[]
[ 295, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
lcm_mul_left
[ { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\nb c : α\n⊢ lcm (0 * b) (0 * c) = ↑normalize 0 * lcm b c", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\na b c : α\n⊢ a = 0 → lcm (a * b) (a * c) = ↑normalize a * lcm b c", "tactic": "rintro rfl" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\nb c : α\n⊢ lcm (0 * b) (0 * c) = ↑normalize 0 * lcm b c", "tactic": "simp only [zero_mul, lcm_zero_left, normalize_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : NormalizedGCDMonoid α\na b c : α\nha : a ≠ 0\nthis : lcm (a * b) (a * c) = ↑normalize (a * lcm b c)\n⊢ lcm (a * b) (a * c) = ↑normalize a * lcm b c", "tactic": "simpa" } ]
[ 830, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 818, 1 ]
Mathlib/Topology/MetricSpace/HausdorffDistance.lean
Metric.Bounded.thickening
[ { "state_after": "case inl\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nh : Bounded ∅\n⊢ Bounded (thickening δ ∅)\n\ncase inr.intro\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx✝ : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nE : Set X\nh : Bounded E\nx : X\nhx : x ∈ E\n⊢ Bounded (thickening δ E)", "state_before": "ι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nE : Set X\nh : Bounded E\n⊢ Bounded (thickening δ E)", "tactic": "rcases E.eq_empty_or_nonempty with rfl | ⟨x, hx⟩" }, { "state_after": "no goals", "state_before": "case inl\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nh : Bounded ∅\n⊢ Bounded (thickening δ ∅)", "tactic": "simp" }, { "state_after": "case inr.intro\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx✝ : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nE : Set X\nh : Bounded E\nx : X\nhx : x ∈ E\ny : X\nhy : y ∈ thickening δ E\n⊢ y ∈ closedBall x (δ + diam E)", "state_before": "case inr.intro\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx✝ : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nE : Set X\nh : Bounded E\nx : X\nhx : x ∈ E\n⊢ Bounded (thickening δ E)", "tactic": "refine (bounded_iff_subset_ball x).2 ⟨δ + diam E, fun y hy ↦ ?_⟩" }, { "state_after": "no goals", "state_before": "case inr.intro\nι : Sort ?u.97539\nα : Type u\nβ : Type v\ninst✝¹ : PseudoEMetricSpace α\nδ✝ : ℝ\ns : Set α\nx✝ : α\nX : Type u\ninst✝ : PseudoMetricSpace X\nδ : ℝ\nE : Set X\nh : Bounded E\nx : X\nhx : x ∈ E\ny : X\nhy : y ∈ thickening δ E\n⊢ y ∈ closedBall x (δ + diam E)", "tactic": "calc\n dist y x ≤ infDist y E + diam E := dist_le_infDist_add_diam (x := y) h hx\n _ ≤ δ + diam E := add_le_add_right ((mem_thickening_iff_infDist_lt ⟨x, hx⟩).1 hy).le _" } ]
[ 1009, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1002, 11 ]
Mathlib/Algebra/Regular/Basic.lean
not_isRegular_zero
[]
[ 269, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lt_iff_le_and_lf
[]
[ 536, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.mul_apply
[]
[ 926, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 924, 1 ]
Mathlib/Order/ConditionallyCompleteLattice/Basic.lean
WithTop.iSup_coe_eq_top
[ { "state_after": "α✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\n⊢ (∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)) ↔ ∀ (x : α), ∃ y, y ∈ range f ∧ x < y", "state_before": "α✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\n⊢ (⨆ (x : ι), ↑(f x)) = ⊤ ↔ ¬BddAbove (range f)", "tactic": "rw [iSup_eq_top, not_bddAbove_iff]" }, { "state_after": "case refine'_1\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)\nr : α\n⊢ ∃ y, y ∈ range f ∧ r < y\n\ncase refine'_2\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y\na : WithTop α\nha : a < ⊤\n⊢ ∃ i, a < ↑(f i)", "state_before": "α✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\n⊢ (∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)) ↔ ∀ (x : α), ∃ y, y ∈ range f ∧ x < y", "tactic": "refine' ⟨fun hf r => _, fun hf a ha => _⟩" }, { "state_after": "case refine'_1.intro\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)\nr : α\ni : ι\nhi : ↑r < ↑(f i)\n⊢ ∃ y, y ∈ range f ∧ r < y", "state_before": "case refine'_1\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)\nr : α\n⊢ ∃ y, y ∈ range f ∧ r < y", "tactic": "rcases hf r (WithTop.coe_lt_top r) with ⟨i, hi⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (b : WithTop α), b < ⊤ → ∃ i, b < ↑(f i)\nr : α\ni : ι\nhi : ↑r < ↑(f i)\n⊢ ∃ y, y ∈ range f ∧ r < y", "tactic": "exact ⟨f i, ⟨i, rfl⟩, WithTop.coe_lt_coe.mp hi⟩" }, { "state_after": "case refine'_2.intro.intro.intro\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y\na : WithTop α\nha : a < ⊤\ni : ι\nhi : untop a (_ : a ≠ ⊤) < f i\n⊢ ∃ i, a < ↑(f i)", "state_before": "case refine'_2\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y\na : WithTop α\nha : a < ⊤\n⊢ ∃ i, a < ↑(f i)", "tactic": "rcases hf (a.untop ha.ne) with ⟨-, ⟨i, rfl⟩, hi⟩" }, { "state_after": "no goals", "state_before": "case refine'_2.intro.intro.intro\nα✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y\na : WithTop α\nha : a < ⊤\ni : ι\nhi : untop a (_ : a ≠ ⊤) < f i\n⊢ ∃ i, a < ↑(f i)", "tactic": "exact ⟨i, by simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi⟩" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.130874\nβ : Type ?u.130877\nγ : Type ?u.130880\nι✝ : Sort ?u.130883\nι : Sort u_1\nα : Type u_2\ninst✝ : ConditionallyCompleteLinearOrderBot α\nf : ι → α\nhf : ∀ (x : α), ∃ y, y ∈ range f ∧ x < y\na : WithTop α\nha : a < ⊤\ni : ι\nhi : untop a (_ : a ≠ ⊤) < f i\n⊢ a < ↑(f i)", "tactic": "simpa only [WithTop.coe_untop _ ha.ne] using WithTop.coe_lt_coe.mpr hi" } ]
[ 1541, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1534, 1 ]
Mathlib/Analysis/MeanInequalitiesPow.lean
ENNReal.rpow_add_rpow_le
[ { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "have h_rpow : ∀ a : ℝ≥0∞, a ^ q = (a ^ p) ^ (q / p) := fun a => by\n rw [← ENNReal.rpow_mul, _root_.mul_div_cancel' _ hp_pos.ne']" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "have h_rpow_add_rpow_le_add :\n ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p := by\n refine' rpow_add_rpow_le_add (a ^ p) (b ^ p) _\n rwa [one_le_div hp_pos]" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (p / q) ≤ a ^ p + b ^ p", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ (a ^ q + b ^ q) ^ (1 / q) ≤ (a ^ p + b ^ p) ^ (1 / p)", "tactic": "rw [h_rpow a, h_rpow b, ENNReal.le_rpow_one_div_iff hp_pos, ← ENNReal.rpow_mul, mul_comm,\n mul_one_div]" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\nh_rpow_add_rpow_le_add : ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (p / q) ≤ a ^ p + b ^ p", "tactic": "rwa [one_div_div] at h_rpow_add_rpow_le_add" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na✝ b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\na : ℝ≥0∞\n⊢ a ^ q = (a ^ p) ^ (q / p)", "tactic": "rw [← ENNReal.rpow_mul, _root_.mul_div_cancel' _ hp_pos.ne']" }, { "state_after": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\n⊢ 1 ≤ q / p", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\n⊢ ((a ^ p) ^ (q / p) + (b ^ p) ^ (q / p)) ^ (1 / (q / p)) ≤ a ^ p + b ^ p", "tactic": "refine' rpow_add_rpow_le_add (a ^ p) (b ^ p) _" }, { "state_after": "no goals", "state_before": "ι : Type u\ns : Finset ι\np q : ℝ\na b : ℝ≥0∞\nhp_pos : 0 < p\nhpq : p ≤ q\nh_rpow : ∀ (a : ℝ≥0∞), a ^ q = (a ^ p) ^ (q / p)\n⊢ 1 ≤ q / p", "tactic": "rwa [one_le_div hp_pos]" } ]
[ 338, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 328, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.closure_le
[]
[ 817, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 816, 1 ]
Mathlib/Order/WithBot.lean
WithBot.wellFounded_lt
[]
[ 510, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 493, 1 ]
Mathlib/Algebra/Order/Hom/Ring.lean
OrderRingHom.coe_orderMonoidWithZeroHom_apply
[]
[ 246, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/Analysis/InnerProductSpace/Positive.lean
ContinuousLinearMap.IsPositive.add
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.147588\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT S : E →L[𝕜] E\nhT : IsPositive T\nhS : IsPositive S\nx : E\n⊢ 0 ≤ reApplyInnerSelf (T + S) x", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.147588\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT S : E →L[𝕜] E\nhT : IsPositive T\nhS : IsPositive S\n⊢ IsPositive (T + S)", "tactic": "refine' ⟨hT.isSelfAdjoint.add hS.isSelfAdjoint, fun x => _⟩" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.147588\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT S : E →L[𝕜] E\nhT : IsPositive T\nhS : IsPositive S\nx : E\n⊢ 0 ≤ ↑re (inner (↑T x) x) + ↑re (inner (↑S x) x)", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.147588\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT S : E →L[𝕜] E\nhT : IsPositive T\nhS : IsPositive S\nx : E\n⊢ 0 ≤ reApplyInnerSelf (T + S) x", "tactic": "rw [reApplyInnerSelf, add_apply, inner_add_left, map_add]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.147588\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : NormedAddCommGroup F\ninst✝³ : InnerProductSpace 𝕜 E\ninst✝² : InnerProductSpace 𝕜 F\ninst✝¹ : CompleteSpace E\ninst✝ : CompleteSpace F\nT S : E →L[𝕜] E\nhT : IsPositive T\nhS : IsPositive S\nx : E\n⊢ 0 ≤ ↑re (inner (↑T x) x) + ↑re (inner (↑S x) x)", "tactic": "exact add_nonneg (hT.inner_nonneg_left x) (hS.inner_nonneg_left x)" } ]
[ 91, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]