file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Topology/Basic.lean
IsOpen.inter_closure
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\na : α\ns✝ s₁ s₂ t✝ : Set α\np p₁ p₂ : α → Prop\ninst✝ : TopologicalSpace α\ns t : Set α\nh : IsOpen s\n⊢ closure (s ∩ t)ᶜ ⊆ (s ∩ closure t)ᶜ", "tactic": "simpa only [← interior_compl, compl_inter] using IsClosed.interior_union_left h.isClosed_compl" } ]
[ 1390, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1388, 1 ]
Mathlib/Data/Real/ConjugateExponents.lean
Real.IsConjugateExponent.conjugate_eq
[]
[ 80, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/Analysis/Seminorm.lean
balanced_ball_zero
[ { "state_after": "R : Type ?u.1457964\nR' : Type ?u.1457967\n𝕜 : Type u_1\n𝕜₂ : Type ?u.1457973\n𝕜₃ : Type ?u.1457976\n𝕝 : Type ?u.1457979\nE : Type u_2\nE₂ : Type ?u.1457985\nE₃ : Type ?u.1457988\nF : Type ?u.1457991\nG : Type ?u.1457994\nι : Type ?u.1457997\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nr : ℝ\nx : E\n⊢ Balanced 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r)", "state_before": "R : Type ?u.1457964\nR' : Type ?u.1457967\n𝕜 : Type u_1\n𝕜₂ : Type ?u.1457973\n𝕜₃ : Type ?u.1457976\n𝕝 : Type ?u.1457979\nE : Type u_2\nE₂ : Type ?u.1457985\nE₃ : Type ?u.1457988\nF : Type ?u.1457991\nG : Type ?u.1457994\nι : Type ?u.1457997\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nr : ℝ\nx : E\n⊢ Balanced 𝕜 (Metric.ball 0 r)", "tactic": "rw [← ball_normSeminorm 𝕜]" }, { "state_after": "no goals", "state_before": "R : Type ?u.1457964\nR' : Type ?u.1457967\n𝕜 : Type u_1\n𝕜₂ : Type ?u.1457973\n𝕜₃ : Type ?u.1457976\n𝕝 : Type ?u.1457979\nE : Type u_2\nE₂ : Type ?u.1457985\nE₃ : Type ?u.1457988\nF : Type ?u.1457991\nG : Type ?u.1457994\nι : Type ?u.1457997\ninst✝² : NormedField 𝕜\ninst✝¹ : SeminormedAddCommGroup E\ninst✝ : NormedSpace 𝕜 E\nr : ℝ\nx : E\n⊢ Balanced 𝕜 (Seminorm.ball (normSeminorm 𝕜 E) 0 r)", "tactic": "exact (normSeminorm _ _).balanced_ball_zero r" } ]
[ 1227, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1225, 1 ]
Mathlib/GroupTheory/Commutator.lean
Subgroup.commutator_mem_commutator
[]
[ 89, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 88, 1 ]
Mathlib/RingTheory/MvPolynomial/Homogeneous.lean
MvPolynomial.homogeneousComponent_eq_zero'
[ { "state_after": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\n⊢ ∀ (x : σ →₀ ℕ), x ∈ filter (fun d => ∑ i in d.support, ↑d i = n) (support φ) → ↑(monomial x) (coeff x φ) = 0", "state_before": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\n⊢ ↑(homogeneousComponent n) φ = 0", "tactic": "rw [homogeneousComponent_apply, sum_eq_zero]" }, { "state_after": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ filter (fun d => ∑ i in d.support, ↑d i = n) (support φ)\n⊢ ↑(monomial d) (coeff d φ) = 0", "state_before": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\n⊢ ∀ (x : σ →₀ ℕ), x ∈ filter (fun d => ∑ i in d.support, ↑d i = n) (support φ) → ↑(monomial x) (coeff x φ) = 0", "tactic": "intro d hd" }, { "state_after": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ support φ ∧ ∑ i in d.support, ↑d i = n\n⊢ ↑(monomial d) (coeff d φ) = 0", "state_before": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ filter (fun d => ∑ i in d.support, ↑d i = n) (support φ)\n⊢ ↑(monomial d) (coeff d φ) = 0", "tactic": "rw [mem_filter] at hd" }, { "state_after": "case h\nσ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ support φ ∧ ∑ i in d.support, ↑d i = n\n⊢ False", "state_before": "σ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ support φ ∧ ∑ i in d.support, ↑d i = n\n⊢ ↑(monomial d) (coeff d φ) = 0", "tactic": "exfalso" }, { "state_after": "no goals", "state_before": "case h\nσ : Type u_1\nτ : Type ?u.355900\nR : Type u_2\nS : Type ?u.355906\ninst✝ : CommSemiring R\nn : ℕ\nφ ψ : MvPolynomial σ R\nh : ∀ (d : σ →₀ ℕ), d ∈ support φ → ∑ i in d.support, ↑d i ≠ n\nd : σ →₀ ℕ\nhd : d ∈ support φ ∧ ∑ i in d.support, ↑d i = n\n⊢ False", "tactic": "exact h _ hd.1 hd.2" } ]
[ 297, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.coe_sSup
[]
[ 934, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 933, 1 ]
Mathlib/Order/UpperLower/Basic.lean
UpperSet.coe_iSup₂
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.56049\nγ : Type ?u.56052\nι : Sort u_2\nκ : ι → Sort u_3\ninst✝ : LE α\nS : Set (UpperSet α)\ns t : UpperSet α\na : α\nf : (i : ι) → κ i → UpperSet α\n⊢ ↑(⨆ (i : ι) (j : κ i), f i j) = ⋂ (i : ι) (j : κ i), ↑(f i j)", "tactic": "simp_rw [coe_iSup]" } ]
[ 562, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 561, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.measure_ge_lt_top
[ { "state_after": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ ↑↑μ {x | ENNReal.ofReal ε ≤ ↑‖f x‖₊} < ⊤", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ ↑↑μ {x | ε ≤ ‖f x‖} < ⊤", "tactic": "rw [show { x | ε ≤ ‖f x‖ } = { x | ENNReal.ofReal ε ≤ ‖f x‖₊ } by\n simp only [ENNReal.ofReal, Real.toNNReal_le_iff_le_coe, ENNReal.coe_le_coe, coe_nnnorm]]" }, { "state_after": "case refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ ENNReal.ofReal ε ≠ 0\n\ncase refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ (ENNReal.ofReal ε)⁻¹ ^ ENNReal.toReal 1 * snorm f 1 μ ^ ENNReal.toReal 1 < ⊤", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ ↑↑μ {x | ENNReal.ofReal ε ≤ ↑‖f x‖₊} < ⊤", "tactic": "refine' (meas_ge_le_mul_pow_snorm μ one_ne_zero ENNReal.one_ne_top hf.1 _).trans_lt _" }, { "state_after": "case refine'_2.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ (ENNReal.ofReal ε)⁻¹ ^ ENNReal.toReal 1 ≠ ⊤\n\ncase refine'_2.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ snorm f 1 μ ^ ENNReal.toReal 1 ≠ ⊤", "state_before": "case refine'_2\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ (ENNReal.ofReal ε)⁻¹ ^ ENNReal.toReal 1 * snorm f 1 μ ^ ENNReal.toReal 1 < ⊤", "tactic": "apply ENNReal.mul_lt_top" }, { "state_after": "no goals", "state_before": "case refine'_2.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ snorm f 1 μ ^ ENNReal.toReal 1 ≠ ⊤", "tactic": "simpa only [ENNReal.one_toReal, ENNReal.rpow_one] using\n (memℒp_one_iff_integrable.2 hf).snorm_ne_top" }, { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ {x | ε ≤ ‖f x‖} = {x | ENNReal.ofReal ε ≤ ↑‖f x‖₊}", "tactic": "simp only [ENNReal.ofReal, Real.toNNReal_le_iff_le_coe, ENNReal.coe_le_coe, coe_nnnorm]" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ ENNReal.ofReal ε ≠ 0", "tactic": "simpa only [Ne.def, ENNReal.ofReal_eq_zero, not_le] using hε" }, { "state_after": "no goals", "state_before": "case refine'_2.a\nα : Type u_2\nβ : Type u_1\nγ : Type ?u.989928\nδ : Type ?u.989931\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf : α → β\nhf : Integrable f\nε : ℝ\nhε : 0 < ε\n⊢ (ENNReal.ofReal ε)⁻¹ ^ ENNReal.toReal 1 ≠ ⊤", "tactic": "simpa only [ENNReal.one_toReal, ENNReal.rpow_one, Ne.def, ENNReal.inv_eq_top,\n ENNReal.ofReal_eq_zero, not_le] using hε" } ]
[ 811, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 801, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.mk_add_moveLeft_inr
[]
[ 1533, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1530, 1 ]
Mathlib/MeasureTheory/Measure/Lebesgue/Integral.lean
Real.integrable_of_summable_norm_Icc
[ { "state_after": "case refine'_1\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ ℤ → Compacts ℝ\n\ncase refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ ‖ContinuousMap.restrict (↑(?refine'_1 n)) f‖ * ENNReal.toReal (↑↑volume ↑(?refine'_1 n)) ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n\ncase refine'_3\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ (⋃ (i : ℤ), ↑(?refine'_1 i)) = univ", "state_before": "E : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ Integrable ↑f", "tactic": "refine'\n @integrable_of_summable_norm_restrict ℝ ℤ E _ volume _ _ _ _ _ _ _ _\n (summable_of_nonneg_of_le\n (fun n : ℤ => mul_nonneg (norm_nonneg\n (f.restrict (⟨Icc (n : ℝ) ((n : ℝ) + 1), isCompact_Icc⟩ : Compacts ℝ)))\n ENNReal.toReal_nonneg)\n (fun n => _) hf) _" }, { "state_after": "case refine'_1\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ Compacts ℝ", "state_before": "case refine'_1\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ ℤ → Compacts ℝ", "tactic": "intro n" }, { "state_after": "no goals", "state_before": "case refine'_1\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ Compacts ℝ", "tactic": "exact ⟨Icc (n : ℝ) ((n : ℝ) + 1), isCompact_Icc⟩" }, { "state_after": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ ∀ (x : ↑(Icc (↑n) (↑n + 1))),\n ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "state_before": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ ‖ContinuousMap.restrict (↑{ carrier := Icc (↑n) (↑n + 1), isCompact' := (_ : IsCompact (Icc (↑n) (↑n + 1))) }) f‖ *\n ENNReal.toReal (↑↑volume ↑{ carrier := Icc (↑n) (↑n + 1), isCompact' := (_ : IsCompact (Icc (↑n) (↑n + 1))) }) ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "tactic": "simp only [Compacts.coe_mk, Real.volume_Icc, add_sub_cancel', ENNReal.toReal_ofReal zero_le_one,\n mul_one, norm_le _ (norm_nonneg _)]" }, { "state_after": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\nx : ↑(Icc (↑n) (↑n + 1))\n⊢ ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "state_before": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\n⊢ ∀ (x : ↑(Icc (↑n) (↑n + 1))),\n ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "tactic": "intro x" }, { "state_after": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\nx : ↑(Icc (↑n) (↑n + 1))\nthis :\n ‖↑(ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n)))\n { val := ↑x - ↑n, property := (_ : 0 ≤ ↑x - ↑n ∧ ↑x - ↑n ≤ 1) }‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "state_before": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\nx : ↑(Icc (↑n) (↑n + 1))\n⊢ ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "tactic": "have := ((f.comp <| ContinuousMap.addRight n).restrict (Icc 0 1)).norm_coe_le_norm\n ⟨x - n, ⟨sub_nonneg.mpr x.2.1, sub_le_iff_le_add'.mpr x.2.2⟩⟩" }, { "state_after": "no goals", "state_before": "case refine'_2\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\nn : ℤ\nx : ↑(Icc (↑n) (↑n + 1))\nthis :\n ‖↑(ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n)))\n { val := ↑x - ↑n, property := (_ : 0 ≤ ↑x - ↑n ∧ ↑x - ↑n ≤ 1) }‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ ‖↑(ContinuousMap.restrict (Icc (↑n) (↑n + 1)) f) x‖ ≤\n ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖", "tactic": "simpa only [ContinuousMap.restrict_apply, comp_apply, coe_addRight, Subtype.coe_mk,\n sub_add_cancel] using this" }, { "state_after": "no goals", "state_before": "case refine'_3\nE : Type u_1\ninst✝ : NormedAddCommGroup E\nf : C(ℝ, E)\nhf : Summable fun n => ‖ContinuousMap.restrict (Icc 0 1) (comp f (ContinuousMap.addRight ↑n))‖\n⊢ (⋃ (i : ℤ), ↑{ carrier := Icc (↑i) (↑i + 1), isCompact' := (_ : IsCompact (Icc (↑i) (↑i + 1))) }) = univ", "tactic": "exact iUnion_Icc_int_cast ℝ" } ]
[ 78, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/Ring/Regular.lean
isRightRegular_of_non_zero_divisor
[ { "state_after": "α : Type u_1\ninst✝ : NonUnitalNonAssocRing α\nk : α\nh : ∀ (x : α), x * k = 0 → x = 0\nx y : α\nh' : x * k = y * k\n⊢ (x - y) * k = 0", "state_before": "α : Type u_1\ninst✝ : NonUnitalNonAssocRing α\nk : α\nh : ∀ (x : α), x * k = 0 → x = 0\n⊢ IsRightRegular k", "tactic": "refine' fun x y (h' : x * k = y * k) => sub_eq_zero.mp (h _ _)" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : NonUnitalNonAssocRing α\nk : α\nh : ∀ (x : α), x * k = 0 → x = 0\nx y : α\nh' : x * k = y * k\n⊢ (x - y) * k = 0", "tactic": "rw [sub_mul, sub_eq_zero, h']" } ]
[ 34, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 31, 1 ]
Mathlib/Algebra/BigOperators/Finsupp.lean
map_finsupp_prod
[]
[ 223, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Data/Set/Prod.lean
Set.prod_range_univ_eq
[ { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.55932\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nm₁ : α → γ\n⊢ ∀ (x : γ × β), x ∈ range m₁ ×ˢ univ ↔ x ∈ range fun p => (m₁ p.fst, p.snd)", "tactic": "simp [range]" } ]
[ 295, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 293, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Ordinal.cof_succ
[ { "state_after": "case a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ cof (succ o) ≤ 1\n\ncase a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ 1 ≤ cof (succ o)", "state_before": "α : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ cof (succ o) = 1", "tactic": "apply le_antisymm" }, { "state_after": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (succ (type r)) ≤ 1", "state_before": "case a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ cof (succ o) ≤ 1", "tactic": "refine' inductionOn o fun α r _ => _" }, { "state_after": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ 1", "state_before": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (succ (type r)) ≤ 1", "tactic": "change cof (type _) ≤ _" }, { "state_after": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ (#?m.43531)\n\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ Type u_1\n\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ (#?m.43531) = 1", "state_before": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ 1", "tactic": "rw [← (_ : (#_) = 1)]" }, { "state_after": "case a.h\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ Unbounded (Sum.Lex r EmptyRelation) ?a.S✝\n\ncase a.S\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ Set (α ⊕ PUnit)\n\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ (#↑?a.S✝) = 1", "state_before": "case a\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ cof (type (Sum.Lex r EmptyRelation)) ≤ (#?m.43531)\n\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ Type u_1\n\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ (#?m.43531) = 1", "tactic": "apply cof_type_le" }, { "state_after": "case a.h\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\na : α ⊕ PUnit\n⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) a", "state_before": "case a.h\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ Unbounded (Sum.Lex r EmptyRelation) ?a.S✝", "tactic": "refine' fun a => ⟨Sum.inr PUnit.unit, Set.mem_singleton _, _⟩" }, { "state_after": "no goals", "state_before": "case a.h\nα✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\na : α ⊕ PUnit\n⊢ ¬Sum.Lex r EmptyRelation (Sum.inr PUnit.unit) a", "tactic": "rcases a with (a | ⟨⟨⟨⟩⟩⟩) <;> simp [EmptyRelation]" }, { "state_after": "α✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ ↑1 = 1", "state_before": "α✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ (#↑{Sum.inr PUnit.unit}) = 1", "tactic": "rw [Cardinal.mk_fintype, Set.card_singleton]" }, { "state_after": "no goals", "state_before": "α✝ : Type ?u.43015\nr✝ : α✝ → α✝ → Prop\no : Ordinal\nα : Type u_1\nr : α → α → Prop\nx✝ : IsWellOrder α r\n⊢ ↑1 = 1", "tactic": "simp" }, { "state_after": "case a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ 0 < cof (succ o)", "state_before": "case a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ 1 ≤ cof (succ o)", "tactic": "rw [← Cardinal.succ_zero, succ_le_iff]" }, { "state_after": "no goals", "state_before": "case a\nα : Type ?u.43015\nr : α → α → Prop\no : Ordinal\n⊢ 0 < cof (succ o)", "tactic": "simpa [lt_iff_le_and_ne, Cardinal.zero_le] using fun h =>\n succ_ne_zero o (cof_eq_zero.1 (Eq.symm h))" } ]
[ 513, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 501, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.deleteEdges_le
[ { "state_after": "ι : Sort ?u.157022\n𝕜 : Type ?u.157025\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ns : Set (Sym2 V)\nv✝ : V\n⊢ ∀ ⦃w : V⦄, Adj (deleteEdges G s) v✝ w → Adj G v✝ w", "state_before": "ι : Sort ?u.157022\n𝕜 : Type ?u.157025\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ns : Set (Sym2 V)\n⊢ deleteEdges G s ≤ G", "tactic": "intro" }, { "state_after": "no goals", "state_before": "ι : Sort ?u.157022\n𝕜 : Type ?u.157025\nV : Type u\nW : Type v\nX : Type w\nG : SimpleGraph V\nG' : SimpleGraph W\na b c u v w : V\ne : Sym2 V\ns : Set (Sym2 V)\nv✝ : V\n⊢ ∀ ⦃w : V⦄, Adj (deleteEdges G s) v✝ w → Adj G v✝ w", "tactic": "simp (config := { contextual := true })" } ]
[ 1152, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1150, 1 ]
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
mem_skewAdjointMatricesSubmodule
[ { "state_after": "R : Type u_1\nR₁ : Type ?u.2628894\nR₂ : Type ?u.2628897\nM : Type ?u.2628900\nM₁ : Type ?u.2628903\nM₂ : Type ?u.2628906\nM₁' : Type ?u.2628909\nM₂' : Type ?u.2628912\nn : Type u_2\nm : Type ?u.2628918\nn' : Type ?u.2628921\nm' : Type ?u.2628924\nι : Type ?u.2628927\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : Fintype n\ninst✝² : Fintype n'\nb₁ : Basis n R M₁\nb₂ : Basis n' R M₂\nJ J₂ : Matrix n n R\nJ' : Matrix n' n' R\nA : Matrix n' n R\nA' : Matrix n n' R\nA₁ : Matrix n n R\ninst✝¹ : DecidableEq n\ninst✝ : DecidableEq n'\n⊢ Matrix.IsAdjointPair (-J) J A₁ A₁ ↔ Matrix.IsSkewAdjoint J A₁", "state_before": "R : Type u_1\nR₁ : Type ?u.2628894\nR₂ : Type ?u.2628897\nM : Type ?u.2628900\nM₁ : Type ?u.2628903\nM₂ : Type ?u.2628906\nM₁' : Type ?u.2628909\nM₂' : Type ?u.2628912\nn : Type u_2\nm : Type ?u.2628918\nn' : Type ?u.2628921\nm' : Type ?u.2628924\nι : Type ?u.2628927\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : Fintype n\ninst✝² : Fintype n'\nb₁ : Basis n R M₁\nb₂ : Basis n' R M₂\nJ J₂ : Matrix n n R\nJ' : Matrix n' n' R\nA : Matrix n' n R\nA' : Matrix n n' R\nA₁ : Matrix n n R\ninst✝¹ : DecidableEq n\ninst✝ : DecidableEq n'\n⊢ A₁ ∈ skewAdjointMatricesSubmodule J ↔ Matrix.IsSkewAdjoint J A₁", "tactic": "erw [mem_pairSelfAdjointMatricesSubmodule]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nR₁ : Type ?u.2628894\nR₂ : Type ?u.2628897\nM : Type ?u.2628900\nM₁ : Type ?u.2628903\nM₂ : Type ?u.2628906\nM₁' : Type ?u.2628909\nM₂' : Type ?u.2628912\nn : Type u_2\nm : Type ?u.2628918\nn' : Type ?u.2628921\nm' : Type ?u.2628924\nι : Type ?u.2628927\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : Fintype n\ninst✝² : Fintype n'\nb₁ : Basis n R M₁\nb₂ : Basis n' R M₂\nJ J₂ : Matrix n n R\nJ' : Matrix n' n' R\nA : Matrix n' n R\nA' : Matrix n n' R\nA₁ : Matrix n n R\ninst✝¹ : DecidableEq n\ninst✝ : DecidableEq n'\n⊢ Matrix.IsAdjointPair (-J) J A₁ A₁ ↔ Matrix.IsSkewAdjoint J A₁", "tactic": "simp [Matrix.IsSkewAdjoint, Matrix.IsAdjointPair]" } ]
[ 664, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 661, 1 ]
Mathlib/Data/Matrix/Basic.lean
Matrix.dotProduct_mulVec
[ { "state_after": "l : Type ?u.840566\nm : Type u_2\nn : Type u_1\no : Type ?u.840575\nm' : o → Type ?u.840580\nn' : o → Type ?u.840585\nR : Type u_3\nS : Type ?u.840591\nα : Type v\nβ : Type w\nγ : Type ?u.840598\ninst✝³ : NonUnitalNonAssocSemiring α\ninst✝² : Fintype n\ninst✝¹ : Fintype m\ninst✝ : NonUnitalSemiring R\nv : m → R\nA : Matrix m n R\nw : n → R\n⊢ ∑ x : m, ∑ x_1 : n, v x * (A x x_1 * w x_1) = ∑ x : n, ∑ x_1 : m, v x_1 * (A x_1 x * w x)", "state_before": "l : Type ?u.840566\nm : Type u_2\nn : Type u_1\no : Type ?u.840575\nm' : o → Type ?u.840580\nn' : o → Type ?u.840585\nR : Type u_3\nS : Type ?u.840591\nα : Type v\nβ : Type w\nγ : Type ?u.840598\ninst✝³ : NonUnitalNonAssocSemiring α\ninst✝² : Fintype n\ninst✝¹ : Fintype m\ninst✝ : NonUnitalSemiring R\nv : m → R\nA : Matrix m n R\nw : n → R\n⊢ v ⬝ᵥ mulVec A w = vecMul v A ⬝ᵥ w", "tactic": "simp only [dotProduct, vecMul, mulVec, Finset.mul_sum, Finset.sum_mul, mul_assoc]" }, { "state_after": "no goals", "state_before": "l : Type ?u.840566\nm : Type u_2\nn : Type u_1\no : Type ?u.840575\nm' : o → Type ?u.840580\nn' : o → Type ?u.840585\nR : Type u_3\nS : Type ?u.840591\nα : Type v\nβ : Type w\nγ : Type ?u.840598\ninst✝³ : NonUnitalNonAssocSemiring α\ninst✝² : Fintype n\ninst✝¹ : Fintype m\ninst✝ : NonUnitalSemiring R\nv : m → R\nA : Matrix m n R\nw : n → R\n⊢ ∑ x : m, ∑ x_1 : n, v x * (A x x_1 * w x_1) = ∑ x : n, ∑ x_1 : m, v x_1 * (A x_1 x * w x)", "tactic": "exact Finset.sum_comm" } ]
[ 1715, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1712, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
IntervalIntegrable.comp_sub_right
[ { "state_after": "no goals", "state_before": "ι : Type ?u.7559135\n𝕜 : Type ?u.7559138\nE : Type u_1\nF : Type ?u.7559144\nA : Type ?u.7559147\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedRing A\nf g : ℝ → E\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nhf : IntervalIntegrable f volume a b\nc : ℝ\n⊢ IntervalIntegrable (fun x => f (x - c)) volume (a + c) (b + c)", "tactic": "simpa only [sub_neg_eq_add] using IntervalIntegrable.comp_add_right hf (-c)" } ]
[ 338, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 336, 1 ]
Mathlib/Algebra/Order/Pointwise.lean
csSup_mul
[]
[ 150, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Combinatorics/SimpleGraph/StronglyRegular.lean
SimpleGraph.IsSRGWith.top
[ { "state_after": "V : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj ⊤ v w\n⊢ v ≠ w", "state_before": "V : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj ⊤ v w\n⊢ Fintype.card ↑(commonNeighbors ⊤ v w) = Fintype.card V - 2", "tactic": "rw [card_commonNeighbors_top]" }, { "state_after": "no goals", "state_before": "V : Type u\ninst✝² : Fintype V\ninst✝¹ : DecidableEq V\nG : SimpleGraph V\ninst✝ : DecidableRel G.Adj\nn k ℓ μ : ℕ\nv w : V\nh : Adj ⊤ v w\n⊢ v ≠ w", "tactic": "exact h" } ]
[ 80, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.PullbackCone.equalizer_ext
[ { "state_after": "C : Type u\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nW : C\nk l : W ⟶ t.pt\nh₀ : k ≫ fst t = l ≫ fst t\nh₁ : k ≫ snd t = l ≫ snd t\n⊢ k ≫ t.π.app WalkingCospan.left ≫ (cospan f g).map inl = l ≫ t.π.app WalkingCospan.left ≫ (cospan f g).map inl", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nW : C\nk l : W ⟶ t.pt\nh₀ : k ≫ fst t = l ≫ fst t\nh₁ : k ≫ snd t = l ≫ snd t\n⊢ k ≫ t.π.app none = l ≫ t.π.app none", "tactic": "rw [← t.w inl]" }, { "state_after": "C : Type u\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nW : C\nk l : W ⟶ t.pt\nh₀ : k ≫ fst t = l ≫ fst t\nh₁ : k ≫ snd t = l ≫ snd t\n⊢ k ≫ fst t ≫ f = l ≫ fst t ≫ f", "state_before": "C : Type u\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nW✝ X Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nt : PullbackCone f g\nW : C\nk l : W ⟶ t.pt\nh₀ : k ≫ fst t = l ≫ fst t\nh₁ : k ≫ snd t = l ≫ snd t\n⊢ k ≫ t.π.app WalkingCospan.left ≫ (cospan f g).map inl = l ≫ t.π.app WalkingCospan.left ≫ (cospan f g).map inl", "tactic": "dsimp [h₀]" } ]
[ 620, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 616, 1 ]
Mathlib/Algebra/Group/Defs.lean
mul_inv_self
[]
[ 1101, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1100, 1 ]
Mathlib/RingTheory/DedekindDomain/Dvr.lean
IsLocalization.isDedekindDomain
[ { "state_after": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\n⊢ IsDedekindDomain Aₘ", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\n⊢ IsDedekindDomain Aₘ", "tactic": "have h : ∀ y : M, IsUnit (algebraMap A (FractionRing A) y) := by\n rintro ⟨y, hy⟩\n exact IsUnit.mk0 _ (mt IsFractionRing.to_map_eq_zero_iff.mp (nonZeroDivisors.ne_zero (hM hy)))" }, { "state_after": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\n⊢ IsDedekindDomain Aₘ", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\n⊢ IsDedekindDomain Aₘ", "tactic": "letI : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (IsLocalization.lift h)" }, { "state_after": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis : IsScalarTower A Aₘ (FractionRing A)\n⊢ IsDedekindDomain Aₘ", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\n⊢ IsDedekindDomain Aₘ", "tactic": "haveI : IsScalarTower A Aₘ (FractionRing A) :=\n IsScalarTower.of_algebraMap_eq fun x => (IsLocalization.lift_eq h x).symm" }, { "state_after": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ IsDedekindDomain Aₘ", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis : IsScalarTower A Aₘ (FractionRing A)\n⊢ IsDedekindDomain Aₘ", "tactic": "haveI : IsFractionRing Aₘ (FractionRing A) :=\n IsFractionRing.isFractionRing_of_isDomain_of_isLocalization M _ _" }, { "state_after": "case refine'_1\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ IsNoetherianRing Aₘ\n\ncase refine'_2\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ Ring.DimensionLEOne Aₘ\n\ncase refine'_3\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ ∀ {x : FractionRing A}, IsIntegral Aₘ x → ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ IsDedekindDomain Aₘ", "tactic": "refine' (isDedekindDomain_iff _ (FractionRing A)).mpr ⟨_, _, _⟩" }, { "state_after": "case mk\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\ny : A\nhy : y ∈ M\n⊢ IsUnit (↑(algebraMap A (FractionRing A)) ↑{ val := y, property := hy })", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\n⊢ ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)", "tactic": "rintro ⟨y, hy⟩" }, { "state_after": "no goals", "state_before": "case mk\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\ny : A\nhy : y ∈ M\n⊢ IsUnit (↑(algebraMap A (FractionRing A)) ↑{ val := y, property := hy })", "tactic": "exact IsUnit.mk0 _ (mt IsFractionRing.to_map_eq_zero_iff.mp (nonZeroDivisors.ne_zero (hM hy)))" }, { "state_after": "no goals", "state_before": "case refine'_1\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ IsNoetherianRing Aₘ", "tactic": "exact IsLocalization.isNoetherianRing M _ (by infer_instance)" }, { "state_after": "no goals", "state_before": "R : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ IsNoetherianRing A", "tactic": "infer_instance" }, { "state_after": "no goals", "state_before": "case refine'_2\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ Ring.DimensionLEOne Aₘ", "tactic": "exact IsDedekindDomain.dimensionLEOne.localization Aₘ hM" }, { "state_after": "case refine'_3\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "state_before": "case refine'_3\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\n⊢ ∀ {x : FractionRing A}, IsIntegral Aₘ x → ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "tactic": "intro x hx" }, { "state_after": "case refine'_3.intro.mk\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "state_before": "case refine'_3\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "tactic": "obtain ⟨⟨y, y_mem⟩, hy⟩ := hx.exists_multiple_integral_of_isLocalization M _" }, { "state_after": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "state_before": "case refine'_3.intro.mk\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "tactic": "obtain ⟨z, hz⟩ := (isIntegrallyClosed_iff _).mp IsDedekindDomain.isIntegrallyClosed hy" }, { "state_after": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ ↑(algebraMap A (FractionRing A)) z = ↑(algebraMap A (FractionRing A)) ↑{ val := y, property := y_mem } * x", "state_before": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ ∃ y, ↑(algebraMap Aₘ (FractionRing A)) y = x", "tactic": "refine' ⟨IsLocalization.mk' Aₘ z ⟨y, y_mem⟩, (IsLocalization.lift_mk'_spec _ _ _ _).mpr _⟩" }, { "state_after": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ { val := y, property := y_mem } • x = ↑{ val := y, property := y_mem } • x", "state_before": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ ↑(algebraMap A (FractionRing A)) z = ↑(algebraMap A (FractionRing A)) ↑{ val := y, property := y_mem } * x", "tactic": "rw [hz, ← Algebra.smul_def]" }, { "state_after": "no goals", "state_before": "case refine'_3.intro.mk.intro\nR : Type ?u.6256\nA : Type u_1\nK : Type ?u.6262\ninst✝⁸ : CommRing R\ninst✝⁷ : CommRing A\ninst✝⁶ : IsDomain A\ninst✝⁵ : Field K\ninst✝⁴ : IsDedekindDomain A\nM : Submonoid A\nhM : M ≤ A⁰\nAₘ : Type u_2\ninst✝³ : CommRing Aₘ\ninst✝² : IsDomain Aₘ\ninst✝¹ : Algebra A Aₘ\ninst✝ : IsLocalization M Aₘ\nh : ∀ (y : { x // x ∈ M }), IsUnit (↑(algebraMap A (FractionRing A)) ↑y)\nthis✝¹ : Algebra Aₘ (FractionRing A) := RingHom.toAlgebra (lift h)\nthis✝ : IsScalarTower A Aₘ (FractionRing A)\nthis : IsFractionRing Aₘ (FractionRing A)\nx : FractionRing A\nhx : IsIntegral Aₘ x\ny : A\ny_mem : y ∈ M\nhy : IsIntegral A ({ val := y, property := y_mem } • x)\nz : A\nhz : ↑(algebraMap A (FractionRing A)) z = { val := y, property := y_mem } • x\n⊢ { val := y, property := y_mem } • x = ↑{ val := y, property := y_mem } • x", "tactic": "rfl" } ]
[ 110, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 91, 1 ]
Mathlib/RingTheory/NonUnitalSubsemiring/Basic.lean
NonUnitalSubsemiring.mem_prod
[]
[ 784, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 782, 1 ]
Mathlib/CategoryTheory/Preadditive/AdditiveFunctor.lean
CategoryTheory.Functor.map_sum
[]
[ 106, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Mathlib/Data/Set/Prod.lean
Set.inter_prod
[ { "state_after": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.12527\nδ : Type ?u.12530\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nx : α\ny : β\n⊢ (x, y) ∈ (s₁ ∩ s₂) ×ˢ t ↔ (x, y) ∈ s₁ ×ˢ t ∩ s₂ ×ˢ t", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.12527\nδ : Type ?u.12530\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\n⊢ (s₁ ∩ s₂) ×ˢ t = s₁ ×ˢ t ∩ s₂ ×ˢ t", "tactic": "ext ⟨x, y⟩" }, { "state_after": "no goals", "state_before": "case h.mk\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.12527\nδ : Type ?u.12530\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nx : α\ny : β\n⊢ (x, y) ∈ (s₁ ∩ s₂) ×ˢ t ↔ (x, y) ∈ s₁ ×ˢ t ∩ s₂ ×ˢ t", "tactic": "simp only [← and_and_right, mem_inter_iff, mem_prod]" } ]
[ 163, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 161, 1 ]
Mathlib/Topology/Semicontinuous.lean
LowerSemicontinuousAt.lowerSemicontinuousWithinAt
[]
[ 146, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/CategoryTheory/MorphismProperty.lean
CategoryTheory.MorphismProperty.StableUnderComposition.universally
[ { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH : IsPullback f' i₁ i₂ (f ≫ g)\n⊢ P f'", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\n⊢ StableUnderComposition (MorphismProperty.universally P)", "tactic": "intro X Y Z f g hf hg X' Z' i₁ i₂ f' H" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH : IsPullback f' i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P f'", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH : IsPullback f' i₁ i₂ (f ≫ g)\n⊢ P f'", "tactic": "have := pullback.lift_fst _ _ (H.w.trans (Category.assoc _ _ _).symm)" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH✝ : IsPullback f' i₁ i₂ (f ≫ g)\nH : IsPullback (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst) i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst)", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH : IsPullback f' i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P f'", "tactic": "rw [← this] at H⊢" }, { "state_after": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH✝ : IsPullback f' i₁ i₂ (f ≫ g)\nH : IsPullback (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst) i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g))", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH✝ : IsPullback f' i₁ i₂ (f ≫ g)\nH : IsPullback (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst) i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst)", "tactic": "apply hP _ _ _ (hg _ _ _ <| IsPullback.of_hasPullback _ _)" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝² : Category C\nD : Type ?u.85650\ninst✝¹ : Category D\ninst✝ : HasPullbacks C\nP : MorphismProperty C\nhP : StableUnderComposition P\nX Y Z : C\nf : X ⟶ Y\ng : Y ⟶ Z\nhf : MorphismProperty.universally P f\nhg : MorphismProperty.universally P g\nX' Z' : C\ni₁ : X' ⟶ X\ni₂ : Z' ⟶ Z\nf' : X' ⟶ Z'\nH✝ : IsPullback f' i₁ i₂ (f ≫ g)\nH : IsPullback (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst) i₁ i₂ (f ≫ g)\nthis : pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g) ≫ pullback.fst = f'\n⊢ P (pullback.lift f' (i₁ ≫ f) (_ : f' ≫ i₂ = (i₁ ≫ f) ≫ g))", "tactic": "exact hf _ _ _ (H.of_right (pullback.lift_snd _ _ _) (IsPullback.of_hasPullback i₂ g))" } ]
[ 593, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/Algebra/ContinuedFractions/Computation/Translations.lean
GeneralizedContinuedFraction.IntFractPair.stream_zero
[]
[ 64, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 63, 1 ]
Std/Data/List/Lemmas.lean
List.filterMap_cons_none
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nf : α → Option β\na : α\nl : List α\nh : f a = none\n⊢ filterMap f (a :: l) = filterMap f l", "tactic": "simp only [filterMap, h]" } ]
[ 1157, 72 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1156, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.sup_inf_sup
[ { "state_after": "no goals", "state_before": "F : Type ?u.182498\nα : Type u_3\nβ : Type ?u.182504\nγ : Type ?u.182507\nι : Type u_1\nκ : Type u_2\ninst✝¹ : DistribLattice α\ninst✝ : OrderBot α\ns✝ : Finset ι\nt✝ : Finset κ\nf✝ : ι → α\ng✝ : κ → α\na : α\ns : Finset ι\nt : Finset κ\nf : ι → α\ng : κ → α\n⊢ sup s f ⊓ sup t g = sup (s ×ˢ t) fun i => f i.fst ⊓ g i.snd", "tactic": "simp_rw [Finset.sup_inf_distrib_right, Finset.sup_inf_distrib_left, sup_product_left]" } ]
[ 537, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 535, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoMod_eq_fract_mul
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : LinearOrderedField α\ninst✝ : FloorRing α\np : α\nhp : 0 < p\nb : α\n⊢ toIcoMod hp 0 b = Int.fract (b / p) * p", "tactic": "simp [toIcoMod_eq_add_fract_mul]" } ]
[ 1026, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1025, 1 ]
Mathlib/MeasureTheory/Constructions/BorelSpace/Basic.lean
measurable_coe_ennreal_ereal
[]
[ 2012, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2011, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
reflection_mem_subspace_orthogonal_precomplement_eq_neg
[]
[ 977, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 975, 1 ]
Mathlib/Analysis/Normed/Ring/Seminorm.lean
RingSeminorm.ext
[]
[ 109, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Data/Complex/Exponential.lean
Complex.sin_ofReal_re
[]
[ 947, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 946, 1 ]
Mathlib/RingTheory/Localization/AtPrime.lean
IsLocalization.AtPrime.comap_maximalIdeal
[ { "state_after": "no goals", "state_before": "R : Type u_2\ninst✝⁶ : CommSemiring R\nM : Submonoid R\nS : Type u_1\ninst✝⁵ : CommSemiring S\ninst✝⁴ : Algebra R S\nP : Type ?u.70150\ninst✝³ : CommSemiring P\nA : Type ?u.70156\ninst✝² : CommRing A\ninst✝¹ : IsDomain A\nI : Ideal R\nhI : Ideal.IsPrime I\ninst✝ : IsLocalization.AtPrime S I\nh : optParam (LocalRing S) (_ : LocalRing S)\nx : R\n⊢ x ∈ Ideal.comap (algebraMap R S) (LocalRing.maximalIdeal S) ↔ x ∈ I", "tactic": "simpa only [Ideal.mem_comap] using to_map_mem_maximal_iff _ I x" } ]
[ 157, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
Subalgebra.eq_bot_of_rank_le_one
[ { "state_after": "K : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\n⊢ S = ⊥", "state_before": "K : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n⊢ S = ⊥", "tactic": "nontriviality E" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\n⊢ S = ⊥", "state_before": "K : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\n⊢ S = ⊥", "tactic": "obtain ⟨m, _, he⟩ := Cardinal.exists_nat_eq_of_le_nat (h.trans_eq Nat.cast_one.symm)" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis : FiniteDimensional F { x // x ∈ S }\n⊢ S = ⊥", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\n⊢ S = ⊥", "tactic": "haveI : FiniteDimensional F S := finiteDimensional_of_rank_eq_nat he" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis : FiniteDimensional F { x // x ∈ S }\n⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis : FiniteDimensional F { x // x ∈ S }\n⊢ S = ⊥", "tactic": "rw [← not_bot_lt_iff, ← Subalgebra.toSubmodule.lt_iff_lt]" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\n⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis : FiniteDimensional F { x // x ∈ S }\n⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S", "tactic": "haveI : FiniteDimensional F (Subalgebra.toSubmodule S) :=\n S.toSubmoduleEquiv.symm.finiteDimensional" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\n⊢ ¬↑toSubmodule ⊥ < ↑toSubmodule S", "tactic": "refine fun hl => (Submodule.finrank_lt_finrank_of_lt hl).not_le (natCast_le.1 ?_)" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ Module.rank F { x // x ∈ S } ≤ Module.rank F { x // x ∈ ⊥ }", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ ↑(finrank F { x // x ∈ ↑toSubmodule S }) ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })", "tactic": "iterate 2 rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank]" }, { "state_after": "no goals", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ Module.rank F { x // x ∈ S } ≤ Module.rank F { x // x ∈ ⊥ }", "tactic": "exact h.trans_eq Subalgebra.rank_bot.symm" }, { "state_after": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ Module.rank F { x // x ∈ S } ≤ Module.rank F { x // x ∈ ⊥ }", "state_before": "case intro.intro\nK : Type u\nV : Type v\nF : Type u_1\nE : Type u_2\ninst✝² : Field F\ninst✝¹ : Ring E\ninst✝ : Algebra F E\nS : Subalgebra F E\nh : Module.rank F { x // x ∈ S } ≤ 1\n✝ : Nontrivial E\nm : ℕ\nleft✝ : m ≤ 1\nhe : Module.rank F { x // x ∈ S } = ↑m\nthis✝ : FiniteDimensional F { x // x ∈ S }\nthis : FiniteDimensional F { x // x ∈ ↑toSubmodule S }\nhl : ↑toSubmodule ⊥ < ↑toSubmodule S\n⊢ Module.rank F { x // x ∈ S } ≤ ↑(finrank F { x // x ∈ ↑toSubmodule ⊥ })", "tactic": "rw [Subalgebra.finrank_toSubmodule, finrank_eq_rank]" } ]
[ 1397, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1385, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.CompactOpens.coe_sdiff
[]
[ 564, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Tactic/NormNum/Basic.lean
Mathlib.Meta.NormNum.isInt_pow
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : Ring α\nn✝¹ : ℤ\nn✝ : ℕ\n⊢ ↑n✝¹ ^ ↑n✝ = ↑(Int.pow n✝¹ n✝)", "tactic": "simp" } ]
[ 432, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 430, 1 ]
Mathlib/Data/Polynomial/Mirror.lean
Polynomial.mirror_C
[]
[ 60, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/GroupTheory/FreeGroup.lean
FreeGroup.mul_bind
[]
[ 1071, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1070, 1 ]
Mathlib/CategoryTheory/Limits/IsLimit.lean
CategoryTheory.Limits.IsColimit.existsUnique
[]
[ 618, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 616, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
HasCompactSupport.iteratedFDeriv
[ { "state_after": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ HasCompactSupport (_root_.iteratedFDeriv 𝕜 Nat.zero f)\n\ncase succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ HasCompactSupport (_root_.iteratedFDeriv 𝕜 (Nat.succ n) f)", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\n⊢ HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)", "tactic": "induction' n with n IH" }, { "state_after": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ HasCompactSupport (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) ∘ f)", "state_before": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ HasCompactSupport (_root_.iteratedFDeriv 𝕜 Nat.zero f)", "tactic": "rw [iteratedFDeriv_zero_eq_comp]" }, { "state_after": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ ↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) 0 = 0", "state_before": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ HasCompactSupport (↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) ∘ f)", "tactic": "apply hf.comp_left" }, { "state_after": "no goals", "state_before": "case zero\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\n⊢ ↑(LinearIsometryEquiv.symm (continuousMultilinearCurryFin0 𝕜 E F)) 0 = 0", "tactic": "exact LinearIsometryEquiv.map_zero _" }, { "state_after": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ HasCompactSupport (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (_root_.iteratedFDeriv 𝕜 n f))", "state_before": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ HasCompactSupport (_root_.iteratedFDeriv 𝕜 (Nat.succ n) f)", "tactic": "rw [iteratedFDeriv_succ_eq_comp_left]" }, { "state_after": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) 0 = 0", "state_before": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ HasCompactSupport (↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) ∘ fderiv 𝕜 (_root_.iteratedFDeriv 𝕜 n f))", "tactic": "apply (IH.fderiv 𝕜).comp_left" }, { "state_after": "no goals", "state_before": "case succ\n𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n✝ : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nhf : HasCompactSupport f\nn : ℕ\nIH : HasCompactSupport (_root_.iteratedFDeriv 𝕜 n f)\n⊢ ↑(continuousMultilinearCurryLeftEquiv 𝕜 (fun x => E) F) 0 = 0", "tactic": "exact LinearIsometryEquiv.map_zero _" } ]
[ 1564, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1556, 1 ]
Mathlib/CategoryTheory/Opposites.lean
CategoryTheory.NatTrans.removeOp_id
[]
[ 356, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 355, 1 ]
src/lean/Init/Data/Nat/Basic.lean
Nat.eq_zero_or_pos
[]
[ 290, 31 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 288, 1 ]
Mathlib/Order/UpperLower/Basic.lean
lowerClosure_min
[]
[ 1304, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1303, 1 ]
Mathlib/Tactic/NormNum/Basic.lean
Mathlib.Meta.NormNum.isInt_lt_true
[]
[ 700, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 698, 1 ]
Mathlib/RingTheory/TensorProduct.lean
TensorProduct.AlgebraTensorModule.smul_eq_lsmul_rTensor
[]
[ 82, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/NormedSpace/Banach.lean
ContinuousLinearMap.NonlinearRightInverse.right_inv
[]
[ 49, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 47, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.not_wOppSide_bot
[]
[ 234, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.comap_id
[]
[ 1639, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1638, 1 ]
Mathlib/Algebra/Order/Hom/Monoid.lean
OrderMonoidWithZeroHom.comp_id
[]
[ 708, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/Order/Bounds/Basic.lean
IsLeast.isGreatest_image2_of_isGreatest
[]
[ 1542, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1539, 1 ]
Mathlib/RingTheory/Subsemiring/Pointwise.lean
Subsemiring.pointwise_smul_le_iff₀
[]
[ 169, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 167, 1 ]
Std/Logic.lean
exists_false
[]
[ 430, 69 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 430, 9 ]
Mathlib/Data/Nat/Prime.lean
Nat.Prime.eq_two_or_odd
[ { "state_after": "no goals", "state_before": "p : ℕ\nhp : Prime p\nh : p % 2 = 0\n⊢ ¬2 = 1", "tactic": "decide" } ]
[ 497, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 495, 1 ]
Mathlib/LinearAlgebra/Dual.lean
LinearMap.dualMap_apply'
[]
[ 206, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisConnection.isGLB_u_image
[]
[ 139, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Algebra/Order/Ring/Lemmas.lean
mul_lt_of_le_one_of_lt_of_nonneg
[]
[ 831, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 829, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
ContDiffWithinAt.cosh
[]
[ 1117, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1115, 1 ]
Mathlib/RingTheory/WittVector/StructurePolynomial.lean
wittStructureInt_vars
[ { "state_after": "p : ℕ\nR : Type ?u.2119290\nidx : Type u_1\ninst✝¹ : CommRing R\nhp : Fact (Nat.Prime p)\ninst✝ : Fintype idx\nΦ : MvPolynomial idx ℤ\nn : ℕ\nthis : Function.Injective ↑(Int.castRingHom ℚ)\n⊢ vars (wittStructureInt p Φ n) ⊆ Finset.univ ×ˢ Finset.range (n + 1)", "state_before": "p : ℕ\nR : Type ?u.2119290\nidx : Type u_1\ninst✝¹ : CommRing R\nhp : Fact (Nat.Prime p)\ninst✝ : Fintype idx\nΦ : MvPolynomial idx ℤ\nn : ℕ\n⊢ vars (wittStructureInt p Φ n) ⊆ Finset.univ ×ˢ Finset.range (n + 1)", "tactic": "have : Function.Injective (Int.castRingHom ℚ) := Int.cast_injective" }, { "state_after": "p : ℕ\nR : Type ?u.2119290\nidx : Type u_1\ninst✝¹ : CommRing R\nhp : Fact (Nat.Prime p)\ninst✝ : Fintype idx\nΦ : MvPolynomial idx ℤ\nn : ℕ\nthis : Function.Injective ↑(Int.castRingHom ℚ)\n⊢ vars (wittStructureRat p (↑(map (Int.castRingHom ℚ)) Φ) n) ⊆ Finset.univ ×ˢ Finset.range (n + 1)", "state_before": "p : ℕ\nR : Type ?u.2119290\nidx : Type u_1\ninst✝¹ : CommRing R\nhp : Fact (Nat.Prime p)\ninst✝ : Fintype idx\nΦ : MvPolynomial idx ℤ\nn : ℕ\nthis : Function.Injective ↑(Int.castRingHom ℚ)\n⊢ vars (wittStructureInt p Φ n) ⊆ Finset.univ ×ˢ Finset.range (n + 1)", "tactic": "rw [← vars_map_of_injective _ this, map_wittStructureInt]" }, { "state_after": "no goals", "state_before": "p : ℕ\nR : Type ?u.2119290\nidx : Type u_1\ninst✝¹ : CommRing R\nhp : Fact (Nat.Prime p)\ninst✝ : Fintype idx\nΦ : MvPolynomial idx ℤ\nn : ℕ\nthis : Function.Injective ↑(Int.castRingHom ℚ)\n⊢ vars (wittStructureRat p (↑(map (Int.castRingHom ℚ)) Φ) n) ⊆ Finset.univ ×ˢ Finset.range (n + 1)", "tactic": "apply wittStructureRat_vars" } ]
[ 414, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 410, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.le_inter_iff
[]
[ 1819, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1818, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lt_or_equiv_or_gf
[ { "state_after": "x y : PGame\n⊢ x < y ∨ (x ≈ y) ∨ y < x ∨ x ‖ y", "state_before": "x y : PGame\n⊢ x < y ∨ (x ≈ y) ∨ y ⧏ x", "tactic": "rw [lf_iff_lt_or_fuzzy, Fuzzy.swap_iff]" }, { "state_after": "no goals", "state_before": "x y : PGame\n⊢ x < y ∨ (x ≈ y) ∨ y < x ∨ x ‖ y", "tactic": "exact lt_or_equiv_or_gt_or_fuzzy x y" } ]
[ 1004, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1002, 1 ]
Mathlib/Algebra/EuclideanDomain/Basic.lean
EuclideanDomain.mod_one
[]
[ 75, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 1 ]
Mathlib/Topology/MetricSpace/Isometry.lean
IsometryEquiv.toEquiv_inj
[]
[ 316, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 315, 9 ]
Mathlib/Analysis/Calculus/FDeriv/Linear.lean
IsBoundedLinearMap.differentiable
[]
[ 146, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Data/Nat/Prime.lean
Nat.factors_lemma
[ { "state_after": "case h\nk : ℕ\n⊢ 1 < k + 2", "state_before": "k : ℕ\n⊢ k + 2 ≠ 1", "tactic": "apply Nat.ne_of_gt" }, { "state_after": "case h.a\nk : ℕ\n⊢ 0 < k + 1", "state_before": "case h\nk : ℕ\n⊢ 1 < k + 2", "tactic": "apply Nat.succ_lt_succ" }, { "state_after": "no goals", "state_before": "case h.a\nk : ℕ\n⊢ 0 < k + 1", "tactic": "apply Nat.zero_lt_succ" } ]
[ 541, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 536, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiffAt.snd''
[]
[ 840, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 838, 1 ]
Mathlib/Data/TwoPointing.lean
TwoPointing.sum_snd
[]
[ 140, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 139, 1 ]
Mathlib/Order/Circular.lean
btw_refl_left_right
[]
[ 295, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasureTheory.NullMeasurableSet.mono
[]
[ 2669, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2668, 1 ]
Mathlib/Algebra/Parity.lean
isSquare_one
[]
[ 73, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/Algebra/Homology/Homotopy.lean
Homotopy.mkInductiveAux₃
[ { "state_after": "ι : Type ?u.344609\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g : C ⟶ D\nh k : D ⟶ E\ni✝ : ι\nP Q : ChainComplex V ℕ\ne : P ⟶ Q\nzero : X P 0 ⟶ X Q 1\ncomm_zero : Hom.f e 0 = zero ≫ d Q 1 0\none : X P 1 ⟶ X Q 2\ncomm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1\nsucc :\n (n : ℕ) →\n (p :\n (f : X P n ⟶ X Q (n + 1)) ×'\n (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →\n (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)\ni : ℕ\n⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom =\n (xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst", "state_before": "ι : Type ?u.344609\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g : C ⟶ D\nh✝ k : D ⟶ E\ni✝ : ι\nP Q : ChainComplex V ℕ\ne : P ⟶ Q\nzero : X P 0 ⟶ X Q 1\ncomm_zero : Hom.f e 0 = zero ≫ d Q 1 0\none : X P 1 ⟶ X Q 2\ncomm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1\nsucc :\n (n : ℕ) →\n (p :\n (f : X P n ⟶ X Q (n + 1)) ×'\n (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →\n (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)\ni j : ℕ\nh : i + 1 = j\n⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom =\n (xNextIso P h).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ j).fst", "tactic": "subst j" }, { "state_after": "no goals", "state_before": "ι : Type ?u.344609\nV : Type u\ninst✝¹ : Category V\ninst✝ : Preadditive V\nc : ComplexShape ι\nC D E : HomologicalComplex V c\nf g : C ⟶ D\nh k : D ⟶ E\ni✝ : ι\nP Q : ChainComplex V ℕ\ne : P ⟶ Q\nzero : X P 0 ⟶ X Q 1\ncomm_zero : Hom.f e 0 = zero ≫ d Q 1 0\none : X P 1 ⟶ X Q 2\ncomm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1\nsucc :\n (n : ℕ) →\n (p :\n (f : X P n ⟶ X Q (n + 1)) ×'\n (f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →\n (f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)\ni : ℕ\n⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom =\n (xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst", "tactic": "rcases i with (_ | _ | i) <;> simp [mkInductiveAux₂]" } ]
[ 535, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 531, 1 ]
Mathlib/CategoryTheory/EqToHom.lean
CategoryTheory.Functor.congr_hom
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\n⊢ F.map f = eqToHom (_ : F.obj X = F.obj X) ≫ F.map f ≫ eqToHom (_ : F.obj Y = F.obj Y)", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF G : C ⥤ D\nh : F = G\nX Y : C\nf : X ⟶ Y\n⊢ F.map f = eqToHom (_ : F.obj X = G.obj X) ≫ G.map f ≫ eqToHom (_ : G.obj Y = F.obj Y)", "tactic": "subst h" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nX Y : C\nf : X ⟶ Y\n⊢ F.map f = eqToHom (_ : F.obj X = F.obj X) ≫ F.map f ≫ eqToHom (_ : F.obj Y = F.obj Y)", "tactic": "simp" } ]
[ 211, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 209, 1 ]
Mathlib/Topology/Sets/Opens.lean
TopologicalSpace.Opens.coe_finset_inf
[]
[ 217, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Data/Set/NAry.lean
Set.mem_image2
[]
[ 44, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.ConnectedComponent.connectedComponentMk_eq_of_adj
[]
[ 2016, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2014, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sign_neg
[ { "state_after": "no goals", "state_before": "θ : Angle\n⊢ sign (-θ) = -sign θ", "tactic": "simp_rw [sign, sin_neg, Left.sign_neg]" } ]
[ 867, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 866, 1 ]
Mathlib/Data/Multiset/Fold.lean
Multiset.fold_cons_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.4822\nop : α → α → α\nhc : IsCommutative α op\nha : IsAssociative α op\nb a : α\ns : Multiset α\n⊢ fold op b (a ::ₘ s) = op (fold op b s) a", "tactic": "simp [hc.comm]" } ]
[ 68, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 67, 1 ]
Mathlib/Topology/MetricSpace/Lipschitz.lean
lipschitzWith_iff_dist_le_mul
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nK : ℝ≥0\nf : α → β\n⊢ (∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)) ↔ ∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nK : ℝ≥0\nf : α → β\n⊢ LipschitzWith K f ↔ ∀ (x y : α), dist (f x) (f y) ≤ ↑K * dist x y", "tactic": "simp only [LipschitzWith, edist_nndist, dist_nndist]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Type x\ninst✝¹ : PseudoMetricSpace α\ninst✝ : PseudoMetricSpace β\nK : ℝ≥0\nf : α → β\n⊢ (∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)) ↔ ∀ (x y : α), ↑(nndist (f x) (f y)) ≤ ↑K * ↑(nndist x y)", "tactic": "norm_cast" } ]
[ 62, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Order/Atoms.lean
isCoatom_dual_iff_isAtom
[]
[ 125, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Computability/Encoding.lean
Computability.inclusionBoolΓ'_injective
[]
[ 95, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
Submodule.annihilator_mono
[]
[ 96, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Inverse.lean
Real.arccos_of_le_neg_one
[ { "state_after": "no goals", "state_before": "x : ℝ\nhx : x ≤ -1\n⊢ arccos x = π", "tactic": "rw [arccos, arcsin_of_le_neg_one hx, sub_neg_eq_add, add_halves']" } ]
[ 416, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 415, 1 ]
Std/Data/Int/Lemmas.lean
Int.sub_le_sub
[]
[ 1037, 42 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1036, 11 ]
Mathlib/LinearAlgebra/Matrix/BilinearForm.lean
Matrix.toBilin_toMatrix
[]
[ 349, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 347, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
MonoidHomClass.antilipschitz_of_bound
[ { "state_after": "no goals", "state_before": "𝓕 : Type u_1\n𝕜 : Type ?u.369462\nα : Type ?u.369465\nι : Type ?u.369468\nκ : Type ?u.369471\nE : Type u_2\nF : Type u_3\nG : Type ?u.369480\ninst✝³ : SeminormedGroup E\ninst✝² : SeminormedGroup F\ninst✝¹ : SeminormedGroup G\ns : Set E\na a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\ninst✝ : MonoidHomClass 𝓕 E F\nf : 𝓕\nK : ℝ≥0\nh : ∀ (x : E), ‖x‖ ≤ ↑K * ‖↑f x‖\nx y : E\n⊢ dist x y ≤ ↑K * dist (↑f x) (↑f y)", "tactic": "simpa only [dist_eq_norm_div, map_div] using h (x / y)" } ]
[ 1010, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1007, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.Subgraph.deleteEdges_verts
[]
[ 1038, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1037, 1 ]
Mathlib/Logic/Equiv/Fin.lean
finCongr_symm
[]
[ 118, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 9 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Real.sin_pos_of_mem_Ioo
[]
[ 414, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 413, 1 ]
Mathlib/Data/Set/Prod.lean
Set.range_pair_subset
[ { "state_after": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.78105\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nf : α → β\ng : α → γ\nthis : (fun x => (f x, g x)) = Prod.map f g ∘ fun x => (x, x)\n⊢ (range fun x => (f x, g x)) ⊆ range f ×ˢ range g", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.78105\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nf : α → β\ng : α → γ\n⊢ (range fun x => (f x, g x)) ⊆ range f ×ˢ range g", "tactic": "have : (fun x => (f x, g x)) = Prod.map f g ∘ fun x => (x, x) := funext fun x => rfl" }, { "state_after": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.78105\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nf : α → β\ng : α → γ\nthis : (fun x => (f x, g x)) = Prod.map f g ∘ fun x => (x, x)\n⊢ range (Prod.map f g ∘ fun x => (x, x)) ⊆ range (Prod.map f g)", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.78105\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nf : α → β\ng : α → γ\nthis : (fun x => (f x, g x)) = Prod.map f g ∘ fun x => (x, x)\n⊢ (range fun x => (f x, g x)) ⊆ range f ×ˢ range g", "tactic": "rw [this, ← range_prod_map]" }, { "state_after": "no goals", "state_before": "α : Type u_3\nβ : Type u_2\nγ : Type u_1\nδ : Type ?u.78105\ns s₁ s₂ : Set α\nt t₁ t₂ : Set β\na : α\nb : β\nf : α → β\ng : α → γ\nthis : (fun x => (f x, g x)) = Prod.map f g ∘ fun x => (x, x)\n⊢ range (Prod.map f g ∘ fun x => (x, x)) ⊆ range (Prod.map f g)", "tactic": "apply range_comp_subset_range" } ]
[ 307, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 303, 1 ]
Mathlib/Algebra/Order/Ring/Abs.lean
abs_cases
[ { "state_after": "case pos\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : 0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a ∨ abs a = -a ∧ a < 0\n\ncase neg\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : ¬0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a ∨ abs a = -a ∧ a < 0", "state_before": "α : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\n⊢ abs a = a ∧ 0 ≤ a ∨ abs a = -a ∧ a < 0", "tactic": "by_cases h : 0 ≤ a" }, { "state_after": "case pos.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : 0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a", "state_before": "case pos\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : 0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a ∨ abs a = -a ∧ a < 0", "tactic": "left" }, { "state_after": "no goals", "state_before": "case pos.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : 0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a", "tactic": "exact ⟨abs_eq_self.mpr h, h⟩" }, { "state_after": "case neg.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : ¬0 ≤ a\n⊢ abs a = -a ∧ a < 0", "state_before": "case neg\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : ¬0 ≤ a\n⊢ abs a = a ∧ 0 ≤ a ∨ abs a = -a ∧ a < 0", "tactic": "right" }, { "state_after": "case neg.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : a < 0\n⊢ abs a = -a ∧ a < 0", "state_before": "case neg.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : ¬0 ≤ a\n⊢ abs a = -a ∧ a < 0", "tactic": "push_neg at h" }, { "state_after": "no goals", "state_before": "case neg.h\nα : Type u_1\ninst✝ : LinearOrderedRing α\na✝ b c a : α\nh : a < 0\n⊢ abs a = -a ∧ a < 0", "tactic": "exact ⟨abs_eq_neg_self.mpr (le_of_lt h), h⟩" } ]
[ 77, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 71, 1 ]
Mathlib/Algebra/Order/Field/Basic.lean
div_nonpos_of_nonpos_of_nonneg
[ { "state_after": "ι : Type ?u.10909\nα : Type u_1\nβ : Type ?u.10915\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nha : a ≤ 0\nhb : 0 ≤ b\n⊢ a * b⁻¹ ≤ 0", "state_before": "ι : Type ?u.10909\nα : Type u_1\nβ : Type ?u.10915\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nha : a ≤ 0\nhb : 0 ≤ b\n⊢ a / b ≤ 0", "tactic": "rw [div_eq_mul_inv]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.10909\nα : Type u_1\nβ : Type ?u.10915\ninst✝ : LinearOrderedSemifield α\na b c d e : α\nm n : ℤ\nha : a ≤ 0\nhb : 0 ≤ b\n⊢ a * b⁻¹ ≤ 0", "tactic": "exact mul_nonpos_of_nonpos_of_nonneg ha (inv_nonneg.2 hb)" } ]
[ 103, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Logic/Equiv/Defs.lean
Equiv.surjective
[]
[ 203, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 203, 11 ]
Mathlib/Data/List/BigOperators/Basic.lean
List.tail_sum
[ { "state_after": "no goals", "state_before": "ι : Type ?u.161222\nα : Type ?u.161225\nM : Type ?u.161228\nN : Type ?u.161231\nP : Type ?u.161234\nM₀ : Type ?u.161237\nG : Type ?u.161240\nR : Type ?u.161243\nL : List ℕ\n⊢ sum (tail L) = sum L - headI L", "tactic": "rw [← headI_add_tail_sum L, add_comm, @add_tsub_cancel_right]" } ]
[ 613, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 612, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.ofReal_finsupp_sum
[]
[ 243, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 241, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.isFiniteMeasure_withDensity
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.1762622\nγ : Type ?u.1762625\nδ : Type ?u.1762628\nm : MeasurableSpace α\nμ ν : Measure α\nf : α → ℝ≥0∞\nhf : (∫⁻ (a : α), f a ∂μ) ≠ ⊤\n⊢ ↑↑(withDensity μ f) univ < ⊤", "tactic": "rwa [withDensity_apply _ MeasurableSet.univ, Measure.restrict_univ, lt_top_iff_ne_top]" } ]
[ 1605, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1602, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.ofSet_trans
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.72442\nδ : Type ?u.72445\ninst✝³ : TopologicalSpace α\ninst✝² : TopologicalSpace β\ninst✝¹ : TopologicalSpace γ\ninst✝ : TopologicalSpace δ\ne : LocalHomeomorph α β\ne' : LocalHomeomorph β γ\ns : Set α\nhs : IsOpen s\n⊢ (LocalHomeomorph.trans (ofSet s hs) e).toLocalEquiv.source = (LocalHomeomorph.restr e s).toLocalEquiv.source", "tactic": "simp [hs.interior_eq, inter_comm]" } ]
[ 878, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 877, 1 ]
Mathlib/MeasureTheory/Function/L2Space.lean
MeasureTheory.L2.snorm_rpow_two_norm_lt_top
[ { "state_after": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\nh_two : ENNReal.ofReal 2 = 2\n⊢ snorm (fun x => ‖↑↑f x‖ ^ 2) 1 μ < ⊤", "state_before": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\n⊢ snorm (fun x => ‖↑↑f x‖ ^ 2) 1 μ < ⊤", "tactic": "have h_two : ENNReal.ofReal (2 : ℝ) = 2 := by simp [zero_le_one]" }, { "state_after": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\nh_two : ENNReal.ofReal 2 = 2\n⊢ snorm (↑↑f) 2 μ ^ 2 < ⊤", "state_before": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\nh_two : ENNReal.ofReal 2 = 2\n⊢ snorm (fun x => ‖↑↑f x‖ ^ 2) 1 μ < ⊤", "tactic": "rw [snorm_norm_rpow f zero_lt_two, one_mul, h_two]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\nh_two : ENNReal.ofReal 2 = 2\n⊢ snorm (↑↑f) 2 μ ^ 2 < ⊤", "tactic": "exact ENNReal.rpow_lt_top_of_nonneg zero_le_two (Lp.snorm_ne_top f)" }, { "state_after": "no goals", "state_before": "α : Type u_1\nE : Type ?u.42419\nF : Type u_2\n𝕜 : Type ?u.42425\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : MeasurableSpace α\nμ : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : NormedAddCommGroup F\nf : { x // x ∈ Lp F 2 }\n⊢ ENNReal.ofReal 2 = 2", "tactic": "simp [zero_le_one]" } ]
[ 128, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]