file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/Data/Real/EReal.lean
EReal.toReal_neg
[ { "state_after": "no goals", "state_before": "⊢ toReal (-⊤) = -toReal ⊤", "tactic": "simp" }, { "state_after": "no goals", "state_before": "⊢ toReal (-⊥) = -toReal ⊥", "tactic": "simp" } ]
[ 773, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 770, 1 ]
Mathlib/Analysis/Calculus/Series.lean
contDiff_tsum_of_eventually
[ { "state_after": "no goals", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\n⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x", "tactic": "classical\n refine contDiff_iff_forall_nat_le.2 fun m hm => ?_\n let t : Set α :=\n { i : α | ¬∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i }\n have ht : Set.Finite t :=\n haveI A :\n ∀ᶠ i in (Filter.cofinite : Filter α),\n ∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x : E, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i := by\n rw [eventually_all_finset]\n intro i hi\n apply h'f\n simp only [Finset.mem_range_succ_iff] at hi \n exact (WithTop.coe_le_coe.2 hi).trans hm\n eventually_cofinite.2 A\n let T : Finset α := ht.toFinset\n have : (fun x => ∑' i, f i x) = (fun x => ∑ i in T, f i x) +\n fun x => ∑' i : { i // i ∉ T }, f i x := by\n ext1 x\n refine' (sum_add_tsum_subtype_compl _ T).symm\n refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _\n filter_upwards [h'f 0 (zero_le _)]with i hi\n simpa only [norm_iteratedFDeriv_zero] using hi x\n rw [this]\n apply (ContDiff.sum fun i _ => (hf i).of_le hm).add\n have h'u : ∀ k : ℕ, (k : ℕ∞) ≤ m → Summable (v k ∘ ((↑) : { i // i ∉ T } → α)) := fun k hk =>\n (hv k (hk.trans hm)).subtype _\n refine' contDiff_tsum (fun i => (hf i).of_le hm) h'u _\n rintro k ⟨i, hi⟩ x hk\n dsimp\n simp only [Finite.mem_toFinset, mem_setOf_eq, Finset.mem_range, not_forall, not_le,\n exists_prop, not_exists, not_and, not_lt] at hi \n exact hi k (Nat.lt_succ_iff.2 (WithTop.coe_le_coe.1 hk)) x" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\n⊢ ContDiff 𝕜 N fun x => ∑' (i : α), f i x", "tactic": "refine contDiff_iff_forall_nat_le.2 fun m hm => ?_" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "tactic": "let t : Set α :=\n { i : α | ¬∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i }" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "tactic": "have ht : Set.Finite t :=\n haveI A :\n ∀ᶠ i in (Filter.cofinite : Filter α),\n ∀ k : ℕ, k ∈ Finset.range (m + 1) → ∀ x : E, ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i := by\n rw [eventually_all_finset]\n intro i hi\n apply h'f\n simp only [Finset.mem_range_succ_iff] at hi \n exact (WithTop.coe_le_coe.2 hi).trans hm\n eventually_cofinite.2 A" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "tactic": "let T : Finset α := ht.toFinset" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "tactic": "have : (fun x => ∑' i, f i x) = (fun x => ∑ i in T, f i x) +\n fun x => ∑' i : { i // i ∉ T }, f i x := by\n ext1 x\n refine' (sum_add_tsum_subtype_compl _ T).symm\n refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _\n filter_upwards [h'f 0 (zero_le _)]with i hi\n simpa only [norm_iteratedFDeriv_zero] using hi x" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 (↑m) ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x)", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 ↑m fun x => ∑' (i : α), f i x", "tactic": "rw [this]" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 (↑m) ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x)", "tactic": "apply (ContDiff.sum fun i _ => (hf i).of_le hm).add" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\n⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\n⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "tactic": "have h'u : ∀ k : ℕ, (k : ℕ∞) ≤ m → Summable (v k ∘ ((↑) : { i // i ∉ T } → α)) := fun k hk =>\n (hv k (hk.trans hm)).subtype _" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\n⊢ ∀ (k : ℕ) (i : { i // ¬i ∈ T }) (x : E), ↑k ≤ ↑m → ‖iteratedFDeriv 𝕜 k (fun x => f (↑i) x) x‖ ≤ (v k ∘ Subtype.val) i", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\n⊢ ContDiff 𝕜 ↑m fun x => (fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "tactic": "refine' contDiff_tsum (fun i => (hf i).of_le hm) h'u _" }, { "state_after": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nhi : ¬i ∈ T\nx : E\nhk : ↑k ≤ ↑m\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f (↑{ val := i, property := hi }) x) x‖ ≤\n (v k ∘ Subtype.val) { val := i, property := hi }", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\n⊢ ∀ (k : ℕ) (i : { i // ¬i ∈ T }) (x : E), ↑k ≤ ↑m → ‖iteratedFDeriv 𝕜 k (fun x => f (↑i) x) x‖ ≤ (v k ∘ Subtype.val) i", "tactic": "rintro k ⟨i, hi⟩ x hk" }, { "state_after": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nhi : ¬i ∈ T\nx : E\nhk : ↑k ≤ ↑m\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i", "state_before": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nhi : ¬i ∈ T\nx : E\nhk : ↑k ≤ ↑m\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f (↑{ val := i, property := hi }) x) x‖ ≤\n (v k ∘ Subtype.val) { val := i, property := hi }", "tactic": "dsimp" }, { "state_after": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nx : E\nhk : ↑k ≤ ↑m\nhi : ∀ (x : ℕ), x < m + 1 → ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 x (f i) x_1‖ ≤ v x i\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i", "state_before": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nhi : ¬i ∈ T\nx : E\nhk : ↑k ≤ ↑m\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i", "tactic": "simp only [Finite.mem_toFinset, mem_setOf_eq, Finset.mem_range, not_forall, not_le,\n exists_prop, not_exists, not_and, not_lt] at hi" }, { "state_after": "no goals", "state_before": "case mk\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nthis : (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x\nh'u : ∀ (k : ℕ), ↑k ≤ ↑m → Summable (v k ∘ Subtype.val)\nk : ℕ\ni : α\nx : E\nhk : ↑k ≤ ↑m\nhi : ∀ (x : ℕ), x < m + 1 → ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 x (f i) x_1‖ ≤ v x i\n⊢ ‖iteratedFDeriv 𝕜 k (fun x => f i x) x‖ ≤ v k i", "tactic": "exact hi k (Nat.lt_succ_iff.2 (WithTop.coe_le_coe.1 hk)) x" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\n⊢ ∀ (i : ℕ), i ∈ Finset.range (m + 1) → ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\n⊢ ∀ᶠ (i : α) in cofinite, ∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i", "tactic": "rw [eventually_all_finset]" }, { "state_after": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ∈ Finset.range (m + 1)\n⊢ ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\n⊢ ∀ (i : ℕ), i ∈ Finset.range (m + 1) → ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x", "tactic": "intro i hi" }, { "state_after": "case a\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ∈ Finset.range (m + 1)\n⊢ ↑i ≤ N", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ∈ Finset.range (m + 1)\n⊢ ∀ᶠ (x : α) in cofinite, ∀ (x_1 : E), ‖iteratedFDeriv 𝕜 i (f x) x_1‖ ≤ v i x", "tactic": "apply h'f" }, { "state_after": "case a\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ≤ m\n⊢ ↑i ≤ N", "state_before": "case a\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ∈ Finset.range (m + 1)\n⊢ ↑i ≤ N", "tactic": "simp only [Finset.mem_range_succ_iff] at hi" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\ni : ℕ\nhi : i ≤ m\n⊢ ↑i ≤ N", "tactic": "exact (WithTop.coe_le_coe.2 hi).trans hm" }, { "state_after": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ (∑' (i : α), f i x) = ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "state_before": "α : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\n⊢ (fun x => ∑' (i : α), f i x) = (fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x", "tactic": "ext1 x" }, { "state_after": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ Summable fun i => f i x", "state_before": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ (∑' (i : α), f i x) = ((fun x => ∑ i in T, f i x) + fun x => ∑' (i : { i // ¬i ∈ T }), f (↑i) x) x", "tactic": "refine' (sum_add_tsum_subtype_compl _ T).symm" }, { "state_after": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ ∀ᶠ (i : α) in cofinite, ‖f i x‖ ≤ v 0 i", "state_before": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ Summable fun i => f i x", "tactic": "refine' summable_of_norm_bounded_eventually _ (hv 0 (zero_le _)) _" }, { "state_after": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\ni : α\nhi : ∀ (x : E), ‖iteratedFDeriv 𝕜 0 (f i) x‖ ≤ v 0 i\n⊢ ‖f i x‖ ≤ v 0 i", "state_before": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\n⊢ ∀ᶠ (i : α) in cofinite, ‖f i x‖ ≤ v 0 i", "tactic": "filter_upwards [h'f 0 (zero_le _)]with i hi" }, { "state_after": "no goals", "state_before": "case h\nα : Type u_4\nβ : Type ?u.153529\n𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\ninst✝⁵ : IsROrC 𝕜\ninst✝⁴ : NormedAddCommGroup E\ninst✝³ : NormedSpace 𝕜 E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : CompleteSpace F\nu : α → ℝ\ninst✝ : NormedSpace 𝕜 F\nf : α → E → F\nf' : α → E → E →L[𝕜] F\nv : ℕ → α → ℝ\ns : Set E\nx₀ x✝ : E\nN : ℕ∞\nhf : ∀ (i : α), ContDiff 𝕜 N (f i)\nhv : ∀ (k : ℕ), ↑k ≤ N → Summable (v k)\nh'f : ∀ (k : ℕ), ↑k ≤ N → ∀ᶠ (i : α) in cofinite, ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i\nm : ℕ\nhm : ↑m ≤ N\nt : Set α := {i | ¬∀ (k : ℕ), k ∈ Finset.range (m + 1) → ∀ (x : E), ‖iteratedFDeriv 𝕜 k (f i) x‖ ≤ v k i}\nht : Set.Finite t\nT : Finset α := Finite.toFinset ht\nx : E\ni : α\nhi : ∀ (x : E), ‖iteratedFDeriv 𝕜 0 (f i) x‖ ≤ v 0 i\n⊢ ‖f i x‖ ≤ v 0 i", "tactic": "simpa only [norm_iteratedFDeriv_zero] using hi x" } ]
[ 296, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 258, 1 ]
Mathlib/Data/Multiset/Pi.lean
Multiset.Nodup.pi
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\n⊢ Nodup (pi (a ::ₘ s) t)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns : Multiset α\nt : (a : α) → Multiset (β a)\n⊢ ∀ ⦃a : α⦄ {s : Multiset α},\n (Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)) →\n Nodup (a ::ₘ s) → (∀ (a_3 : α), a_3 ∈ a ::ₘ s → Nodup (t a_3)) → Nodup (pi (a ::ₘ s) t)", "tactic": "intro a s ih hs ht" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\n⊢ Nodup (pi (a ::ₘ s) t)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\n⊢ Nodup (pi (a ::ₘ s) t)", "tactic": "have has : a ∉ s := by simp at hs; exact hs.1" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ Nodup (pi (a ::ₘ s) t)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\n⊢ Nodup (pi (a ::ₘ s) t)", "tactic": "have hs : Nodup s := by simp at hs; exact hs.2" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ (∀ (a_1 : β a), a_1 ∈ t a → Nodup (Multiset.map (Pi.cons s a a_1) (pi s t))) ∧\n Pairwise (fun a_1 b => Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t)))\n (t a)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ Nodup (pi (a ::ₘ s) t)", "tactic": "simp" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ Pairwise (fun a_1 b => Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t)))\n (t a)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ (∀ (a_1 : β a), a_1 ∈ t a → Nodup (Multiset.map (Pi.cons s a a_1) (pi s t))) ∧\n Pairwise (fun a_1 b => Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t)))\n (t a)", "tactic": "refine'\n ⟨fun b _ => ((ih hs) fun a' h' => ht a' <| mem_cons_of_mem h').map (Pi.cons_injective has),\n _⟩" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ ∀ (a_1 : β a),\n a_1 ∈ t a →\n ∀ (b : β a),\n b ∈ t a → a_1 ≠ b → Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t))", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ Pairwise (fun a_1 b => Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t)))\n (t a)", "tactic": "refine' (ht a <| mem_cons_self _ _).pairwise _" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\n⊢ ∀ (a_1 : β a),\n a_1 ∈ t a →\n ∀ (b : β a),\n b ∈ t a → a_1 ≠ b → Disjoint (Multiset.map (Pi.cons s a a_1) (pi s t)) (Multiset.map (Pi.cons s a b) (pi s t))", "tactic": "exact fun b₁ _ b₂ _ neb =>\n disjoint_map_map.2 fun f _ g _ eq =>\n have : Pi.cons s a b₁ f a (mem_cons_self _ _) = Pi.cons s a b₂ g a (mem_cons_self _ _) :=\n by rw [eq]\n neb <| show b₁ = b₂ by rwa [Pi.cons_same, Pi.cons_same] at this" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhs : ¬a ∈ s ∧ Nodup s\n⊢ ¬a ∈ s", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\n⊢ ¬a ∈ s", "tactic": "simp at hs" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhs : ¬a ∈ s ∧ Nodup s\n⊢ ¬a ∈ s", "tactic": "exact hs.1" }, { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : ¬a ∈ s ∧ Nodup s\n⊢ Nodup s", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\n⊢ Nodup s", "tactic": "simp at hs" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : ¬a ∈ s ∧ Nodup s\n⊢ Nodup s", "tactic": "exact hs.2" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\nb₁ : β a\nx✝³ : b₁ ∈ t a\nb₂ : β a\nx✝² : b₂ ∈ t a\nneb : b₁ ≠ b₂\nf : (a : α) → a ∈ s → β a\nx✝¹ : f ∈ pi s t\ng : (a : α) → a ∈ s → β a\nx✝ : g ∈ pi s t\neq : Pi.cons s a b₁ f = Pi.cons s a b₂ g\n⊢ Pi.cons s a b₁ f a (_ : a ∈ a ::ₘ s) = Pi.cons s a b₂ g a (_ : a ∈ a ::ₘ s)", "tactic": "rw [eq]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\nβ : α → Type u\nδ : α → Sort v\ns✝ : Multiset α\nt : (a : α) → Multiset (β a)\na : α\ns : Multiset α\nih : Nodup s → (∀ (a : α), a ∈ s → Nodup (t a)) → Nodup (pi s t)\nhs✝ : Nodup (a ::ₘ s)\nht : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Nodup (t a_1)\nhas : ¬a ∈ s\nhs : Nodup s\nb₁ : β a\nx✝³ : b₁ ∈ t a\nb₂ : β a\nx✝² : b₂ ∈ t a\nneb : b₁ ≠ b₂\nf : (a : α) → a ∈ s → β a\nx✝¹ : f ∈ pi s t\ng : (a : α) → a ∈ s → β a\nx✝ : g ∈ pi s t\neq : Pi.cons s a b₁ f = Pi.cons s a b₂ g\nthis : Pi.cons s a b₁ f a (_ : a ∈ a ::ₘ s) = Pi.cons s a b₂ g a (_ : a ∈ a ::ₘ s)\n⊢ b₁ = b₂", "tactic": "rwa [Pi.cons_same, Pi.cons_same] at this" } ]
[ 139, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 11 ]
Mathlib/Algebra/Homology/Single.lean
CochainComplex.single₀_obj_X_d
[]
[ 358, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 357, 1 ]
Mathlib/MeasureTheory/Measure/Stieltjes.lean
exists_seq_antitone_tendsto_atTop_atBot
[]
[ 109, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/InverseDeriv.lean
Real.deriv_arcsin_aux
[ { "state_after": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x\n\ncase inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : -1 < x\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "x : ℝ\nh₁ : x ≠ -1\nh₂ : x ≠ 1\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "cases' h₁.lt_or_lt with h₁ h₁" }, { "state_after": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x\n\ncase inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : -1 < x\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "cases' h₂.lt_or_lt with h₂ h₂" }, { "state_after": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "have : 1 - x ^ 2 < 0 := by nlinarith [h₁]" }, { "state_after": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "rw [sqrt_eq_zero'.2 this.le, div_zero]" }, { "state_after": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis✝ : 1 - x ^ 2 < 0\nthis : arcsin =ᶠ[𝓝 x] fun x => -(π / 2)\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "have : arcsin =ᶠ[𝓝 x] fun _ => -(π / 2) :=\n (gt_mem_nhds h₁).mono fun y hy => arcsin_of_le_neg_one hy.le" }, { "state_after": "no goals", "state_before": "case inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\nthis✝ : 1 - x ^ 2 < 0\nthis : arcsin =ᶠ[𝓝 x] fun x => -(π / 2)\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm,\n contDiffAt_const.congr_of_eventuallyEq this⟩" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁✝ : x ≠ -1\nh₂ : x ≠ 1\nh₁ : x < -1\n⊢ 1 - x ^ 2 < 0", "tactic": "nlinarith [h₁]" }, { "state_after": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\nthis : 0 < sqrt (1 - x ^ 2)\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "have : 0 < sqrt (1 - x ^ 2) := sqrt_pos.2 (by nlinarith [h₁, h₂])" }, { "state_after": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\nthis : 0 < cos (arcsin x)\n⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\nthis : 0 < sqrt (1 - x ^ 2)\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "simp only [← cos_arcsin, one_div] at this ⊢" }, { "state_after": "no goals", "state_before": "case inr.inl\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\nthis : 0 < cos (arcsin x)\n⊢ HasStrictDerivAt arcsin (cos (arcsin x))⁻¹ x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "exact ⟨sinLocalHomeomorph.hasStrictDerivAt_symm ⟨h₁, h₂⟩ this.ne' (hasStrictDerivAt_sin _),\n sinLocalHomeomorph.contDiffAt_symm_deriv this.ne' ⟨h₁, h₂⟩ (hasDerivAt_sin _)\n contDiff_sin.contDiffAt⟩" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : x < 1\n⊢ 0 < 1 - x ^ 2", "tactic": "nlinarith [h₁, h₂]" }, { "state_after": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "have : 1 - x ^ 2 < 0 := by nlinarith [h₂]" }, { "state_after": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin (1 / sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "rw [sqrt_eq_zero'.2 this.le, div_zero]" }, { "state_after": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis✝ : 1 - x ^ 2 < 0\nthis : arcsin =ᶠ[𝓝 x] fun x => π / 2\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "state_before": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis : 1 - x ^ 2 < 0\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "have : arcsin =ᶠ[𝓝 x] fun _ => π / 2 := (lt_mem_nhds h₂).mono fun y hy => arcsin_of_one_le hy.le" }, { "state_after": "no goals", "state_before": "case inr.inr\nx : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\nthis✝ : 1 - x ^ 2 < 0\nthis : arcsin =ᶠ[𝓝 x] fun x => π / 2\n⊢ HasStrictDerivAt arcsin 0 x ∧ ContDiffAt ℝ ⊤ arcsin x", "tactic": "exact ⟨(hasStrictDerivAt_const _ _).congr_of_eventuallyEq this.symm,\n contDiffAt_const.congr_of_eventuallyEq this⟩" }, { "state_after": "no goals", "state_before": "x : ℝ\nh₁✝ : x ≠ -1\nh₂✝ : x ≠ 1\nh₁ : -1 < x\nh₂ : 1 < x\n⊢ 1 - x ^ 2 < 0", "tactic": "nlinarith [h₂]" } ]
[ 52, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
dist_one_left
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.50544\n𝕜 : Type ?u.50547\nα : Type ?u.50550\nι : Type ?u.50553\nκ : Type ?u.50556\nE : Type u_1\nF : Type ?u.50562\nG : Type ?u.50565\ninst✝² : SeminormedGroup E\ninst✝¹ : SeminormedGroup F\ninst✝ : SeminormedGroup G\ns : Set E\na✝ a₁ a₂ b b₁ b₂ : E\nr r₁ r₂ : ℝ\na : E\n⊢ dist 1 a = ‖a‖", "tactic": "rw [dist_comm, dist_one_right]" } ]
[ 406, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 405, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.add_lt_add_of_lt_of_le
[]
[ 718, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 716, 1 ]
Mathlib/Topology/MetricSpace/Lipschitz.lean
LipschitzWith.edist_le_mul
[]
[ 134, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 1 ]
Mathlib/Analysis/NormedSpace/Ray.lean
sameRay_iff_inv_norm_smul_eq
[ { "state_after": "case inl\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ny : F\n⊢ SameRay ℝ 0 y ↔ 0 = 0 ∨ y = 0 ∨ ‖0‖⁻¹ • 0 = ‖y‖⁻¹ • y\n\ncase inr\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\nhx : x ≠ 0\n⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y", "state_before": "E : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\n⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y", "tactic": "rcases eq_or_ne x 0 with (rfl | hx)" }, { "state_after": "case inr.inl\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx : F\nhx : x ≠ 0\n⊢ SameRay ℝ x 0 ↔ x = 0 ∨ 0 = 0 ∨ ‖x‖⁻¹ • x = ‖0‖⁻¹ • 0\n\ncase inr.inr\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\nhx : x ≠ 0\nhy : y ≠ 0\n⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y", "state_before": "case inr\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\nhx : x ≠ 0\n⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y", "tactic": "rcases eq_or_ne y 0 with (rfl | hy)" }, { "state_after": "no goals", "state_before": "case inr.inr\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx y : F\nhx : x ≠ 0\nhy : y ≠ 0\n⊢ SameRay ℝ x y ↔ x = 0 ∨ y = 0 ∨ ‖x‖⁻¹ • x = ‖y‖⁻¹ • y", "tactic": "simp only [sameRay_iff_inv_norm_smul_eq_of_ne hx hy, *, false_or_iff]" }, { "state_after": "no goals", "state_before": "case inl\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\ny : F\n⊢ SameRay ℝ 0 y ↔ 0 = 0 ∨ y = 0 ∨ ‖0‖⁻¹ • 0 = ‖y‖⁻¹ • y", "tactic": "simp [SameRay.zero_left]" }, { "state_after": "no goals", "state_before": "case inr.inl\nE : Type ?u.236691\ninst✝³ : SeminormedAddCommGroup E\ninst✝² : NormedSpace ℝ E\nF : Type u_1\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedSpace ℝ F\nx : F\nhx : x ≠ 0\n⊢ SameRay ℝ x 0 ↔ x = 0 ∨ 0 = 0 ∨ ‖x‖⁻¹ • x = ‖0‖⁻¹ • 0", "tactic": "simp [SameRay.zero_right]" } ]
[ 98, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 95, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContDiff.continuous_deriv
[]
[ 2168, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2167, 1 ]
Mathlib/MeasureTheory/MeasurableSpace.lean
measurableSet_prod_of_nonempty
[ { "state_after": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\n⊢ MeasurableSet (s ×ˢ t) ↔ MeasurableSet s ∧ MeasurableSet t", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nh : Set.Nonempty (s ×ˢ t)\n⊢ MeasurableSet (s ×ˢ t) ↔ MeasurableSet s ∧ MeasurableSet t", "tactic": "rcases h with ⟨⟨x, y⟩, hx, hy⟩" }, { "state_after": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "state_before": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\n⊢ MeasurableSet (s ×ˢ t) ↔ MeasurableSet s ∧ MeasurableSet t", "tactic": "refine' ⟨fun hst => _, fun h => h.1.prod h.2⟩" }, { "state_after": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\nthis : MeasurableSet ((fun x => (x, y)) ⁻¹' s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "state_before": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "tactic": "have : MeasurableSet ((fun x => (x, y)) ⁻¹' s ×ˢ t) := measurable_prod_mk_right hst" }, { "state_after": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\nthis✝ : MeasurableSet ((fun x => (x, y)) ⁻¹' s ×ˢ t)\nthis : MeasurableSet (Prod.mk x ⁻¹' s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "state_before": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\nthis : MeasurableSet ((fun x => (x, y)) ⁻¹' s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "tactic": "have : MeasurableSet (Prod.mk x ⁻¹' s ×ˢ t) := measurable_prod_mk_left hst" }, { "state_after": "no goals", "state_before": "case intro.mk.intro\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.83086\nδ : Type ?u.83089\nδ' : Type ?u.83092\nι : Sort uι\ns✝ t✝ u : Set α\nm : MeasurableSpace α\nmβ : MeasurableSpace β\nmγ : MeasurableSpace γ\ns : Set α\nt : Set β\nx : α\ny : β\nhx : (x, y).fst ∈ s\nhy : (x, y).snd ∈ t\nhst : MeasurableSet (s ×ˢ t)\nthis✝ : MeasurableSet ((fun x => (x, y)) ⁻¹' s ×ˢ t)\nthis : MeasurableSet (Prod.mk x ⁻¹' s ×ˢ t)\n⊢ MeasurableSet s ∧ MeasurableSet t", "tactic": "simp_all" } ]
[ 731, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 725, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.sub_mem
[]
[ 141, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 140, 11 ]
Mathlib/Data/Set/Function.lean
Set.BijOn.injOn
[]
[ 912, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 911, 1 ]
Mathlib/Data/List/MinMax.lean
List.argmax_singleton
[]
[ 122, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 121, 1 ]
Mathlib/Analysis/Calculus/Deriv/Pow.lean
HasDerivWithinAt.pow
[]
[ 106, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 104, 1 ]
Std/Data/Int/Lemmas.lean
Int.ofNat_add_ofNat
[]
[ 51, 80 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 51, 9 ]
Mathlib/Data/MvPolynomial/Funext.lean
MvPolynomial.funext_fin
[ { "state_after": "case zero\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ p = 0\n\ncase succ\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ p = 0", "state_before": "R : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np : MvPolynomial (Fin n) R\nh : ∀ (x : Fin n → R), ↑(eval x) p = 0\n⊢ p = 0", "tactic": "induction' n with n ih" }, { "state_after": "case zero.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ ↑(isEmptyRingEquiv R (Fin 0)) p = ↑(isEmptyRingEquiv R (Fin 0)) 0", "state_before": "case zero\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ p = 0", "tactic": "apply (MvPolynomial.isEmptyRingEquiv R (Fin 0)).injective" }, { "state_after": "case zero.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ ↑(isEmptyRingEquiv R (Fin 0)) p = 0", "state_before": "case zero.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ ↑(isEmptyRingEquiv R (Fin 0)) p = ↑(isEmptyRingEquiv R (Fin 0)) 0", "tactic": "rw [RingEquiv.map_zero]" }, { "state_after": "no goals", "state_before": "case zero.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn : ℕ\np✝ : MvPolynomial (Fin n) R\nh✝ : ∀ (x : Fin n → R), ↑(eval x) p✝ = 0\np : MvPolynomial (Fin Nat.zero) R\nh : ∀ (x : Fin Nat.zero → R), ↑(eval x) p = 0\n⊢ ↑(isEmptyRingEquiv R (Fin 0)) p = 0", "tactic": "convert h finZeroElim" }, { "state_after": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ ↑(finSuccEquiv R n) p = ↑(finSuccEquiv R n) 0", "state_before": "case succ\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ p = 0", "tactic": "apply (finSuccEquiv R n).injective" }, { "state_after": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ ↑(finSuccEquiv R n) p = 0", "state_before": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ ↑(finSuccEquiv R n) p = ↑(finSuccEquiv R n) 0", "tactic": "simp only [AlgEquiv.map_zero]" }, { "state_after": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\n⊢ Polynomial.eval q (↑(finSuccEquiv R n) p) = Polynomial.eval q 0", "state_before": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\n⊢ ↑(finSuccEquiv R n) p = 0", "tactic": "refine Polynomial.funext fun q => ?_" }, { "state_after": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\n⊢ Polynomial.eval q (↑(finSuccEquiv R n) p) = 0", "state_before": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\n⊢ Polynomial.eval q (↑(finSuccEquiv R n) p) = Polynomial.eval q 0", "tactic": "rw [Polynomial.eval_zero]" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\nx : Fin n → R\n⊢ ↑(eval x) (Polynomial.eval q (↑(finSuccEquiv R n) p)) = 0", "state_before": "case succ.a\nR : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\n⊢ Polynomial.eval q (↑(finSuccEquiv R n) p) = 0", "tactic": "apply ih fun x => ?_" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝² : CommRing R\ninst✝¹ : IsDomain R\ninst✝ : Infinite R\nn✝ : ℕ\np✝ : MvPolynomial (Fin n✝) R\nh✝ : ∀ (x : Fin n✝ → R), ↑(eval x) p✝ = 0\nn : ℕ\nih : ∀ {p : MvPolynomial (Fin n) R}, (∀ (x : Fin n → R), ↑(eval x) p = 0) → p = 0\np : MvPolynomial (Fin (Nat.succ n)) R\nh : ∀ (x : Fin (Nat.succ n) → R), ↑(eval x) p = 0\nq : MvPolynomial (Fin n) R\nx : Fin n → R\n⊢ ↑(eval x) (Polynomial.eval q (↑(finSuccEquiv R n) p)) = 0", "tactic": "calc _ = _ := eval_polynomial_eval_finSuccEquiv p _\n _ = 0 := h _" } ]
[ 45, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 33, 9 ]
Mathlib/Order/Disjoint.lean
codisjoint_inf_right
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : DistribLattice α\ninst✝ : OrderTop α\na b c : α\n⊢ Codisjoint a (b ⊓ c) ↔ Codisjoint a b ∧ Codisjoint a c", "tactic": "simp only [codisjoint_iff, sup_inf_left, inf_eq_top_iff]" } ]
[ 379, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 378, 1 ]
Mathlib/ModelTheory/Basic.lean
FirstOrder.Language.Embedding.comp_toHom
[ { "state_after": "case h\nL : Language\nL' : Language\nM : Type w\nN : Type w'\ninst✝³ : Structure L M\ninst✝² : Structure L N\nP : Type u_1\ninst✝¹ : Structure L P\nQ : Type ?u.151174\ninst✝ : Structure L Q\nhnp : N ↪[L] P\nhmn : M ↪[L] N\nx✝ : M\n⊢ ↑(toHom (comp hnp hmn)) x✝ = ↑(Hom.comp (toHom hnp) (toHom hmn)) x✝", "state_before": "L : Language\nL' : Language\nM : Type w\nN : Type w'\ninst✝³ : Structure L M\ninst✝² : Structure L N\nP : Type u_1\ninst✝¹ : Structure L P\nQ : Type ?u.151174\ninst✝ : Structure L Q\nhnp : N ↪[L] P\nhmn : M ↪[L] N\n⊢ toHom (comp hnp hmn) = Hom.comp (toHom hnp) (toHom hmn)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nL : Language\nL' : Language\nM : Type w\nN : Type w'\ninst✝³ : Structure L M\ninst✝² : Structure L N\nP : Type u_1\ninst✝¹ : Structure L P\nQ : Type ?u.151174\ninst✝ : Structure L Q\nhnp : N ↪[L] P\nhmn : M ↪[L] N\nx✝ : M\n⊢ ↑(toHom (comp hnp hmn)) x✝ = ↑(Hom.comp (toHom hnp) (toHom hmn)) x✝", "tactic": "simp only [coe_toHom, comp_apply, Hom.comp_apply]" } ]
[ 731, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 728, 1 ]
Mathlib/Deprecated/Group.lean
IsGroupHom.mk'
[]
[ 271, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 269, 1 ]
src/lean/Init/Data/Nat/Power2.lean
Nat.isPowerOfTwo_nextPowerOfTwo
[ { "state_after": "case h₂\nn : Nat\n⊢ isPowerOfTwo 1", "state_before": "n : Nat\n⊢ isPowerOfTwo (nextPowerOfTwo n)", "tactic": "apply isPowerOfTwo_go" }, { "state_after": "no goals", "state_before": "case h₂\nn : Nat\n⊢ isPowerOfTwo 1", "tactic": "apply one_isPowerOfTwo" }, { "state_after": "n power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\n⊢ isPowerOfTwo (if power < n then nextPowerOfTwo.go n (power * 2) (_ : power * 2 > 0) else power)", "state_before": "n power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\n⊢ isPowerOfTwo (nextPowerOfTwo.go n power h₁)", "tactic": "unfold nextPowerOfTwo.go" }, { "state_after": "case inl\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : power < n\n⊢ isPowerOfTwo (nextPowerOfTwo.go n (power * 2) (_ : power * 2 > 0))\n\ncase inr\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : ¬power < n\n⊢ isPowerOfTwo power", "state_before": "n power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\n⊢ isPowerOfTwo (if power < n then nextPowerOfTwo.go n (power * 2) (_ : power * 2 > 0) else power)", "tactic": "split" }, { "state_after": "case inr\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : ¬power < n\n⊢ isPowerOfTwo power", "state_before": "case inl\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : power < n\n⊢ isPowerOfTwo (nextPowerOfTwo.go n (power * 2) (_ : power * 2 > 0))\n\ncase inr\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : ¬power < n\n⊢ isPowerOfTwo power", "tactic": ". exact isPowerOfTwo_go (power*2) (Nat.mul_pos h₁ (by decide)) (Nat.mul2_isPowerOfTwo_of_isPowerOfTwo h₂)" }, { "state_after": "no goals", "state_before": "case inr\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : ¬power < n\n⊢ isPowerOfTwo power", "tactic": ". assumption" }, { "state_after": "no goals", "state_before": "case inl\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : power < n\n⊢ isPowerOfTwo (nextPowerOfTwo.go n (power * 2) (_ : power * 2 > 0))", "tactic": "exact isPowerOfTwo_go (power*2) (Nat.mul_pos h₁ (by decide)) (Nat.mul2_isPowerOfTwo_of_isPowerOfTwo h₂)" }, { "state_after": "no goals", "state_before": "n power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : power < n\n⊢ 2 > 0", "tactic": "decide" }, { "state_after": "no goals", "state_before": "case inr\nn power : Nat\nh₁ : power > 0\nh₂ : isPowerOfTwo power\nh✝ : ¬power < n\n⊢ isPowerOfTwo power", "tactic": "assumption" }, { "state_after": "n : Nat\n_x✝ : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power\na✝² :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y _x✝ →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\npower : Nat\nh₁✝ : (_ : power > 0) ×' isPowerOfTwo power\na✝¹ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := h₁✝ } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh₁ : power > 0\nh₂ : isPowerOfTwo power\na✝ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := { fst := h₁, snd := h₂ } } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh✝ : power < n\n⊢ n - power * 2 < n - power", "state_before": "n : Nat\n_x✝ : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power\na✝² :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y _x✝ →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\npower : Nat\nh₁✝ : (_ : power > 0) ×' isPowerOfTwo power\na✝¹ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := h₁✝ } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh₁ : power > 0\nh₂ : isPowerOfTwo power\na✝ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := { fst := h₁, snd := h₂ } } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh✝ : power < n\n⊢ (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n { fst := power * 2, snd := { fst := (_ : power * 2 > 0), snd := (_ : isPowerOfTwo (power * 2)) } }\n { fst := power, snd := { fst := h₁, snd := h₂ } }", "tactic": "simp_wf" }, { "state_after": "no goals", "state_before": "n : Nat\n_x✝ : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power\na✝² :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y _x✝ →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\npower : Nat\nh₁✝ : (_ : power > 0) ×' isPowerOfTwo power\na✝¹ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := h₁✝ } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh₁ : power > 0\nh₂ : isPowerOfTwo power\na✝ :\n ∀ (y : (power : Nat) ×' (_ : power > 0) ×' isPowerOfTwo power),\n (invImage (fun a => PSigma.casesOn a fun p snd => PSigma.casesOn snd fun h₁ snd => n - p) instWellFoundedRelation).1\n y { fst := power, snd := { fst := h₁, snd := h₂ } } →\n isPowerOfTwo (nextPowerOfTwo.go n y.1 (_ : y.1 > 0))\nh✝ : power < n\n⊢ n - power * 2 < n - power", "tactic": "apply nextPowerOfTwo_dec <;> assumption" } ]
[ 52, 63 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 42, 1 ]
Mathlib/Order/Bounds/Basic.lean
isLUB_prod
[ { "state_after": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : α\nha : a ∈ upperBounds (Prod.fst '' s)\n⊢ p.fst ≤ a\n\ncase refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : β\nha : a ∈ upperBounds (Prod.snd '' s)\n⊢ p.snd ≤ a\n\ncase refine'_3\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd\n⊢ p ∈ upperBounds s\n\ncase refine'_4\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd\n⊢ p ∈ lowerBounds (upperBounds s)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\n⊢ IsLUB s p ↔ IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd", "tactic": "refine'\n ⟨fun H =>\n ⟨⟨monotone_fst.mem_upperBounds_image H.1, fun a ha => _⟩,\n ⟨monotone_snd.mem_upperBounds_image H.1, fun a ha => _⟩⟩,\n fun H => ⟨_, _⟩⟩" }, { "state_after": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : α\nha : a ∈ upperBounds (Prod.fst '' s)\n⊢ (a, p.snd) ∈ upperBounds s", "state_before": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : α\nha : a ∈ upperBounds (Prod.fst '' s)\n⊢ p.fst ≤ a", "tactic": "suffices h : (a, p.2) ∈ upperBounds s from (H.2 h).1" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : α\nha : a ∈ upperBounds (Prod.fst '' s)\n⊢ (a, p.snd) ∈ upperBounds s", "tactic": "exact fun q hq => ⟨ha <| mem_image_of_mem _ hq, (H.1 hq).2⟩" }, { "state_after": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : β\nha : a ∈ upperBounds (Prod.snd '' s)\n⊢ (p.fst, a) ∈ upperBounds s", "state_before": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : β\nha : a ∈ upperBounds (Prod.snd '' s)\n⊢ p.snd ≤ a", "tactic": "suffices h : (p.1, a) ∈ upperBounds s from (H.2 h).2" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB s p\na : β\nha : a ∈ upperBounds (Prod.snd '' s)\n⊢ (p.fst, a) ∈ upperBounds s", "tactic": "exact fun q hq => ⟨(H.1 hq).1, ha <| mem_image_of_mem _ hq⟩" }, { "state_after": "no goals", "state_before": "case refine'_3\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd\n⊢ p ∈ upperBounds s", "tactic": "exact fun q hq => ⟨H.1.1 <| mem_image_of_mem _ hq, H.2.1 <| mem_image_of_mem _ hq⟩" }, { "state_after": "no goals", "state_before": "case refine'_4\nα : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝¹ : Preorder α\ninst✝ : Preorder β\ns : Set (α × β)\np : α × β\nH : IsLUB (Prod.fst '' s) p.fst ∧ IsLUB (Prod.snd '' s) p.snd\n⊢ p ∈ lowerBounds (upperBounds s)", "tactic": "exact fun q hq =>\n ⟨H.1.2 <| monotone_fst.mem_upperBounds_image hq,\n H.2.2 <| monotone_snd.mem_upperBounds_image hq⟩" } ]
[ 1599, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1584, 1 ]
Mathlib/Geometry/Manifold/SmoothManifoldWithCorners.lean
map_extChartAt_symm_nhdsWithin
[]
[ 1195, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1192, 1 ]
Mathlib/CategoryTheory/Monoidal/Category.lean
CategoryTheory.MonoidalCategory.tensorLeftTensor_inv_app
[ { "state_after": "no goals", "state_before": "C✝¹ : Type u\n𝒞 : Category C✝¹\ninst✝⁴ : MonoidalCategory C✝¹\nC✝ : Type u\ninst✝³ : Category C✝\ninst✝² : MonoidalCategory C✝\nC : Type u\ninst✝¹ : Category C\ninst✝ : MonoidalCategory C\nX Y Z : C\n⊢ (tensorLeftTensor X Y).inv.app Z = (α_ X Y Z).inv", "tactic": "simp [tensorLeftTensor]" } ]
[ 531, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 530, 1 ]
Mathlib/CategoryTheory/Monoidal/Types/Basic.lean
CategoryTheory.rightUnitor_inv_apply
[]
[ 60, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 58, 1 ]
Mathlib/Algebra/DirectSum/Decomposition.lean
DirectSum.decompose_of_mem_ne
[ { "state_after": "no goals", "state_before": "ι : Type u_3\nR : Type ?u.124931\nM : Type u_1\nσ : Type u_2\ninst✝⁴ : DecidableEq ι\ninst✝³ : AddCommMonoid M\ninst✝² : SetLike σ M\ninst✝¹ : AddSubmonoidClass σ M\nℳ : ι → σ\ninst✝ : Decomposition ℳ\nx : M\ni j : ι\nhx : x ∈ ℳ i\nhij : i ≠ j\n⊢ ↑(↑(↑(decompose ℳ) x) j) = 0", "tactic": "rw [decompose_of_mem _ hx, DirectSum.of_eq_of_ne _ _ _ _ hij, ZeroMemClass.coe_zero]" } ]
[ 127, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 125, 1 ]
Mathlib/RingTheory/Valuation/Basic.lean
AddValuation.IsEquiv.ne_top
[]
[ 865, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 864, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.lf_iff_lt_or_fuzzy
[ { "state_after": "x y : PGame\n⊢ ¬y ≤ x ↔ x ≤ y ∧ ¬y ≤ x ∨ ¬y ≤ x ∧ ¬x ≤ y", "state_before": "x y : PGame\n⊢ x ⧏ y ↔ x < y ∨ x ‖ y", "tactic": "simp only [lt_iff_le_and_lf, Fuzzy, ← PGame.not_le]" }, { "state_after": "no goals", "state_before": "x y : PGame\n⊢ ¬y ≤ x ↔ x ≤ y ∧ ¬y ≤ x ∨ ¬y ≤ x ∧ ¬x ≤ y", "tactic": "tauto" } ]
[ 924, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 922, 1 ]
Mathlib/RingTheory/IntegralClosure.lean
isIntegral_algHom_iff
[ { "state_after": "R : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\n⊢ IsIntegral R (↑f x) → IsIntegral R x", "state_before": "R : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\n⊢ IsIntegral R (↑f x) ↔ IsIntegral R x", "tactic": "refine' ⟨_, map_isIntegral f⟩" }, { "state_after": "case intro.intro\nR : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\np : R[X]\nhp : Monic p\nhx : eval₂ (algebraMap R ((fun x => B) x)) (↑f x) p = 0\n⊢ IsIntegral R x", "state_before": "R : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\n⊢ IsIntegral R (↑f x) → IsIntegral R x", "tactic": "rintro ⟨p, hp, hx⟩" }, { "state_after": "case intro.intro\nR : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\np : R[X]\nhp : Monic p\nhx : eval₂ (algebraMap R ((fun x => B) x)) (↑f x) p = 0\n⊢ eval₂ (algebraMap R A) x p = 0", "state_before": "case intro.intro\nR : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\np : R[X]\nhp : Monic p\nhx : eval₂ (algebraMap R ((fun x => B) x)) (↑f x) p = 0\n⊢ IsIntegral R x", "tactic": "use p, hp" }, { "state_after": "no goals", "state_before": "case intro.intro\nR : Type u_3\nA✝ : Type ?u.158436\nB✝ : Type ?u.158439\nS : Type ?u.158442\ninst✝⁹ : CommRing R\ninst✝⁸ : CommRing A✝\ninst✝⁷ : CommRing B✝\ninst✝⁶ : CommRing S\ninst✝⁵ : Algebra R A✝\ninst✝⁴ : Algebra R B✝\nf✝ : R →+* S\nA : Type u_1\nB : Type u_2\ninst✝³ : Ring A\ninst✝² : Ring B\ninst✝¹ : Algebra R A\ninst✝ : Algebra R B\nf : A →ₐ[R] B\nhf : Function.Injective ↑f\nx : A\np : R[X]\nhp : Monic p\nhx : eval₂ (algebraMap R ((fun x => B) x)) (↑f x) p = 0\n⊢ eval₂ (algebraMap R A) x p = 0", "tactic": "rwa [← f.comp_algebraMap, ← AlgHom.coe_toRingHom, ← Polynomial.hom_eval₂, AlgHom.coe_toRingHom,\n map_eq_zero_iff f hf] at hx" } ]
[ 153, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Control/Bifunctor.lean
Bifunctor.fst_snd
[ { "state_after": "no goals", "state_before": "F : Type u₀ → Type u₁ → Type u₂\ninst✝¹ : Bifunctor F\ninst✝ : LawfulBifunctor F\nα₀ α₁ : Type u₀\nβ₀ β₁ : Type u₁\nf : α₀ → α₁\nf' : β₀ → β₁\nx : F α₀ β₀\n⊢ fst f (snd f' x) = bimap f f' x", "tactic": "simp [fst, bimap_bimap]" } ]
[ 99, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 98, 1 ]
Mathlib/CategoryTheory/Limits/Final.lean
CategoryTheory.Functor.initial_of_final_op
[]
[ 122, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/RingTheory/Derivation/Basic.lean
Derivation.coe_zero_linearMap
[]
[ 193, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/Order/Antichain.lean
IsAntichain.insert_of_symmetric
[]
[ 120, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 118, 1 ]
Mathlib/MeasureTheory/Constructions/Prod/Integral.lean
MeasureTheory.integral_integral_sub
[]
[ 410, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 406, 1 ]
Mathlib/Algebra/Lie/Nilpotent.lean
LieSubmodule.ucs_mono
[ { "state_after": "case zero\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\n⊢ ucs Nat.zero N₁ ≤ ucs Nat.zero N₂\n\ncase succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\nk : ℕ\nih : ucs k N₁ ≤ ucs k N₂\n⊢ ucs (Nat.succ k) N₁ ≤ ucs (Nat.succ k) N₂", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nk : ℕ\nh : N₁ ≤ N₂\n⊢ ucs k N₁ ≤ ucs k N₂", "tactic": "induction' k with k ih" }, { "state_after": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\nk : ℕ\nih : ucs k N₁ ≤ ucs k N₂\n⊢ normalizer (ucs k N₁) ≤ normalizer (ucs k N₂)", "state_before": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\nk : ℕ\nih : ucs k N₁ ≤ ucs k N₂\n⊢ ucs (Nat.succ k) N₁ ≤ ucs (Nat.succ k) N₂", "tactic": "simp only [ucs_succ]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk✝ : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\nk : ℕ\nih : ucs k N₁ ≤ ucs k N₂\n⊢ normalizer (ucs k N₁) ≤ normalizer (ucs k N₂)", "tactic": "apply monotone_normalizer ih" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nk : ℕ\nN N₁ N₂ : LieSubmodule R L M\nh : N₁ ≤ N₂\n⊢ ucs Nat.zero N₁ ≤ ucs Nat.zero N₂", "tactic": "simpa" } ]
[ 382, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 377, 1 ]
Mathlib/Topology/MetricSpace/PartitionOfUnity.lean
EMetric.exists_forall_closedBall_subset_aux₂
[]
[ 82, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Analysis/NormedSpace/OperatorNorm.lean
ContinuousLinearMap.norm_def
[]
[ 145, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 144, 1 ]
Mathlib/Topology/ContinuousOn.lean
comap_nhdsWithin_range
[]
[ 688, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 687, 1 ]
Mathlib/Analysis/Convex/Function.lean
StrictConvexOn.translate_right
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.700544\nα : Type ?u.700547\nβ : Type u_3\nι : Type ?u.700553\ninst✝⁴ : OrderedSemiring 𝕜\ninst✝³ : AddCancelCommMonoid E\ninst✝² : OrderedAddCommMonoid β\ninst✝¹ : Module 𝕜 E\ninst✝ : SMul 𝕜 β\ns : Set E\nf : E → β\nhf : StrictConvexOn 𝕜 s f\nc x : E\nhx : x ∈ (fun z => c + z) ⁻¹' s\ny : E\nhy : y ∈ (fun z => c + z) ⁻¹' s\nhxy : x ≠ y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ f (c + (a • x + b • y)) = f (a • (c + x) + b • (c + y))", "tactic": "rw [smul_add, smul_add, add_add_add_comm, Convex.combo_self hab]" } ]
[ 941, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 935, 1 ]
Mathlib/Computability/Primrec.lean
Primrec.list_foldl
[]
[ 1027, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1024, 1 ]
Mathlib/Order/Max.lean
IsMax.not_lt
[]
[ 316, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 316, 1 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.IsBigOWith.const_mul_right
[]
[ 1523, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1521, 1 ]
Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
TopCat.coequalizer_isOpen_iff
[ { "state_after": "J : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ (∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)) ↔\n IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "state_before": "J : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ IsOpen U ↔ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "rw [colimit_isOpen_iff]" }, { "state_after": "case mp\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ (∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)) →\n IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n\ncase mpr\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U) →\n ∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)", "state_before": "J : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ (∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)) ↔\n IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "constructor" }, { "state_after": "case mp\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : ∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "state_before": "case mp\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ (∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)) →\n IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "intro H" }, { "state_after": "no goals", "state_before": "case mp\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : ∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "exact H _" }, { "state_after": "case mpr\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\nj : WalkingParallelPair\n⊢ IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)", "state_before": "case mpr\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U) →\n ∀ (j : WalkingParallelPair), IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)", "tactic": "intro H j" }, { "state_after": "case mpr.zero\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.zero) ⁻¹' U)\n\ncase mpr.one\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "state_before": "case mpr\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\nj : WalkingParallelPair\n⊢ IsOpen ((forget TopCat).map (colimit.ι F j) ⁻¹' U)", "tactic": "cases j" }, { "state_after": "case mpr.zero\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (F.map WalkingParallelPairHom.left ≫ colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "state_before": "case mpr.zero\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.zero) ⁻¹' U)", "tactic": "rw [← colimit.w F WalkingParallelPairHom.left]" }, { "state_after": "no goals", "state_before": "case mpr.zero\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (F.map WalkingParallelPairHom.left ≫ colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "exact (F.map WalkingParallelPairHom.left).continuous_toFun.isOpen_preimage _ H" }, { "state_after": "no goals", "state_before": "case mpr.one\nJ : Type v\ninst✝ : SmallCategory J\nF : WalkingParallelPair ⥤ TopCat\nU : Set ↑(colimit F)\nH : IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)\n⊢ IsOpen ((forget TopCat).map (colimit.ι F WalkingParallelPair.one) ⁻¹' U)", "tactic": "exact H" } ]
[ 432, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 421, 1 ]
Std/Data/String/Lemmas.lean
Substring.ValidFor.takeWhile
[ { "state_after": "l m r : List Char\np : Char → Bool\n⊢ ValidFor l (List.takeWhile p m) (List.dropWhile p m ++ r)\n { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l },\n stopPos := { byteIdx := utf8Len l + utf8Len (List.takeWhile p m) } }", "state_before": "l m r : List Char\np : Char → Bool\n⊢ ValidFor l (List.takeWhile p m) (List.dropWhile p m ++ r)\n (Substring.takeWhile\n { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l },\n stopPos := { byteIdx := utf8Len l + utf8Len m } }\n p)", "tactic": "simp only [Substring.takeWhile, takeWhileAux_of_valid]" }, { "state_after": "case refine'_1\nl m r : List Char\np : Char → Bool\n⊢ m ++ r = List.takeWhile p m ++ (List.dropWhile p m ++ r)", "state_before": "l m r : List Char\np : Char → Bool\n⊢ ValidFor l (List.takeWhile p m) (List.dropWhile p m ++ r)\n { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l },\n stopPos := { byteIdx := utf8Len l + utf8Len (List.takeWhile p m) } }", "tactic": "refine' .of_eq .. <;> simp" }, { "state_after": "no goals", "state_before": "case refine'_1\nl m r : List Char\np : Char → Bool\n⊢ m ++ r = List.takeWhile p m ++ (List.dropWhile p m ++ r)", "tactic": "rw [← List.append_assoc, List.takeWhile_append_dropWhile]" } ]
[ 942, 62 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 937, 1 ]
Std/Data/String/Lemmas.lean
Substring.ValidFor.any
[ { "state_after": "no goals", "state_before": "l m r : List Char\nf : Char → Bool\n⊢ Substring.any\n { str := { data := l ++ m ++ r }, startPos := { byteIdx := utf8Len l },\n stopPos := { byteIdx := utf8Len l + utf8Len m } }\n f =\n List.any m f", "tactic": "simp [-List.append_assoc, Substring.any, anyAux_of_valid]" } ]
[ 929, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 928, 1 ]
Mathlib/Data/Real/Sign.lean
Real.sign_int_cast
[ { "state_after": "case inl\nz : ℤ\nhn : z < 0\n⊢ sign ↑z = ↑(Int.sign z)\n\ncase inr.inl\n\n⊢ sign ↑0 = ↑(Int.sign 0)\n\ncase inr.inr\nz : ℤ\nhp : 0 < z\n⊢ sign ↑z = ↑(Int.sign z)", "state_before": "z : ℤ\n⊢ sign ↑z = ↑(Int.sign z)", "tactic": "obtain hn | rfl | hp := lt_trichotomy z (0 : ℤ)" }, { "state_after": "no goals", "state_before": "case inl\nz : ℤ\nhn : z < 0\n⊢ sign ↑z = ↑(Int.sign z)", "tactic": "rw [sign_of_neg (Int.cast_lt_zero.mpr hn), Int.sign_eq_neg_one_of_neg hn, Int.cast_neg,\n Int.cast_one]" }, { "state_after": "no goals", "state_before": "case inr.inl\n\n⊢ sign ↑0 = ↑(Int.sign 0)", "tactic": "rw [Int.cast_zero, sign_zero, Int.sign_zero, Int.cast_zero]" }, { "state_after": "no goals", "state_before": "case inr.inr\nz : ℤ\nhp : 0 < z\n⊢ sign ↑z = ↑(Int.sign z)", "tactic": "rw [sign_of_pos (Int.cast_pos.mpr hp), Int.sign_eq_one_of_pos hp, Int.cast_one]" } ]
[ 82, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Analysis/SpecialFunctions/Complex/Log.lean
ContinuousAt.clog
[]
[ 259, 13 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 257, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.sub_eq_fold_erase
[ { "state_after": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ ↑(List.diff l₁ l₂) = foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂", "state_before": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ Quotient.mk (isSetoid α) l₁ - Quotient.mk (isSetoid α) l₂ =\n foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a)\n (Quotient.mk (isSetoid α) l₁) (Quotient.mk (isSetoid α) l₂)", "tactic": "show ofList (l₁.diff l₂) = foldl erase erase_comm l₁ l₂" }, { "state_after": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ ↑(List.foldl List.erase l₁ l₂) =\n foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂", "state_before": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ ↑(List.diff l₁ l₂) = foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂", "tactic": "rw [diff_eq_foldl l₁ l₂]" }, { "state_after": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂ =\n ↑(List.foldl List.erase l₁ l₂)", "state_before": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ ↑(List.foldl List.erase l₁ l₂) =\n foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂", "tactic": "symm" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.160973\nγ : Type ?u.160976\ninst✝ : DecidableEq α\ns✝ t✝ u : Multiset α\na b : α\ns t : Multiset α\nl₁ l₂ : List α\n⊢ foldl erase (_ : ∀ (s : Multiset α) (a b : α), erase (erase s a) b = erase (erase s b) a) ↑l₁ ↑l₂ =\n ↑(List.foldl List.erase l₁ l₂)", "tactic": "exact foldl_hom _ _ _ _ _ fun x y => rfl" } ]
[ 1673, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1668, 1 ]
Mathlib/Order/SuccPred/LinearLocallyFinite.lean
toZ_mono
[ { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : IsMax i\n⊢ toZ i0 i ≤ toZ i0 j\n\ncase neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "by_cases hi_max : IsMax i" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : IsMin j\n⊢ toZ i0 i ≤ toZ i0 j\n\ncase neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "by_cases hj_min : IsMin j" }, { "state_after": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\n⊢ toZ i0 i ≤ toZ i0 j\n\ncase neg.inl.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : j < i0\n⊢ toZ i0 i ≤ toZ i0 j\n\ncase neg.inr.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : i0 ≤ j\n⊢ toZ i0 i ≤ toZ i0 j\n\ncase neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "cases' le_or_lt i0 i with hi hi <;> cases' le_or_lt i0 j with hj hj" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : IsMax i\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "rw [le_antisymm h_le (hi_max h_le)]" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : IsMin j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "rw [le_antisymm h_le (hj_min h_le)]" }, { "state_after": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "let m := Nat.find (exists_succ_iterate_of_le h_le)" }, { "state_after": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "have hm : (succ^[m]) i = j := Nat.find_spec (exists_succ_iterate_of_le h_le)" }, { "state_after": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "have hj_eq : j = (succ^[(toZ i0 i).toNat + m]) i0 := by\n rw [← hm, add_comm]\n nth_rw 1 [← iterate_succ_toZ i hi]\n rw [Function.iterate_add]\n rfl" }, { "state_after": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\n⊢ False", "state_before": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "by_contra h" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False\n\ncase neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ False", "state_before": "case neg.inl.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\n⊢ False", "tactic": "by_cases hm0 : m = 0" }, { "state_after": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ succ i ≤ j\n\ncase neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ toZ i0 j ≤ toZ i0 i", "state_before": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ False", "tactic": "refine' hi_max (max_of_succ_le (le_trans _ (@le_of_toZ_le _ _ _ _ _ i0 j i _)))" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) i = (succ^[m + Int.toNat (toZ i0 i)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ j = (succ^[Int.toNat (toZ i0 i) + m]) i0", "tactic": "rw [← hm, add_comm]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) ((succ^[Int.toNat (toZ i0 i)]) i0) = (succ^[m + Int.toNat (toZ i0 i)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) i = (succ^[m + Int.toNat (toZ i0 i)]) i0", "tactic": "nth_rw 1 [← iterate_succ_toZ i hi]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) ((succ^[Int.toNat (toZ i0 i)]) i0) = (succ^[m] ∘ succ^[Int.toNat (toZ i0 i)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) ((succ^[Int.toNat (toZ i0 i)]) i0) = (succ^[m + Int.toNat (toZ i0 i)]) i0", "tactic": "rw [Function.iterate_add]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\n⊢ (succ^[m]) ((succ^[Int.toNat (toZ i0 i)]) i0) = (succ^[m] ∘ succ^[Int.toNat (toZ i0 i)]) i0", "tactic": "rfl" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "tactic": "rw [hm0, Function.iterate_zero, id.def] at hm" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 j ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "tactic": "rw [hm] at h" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 j ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "tactic": "exact h (le_of_eq rfl)" }, { "state_after": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\nh_succ_le : (succ^[Int.toNat (toZ i0 i) + 1]) i0 ≤ j\n⊢ succ i ≤ j", "state_before": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ succ i ≤ j", "tactic": "have h_succ_le : (succ^[(toZ i0 i).toNat + 1]) i0 ≤ j := by\n rw [hj_eq]\n refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _)\n exact Nat.one_le_iff_ne_zero.mpr hm0" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\nh_succ_le : (succ^[Int.toNat (toZ i0 i) + 1]) i0 ≤ j\n⊢ succ i ≤ j", "tactic": "rwa [Function.iterate_succ', Function.comp_apply, iterate_succ_toZ i hi] at h_succ_le" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ (succ^[Int.toNat (toZ i0 i) + 1]) i0 ≤ (succ^[Int.toNat (toZ i0 i) + m]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ (succ^[Int.toNat (toZ i0 i) + 1]) i0 ≤ j", "tactic": "rw [hj_eq]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ 1 ≤ m", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ (succ^[Int.toNat (toZ i0 i) + 1]) i0 ≤ (succ^[Int.toNat (toZ i0 i) + m]) i0", "tactic": "refine' Monotone.monotone_iterate_of_le_map succ_mono (le_succ i0) (add_le_add_left _ _)" }, { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ 1 ≤ m", "tactic": "exact Nat.one_le_iff_ne_zero.mpr hm0" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : i0 ≤ j\nm : ℕ := Nat.find (_ : ∃ n, (succ^[n]) i = j)\nhm : (succ^[m]) i = j\nhj_eq : j = (succ^[Int.toNat (toZ i0 i) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ toZ i0 j ≤ toZ i0 i", "tactic": "exact le_of_not_le h" }, { "state_after": "no goals", "state_before": "case neg.inl.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i0 ≤ i\nhj : j < i0\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "exact absurd h_le (not_le.mpr (hj.trans_le hi))" }, { "state_after": "no goals", "state_before": "case neg.inr.inl\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : i0 ≤ j\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "exact (toZ_neg hi).le.trans (toZ_nonneg hj)" }, { "state_after": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "let m := Nat.find (exists_pred_iterate_of_le h_le)" }, { "state_after": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "have hm : (pred^[m]) j = i := Nat.find_spec (exists_pred_iterate_of_le h_le)" }, { "state_after": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\n⊢ toZ i0 i ≤ toZ i0 j", "state_before": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "have hj_eq : i = (pred^[(-toZ i0 j).toNat + m]) i0 := by\n rw [← hm, add_comm]\n nth_rw 1 [← iterate_pred_toZ j hj]\n rw [Function.iterate_add]\n rfl" }, { "state_after": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\n⊢ False", "state_before": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\n⊢ toZ i0 i ≤ toZ i0 j", "tactic": "by_contra h" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False\n\ncase neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ False", "state_before": "case neg.inr.inr\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\n⊢ False", "tactic": "by_cases hm0 : m = 0" }, { "state_after": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ j ≤ pred j", "state_before": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ False", "tactic": "refine' hj_min (min_of_le_pred _)" }, { "state_after": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ toZ i0 j ≤ toZ i0 i\n\ncase neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ i ≤ pred j", "state_before": "case neg\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ j ≤ pred j", "tactic": "refine' (@le_of_toZ_le _ _ _ _ _ i0 j i _).trans _" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) j = (pred^[m + Int.toNat (-toZ i0 j)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ i = (pred^[Int.toNat (-toZ i0 j) + m]) i0", "tactic": "rw [← hm, add_comm]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) ((pred^[Int.toNat (-toZ i0 j)]) i0) = (pred^[m + Int.toNat (-toZ i0 j)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) j = (pred^[m + Int.toNat (-toZ i0 j)]) i0", "tactic": "nth_rw 1 [← iterate_pred_toZ j hj]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) ((pred^[Int.toNat (-toZ i0 j)]) i0) = (pred^[m] ∘ pred^[Int.toNat (-toZ i0 j)]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) ((pred^[Int.toNat (-toZ i0 j)]) i0) = (pred^[m + Int.toNat (-toZ i0 j)]) i0", "tactic": "rw [Function.iterate_add]" }, { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\n⊢ (pred^[m]) ((pred^[Int.toNat (-toZ i0 j)]) i0) = (pred^[m] ∘ pred^[Int.toNat (-toZ i0 j)]) i0", "tactic": "rfl" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "tactic": "rw [hm0, Function.iterate_zero, id.def] at hm" }, { "state_after": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 i\nhm0 : m = 0\n⊢ False", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : m = 0\n⊢ False", "tactic": "rw [hm] at h" }, { "state_after": "no goals", "state_before": "case pos\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 i\nhm0 : m = 0\n⊢ False", "tactic": "exact h (le_of_eq rfl)" }, { "state_after": "no goals", "state_before": "case neg.refine'_1\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ toZ i0 j ≤ toZ i0 i", "tactic": "exact le_of_not_le h" }, { "state_after": "case neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\nh_le_pred : i ≤ (pred^[Int.toNat (-toZ i0 j) + 1]) i0\n⊢ i ≤ pred j", "state_before": "case neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ i ≤ pred j", "tactic": "have h_le_pred : i ≤ (pred^[(-toZ i0 j).toNat + 1]) i0 := by\n rw [hj_eq]\n refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _)\n exact Nat.one_le_iff_ne_zero.mpr hm0" }, { "state_after": "no goals", "state_before": "case neg.refine'_2\nι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\nh_le_pred : i ≤ (pred^[Int.toNat (-toZ i0 j) + 1]) i0\n⊢ i ≤ pred j", "tactic": "rwa [Function.iterate_succ', Function.comp_apply, iterate_pred_toZ j hj] at h_le_pred" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ (pred^[Int.toNat (-toZ i0 j) + m]) i0 ≤ (pred^[Int.toNat (-toZ i0 j) + 1]) i0", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ i ≤ (pred^[Int.toNat (-toZ i0 j) + 1]) i0", "tactic": "rw [hj_eq]" }, { "state_after": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ 1 ≤ m", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ (pred^[Int.toNat (-toZ i0 j) + m]) i0 ≤ (pred^[Int.toNat (-toZ i0 j) + 1]) i0", "tactic": "refine' Monotone.antitone_iterate_of_map_le pred_mono (pred_le i0) (add_le_add_left _ _)" }, { "state_after": "no goals", "state_before": "ι : Type u_1\ninst✝³ : LinearOrder ι\ninst✝² : SuccOrder ι\ninst✝¹ : IsSuccArchimedean ι\ninst✝ : PredOrder ι\ni0 i✝ i j : ι\nh_le : i ≤ j\nhi_max : ¬IsMax i\nhj_min : ¬IsMin j\nhi : i < i0\nhj : j < i0\nm : ℕ := Nat.find (_ : ∃ n, (pred^[n]) j = i)\nhm : (pred^[m]) j = i\nhj_eq : i = (pred^[Int.toNat (-toZ i0 j) + m]) i0\nh : ¬toZ i0 i ≤ toZ i0 j\nhm0 : ¬m = 0\n⊢ 1 ≤ m", "tactic": "exact Nat.one_le_iff_ne_zero.mpr hm0" } ]
[ 347, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Topology/ContinuousFunction/Bounded.lean
ContinuousLinearMap.compLeftContinuousBounded_apply
[]
[ 1207, 67 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1206, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
LinearMap.rank_finset_sum_le
[]
[ 1386, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1383, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
subset_interior_mul
[]
[ 1273, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1272, 1 ]
Mathlib/RingTheory/Valuation/Basic.lean
AddValuation.map_mul
[]
[ 677, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.nodup_toList
[ { "state_after": "α : Type u_1\nβ : Type ?u.479712\nγ : Type ?u.479715\ns : Finset α\n⊢ Nodup s.val", "state_before": "α : Type u_1\nβ : Type ?u.479712\nγ : Type ?u.479715\ns : Finset α\n⊢ List.Nodup (toList s)", "tactic": "rw [toList, ← Multiset.coe_nodup, Multiset.coe_toList]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.479712\nγ : Type ?u.479715\ns : Finset α\n⊢ Nodup s.val", "tactic": "exact s.nodup" } ]
[ 3350, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3348, 1 ]
Mathlib/Algebra/GroupPower/Lemmas.lean
pow_bit1_nonneg_iff
[]
[ 721, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 720, 1 ]
Mathlib/RingTheory/Finiteness.lean
Submodule.FG.mul
[]
[ 452, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/Algebra/Hom/Freiman.lean
MonoidHom.toFreimanHom_coe
[]
[ 476, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 475, 1 ]
Mathlib/AlgebraicGeometry/PrimeSpectrum/Basic.lean
PrimeSpectrum.zeroLocus_singleton_one
[]
[ 300, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 299, 1 ]
Mathlib/Probability/Independence/Basic.lean
ProbabilityTheory.indep_bot_left
[]
[ 169, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.inclusion_injective
[]
[ 1046, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1045, 1 ]
Mathlib/Dynamics/PeriodicPts.lean
Function.minimalPeriod_apply_iterate
[ { "state_after": "α : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhx : x ∈ periodicPts f\nn : ℕ\n⊢ IsPeriodicPt f (minimalPeriod f x) ((f^[n]) x)\n\nα : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhx : x ∈ periodicPts f\nn : ℕ\n⊢ (f^[n]) x ∈ periodicPts f", "state_before": "α : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhx : x ∈ periodicPts f\nn : ℕ\n⊢ minimalPeriod f ((f^[n]) x) = minimalPeriod f x", "tactic": "apply\n (IsPeriodicPt.minimalPeriod_le (minimalPeriod_pos_of_mem_periodicPts hx) _).antisymm\n ((isPeriodicPt_of_mem_periodicPts_of_isPeriodicPt_iterate hx\n (isPeriodicPt_minimalPeriod f _)).minimalPeriod_le\n (minimalPeriod_pos_of_mem_periodicPts _))" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhx : x ∈ periodicPts f\nn : ℕ\n⊢ IsPeriodicPt f (minimalPeriod f x) ((f^[n]) x)", "tactic": "exact (isPeriodicPt_minimalPeriod f x).apply_iterate n" }, { "state_after": "case intro.intro\nα : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm✝ n✝ n m : ℕ\nhm : m > 0\nhx : IsPeriodicPt f m x\n⊢ (f^[n]) x ∈ periodicPts f", "state_before": "α : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm n✝ : ℕ\nhx : x ∈ periodicPts f\nn : ℕ\n⊢ (f^[n]) x ∈ periodicPts f", "tactic": "rcases hx with ⟨m, hm, hx⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_1\nβ : Type ?u.23216\nf fa : α → α\nfb : β → β\nx y : α\nm✝ n✝ n m : ℕ\nhm : m > 0\nhx : IsPeriodicPt f m x\n⊢ (f^[n]) x ∈ periodicPts f", "tactic": "exact ⟨m, hm, hx.apply_iterate n⟩" } ]
[ 338, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 329, 1 ]
Mathlib/FieldTheory/Finite/Basic.lean
FiniteField.frobenius_pow
[ { "state_after": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nhcard : q = p ^ n\nx : K\n⊢ ↑(frobenius K p ^ n) x = ↑1 x", "state_before": "K : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nhcard : q = p ^ n\n⊢ frobenius K p ^ n = 1", "tactic": "ext x" }, { "state_after": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nhcard : q = p ^ n\nx : K\n⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n", "state_before": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nhcard : q = p ^ n\nx : K\n⊢ ↑(frobenius K p ^ n) x = ↑1 x", "tactic": "conv_rhs => rw [RingHom.one_def, RingHom.id_apply, ← pow_card x, hcard]" }, { "state_after": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nx : K\n⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n", "state_before": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nhcard : q = p ^ n\nx : K\n⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n", "tactic": "clear hcard" }, { "state_after": "case a.zero\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : K\n⊢ ↑(frobenius K p ^ Nat.zero) x = x ^ p ^ Nat.zero\n\ncase a.succ\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : K\nn : ℕ\nhn : ↑(frobenius K p ^ n) x = x ^ p ^ n\n⊢ ↑(frobenius K p ^ Nat.succ n) x = x ^ p ^ Nat.succ n", "state_before": "case a\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nn : ℕ\nx : K\n⊢ ↑(frobenius K p ^ n) x = x ^ p ^ n", "tactic": "induction' n with n hn" }, { "state_after": "no goals", "state_before": "case a.zero\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : K\n⊢ ↑(frobenius K p ^ Nat.zero) x = x ^ p ^ Nat.zero", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case a.succ\nK : Type u_1\nR : Type ?u.742366\ninst✝⁵ : Field K\ninst✝⁴ : Fintype K\np✝ : ℕ\ninst✝³ : Fact (Nat.Prime p✝)\ninst✝² : Algebra (ZMod p✝) K\np : ℕ\ninst✝¹ : Fact (Nat.Prime p)\ninst✝ : CharP K p\nx : K\nn : ℕ\nhn : ↑(frobenius K p ^ n) x = x ^ p ^ n\n⊢ ↑(frobenius K p ^ Nat.succ n) x = x ^ p ^ Nat.succ n", "tactic": "rw [pow_succ, pow_succ', pow_mul, RingHom.mul_def, RingHom.comp_apply, frobenius_def, hn]" } ]
[ 290, 94 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Mathlib/Topology/Constructions.lean
closure_prod_eq
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type ?u.59142\nδ : Type ?u.59145\nε : Type ?u.59148\nζ : Type ?u.59151\ninst✝⁵ : TopologicalSpace α\ninst✝⁴ : TopologicalSpace β\ninst✝³ : TopologicalSpace γ\ninst✝² : TopologicalSpace δ\ninst✝¹ : TopologicalSpace ε\ninst✝ : TopologicalSpace ζ\ns : Set α\nt : Set β\nx✝ : α × β\na : α\nb : β\n⊢ (a, b) ∈ closure (s ×ˢ t) ↔ (a, b) ∈ closure s ×ˢ closure t", "tactic": "simp_rw [mem_prod, mem_closure_iff_nhdsWithin_neBot, nhdsWithin_prod_eq, prod_neBot]" } ]
[ 756, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 754, 1 ]
Mathlib/MeasureTheory/Function/LpSpace.lean
ContinuousLinearMap.comp_memℒp'
[]
[ 963, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 962, 1 ]
Mathlib/Data/Multiset/LocallyFinite.lean
Multiset.card_Ioo_eq_card_Ico_sub_one
[]
[ 235, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/Data/Option/Basic.lean
Option.pbind_map
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nδ : Type ?u.6432\np : α → Prop\nf✝ : (a : α) → p a → β\nx✝ : Option α\nf : α → β\nx : Option α\ng : (b : β) → b ∈ Option.map f x → Option γ\n⊢ pbind (Option.map f x) g = pbind x fun a h => g (f a) (_ : f a ∈ Option.map f x)", "tactic": "cases x <;> rfl" } ]
[ 163, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/RingTheory/GradedAlgebra/HomogeneousLocalization.lean
HomogeneousLocalization.NumDenSameDeg.deg_pow
[]
[ 244, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 243, 1 ]
Mathlib/Algebra/IndicatorFunction.lean
Set.mulIndicator_inter_mulSupport
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.15893\nι : Type ?u.15896\nM : Type u_2\nN : Type ?u.15902\ninst✝¹ : One M\ninst✝ : One N\ns✝ t : Set α\nf✝ g : α → M\na : α\ns : Set α\nf : α → M\n⊢ mulIndicator (s ∩ mulSupport f) f = mulIndicator s f", "tactic": "rw [← mulIndicator_mulIndicator, mulIndicator_mulSupport]" } ]
[ 247, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 245, 1 ]
Mathlib/RingTheory/Algebraic.lean
Subalgebra.inv_mem_of_algebraic
[ { "state_after": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nne_zero : p ≠ 0\naeval_eq : ↑(aeval ↑x) p = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "R : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\nhx : _root_.IsAlgebraic K ↑x\n⊢ (↑x)⁻¹ ∈ A", "tactic": "obtain ⟨p, ne_zero, aeval_eq⟩ := hx" }, { "state_after": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nne_zero : p ≠ 0\naeval_eq : ↑(aeval x) p = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nne_zero : p ≠ 0\naeval_eq : ↑(aeval ↑x) p = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "rw [Subalgebra.aeval_coe, Subalgebra.coe_eq_zero] at aeval_eq" }, { "state_after": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A", "state_before": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nne_zero : p ≠ 0\naeval_eq : ↑(aeval x) p = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "revert ne_zero aeval_eq" }, { "state_after": "case intro.intro.refine'_1\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ 0 ≠ 0 → ↑(aeval x) 0 = 0 → (↑x)⁻¹ ∈ A\n\ncase intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ ∀ (p : K[X]) (a : K),\n coeff p 0 = 0 →\n a ≠ 0 → (p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A) → p + ↑C a ≠ 0 → ↑(aeval x) (p + ↑C a) = 0 → (↑x)⁻¹ ∈ A\n\ncase intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ ∀ (p : K[X]), p ≠ 0 → (p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A) → p * X ≠ 0 → ↑(aeval x) (p * X) = 0 → (↑x)⁻¹ ∈ A", "state_before": "case intro.intro\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A", "tactic": "refine' p.recOnHorner _ _ _" }, { "state_after": "case intro.intro.refine'_1\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nh : 0 ≠ 0\n⊢ ↑(aeval x) 0 = 0 → (↑x)⁻¹ ∈ A", "state_before": "case intro.intro.refine'_1\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ 0 ≠ 0 → ↑(aeval x) 0 = 0 → (↑x)⁻¹ ∈ A", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_1\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\nh : 0 ≠ 0\n⊢ ↑(aeval x) 0 = 0 → (↑x)⁻¹ ∈ A", "tactic": "contradiction" }, { "state_after": "case intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\na : K\nhp : coeff p 0 = 0\nha : a ≠ 0\n_ih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p + ↑C a ≠ 0\naeval_eq : ↑(aeval x) (p + ↑C a) = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "case intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ ∀ (p : K[X]) (a : K),\n coeff p 0 = 0 →\n a ≠ 0 → (p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A) → p + ↑C a ≠ 0 → ↑(aeval x) (p + ↑C a) = 0 → (↑x)⁻¹ ∈ A", "tactic": "intro p a hp ha _ih _ne_zero aeval_eq" }, { "state_after": "case intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\na : K\nhp : coeff p 0 = 0\nha : a ≠ 0\n_ih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p + ↑C a ≠ 0\naeval_eq : ↑(aeval x) (p + ↑C a) = 0\n⊢ coeff (p + ↑C a) 0 ≠ 0", "state_before": "case intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\na : K\nhp : coeff p 0 = 0\nha : a ≠ 0\n_ih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p + ↑C a ≠ 0\naeval_eq : ↑(aeval x) (p + ↑C a) = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "refine' A.inv_mem_of_root_of_coeff_zero_ne_zero aeval_eq _" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_2\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\na : K\nhp : coeff p 0 = 0\nha : a ≠ 0\n_ih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p + ↑C a ≠ 0\naeval_eq : ↑(aeval x) (p + ↑C a) = 0\n⊢ coeff (p + ↑C a) 0 ≠ 0", "tactic": "rwa [coeff_add, hp, zero_add, coeff_C, if_pos rfl]" }, { "state_after": "case intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) (p * X) = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "case intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np : K[X]\n⊢ ∀ (p : K[X]), p ≠ 0 → (p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A) → p * X ≠ 0 → ↑(aeval x) (p * X) = 0 → (↑x)⁻¹ ∈ A", "tactic": "intro p hp ih _ne_zero aeval_eq" }, { "state_after": "case intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) p = 0 ∨ x = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "case intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) (p * X) = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "rw [AlgHom.map_mul, aeval_X, mul_eq_zero] at aeval_eq" }, { "state_after": "case intro.intro.refine'_3.inl\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) p = 0\n⊢ (↑x)⁻¹ ∈ A\n\ncase intro.intro.refine'_3.inr\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\nx_eq : x = 0\n⊢ (↑x)⁻¹ ∈ A", "state_before": "case intro.intro.refine'_3\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) p = 0 ∨ x = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "cases' aeval_eq with aeval_eq x_eq" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_3.inl\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\naeval_eq : ↑(aeval x) p = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "exact ih hp aeval_eq" }, { "state_after": "case intro.intro.refine'_3.inr\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\nx_eq : x = 0\n⊢ 0 ∈ A", "state_before": "case intro.intro.refine'_3.inr\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\nx_eq : x = 0\n⊢ (↑x)⁻¹ ∈ A", "tactic": "rw [x_eq, Subalgebra.coe_zero, inv_zero]" }, { "state_after": "no goals", "state_before": "case intro.intro.refine'_3.inr\nR : Type ?u.864898\nS : Type ?u.864901\ninst✝⁵ : CommRing R\ninst✝⁴ : IsDomain R\ninst✝³ : CommRing S\nK : Type u_2\nL : Type u_1\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Algebra K L\nA : Subalgebra K L\nx : { x // x ∈ A }\np✝ p : K[X]\nhp : p ≠ 0\nih : p ≠ 0 → ↑(aeval x) p = 0 → (↑x)⁻¹ ∈ A\n_ne_zero : p * X ≠ 0\nx_eq : x = 0\n⊢ 0 ∈ A", "tactic": "exact A.zero_mem" } ]
[ 391, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 375, 1 ]
Mathlib/Algebra/Order/Floor.lean
Int.one_le_ceil_iff
[ { "state_after": "no goals", "state_before": "F : Type ?u.209524\nα : Type u_1\nβ : Type ?u.209530\ninst✝¹ : LinearOrderedRing α\ninst✝ : FloorRing α\nz : ℤ\na : α\n⊢ 1 ≤ ⌈a⌉ ↔ 0 < a", "tactic": "rw [← zero_add (1 : ℤ), add_one_le_ceil_iff, cast_zero]" } ]
[ 1117, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1116, 1 ]
Mathlib/Combinatorics/SetFamily/Shadow.lean
Finset.erase_mem_shadow
[]
[ 97, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 96, 1 ]
Mathlib/Data/List/Forall2.lean
List.right_unique_forall₂'
[]
[ 151, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Data/Nat/Log.lean
Nat.log_one_right
[]
[ 87, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/Algebra/Order/Ring/Defs.lean
StrictMono.mul_monotone
[]
[ 607, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 605, 1 ]
Mathlib/RingTheory/Ideal/Basic.lean
Ideal.mul_mem_right
[]
[ 566, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 565, 1 ]
Mathlib/NumberTheory/PythagoreanTriples.lean
PythagoreanTriple.isPrimitiveClassified_of_coprime
[ { "state_after": "case pos\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : 0 < z\n⊢ IsPrimitiveClassified h\n\ncase neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\n⊢ IsPrimitiveClassified h", "state_before": "x y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\n⊢ IsPrimitiveClassified h", "tactic": "by_cases hz : 0 < z" }, { "state_after": "case neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ IsPrimitiveClassified h", "state_before": "case neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\n⊢ IsPrimitiveClassified h", "tactic": "have h' : PythagoreanTriple x y (-z) := by simpa [PythagoreanTriple, neg_mul_neg] using h.eq" }, { "state_after": "case neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ 0 < -z", "state_before": "case neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ IsPrimitiveClassified h", "tactic": "apply h'.isPrimitiveClassified_of_coprime_of_pos hc" }, { "state_after": "x y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ 0 ≤ -z", "state_before": "case neg\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ 0 < -z", "tactic": "apply lt_of_le_of_ne _ (h'.ne_zero_of_coprime hc).symm" }, { "state_after": "no goals", "state_before": "x y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\nh' : PythagoreanTriple x y (-z)\n⊢ 0 ≤ -z", "tactic": "exact le_neg.mp (not_lt.mp hz)" }, { "state_after": "no goals", "state_before": "case pos\nx y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : 0 < z\n⊢ IsPrimitiveClassified h", "tactic": "exact h.isPrimitiveClassified_of_coprime_of_pos hc hz" }, { "state_after": "no goals", "state_before": "x y z : ℤ\nh : PythagoreanTriple x y z\nhc : Int.gcd x y = 1\nhz : ¬0 < z\n⊢ PythagoreanTriple x y (-z)", "tactic": "simpa [PythagoreanTriple, neg_mul_neg] using h.eq" } ]
[ 578, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 572, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.mem_carrier
[]
[ 212, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.le_piecewise_of_le_of_le
[]
[ 2564, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2562, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Midpoint.lean
right_vsub_midpoint
[ { "state_after": "no goals", "state_before": "R : Type u_3\nV : Type u_1\nV' : Type ?u.52855\nP : Type u_2\nP' : Type ?u.52861\ninst✝⁷ : Ring R\ninst✝⁶ : Invertible 2\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module R V\ninst✝³ : AddTorsor V P\ninst✝² : AddCommGroup V'\ninst✝¹ : Module R V'\ninst✝ : AddTorsor V' P'\nx y z p₁ p₂ : P\n⊢ p₂ -ᵥ midpoint R p₁ p₂ = ⅟2 • (p₂ -ᵥ p₁)", "tactic": "rw [midpoint_comm, left_vsub_midpoint]" } ]
[ 124, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 123, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.logb_le_logb
[ { "state_after": "no goals", "state_before": "b x y : ℝ\nhb : 1 < b\nh : 0 < x\nh₁ : 0 < y\n⊢ logb b x ≤ logb b y ↔ x ≤ y", "tactic": "rw [logb, logb, div_le_div_right (log_pos hb), log_le_log h h₁]" } ]
[ 149, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/Algebra/Field/Basic.lean
sub_div
[]
[ 173, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 172, 1 ]
Mathlib/Analysis/Complex/RemovableSingularity.lean
Complex.two_pi_I_inv_smul_circleIntegral_sub_sq_inv_smul_of_differentiable
[ { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = deriv f w₀", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = deriv f w₀", "tactic": "have hf' : DifferentiableOn ℂ (dslope f w₀) U :=\n (differentiableOn_dslope (hU.mem_nhds ((ball_subset_closedBall.trans hc) hw₀))).mpr hf" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = deriv f w₀", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = deriv f w₀", "tactic": "have h0 := (hf'.diffContOnCl_ball hc).two_pi_i_inv_smul_circleIntegral_sub_inv_smul hw₀" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) =\n (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = deriv f w₀", "tactic": "rw [← dslope_same, ← h0]" }, { "state_after": "case e_a\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) =\n (2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "tactic": "congr 1" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)\n\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)) = ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "state_before": "case e_a\nE : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "tactic": "trans ∮ z in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "tactic": "have h1 : ContinuousOn (fun z : ℂ => ((z - w₀) ^ 2)⁻¹) (sphere c R) := by\n refine' ((continuous_id'.sub continuous_const).pow 2).continuousOn.inv₀ fun w hw h => _\n exact sphere_disjoint_ball.ne_of_mem hw hw₀ (sub_eq_zero.mp (sq_eq_zero_iff.mp h))" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "tactic": "have h2 : CircleIntegrable (fun z : ℂ => ((z - w₀) ^ 2)⁻¹ • f z) c R := by\n refine' ContinuousOn.circleIntegrable (pos_of_mem_ball hw₀).le _\n exact h1.smul (hf.continuousOn.mono (sphere_subset_closedBall.trans hc))" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "tactic": "have h3 : CircleIntegrable (fun z : ℂ => ((z - w₀) ^ 2)⁻¹ • f w₀) c R :=\n ContinuousOn.circleIntegrable (pos_of_mem_ball hw₀).le (h1.smul continuousOn_const)" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\nh4 : (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹) = 0\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "tactic": "have h4 : (∮ z : ℂ in C(c, R), ((z - w₀) ^ 2)⁻¹) = 0 := by\n simpa using circleIntegral.integral_sub_zpow_of_ne (by decide : (-2 : ℤ) ≠ -1) c w₀ R" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\nh4 : (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹) = 0\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • f z) = ∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)", "tactic": "simp only [smul_sub, circleIntegral.integral_sub h2 h3, h4, circleIntegral.integral_smul_const,\n zero_smul, sub_zero]" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nw : ℂ\nhw : w ∈ sphere c R\nh : (w - w₀) ^ 2 = 0\n⊢ False", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)", "tactic": "refine' ((continuous_id'.sub continuous_const).pow 2).continuousOn.inv₀ fun w hw h => _" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nw : ℂ\nhw : w ∈ sphere c R\nh : (w - w₀) ^ 2 = 0\n⊢ False", "tactic": "exact sphere_disjoint_ball.ne_of_mem hw hw₀ (sub_eq_zero.mp (sq_eq_zero_iff.mp h))" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\n⊢ ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹ • f z) (sphere c R)", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\n⊢ CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R", "tactic": "refine' ContinuousOn.circleIntegrable (pos_of_mem_ball hw₀).le _" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\n⊢ ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹ • f z) (sphere c R)", "tactic": "exact h1.smul (hf.continuousOn.mono (sphere_subset_closedBall.trans hc))" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹) = 0", "tactic": "simpa using circleIntegral.integral_sub_zpow_of_ne (by decide : (-2 : ℤ) ≠ -1) c w₀ R" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nh1 : ContinuousOn (fun z => ((z - w₀) ^ 2)⁻¹) (sphere c R)\nh2 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f z) c R\nh3 : CircleIntegrable (fun z => ((z - w₀) ^ 2)⁻¹ • f w₀) c R\n⊢ -2 ≠ -1", "tactic": "decide" }, { "state_after": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nz : ℂ\nhz : z ∈ sphere c R\n⊢ ((z - w₀) ^ 2)⁻¹ • (f z - f w₀) = (z - w₀)⁻¹ • dslope f w₀ z", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\n⊢ (∮ (z : ℂ) in C(c, R), ((z - w₀) ^ 2)⁻¹ • (f z - f w₀)) = ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z", "tactic": "refine' circleIntegral.integral_congr (pos_of_mem_ball hw₀).le fun z hz => _" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedSpace ℂ E\ninst✝ : CompleteSpace E\nU : Set ℂ\nhU : IsOpen U\nc w₀ : ℂ\nR : ℝ\nf : ℂ → E\nhc : closedBall c R ⊆ U\nhf : DifferentiableOn ℂ f U\nhw₀ : w₀ ∈ ball c R\nhf' : DifferentiableOn ℂ (dslope f w₀) U\nh0 : ((2 * ↑π * I)⁻¹ • ∮ (z : ℂ) in C(c, R), (z - w₀)⁻¹ • dslope f w₀ z) = dslope f w₀ w₀\nz : ℂ\nhz : z ∈ sphere c R\n⊢ ((z - w₀) ^ 2)⁻¹ • (f z - f w₀) = (z - w₀)⁻¹ • dslope f w₀ z", "tactic": "simp only [dslope_of_ne, Metric.sphere_disjoint_ball.ne_of_mem hz hw₀, slope, ← smul_assoc, sq,\n mul_inv, Ne.def, not_false_iff, vsub_eq_sub, Algebra.id.smul_eq_mul]" } ]
[ 166, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 141, 1 ]
Mathlib/LinearAlgebra/StdBasis.lean
LinearMap.coe_stdBasis
[]
[ 66, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.rel_of_LiftRel
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\ncb : Computation β\nl : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b\nright✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b\na : α\nb : β\nma : a ∈ ca\nmb : b ∈ cb\nb' : β\nmb' : b' ∈ cb\nab' : R a b'\n⊢ R a b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\ncb : Computation β\nl : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b\nright✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b\na : α\nb : β\nma : a ∈ ca\nmb : b ∈ cb\n⊢ R a b", "tactic": "let ⟨b', mb', ab'⟩ := l ma" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\ncb : Computation β\nl : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b\nright✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b\na : α\nb : β\nma : a ∈ ca\nmb : b ∈ cb\nb' : β\nmb' : b' ∈ cb\nab' : R a b'\n⊢ R a b'", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\ncb : Computation β\nl : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b\nright✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b\na : α\nb : β\nma : a ∈ ca\nmb : b ∈ cb\nb' : β\nmb' : b' ∈ cb\nab' : R a b'\n⊢ R a b", "tactic": "rw [mem_unique mb mb']" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → β → Prop\nca : Computation α\ncb : Computation β\nl : ∀ {a : α}, a ∈ ca → ∃ b, b ∈ cb ∧ R a b\nright✝ : ∀ {b : β}, b ∈ cb → ∃ a, a ∈ ca ∧ R a b\na : α\nb : β\nma : a ∈ ca\nmb : b ∈ cb\nb' : β\nmb' : b' ∈ cb\nab' : R a b'\n⊢ R a b'", "tactic": "exact ab'" } ]
[ 1126, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1122, 1 ]
Mathlib/Data/Multiset/FinsetOps.lean
Multiset.ndinsert_of_mem
[]
[ 49, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 48, 1 ]
Mathlib/RingTheory/Subsemiring/Basic.lean
Subsemiring.eq_top_iff'
[]
[ 709, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 708, 1 ]
Mathlib/Data/Real/CauSeqCompletion.lean
CauSeq.Completion.mul_inv_cancel
[ { "state_after": "α : Type u_1\ninst✝² : LinearOrderedField α\nβ : Type u_2\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nx : Cauchy abv\nf : CauSeq β abv\nhf : ¬LimZero f\n⊢ Quotient.mk equiv f * (Quotient.mk equiv f)⁻¹ = 1", "state_before": "α : Type u_1\ninst✝² : LinearOrderedField α\nβ : Type u_2\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nx : Cauchy abv\nf : CauSeq β abv\nhf : Quotient.mk equiv f ≠ 0\n⊢ Quotient.mk equiv f * (Quotient.mk equiv f)⁻¹ = 1", "tactic": "simp only [mk_eq_mk, ne_eq, mk_eq_zero] at hf" }, { "state_after": "α : Type u_1\ninst✝² : LinearOrderedField α\nβ : Type u_2\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nx : Cauchy abv\nf : CauSeq β abv\nhf : ¬LimZero f\n⊢ mk (f * inv f (_ : ¬LimZero f)) = 1", "state_before": "α : Type u_1\ninst✝² : LinearOrderedField α\nβ : Type u_2\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nx : Cauchy abv\nf : CauSeq β abv\nhf : ¬LimZero f\n⊢ Quotient.mk equiv f * (Quotient.mk equiv f)⁻¹ = 1", "tactic": "simp [hf]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝² : LinearOrderedField α\nβ : Type u_2\ninst✝¹ : DivisionRing β\nabv : β → α\ninst✝ : IsAbsoluteValue abv\nx : Cauchy abv\nf : CauSeq β abv\nhf : ¬LimZero f\n⊢ mk (f * inv f (_ : ¬LimZero f)) = 1", "tactic": "exact Quotient.sound (CauSeq.mul_inv_cancel hf)" } ]
[ 265, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 11 ]
Mathlib/Algebra/Hom/Freiman.lean
FreimanHom.cancel_right_on
[ { "state_after": "no goals", "state_before": "F : Type ?u.51726\nα : Type u_3\nβ : Type u_1\nγ : Type u_2\nδ : Type ?u.51738\nG : Type ?u.51741\ninst✝⁵ : FunLike F α fun x => β\ninst✝⁴ : CommMonoid α\ninst✝³ : CommMonoid β\ninst✝² : CommMonoid γ\ninst✝¹ : CommMonoid δ\ninst✝ : CommGroup G\nA : Set α\nB : Set β\nC : Set γ\nn : ℕ\na b c d : α\ng₁ g₂ : B →*[n] γ\nf : A →*[n] β\nhf : Set.SurjOn (↑f) A B\nhf' : Set.MapsTo (↑f) A B\n⊢ Set.EqOn (↑(FreimanHom.comp g₁ f hf')) (↑(FreimanHom.comp g₂ f hf')) A ↔ Set.EqOn (↑g₁) (↑g₂) B", "tactic": "simp [hf.cancel_right hf']" } ]
[ 267, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 265, 1 ]
Mathlib/Data/Multiset/Basic.lean
Multiset.countp_True
[]
[ 2282, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2281, 1 ]
Mathlib/Geometry/Euclidean/Basic.lean
EuclideanGeometry.orthogonalProjectionFn_mem_orthogonal
[ { "state_after": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑s ∩ ↑(mk' p (direction s)ᗮ) ⊆ ↑(mk' p (direction s)ᗮ)", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ orthogonalProjectionFn s p ∈ mk' p (direction s)ᗮ", "tactic": "rw [← mem_coe, ← Set.singleton_subset_iff, ← inter_eq_singleton_orthogonalProjectionFn]" }, { "state_after": "no goals", "state_before": "V : Type u_1\nP : Type u_2\ninst✝⁵ : NormedAddCommGroup V\ninst✝⁴ : InnerProductSpace ℝ V\ninst✝³ : MetricSpace P\ninst✝² : NormedAddTorsor V P\ns : AffineSubspace ℝ P\ninst✝¹ : Nonempty { x // x ∈ s }\ninst✝ : CompleteSpace { x // x ∈ direction s }\np : P\n⊢ ↑s ∩ ↑(mk' p (direction s)ᗮ) ⊆ ↑(mk' p (direction s)ᗮ)", "tactic": "exact Set.inter_subset_right _ _" } ]
[ 276, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Topology/Support.lean
hasCompactMulSupport_def
[ { "state_after": "no goals", "state_before": "X : Type ?u.8941\nα : Type u_1\nα' : Type ?u.8947\nβ : Type u_2\nγ : Type ?u.8953\nδ : Type ?u.8956\nM : Type ?u.8959\nE : Type ?u.8962\nR : Type ?u.8965\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace α'\ninst✝² : One β\ninst✝¹ : One γ\ninst✝ : One δ\ng : β → γ\nf : α → β\nf₂ : α → γ\nm : β → γ → δ\nx : α\n⊢ HasCompactMulSupport f ↔ IsCompact (closure (mulSupport f))", "tactic": "rfl" } ]
[ 143, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Data/Set/Intervals/Instances.lean
Set.Ioc.mk_one
[]
[ 263, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 262, 1 ]
Mathlib/RingTheory/FractionalIdeal.lean
FractionalIdeal.isFractional_of_le_one
[ { "state_after": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\n⊢ ∀ (b : P), b ∈ I → IsInteger R (1 • b)", "state_before": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\n⊢ IsFractional S I", "tactic": "use 1, S.one_mem" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb : P\nhb : b ∈ I\n⊢ IsInteger R (1 • b)", "state_before": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\n⊢ ∀ (b : P), b ∈ I → IsInteger R (1 • b)", "tactic": "intro b hb" }, { "state_after": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb : P\nhb : b ∈ I\n⊢ IsInteger R b", "state_before": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb : P\nhb : b ∈ I\n⊢ IsInteger R (1 • b)", "tactic": "rw [one_smul]" }, { "state_after": "case intro.refl\nR : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb' : R\nhb : ↑(Algebra.linearMap R P) b' ∈ I\n⊢ IsInteger R (↑(Algebra.linearMap R P) b')", "state_before": "R : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb : P\nhb : b ∈ I\n⊢ IsInteger R b", "tactic": "obtain ⟨b', b'_mem, rfl⟩ := h hb" }, { "state_after": "no goals", "state_before": "case intro.refl\nR : Type u_1\ninst✝² : CommRing R\nS : Submonoid R\nP : Type u_2\ninst✝¹ : CommRing P\ninst✝ : Algebra R P\nloc : IsLocalization S P\nI : Submodule R P\nh : I ≤ 1\nb' : R\nhb : ↑(Algebra.linearMap R P) b' ∈ I\n⊢ IsInteger R (↑(Algebra.linearMap R P) b')", "tactic": "exact Set.mem_range_self b'" } ]
[ 217, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 212, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.normSq_one
[]
[ 617, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 616, 1 ]
Mathlib/Data/Polynomial/Eval.lean
Polynomial.map_C
[]
[ 698, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 697, 1 ]
Mathlib/Topology/ContinuousOn.lean
continuous_if_const
[ { "state_after": "case inl\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.383429\nδ : Type ?u.383432\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : Prop\nf g : α → β\ninst✝ : Decidable p\nhf : p → Continuous f\nhg : ¬p → Continuous g\nh : p\n⊢ Continuous fun a => f a\n\ncase inr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.383429\nδ : Type ?u.383432\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : Prop\nf g : α → β\ninst✝ : Decidable p\nhf : p → Continuous f\nhg : ¬p → Continuous g\nh : ¬p\n⊢ Continuous fun a => g a", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.383429\nδ : Type ?u.383432\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : Prop\nf g : α → β\ninst✝ : Decidable p\nhf : p → Continuous f\nhg : ¬p → Continuous g\n⊢ Continuous fun a => if p then f a else g a", "tactic": "split_ifs with h" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.383429\nδ : Type ?u.383432\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : Prop\nf g : α → β\ninst✝ : Decidable p\nhf : p → Continuous f\nhg : ¬p → Continuous g\nh : p\n⊢ Continuous fun a => f a\n\ncase inr\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.383429\nδ : Type ?u.383432\ninst✝⁴ : TopologicalSpace α\ninst✝³ : TopologicalSpace β\ninst✝² : TopologicalSpace γ\ninst✝¹ : TopologicalSpace δ\np : Prop\nf g : α → β\ninst✝ : Decidable p\nhf : p → Continuous f\nhg : ¬p → Continuous g\nh : ¬p\n⊢ Continuous fun a => g a", "tactic": "exacts [hf h, hg h]" } ]
[ 1194, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1191, 1 ]
Mathlib/Analysis/Convex/Strict.lean
StrictConvex.linear_image
[ { "state_after": "case intro.intro.intro.intro\n𝕜 : Type u_4\n𝕝 : Type u_1\nE : Type u_2\nF : Type u_3\nβ : Type ?u.14448\ninst✝¹⁰ : OrderedSemiring 𝕜\ninst✝⁹ : TopologicalSpace E\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : AddCommMonoid E\ninst✝⁶ : AddCommMonoid F\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Module 𝕜 F\ns : Set E\ninst✝³ : Semiring 𝕝\ninst✝² : Module 𝕝 E\ninst✝¹ : Module 𝕝 F\ninst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝\nhs : StrictConvex 𝕜 s\nf : E →ₗ[𝕝] F\nhf : IsOpenMap ↑f\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\nhxy : ↑f x ≠ ↑f y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s)", "state_before": "𝕜 : Type u_4\n𝕝 : Type u_1\nE : Type u_2\nF : Type u_3\nβ : Type ?u.14448\ninst✝¹⁰ : OrderedSemiring 𝕜\ninst✝⁹ : TopologicalSpace E\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : AddCommMonoid E\ninst✝⁶ : AddCommMonoid F\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Module 𝕜 F\ns : Set E\ninst✝³ : Semiring 𝕝\ninst✝² : Module 𝕝 E\ninst✝¹ : Module 𝕝 F\ninst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝\nhs : StrictConvex 𝕜 s\nf : E →ₗ[𝕝] F\nhf : IsOpenMap ↑f\n⊢ StrictConvex 𝕜 (↑f '' s)", "tactic": "rintro _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ hxy a b ha hb hab" }, { "state_after": "case intro.intro.intro.intro\n𝕜 : Type u_4\n𝕝 : Type u_1\nE : Type u_2\nF : Type u_3\nβ : Type ?u.14448\ninst✝¹⁰ : OrderedSemiring 𝕜\ninst✝⁹ : TopologicalSpace E\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : AddCommMonoid E\ninst✝⁶ : AddCommMonoid F\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Module 𝕜 F\ns : Set E\ninst✝³ : Semiring 𝕝\ninst✝² : Module 𝕝 E\ninst✝¹ : Module 𝕝 F\ninst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝\nhs : StrictConvex 𝕜 s\nf : E →ₗ[𝕝] F\nhf : IsOpenMap ↑f\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\nhxy : ↑f x ≠ ↑f y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ ↑f (a • x + b • y) = a • ↑f x + b • ↑f y", "state_before": "case intro.intro.intro.intro\n𝕜 : Type u_4\n𝕝 : Type u_1\nE : Type u_2\nF : Type u_3\nβ : Type ?u.14448\ninst✝¹⁰ : OrderedSemiring 𝕜\ninst✝⁹ : TopologicalSpace E\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : AddCommMonoid E\ninst✝⁶ : AddCommMonoid F\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Module 𝕜 F\ns : Set E\ninst✝³ : Semiring 𝕝\ninst✝² : Module 𝕝 E\ninst✝¹ : Module 𝕝 F\ninst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝\nhs : StrictConvex 𝕜 s\nf : E →ₗ[𝕝] F\nhf : IsOpenMap ↑f\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\nhxy : ↑f x ≠ ↑f y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ a • ↑f x + b • ↑f y ∈ interior (↑f '' s)", "tactic": "refine' hf.image_interior_subset _ ⟨a • x + b • y, hs hx hy (ne_of_apply_ne _ hxy) ha hb hab, _⟩" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro\n𝕜 : Type u_4\n𝕝 : Type u_1\nE : Type u_2\nF : Type u_3\nβ : Type ?u.14448\ninst✝¹⁰ : OrderedSemiring 𝕜\ninst✝⁹ : TopologicalSpace E\ninst✝⁸ : TopologicalSpace F\ninst✝⁷ : AddCommMonoid E\ninst✝⁶ : AddCommMonoid F\ninst✝⁵ : Module 𝕜 E\ninst✝⁴ : Module 𝕜 F\ns : Set E\ninst✝³ : Semiring 𝕝\ninst✝² : Module 𝕝 E\ninst✝¹ : Module 𝕝 F\ninst✝ : LinearMap.CompatibleSMul E F 𝕜 𝕝\nhs : StrictConvex 𝕜 s\nf : E →ₗ[𝕝] F\nhf : IsOpenMap ↑f\nx : E\nhx : x ∈ s\ny : E\nhy : y ∈ s\nhxy : ↑f x ≠ ↑f y\na b : 𝕜\nha : 0 < a\nhb : 0 < b\nhab : a + b = 1\n⊢ ↑f (a • x + b • y) = a • ↑f x + b • ↑f y", "tactic": "rw [map_add, f.map_smul_of_tower a, f.map_smul_of_tower b]" } ]
[ 136, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.sdiff_subset_sdiff
[]
[ 2111, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2110, 1 ]
Mathlib/Analysis/LocallyConvex/Basic.lean
Balanced.smul_eq
[]
[ 298, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 297, 1 ]