file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/RingTheory/Ideal/Operations.lean
Ideal.radical_mono
[]
[ 879, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 879, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.ae_eq_set
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.107971\nγ : Type ?u.107974\nδ : Type ?u.107977\nι : Type ?u.107980\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t✝ s t : Set α\n⊢ s =ᵐ[μ] t ↔ ↑↑μ (s \\ t) = 0 ∧ ↑↑μ (t \\ s) = 0", "tactic": "simp [eventuallyLE_antisymm_iff, ae_le_set]" } ]
[ 484, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 483, 1 ]
Mathlib/RingTheory/DedekindDomain/Ideal.lean
FractionalIdeal.mul_right_le_iff
[ { "state_after": "R : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I * J ≤ I' * J ↔ I ≤ I'", "state_before": "R : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\n⊢ ∀ {I I' : FractionalIdeal A⁰ K}, I * J ≤ I' * J ↔ I ≤ I'", "tactic": "intro I I'" }, { "state_after": "case mp\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I * J ≤ I' * J → I ≤ I'\n\ncase mpr\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I ≤ I' → I * J ≤ I' * J", "state_before": "R : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I * J ≤ I' * J ↔ I ≤ I'", "tactic": "constructor" }, { "state_after": "case mp\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\nh : I * J ≤ I' * J\n⊢ I ≤ I'", "state_before": "case mp\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I * J ≤ I' * J → I ≤ I'", "tactic": "intro h" }, { "state_after": "no goals", "state_before": "case mp\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\nh : I * J ≤ I' * J\n⊢ I ≤ I'", "tactic": "convert mul_right_mono J⁻¹ h <;> dsimp only <;>\nrw [mul_assoc, FractionalIdeal.mul_inv_cancel hJ, mul_one]" }, { "state_after": "no goals", "state_before": "case mpr\nR : Type ?u.697823\nA : Type u_1\nK : Type u_2\ninst✝⁶ : CommRing R\ninst✝⁵ : CommRing A\ninst✝⁴ : Field K\ninst✝³ : IsDomain A\ninst✝² : Algebra A K\ninst✝¹ : IsFractionRing A K\ninst✝ : IsDedekindDomain A\nJ : FractionalIdeal A⁰ K\nhJ : J ≠ 0\nI I' : FractionalIdeal A⁰ K\n⊢ I ≤ I' → I * J ≤ I' * J", "tactic": "exact fun h => mul_right_mono J h" } ]
[ 558, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 551, 1 ]
Mathlib/Analysis/Convex/Function.lean
concaveOn_of_convex_hypograph
[]
[ 225, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 223, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
Subgroup.set_mul_normal_comm
[ { "state_after": "case h\nα : Type ?u.21855\nG : Type u_1\nA : Type ?u.21861\nS : Type ?u.21864\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ s : Set G\nN : Subgroup G\nhN : Normal N\nx : G\n⊢ x ∈ s * ↑N ↔ x ∈ ↑N * s", "state_before": "α : Type ?u.21855\nG : Type u_1\nA : Type ?u.21861\nS : Type ?u.21864\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ s : Set G\nN : Subgroup G\nhN : Normal N\n⊢ s * ↑N = ↑N * s", "tactic": "ext x" }, { "state_after": "case h\nα : Type ?u.21855\nG : Type u_1\nA : Type ?u.21861\nS : Type ?u.21864\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ s : Set G\nN : Subgroup G\nhN : Normal N\nx y : G\n⊢ (∃ b, y ∈ s ∧ b ∈ ↑N ∧ (fun x x_1 => x * x_1) y b = x) ↔ ∃ y_1, y_1 ∈ ↑N ∧ y ∈ s ∧ (fun x x_1 => x * x_1) y_1 y = x", "state_before": "case h\nα : Type ?u.21855\nG : Type u_1\nA : Type ?u.21861\nS : Type ?u.21864\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ s : Set G\nN : Subgroup G\nhN : Normal N\nx : G\n⊢ x ∈ s * ↑N ↔ x ∈ ↑N * s", "tactic": "refine (exists_congr fun y => ?_).trans exists_swap" }, { "state_after": "no goals", "state_before": "case h\nα : Type ?u.21855\nG : Type u_1\nA : Type ?u.21861\nS : Type ?u.21864\ninst✝¹ : Group G\ninst✝ : AddGroup A\ns✝ s : Set G\nN : Subgroup G\nhN : Normal N\nx y : G\n⊢ (∃ b, y ∈ s ∧ b ∈ ↑N ∧ (fun x x_1 => x * x_1) y b = x) ↔ ∃ y_1, y_1 ∈ ↑N ∧ y ∈ s ∧ (fun x x_1 => x * x_1) y_1 y = x", "tactic": "simp only [exists_and_left, @and_left_comm _ (y ∈ s), ← eq_inv_mul_iff_mul_eq (b := y),\n ← eq_mul_inv_iff_mul_eq (c := y), exists_eq_right, SetLike.mem_coe, hN.mem_comm_iff]" } ]
[ 165, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 160, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Reflexive.lean
CategoryTheory.left_comp_retraction
[]
[ 99, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 97, 1 ]
Mathlib/Algebra/Hom/Ring.lean
RingHom.coe_addMonoidHom_id
[]
[ 681, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 680, 1 ]
Mathlib/Data/Set/Pairwise/Lattice.lean
Set.biUnion_diff_biUnion_eq
[ { "state_after": "α : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\n⊢ ¬a ∈ ⋃ (x : ι) (_ : x ∈ t), f x", "state_before": "α : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\n⊢ ((⋃ (i : ι) (_ : i ∈ s), f i) \\ ⋃ (i : ι) (_ : i ∈ t), f i) = ⋃ (i : ι) (_ : i ∈ s \\ t), f i", "tactic": "refine'\n (biUnion_diff_biUnion_subset f s t).antisymm\n (iUnion₂_subset fun i hi a ha => (mem_diff _).2 ⟨mem_biUnion hi.1 ha, _⟩)" }, { "state_after": "α : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\n⊢ ¬∃ i j, a ∈ f i", "state_before": "α : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\n⊢ ¬a ∈ ⋃ (x : ι) (_ : x ∈ t), f x", "tactic": "rw [mem_iUnion₂]" }, { "state_after": "case intro.intro\nα : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\nj : ι\nhj : j ∈ t\nhaj : a ∈ f j\n⊢ False", "state_before": "α : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\n⊢ ¬∃ i j, a ∈ f i", "tactic": "rintro ⟨j, hj, haj⟩" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u_2\nβ : Type ?u.3238\nγ : Type ?u.3241\nι : Type u_1\nι' : Type ?u.3247\nr p q : α → α → Prop\ns t : Set ι\nf : ι → Set α\nh : PairwiseDisjoint (s ∪ t) f\ni : ι\nhi : i ∈ s \\ t\na : α\nha : a ∈ f i\nj : ι\nhj : j ∈ t\nhaj : a ∈ f j\n⊢ False", "tactic": "exact (h (Or.inl hi.1) (Or.inr hj) (ne_of_mem_of_not_mem hj hi.2).symm).le_bot ⟨ha, haj⟩" } ]
[ 100, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 94, 1 ]
Mathlib/Data/Nat/Choose/Cast.lean
Nat.cast_choose_eq_pochhammer_div
[ { "state_after": "no goals", "state_before": "K : Type u_1\ninst✝¹ : DivisionRing K\ninst✝ : CharZero K\na b : ℕ\n⊢ ↑(choose a b) = Polynomial.eval (↑(a - (b - 1))) (pochhammer K b) / ↑b !", "tactic": "rw [eq_div_iff_mul_eq (cast_ne_zero.2 b.factorial_ne_zero : (b ! : K) ≠ 0), ← cast_mul,\n mul_comm, ← descFactorial_eq_factorial_mul_choose, ← cast_descFactorial]" } ]
[ 41, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 38, 1 ]
Mathlib/Algebra/Group/Prod.lean
Prod.snd_div
[]
[ 176, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Topology/Instances/Matrix.lean
Continuous.matrix_adjugate
[]
[ 230, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 227, 1 ]
Mathlib/Data/Real/Sign.lean
Real.sign_mul_nonneg
[ { "state_after": "case inl\nr : ℝ\nhn : r < 0\n⊢ 0 ≤ sign r * r\n\ncase inr.inl\n\n⊢ 0 ≤ sign 0 * 0\n\ncase inr.inr\nr : ℝ\nhp : 0 < r\n⊢ 0 ≤ sign r * r", "state_before": "r : ℝ\n⊢ 0 ≤ sign r * r", "tactic": "obtain hn | rfl | hp := lt_trichotomy r (0 : ℝ)" }, { "state_after": "case inl\nr : ℝ\nhn : r < 0\n⊢ 0 ≤ -1 * r", "state_before": "case inl\nr : ℝ\nhn : r < 0\n⊢ 0 ≤ sign r * r", "tactic": "rw [sign_of_neg hn]" }, { "state_after": "no goals", "state_before": "case inl\nr : ℝ\nhn : r < 0\n⊢ 0 ≤ -1 * r", "tactic": "exact mul_nonneg_of_nonpos_of_nonpos (by norm_num) hn.le" }, { "state_after": "no goals", "state_before": "r : ℝ\nhn : r < 0\n⊢ -1 ≤ 0", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case inr.inl\n\n⊢ 0 ≤ sign 0 * 0", "tactic": "rw [mul_zero]" }, { "state_after": "case inr.inr\nr : ℝ\nhp : 0 < r\n⊢ 0 ≤ r", "state_before": "case inr.inr\nr : ℝ\nhp : 0 < r\n⊢ 0 ≤ sign r * r", "tactic": "rw [sign_of_pos hp, one_mul]" }, { "state_after": "no goals", "state_before": "case inr.inr\nr : ℝ\nhp : 0 < r\n⊢ 0 ≤ r", "tactic": "exact hp.le" } ]
[ 98, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
DirectSum.IsInternal.collectedBasis_orthonormal
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.3801506\ninst✝⁶ : IsROrC 𝕜\ninst✝⁵ : NormedAddCommGroup E\ninst✝⁴ : InnerProductSpace 𝕜 E\ninst✝³ : NormedAddCommGroup F\ninst✝² : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type u_3\ndec_ι : DecidableEq ι\nG : ι → Type ?u.3801569\ninst✝¹ : (i : ι) → NormedAddCommGroup (G i)\ninst✝ : (i : ι) → InnerProductSpace 𝕜 (G i)\nV✝ : (i : ι) → G i →ₗᵢ[𝕜] E\nhV✝ : OrthogonalFamily 𝕜 G V✝\ndec_V : (i : ι) → (x : G i) → Decidable (x ≠ 0)\nV : ι → Submodule 𝕜 E\nhV : OrthogonalFamily 𝕜 (fun i => { x // x ∈ V i }) fun i => Submodule.subtypeₗᵢ (V i)\nhV_sum : IsInternal fun i => V i\nα : ι → Type u_4\nv_family : (i : ι) → Basis (α i) 𝕜 { x // x ∈ V i }\nhv_family : ∀ (i : ι), Orthonormal 𝕜 ↑(v_family i)\n⊢ Orthonormal 𝕜 ↑(collectedBasis hV_sum v_family)", "tactic": "simpa only [hV_sum.collectedBasis_coe] using hV.orthonormal_sigma_orthonormal hv_family" } ]
[ 2180, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2175, 1 ]
Mathlib/Algebra/CharP/Basic.lean
MonoidHom.iterate_map_frobenius
[]
[ 387, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 385, 1 ]
Mathlib/LinearAlgebra/Matrix/IsDiag.lean
Matrix.IsDiag.transpose
[]
[ 120, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
inner_add_add_self
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1804599\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\n⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1804599\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\n⊢ inner (x + y) (x + y) = inner x x + inner x y + inner y x + inner y y", "tactic": "simp only [inner_add_left, inner_add_right]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1804599\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nx y : E\n⊢ inner x x + inner y x + (inner x y + inner y y) = inner x x + inner x y + inner y x + inner y y", "tactic": "ring" } ]
[ 666, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 665, 1 ]
Mathlib/Data/Int/SuccPred.lean
Int.pos_iff_one_le
[]
[ 50, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 49, 1 ]
Mathlib/MeasureTheory/Function/LpSpace.lean
MeasureTheory.Lp.stronglyMeasurable
[]
[ 211, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 210, 11 ]
Std/Logic.lean
Decidable.peirce
[]
[ 572, 53 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 571, 1 ]
Mathlib/Algebra/Module/LinearMap.lean
AddMonoidHom.coe_toIntLinearMap
[]
[ 774, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 772, 1 ]
Mathlib/Computability/TuringMachine.lean
Turing.Reaches₀.tail'
[]
[ 819, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 817, 1 ]
Mathlib/Algebra/GroupPower/Order.lean
sq_le_sq
[ { "state_after": "no goals", "state_before": "β : Type ?u.260389\nA : Type ?u.260392\nG : Type ?u.260395\nM : Type ?u.260398\nR : Type u_1\ninst✝ : LinearOrderedRing R\nx y : R\n⊢ x ^ 2 ≤ y ^ 2 ↔ abs x ≤ abs y", "tactic": "simpa only [sq_abs] using\n (@strictMonoOn_pow R _ _ two_pos).le_iff_le (abs_nonneg x) (abs_nonneg y)" } ]
[ 702, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 700, 1 ]
Mathlib/Algebra/Order/Module.lean
smul_neg_iff_of_neg
[ { "state_after": "k : Type u_1\nM : Type u_2\nN : Type ?u.32115\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ 0 < -c • a ↔ 0 < a", "state_before": "k : Type u_1\nM : Type u_2\nN : Type ?u.32115\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ c • a < 0 ↔ 0 < a", "tactic": "rw [← neg_neg c, neg_smul, neg_neg_iff_pos]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nM : Type u_2\nN : Type ?u.32115\ninst✝³ : OrderedRing k\ninst✝² : OrderedAddCommGroup M\ninst✝¹ : Module k M\ninst✝ : OrderedSMul k M\na b : M\nc : k\nhc : c < 0\n⊢ 0 < -c • a ↔ 0 < a", "tactic": "exact smul_pos_iff_of_pos (neg_pos_of_neg hc)" } ]
[ 83, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/MeasureTheory/Covering/LiminfLimsup.lean
blimsup_cthickening_mul_ae_eq
[ { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "let r' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / ((i : ℝ) + 1)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "have h₀ : ∀ i, p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i) := by\n rintro i ⟨-, hi⟩; congr! 1; change r i = ite (0 < r i) (r i) _; simp [hi]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "have h₁ : ∀ i, p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i) := by\n rintro i ⟨-, hi⟩; simp only [hi, mul_ite, if_true]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "have h₂ : ∀ i, p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i) := by\n rintro i ⟨-, hi⟩\n have hi' : M * r i ≤ 0 := mul_nonpos_of_nonneg_of_nonpos hM.le hi\n rw [cthickening_of_nonpos hi, cthickening_of_nonpos hi']" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "have hp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0 := by\n ext i; simp [← and_or_left, lt_or_le 0 (r i)]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔\n blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᵐ[μ]\n (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "rw [hp, blimsup_or_eq_sup, blimsup_or_eq_sup]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪\n blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᵐ[μ]\n (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔\n blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᵐ[μ]\n (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ⊔\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "tactic": "simp only [sup_eq_union]" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun x => cthickening (M * r' x) (s x)) atTop fun x => p x ∧ 0 < r x) ∪\n blimsup (fun x => cthickening (r x) (s x)) atTop fun x => p x ∧ r x ≤ 0) =ᵐ[μ]\n (blimsup (fun x => cthickening (r' x) (s x)) atTop fun x => p x ∧ 0 < r x) ∪\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪\n blimsup (fun i => cthickening (M * r i) (s i)) atTop fun i => p i ∧ r i ≤ 0) =ᵐ[μ]\n (blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ 0 < r i) ∪\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "tactic": "rw [blimsup_congr (eventually_of_forall h₀), blimsup_congr (eventually_of_forall h₁),\n blimsup_congr (eventually_of_forall h₂)]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\nhp : p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0\n⊢ ((blimsup (fun x => cthickening (M * r' x) (s x)) atTop fun x => p x ∧ 0 < r x) ∪\n blimsup (fun x => cthickening (r x) (s x)) atTop fun x => p x ∧ r x ≤ 0) =ᵐ[μ]\n (blimsup (fun x => cthickening (r' x) (s x)) atTop fun x => p x ∧ 0 < r x) ∪\n blimsup (fun i => cthickening (r i) (s i)) atTop fun i => p i ∧ r i ≤ 0", "tactic": "exact ae_eq_set_union (this (fun i => p i ∧ 0 < r i) hr') (ae_eq_refl _)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\n⊢ ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\n⊢ ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "clear p hr r" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\n⊢ ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "intro p r hr" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "have hr' : Tendsto (fun i => M * r i) atTop (𝓝[>] 0) := by\n convert TendstoNhdsWithinIoi.const_mul hM hr <;> simp only [MulZeroClass.mul_zero]" }, { "state_after": "case refine'_1\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p ≤ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\n\ncase refine'_2\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (r i) (s i)) atTop p ≤ᵐ[μ] blimsup (fun i => cthickening (M * r i) (s i)) atTop p", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "refine' eventuallyLE_antisymm_iff.mpr ⟨_, _⟩" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\n⊢ Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)", "tactic": "convert TendstoNhdsWithinIoi.const_mul hM hr <;> simp only [MulZeroClass.mul_zero]" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (M * r i) (s i)) atTop p ≤ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p", "tactic": "exact blimsup_cthickening_ae_le_of_eventually_mul_le μ p (inv_pos.mpr hM) hr'\n (eventually_of_forall fun i => by rw [inv_mul_cancel_left₀ hM.ne' (r i)])" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\ni : ℕ\n⊢ M⁻¹ * (M * r i) ≤ r i", "tactic": "rw [inv_mul_cancel_left₀ hM.ne' (r i)]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\np : ℕ → Prop\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝[Ioi 0] 0)\nhr' : Tendsto (fun i => M * r i) atTop (𝓝[Ioi 0] 0)\n⊢ blimsup (fun i => cthickening (r i) (s i)) atTop p ≤ᵐ[μ] blimsup (fun i => cthickening (M * r i) (s i)) atTop p", "tactic": "exact blimsup_cthickening_ae_le_of_eventually_mul_le μ p hM hr\n (eventually_of_forall fun i => le_refl _)" }, { "state_after": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\n⊢ r' i ∈ Ioi 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\n⊢ Tendsto r' atTop (𝓝[Ioi 0] 0)", "tactic": "refine' tendsto_nhdsWithin_iff.mpr\n ⟨Tendsto.if' hr tendsto_one_div_add_atTop_nhds_0_nat, eventually_of_forall fun i => _⟩" }, { "state_after": "case pos\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : 0 < r i\n⊢ r' i ∈ Ioi 0\n\ncase neg\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : ¬0 < r i\n⊢ r' i ∈ Ioi 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\n⊢ r' i ∈ Ioi 0", "tactic": "by_cases hi : 0 < r i" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : 0 < r i\n⊢ r' i ∈ Ioi 0", "tactic": "simp [hi]" }, { "state_after": "case neg\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : ¬0 < r i\n⊢ 0 < ↑i + 1", "state_before": "case neg\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : ¬0 < r i\n⊢ r' i ∈ Ioi 0", "tactic": "simp only [hi, one_div, mem_Ioi, if_false, inv_pos]" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\ni : ℕ\nhi : ¬0 < r i\n⊢ 0 < ↑i + 1", "tactic": "positivity" }, { "state_after": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ cthickening (r i) (s i) = cthickening (r' i) (s i)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\n⊢ ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)", "tactic": "rintro i ⟨-, hi⟩" }, { "state_after": "case intro.h.e'_3\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ r i = r' i", "state_before": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ cthickening (r i) (s i) = cthickening (r' i) (s i)", "tactic": "congr! 1" }, { "state_after": "case intro.h.e'_3\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ r i = if 0 < r i then r i else 1 / (↑i + 1)", "state_before": "case intro.h.e'_3\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ r i = r' i", "tactic": "change r i = ite (0 < r i) (r i) _" }, { "state_after": "no goals", "state_before": "case intro.h.e'_3\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\ni : ℕ\nhi : 0 < r i\n⊢ r i = if 0 < r i then r i else 1 / (↑i + 1)", "tactic": "simp [hi]" }, { "state_after": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\ni : ℕ\nhi : 0 < r i\n⊢ cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\n⊢ ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)", "tactic": "rintro i ⟨-, hi⟩" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\ni : ℕ\nhi : 0 < r i\n⊢ cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)", "tactic": "simp only [hi, mul_ite, if_true]" }, { "state_after": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\ni : ℕ\nhi : r i ≤ 0\n⊢ cthickening (M * r i) (s i) = cthickening (r i) (s i)", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\n⊢ ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)", "tactic": "rintro i ⟨-, hi⟩" }, { "state_after": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\ni : ℕ\nhi : r i ≤ 0\nhi' : M * r i ≤ 0\n⊢ cthickening (M * r i) (s i) = cthickening (r i) (s i)", "state_before": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\ni : ℕ\nhi : r i ≤ 0\n⊢ cthickening (M * r i) (s i) = cthickening (r i) (s i)", "tactic": "have hi' : M * r i ≤ 0 := mul_nonpos_of_nonneg_of_nonpos hM.le hi" }, { "state_after": "no goals", "state_before": "case intro\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\ni : ℕ\nhi : r i ≤ 0\nhi' : M * r i ≤ 0\n⊢ cthickening (M * r i) (s i) = cthickening (r i) (s i)", "tactic": "rw [cthickening_of_nonpos hi, cthickening_of_nonpos hi']" }, { "state_after": "case h.a\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\ni : ℕ\n⊢ p i ↔ p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0", "state_before": "α : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\n⊢ p = fun i => p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0", "tactic": "ext i" }, { "state_after": "no goals", "state_before": "case h.a\nα : Type u_1\ninst✝⁵ : MetricSpace α\ninst✝⁴ : SecondCountableTopology α\ninst✝³ : MeasurableSpace α\ninst✝² : BorelSpace α\nμ : MeasureTheory.Measure α\ninst✝¹ : IsLocallyFiniteMeasure μ\ninst✝ : IsUnifLocDoublingMeasure μ\np : ℕ → Prop\ns : ℕ → Set α\nM : ℝ\nhM : 0 < M\nr : ℕ → ℝ\nhr : Tendsto r atTop (𝓝 0)\nthis :\n ∀ (p : ℕ → Prop) {r : ℕ → ℝ},\n Tendsto r atTop (𝓝[Ioi 0] 0) →\n blimsup (fun i => cthickening (M * r i) (s i)) atTop p =ᵐ[μ] blimsup (fun i => cthickening (r i) (s i)) atTop p\nr' : ℕ → ℝ := fun i => if 0 < r i then r i else 1 / (↑i + 1)\nhr' : Tendsto r' atTop (𝓝[Ioi 0] 0)\nh₀ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (r i) (s i) = cthickening (r' i) (s i)\nh₁ : ∀ (i : ℕ), p i ∧ 0 < r i → cthickening (M * r i) (s i) = cthickening (M * r' i) (s i)\nh₂ : ∀ (i : ℕ), p i ∧ r i ≤ 0 → cthickening (M * r i) (s i) = cthickening (r i) (s i)\ni : ℕ\n⊢ p i ↔ p i ∧ 0 < r i ∨ p i ∧ r i ≤ 0", "tactic": "simp [← and_or_left, lt_or_le 0 (r i)]" } ]
[ 230, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/Topology/Algebra/Polynomial.lean
Polynomial.tendsto_abv_aeval_atTop
[]
[ 131, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Data/List/Intervals.lean
List.Ico.filter_lt
[ { "state_after": "case inl\nn m l : ℕ\nhml : m ≤ l\n⊢ filter (fun x => decide (x < l)) (Ico n m) = Ico n (min m l)\n\ncase inr\nn m l : ℕ\nhlm : l ≤ m\n⊢ filter (fun x => decide (x < l)) (Ico n m) = Ico n (min m l)", "state_before": "n m l : ℕ\n⊢ filter (fun x => decide (x < l)) (Ico n m) = Ico n (min m l)", "tactic": "cases' le_total m l with hml hlm" }, { "state_after": "no goals", "state_before": "case inl\nn m l : ℕ\nhml : m ≤ l\n⊢ filter (fun x => decide (x < l)) (Ico n m) = Ico n (min m l)", "tactic": "rw [min_eq_left hml, filter_lt_of_top_le hml]" }, { "state_after": "no goals", "state_before": "case inr\nn m l : ℕ\nhlm : l ≤ m\n⊢ filter (fun x => decide (x < l)) (Ico n m) = Ico n (min m l)", "tactic": "rw [min_eq_right hlm, filter_lt_of_ge hlm]" } ]
[ 184, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 180, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.toSubring_injective
[ { "state_after": "no goals", "state_before": "R' : Type u'\nR✝ : Type u\nA✝ : Type v\nB : Type w\nC : Type w'\ninst✝⁹ : CommSemiring R✝\ninst✝⁸ : Semiring A✝\ninst✝⁷ : Algebra R✝ A✝\ninst✝⁶ : Semiring B\ninst✝⁵ : Algebra R✝ B\ninst✝⁴ : Semiring C\ninst✝³ : Algebra R✝ C\nS✝ : Subalgebra R✝ A✝\nR : Type u\nA : Type v\ninst✝² : CommRing R\ninst✝¹ : Ring A\ninst✝ : Algebra R A\nS T : Subalgebra R A\nh : toSubring S = toSubring T\nx : A\n⊢ x ∈ S ↔ x ∈ T", "tactic": "rw [← mem_toSubring, ← mem_toSubring, h]" } ]
[ 242, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 240, 1 ]
Mathlib/NumberTheory/Liouville/LiouvilleWith.lean
LiouvilleWith.add_nat_iff
[ { "state_after": "no goals", "state_before": "p q x y : ℝ\nr : ℚ\nm : ℤ\nn : ℕ\n⊢ LiouvilleWith p (x + ↑n) ↔ LiouvilleWith p x", "tactic": "rw [← Rat.cast_coe_nat n, add_rat_iff]" } ]
[ 225, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 224, 1 ]
Mathlib/GroupTheory/Perm/Support.lean
Equiv.Perm.Disjoint.mul_right
[ { "state_after": "α : Type u_1\nf g h : Perm α\nH1 : Disjoint f g\nH2 : Disjoint f h\n⊢ Disjoint (g * h) f", "state_before": "α : Type u_1\nf g h : Perm α\nH1 : Disjoint f g\nH2 : Disjoint f h\n⊢ Disjoint f (g * h)", "tactic": "rw [disjoint_comm]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nf g h : Perm α\nH1 : Disjoint f g\nH2 : Disjoint f h\n⊢ Disjoint (g * h) f", "tactic": "exact H1.symm.mul_left H2.symm" } ]
[ 117, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.embDomain_one
[]
[ 1049, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1047, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.biUnion_empty
[]
[ 964, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 963, 1 ]
Mathlib/Analysis/SpecificLimits/Basic.lean
tendsto_nat_ceil_mul_div_atTop
[ { "state_after": "α : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 (a + 0))\n⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)", "state_before": "α : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\n⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)", "tactic": "have A : Tendsto (fun x : R => a + x⁻¹) atTop (𝓝 (a + 0)) :=\n tendsto_const_nhds.add tendsto_inv_atTop_zero" }, { "state_after": "α : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)", "state_before": "α : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 (a + 0))\n⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)", "tactic": "rw [add_zero] at A" }, { "state_after": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ ∀ᶠ (b : R) in atTop, a ≤ ↑⌈a * b⌉₊ / b\n\ncase hfh\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ ∀ᶠ (b : R) in atTop, ↑⌈a * b⌉₊ / b ≤ a + b⁻¹", "state_before": "α : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ Tendsto (fun x => ↑⌈a * x⌉₊ / x) atTop (𝓝 a)", "tactic": "apply tendsto_of_tendsto_of_tendsto_of_le_of_le' tendsto_const_nhds A" }, { "state_after": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ a ≤ ↑⌈a * x⌉₊ / x", "state_before": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ ∀ᶠ (b : R) in atTop, a ≤ ↑⌈a * b⌉₊ / b", "tactic": "refine' eventually_atTop.2 ⟨1, fun x hx => _⟩" }, { "state_after": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ a * x ≤ ↑⌈a * x⌉₊", "state_before": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ a ≤ ↑⌈a * x⌉₊ / x", "tactic": "rw [le_div_iff (zero_lt_one.trans_le hx)]" }, { "state_after": "no goals", "state_before": "case hgf\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ a * x ≤ ↑⌈a * x⌉₊", "tactic": "exact Nat.le_ceil _" }, { "state_after": "case hfh\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ ↑⌈a * x⌉₊ / x ≤ a + x⁻¹", "state_before": "case hfh\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\n⊢ ∀ᶠ (b : R) in atTop, ↑⌈a * b⌉₊ / b ≤ a + b⁻¹", "tactic": "refine' eventually_atTop.2 ⟨1, fun x hx => _⟩" }, { "state_after": "no goals", "state_before": "case hfh\nα : Type ?u.516691\nβ : Type ?u.516694\nι : Type ?u.516697\nR : Type u_1\ninst✝³ : TopologicalSpace R\ninst✝² : LinearOrderedField R\ninst✝¹ : OrderTopology R\ninst✝ : FloorRing R\na : R\nha : 0 ≤ a\nA : Tendsto (fun x => a + x⁻¹) atTop (𝓝 a)\nx : R\nhx : x ≥ 1\n⊢ ↑⌈a * x⌉₊ / x ≤ a + x⁻¹", "tactic": "simp [div_le_iff (zero_lt_one.trans_le hx), inv_mul_cancel (zero_lt_one.trans_le hx).ne',\n (Nat.ceil_lt_add_one (mul_nonneg ha (zero_le_one.trans hx))).le, add_mul]" } ]
[ 610, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 599, 1 ]
Mathlib/Algebra/BigOperators/Pi.lean
Finset.univ_prod_mulSingle
[ { "state_after": "case h\nI : Type u_1\ninst✝² : DecidableEq I\nZ : I → Type u_2\ninst✝¹ : (i : I) → CommMonoid (Z i)\ninst✝ : Fintype I\nf : (i : I) → Z i\na : I\n⊢ Finset.prod univ (fun i => Pi.mulSingle i (f i)) a = f a", "state_before": "I : Type u_1\ninst✝² : DecidableEq I\nZ : I → Type u_2\ninst✝¹ : (i : I) → CommMonoid (Z i)\ninst✝ : Fintype I\nf : (i : I) → Z i\n⊢ ∏ i : I, Pi.mulSingle i (f i) = f", "tactic": "ext a" }, { "state_after": "no goals", "state_before": "case h\nI : Type u_1\ninst✝² : DecidableEq I\nZ : I → Type u_2\ninst✝¹ : (i : I) → CommMonoid (Z i)\ninst✝ : Fintype I\nf : (i : I) → Z i\na : I\n⊢ Finset.prod univ (fun i => Pi.mulSingle i (f i)) a = f a", "tactic": "simp" } ]
[ 84, 7 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.Tendsto.not_tendsto
[]
[ 3083, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3081, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_lt_of_lt_sub_left
[ { "state_after": "a b c : Int\nh✝ : b < c - a\nh : a + b < a + (c - a)\n⊢ a + b < c", "state_before": "a b c : Int\nh : b < c - a\n⊢ a + b < c", "tactic": "have h := Int.add_lt_add_left h a" }, { "state_after": "no goals", "state_before": "a b c : Int\nh✝ : b < c - a\nh : a + b < a + (c - a)\n⊢ a + b < c", "tactic": "rwa [← Int.add_sub_assoc, Int.add_comm a c, Int.add_sub_cancel] at h" } ]
[ 1049, 71 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1047, 11 ]
Mathlib/CategoryTheory/Limits/Shapes/Terminal.lean
CategoryTheory.Limits.isIso_π_of_isTerminal
[ { "state_after": "case w\nC : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsTerminal j\nF : J ⥤ C\ninst✝¹ : HasLimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\nj✝ : J\n⊢ (limit.π F j ≫ limit.lift F (coneOfDiagramTerminal I F)) ≫ limit.π F j✝ = 𝟙 (limit F) ≫ limit.π F j✝", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsTerminal j\nF : J ⥤ C\ninst✝¹ : HasLimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ limit.π F j ≫ limit.lift F (coneOfDiagramTerminal I F) = 𝟙 (limit F)", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case w\nC : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsTerminal j\nF : J ⥤ C\ninst✝¹ : HasLimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\nj✝ : J\n⊢ (limit.π F j ≫ limit.lift F (coneOfDiagramTerminal I F)) ≫ limit.π F j✝ = 𝟙 (limit F) ≫ limit.π F j✝", "tactic": "simp" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝³ : Category C\nJ : Type u\ninst✝² : Category J\nj : J\nI : IsTerminal j\nF : J ⥤ C\ninst✝¹ : HasLimit F\ninst✝ : ∀ (i j : J) (f : i ⟶ j), IsIso (F.map f)\n⊢ limit.lift F (coneOfDiagramTerminal I F) ≫ limit.π F j = 𝟙 (F.obj j)", "tactic": "simp" } ]
[ 721, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 719, 1 ]
Mathlib/Init/Data/Bool/Lemmas.lean
Bool.or_eq_true_eq_eq_true_or_eq_true
[ { "state_after": "no goals", "state_before": "a b : Bool\n⊢ ((a || b) = true) = (a = true ∨ b = true)", "tactic": "simp" } ]
[ 91, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 90, 1 ]
Mathlib/Analysis/NormedSpace/HahnBanach/Separation.lean
geometric_hahn_banach_compact_closed
[ { "state_after": "case inl\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\nt : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nht₁ : Convex ℝ t\nht₂ : IsClosed t\nhs₁ : Convex ℝ ∅\nhs₂ : IsCompact ∅\ndisj : Disjoint ∅ t\n⊢ ∃ f u v, (∀ (a : E), a ∈ ∅ → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b\n\ncase inr\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "obtain rfl | hs := s.eq_empty_or_nonempty" }, { "state_after": "case inr.inl\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nhs : Set.Nonempty s\nht₁ : Convex ℝ ∅\nht₂ : IsClosed ∅\ndisj : Disjoint s ∅\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ ∅ → v < ↑f b\n\ncase inr.inr\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "case inr\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "obtain rfl | _ht := t.eq_empty_or_nonempty" }, { "state_after": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "case inr.inr\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "obtain ⟨U, V, hU, hV, hU₁, hV₁, sU, tV, disj'⟩ := disj.exists_open_convexes hs₁ hs₂ ht₁ ht₂" }, { "state_after": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "obtain ⟨f, u, hf₁, hf₂⟩ := geometric_hahn_banach_open_open hU₁ hU hV₁ hV disj'" }, { "state_after": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "obtain ⟨x, hx₁, hx₂⟩ := hs₂.exists_forall_ge hs f.continuous.continuousOn" }, { "state_after": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\nthis : ↑f x < u\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "state_before": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "have : f x < u := hf₁ x (sU hx₁)" }, { "state_after": "no goals", "state_before": "case inr.inr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\nthis : ↑f x < u\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "exact\n ⟨f, (f x + u) / 2, u, fun a ha => by linarith [hx₂ a ha], by linarith, fun b hb =>\n hf₂ b (tV hb)⟩" }, { "state_after": "no goals", "state_before": "case inl\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\nt : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nht₁ : Convex ℝ t\nht₂ : IsClosed t\nhs₁ : Convex ℝ ∅\nhs₂ : IsCompact ∅\ndisj : Disjoint ∅ t\n⊢ ∃ f u v, (∀ (a : E), a ∈ ∅ → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ t → v < ↑f b", "tactic": "exact ⟨0, -2, -1, by simp, by norm_num, fun b _hb => by norm_num⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\nt : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nht₁ : Convex ℝ t\nht₂ : IsClosed t\nhs₁ : Convex ℝ ∅\nhs₂ : IsCompact ∅\ndisj : Disjoint ∅ t\n⊢ ∀ (a : E), a ∈ ∅ → ↑0 a < -2", "tactic": "simp" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\nt : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nht₁ : Convex ℝ t\nht₂ : IsClosed t\nhs₁ : Convex ℝ ∅\nhs₂ : IsCompact ∅\ndisj : Disjoint ∅ t\n⊢ -2 < -1", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\nt : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nht₁ : Convex ℝ t\nht₂ : IsClosed t\nhs₁ : Convex ℝ ∅\nhs₂ : IsCompact ∅\ndisj : Disjoint ∅ t\nb : E\n_hb : b ∈ t\n⊢ -1 < ↑0 b", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "case inr.inl\n𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nhs : Set.Nonempty s\nht₁ : Convex ℝ ∅\nht₂ : IsClosed ∅\ndisj : Disjoint s ∅\n⊢ ∃ f u v, (∀ (a : E), a ∈ s → ↑f a < u) ∧ u < v ∧ ∀ (b : E), b ∈ ∅ → v < ↑f b", "tactic": "exact ⟨0, 1, 2, fun a _ha => by norm_num, by norm_num, by simp⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nhs : Set.Nonempty s\nht₁ : Convex ℝ ∅\nht₂ : IsClosed ∅\ndisj : Disjoint s ∅\na : E\n_ha : a ∈ s\n⊢ ↑0 a < 1", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nhs : Set.Nonempty s\nht₁ : Convex ℝ ∅\nht₂ : IsClosed ∅\ndisj : Disjoint s ∅\n⊢ 1 < 2", "tactic": "norm_num" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns : Set E\nx y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nhs : Set.Nonempty s\nht₁ : Convex ℝ ∅\nht₂ : IsClosed ∅\ndisj : Disjoint s ∅\n⊢ ∀ (b : E), b ∈ ∅ → 2 < ↑0 b", "tactic": "simp" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\nthis : ↑f x < u\na : E\nha : a ∈ s\n⊢ ↑f a < (↑f x + u) / 2", "tactic": "linarith [hx₂ a ha]" }, { "state_after": "no goals", "state_before": "𝕜 : Type ?u.82757\nE : Type u_1\ninst✝⁵ : TopologicalSpace E\ninst✝⁴ : AddCommGroup E\ninst✝³ : TopologicalAddGroup E\ninst✝² : Module ℝ E\ninst✝¹ : ContinuousSMul ℝ E\ns t : Set E\nx✝ y : E\ninst✝ : LocallyConvexSpace ℝ E\nhs₁ : Convex ℝ s\nhs₂ : IsCompact s\nht₁ : Convex ℝ t\nht₂ : IsClosed t\ndisj : Disjoint s t\nhs : Set.Nonempty s\n_ht : Set.Nonempty t\nU V : Set E\nhU : IsOpen U\nhV : IsOpen V\nhU₁ : Convex ℝ U\nhV₁ : Convex ℝ V\nsU : s ⊆ U\ntV : t ⊆ V\ndisj' : Disjoint U V\nf : E →L[ℝ] ℝ\nu : ℝ\nhf₁ : ∀ (a : E), a ∈ U → ↑f a < u\nhf₂ : ∀ (b : E), b ∈ V → u < ↑f b\nx : E\nhx₁ : x ∈ s\nhx₂ : ∀ (y : E), y ∈ s → ↑f y ≤ ↑f x\nthis : ↑f x < u\n⊢ (↑f x + u) / 2 < u", "tactic": "linarith" } ]
[ 169, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 156, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.add_eq_one_iff
[ { "state_after": "no goals", "state_before": "m n k l : ℕ\n⊢ m + n = 1 ↔ m = 0 ∧ n = 1 ∨ m = 1 ∧ n = 0", "tactic": "cases n <;> simp [succ_eq_add_one, ← add_assoc, succ_inj']" } ]
[ 196, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/Data/Complex/Basic.lean
Complex.int_cast_re
[ { "state_after": "no goals", "state_before": "n : ℤ\n⊢ (↑n).re = ↑n", "tactic": "rw [← ofReal_int_cast, ofReal_re]" } ]
[ 852, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 852, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
pthRoot_pow_p'
[]
[ 82, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
reflection_mem_subspace_eq_self
[]
[ 704, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 703, 1 ]
Mathlib/Tactic/Ring/Basic.lean
Mathlib.Tactic.Ring.neg_one_mul
[ { "state_after": "u : Lean.Level\nR✝ : Type ?u.203351\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝¹ : CommSemiring R✝\nR : Type u_1\ninst✝ : Ring R\na : R\n⊢ -a = Int.rawCast (Int.negOfNat 1) * a", "state_before": "u : Lean.Level\nR✝ : Type ?u.203351\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝¹ : CommSemiring R✝\nR : Type u_1\ninst✝ : Ring R\na b : R\nx✝ : Int.rawCast (Int.negOfNat 1) * a = b\n⊢ -a = b", "tactic": "subst_vars" }, { "state_after": "no goals", "state_before": "u : Lean.Level\nR✝ : Type ?u.203351\nα : Q(Type u)\nsα : Q(CommSemiring «$α»)\ninst✝¹ : CommSemiring R✝\nR : Type u_1\ninst✝ : Ring R\na : R\n⊢ -a = Int.rawCast (Int.negOfNat 1) * a", "tactic": "simp [Int.negOfNat]" } ]
[ 527, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 526, 1 ]
Mathlib/GroupTheory/Subgroup/Pointwise.lean
Subgroup.mem_smul_pointwise_iff_exists
[]
[ 296, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 294, 1 ]
Mathlib/Combinatorics/SimpleGraph/Connectivity.lean
SimpleGraph.Walk.concat_append
[ { "state_after": "no goals", "state_before": "V : Type u\nV' : Type v\nV'' : Type w\nG : SimpleGraph V\nG' : SimpleGraph V'\nG'' : SimpleGraph V''\nu v w x : V\np : Walk G u v\nh : Adj G v w\nq : Walk G w x\n⊢ append (concat p h) q = append p (cons h q)", "tactic": "rw [concat_eq_append, ← append_assoc, cons_nil_append]" } ]
[ 298, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 296, 1 ]
Mathlib/Data/Setoid/Basic.lean
Setoid.inf_iff_and
[]
[ 146, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
src/lean/Init/Data/Nat/Basic.lean
Nat.le_eq
[]
[ 88, 52 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 88, 9 ]
Std/Data/List/Lemmas.lean
List.filter_sublist
[ { "state_after": "α : Type u_1\np : α → Bool\na : α\nl : List α\n⊢ (match p a with\n | true => a :: filter p l\n | false => filter p l) <+\n a :: l", "state_before": "α : Type u_1\np : α → Bool\na : α\nl : List α\n⊢ filter p (a :: l) <+ a :: l", "tactic": "rw [filter]" }, { "state_after": "no goals", "state_before": "α : Type u_1\np : α → Bool\na : α\nl : List α\n⊢ (match p a with\n | true => a :: filter p l\n | false => filter p l) <+\n a :: l", "tactic": "split <;> simp [Sublist.cons, Sublist.cons₂, filter_sublist l]" } ]
[ 1121, 93 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1119, 9 ]
Mathlib/Analysis/BoxIntegral/Box/Basic.lean
BoxIntegral.Box.isCompact_Icc
[]
[ 220, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 219, 11 ]
Mathlib/Data/Int/ModEq.lean
Int.modEq_add_fac_self
[]
[ 293, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 292, 1 ]
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
intervalIntegral.integral_eq_zero_iff_of_le_of_nonneg_ae
[ { "state_after": "no goals", "state_before": "ι : Type ?u.19335522\n𝕜 : Type ?u.19335525\nE : Type ?u.19335528\nF : Type ?u.19335531\nA : Type ?u.19335534\ninst✝² : NormedAddCommGroup E\ninst✝¹ : CompleteSpace E\ninst✝ : NormedSpace ℝ E\nf g : ℝ → ℝ\na b : ℝ\nμ : MeasureTheory.Measure ℝ\nhab : a ≤ b\nhf : 0 ≤ᵐ[Measure.restrict μ (Ioc a b)] f\nhfi : IntervalIntegrable f μ a b\n⊢ (∫ (x : ℝ) in a..b, f x ∂μ) = 0 ↔ f =ᵐ[Measure.restrict μ (Ioc a b)] 0", "tactic": "rw [integral_of_le hab, integral_eq_zero_iff_of_nonneg_ae hf hfi.1]" } ]
[ 1264, 73 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1262, 1 ]
Mathlib/Order/Atoms.lean
isCoatomic_iff_forall_isCoatomic_Ici
[]
[ 310, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 306, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.iInf_empty
[ { "state_after": "no goals", "state_before": "ι : Sort u_1\nf✝ : ι → ℝ≥0\ninst✝ : IsEmpty ι\nf : ι → ℝ≥0\n⊢ (⨅ (i : ι), f i) = 0", "tactic": "rw [iInf_of_empty', sInf_empty]" } ]
[ 944, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 943, 1 ]
Mathlib/Data/Nat/Factorization/Basic.lean
Nat.Prime.factorization
[ { "state_after": "case h\np : ℕ\nhp : Prime p\nq : ℕ\n⊢ ↑(Nat.factorization p) q = ↑(single p 1) q", "state_before": "p : ℕ\nhp : Prime p\n⊢ Nat.factorization p = single p 1", "tactic": "ext q" }, { "state_after": "no goals", "state_before": "case h\np : ℕ\nhp : Prime p\nq : ℕ\n⊢ ↑(Nat.factorization p) q = ↑(single p 1) q", "tactic": "rw [← factors_count_eq, factors_prime hp, single_apply, count_singleton', if_congr eq_comm] <;>\n rfl" } ]
[ 276, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 273, 1 ]
Mathlib/Data/Real/Irrational.lean
Irrational.of_add_int
[]
[ 234, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.one_le_coe_iff
[]
[ 663, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 663, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.coe_zpow
[]
[ 305, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 305, 1 ]
Mathlib/Analysis/Asymptotics/SuperpolynomialDecay.lean
Asymptotics.SuperpolynomialDecay.mul_param_zpow
[]
[ 269, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 267, 1 ]
Mathlib/Data/Seq/Computation.lean
Computation.ret_orElse
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\na : α\nc₂ : Computation α\n⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (pure a) fun x => c₂) = Sum.inl a", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nc₂ : Computation α\n⊢ destruct (HOrElse.hOrElse (pure a) fun x => c₂) = Sum.inl a", "tactic": "unfold HOrElse.hOrElse instHOrElse" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\na : α\nc₂ : Computation α\n⊢ destruct\n ({\n hOrElse := fun a b =>\n {\n orElse :=\n (let src := monad;\n Alternative.mk empty @orElse).3 }.1\n a b }.1\n (pure a) fun x => c₂) =\n Sum.inl a", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nc₂ : Computation α\n⊢ destruct ({ hOrElse := fun a b => OrElse.orElse a b }.1 (pure a) fun x => c₂) = Sum.inl a", "tactic": "unfold OrElse.orElse instOrElse Alternative.orElse instAlternativeComputation" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\na : α\nc₂ : Computation α\n⊢ destruct\n ({\n hOrElse := fun a b =>\n {\n orElse :=\n (let src := monad;\n Alternative.mk empty @orElse).3 }.1\n a b }.1\n (pure a) fun x => c₂) =\n Sum.inl a", "tactic": "simp [orElse]" } ]
[ 940, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 936, 1 ]
Mathlib/Analysis/Convex/Segment.lean
image_segment
[ { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type u_3\nG : Type ?u.97868\nι : Type ?u.97871\nπ : ι → Type ?u.97876\ninst✝⁵ : OrderedRing 𝕜\ninst✝⁴ : AddCommGroup E\ninst✝³ : AddCommGroup F\ninst✝² : AddCommGroup G\ninst✝¹ : Module 𝕜 E\ninst✝ : Module 𝕜 F\nf : E →ᵃ[𝕜] F\na b : E\nx : F\n⊢ x ∈ ↑f '' [a-[𝕜]b] ↔ x ∈ [↑f a-[𝕜]↑f b]", "tactic": "simp_rw [segment_eq_image_lineMap, mem_image, exists_exists_and_eq_and, AffineMap.apply_lineMap]" } ]
[ 239, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 237, 1 ]
Mathlib/CategoryTheory/Subobject/MonoOver.lean
CategoryTheory.MonoOver.mk'_coe'
[]
[ 87, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.trans_one
[]
[ 137, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 136, 1 ]
Mathlib/Algebra/Module/Submodule/Bilinear.lean
Submodule.map₂_sup_right
[]
[ 122, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.eventually_or_distrib_left
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.143807\nι : Sort x\nf : Filter α\np : Prop\nq : α → Prop\nh : p\n⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x", "tactic": "simp [h]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.143807\nι : Sort x\nf : Filter α\np : Prop\nq : α → Prop\nh : ¬p\n⊢ (∀ᶠ (x : α) in f, p ∨ q x) ↔ p ∨ ∀ᶠ (x : α) in f, q x", "tactic": "simp [h]" } ]
[ 1187, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1185, 1 ]
Mathlib/Algebra/Algebra/Hom.lean
AlgHom.toLinearMap_injective
[]
[ 376, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Analysis/Calculus/Deriv/ZPow.lean
deriv_zpow'
[]
[ 103, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 102, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Add.lean
HasFDerivAtFilter.add
[ { "state_after": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.127337\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.127432\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nhf : HasFDerivAtFilter f f' x L\nhg : HasFDerivAtFilter g g' x L\nx✝ : E\n⊢ f x✝ - f x - (↑f' x✝ - ↑f' x) + (g x✝ - g x - (↑g' x✝ - ↑g' x)) =\n f x✝ + g x✝ - (f x + g x) - (↑f' x✝ + ↑g' x✝ - (↑f' x + ↑g' x))", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.127337\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.127432\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nhf : HasFDerivAtFilter f f' x L\nhg : HasFDerivAtFilter g g' x L\nx✝ : E\n⊢ f x✝ - f x - ↑f' (x✝ - x) + (g x✝ - g x - ↑g' (x✝ - x)) =\n (fun y => f y + g y) x✝ - (fun y => f y + g y) x - ↑(f' + g') (x✝ - x)", "tactic": "simp only [LinearMap.sub_apply, LinearMap.add_apply, map_sub, map_add, add_apply]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type u_2\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type u_3\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type ?u.127337\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nG' : Type ?u.127432\ninst✝¹ : NormedAddCommGroup G'\ninst✝ : NormedSpace 𝕜 G'\nf f₀ f₁ g : E → F\nf' f₀' f₁' g' e : E →L[𝕜] F\nx : E\ns t : Set E\nL L₁ L₂ : Filter E\nhf : HasFDerivAtFilter f f' x L\nhg : HasFDerivAtFilter g g' x L\nx✝ : E\n⊢ f x✝ - f x - (↑f' x✝ - ↑f' x) + (g x✝ - g x - (↑g' x✝ - ↑g' x)) =\n f x✝ + g x✝ - (f x + g x) - (↑f' x✝ + ↑g' x✝ - (↑f' x + ↑g' x))", "tactic": "abel" } ]
[ 133, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 129, 8 ]
Mathlib/GroupTheory/Perm/Basic.lean
Equiv.Perm.sumCongr_one
[]
[ 202, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 201, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
pi_norm_lt_iff'
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.1270061\n𝕜 : Type ?u.1270064\nα : Type ?u.1270067\nι : Type u_1\nκ : Type ?u.1270073\nE : Type ?u.1270076\nF : Type ?u.1270079\nG : Type ?u.1270082\nπ : ι → Type u_2\ninst✝² : Fintype ι\ninst✝¹ : (i : ι) → SeminormedGroup (π i)\ninst✝ : SeminormedGroup E\nf x : (i : ι) → π i\nr : ℝ\nhr : 0 < r\n⊢ ‖x‖ < r ↔ ∀ (i : ι), ‖x i‖ < r", "tactic": "simp only [← dist_one_right, dist_pi_lt_iff hr, Pi.one_apply]" } ]
[ 2499, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2498, 1 ]
Mathlib/CategoryTheory/Sites/CompatibleSheafification.lean
CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom
[ { "state_after": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toSheafify J P) F ≫ (plusCompIso J F (plusObj J P)).hom ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "state_before": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toSheafify J P) F ≫ (sheafifyCompIso J F P).hom = toSheafify J (P ⋙ F)", "tactic": "dsimp [sheafifyCompIso]" }, { "state_after": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toPlus J P) F ≫\n whiskerRight (plusMap J (toPlus J P)) F ≫\n (plusCompIso J F (plusObj J P)).hom ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "state_before": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toSheafify J P) F ≫ (plusCompIso J F (plusObj J P)).hom ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "tactic": "erw [whiskerRight_comp, Category.assoc]" }, { "state_after": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toPlus J P) F ≫\n ((plusCompIso J F P).hom ≫ plusMap J (whiskerRight (toPlus J P) F)) ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "state_before": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toPlus J P) F ≫\n whiskerRight (plusMap J (toPlus J P)) F ≫\n (plusCompIso J F (plusObj J P)).hom ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "tactic": "slice_lhs 2 3 => rw [plusCompIso_whiskerRight]" }, { "state_after": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ toPlus J (P ⋙ F) ≫ plusMap J (toPlus J (P ⋙ F)) = toSheafify J (P ⋙ F)", "state_before": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ whiskerRight (toPlus J P) F ≫\n ((plusCompIso J F P).hom ≫ plusMap J (whiskerRight (toPlus J P) F)) ≫ plusMap J (plusCompIso J F P).hom =\n toSheafify J (P ⋙ F)", "tactic": "rw [Category.assoc, ← J.plusMap_comp, whiskerRight_toPlus_comp_plusCompIso_hom, ←\n Category.assoc, whiskerRight_toPlus_comp_plusCompIso_hom]" }, { "state_after": "no goals", "state_before": "C : Type u\ninst✝⁸ : Category C\nJ : GrothendieckTopology C\nD : Type w₁\ninst✝⁷ : Category D\nE : Type w₂\ninst✝⁶ : Category E\nF : D ⥤ E\ninst✝⁵ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) D\ninst✝⁴ : ∀ (α β : Type (max v u)) (fst snd : β → α), HasLimitsOfShape (WalkingMulticospan fst snd) E\ninst✝³ : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ D\ninst✝² : ∀ (X : C), HasColimitsOfShape (Cover J X)ᵒᵖ E\ninst✝¹ : (X : C) → PreservesColimitsOfShape (Cover J X)ᵒᵖ F\ninst✝ : (X : C) → (W : Cover J X) → (P : Cᵒᵖ ⥤ D) → PreservesLimit (MulticospanIndex.multicospan (Cover.index W P)) F\nP : Cᵒᵖ ⥤ D\n⊢ toPlus J (P ⋙ F) ≫ plusMap J (toPlus J (P ⋙ F)) = toSheafify J (P ⋙ F)", "tactic": "rfl" } ]
[ 137, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 130, 1 ]
Mathlib/LinearAlgebra/Dimension.lean
rank_le_one_iff
[ { "state_after": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\n⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "let b := Basis.ofVectorSpace K V" }, { "state_after": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ Module.rank K V ≤ 1 → ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v\n\ncase mpr\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ (∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v) → Module.rank K V ≤ 1", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ Module.rank K V ≤ 1 ↔ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "constructor" }, { "state_after": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Module.rank K V ≤ 1\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ Module.rank K V ≤ 1 → ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "intro hd" }, { "state_after": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Module.rank K V ≤ 1\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "rw [← b.mk_eq_rank'', Cardinal.le_one_iff_subsingleton, subsingleton_coe] at hd" }, { "state_after": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v\n\ncase mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "case mp\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "rcases eq_empty_or_nonempty (ofVectorSpaceIndex K V) with (hb | ⟨⟨v₀, hv₀⟩⟩)" }, { "state_after": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\n⊢ ∀ (v : V), ∃ r, r • 0 = v", "state_before": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "use 0" }, { "state_after": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\nh' : ∀ (v : V), v = 0\n⊢ ∀ (v : V), ∃ r, r • 0 = v", "state_before": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\n⊢ ∀ (v : V), ∃ r, r • 0 = v", "tactic": "have h' : ∀ v : V, v = 0 := by simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm" }, { "state_after": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\nh' : ∀ (v : V), v = 0\nv : V\n⊢ ∃ r, r • 0 = v", "state_before": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\nh' : ∀ (v : V), v = 0\n⊢ ∀ (v : V), ∃ r, r • 0 = v", "tactic": "intro v" }, { "state_after": "no goals", "state_before": "case mp.inl\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\nh' : ∀ (v : V), v = 0\nv : V\n⊢ ∃ r, r • 0 = v", "tactic": "simp [h' v]" }, { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nhb : ofVectorSpaceIndex K V = ∅\n⊢ ∀ (v : V), v = 0", "tactic": "simpa [hb, Submodule.eq_bot_iff] using b.span_eq.symm" }, { "state_after": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\n⊢ ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\n⊢ ∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "use v₀" }, { "state_after": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\n⊢ ∀ (v : V), ∃ r, r • v₀ = v", "state_before": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\n⊢ ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "have h' : (K ∙ v₀) = ⊤ := by simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq" }, { "state_after": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\nv : V\n⊢ ∃ r, r • v₀ = v", "state_before": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\n⊢ ∀ (v : V), ∃ r, r • v₀ = v", "tactic": "intro v" }, { "state_after": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\nv : V\nhv : v ∈ ⊤\n⊢ ∃ r, r • v₀ = v", "state_before": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\nv : V\n⊢ ∃ r, r • v₀ = v", "tactic": "have hv : v ∈ (⊤ : Submodule K V) := mem_top" }, { "state_after": "no goals", "state_before": "case mp.inr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\nh' : span K {v₀} = ⊤\nv : V\nhv : v ∈ ⊤\n⊢ ∃ r, r • v₀ = v", "tactic": "rwa [← h', mem_span_singleton] at hv" }, { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nhd : Set.Subsingleton (ofVectorSpaceIndex K V)\nv₀ : V\nhv₀ : v₀ ∈ ofVectorSpaceIndex K V\n⊢ span K {v₀} = ⊤", "tactic": "simpa [hd.eq_singleton_of_mem hv₀] using b.span_eq" }, { "state_after": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\n⊢ Module.rank K V ≤ 1", "state_before": "case mpr\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\n⊢ (∃ v₀, ∀ (v : V), ∃ r, r • v₀ = v) → Module.rank K V ≤ 1", "tactic": "rintro ⟨v₀, hv₀⟩" }, { "state_after": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ Module.rank K V ≤ 1", "state_before": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\n⊢ Module.rank K V ≤ 1", "tactic": "have h : (K ∙ v₀) = ⊤ := by\n ext\n simp [mem_span_singleton, hv₀]" }, { "state_after": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ Module.rank K { x // x ∈ span K {v₀} } ≤ 1", "state_before": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ Module.rank K V ≤ 1", "tactic": "rw [← rank_top, ← h]" }, { "state_after": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ (#↑{v₀}) = 1", "state_before": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ Module.rank K { x // x ∈ span K {v₀} } ≤ 1", "tactic": "refine' (rank_span_le _).trans_eq _" }, { "state_after": "no goals", "state_before": "case mpr.intro\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nh : span K {v₀} = ⊤\n⊢ (#↑{v₀}) = 1", "tactic": "simp" }, { "state_after": "case h\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nx✝ : V\n⊢ x✝ ∈ span K {v₀} ↔ x✝ ∈ ⊤", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\n⊢ span K {v₀} = ⊤", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case h\nK : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.1044072\ninst✝⁶ : DivisionRing K\ninst✝⁵ : AddCommGroup V\ninst✝⁴ : Module K V\ninst✝³ : AddCommGroup V₁\ninst✝² : Module K V₁\ninst✝¹ : AddCommGroup V'\ninst✝ : Module K V'\nb : Basis (↑(ofVectorSpaceIndex K V)) K V := ofVectorSpace K V\nv₀ : V\nhv₀ : ∀ (v : V), ∃ r, r • v₀ = v\nx✝ : V\n⊢ x✝ ∈ span K {v₀} ↔ x✝ ∈ ⊤", "tactic": "simp [mem_span_singleton, hv₀]" } ]
[ 1231, 9 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1210, 1 ]
Mathlib/CategoryTheory/Conj.lean
CategoryTheory.Iso.homCongr_symm
[]
[ 74, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 72, 1 ]
Mathlib/RingTheory/PolynomialAlgebra.lean
matPolyEquiv_smul_one
[ { "state_after": "case a.a.h\nR : Type u_1\nA : Type ?u.620220\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Algebra R A\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\np : R[X]\nm : ℕ\ni j : n\n⊢ coeff (↑matPolyEquiv (p • 1)) m i j = coeff (Polynomial.map (algebraMap R (Matrix n n R)) p) m i j", "state_before": "R : Type u_1\nA : Type ?u.620220\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Algebra R A\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\np : R[X]\n⊢ ↑matPolyEquiv (p • 1) = Polynomial.map (algebraMap R (Matrix n n R)) p", "tactic": "ext (m i j)" }, { "state_after": "case a.a.h\nR : Type u_1\nA : Type ?u.620220\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Algebra R A\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\np : R[X]\nm : ℕ\ni j : n\n⊢ coeff ((p • 1) i j) m = if i = j then ↑(algebraMap R R) (coeff p m) else 0", "state_before": "case a.a.h\nR : Type u_1\nA : Type ?u.620220\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Algebra R A\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\np : R[X]\nm : ℕ\ni j : n\n⊢ coeff (↑matPolyEquiv (p • 1)) m i j = coeff (Polynomial.map (algebraMap R (Matrix n n R)) p) m i j", "tactic": "simp only [coeff_map, one_apply, algebraMap_matrix_apply, mul_boole, Pi.smul_apply,\n matPolyEquiv_coeff_apply]" }, { "state_after": "no goals", "state_before": "case a.a.h\nR : Type u_1\nA : Type ?u.620220\ninst✝⁴ : CommSemiring R\ninst✝³ : Semiring A\ninst✝² : Algebra R A\nn : Type w\ninst✝¹ : DecidableEq n\ninst✝ : Fintype n\np : R[X]\nm : ℕ\ni j : n\n⊢ coeff ((p • 1) i j) m = if i = j then ↑(algebraMap R R) (coeff p m) else 0", "tactic": "split_ifs <;> simp <;> rename_i h <;> simp [h]" } ]
[ 289, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 284, 1 ]
Std/Data/RBMap/Lemmas.lean
Std.RBNode.balance2_toList
[ { "state_after": "α : Type u_1\nl : RBNode α\nv : α\nr : RBNode α\n⊢ toList\n (match l, v, r with\n | a, x, node red (node red b y c) z d => node red (node black a x b) y (node black c z d)\n | a, x, node red b y (node red c z d) => node red (node black a x b) y (node black c z d)\n | a, x, b => node black a x b) =\n toList l ++ v :: toList r", "state_before": "α : Type u_1\nl : RBNode α\nv : α\nr : RBNode α\n⊢ toList (balance2 l v r) = toList l ++ v :: toList r", "tactic": "unfold balance2" }, { "state_after": "no goals", "state_before": "α : Type u_1\nl : RBNode α\nv : α\nr : RBNode α\n⊢ toList\n (match l, v, r with\n | a, x, node red (node red b y c) z d => node red (node black a x b) y (node black c z d)\n | a, x, node red b y (node red c z d) => node red (node black a x b) y (node black c z d)\n | a, x, b => node black a x b) =\n toList l ++ v :: toList r", "tactic": "split <;> simp" } ]
[ 425, 34 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 423, 9 ]
Mathlib/Order/Height.lean
Set.one_le_chainHeight_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.7989\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\n⊢ (∃ l, l ∈ subchain s ∧ length l = 1) ↔ Set.Nonempty s", "state_before": "α : Type u_1\nβ : Type ?u.7989\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\n⊢ 1 ≤ chainHeight s ↔ Set.Nonempty s", "tactic": "rw [← Nat.cast_one, Set.le_chainHeight_iff]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.7989\ninst✝¹ : LT α\ninst✝ : LT β\ns t : Set α\nl : List α\na : α\n⊢ (∃ l, l ∈ subchain s ∧ length l = 1) ↔ Set.Nonempty s", "tactic": "simp only [length_eq_one, @and_comm (_ ∈ _), @eq_comm _ _ [_], exists_exists_eq_and,\n singleton_mem_subchain_iff, Set.Nonempty]" } ]
[ 141, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 138, 1 ]
Mathlib/Data/Nat/Order/Basic.lean
Nat.findGreatest_eq_zero_iff
[ { "state_after": "no goals", "state_before": "m n k l : ℕ\nP Q : ℕ → Prop\ninst✝ : DecidablePred P\n⊢ Nat.findGreatest P k = 0 ↔ ∀ ⦃n : ℕ⦄, 0 < n → n ≤ k → ¬P n", "tactic": "simp [findGreatest_eq_iff]" } ]
[ 628, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 627, 1 ]
Std/Data/Int/Lemmas.lean
Int.le_add_of_nonneg_right
[ { "state_after": "a b : Int\nh : 0 ≤ b\nthis : a + b ≥ a + 0\n⊢ a ≤ a + b", "state_before": "a b : Int\nh : 0 ≤ b\n⊢ a ≤ a + b", "tactic": "have : a + b ≥ a + 0 := Int.add_le_add_left h a" }, { "state_after": "no goals", "state_before": "a b : Int\nh : 0 ≤ b\nthis : a + b ≥ a + 0\n⊢ a ≤ a + b", "tactic": "rwa [Int.add_zero] at this" } ]
[ 796, 29 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 794, 11 ]
Mathlib/Topology/UniformSpace/Basic.lean
comp_open_symm_mem_uniformity_sets
[ { "state_after": "case intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.94197\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nt : Set (α × α)\nht₁ : t ∈ 𝓤 α\nht₂ : t ○ t ⊆ s\n⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s", "state_before": "α : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.94197\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\n⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s", "tactic": "obtain ⟨t, ht₁, ht₂⟩ := comp_mem_uniformity_sets hs" }, { "state_after": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.94197\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nt : Set (α × α)\nht₁ : t ∈ 𝓤 α\nht₂ : t ○ t ⊆ s\nu : Set (α × α)\nhu₄ : u ⊆ t\nhu₁ : u ∈ 𝓤 α\nhu₂ : IsOpen u\nhu₃ : SymmetricRel u\n⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s", "state_before": "case intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.94197\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nt : Set (α × α)\nht₁ : t ∈ 𝓤 α\nht₂ : t ○ t ⊆ s\n⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s", "tactic": "obtain ⟨u, ⟨hu₁, hu₂, hu₃⟩, hu₄ : u ⊆ t⟩ := uniformity_hasBasis_open_symmetric.mem_iff.mp ht₁" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro\nα : Type ua\nβ : Type ub\nγ : Type uc\nδ : Type ud\nι : Sort ?u.94197\ninst✝ : UniformSpace α\ns : Set (α × α)\nhs : s ∈ 𝓤 α\nt : Set (α × α)\nht₁ : t ∈ 𝓤 α\nht₂ : t ○ t ⊆ s\nu : Set (α × α)\nhu₄ : u ⊆ t\nhu₁ : u ∈ 𝓤 α\nhu₂ : IsOpen u\nhu₃ : SymmetricRel u\n⊢ ∃ t, t ∈ 𝓤 α ∧ IsOpen t ∧ SymmetricRel t ∧ t ○ t ⊆ s", "tactic": "exact ⟨u, hu₁, hu₂, hu₃, (compRel_mono hu₄ hu₄).trans ht₂⟩" } ]
[ 1060, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1056, 1 ]
Mathlib/Algebra/Hom/GroupAction.lean
MulActionHom.map_smul
[]
[ 121, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 11 ]
Mathlib/Data/Matrix/Kronecker.lean
Matrix.kroneckerTMul_zero
[]
[ 474, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 473, 1 ]
Mathlib/Analysis/Convex/Function.lean
ConcaveOn.add_strictConcaveOn
[]
[ 532, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 530, 1 ]
Mathlib/NumberTheory/ArithmeticFunction.lean
Nat.ArithmeticFunction.IsMultiplicative.ppow
[ { "state_after": "case zero\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\n⊢ IsMultiplicative (ArithmeticFunction.ppow f Nat.zero)\n\ncase succ\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\nk : ℕ\nhi : IsMultiplicative (ArithmeticFunction.ppow f k)\n⊢ IsMultiplicative (ArithmeticFunction.ppow f (succ k))", "state_before": "R : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\nk : ℕ\n⊢ IsMultiplicative (ArithmeticFunction.ppow f k)", "tactic": "induction' k with k hi" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\n⊢ IsMultiplicative (ArithmeticFunction.ppow f Nat.zero)", "tactic": "exact isMultiplicative_zeta.nat_cast" }, { "state_after": "case succ\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\nk : ℕ\nhi : IsMultiplicative (ArithmeticFunction.ppow f k)\n⊢ IsMultiplicative (ArithmeticFunction.pmul f (ArithmeticFunction.ppow f k))", "state_before": "case succ\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\nk : ℕ\nhi : IsMultiplicative (ArithmeticFunction.ppow f k)\n⊢ IsMultiplicative (ArithmeticFunction.ppow f (succ k))", "tactic": "rw [ppow_succ]" }, { "state_after": "no goals", "state_before": "case succ\nR : Type u_1\ninst✝ : CommSemiring R\nf : ArithmeticFunction R\nhf : IsMultiplicative f\nk : ℕ\nhi : IsMultiplicative (ArithmeticFunction.ppow f k)\n⊢ IsMultiplicative (ArithmeticFunction.pmul f (ArithmeticFunction.ppow f k))", "tactic": "apply hf.pmul hi" } ]
[ 832, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 827, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
toIcoMod_sub_zsmul
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedAddCommGroup α\nhα : Archimedean α\np : α\nhp : 0 < p\na✝ b✝ c : α\nn : ℤ\na b : α\nm : ℤ\n⊢ toIcoMod hp a (b - m • p) = toIcoMod hp a b", "tactic": "rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul]" } ]
[ 452, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 451, 1 ]
Mathlib/CategoryTheory/Sums/Basic.lean
CategoryTheory.Sum.swap_map_inl
[]
[ 132, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 131, 1 ]
Mathlib/Topology/MetricSpace/Basic.lean
dist_toDual
[]
[ 3243, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3243, 9 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.Measure.ext_iff
[ { "state_after": "α : Type u_1\nβ : Type ?u.10223\nγ : Type ?u.10226\nδ : Type ?u.10229\nι : Type ?u.10232\ninst✝ : MeasurableSpace α\nμ μ₁ : Measure α\ns✝ s₁ s₂ t s : Set α\n_hs : MeasurableSet s\n⊢ ↑↑μ₁ s = ↑↑μ₁ s", "state_before": "α : Type u_1\nβ : Type ?u.10223\nγ : Type ?u.10226\nδ : Type ?u.10229\nι : Type ?u.10232\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns s₁ s₂ t : Set α\n⊢ μ₁ = μ₂ → ∀ (s : Set α), MeasurableSet s → ↑↑μ₁ s = ↑↑μ₂ s", "tactic": "rintro rfl s _hs" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.10223\nγ : Type ?u.10226\nδ : Type ?u.10229\nι : Type ?u.10232\ninst✝ : MeasurableSpace α\nμ μ₁ : Measure α\ns✝ s₁ s₂ t s : Set α\n_hs : MeasurableSet s\n⊢ ↑↑μ₁ s = ↑↑μ₁ s", "tactic": "rfl" } ]
[ 146, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 143, 1 ]
Mathlib/Algebra/CharP/ExpChar.lean
char_eq_expChar_iff
[ { "state_after": "case zero\nR : Type u\ninst✝ : Semiring R\np : ℕ\nhp : CharP R p\nq : CharZero R\n⊢ p = 1 ↔ Nat.Prime p\n\ncase prime\nR : Type u\ninst✝ : Semiring R\np q : ℕ\nhp : CharP R p\nhq_prime : Nat.Prime q\nhq_hchar : CharP R q\n⊢ p = q ↔ Nat.Prime p", "state_before": "R : Type u\ninst✝ : Semiring R\np q : ℕ\nhp : CharP R p\nhq : ExpChar R q\n⊢ p = q ↔ Nat.Prime p", "tactic": "cases' hq with q hq_one hq_prime hq_hchar" }, { "state_after": "case zero\nR : Type u\ninst✝ : Semiring R\np : ℕ\nhp : CharP R p\nq : CharZero R\n⊢ 0 = 1 ↔ Nat.Prime 0", "state_before": "case zero\nR : Type u\ninst✝ : Semiring R\np : ℕ\nhp : CharP R p\nq : CharZero R\n⊢ p = 1 ↔ Nat.Prime p", "tactic": "rw [(CharP.eq R hp inferInstance : p = 0)]" }, { "state_after": "no goals", "state_before": "case zero\nR : Type u\ninst✝ : Semiring R\np : ℕ\nhp : CharP R p\nq : CharZero R\n⊢ 0 = 1 ↔ Nat.Prime 0", "tactic": "decide" }, { "state_after": "no goals", "state_before": "case prime\nR : Type u\ninst✝ : Semiring R\np q : ℕ\nhp : CharP R p\nhq_prime : Nat.Prime q\nhq_hchar : CharP R q\n⊢ p = q ↔ Nat.Prime p", "tactic": "exact ⟨fun hpq => hpq.symm ▸ hq_prime, fun _ => CharP.eq R hp hq_hchar⟩" } ]
[ 63, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 1 ]
Mathlib/Algebra/Order/Hom/Ring.lean
OrderRingHom.toFun_eq_coe
[]
[ 196, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 195, 1 ]
Mathlib/LinearAlgebra/Projection.lean
LinearMap.ker_id_sub_eq_of_proj
[ { "state_after": "case h\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\nx : E\n⊢ x ∈ ker (id - comp (Submodule.subtype p) f) ↔ x ∈ p", "state_before": "R : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\n⊢ ker (id - comp (Submodule.subtype p) f) = p", "tactic": "ext x" }, { "state_after": "case h\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\nx : E\n⊢ x = ↑(↑f x) ↔ x ∈ p", "state_before": "case h\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\nx : E\n⊢ x ∈ ker (id - comp (Submodule.subtype p) f) ↔ x ∈ p", "tactic": "simp only [comp_apply, mem_ker, subtype_apply, sub_apply, id_apply, sub_eq_zero]" }, { "state_after": "no goals", "state_before": "case h\nR : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\nx : E\n⊢ x = ↑(↑f x) ↔ x ∈ p", "tactic": "exact ⟨fun h => h.symm ▸ Submodule.coe_mem _, fun hx => by erw [hf ⟨x, hx⟩, Subtype.coe_mk]⟩" }, { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝⁹ : Ring R\nE : Type u_2\ninst✝⁸ : AddCommGroup E\ninst✝⁷ : Module R E\nF : Type ?u.9010\ninst✝⁶ : AddCommGroup F\ninst✝⁵ : Module R F\nG : Type ?u.9526\ninst✝⁴ : AddCommGroup G\ninst✝³ : Module R G\np q : Submodule R E\nS : Type ?u.10489\ninst✝² : Semiring S\nM : Type ?u.10495\ninst✝¹ : AddCommMonoid M\ninst✝ : Module S M\nm : Submodule S M\nf : E →ₗ[R] { x // x ∈ p }\nhf : ∀ (x : { x // x ∈ p }), ↑f ↑x = x\nx : E\nhx : x ∈ p\n⊢ x = ↑(↑f x)", "tactic": "erw [hf ⟨x, hx⟩, Subtype.coe_mk]" } ]
[ 48, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 44, 1 ]
Mathlib/RingTheory/Ideal/Quotient.lean
Ideal.Quotient.ringHom_ext
[]
[ 121, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 119, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.add_le_add_iff_right
[]
[ 778, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 777, 11 ]
Mathlib/GroupTheory/FreeAbelianGroup.lean
FreeAbelianGroup.liftMonoid_coe
[]
[ 541, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 540, 1 ]
Mathlib/Algebra/Order/Nonneg/Field.lean
Nonneg.coe_div
[]
[ 60, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 59, 11 ]
Mathlib/Topology/Algebra/Group/Basic.lean
isOpenMap_mul_right
[]
[ 128, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 127, 1 ]
Mathlib/Order/Hom/CompleteLattice.lean
CompleteLatticeHom.symm_dual_comp
[]
[ 902, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 899, 1 ]
Mathlib/Topology/Order/Basic.lean
isOpen_Ioi
[]
[ 302, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 301, 1 ]
Mathlib/Algebra/Star/Basic.lean
star_zpow₀
[]
[ 440, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Data/Set/Countable.lean
Set.Countable.preimage
[]
[ 153, 36 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 151, 11 ]
Mathlib/Analysis/BoxIntegral/Partition/Split.lean
BoxIntegral.Prepartition.eventually_not_disjoint_imp_le_of_mem_splitMany
[ { "state_after": "case intro\nι : Type u_1\nM : Type ?u.49727\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\ns : Finset (Box ι)\nval✝ : Fintype ι\n⊢ ∀ᶠ (t : Finset (ι × ℝ)) in atTop,\n ∀ (I J : Box ι), J ∈ s → ∀ (J' : Box ι), J' ∈ splitMany I t → ¬Disjoint ↑J ↑J' → J' ≤ J", "state_before": "ι : Type u_1\nM : Type ?u.49727\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\ns : Finset (Box ι)\n⊢ ∀ᶠ (t : Finset (ι × ℝ)) in atTop,\n ∀ (I J : Box ι), J ∈ s → ∀ (J' : Box ι), J' ∈ splitMany I t → ¬Disjoint ↑J ↑J' → J' ≤ J", "tactic": "cases nonempty_fintype ι" }, { "state_after": "case intro\nι : Type u_1\nM : Type ?u.49727\nn : ℕ\nI✝ J✝ : Box ι\ni✝ : ι\nx : ℝ\ninst✝ : Finite ι\ns : Finset (Box ι)\nval✝ : Fintype ι\nt : Finset (ι × ℝ)\nht : t ≥ Finset.biUnion s fun J => Finset.biUnion Finset.univ fun i => {(i, Box.lower J i), (i, Box.upper J i)}\nI J : Box ι\nhJ : J ∈ s\nJ' : Box ι\nhJ' : J' ∈ splitMany I t\ni : ι\n⊢ {(i, Box.lower J i), (i, Box.upper J i)} ⊆ t", "state_before": "case intro\nι : Type u_1\nM : Type ?u.49727\nn : ℕ\nI J : Box ι\ni : ι\nx : ℝ\ninst✝ : Finite ι\ns : Finset (Box ι)\nval✝ : Fintype ι\n⊢ ∀ᶠ (t : Finset (ι × ℝ)) in atTop,\n ∀ (I J : Box ι), J ∈ s → ∀ (J' : Box ι), J' ∈ splitMany I t → ¬Disjoint ↑J ↑J' → J' ≤ J", "tactic": "refine' eventually_atTop.2\n ⟨s.biUnion fun J => Finset.univ.biUnion fun i => {(i, J.lower i), (i, J.upper i)},\n fun t ht I J hJ J' hJ' => not_disjoint_imp_le_of_subset_of_mem_splitMany (fun i => _) hJ'⟩" }, { "state_after": "no goals", "state_before": "case intro\nι : Type u_1\nM : Type ?u.49727\nn : ℕ\nI✝ J✝ : Box ι\ni✝ : ι\nx : ℝ\ninst✝ : Finite ι\ns : Finset (Box ι)\nval✝ : Fintype ι\nt : Finset (ι × ℝ)\nht : t ≥ Finset.biUnion s fun J => Finset.biUnion Finset.univ fun i => {(i, Box.lower J i), (i, Box.upper J i)}\nI J : Box ι\nhJ : J ∈ s\nJ' : Box ι\nhJ' : J' ∈ splitMany I t\ni : ι\n⊢ {(i, Box.lower J i), (i, Box.upper J i)} ⊆ t", "tactic": "exact fun p hp =>\n ht (Finset.mem_biUnion.2 ⟨J, hJ, Finset.mem_biUnion.2 ⟨i, Finset.mem_univ _, hp⟩⟩)" } ]
[ 318, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 310, 1 ]
Std/Data/List/Init/Lemmas.lean
List.ne_nil_of_length_eq_succ
[]
[ 47, 88 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 47, 1 ]