file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/GroupTheory/Submonoid/Operations.lean
MonoidHom.map_mclosure
[]
[ 1097, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1093, 1 ]
Mathlib/MeasureTheory/Measure/VectorMeasure.lean
MeasureTheory.SignedMeasure.toMeasureOfLEZero_apply
[ { "state_after": "α : Type u_1\nβ : Type ?u.712523\nm : MeasurableSpace α\ns : SignedMeasure α\ni j : Set α\nhi : restrict s i ≤ restrict 0 i\nhi₁ : MeasurableSet i\nhj₁ : MeasurableSet j\n⊢ ↑{ val := ↑(-s) (i ∩ j), property := (_ : 0 ≤ ↑(-s) (i ∩ j)) } =\n ↑{ val := -↑s (i ∩ j), property := (_ : 0 ≤ -↑s (i ∩ j)) }\n\ncase hj₁\nα : Type u_1\nβ : Type ?u.712523\nm : MeasurableSpace α\ns : SignedMeasure α\ni j : Set α\nhi : restrict s i ≤ restrict 0 i\nhi₁ : MeasurableSet i\nhj₁ : MeasurableSet j\n⊢ MeasurableSet j", "state_before": "α : Type u_1\nβ : Type ?u.712523\nm : MeasurableSpace α\ns : SignedMeasure α\ni j : Set α\nhi : restrict s i ≤ restrict 0 i\nhi₁ : MeasurableSet i\nhj₁ : MeasurableSet j\n⊢ ↑↑(toMeasureOfLEZero s i hi₁ hi) j = ↑{ val := -↑s (i ∩ j), property := (_ : 0 ≤ -↑s (i ∩ j)) }", "tactic": "erw [toMeasureOfZeroLE_apply]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.712523\nm : MeasurableSpace α\ns : SignedMeasure α\ni j : Set α\nhi : restrict s i ≤ restrict 0 i\nhi₁ : MeasurableSet i\nhj₁ : MeasurableSet j\n⊢ ↑{ val := ↑(-s) (i ∩ j), property := (_ : 0 ≤ ↑(-s) (i ∩ j)) } =\n ↑{ val := -↑s (i ∩ j), property := (_ : 0 ≤ -↑s (i ∩ j)) }", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case hj₁\nα : Type u_1\nβ : Type ?u.712523\nm : MeasurableSpace α\ns : SignedMeasure α\ni j : Set α\nhi : restrict s i ≤ restrict 0 i\nhi₁ : MeasurableSet i\nhj₁ : MeasurableSet j\n⊢ MeasurableSet j", "tactic": "assumption" } ]
[ 1381, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1375, 1 ]
Mathlib/MeasureTheory/Integral/Lebesgue.lean
MeasureTheory.lintegral_add_right'
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.903143\nγ : Type ?u.903146\nδ : Type ?u.903149\nm : MeasurableSpace α\nμ ν : Measure α\nf g : α → ℝ≥0∞\nhg : AEMeasurable g\n⊢ (∫⁻ (a : α), f a + g a ∂μ) = (∫⁻ (a : α), f a ∂μ) + ∫⁻ (a : α), g a ∂μ", "tactic": "simpa only [add_comm] using lintegral_add_left' hg f" } ]
[ 590, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 588, 1 ]
Mathlib/MeasureTheory/Function/LpSpace.lean
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp'
[ { "state_after": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\n⊢ Tendsto (fun b => dist (f b) f_lim) fi (𝓝 0) ↔ Tendsto (fun n => snorm (↑↑(f n) - ↑↑f_lim) p μ) fi (𝓝 0)", "state_before": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\n⊢ Tendsto f fi (𝓝 f_lim) ↔ Tendsto (fun n => snorm (↑↑(f n) - ↑↑f_lim) p μ) fi (𝓝 0)", "tactic": "rw [tendsto_iff_dist_tendsto_zero]" }, { "state_after": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\n⊢ Tendsto (fun b => ENNReal.toReal (snorm (↑↑(f b) - ↑↑f_lim) p μ)) fi (𝓝 0) ↔\n Tendsto (fun n => snorm (↑↑(f n) - ↑↑f_lim) p μ) fi (𝓝 0)", "state_before": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\n⊢ Tendsto (fun b => dist (f b) f_lim) fi (𝓝 0) ↔ Tendsto (fun n => snorm (↑↑(f n) - ↑↑f_lim) p μ) fi (𝓝 0)", "tactic": "simp_rw [dist_def]" }, { "state_after": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\nn : ι\n⊢ snorm (↑↑(f n) - ↑↑f_lim) p μ ≠ ⊤", "state_before": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\n⊢ Tendsto (fun b => ENNReal.toReal (snorm (↑↑(f b) - ↑↑f_lim) p μ)) fi (𝓝 0) ↔\n Tendsto (fun n => snorm (↑↑(f n) - ↑↑f_lim) p μ) fi (𝓝 0)", "tactic": "rw [← ENNReal.zero_toReal, ENNReal.tendsto_toReal_iff (fun n => ?_) ENNReal.zero_ne_top]" }, { "state_after": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\nn : ι\n⊢ snorm (↑↑(f n - f_lim)) p μ ≠ ⊤", "state_before": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\nn : ι\n⊢ snorm (↑↑(f n) - ↑↑f_lim) p μ ≠ ⊤", "tactic": "rw [snorm_congr_ae (Lp.coeFn_sub _ _).symm]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type u_3\nF : Type ?u.8121841\nG : Type ?u.8121844\nm m0 : MeasurableSpace α\np : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : NormedAddCommGroup G\nι : Type u_1\nfi : Filter ι\ninst✝ : Fact (1 ≤ p)\nf : ι → { x // x ∈ Lp E p }\nf_lim : { x // x ∈ Lp E p }\nn : ι\n⊢ snorm (↑↑(f n - f_lim)) p μ ≠ ⊤", "tactic": "exact Lp.snorm_ne_top _" } ]
[ 1240, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1233, 1 ]
Mathlib/Analysis/Normed/Group/Basic.lean
dist_self_mul_right
[ { "state_after": "no goals", "state_before": "𝓕 : Type ?u.636975\n𝕜 : Type ?u.636978\nα : Type ?u.636981\nι : Type ?u.636984\nκ : Type ?u.636987\nE : Type u_1\nF : Type ?u.636993\nG : Type ?u.636996\ninst✝¹ : SeminormedCommGroup E\ninst✝ : SeminormedCommGroup F\na✝ a₁ a₂ b✝ b₁ b₂ : E\nr r₁ r₂ : ℝ\na b : E\n⊢ dist a (a * b) = ‖b‖", "tactic": "rw [← dist_one_left, ← dist_mul_left a 1 b, mul_one]" } ]
[ 1403, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1402, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.setToFun_congr_measure
[ { "state_after": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : Integrable f\n⊢ setToFun μ T hT f = setToFun μ' T hT' f\n\ncase neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : ¬Integrable f\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "tactic": "by_cases hf : Integrable f μ" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : Integrable f\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "tactic": "exact setToFun_congr_measure_of_integrable c' hc' hμ'_le hT hT' f hf" }, { "state_after": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : ¬Integrable f\nh_int : ∀ (g : α → E), ¬Integrable g → ¬Integrable g\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "state_before": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : ¬Integrable f\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "tactic": "have h_int : ∀ g : α → E, ¬Integrable g μ → ¬Integrable g μ' := fun g =>\n mt fun h => h.of_measure_le_smul _ hc hμ_le" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1651275\nG : Type ?u.1651278\n𝕜 : Type ?u.1651281\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nμ' : Measure α\nc c' : ℝ≥0∞\nhc : c ≠ ⊤\nhc' : c' ≠ ⊤\nhμ_le : μ ≤ c • μ'\nhμ'_le : μ' ≤ c' • μ\nhT : DominatedFinMeasAdditive μ T C\nhT' : DominatedFinMeasAdditive μ' T C'\nf : α → E\nhf : ¬Integrable f\nh_int : ∀ (g : α → E), ¬Integrable g → ¬Integrable g\n⊢ setToFun μ T hT f = setToFun μ' T hT' f", "tactic": "simp_rw [setToFun_undef _ hf, setToFun_undef _ (h_int f hf)]" } ]
[ 1649, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1640, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.memℒp_const_iff
[ { "state_after": "α : Type u_2\nE : Type u_1\nF : Type ?u.1273342\nG : Type ?u.1273345\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\n⊢ Memℒp (fun x => c) p ↔ snorm (fun x => c) p μ < ⊤", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1273342\nG : Type ?u.1273345\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\n⊢ Memℒp (fun x => c) p ↔ c = 0 ∨ ↑↑μ Set.univ < ⊤", "tactic": "rw [← snorm_const_lt_top_iff hp_ne_zero hp_ne_top]" }, { "state_after": "no goals", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.1273342\nG : Type ?u.1273345\nm m0 : MeasurableSpace α\np✝ : ℝ≥0∞\nq : ℝ\nμ ν : Measure α\ninst✝² : NormedAddCommGroup E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : NormedAddCommGroup G\np : ℝ≥0∞\nc : E\nhp_ne_zero : p ≠ 0\nhp_ne_top : p ≠ ⊤\n⊢ Memℒp (fun x => c) p ↔ snorm (fun x => c) p μ < ⊤", "tactic": "exact ⟨fun h => h.2, fun h => ⟨aestronglyMeasurable_const, h⟩⟩" } ]
[ 345, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 342, 1 ]
Mathlib/Analysis/Calculus/Inverse.lean
HasStrictFDerivAt.localInverse_unique
[]
[ 659, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 656, 1 ]
Mathlib/Algebra/Star/Pointwise.lean
Set.star_subset
[ { "state_after": "no goals", "state_before": "α : Type u_1\ns✝ t✝ : Set α\na : α\ninst✝ : InvolutiveStar α\ns t : Set α\n⊢ s⋆ ⊆ t ↔ s ⊆ t⋆", "tactic": "rw [← star_subset_star, star_star]" } ]
[ 111, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 110, 1 ]
Mathlib/Data/Set/Pairwise/Basic.lean
Set.pairwise_insert
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.10052\nγ : Type ?u.10055\nι : Type ?u.10058\nι' : Type ?u.10061\nr p q : α → α → Prop\nf g : ι → α\ns t u : Set α\na b : α\n⊢ Set.Pairwise (insert a s) r ↔ Set.Pairwise s r ∧ ∀ (b : α), b ∈ s → a ≠ b → r a b ∧ r b a", "tactic": "simp only [insert_eq, pairwise_union, pairwise_singleton, true_and_iff, mem_singleton_iff,\n forall_eq]" } ]
[ 157, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 154, 1 ]
Mathlib/Data/List/Intervals.lean
List.Ico.filter_lt_of_succ_bot
[ { "state_after": "n m : ℕ\nhnm : n < m\nr : min m (n + 1) = n + 1\n⊢ filter (fun x => decide (x < n + 1)) (Ico n m) = [n]", "state_before": "n m : ℕ\nhnm : n < m\n⊢ filter (fun x => decide (x < n + 1)) (Ico n m) = [n]", "tactic": "have r : min m (n + 1) = n + 1 := (@inf_eq_right _ _ m (n + 1)).mpr hnm" }, { "state_after": "no goals", "state_before": "n m : ℕ\nhnm : n < m\nr : min m (n + 1) = n + 1\n⊢ filter (fun x => decide (x < n + 1)) (Ico n m) = [n]", "tactic": "simp [filter_lt n m (n + 1), r]" } ]
[ 218, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 215, 1 ]
Mathlib/Data/FunLike/Equiv.lean
EquivLike.injective_comp
[]
[ 183, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Order/Synonym.lean
OrderDual.lt_toDual
[]
[ 117, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 116, 1 ]
Mathlib/Order/Bounded.lean
Set.unbounded_ge_iff
[]
[ 69, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Topology/DenseEmbedding.lean
DenseRange.equalizer
[]
[ 364, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 362, 1 ]
Mathlib/Topology/Filter.lean
Filter.mem_nhds_iff
[]
[ 108, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 107, 1 ]
Std/Data/Int/Lemmas.lean
Int.sub_nonpos_of_le
[ { "state_after": "a b : Int\nh✝ : a ≤ b\nh : a + -b ≤ b + -b\n⊢ a - b ≤ 0", "state_before": "a b : Int\nh : a ≤ b\n⊢ a - b ≤ 0", "tactic": "have h := Int.add_le_add_right h (-b)" }, { "state_after": "no goals", "state_before": "a b : Int\nh✝ : a ≤ b\nh : a + -b ≤ b + -b\n⊢ a - b ≤ 0", "tactic": "rwa [Int.add_right_neg] at h" } ]
[ 928, 31 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 926, 11 ]
Mathlib/GroupTheory/Nilpotent.lean
upperCentralSeries_nilpotencyClass
[]
[ 372, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 371, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.integral_comp_mul_deriv
[]
[ 1502, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1499, 1 ]
Mathlib/Algebra/Group/Semiconj.lean
SemiconjBy.pow_right
[ { "state_after": "case zero\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\n⊢ SemiconjBy a (x ^ Nat.zero) (y ^ Nat.zero)\n\ncase succ\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\nn : ℕ\nih : SemiconjBy a (x ^ n) (y ^ n)\n⊢ SemiconjBy a (x ^ Nat.succ n) (y ^ Nat.succ n)", "state_before": "M : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\nn : ℕ\n⊢ SemiconjBy a (x ^ n) (y ^ n)", "tactic": "induction' n with n ih" }, { "state_after": "case zero\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\n⊢ SemiconjBy a 1 1", "state_before": "case zero\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\n⊢ SemiconjBy a (x ^ Nat.zero) (y ^ Nat.zero)", "tactic": "rw [pow_zero, pow_zero]" }, { "state_after": "no goals", "state_before": "case zero\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\n⊢ SemiconjBy a 1 1", "tactic": "exact SemiconjBy.one_right _" }, { "state_after": "case succ\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\nn : ℕ\nih : SemiconjBy a (x ^ n) (y ^ n)\n⊢ SemiconjBy a (x * x ^ n) (y * y ^ n)", "state_before": "case succ\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\nn : ℕ\nih : SemiconjBy a (x ^ n) (y ^ n)\n⊢ SemiconjBy a (x ^ Nat.succ n) (y ^ Nat.succ n)", "tactic": "rw [pow_succ, pow_succ]" }, { "state_after": "no goals", "state_before": "case succ\nM : Type u_1\ninst✝ : Monoid M\na x y : M\nh : SemiconjBy a x y\nn : ℕ\nih : SemiconjBy a (x ^ n) (y ^ n)\n⊢ SemiconjBy a (x * x ^ n) (y * y ^ n)", "tactic": "exact h.mul_right ih" } ]
[ 175, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 170, 1 ]
Mathlib/Data/List/Basic.lean
List.insertNth_removeNth_of_le
[]
[ 1638, 97 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1632, 1 ]
Mathlib/NumberTheory/VonMangoldt.lean
Nat.ArithmeticFunction.vonMangoldt_nonneg
[ { "state_after": "n : ℕ\n⊢ 0 ≤ if IsPrimePow n then Real.log ↑(minFac n) else 0", "state_before": "n : ℕ\n⊢ 0 ≤ ↑Λ n", "tactic": "rw [vonMangoldt_apply]" }, { "state_after": "case inl\nn : ℕ\nh✝ : IsPrimePow n\n⊢ 0 ≤ Real.log ↑(minFac n)\n\ncase inr\nn : ℕ\nh✝ : ¬IsPrimePow n\n⊢ 0 ≤ 0", "state_before": "n : ℕ\n⊢ 0 ≤ if IsPrimePow n then Real.log ↑(minFac n) else 0", "tactic": "split_ifs" }, { "state_after": "no goals", "state_before": "case inr\nn : ℕ\nh✝ : ¬IsPrimePow n\n⊢ 0 ≤ 0", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case inl\nn : ℕ\nh✝ : IsPrimePow n\n⊢ 0 ≤ Real.log ↑(minFac n)", "tactic": "exact Real.log_nonneg (one_le_cast.2 (Nat.minFac_pos n))" } ]
[ 86, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Computability/Language.lean
Language.iSup_mul
[]
[ 219, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 217, 1 ]
Mathlib/Order/Basic.lean
LT.lt.false
[]
[ 308, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 307, 11 ]
Mathlib/Algebra/Star/Free.lean
FreeMonoid.star_one
[]
[ 42, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 41, 1 ]
Mathlib/NumberTheory/LegendreSymbol/MulCharacter.lean
MulChar.IsQuadratic.inv
[ { "state_after": "case h\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\n⊢ ↑χ⁻¹ ↑x = ↑χ ↑x", "state_before": "R : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\n⊢ χ⁻¹ = χ", "tactic": "ext x" }, { "state_after": "case h\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "state_before": "case h\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\n⊢ ↑χ⁻¹ ↑x = ↑χ ↑x", "tactic": "rw [inv_apply_eq_inv]" }, { "state_after": "case h.inl\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₀ : ↑χ ↑x = 0\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x\n\ncase h.inr.inl\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₁ : ↑χ ↑x = 1\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x\n\ncase h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "state_before": "case h\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "tactic": "rcases hχ x with (h₀ | h₁ | h₂)" }, { "state_after": "no goals", "state_before": "case h.inl\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₀ : ↑χ ↑x = 0\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "tactic": "rw [h₀, Ring.inverse_zero]" }, { "state_after": "no goals", "state_before": "case h.inr.inl\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₁ : ↑χ ↑x = 1\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "tactic": "rw [h₁, Ring.inverse_one]" }, { "state_after": "case h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\nthis : -1 = ↑(-1)\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "state_before": "case h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "tactic": "have : (-1 : R') = (-1 : R'ˣ) := by rw [Units.val_neg, Units.val_one]" }, { "state_after": "case h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\nthis : -1 = ↑(-1)\n⊢ ↑(-1)⁻¹ = ↑(-1)", "state_before": "case h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\nthis : -1 = ↑(-1)\n⊢ Ring.inverse (↑χ ↑x) = ↑χ ↑x", "tactic": "rw [h₂, this, Ring.inverse_unit (-1 : R'ˣ)]" }, { "state_after": "no goals", "state_before": "case h.inr.inr\nR : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\nthis : -1 = ↑(-1)\n⊢ ↑(-1)⁻¹ = ↑(-1)", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "R : Type u\ninst✝² : CommRing R\nR' : Type v\ninst✝¹ : CommRing R'\nR'' : Type w\ninst✝ : CommRing R''\nχ : MulChar R R'\nhχ : IsQuadratic χ\nx : Rˣ\nh₂ : ↑χ ↑x = -1\n⊢ -1 = ↑(-1)", "tactic": "rw [Units.val_neg, Units.val_one]" } ]
[ 500, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 491, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.is_glb_mem
[ { "state_after": "F : Type ?u.408857\nα : Type u_1\nβ : Type ?u.408863\nγ : Type ?u.408866\nι : Type ?u.408869\nκ : Type ?u.408872\ninst✝ : LinearOrder α\ni : α\ns : Finset α\nhis : IsGLB (↑s) i\nhs : Finset.Nonempty s\n⊢ i ∈ ↑s", "state_before": "F : Type ?u.408857\nα : Type u_1\nβ : Type ?u.408863\nγ : Type ?u.408866\nι : Type ?u.408869\nκ : Type ?u.408872\ninst✝ : LinearOrder α\ni : α\ns : Finset α\nhis : IsGLB (↑s) i\nhs : Finset.Nonempty s\n⊢ i ∈ s", "tactic": "rw [← mem_coe]" }, { "state_after": "no goals", "state_before": "F : Type ?u.408857\nα : Type u_1\nβ : Type ?u.408863\nγ : Type ?u.408866\nι : Type ?u.408869\nκ : Type ?u.408872\ninst✝ : LinearOrder α\ni : α\ns : Finset α\nhis : IsGLB (↑s) i\nhs : Finset.Nonempty s\n⊢ i ∈ ↑s", "tactic": "exact ((is_glb_iff_is_least i s hs).mp his).1" } ]
[ 1728, 48 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1725, 1 ]
Mathlib/Topology/Sets/Compacts.lean
TopologicalSpace.Compacts.coe_prod
[]
[ 200, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 198, 1 ]
Mathlib/Analysis/InnerProductSpace/EuclideanDist.lean
Euclidean.mem_ball_self
[]
[ 82, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpace.lean
MeasurableEmbedding.restrict_map
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.1222190\nδ : Type ?u.1222193\nι : Type ?u.1222196\nR : Type ?u.1222199\nR' : Type ?u.1222202\nm0 : MeasurableSpace α\nm1 : MeasurableSpace β\nf : α → β\nhf : MeasurableEmbedding f\nμ : MeasureTheory.Measure α\ns t : Set β\nht : MeasurableSet t\n⊢ ↑↑(Measure.restrict (Measure.map f μ) s) t = ↑↑(Measure.map f (Measure.restrict μ (f ⁻¹' s))) t", "tactic": "simp [hf.map_apply, ht, hf.measurable ht]" } ]
[ 4215, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 4213, 1 ]
Mathlib/Algebra/Free.lean
FreeSemigroup.lift_of_mul
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : Semigroup β\nf : α → β\nx : α\ny : FreeSemigroup α\n⊢ ↑(↑lift f) (of x * y) = f x * ↑(↑lift f) y", "tactic": "rw [map_mul, lift_of]" } ]
[ 554, 91 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 554, 1 ]
Mathlib/Logic/Basic.lean
congr_fun₂
[]
[ 593, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 592, 1 ]
Std/Data/List/Lemmas.lean
List.map_filterMap
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type u_3\nf : α → Option β\ng : β → γ\nl : List α\n⊢ map g (filterMap f l) = filterMap (fun x => Option.map g (f x)) l", "tactic": "simp only [← filterMap_eq_map, filterMap_filterMap, Option.map_eq_bind]" } ]
[ 1184, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1182, 1 ]
Mathlib/Order/Bounds/Basic.lean
IsGreatest.insert
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ns✝ t : Set α\na✝ b✝ : α\ninst✝ : LinearOrder γ\na b : γ\ns : Set γ\nhs : IsGreatest s b\n⊢ IsGreatest ({a} ∪ s) (max a b)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ns✝ t : Set α\na✝ b✝ : α\ninst✝ : LinearOrder γ\na b : γ\ns : Set γ\nhs : IsGreatest s b\n⊢ IsGreatest (Insert.insert a s) (max a b)", "tactic": "rw [insert_eq]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nι : Sort x\ninst✝² : Preorder α\ninst✝¹ : Preorder β\ns✝ t : Set α\na✝ b✝ : α\ninst✝ : LinearOrder γ\na b : γ\ns : Set γ\nhs : IsGreatest s b\n⊢ IsGreatest ({a} ∪ s) (max a b)", "tactic": "exact isGreatest_singleton.union hs" } ]
[ 961, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 958, 1 ]
Mathlib/Data/List/MinMax.lean
List.max_le_of_forall_le
[ { "state_after": "case nil\nα : Type u_1\nβ : Type ?u.111970\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\nl✝ l : List α\na : α\nh✝ : ∀ (x : α), x ∈ l → x ≤ a\nh : ∀ (x : α), x ∈ [] → x ≤ a\n⊢ foldr max ⊥ [] ≤ a\n\ncase cons\nα : Type u_1\nβ : Type ?u.111970\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\nl✝¹ l✝ : List α\na : α\nh✝ : ∀ (x : α), x ∈ l✝ → x ≤ a\ny : α\nl : List α\nIH : (∀ (x : α), x ∈ l → x ≤ a) → foldr max ⊥ l ≤ a\nh : ∀ (x : α), x ∈ y :: l → x ≤ a\n⊢ foldr max ⊥ (y :: l) ≤ a", "state_before": "α : Type u_1\nβ : Type ?u.111970\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\nl✝ l : List α\na : α\nh : ∀ (x : α), x ∈ l → x ≤ a\n⊢ foldr max ⊥ l ≤ a", "tactic": "induction' l with y l IH" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u_1\nβ : Type ?u.111970\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\nl✝ l : List α\na : α\nh✝ : ∀ (x : α), x ∈ l → x ≤ a\nh : ∀ (x : α), x ∈ [] → x ≤ a\n⊢ foldr max ⊥ [] ≤ a", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u_1\nβ : Type ?u.111970\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\nl✝¹ l✝ : List α\na : α\nh✝ : ∀ (x : α), x ∈ l✝ → x ≤ a\ny : α\nl : List α\nIH : (∀ (x : α), x ∈ l → x ≤ a) → foldr max ⊥ l ≤ a\nh : ∀ (x : α), x ∈ y :: l → x ≤ a\n⊢ foldr max ⊥ (y :: l) ≤ a", "tactic": "simpa [h y (mem_cons_self _ _)] using IH fun x hx => h x <| mem_cons_of_mem _ hx" } ]
[ 419, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 416, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.map_comap_of_surjective
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type ?u.258330\nι : Sort x\nf✝ f₁ f₂ : Filter α\ng g₁ g₂ : Filter β\nm : α → β\nm' : β → γ\ns : Set α\nt : Set β\nf : α → β\nhf : Surjective f\nl : Filter β\n⊢ range f ∈ l", "tactic": "simp only [hf.range_eq, univ_mem]" } ]
[ 2275, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2273, 1 ]
Mathlib/Order/Ideal.lean
Order.Ideal.IsProper.top_not_mem
[]
[ 274, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 274, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometry.map_add
[]
[ 209, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 11 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iic_diff_Iic
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.62385\ninst✝ : LinearOrder α\na a₁ a₂ b b₁ b₂ c d : α\n⊢ Iic b \\ Iic a = Ioc a b", "tactic": "rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iic]" } ]
[ 1097, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1096, 1 ]
Mathlib/Analysis/Calculus/ContDiff.lean
ContinuousLinearMap.contDiff
[]
[ 156, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 155, 1 ]
Mathlib/Data/Set/Pointwise/SMul.lean
Set.vsub_eq_empty
[]
[ 628, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 627, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.mul_inv
[ { "state_after": "no goals", "state_before": "M : Type u_1\ninst✝² : CommMonoid M\nS : Submonoid M\nN : Type u_2\ninst✝¹ : CommMonoid N\nP : Type ?u.417122\ninst✝ : CommMonoid P\nf : M →* N\nh : ∀ (y : { x // x ∈ S }), IsUnit (↑f ↑y)\nx₁ x₂ : M\ny₁ y₂ : { x // x ∈ S }\n⊢ ↑f x₁ * ↑(↑(IsUnit.liftRight (MonoidHom.restrict f S) h) y₁)⁻¹ =\n ↑f x₂ * ↑(↑(IsUnit.liftRight (MonoidHom.restrict f S) h) y₂)⁻¹ ↔\n ↑f (x₁ * ↑y₂) = ↑f (x₂ * ↑y₁)", "tactic": "rw [mul_inv_right h, mul_assoc, mul_comm _ (f y₂), ← mul_assoc, mul_inv_left h, mul_comm x₂,\n f.map_mul, f.map_mul]" } ]
[ 649, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 644, 1 ]
Mathlib/Data/List/Sublists.lean
List.Pairwise.sublists'
[ { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\n⊢ Pairwise (Lex (swap R)) (List.sublists' l) ∧\n Pairwise (fun a_1 b => Lex (swap R) (a :: a_1) (a :: b)) (List.sublists' l) ∧\n ∀ (a_1 : List α), a_1 <+ l → ∀ (b x : List α), x <+ l → a :: x = b → Lex (swap R) a_1 b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\n⊢ Pairwise (Lex (swap R)) (List.sublists' (a :: l))", "tactic": "simp only [sublists'_cons, pairwise_append, pairwise_map, mem_sublists', mem_map, exists_imp,\n and_imp]" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\n⊢ ∀ (a_1 : List α), a_1 <+ l → ∀ (b x : List α), x <+ l → a :: x = b → Lex (swap R) a_1 b", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\n⊢ Pairwise (Lex (swap R)) (List.sublists' l) ∧\n Pairwise (fun a_1 b => Lex (swap R) (a :: a_1) (a :: b)) (List.sublists' l) ∧\n ∀ (a_1 : List α), a_1 <+ l → ∀ (b x : List α), x <+ l → a :: x = b → Lex (swap R) a_1 b", "tactic": "refine' ⟨H₂.sublists', H₂.sublists'.imp fun l₁ => Lex.cons l₁, _⟩" }, { "state_after": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₁ : List α\nsl₁ : l₁ <+ l\nl₂ : List α\na✝ : l₂ <+ l\n⊢ Lex (swap R) l₁ (a :: l₂)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\n⊢ ∀ (a_1 : List α), a_1 <+ l → ∀ (b x : List α), x <+ l → a :: x = b → Lex (swap R) a_1 b", "tactic": "rintro l₁ sl₁ x l₂ _ rfl" }, { "state_after": "case nil\nα : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₂ : List α\na✝ : l₂ <+ l\nsl₁ : [] <+ l\n⊢ Lex (swap R) [] (a :: l₂)\n\ncase cons\nα : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₂ : List α\na✝ : l₂ <+ l\nb : α\nl₁ : List α\nsl₁ : b :: l₁ <+ l\n⊢ Lex (swap R) (b :: l₁) (a :: l₂)", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₁ : List α\nsl₁ : l₁ <+ l\nl₂ : List α\na✝ : l₂ <+ l\n⊢ Lex (swap R) l₁ (a :: l₂)", "tactic": "cases' l₁ with b l₁" }, { "state_after": "no goals", "state_before": "case cons\nα : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₂ : List α\na✝ : l₂ <+ l\nb : α\nl₁ : List α\nsl₁ : b :: l₁ <+ l\n⊢ Lex (swap R) (b :: l₁) (a :: l₂)", "tactic": "exact Lex.rel (H₁ _ <| sl₁.subset <| mem_cons_self _ _)" }, { "state_after": "no goals", "state_before": "case nil\nα : Type u\nβ : Type v\nγ : Type w\nR : α → α → Prop\na : α\nl : List α\nH₁ : ∀ (a' : α), a' ∈ l → R a a'\nH₂ : Pairwise R l\nl₂ : List α\na✝ : l₂ <+ l\nsl₁ : [] <+ l\n⊢ Lex (swap R) [] (a :: l₂)", "tactic": "constructor" } ]
[ 363, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 354, 1 ]
Mathlib/MeasureTheory/Measure/AEMeasurable.lean
aemeasurable_const'
[ { "state_after": "case inl\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂0, f x = f y\n⊢ AEMeasurable f\n\ncase inr\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\n⊢ AEMeasurable f", "state_before": "ι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\n⊢ AEMeasurable f", "tactic": "rcases eq_or_ne μ 0 with (rfl | hμ)" }, { "state_after": "no goals", "state_before": "case inl\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂0, f x = f y\n⊢ AEMeasurable f", "tactic": "exact aemeasurable_zero_measure" }, { "state_after": "case inr\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\nthis : NeBot (ae μ)\n⊢ AEMeasurable f", "state_before": "case inr\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\n⊢ AEMeasurable f", "tactic": "haveI := ae_neBot.2 hμ" }, { "state_after": "case inr.intro\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\nthis : NeBot (ae μ)\nx : α\nhx : ∀ᵐ (y : α) ∂μ, f x = f y\n⊢ AEMeasurable f", "state_before": "case inr\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\nthis : NeBot (ae μ)\n⊢ AEMeasurable f", "tactic": "rcases h.exists with ⟨x, hx⟩" }, { "state_after": "no goals", "state_before": "case inr.intro\nι : Type ?u.3045534\nα : Type u_1\nβ : Type u_2\nγ : Type ?u.3045543\nδ : Type ?u.3045546\nR : Type ?u.3045549\nm0 : MeasurableSpace α\ninst✝² : MeasurableSpace β\ninst✝¹ : MeasurableSpace γ\ninst✝ : MeasurableSpace δ\nf g : α → β\nμ ν : MeasureTheory.Measure α\nh : ∀ᵐ (x : α) (y : α) ∂μ, f x = f y\nhμ : μ ≠ 0\nthis : NeBot (ae μ)\nx : α\nhx : ∀ᵐ (y : α) ∂μ, f x = f y\n⊢ AEMeasurable f", "tactic": "exact ⟨const α (f x), measurable_const, EventuallyEq.symm hx⟩" } ]
[ 249, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 244, 1 ]
Mathlib/Data/Fin/Basic.lean
Fin.cast_addNat
[]
[ 1464, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1463, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.iUnion_union_distrib
[]
[ 531, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 529, 1 ]
Mathlib/Topology/UniformSpace/UniformEmbedding.lean
uniformEmbedding_subtypeEmb
[]
[ 266, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 261, 1 ]
Mathlib/Order/Lattice.lean
le_of_inf_le_sup_le
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\ninst✝ : DistribLattice α\nx y z : α\nh₁ : x ⊓ z ≤ y ⊓ z\nh₂ : x ⊔ z ≤ y ⊔ z\n⊢ y ⊓ z ⊔ x = (y ⊔ x) ⊓ (x ⊔ z)", "tactic": "rw [sup_inf_right, @sup_comm _ _ x]" } ]
[ 792, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 785, 1 ]
Mathlib/GroupTheory/GroupAction/Defs.lean
smul_one_smul
[ { "state_after": "no goals", "state_before": "M✝ : Type ?u.26534\nN✝ : Type ?u.26537\nG : Type ?u.26540\nA : Type ?u.26543\nB : Type ?u.26546\nα : Type u_3\nβ : Type ?u.26552\nγ : Type ?u.26555\nδ : Type ?u.26558\nM : Type u_1\nN : Type u_2\ninst✝⁴ : Monoid N\ninst✝³ : SMul M N\ninst✝² : MulAction N α\ninst✝¹ : SMul M α\ninst✝ : IsScalarTower M N α\nx : M\ny : α\n⊢ (x • 1) • y = x • y", "tactic": "rw [smul_assoc, one_smul]" } ]
[ 643, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 641, 1 ]
Mathlib/Data/Rat/Cast.lean
Rat.cast_lt
[]
[ 328, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 327, 1 ]
Mathlib/Data/Finsupp/Defs.lean
Finsupp.erase_ne
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.164124\nγ : Type ?u.164127\nι : Type ?u.164130\nM : Type u_2\nM' : Type ?u.164136\nN : Type ?u.164139\nP : Type ?u.164142\nG : Type ?u.164145\nH : Type ?u.164148\nR : Type ?u.164151\nS : Type ?u.164154\ninst✝ : Zero M\na a' : α\nf : α →₀ M\nh : a' ≠ a\n⊢ ↑(erase a f) a' = ↑f a'", "tactic": "classical simp only [erase, coe_mk, h, ite_false]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.164124\nγ : Type ?u.164127\nι : Type ?u.164130\nM : Type u_2\nM' : Type ?u.164136\nN : Type ?u.164139\nP : Type ?u.164142\nG : Type ?u.164145\nH : Type ?u.164148\nR : Type ?u.164151\nS : Type ?u.164154\ninst✝ : Zero M\na a' : α\nf : α →₀ M\nh : a' ≠ a\n⊢ ↑(erase a f) a' = ↑f a'", "tactic": "simp only [erase, coe_mk, h, ite_false]" } ]
[ 649, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 648, 1 ]
Mathlib/Order/Hom/Basic.lean
OrderEmbedding.monotone
[]
[ 666, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 665, 11 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Chebyshev.lean
Polynomial.Chebyshev.complex_ofReal_eval_T
[]
[ 56, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 55, 1 ]
Mathlib/Data/Analysis/Filter.lean
CFilter.ofEquiv_val
[ { "state_after": "case mk\nα : Type u_3\nβ : Type ?u.5122\nσ : Type u_1\nτ : Type u_2\ninst✝ : PartialOrder α\nF : CFilter α σ\nE : σ ≃ τ\na : τ\nf✝ : σ → α\npt✝ : σ\ninf✝ : σ → σ → σ\ninf_le_left✝ : ∀ (a b : σ), f✝ (inf✝ a b) ≤ f✝ a\ninf_le_right✝ : ∀ (a b : σ), f✝ (inf✝ a b) ≤ f✝ b\n⊢ f (ofEquiv E { f := f✝, pt := pt✝, inf := inf✝, inf_le_left := inf_le_left✝, inf_le_right := inf_le_right✝ }) a =\n f { f := f✝, pt := pt✝, inf := inf✝, inf_le_left := inf_le_left✝, inf_le_right := inf_le_right✝ } (↑E.symm a)", "state_before": "α : Type u_3\nβ : Type ?u.5122\nσ : Type u_1\nτ : Type u_2\ninst✝ : PartialOrder α\nF✝ : CFilter α σ\nE : σ ≃ τ\nF : CFilter α σ\na : τ\n⊢ f (ofEquiv E F) a = f F (↑E.symm a)", "tactic": "cases F" }, { "state_after": "no goals", "state_before": "case mk\nα : Type u_3\nβ : Type ?u.5122\nσ : Type u_1\nτ : Type u_2\ninst✝ : PartialOrder α\nF : CFilter α σ\nE : σ ≃ τ\na : τ\nf✝ : σ → α\npt✝ : σ\ninf✝ : σ → σ → σ\ninf_le_left✝ : ∀ (a b : σ), f✝ (inf✝ a b) ≤ f✝ a\ninf_le_right✝ : ∀ (a b : σ), f✝ (inf✝ a b) ≤ f✝ b\n⊢ f (ofEquiv E { f := f✝, pt := pt✝, inf := inf✝, inf_le_left := inf_le_left✝, inf_le_right := inf_le_right✝ }) a =\n f { f := f✝, pt := pt✝, inf := inf✝, inf_le_left := inf_le_left✝, inf_le_right := inf_le_right✝ } (↑E.symm a)", "tactic": "rfl" } ]
[ 78, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/CommSq.lean
CategoryTheory.IsPushout.inr_isoPushout_hom
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nZ X Y P : C\nf : Z ⟶ X\ng : Z ⟶ Y\ninl : X ⟶ P\ninr : Y ⟶ P\nh : IsPushout f g inl inr\ninst✝ : HasPushout f g\n⊢ inr ≫ (isoPushout h).hom = pushout.inr", "tactic": "simp [← Iso.eq_comp_inv]" } ]
[ 440, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Topology/Algebra/Group/Basic.lean
nhds_translation_mul_inv
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nG : Type w\nH : Type x\ninst✝³ : TopologicalSpace G\ninst✝² : Group G\ninst✝¹ : TopologicalGroup G\ninst✝ : TopologicalSpace α\nf : α → G\ns : Set α\nx✝ : α\nx : G\n⊢ 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x", "tactic": "simp" } ]
[ 815, 88 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 814, 1 ]
Mathlib/Data/List/Basic.lean
List.foldr_eta
[ { "state_after": "no goals", "state_before": "ι : Type ?u.232631\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\nl₁ l₂ : List α\n⊢ ∀ (l : List α), foldr cons [] l = l", "tactic": "simp only [foldr_self_append, append_nil, forall_const]" } ]
[ 2460, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2459, 1 ]
Mathlib/LinearAlgebra/Alternating.lean
AlternatingMap.map_add
[]
[ 194, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]
Mathlib/GroupTheory/GroupAction/Prod.lean
Prod.pow_mk
[]
[ 107, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Algebra/GroupPower/Ring.lean
sub_sq
[ { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.128156\nM : Type ?u.128159\ninst✝ : CommRing R\na b : R\n⊢ (a - b) ^ 2 = a ^ 2 - 2 * a * b + b ^ 2", "tactic": "rw [sub_eq_add_neg, add_sq, neg_sq, mul_neg, ← sub_eq_add_neg]" } ]
[ 284, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 283, 1 ]
Mathlib/LinearAlgebra/Eigenspace/Basic.lean
Module.End.map_generalizedEigenrange_le
[ { "state_after": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\nμ : K\nn : ℕ\n⊢ Submodule.map f (LinearMap.range ((f - ↑(algebraMap K (End K V)) μ) ^ n)) =\n LinearMap.range (f * (f - ↑(algebraMap K (End K V)) μ) ^ n)", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\nμ : K\nn : ℕ\n⊢ Submodule.map f (generalizedEigenrange f μ n) = LinearMap.range (f * (f - ↑(algebraMap K (End K V)) μ) ^ n)", "tactic": "rw [generalizedEigenrange]" }, { "state_after": "no goals", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\nμ : K\nn : ℕ\n⊢ Submodule.map f (LinearMap.range ((f - ↑(algebraMap K (End K V)) μ) ^ n)) =\n LinearMap.range (f * (f - ↑(algebraMap K (End K V)) μ) ^ n)", "tactic": "exact (LinearMap.range_comp _ _).symm" }, { "state_after": "no goals", "state_before": "K R : Type v\nV M : Type w\ninst✝⁵ : CommRing R\ninst✝⁴ : AddCommGroup M\ninst✝³ : Module R M\ninst✝² : Field K\ninst✝¹ : AddCommGroup V\ninst✝ : Module K V\nf : End K V\nμ : K\nn : ℕ\n⊢ LinearMap.range (f * (f - ↑(algebraMap K (End K V)) μ) ^ n) =\n LinearMap.range ((f - ↑(algebraMap K (End K V)) μ) ^ n * f)", "tactic": "rw [Algebra.mul_sub_algebraMap_pow_commutes]" } ]
[ 458, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 449, 1 ]
Mathlib/Data/MvPolynomial/Equiv.lean
MvPolynomial.mapAlgEquiv_trans
[ { "state_after": "case h.a\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_4\na a' a₁ a₂ : R\ne✝ : ℕ\ns : σ →₀ ℕ\ninst✝⁶ : CommSemiring R\nA₁ : Type u_1\nA₂ : Type u_2\nA₃ : Type u_3\ninst✝⁵ : CommSemiring A₁\ninst✝⁴ : CommSemiring A₂\ninst✝³ : CommSemiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nf : A₂ ≃ₐ[R] A₃\na✝ : MvPolynomial σ A₁\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ (↑(AlgEquiv.trans (mapAlgEquiv σ e) (mapAlgEquiv σ f)) a✝) =\n coeff m✝ (↑(mapAlgEquiv σ (AlgEquiv.trans e f)) a✝)", "state_before": "R : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_4\na a' a₁ a₂ : R\ne✝ : ℕ\ns : σ →₀ ℕ\ninst✝⁶ : CommSemiring R\nA₁ : Type u_1\nA₂ : Type u_2\nA₃ : Type u_3\ninst✝⁵ : CommSemiring A₁\ninst✝⁴ : CommSemiring A₂\ninst✝³ : CommSemiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nf : A₂ ≃ₐ[R] A₃\n⊢ AlgEquiv.trans (mapAlgEquiv σ e) (mapAlgEquiv σ f) = mapAlgEquiv σ (AlgEquiv.trans e f)", "tactic": "ext" }, { "state_after": "case h.a\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_4\na a' a₁ a₂ : R\ne✝ : ℕ\ns : σ →₀ ℕ\ninst✝⁶ : CommSemiring R\nA₁ : Type u_1\nA₂ : Type u_2\nA₃ : Type u_3\ninst✝⁵ : CommSemiring A₁\ninst✝⁴ : CommSemiring A₂\ninst✝³ : CommSemiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nf : A₂ ≃ₐ[R] A₃\na✝ : MvPolynomial σ A₁\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ (↑(map (RingHom.comp ↑f ↑e)) a✝) = coeff m✝ (↑(map ↑(AlgEquiv.trans e f)) a✝)", "state_before": "case h.a\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_4\na a' a₁ a₂ : R\ne✝ : ℕ\ns : σ →₀ ℕ\ninst✝⁶ : CommSemiring R\nA₁ : Type u_1\nA₂ : Type u_2\nA₃ : Type u_3\ninst✝⁵ : CommSemiring A₁\ninst✝⁴ : CommSemiring A₂\ninst✝³ : CommSemiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nf : A₂ ≃ₐ[R] A₃\na✝ : MvPolynomial σ A₁\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ (↑(AlgEquiv.trans (mapAlgEquiv σ e) (mapAlgEquiv σ f)) a✝) =\n coeff m✝ (↑(mapAlgEquiv σ (AlgEquiv.trans e f)) a✝)", "tactic": "simp only [AlgEquiv.trans_apply, mapAlgEquiv_apply, map_map]" }, { "state_after": "no goals", "state_before": "case h.a\nR : Type u\nS₁ : Type v\nS₂ : Type w\nS₃ : Type x\nσ : Type u_4\na a' a₁ a₂ : R\ne✝ : ℕ\ns : σ →₀ ℕ\ninst✝⁶ : CommSemiring R\nA₁ : Type u_1\nA₂ : Type u_2\nA₃ : Type u_3\ninst✝⁵ : CommSemiring A₁\ninst✝⁴ : CommSemiring A₂\ninst✝³ : CommSemiring A₃\ninst✝² : Algebra R A₁\ninst✝¹ : Algebra R A₂\ninst✝ : Algebra R A₃\ne : A₁ ≃ₐ[R] A₂\nf : A₂ ≃ₐ[R] A₃\na✝ : MvPolynomial σ A₁\nm✝ : σ →₀ ℕ\n⊢ coeff m✝ (↑(map (RingHom.comp ↑f ↑e)) a✝) = coeff m✝ (↑(map ↑(AlgEquiv.trans e f)) a✝)", "tactic": "rfl" } ]
[ 151, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Data/QPF/Multivariate/Basic.lean
MvQPF.liftpPreservation_iff_uniform
[ { "state_after": "no goals", "state_before": "n : ℕ\nF : TypeVec n → Type u_1\ninst✝ : MvFunctor F\nq : MvQPF F\n⊢ LiftPPreservation ↔ IsUniform", "tactic": "rw [← suppPreservation_iff_liftpPreservation, suppPreservation_iff_isUniform]" } ]
[ 286, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 285, 1 ]
Mathlib/MeasureTheory/Function/LpSeminorm.lean
MeasureTheory.memℒp_def
[]
[ 119, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 117, 1 ]
Mathlib/Computability/DFA.lean
DFA.mem_accepts
[ { "state_after": "no goals", "state_before": "α : Type u\nσ : Type v\nM : DFA α σ\nx : List α\n⊢ x ∈ accepts M ↔ evalFrom M M.start x ∈ M.accept", "tactic": "rfl" } ]
[ 101, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Order/CompleteLattice.lean
sSup_Prop_eq
[]
[ 1722, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1721, 1 ]
Mathlib/RingTheory/HahnSeries.lean
HahnSeries.C_eq_algebraMap
[]
[ 1086, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1085, 1 ]
Mathlib/Data/Num/Lemmas.lean
Num.le_iff_cmp
[ { "state_after": "α : Type ?u.484320\nm n : Num\n⊢ Ordering.swap (cmp m n) = Ordering.lt ↔ cmp m n = Ordering.gt", "state_before": "α : Type ?u.484320\nm n : Num\n⊢ cmp n m = Ordering.lt ↔ cmp m n = Ordering.gt", "tactic": "rw [← cmp_swap]" }, { "state_after": "no goals", "state_before": "α : Type ?u.484320\nm n : Num\n⊢ Ordering.swap (cmp m n) = Ordering.lt ↔ cmp m n = Ordering.gt", "tactic": "cases cmp m n <;> exact by decide" }, { "state_after": "no goals", "state_before": "α : Type ?u.484320\nm n : Num\n⊢ Ordering.swap Ordering.gt = Ordering.lt ↔ Ordering.gt = Ordering.gt", "tactic": "decide" } ]
[ 885, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 884, 1 ]
Mathlib/MeasureTheory/Integral/FundThmCalculus.lean
intervalIntegral.fderiv_integral
[]
[ 745, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 740, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
differentiableWithinAt_fst
[]
[ 197, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 1 ]
Mathlib/Order/LiminfLimsup.lean
Filter.bliminf_eq
[]
[ 394, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/MeasureTheory/MeasurableSpaceDef.lean
MeasurableSpace.measurableSet_injective
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.11608\nγ : Type ?u.11611\nδ : Type ?u.11614\nδ' : Type ?u.11617\nι : Sort ?u.11620\ns t u : Set α\nMeasurableSet'✝¹ : Set α → Prop\nmeasurableSet_empty✝¹ : MeasurableSet'✝¹ ∅\nmeasurableSet_compl✝¹ : ∀ (s : Set α), MeasurableSet'✝¹ s → MeasurableSet'✝¹ (sᶜ)\nmeasurableSet_iUnion✝¹ : ∀ (f : ℕ → Set α), (∀ (i : ℕ), MeasurableSet'✝¹ (f i)) → MeasurableSet'✝¹ (⋃ (i : ℕ), f i)\nMeasurableSet'✝ : Set α → Prop\nmeasurableSet_empty✝ : MeasurableSet'✝ ∅\nmeasurableSet_compl✝ : ∀ (s : Set α), MeasurableSet'✝ s → MeasurableSet'✝ (sᶜ)\nmeasurableSet_iUnion✝ : ∀ (f : ℕ → Set α), (∀ (i : ℕ), MeasurableSet'✝ (f i)) → MeasurableSet'✝ (⋃ (i : ℕ), f i)\nx✝ : MeasurableSet = MeasurableSet\n⊢ { MeasurableSet' := MeasurableSet'✝¹, measurableSet_empty := measurableSet_empty✝¹,\n measurableSet_compl := measurableSet_compl✝¹, measurableSet_iUnion := measurableSet_iUnion✝¹ } =\n { MeasurableSet' := MeasurableSet'✝, measurableSet_empty := measurableSet_empty✝,\n measurableSet_compl := measurableSet_compl✝, measurableSet_iUnion := measurableSet_iUnion✝ }", "tactic": "congr" } ]
[ 257, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 256, 1 ]
Mathlib/LinearAlgebra/AdicCompletion.lean
IsPrecomplete.prec
[]
[ 72, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 69, 1 ]
Mathlib/Order/GaloisConnection.lean
GaloisCoinsertion.l_injective
[]
[ 785, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 784, 1 ]
Mathlib/Algebra/Order/ToIntervalMod.lean
self_sub_toIcoDiv_zsmul
[]
[ 116, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Std/Data/List/Lemmas.lean
List.length_erase_of_mem
[ { "state_after": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl : List α\nh : a ∈ l\n⊢ length (eraseP (fun b => decide (a = b)) l) = pred (length l)", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl : List α\nh : a ∈ l\n⊢ length (List.erase l a) = pred (length l)", "tactic": "rw [erase_eq_eraseP]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : DecidableEq α\na : α\nl : List α\nh : a ∈ l\n⊢ length (eraseP (fun b => decide (a = b)) l) = pred (length l)", "tactic": "exact length_eraseP_of_mem h (decide_eq_true rfl)" } ]
[ 1063, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1061, 9 ]
Mathlib/Topology/ContinuousOn.lean
nhdsWithin_eq_nhds
[]
[ 221, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 9 ]
Mathlib/Data/Finset/Lattice.lean
Finset.lt_sup_iff
[ { "state_after": "case mp\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\n⊢ a < sup s f → ∃ b, b ∈ s ∧ a < f b\n\ncase mpr\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\n⊢ (∃ b, b ∈ s ∧ a < f b) → a < sup s f", "state_before": "F : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\n⊢ a < sup s f ↔ ∃ b, b ∈ s ∧ a < f b", "tactic": "apply Iff.intro" }, { "state_after": "case mp.cons\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a < sup t f → ∃ b, b ∈ t ∧ a < f b\n⊢ a < f c ∨ a < sup t f → ∃ b, b ∈ cons c t hc ∧ a < f b", "state_before": "case mp.cons\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a < sup t f → ∃ b, b ∈ t ∧ a < f b\n⊢ a < sup (cons c t hc) f → ∃ b, b ∈ cons c t hc ∧ a < f b", "tactic": "rw [sup_cons, lt_sup_iff]" }, { "state_after": "no goals", "state_before": "case mp.cons\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\nc : ι\nt : Finset ι\nhc : ¬c ∈ t\nih : a < sup t f → ∃ b, b ∈ t ∧ a < f b\n⊢ a < f c ∨ a < sup t f → ∃ b, b ∈ cons c t hc ∧ a < f b", "tactic": "exact fun\n| Or.inl h => ⟨c, mem_cons.2 (Or.inl rfl), h⟩\n| Or.inr h => let ⟨b, hb, hlt⟩ := ih h; ⟨b, mem_cons.2 (Or.inr hb), hlt⟩" }, { "state_after": "no goals", "state_before": "case mpr\nF : Type ?u.212488\nα : Type u_1\nβ : Type ?u.212494\nγ : Type ?u.212497\nι : Type u_2\nκ : Type ?u.212503\ninst✝¹ : LinearOrder α\ninst✝ : OrderBot α\ns : Finset ι\nf : ι → α\na : α\n⊢ (∃ b, b ∈ s ∧ a < f b) → a < sup s f", "tactic": "exact fun ⟨b, hb, hlt⟩ => lt_of_lt_of_le hlt (le_sup hb)" } ]
[ 701, 61 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 692, 11 ]
Mathlib/Topology/OmegaCompletePartialOrder.lean
Scott.isωSup_iff_isLUB
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : Preorder α\nc : Chain α\nx : α\n⊢ IsωSup c x ↔ IsLUB (range ↑c) x", "tactic": "simp [IsωSup, IsLUB, IsLeast, upperBounds, lowerBounds]" } ]
[ 45, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 43, 1 ]
Mathlib/Analysis/NormedSpace/AffineIsometry.lean
LinearIsometryEquiv.toAffineIsometryEquiv_toAffineIsometry
[]
[ 431, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 429, 1 ]
Mathlib/Analysis/Calculus/ContDiffDef.lean
contDiffOn_zero
[ { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\n⊢ ContDiffOn 𝕜 0 f s", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\n⊢ ContDiffOn 𝕜 0 f s ↔ ContinuousOn f s", "tactic": "refine' ⟨fun H => H.continuousOn, fun H => _⟩" }, { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx x₀ : E\nc : F\nm n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\n⊢ ContDiffOn 𝕜 0 f s", "tactic": "intro x hx m hm" }, { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u", "tactic": "have : (m : ℕ∞) = 0 := le_antisymm hm bot_le" }, { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn 0 f p u", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn (↑m) f p u", "tactic": "rw [this]" }, { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ HasFTaylorSeriesUpToOn 0 f (ftaylorSeriesWithin 𝕜 f s) (insert x s)", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ∃ u, u ∈ 𝓝[insert x s] x ∧ ∃ p, HasFTaylorSeriesUpToOn 0 f p u", "tactic": "refine' ⟨insert x s, self_mem_nhdsWithin, ftaylorSeriesWithin 𝕜 f s, _⟩" }, { "state_after": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ContinuousOn f (insert x s) ∧\n ∀ (x_1 : E), x_1 ∈ insert x s → ContinuousMultilinearMap.uncurry0 (ftaylorSeriesWithin 𝕜 f s x_1 0) = f x_1", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ HasFTaylorSeriesUpToOn 0 f (ftaylorSeriesWithin 𝕜 f s) (insert x s)", "tactic": "rw [hasFTaylorSeriesUpToOn_zero_iff]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ContinuousOn f (insert x s) ∧\n ∀ (x_1 : E), x_1 ∈ insert x s → ContinuousMultilinearMap.uncurry0 (ftaylorSeriesWithin 𝕜 f s x_1 0) = f x_1", "tactic": "exact ⟨by rwa [insert_eq_of_mem hx], fun x _ => by simp [ftaylorSeriesWithin]⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝ x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx : E\nhx : x ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\n⊢ ContinuousOn f (insert x s)", "tactic": "rwa [insert_eq_of_mem hx]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u\ninst✝⁸ : NontriviallyNormedField 𝕜\nE : Type uE\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace 𝕜 E\nF : Type uF\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace 𝕜 F\nG : Type uG\ninst✝³ : NormedAddCommGroup G\ninst✝² : NormedSpace 𝕜 G\nX : Type uX\ninst✝¹ : NormedAddCommGroup X\ninst✝ : NormedSpace 𝕜 X\ns s₁ t u : Set E\nf f₁ : E → F\ng : F → G\nx✝² x₀ : E\nc : F\nm✝ n : ℕ∞\np : E → FormalMultilinearSeries 𝕜 E F\nH : ContinuousOn f s\nx✝¹ : E\nhx : x✝¹ ∈ s\nm : ℕ\nhm : ↑m ≤ 0\nthis : ↑m = 0\nx : E\nx✝ : x ∈ insert x✝¹ s\n⊢ ContinuousMultilinearMap.uncurry0 (ftaylorSeriesWithin 𝕜 f s x 0) = f x", "tactic": "simp [ftaylorSeriesWithin]" } ]
[ 966, 81 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 959, 1 ]
Mathlib/Analysis/InnerProductSpace/Basic.lean
exists_maximal_orthonormal
[ { "state_after": "case refine_2\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nthis :\n ∃ m, m ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ s ⊆ m ∧ ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → m ⊆ a → a = m\n⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w\n\ncase refine_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\n⊢ ∀ (c : Set (Set E)),\n c ⊆ {b | Orthonormal 𝕜 Subtype.val} →\n IsChain (fun x x_1 => x ⊆ x_1) c →\n Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub", "state_before": "𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\n⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w", "tactic": "have := zorn_subset_nonempty { b | Orthonormal 𝕜 (Subtype.val : b → E) } ?_ _ hs" }, { "state_after": "case refine_2.intro.intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nb : Set E\nbi : b ∈ {b | Orthonormal 𝕜 Subtype.val}\nsb : s ⊆ b\nh : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b\n⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w\n\ncase refine_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\n⊢ ∀ (c : Set (Set E)),\n c ⊆ {b | Orthonormal 𝕜 Subtype.val} →\n IsChain (fun x x_1 => x ⊆ x_1) c →\n Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub", "state_before": "case refine_2\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nthis :\n ∃ m, m ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ s ⊆ m ∧ ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → m ⊆ a → a = m\n⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w\n\ncase refine_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\n⊢ ∀ (c : Set (Set E)),\n c ⊆ {b | Orthonormal 𝕜 Subtype.val} →\n IsChain (fun x x_1 => x ⊆ x_1) c →\n Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub", "tactic": "obtain ⟨b, bi, sb, h⟩ := this" }, { "state_after": "case refine_2.intro.intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nb : Set E\nbi : b ∈ {b | Orthonormal 𝕜 Subtype.val}\nsb : s ⊆ b\nh : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b\n⊢ ∀ (u : Set E), u ⊇ b → Orthonormal 𝕜 Subtype.val → u = b", "state_before": "case refine_2.intro.intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nb : Set E\nbi : b ∈ {b | Orthonormal 𝕜 Subtype.val}\nsb : s ⊆ b\nh : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b\n⊢ ∃ w _hw, Orthonormal 𝕜 Subtype.val ∧ ∀ (u : Set E), u ⊇ w → Orthonormal 𝕜 Subtype.val → u = w", "tactic": "refine' ⟨b, sb, bi, _⟩" }, { "state_after": "no goals", "state_before": "case refine_2.intro.intro.intro\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nb : Set E\nbi : b ∈ {b | Orthonormal 𝕜 Subtype.val}\nsb : s ⊆ b\nh : ∀ (a : Set E), a ∈ {b | Orthonormal 𝕜 Subtype.val} → b ⊆ a → a = b\n⊢ ∀ (u : Set E), u ⊇ b → Orthonormal 𝕜 Subtype.val → u = b", "tactic": "exact fun u hus hu => h u hu hus" }, { "state_after": "case refine_1.refine'_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nc : Set (Set E)\nhc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}\ncc : IsChain (fun x x_1 => x ⊆ x_1) c\n_c0 : Set.Nonempty c\n⊢ ⋃₀ c ∈ {b | Orthonormal 𝕜 Subtype.val}\n\ncase refine_1.refine'_2\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nc : Set (Set E)\nhc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}\ncc : IsChain (fun x x_1 => x ⊆ x_1) c\n_c0 : Set.Nonempty c\n⊢ ∀ (s : Set E), s ∈ c → s ⊆ ⋃₀ c", "state_before": "case refine_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\n⊢ ∀ (c : Set (Set E)),\n c ⊆ {b | Orthonormal 𝕜 Subtype.val} →\n IsChain (fun x x_1 => x ⊆ x_1) c →\n Set.Nonempty c → ∃ ub, ub ∈ {b | Orthonormal 𝕜 Subtype.val} ∧ ∀ (s : Set E), s ∈ c → s ⊆ ub", "tactic": "refine' fun c hc cc _c0 => ⟨⋃₀ c, _, _⟩" }, { "state_after": "no goals", "state_before": "case refine_1.refine'_1\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nc : Set (Set E)\nhc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}\ncc : IsChain (fun x x_1 => x ⊆ x_1) c\n_c0 : Set.Nonempty c\n⊢ ⋃₀ c ∈ {b | Orthonormal 𝕜 Subtype.val}", "tactic": "exact orthonormal_sUnion_of_directed cc.directedOn fun x xc => hc xc" }, { "state_after": "no goals", "state_before": "case refine_1.refine'_2\n𝕜 : Type u_2\nE : Type u_1\nF : Type ?u.2163317\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : InnerProductSpace 𝕜 E\ninst✝¹ : NormedAddCommGroup F\ninst✝ : InnerProductSpace ℝ F\ndec_E : DecidableEq E\nι : Type ?u.2163366\ndec_ι : DecidableEq ι\ns : Set E\nhs : Orthonormal 𝕜 Subtype.val\nc : Set (Set E)\nhc : c ⊆ {b | Orthonormal 𝕜 Subtype.val}\ncc : IsChain (fun x x_1 => x ⊆ x_1) c\n_c0 : Set.Nonempty c\n⊢ ∀ (s : Set E), s ∈ c → s ⊆ ⋃₀ c", "tactic": "exact fun _ => Set.subset_sUnion_of_mem" } ]
[ 968, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 959, 1 ]
Mathlib/Order/Hom/Lattice.lean
InfHom.ext
[]
[ 543, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 542, 1 ]
Std/Data/List/Lemmas.lean
List.infix_refl
[]
[ 1582, 70 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 1582, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.coe_equivMapOfInjective_apply
[]
[ 635, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 633, 1 ]
Mathlib/Analysis/Calculus/Inverse.lean
ApproximatesLinearOn.closedBall_subset_target
[]
[ 522, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 518, 1 ]
Mathlib/Combinatorics/SimpleGraph/Subgraph.lean
SimpleGraph.Subgraph.adj_comm
[]
[ 106, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 105, 1 ]
Std/Data/List/Init/Lemmas.lean
List.take_concat_get
[ { "state_after": "no goals", "state_before": "α : Type u_1\nl : List α\ni : Nat\nh : i < length l\n⊢ l = concat (take i l) l[i] ++ drop (i + 1) l", "tactic": "rw [concat_eq_append, append_assoc, singleton_append, get_drop_eq_drop, take_append_drop]" } ]
[ 154, 94 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 151, 1 ]
Mathlib/Data/MvPolynomial/Monad.lean
MvPolynomial.eval₂Hom_C_eq_bind₁
[]
[ 115, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 114, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.comap_fst_neBot
[]
[ 2385, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2383, 1 ]
Mathlib/RingTheory/Localization/Basic.lean
IsLocalization.monoidHom_ext
[]
[ 536, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 534, 1 ]
Mathlib/Combinatorics/SetFamily/Compression/UV.lean
UV.disjoint_of_mem_compression_of_not_mem
[ { "state_after": "α : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\nh : a ∈ s ∧ compress u v a ∈ s ∨ ¬a ∈ s ∧ ∃ b, b ∈ s ∧ compress u v b = a\nha : ¬a ∈ s\n⊢ Disjoint v a", "state_before": "α : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\nh : a ∈ 𝓒 u v s\nha : ¬a ∈ s\n⊢ Disjoint v a", "tactic": "rw [mem_compression] at h" }, { "state_after": "case inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\nha : ¬a ∈ s\nh : a ∈ s ∧ compress u v a ∈ s\n⊢ Disjoint v a\n\ncase inr.intro.intro.intro\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nhba : compress u v b = a\n⊢ Disjoint v a", "state_before": "α : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\nh : a ∈ s ∧ compress u v a ∈ s ∨ ¬a ∈ s ∧ ∃ b, b ∈ s ∧ compress u v b = a\nha : ¬a ∈ s\n⊢ Disjoint v a", "tactic": "obtain h | ⟨-, b, hb, hba⟩ := h" }, { "state_after": "case inr.intro.intro.intro\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nhba : (if Disjoint u b ∧ v ≤ b then (b ⊔ u) \\ v else b) = a\n⊢ Disjoint v a", "state_before": "case inr.intro.intro.intro\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nhba : compress u v b = a\n⊢ Disjoint v a", "tactic": "unfold compress at hba" }, { "state_after": "case inr.intro.intro.intro.inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : Disjoint u b ∧ v ≤ b\nhba : (b ⊔ u) \\ v = a\n⊢ Disjoint v a\n\ncase inr.intro.intro.intro.inr\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : ¬(Disjoint u b ∧ v ≤ b)\nhba : b = a\n⊢ Disjoint v a", "state_before": "case inr.intro.intro.intro\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nhba : (if Disjoint u b ∧ v ≤ b then (b ⊔ u) \\ v else b) = a\n⊢ Disjoint v a", "tactic": "split_ifs at hba" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b : α\nha : ¬a ∈ s\nh : a ∈ s ∧ compress u v a ∈ s\n⊢ Disjoint v a", "tactic": "cases ha h.1" }, { "state_after": "case inr.intro.intro.intro.inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : Disjoint u b ∧ v ≤ b\nhba : (b ⊔ u) \\ v = a\n⊢ Disjoint v ((b ⊔ u) \\ v)", "state_before": "case inr.intro.intro.intro.inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : Disjoint u b ∧ v ≤ b\nhba : (b ⊔ u) \\ v = a\n⊢ Disjoint v a", "tactic": "rw [← hba]" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro.inl\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : Disjoint u b ∧ v ≤ b\nhba : (b ⊔ u) \\ v = a\n⊢ Disjoint v ((b ⊔ u) \\ v)", "tactic": "exact disjoint_sdiff_self_right" }, { "state_after": "no goals", "state_before": "case inr.intro.intro.intro.inr\nα : Type u_1\ninst✝² : GeneralizedBooleanAlgebra α\ninst✝¹ : DecidableRel Disjoint\ninst✝ : DecidableRel fun x x_1 => x ≤ x_1\ns : Finset α\nu v a b✝ : α\nha : ¬a ∈ s\nb : α\nhb : b ∈ s\nh✝ : ¬(Disjoint u b ∧ v ≤ b)\nhba : b = a\n⊢ Disjoint v a", "tactic": "cases ne_of_mem_of_not_mem hb ha hba" } ]
[ 244, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Data/Nat/ModEq.lean
Nat.modEq_zero_iff_dvd
[ { "state_after": "no goals", "state_before": "m n a b c d : ℕ\n⊢ a ≡ 0 [MOD n] ↔ n ∣ a", "tactic": "rw [ModEq, zero_mod, dvd_iff_mod_eq_zero]" } ]
[ 79, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Data/Finset/Sort.lean
Finset.orderEmbOfFin_unique
[ { "state_after": "α : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ Set.range f = Set.range ↑(orderEmbOfFin s h)", "state_before": "α : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ f = ↑(orderEmbOfFin s h)", "tactic": "apply Fin.strictMono_unique hmono (s.orderEmbOfFin h).strictMono" }, { "state_after": "α : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ image f univ = s", "state_before": "α : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ Set.range f = Set.range ↑(orderEmbOfFin s h)", "tactic": "rw [range_orderEmbOfFin, ← Set.image_univ, ← coe_univ, ← coe_image, coe_inj]" }, { "state_after": "case refine'_1\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\nx : α\nhx : x ∈ image f univ\n⊢ x ∈ s\n\ncase refine'_2\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ card s ≤ card (image f univ)", "state_before": "α : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ image f univ = s", "tactic": "refine' eq_of_subset_of_card_le (fun x hx => _) _" }, { "state_after": "case refine'_1.intro.intro\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\nx : Fin k\nleft✝ : x ∈ univ\nhx : f x ∈ image f univ\n⊢ f x ∈ s", "state_before": "case refine'_1\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\nx : α\nhx : x ∈ image f univ\n⊢ x ∈ s", "tactic": "rcases mem_image.1 hx with ⟨x, _, rfl⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.intro.intro\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\nx : Fin k\nleft✝ : x ∈ univ\nhx : f x ∈ image f univ\n⊢ f x ∈ s", "tactic": "exact hfs x" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nβ : Type ?u.51338\ninst✝ : LinearOrder α\ns : Finset α\nk : ℕ\nh : card s = k\nf : Fin k → α\nhfs : ∀ (x : Fin k), f x ∈ s\nhmono : StrictMono f\n⊢ card s ≤ card (image f univ)", "tactic": "rw [h, card_image_of_injective _ hmono.injective, card_univ, Fintype.card_fin]" } ]
[ 223, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/LinearAlgebra/Vandermonde.lean
Matrix.vandermonde_transpose_mul_vandermonde
[ { "state_after": "no goals", "state_before": "R : Type u_1\ninst✝ : CommRing R\nn : ℕ\nv : Fin n → R\ni j : Fin n\n⊢ ((vandermonde v)ᵀ ⬝ vandermonde v) i j = ∑ k : Fin n, v k ^ (↑i + ↑j)", "tactic": "simp only [vandermonde_apply, Matrix.mul_apply, Matrix.transpose_apply, pow_add]" } ]
[ 75, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Prod.lean
HasStrictFDerivAt.prodMap
[]
[ 342, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 340, 11 ]
Mathlib/Data/Setoid/Partition.lean
IndexedPartition.mem_iff_index_eq
[]
[ 383, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 382, 1 ]
Mathlib/Logic/Embedding/Basic.lean
Function.Embedding.coe_subtype
[]
[ 236, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 235, 1 ]
Mathlib/Analysis/NormedSpace/CompactOperator.lean
isCompactOperator_iff_image_closedBall_subset_compact
[]
[ 181, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 176, 1 ]
Mathlib/Algebra/Quaternion.lean
QuaternionAlgebra.one_imK
[]
[ 202, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 9 ]