file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
list
commit
stringclasses
4 values
url
stringclasses
4 values
start
list
Mathlib/RingTheory/IsTensorProduct.lean
IsTensorProduct.equiv_toLinearMap
[]
[ 89, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 87, 1 ]
Mathlib/CategoryTheory/Sites/Grothendieck.lean
CategoryTheory.GrothendieckTopology.trivial_covering
[]
[ 255, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 254, 1 ]
Mathlib/Algebra/BigOperators/Intervals.lean
Finset.prod_Ico_succ_top
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ns₂ s₁ s : Finset α\na✝ : α\ng f✝ : α → β\ninst✝ : CommMonoid β\na b : ℕ\nhab : a ≤ b\nf : ℕ → β\n⊢ ∏ k in Ico a (b + 1), f k = (∏ k in Ico a b, f k) * f b", "tactic": "rw [Nat.Ico_succ_right_eq_insert_Ico hab, prod_insert right_not_mem_Ico, mul_comm]" } ]
[ 55, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/Data/ZMod/Basic.lean
ZMod.cast_pow'
[]
[ 394, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Mathlib/Algebra/Regular/SMul.lean
IsSMulRegular.of_mul_eq_one
[ { "state_after": "R : Type u_1\nS : Type ?u.9429\nM : Type u_2\na b : R\ns : S\ninst✝¹ : Monoid R\ninst✝ : MulAction R M\nh : a * b = 1\n⊢ IsSMulRegular M 1", "state_before": "R : Type u_1\nS : Type ?u.9429\nM : Type u_2\na b : R\ns : S\ninst✝¹ : Monoid R\ninst✝ : MulAction R M\nh : a * b = 1\n⊢ IsSMulRegular M (?m.11206 h * b)", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nS : Type ?u.9429\nM : Type u_2\na b : R\ns : S\ninst✝¹ : Monoid R\ninst✝ : MulAction R M\nh : a * b = 1\n⊢ IsSMulRegular M 1", "tactic": "exact one M" } ]
[ 151, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/Topology/Separation.lean
isOpen_singleton_of_finite_mem_nhds
[ { "state_after": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\n⊢ IsOpen {x}", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\n⊢ IsOpen {x}", "tactic": "have A : {x} ⊆ s := by simp only [singleton_subset_iff, mem_of_mem_nhds hs]" }, { "state_after": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\n⊢ IsOpen {x}", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\n⊢ IsOpen {x}", "tactic": "have B : IsClosed (s \\ {x}) := (hsf.subset (diff_subset _ _)).isClosed" }, { "state_after": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\nC : (s \\ {x})ᶜ ∈ 𝓝 x\n⊢ IsOpen {x}", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\n⊢ IsOpen {x}", "tactic": "have C : (s \\ {x})ᶜ ∈ 𝓝 x := B.isOpen_compl.mem_nhds fun h => h.2 rfl" }, { "state_after": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\nC : (s \\ {x})ᶜ ∈ 𝓝 x\nD : {x} ∈ 𝓝 x\n⊢ IsOpen {x}", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\nC : (s \\ {x})ᶜ ∈ 𝓝 x\n⊢ IsOpen {x}", "tactic": "have D : {x} ∈ 𝓝 x := by simpa only [← diff_eq, diff_diff_cancel_left A] using inter_mem hs C" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\nC : (s \\ {x})ᶜ ∈ 𝓝 x\nD : {x} ∈ 𝓝 x\n⊢ IsOpen {x}", "tactic": "rwa [← mem_interior_iff_mem_nhds, ← singleton_subset_iff, subset_interior_iff_isOpen] at D" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\n⊢ {x} ⊆ s", "tactic": "simp only [singleton_subset_iff, mem_of_mem_nhds hs]" }, { "state_after": "no goals", "state_before": "α✝ : Type u\nβ : Type v\ninst✝² : TopologicalSpace α✝\nα : Type u_1\ninst✝¹ : TopologicalSpace α\ninst✝ : T1Space α\nx : α\ns : Set α\nhs : s ∈ 𝓝 x\nhsf : Set.Finite s\nA : {x} ⊆ s\nB : IsClosed (s \\ {x})\nC : (s \\ {x})ᶜ ∈ 𝓝 x\n⊢ {x} ∈ 𝓝 x", "tactic": "simpa only [← diff_eq, diff_diff_cancel_left A] using inter_mem hs C" } ]
[ 773, 93 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 767, 1 ]
Mathlib/Order/Filter/ENNReal.lean
ENNReal.limsup_mul_le
[ { "state_after": "α : Type u_1\nf : Filter α\ninst✝ : CountableInterFilter f\nu v : α → ℝ≥0∞\n⊢ u * v ≤ᶠ[f] fun x => limsup u f * v x", "state_before": "α : Type u_1\nf : Filter α\ninst✝ : CountableInterFilter f\nu v : α → ℝ≥0∞\n⊢ limsup (u * v) f ≤ limsup (fun x => limsup u f * v x) f", "tactic": "refine limsup_le_limsup ?_" }, { "state_after": "no goals", "state_before": "α : Type u_1\nf : Filter α\ninst✝ : CountableInterFilter f\nu v : α → ℝ≥0∞\n⊢ u * v ≤ᶠ[f] fun x => limsup u f * v x", "tactic": "filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl" } ]
[ 81, 52 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/CategoryTheory/Localization/Predicate.lean
CategoryTheory.Localization.essSurj
[]
[ 210, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 205, 1 ]
Mathlib/Order/Cover.lean
toDual_covby_toDual_iff
[]
[ 252, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 251, 1 ]
Mathlib/CategoryTheory/Adjunction/Basic.lean
CategoryTheory.Adjunction.he''
[ { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nG_obj : D → C\ne : (X : C) → (Y : D) → (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y)\nhe : ∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : F.obj X ⟶ Y), ↑(e X' Y) (F.map f ≫ g) = f ≫ ↑(e X Y) g\nX' X : C\nY : D\nf : X' ⟶ X\ng : X ⟶ G_obj Y\n⊢ F.map f ≫ ↑(e X Y).symm g = ↑(e X' Y).symm (f ≫ g)", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nG_obj : D → C\ne : (X : C) → (Y : D) → (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y)\nhe : ∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : F.obj X ⟶ Y), ↑(e X' Y) (F.map f ≫ g) = f ≫ ↑(e X Y) g\nX' X : C\nY : D\nf : X' ⟶ X\ng : X ⟶ G_obj Y\n⊢ F.map f ≫ ↑(e X Y).symm g = ↑(e X' Y).symm (f ≫ g)", "tactic": "intros" }, { "state_after": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nG_obj : D → C\ne : (X : C) → (Y : D) → (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y)\nhe : ∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : F.obj X ⟶ Y), ↑(e X' Y) (F.map f ≫ g) = f ≫ ↑(e X Y) g\nX' X : C\nY : D\nf : X' ⟶ X\ng : X ⟶ G_obj Y\n⊢ f ≫ ↑(e X Y) (↑(e X Y).symm g) = f ≫ g", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nG_obj : D → C\ne : (X : C) → (Y : D) → (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y)\nhe : ∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : F.obj X ⟶ Y), ↑(e X' Y) (F.map f ≫ g) = f ≫ ↑(e X Y) g\nX' X : C\nY : D\nf : X' ⟶ X\ng : X ⟶ G_obj Y\n⊢ F.map f ≫ ↑(e X Y).symm g = ↑(e X' Y).symm (f ≫ g)", "tactic": "rw [Equiv.eq_symm_apply, he]" }, { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nD : Type u₂\ninst✝ : Category D\nF : C ⥤ D\nG : D ⥤ C\nG_obj : D → C\ne : (X : C) → (Y : D) → (F.obj X ⟶ Y) ≃ (X ⟶ G_obj Y)\nhe : ∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : F.obj X ⟶ Y), ↑(e X' Y) (F.map f ≫ g) = f ≫ ↑(e X Y) g\nX' X : C\nY : D\nf : X' ⟶ X\ng : X ⟶ G_obj Y\n⊢ f ≫ ↑(e X Y) (↑(e X Y).symm g) = f ≫ g", "tactic": "simp" } ]
[ 549, 47 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 548, 9 ]
Mathlib/Analysis/Asymptotics/Asymptotics.lean
Asymptotics.isLittleO_iff_forall_isBigOWith
[ { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.24405\nE : Type u_2\nF : Type u_3\nG : Type ?u.24414\nE' : Type ?u.24417\nF' : Type ?u.24420\nG' : Type ?u.24423\nE'' : Type ?u.24426\nF'' : Type ?u.24429\nG'' : Type ?u.24432\nR : Type ?u.24435\nR' : Type ?u.24438\n𝕜 : Type ?u.24441\n𝕜' : Type ?u.24444\ninst✝¹² : Norm E\ninst✝¹¹ : Norm F\ninst✝¹⁰ : Norm G\ninst✝⁹ : SeminormedAddCommGroup E'\ninst✝⁸ : SeminormedAddCommGroup F'\ninst✝⁷ : SeminormedAddCommGroup G'\ninst✝⁶ : NormedAddCommGroup E''\ninst✝⁵ : NormedAddCommGroup F''\ninst✝⁴ : NormedAddCommGroup G''\ninst✝³ : SeminormedRing R\ninst✝² : SeminormedRing R'\ninst✝¹ : NormedField 𝕜\ninst✝ : NormedField 𝕜'\nc c' c₁ c₂ : ℝ\nf : α → E\ng : α → F\nk : α → G\nf' : α → E'\ng' : α → F'\nk' : α → G'\nf'' : α → E''\ng'' : α → F''\nk'' : α → G''\nl l' : Filter α\n⊢ f =o[l] g ↔ ∀ ⦃c : ℝ⦄, 0 < c → IsBigOWith c l f g", "tactic": "rw [IsLittleO_def]" } ]
[ 150, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 149, 1 ]
Mathlib/Analysis/Calculus/Deriv/Basic.lean
HasDerivAt.hasDerivAtFilter
[]
[ 377, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 375, 1 ]
Mathlib/Data/Finite/Card.lean
Finite.card_le_of_surjective
[ { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2785\ninst✝ : Finite α\nf : α → β\nhf : Function.Surjective f\nthis : Fintype α\n⊢ Nat.card β ≤ Nat.card α", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2785\ninst✝ : Finite α\nf : α → β\nhf : Function.Surjective f\n⊢ Nat.card β ≤ Nat.card α", "tactic": "haveI := Fintype.ofFinite α" }, { "state_after": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2785\ninst✝ : Finite α\nf : α → β\nhf : Function.Surjective f\nthis✝ : Fintype α\nthis : Fintype β\n⊢ Nat.card β ≤ Nat.card α", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2785\ninst✝ : Finite α\nf : α → β\nhf : Function.Surjective f\nthis : Fintype α\n⊢ Nat.card β ≤ Nat.card α", "tactic": "haveI := Fintype.ofSurjective f hf" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type u_2\nγ : Type ?u.2785\ninst✝ : Finite α\nf : α → β\nhf : Function.Surjective f\nthis✝ : Fintype α\nthis : Fintype β\n⊢ Nat.card β ≤ Nat.card α", "tactic": "simpa only [Nat.card_eq_fintype_card, ge_iff_le] using Fintype.card_le_of_surjective f hf" } ]
[ 116, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 112, 1 ]
Mathlib/Order/Minimal.lean
IsAntichain.minimals_upperClosure
[ { "state_after": "no goals", "state_before": "α : Type u_1\nr r₁ r₂ : α → α → Prop\ns t : Set α\na✝ b✝ : α\ninst✝ : PartialOrder α\nhs : IsAntichain (fun x x_1 => x ≤ x_1) s\na : α\nx✝ : a ∈ minimals (fun x x_1 => x ≤ x_1) ↑(upperClosure s)\nb : α\nhb : b ∈ s\nhba : b ≤ a\nright✝ : ∀ ⦃b : α⦄, b ∈ ↑(upperClosure s) → (fun x x_1 => x ≤ x_1) b a → (fun x x_1 => x ≤ x_1) a b\n⊢ a ∈ s", "tactic": "rwa [eq_of_mem_minimals ‹a ∈ _› (subset_upperClosure hb) hba]" }, { "state_after": "no goals", "state_before": "α : Type u_1\nr r₁ r₂ : α → α → Prop\ns t : Set α\na✝ b✝ : α\ninst✝ : PartialOrder α\nhs : IsAntichain (fun x x_1 => x ≤ x_1) s\na : α\nha : a ∈ s\nb : α\nx✝ : b ∈ ↑(upperClosure s)\nhba : (fun x x_1 => x ≤ x_1) b a\nc : α\nhc : c ∈ s\nhcb : c ≤ b\n⊢ (fun x x_1 => x ≤ x_1) a b", "tactic": "rwa [hs.eq' ha hc (hcb.trans hba)]" } ]
[ 239, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 233, 1 ]
Mathlib/LinearAlgebra/FiniteDimensional.lean
FiniteDimensional.lt_aleph0_of_linearIndependent
[ { "state_after": "K : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (#ι) < lift ℵ₀", "state_before": "K : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ (#ι) < ℵ₀", "tactic": "apply Cardinal.lift_lt.1" }, { "state_after": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (#ι) ≤ ?b\n\ncase a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ ?b < lift ℵ₀\n\ncase b\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ Cardinal", "state_before": "K : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (#ι) < lift ℵ₀", "tactic": "apply lt_of_le_of_lt" }, { "state_after": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (Module.rank K V) < lift ℵ₀", "state_before": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (#ι) ≤ ?b\n\ncase a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ ?b < lift ℵ₀\n\ncase b\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ Cardinal", "tactic": "apply cardinal_lift_le_rank_of_linearIndependent h" }, { "state_after": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ ↑(finrank K V) < ℵ₀", "state_before": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ lift (Module.rank K V) < lift ℵ₀", "tactic": "rw [← finrank_eq_rank, Cardinal.lift_aleph0, Cardinal.lift_natCast]" }, { "state_after": "no goals", "state_before": "case a\nK : Type u\nV : Type v\ninst✝⁵ : DivisionRing K\ninst✝⁴ : AddCommGroup V\ninst✝³ : Module K V\nV₂ : Type v'\ninst✝² : AddCommGroup V₂\ninst✝¹ : Module K V₂\nι : Type w\ninst✝ : FiniteDimensional K V\nv : ι → V\nh : LinearIndependent K v\n⊢ ↑(finrank K V) < ℵ₀", "tactic": "apply Cardinal.nat_lt_aleph0" } ]
[ 301, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 295, 1 ]
Mathlib/Order/Atoms.lean
IsCoatom.Ici
[]
[ 143, 18 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 142, 1 ]
Mathlib/Topology/Instances/ENNReal.lean
ENNReal.mul_iSup
[ { "state_after": "case pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ∀ (i : ι), f i = 0\n⊢ a * iSup f = ⨆ (i : ι), a * f i\n\ncase neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ a * iSup f = ⨆ (i : ι), a * f i", "state_before": "α : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\n⊢ a * iSup f = ⨆ (i : ι), a * f i", "tactic": "by_cases hf : ∀ i, f i = 0" }, { "state_after": "α : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ∀ (i : ι), f i = 0\n⊢ f = fun x => 0\n\ncase pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\na : ℝ≥0∞\nhf : ∀ (i : ι), (fun x => 0) i = 0\n⊢ (a * ⨆ (x : ι), 0) = ⨆ (i : ι), a * (fun x => 0) i", "state_before": "case pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ∀ (i : ι), f i = 0\n⊢ a * iSup f = ⨆ (i : ι), a * f i", "tactic": "obtain rfl : f = fun _ => 0" }, { "state_after": "case pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\na : ℝ≥0∞\nhf : ∀ (i : ι), (fun x => 0) i = 0\n⊢ (a * ⨆ (x : ι), 0) = ⨆ (i : ι), a * (fun x => 0) i", "state_before": "α : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ∀ (i : ι), f i = 0\n⊢ f = fun x => 0\n\ncase pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\na : ℝ≥0∞\nhf : ∀ (i : ι), (fun x => 0) i = 0\n⊢ (a * ⨆ (x : ι), 0) = ⨆ (i : ι), a * (fun x => 0) i", "tactic": "exact funext hf" }, { "state_after": "no goals", "state_before": "case pos\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\na : ℝ≥0∞\nhf : ∀ (i : ι), (fun x => 0) i = 0\n⊢ (a * ⨆ (x : ι), 0) = ⨆ (i : ι), a * (fun x => 0) i", "tactic": "simp only [iSup_zero_eq_zero, mul_zero]" }, { "state_after": "case neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ ContinuousAt (fun x => a * id x) (⨆ (i : ι), f i)", "state_before": "case neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ a * iSup f = ⨆ (i : ι), a * f i", "tactic": "refine' (monotone_id.const_mul' _).map_iSup_of_continuousAt _ (mul_zero a)" }, { "state_after": "case neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ id (⨆ (i : ι), f i) ≠ 0", "state_before": "case neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ ContinuousAt (fun x => a * id x) (⨆ (i : ι), f i)", "tactic": "refine' ENNReal.Tendsto.const_mul tendsto_id (Or.inl _)" }, { "state_after": "no goals", "state_before": "case neg\nα : Type ?u.153814\nβ : Type ?u.153817\nγ : Type ?u.153820\na✝ b c d : ℝ≥0∞\nr p q : ℝ≥0\nx y z ε ε₁ ε₂ : ℝ≥0∞\ns : Set ℝ≥0∞\nι : Sort u_1\nf : ι → ℝ≥0∞\na : ℝ≥0∞\nhf : ¬∀ (i : ι), f i = 0\n⊢ id (⨆ (i : ι), f i) ≠ 0", "tactic": "exact mt iSup_eq_zero.1 hf" } ]
[ 648, 31 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 641, 1 ]
Mathlib/Data/Multiset/Sort.lean
Multiset.sort_zero
[]
[ 63, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 62, 1 ]
Mathlib/Data/Sum/Order.lean
OrderIso.sumLexDualAntidistrib_inl
[]
[ 712, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 710, 1 ]
Mathlib/Analysis/Convex/Side.lean
AffineSubspace.wOppSide_pointReflection
[]
[ 844, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 842, 1 ]
Mathlib/Data/Sigma/Basic.lean
Prod.fst_comp_toSigma
[]
[ 174, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 173, 1 ]
Mathlib/Analysis/Calculus/FDeriv/Mul.lean
Differentiable.smul
[]
[ 214, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 213, 1 ]
Mathlib/Data/Nat/Prime.lean
Nat.Prime.minFac_eq
[]
[ 375, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 374, 1 ]
Mathlib/Init/CcLemmas.lean
not_eq_of_eq_false
[]
[ 76, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 75, 1 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.toAddMonoidMom_commutes
[]
[ 718, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 716, 1 ]
Mathlib/LinearAlgebra/Isomorphisms.lean
LinearMap.quotientInfEquivSupQuotient_symm_apply_right
[]
[ 148, 58 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 145, 1 ]
Mathlib/Data/Fintype/Basic.lean
Finset.compl_insert
[ { "state_after": "case a\nα : Type u_1\nβ : Type ?u.12293\nγ : Type ?u.12296\ninst✝¹ : Fintype α\ns t : Finset α\ninst✝ : DecidableEq α\na a✝ : α\n⊢ a✝ ∈ insert a sᶜ ↔ a✝ ∈ erase (sᶜ) a", "state_before": "α : Type u_1\nβ : Type ?u.12293\nγ : Type ?u.12296\ninst✝¹ : Fintype α\ns t : Finset α\ninst✝ : DecidableEq α\na : α\n⊢ insert a sᶜ = erase (sᶜ) a", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nα : Type u_1\nβ : Type ?u.12293\nγ : Type ?u.12296\ninst✝¹ : Fintype α\ns t : Finset α\ninst✝ : DecidableEq α\na a✝ : α\n⊢ a✝ ∈ insert a sᶜ ↔ a✝ ∈ erase (sᶜ) a", "tactic": "simp only [not_or, mem_insert, iff_self_iff, mem_compl, mem_erase]" } ]
[ 230, 69 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 228, 1 ]
Mathlib/Topology/Separation.lean
Inducing.injective
[]
[ 198, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 196, 11 ]
Mathlib/Data/Multiset/Dedup.lean
Multiset.dedup_cons_of_not_mem
[]
[ 54, 82 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 53, 1 ]
Mathlib/MeasureTheory/Function/L1Space.lean
MeasureTheory.Integrable.add'
[ { "state_after": "no goals", "state_before": "α : Type u_2\nβ : Type u_1\nγ : Type ?u.940671\nδ : Type ?u.940674\nm : MeasurableSpace α\nμ ν : Measure α\ninst✝² : MeasurableSpace δ\ninst✝¹ : NormedAddCommGroup β\ninst✝ : NormedAddCommGroup γ\nf g : α → β\nhf : Integrable f\nhg : Integrable g\na : α\n⊢ ↑‖f a + g a‖₊ ≤ ↑‖f a‖₊ + ↑‖g a‖₊", "tactic": "exact_mod_cast nnnorm_add_le _ _" } ]
[ 660, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 654, 1 ]
Mathlib/Data/Set/Lattice.lean
Set.biInter_subset_of_mem
[]
[ 873, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 871, 1 ]
Mathlib/RingTheory/GradedAlgebra/Basic.lean
GradedRing.proj_recompose
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nR : Type ?u.79391\nA : Type u_2\nσ : Type u_3\ninst✝⁷ : DecidableEq ι\ninst✝⁶ : AddMonoid ι\ninst✝⁵ : CommSemiring R\ninst✝⁴ : Semiring A\ninst✝³ : Algebra R A\ninst✝² : SetLike σ A\ninst✝¹ : AddSubmonoidClass σ A\n𝒜 : ι → σ\ninst✝ : GradedRing 𝒜\na : ⨁ (i : ι), { x // x ∈ 𝒜 i }\ni : ι\n⊢ ↑(proj 𝒜 i) (↑(decompose 𝒜).symm a) = ↑(decompose 𝒜).symm (↑(of (fun i => (fun i => { x // x ∈ 𝒜 i }) i) i) (↑a i))", "tactic": "rw [GradedRing.proj_apply, decompose_symm_of, Equiv.apply_symm_apply]" } ]
[ 122, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_iff_not_smul_mem_span
[ { "state_after": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nha : ∃ y, y ∈ Finsupp.supported R R (univ \\ {i}) ∧ ↑(Finsupp.total ι M R v) y = a • v i\n⊢ a = 0", "state_before": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nha : a • v i ∈ span R (v '' (univ \\ {i}))\n⊢ a = 0", "tactic": "rw [Finsupp.span_image_eq_map_total, mem_map] at ha" }, { "state_after": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : l ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\n⊢ a = 0", "state_before": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nha : ∃ y, y ∈ Finsupp.supported R R (univ \\ {i}) ∧ ↑(Finsupp.total ι M R v) y = a • v i\n⊢ a = 0", "tactic": "rcases ha with ⟨l, hl, e⟩" }, { "state_after": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : Finsupp.single i a ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\n⊢ a = 0", "state_before": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : l ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\n⊢ a = 0", "tactic": "rw [sub_eq_zero.1 (linearIndependent_iff.1 hv (l - Finsupp.single i a) (by simp [e]))] at hl" }, { "state_after": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : Finsupp.single i a ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\nhn : ¬a = 0\n⊢ False", "state_before": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : Finsupp.single i a ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\n⊢ a = 0", "tactic": "by_contra hn" }, { "state_after": "no goals", "state_before": "case intro.intro\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : Finsupp.single i a ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\nhn : ¬a = 0\n⊢ False", "tactic": "exact (not_mem_of_mem_diff (hl <| by simp [hn])) (mem_singleton _)" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : l ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\n⊢ ↑(Finsupp.total ι M R v) (l - Finsupp.single i a) = 0", "tactic": "simp [e]" }, { "state_after": "no goals", "state_before": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na✝ b : R\nx y : M\nhv✝ hv : LinearIndependent R v\ni : ι\na : R\nl : ι →₀ R\nhl : Finsupp.single i a ∈ Finsupp.supported R R (univ \\ {i})\ne : ↑(Finsupp.total ι M R v) l = a • v i\nhn : ¬a = 0\n⊢ i ∈ ↑(Finsupp.single i a).support", "tactic": "simp [hn]" }, { "state_after": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\n⊢ ↑l i = ↑0 i", "state_before": "ι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\n⊢ l = 0", "tactic": "ext i" }, { "state_after": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\n⊢ ↑l i = 0", "state_before": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\n⊢ ↑l i = ↑0 i", "tactic": "simp only [Finsupp.zero_apply]" }, { "state_after": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ False", "state_before": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\n⊢ ↑l i = 0", "tactic": "by_contra hn" }, { "state_after": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ↑l i • v i ∈ span R (v '' (univ \\ {i}))", "state_before": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ False", "tactic": "refine' hn (H i _ _)" }, { "state_after": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ Finsupp.single i (↑l i) - l ∈ Finsupp.supported R R (univ \\ {i})\n\ncase h.refine'_2\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i (↑l i) - l) = ↑l i • v i", "state_before": "case h\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ↑l i • v i ∈ span R (v '' (univ \\ {i}))", "tactic": "refine' (Finsupp.mem_span_image_iff_total R).2 ⟨Finsupp.single i (l i) - l, _, _⟩" }, { "state_after": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ∀ (x : ι), ¬x ∈ univ \\ {i} → ↑(Finsupp.single i (↑l i) - l) x = 0", "state_before": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ Finsupp.single i (↑l i) - l ∈ Finsupp.supported R R (univ \\ {i})", "tactic": "rw [Finsupp.mem_supported']" }, { "state_after": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\nj : ι\nhj : ¬j ∈ univ \\ {i}\n⊢ ↑(Finsupp.single i (↑l i) - l) j = 0", "state_before": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ∀ (x : ι), ¬x ∈ univ \\ {i} → ↑(Finsupp.single i (↑l i) - l) x = 0", "tactic": "intro j hj" }, { "state_after": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\nj : ι\nhj : ¬j ∈ univ \\ {i}\nhij : j = i\n⊢ ↑(Finsupp.single i (↑l i) - l) j = 0", "state_before": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\nj : ι\nhj : ¬j ∈ univ \\ {i}\n⊢ ↑(Finsupp.single i (↑l i) - l) j = 0", "tactic": "have hij : j = i :=\n Classical.not_not.1 fun hij : j ≠ i =>\n hj ((mem_diff _).2 ⟨mem_univ _, fun h => hij (eq_of_mem_singleton h)⟩)" }, { "state_after": "no goals", "state_before": "case h.refine'_1\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\nj : ι\nhj : ¬j ∈ univ \\ {i}\nhij : j = i\n⊢ ↑(Finsupp.single i (↑l i) - l) j = 0", "tactic": "simp [hij]" }, { "state_after": "no goals", "state_before": "case h.refine'_2\nι : Type u'\nι' : Type ?u.472009\nR : Type u_1\nK : Type ?u.472015\nM : Type u_2\nM' : Type ?u.472021\nM'' : Type ?u.472024\nV : Type u\nV' : Type ?u.472029\nv : ι → M\ninst✝⁶ : Ring R\ninst✝⁵ : AddCommGroup M\ninst✝⁴ : AddCommGroup M'\ninst✝³ : AddCommGroup M''\ninst✝² : Module R M\ninst✝¹ : Module R M'\ninst✝ : Module R M''\na b : R\nx y : M\nhv : LinearIndependent R v\nH : ∀ (i : ι) (a : R), a • v i ∈ span R (v '' (univ \\ {i})) → a = 0\nl : ι →₀ R\nhl : ↑(Finsupp.total ι M R v) l = 0\ni : ι\nhn : ¬↑l i = 0\n⊢ ↑(Finsupp.total ι M R v) (Finsupp.single i (↑l i) - l) = ↑l i • v i", "tactic": "simp [hl]" } ]
[ 851, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 832, 1 ]
Mathlib/Analysis/Normed/Field/Basic.lean
Real.toNNReal_mul_nnnorm
[ { "state_after": "case a\nα : Type ?u.381131\nβ : Type ?u.381134\nγ : Type ?u.381137\nι : Type ?u.381140\nx y : ℝ\nhx : 0 ≤ x\n⊢ ↑(toNNReal x * ‖y‖₊) = ↑‖x * y‖₊", "state_before": "α : Type ?u.381131\nβ : Type ?u.381134\nγ : Type ?u.381137\nι : Type ?u.381140\nx y : ℝ\nhx : 0 ≤ x\n⊢ toNNReal x * ‖y‖₊ = ‖x * y‖₊", "tactic": "ext" }, { "state_after": "no goals", "state_before": "case a\nα : Type ?u.381131\nβ : Type ?u.381134\nγ : Type ?u.381137\nι : Type ?u.381140\nx y : ℝ\nhx : 0 ≤ x\n⊢ ↑(toNNReal x * ‖y‖₊) = ↑‖x * y‖₊", "tactic": "simp only [NNReal.coe_mul, nnnorm_mul, coe_nnnorm, Real.toNNReal_of_nonneg, norm_of_nonneg, hx,\n coe_mk]" } ]
[ 815, 12 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 812, 1 ]
Mathlib/Order/Monotone/Monovary.lean
MonovaryOn.comp_antitoneOn_right
[]
[ 369, 79 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 367, 1 ]
Mathlib/RepresentationTheory/Action.lean
Action.functorCategoryMonoidalEquivalence.μIso_inv_app
[ { "state_after": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nA B : Action V G\n⊢ inv ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom =\n 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit)", "state_before": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nA B : Action V G\n⊢ (MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).inv.app PUnit.unit =\n 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit)", "tactic": "rw [← NatIso.app_inv, ← IsIso.Iso.inv_hom]" }, { "state_after": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nA B : Action V G\n⊢ ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom ≫\n 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) =\n 𝟙\n (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗\n (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj\n PUnit.unit)", "state_before": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nA B : Action V G\n⊢ inv ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom =\n 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit)", "tactic": "refine' IsIso.inv_eq_of_hom_inv_id _" }, { "state_after": "no goals", "state_before": "V : Type (u + 1)\ninst✝¹ : LargeCategory V\nG : MonCat\ninst✝ : MonoidalCategory V\nA B : Action V G\n⊢ ((MonoidalFunctor.μIso (functorCategoryMonoidalEquivalence V G) A B).app PUnit.unit).hom ≫\n 𝟙 (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj (A ⊗ B)).obj PUnit.unit) =\n 𝟙\n (((functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj A ⊗\n (functorCategoryMonoidalEquivalence V G).toLaxMonoidalFunctor.toFunctor.obj B).obj\n PUnit.unit)", "tactic": "rw [Category.comp_id, NatIso.app_hom, MonoidalFunctor.μIso_hom,\n functorCategoryMonoidalEquivalence.μ_app]" } ]
[ 653, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 648, 1 ]
Mathlib/GroupTheory/Index.lean
Subgroup.index_eq_zero_of_relindex_eq_zero
[]
[ 393, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 392, 1 ]
Mathlib/LinearAlgebra/AffineSpace/Independent.lean
affineIndependent_of_ne_of_mem_of_not_mem_of_mem
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\n⊢ AffineIndependent k (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2))", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\n⊢ AffineIndependent k ![p₁, p₂, p₃]", "tactic": "rw [← affineIndependent_equiv (Equiv.swap (1 : Fin 3) 2)]" }, { "state_after": "case h.e'_9\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\n⊢ ![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2) = ![p₁, p₃, p₂]", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\n⊢ AffineIndependent k (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2))", "tactic": "convert affineIndependent_of_ne_of_mem_of_mem_of_not_mem hp₁p₃ hp₁ hp₃ hp₂ using 1" }, { "state_after": "case h.e'_9.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\nx : Fin 3\n⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) x = Matrix.vecCons p₁ ![p₃, p₂] x", "state_before": "case h.e'_9\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\n⊢ ![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2) = ![p₁, p₃, p₂]", "tactic": "ext x" }, { "state_after": "no goals", "state_before": "case h.e'_9.h\nk : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\nι : Type ?u.460888\ns : AffineSubspace k P\np₁ p₂ p₃ : P\nhp₁p₃ : p₁ ≠ p₃\nhp₁ : p₁ ∈ s\nhp₂ : ¬p₂ ∈ s\nhp₃ : p₃ ∈ s\nx : Fin 3\n⊢ (![p₁, p₂, p₃] ∘ ↑(Equiv.swap 1 2)) x = Matrix.vecCons p₁ ![p₃, p₂] x", "tactic": "fin_cases x <;> rfl" } ]
[ 704, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 698, 1 ]
Mathlib/Combinatorics/Pigeonhole.lean
Finset.exists_card_fiber_lt_of_card_lt_nsmul
[ { "state_after": "α : Type u\nβ : Type v\nM : Type w\ninst✝¹ : DecidableEq β\ns : Finset α\nt : Finset β\nf : α → β\nw : α → M\nb : M\nn : ℕ\ninst✝ : LinearOrderedCommSemiring M\nht : ∑ a in s, 1 < card t • b\n⊢ ∃ y, y ∈ t ∧ ∑ a in filter (fun x => f x = y) s, 1 < b", "state_before": "α : Type u\nβ : Type v\nM : Type w\ninst✝¹ : DecidableEq β\ns : Finset α\nt : Finset β\nf : α → β\nw : α → M\nb : M\nn : ℕ\ninst✝ : LinearOrderedCommSemiring M\nht : ↑(card s) < card t • b\n⊢ ∃ y, y ∈ t ∧ ↑(card (filter (fun x => f x = y) s)) < b", "tactic": "simp_rw [cast_card] at ht⊢" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nM : Type w\ninst✝¹ : DecidableEq β\ns : Finset α\nt : Finset β\nf : α → β\nw : α → M\nb : M\nn : ℕ\ninst✝ : LinearOrderedCommSemiring M\nht : ∑ a in s, 1 < card t • b\n⊢ ∃ y, y ∈ t ∧ ∑ a in filter (fun x => f x = y) s, 1 < b", "tactic": "exact\n exists_sum_fiber_lt_of_sum_fiber_nonneg_of_sum_lt_nsmul\n (fun _ _ => sum_nonneg fun _ _ => zero_le_one) ht" } ]
[ 258, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 253, 1 ]
Mathlib/Algebra/Order/Sub/Canonical.lean
tsub_self_add
[]
[ 349, 46 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 348, 1 ]
Mathlib/Analysis/SpecialFunctions/Arsinh.lean
ContDiffOn.arsinh
[]
[ 290, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 289, 1 ]
Mathlib/MeasureTheory/PiSystem.lean
mem_generatePiSystem_iUnion_elim
[ { "state_after": "case base\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nh_s : s ∈ ⋃ (b : β), g b\n⊢ ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\n\ncase inter\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s t' : Set α\nh_gen_s : generatePiSystem (⋃ (b : β), g b) s\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) t'\nh_nonempty : Set.Nonempty (s ∩ t')\nh_s : ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\nh_t' : ∃ T f, (t' = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\n⊢ ∃ T f, (s ∩ t' = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "state_before": "α : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nh_t : t ∈ generatePiSystem (⋃ (b : β), g b)\n⊢ ∃ T f, (t = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "induction' h_t with s h_s s t' h_gen_s h_gen_t' h_nonempty h_s h_t'" }, { "state_after": "case base.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nb : β\nh_s_in_t' : s ∈ (fun b => g b) b\n⊢ ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "state_before": "case base\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nh_s : s ∈ ⋃ (b : β), g b\n⊢ ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "rcases h_s with ⟨t', ⟨⟨b, rfl⟩, h_s_in_t'⟩⟩" }, { "state_after": "case base.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nb : β\nh_s_in_t' : s ∈ (fun b => g b) b\n⊢ (s = ⋂ (b_1 : β) (_ : b_1 ∈ {b}), (fun x => s) b_1) ∧ ∀ (b_1 : β), b_1 ∈ {b} → (fun x => s) b_1 ∈ g b_1", "state_before": "case base.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nb : β\nh_s_in_t' : s ∈ (fun b => g b) b\n⊢ ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "refine' ⟨{b}, fun _ => s, _⟩" }, { "state_after": "no goals", "state_before": "case base.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nb : β\nh_s_in_t' : s ∈ (fun b => g b) b\n⊢ (s = ⋂ (b_1 : β) (_ : b_1 ∈ {b}), (fun x => s) b_1) ∧ ∀ (b_1 : β), b_1 ∈ {b} → (fun x => s) b_1 ∈ g b_1", "tactic": "simpa using h_s_in_t'" }, { "state_after": "case inter.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nh_gen_s : generatePiSystem (⋃ (b : β), g b) s\nh_s : ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nh_nonempty : Set.Nonempty (s ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∃ T f, ((s ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "state_before": "case inter\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s t' : Set α\nh_gen_s : generatePiSystem (⋃ (b : β), g b) s\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) t'\nh_nonempty : Set.Nonempty (s ∩ t')\nh_s : ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\nh_t' : ∃ T f, (t' = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\n⊢ ∃ T f, (s ∩ t' = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "rcases h_t' with ⟨T_t', ⟨f_t', ⟨rfl, h_t'⟩⟩⟩" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∃ T f,\n (((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) = ⋂ (b : β) (_ : b ∈ T), f b) ∧\n ∀ (b : β), b ∈ T → f b ∈ g b", "state_before": "case inter.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt s : Set α\nh_gen_s : generatePiSystem (⋃ (b : β), g b) s\nh_s : ∃ T f, (s = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nh_nonempty : Set.Nonempty (s ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∃ T f, ((s ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) = ⋂ (b : β) (_ : b ∈ T), f b) ∧ ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "rcases h_s with ⟨T_s, ⟨f_s, ⟨rfl, h_s⟩⟩⟩" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ (((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) =\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b) ∧\n ∀ (b : β),\n b ∈ T_s ∪ T_t' →\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈\n g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∃ T f,\n (((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) = ⋂ (b : β) (_ : b ∈ T), f b) ∧\n ∀ (b : β), b ∈ T → f b ∈ g b", "tactic": "use T_s ∪ T_t', fun b : β =>\n if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b\n else if b ∈ T_t' then f_t' b else (∅ : Set α)" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.left\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) =\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b\n\ncase inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∀ (b : β),\n b ∈ T_s ∪ T_t' →\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈ g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ (((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) =\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b) ∧\n ∀ (b : β),\n b ∈ T_s ∪ T_t' →\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈\n g b", "tactic": "constructor" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\n⊢ (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈ g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ∀ (b : β),\n b ∈ T_s ∪ T_t' →\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈ g b", "tactic": "intro b h_b" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\n⊢ (if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) ∈ g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\n⊢ (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b ∈ g b", "tactic": "simp only []" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.right.inl.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\n⊢ f_s b ∩ f_t' b ∈ g b\n\ncase inter.intro.intro.intro.intro.intro.intro.right.inl.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ f_s b ∈ g b\n\ncase inter.intro.intro.intro.intro.intro.intro.right.inr.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\n⊢ f_t' b ∈ g b\n\ncase inter.intro.intro.intro.intro.intro.intro.right.inr.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : ¬b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ ∅ ∈ g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\n⊢ (if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) ∈ g b", "tactic": "split_ifs with hbs hbt hbt" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ (a ∈ (⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) ↔\n a ∈\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.left\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\n⊢ ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) =\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b", "tactic": "ext a" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ ((∀ (i : β), i ∈ T_s → a ∈ f_s i) ∧ ∀ (i : β), i ∈ T_t' → a ∈ f_t' i) ↔\n ∀ (i : β),\n (i ∈ T_s → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅) ∧\n (i ∈ T_t' → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅)", "state_before": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ (a ∈ (⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) ↔\n a ∈\n ⋂ (b : β) (_ : b ∈ T_s ∪ T_t'),\n (fun b => if b ∈ T_s then if b ∈ T_t' then f_s b ∩ f_t' b else f_s b else if b ∈ T_t' then f_t' b else ∅) b", "tactic": "simp_rw [Set.mem_inter_iff, Set.mem_iInter, Finset.mem_union, or_imp]" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ (∀ (x : β), (x ∈ T_s → a ∈ f_s x) ∧ (x ∈ T_t' → a ∈ f_t' x)) ↔\n ∀ (i : β),\n (i ∈ T_s → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅) ∧\n (i ∈ T_t' → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅)", "state_before": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ ((∀ (i : β), i ∈ T_s → a ∈ f_s i) ∧ ∀ (i : β), i ∈ T_t' → a ∈ f_t' i) ↔\n ∀ (i : β),\n (i ∈ T_s → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅) ∧\n (i ∈ T_t' → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅)", "tactic": "rw [← forall_and]" }, { "state_after": "case pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_s b ∧ a ∈ f_t' b\n⊢ a ∈ f_s b ∩ f_t' b\n\ncase neg\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\nh1 : a ∈ f_s b\n⊢ a ∈ f_s b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_t' b\n⊢ a ∈ f_t' b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_s b ∩ f_t' b\n⊢ a ∈ f_s b ∧ a ∈ f_t' b\n\ncase neg\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\nh1 : a ∈ f_s b\n⊢ a ∈ f_s b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_t' b\n⊢ a ∈ f_t' b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.left.h\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\n⊢ (∀ (x : β), (x ∈ T_s → a ∈ f_s x) ∧ (x ∈ T_t' → a ∈ f_t' x)) ↔\n ∀ (i : β),\n (i ∈ T_s → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅) ∧\n (i ∈ T_t' → a ∈ if i ∈ T_s then if i ∈ T_t' then f_s i ∩ f_t' i else f_s i else if i ∈ T_t' then f_t' i else ∅)", "tactic": "constructor <;> intro h1 b <;> by_cases hbs : b ∈ T_s <;> by_cases hbt : b ∈ T_t' <;>\n specialize h1 b <;>\n simp only [hbs, hbt, if_true, if_false, true_imp_iff, and_self_iff, false_imp_iff,\n and_true_iff, true_and_iff] at h1⊢" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_s b ∧ a ∈ f_t' b\n⊢ a ∈ f_s b ∩ f_t' b\n\ncase neg\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\nh1 : a ∈ f_s b\n⊢ a ∈ f_s b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_t' b\n⊢ a ∈ f_t' b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_s b ∩ f_t' b\n⊢ a ∈ f_s b ∧ a ∈ f_t' b\n\ncase neg\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\nh1 : a ∈ f_s b\n⊢ a ∈ f_s b\n\ncase pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_t' b\n⊢ a ∈ f_t' b", "tactic": "all_goals exact h1" }, { "state_after": "no goals", "state_before": "case pos\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\na : α\nb : β\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\nh1 : a ∈ f_t' b\n⊢ a ∈ f_t' b", "tactic": "exact h1" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.right.inl.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\n⊢ ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) ⊆ f_s b ∩ f_t' b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inl.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\n⊢ f_s b ∩ f_t' b ∈ g b", "tactic": "refine' h_pi b (f_s b) (h_s b hbs) (f_t' b) (h_t' b hbt) (Set.Nonempty.mono _ h_nonempty)" }, { "state_after": "no goals", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inl.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : b ∈ T_t'\n⊢ ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b) ⊆ f_s b ∩ f_t' b", "tactic": "exact Set.inter_subset_inter (Set.biInter_subset_of_mem hbs) (Set.biInter_subset_of_mem hbt)" }, { "state_after": "no goals", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inl.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ f_s b ∈ g b", "tactic": "exact h_s b hbs" }, { "state_after": "no goals", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inr.inl\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : ¬b ∈ T_s\nhbt : b ∈ T_t'\n⊢ f_t' b ∈ g b", "tactic": "exact h_t' b hbt" }, { "state_after": "case inter.intro.intro.intro.intro.intro.intro.right.inr.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∨ b ∈ T_t'\nhbs : ¬b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ ∅ ∈ g b", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inr.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∪ T_t'\nhbs : ¬b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ ∅ ∈ g b", "tactic": "rw [Finset.mem_union] at h_b" }, { "state_after": "no goals", "state_before": "case inter.intro.intro.intro.intro.intro.intro.right.inr.inr\nα : Type u_1\nβ : Type u_2\ng : β → Set (Set α)\nh_pi : ∀ (b : β), IsPiSystem (g b)\nt : Set α\nT_t' : Finset β\nf_t' : β → Set α\nh_t' : ∀ (b : β), b ∈ T_t' → f_t' b ∈ g b\nh_gen_t' : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nT_s : Finset β\nf_s : β → Set α\nh_s : ∀ (b : β), b ∈ T_s → f_s b ∈ g b\nh_gen_s : generatePiSystem (⋃ (b : β), g b) (⋂ (b : β) (_ : b ∈ T_s), f_s b)\nh_nonempty : Set.Nonempty ((⋂ (b : β) (_ : b ∈ T_s), f_s b) ∩ ⋂ (b : β) (_ : b ∈ T_t'), f_t' b)\nb : β\nh_b : b ∈ T_s ∨ b ∈ T_t'\nhbs : ¬b ∈ T_s\nhbt : ¬b ∈ T_t'\n⊢ ∅ ∈ g b", "tactic": "apply False.elim (h_b.elim hbs hbt)" } ]
[ 311, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 281, 1 ]
Mathlib/RingTheory/IntegralClosure.lean
IsIntegralClosure.algebraMap_injective
[]
[ 834, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 832, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.norm_incl
[]
[ 729, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 728, 1 ]
Mathlib/Data/Matrix/Block.lean
Matrix.blockDiagonal_one
[ { "state_after": "no goals", "state_before": "l : Type ?u.138725\nm : Type u_1\nn : Type ?u.138731\no : Type u_3\np : Type ?u.138737\nq : Type ?u.138740\nm' : o → Type ?u.138745\nn' : o → Type ?u.138750\np' : o → Type ?u.138755\nR : Type ?u.138758\nS : Type ?u.138761\nα : Type u_2\nβ : Type ?u.138767\ninst✝⁴ : DecidableEq o\ninst✝³ : Zero α\ninst✝² : Zero β\ninst✝¹ : DecidableEq m\ninst✝ : One α\n⊢ (blockDiagonal fun x => diagonal fun x => 1) = diagonal fun x => 1", "tactic": "rw [blockDiagonal_diagonal]" } ]
[ 416, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 414, 1 ]
src/lean/Init/Data/List/Basic.lean
List.drop_nil
[ { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nγ : Type w\ni : Nat\n⊢ drop i nil = nil", "tactic": "cases i <;> rfl" } ]
[ 481, 18 ]
d5348dfac847a56a4595fb6230fd0708dcb4e7e9
https://github.com/leanprover/lean4
[ 480, 9 ]
Mathlib/Data/Set/Finite.lean
Set.infinite_of_not_bddBelow
[ { "state_after": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝¹ : SemilatticeInf α\ninst✝ : Nonempty α\ns : Set α\n⊢ ¬Set.Infinite s → BddBelow s", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝¹ : SemilatticeInf α\ninst✝ : Nonempty α\ns : Set α\n⊢ ¬BddBelow s → Set.Infinite s", "tactic": "contrapose!" }, { "state_after": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝¹ : SemilatticeInf α\ninst✝ : Nonempty α\ns : Set α\n⊢ Set.Finite s → BddBelow s", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝¹ : SemilatticeInf α\ninst✝ : Nonempty α\ns : Set α\n⊢ ¬Set.Infinite s → BddBelow s", "tactic": "rw [not_infinite]" }, { "state_after": "no goals", "state_before": "α : Type u\nβ : Type v\nι : Sort w\nγ : Type x\ninst✝¹ : SemilatticeInf α\ninst✝ : Nonempty α\ns : Set α\n⊢ Set.Finite s → BddBelow s", "tactic": "exact Finite.bddBelow" } ]
[ 1630, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1627, 1 ]
Mathlib/Data/IsROrC/Basic.lean
IsROrC.bit0_im
[]
[ 190, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 189, 1 ]
Mathlib/Algebra/Regular/Pow.lean
IsRightRegular.pow_iff
[ { "state_after": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nn0 : 0 < n\n⊢ IsRightRegular (a ^ n) → IsRightRegular a", "state_before": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nn0 : 0 < n\n⊢ IsRightRegular (a ^ n) ↔ IsRightRegular a", "tactic": "refine' ⟨_, IsRightRegular.pow n⟩" }, { "state_after": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nn0 : 0 < n\n⊢ IsRightRegular (a * a ^ Nat.pred n) → IsRightRegular a", "state_before": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nn0 : 0 < n\n⊢ IsRightRegular (a ^ n) → IsRightRegular a", "tactic": "rw [← Nat.succ_pred_eq_of_pos n0, pow_succ]" }, { "state_after": "no goals", "state_before": "R : Type u_1\na b : R\ninst✝ : Monoid R\nn : ℕ\nn0 : 0 < n\n⊢ IsRightRegular (a * a ^ Nat.pred n) → IsRightRegular a", "tactic": "exact IsRightRegular.of_mul" } ]
[ 60, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
lcm_eq_zero_iff
[ { "state_after": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b : α\nh : lcm a b = 0\nthis : Associated (a * b) 0\n⊢ a = 0 ∨ b = 0", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b : α\nh : lcm a b = 0\n⊢ a = 0 ∨ b = 0", "tactic": "have : Associated (a * b) 0 := (gcd_mul_lcm a b).symm.trans <| by rw [h, mul_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b : α\nh : lcm a b = 0\nthis : Associated (a * b) 0\n⊢ a = 0 ∨ b = 0", "tactic": "rwa [← mul_eq_zero, ← associated_zero_iff_eq_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b : α\nh : lcm a b = 0\n⊢ Associated (gcd a b * lcm a b) 0", "tactic": "rw [h, mul_zero]" }, { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝¹ : CancelCommMonoidWithZero α\ninst✝ : GCDMonoid α\na b : α\n⊢ a = 0 ∨ b = 0 → lcm a b = 0", "tactic": "rintro (rfl | rfl) <;> [apply lcm_zero_left; apply lcm_zero_right]" } ]
[ 733, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 728, 1 ]
Mathlib/MeasureTheory/Measure/MeasureSpaceDef.lean
MeasureTheory.measure_toMeasurable
[ { "state_after": "α : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\n⊢ ↑↑μ\n (if h : ∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s then Exists.choose h\n else\n if h' : ∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u) then\n Exists.choose h'\n else Exists.choose (_ : ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑↑μ t = ↑↑μ s)) =\n ↑↑μ s", "state_before": "α : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\n⊢ ↑↑μ (toMeasurable μ s) = ↑↑μ s", "tactic": "rw [toMeasurable_def]" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\n⊢ ↑↑μ (Exists.choose hs) = ↑↑μ s\n\ncase inr.inl\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ¬∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\nh's : ∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u)\n⊢ ↑↑μ (Exists.choose h's) = ↑↑μ s\n\ncase inr.inr\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ¬∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\nh's : ¬∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u)\n⊢ ↑↑μ (Exists.choose (_ : ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑↑μ t = ↑↑μ s)) = ↑↑μ s", "state_before": "α : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\n⊢ ↑↑μ\n (if h : ∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s then Exists.choose h\n else\n if h' : ∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u) then\n Exists.choose h'\n else Exists.choose (_ : ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑↑μ t = ↑↑μ s)) =\n ↑↑μ s", "tactic": "split_ifs with hs h's" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\n⊢ ↑↑μ (Exists.choose hs) = ↑↑μ s", "tactic": "exact measure_congr hs.choose_spec.snd.2" }, { "state_after": "no goals", "state_before": "case inr.inl\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ¬∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\nh's : ∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u)\n⊢ ↑↑μ (Exists.choose h's) = ↑↑μ s", "tactic": "simpa only [inter_univ] using h's.choose_spec.snd.2 univ MeasurableSet.univ" }, { "state_after": "no goals", "state_before": "case inr.inr\nα : Type u_1\nβ : Type ?u.144519\nγ : Type ?u.144522\nδ : Type ?u.144525\nι : Type ?u.144528\ninst✝ : MeasurableSpace α\nμ μ₁ μ₂ : Measure α\ns✝ s₁ s₂ t s : Set α\nhs : ¬∃ t x, MeasurableSet t ∧ t =ᵐ[μ] s\nh's : ¬∃ t x, MeasurableSet t ∧ ∀ (u : Set α), MeasurableSet u → ↑↑μ (t ∩ u) = ↑↑μ (s ∩ u)\n⊢ ↑↑μ (Exists.choose (_ : ∃ t, s ⊆ t ∧ MeasurableSet t ∧ ↑↑μ t = ↑↑μ s)) = ↑↑μ s", "tactic": "exact (exists_measurable_superset μ s).choose_spec.2.2" } ]
[ 623, 59 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 619, 1 ]
Mathlib/Algebra/Group/Pi.lean
Pi.update_eq_div_mul_mulSingle
[ { "state_after": "case h\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j✝ : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\nj : I\n⊢ Function.update g i x j = (g / mulSingle i (g i) * mulSingle i x) j", "state_before": "ι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\n⊢ Function.update g i x = g / mulSingle i (g i) * mulSingle i x", "tactic": "ext j" }, { "state_after": "case h.inl\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\n⊢ Function.update g i x i = (g / mulSingle i (g i) * mulSingle i x) i\n\ncase h.inr\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j✝ : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\nj : I\nh : i ≠ j\n⊢ Function.update g i x j = (g / mulSingle i (g i) * mulSingle i x) j", "state_before": "case h\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j✝ : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\nj : I\n⊢ Function.update g i x j = (g / mulSingle i (g i) * mulSingle i x) j", "tactic": "rcases eq_or_ne i j with (rfl | h)" }, { "state_after": "no goals", "state_before": "case h.inl\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\n⊢ Function.update g i x i = (g / mulSingle i (g i) * mulSingle i x) i", "tactic": "simp" }, { "state_after": "no goals", "state_before": "case h.inr\nι : Type ?u.76203\nα : Type ?u.76206\nI : Type u\nf : I → Type v\nx✝ y : (i : I) → f i\ni j✝ : I\ninst✝¹ : DecidableEq I\ninst✝ : (i : I) → Group (f i)\ng : (i : I) → f i\nx : f i\nj : I\nh : i ≠ j\n⊢ Function.update g i x j = (g / mulSingle i (g i) * mulSingle i x) j", "tactic": "simp [Function.update_noteq h.symm, h]" } ]
[ 572, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 567, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineEquiv.lean
AffineEquiv.toAffineMap_injective
[ { "state_after": "case mk.mk\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : ↑{ toEquiv := e, linear := el, map_vadd' := h } = ↑{ toEquiv := e', linear := el', map_vadd' := h' }\n⊢ { toEquiv := e, linear := el, map_vadd' := h } = { toEquiv := e', linear := el', map_vadd' := h' }", "state_before": "k : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\n⊢ Injective toAffineMap", "tactic": "rintro ⟨e, el, h⟩ ⟨e', el', h'⟩ H" }, { "state_after": "case mk.mk\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ { toEquiv := e, linear := el, map_vadd' := h } = { toEquiv := e', linear := el', map_vadd' := h' }", "state_before": "case mk.mk\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : ↑{ toEquiv := e, linear := el, map_vadd' := h } = ↑{ toEquiv := e', linear := el', map_vadd' := h' }\n⊢ { toEquiv := e, linear := el, map_vadd' := h } = { toEquiv := e', linear := el', map_vadd' := h' }", "tactic": "simp only [(toAffineMap_mk), (AffineMap.mk.injEq), Equiv.coe_inj,\n LinearEquiv.toLinearMap_inj] at H" }, { "state_after": "case mk.mk.e_toEquiv\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ e = e'\n\ncase mk.mk.e_linear\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ el = el'", "state_before": "case mk.mk\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ { toEquiv := e, linear := el, map_vadd' := h } = { toEquiv := e', linear := el', map_vadd' := h' }", "tactic": "congr" }, { "state_after": "no goals", "state_before": "case mk.mk.e_toEquiv\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ e = e'\n\ncase mk.mk.e_linear\nk : Type u_5\nP₁ : Type u_1\nP₂ : Type u_2\nP₃ : Type ?u.29718\nP₄ : Type ?u.29721\nV₁ : Type u_3\nV₂ : Type u_4\nV₃ : Type ?u.29730\nV₄ : Type ?u.29733\ninst✝¹² : Ring k\ninst✝¹¹ : AddCommGroup V₁\ninst✝¹⁰ : Module k V₁\ninst✝⁹ : AffineSpace V₁ P₁\ninst✝⁸ : AddCommGroup V₂\ninst✝⁷ : Module k V₂\ninst✝⁶ : AffineSpace V₂ P₂\ninst✝⁵ : AddCommGroup V₃\ninst✝⁴ : Module k V₃\ninst✝³ : AffineSpace V₃ P₃\ninst✝² : AddCommGroup V₄\ninst✝¹ : Module k V₄\ninst✝ : AffineSpace V₄ P₄\ne : P₁ ≃ P₂\nel : V₁ ≃ₗ[k] V₂\nh : ∀ (p : P₁) (v : V₁), ↑e (v +ᵥ p) = ↑el v +ᵥ ↑e p\ne' : P₁ ≃ P₂\nel' : V₁ ≃ₗ[k] V₂\nh' : ∀ (p : P₁) (v : V₁), ↑e' (v +ᵥ p) = ↑el' v +ᵥ ↑e' p\nH : e = e' ∧ el = el'\n⊢ el = el'", "tactic": "exacts [H.1, H.2]" } ]
[ 87, 20 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/Logic/Function/Basic.lean
Function.ne_iff
[]
[ 90, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 89, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.restr_trans
[]
[ 893, 95 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 892, 1 ]
Mathlib/Data/Rat/Lemmas.lean
Rat.mul_num_den'
[ { "state_after": "q r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "state_before": "q r : ℚ\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "tactic": "let s := q.num * r.num /. (q.den * r.den : ℤ)" }, { "state_after": "q r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "state_before": "q r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "tactic": "have hs : (q.den * r.den : ℤ) ≠ 0 := Int.coe_nat_ne_zero_iff_pos.mpr (mul_pos q.pos r.pos)" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "state_before": "q r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "tactic": "obtain ⟨c, ⟨c_mul_num, c_mul_den⟩⟩ :=\n exists_eq_mul_div_num_and_eq_mul_div_den (q.num * r.num) hs" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ↑q.den * ↑r.den * (q * r).num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ (q * r).num * ↑q.den * ↑r.den = q.num * r.num * ↑(q * r).den", "tactic": "rw [c_mul_num, mul_assoc, mul_comm]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ↑q.den * ↑r.den * (q * r).num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "nth_rw 1 [c_mul_den]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * (↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num) =\n c * ((↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den)", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "repeat' rw [Int.mul_assoc]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den ∨\n c = 0", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * (↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num) =\n c * ((↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den)", "tactic": "apply mul_eq_mul_left_iff.2" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ¬c = 0 →\n ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den ∨\n c = 0", "tactic": "rw [or_iff_not_imp_right]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ ¬c = 0 →\n ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "intro" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q.num /. ↑q.den * (r.num /. ↑r.den) = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "have h : _ = s :=\n @mul_def' q.num q.den r.num r.den (Int.coe_nat_ne_zero_iff_pos.mpr q.pos)\n (Int.coe_nat_ne_zero_iff_pos.mpr r.pos)" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q.num /. ↑q.den * (r.num /. ↑r.den) = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "rw [num_den, num_den] at h" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * s.num = (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑s.den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num =\n (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den", "tactic": "rw [h]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ s.num * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den = (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑s.den", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * s.num = (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑s.den", "tactic": "rw [mul_comm]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ s = ↑(q.num * r.num) / ↑(↑q.den * ↑r.den)", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ s.num * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den = (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑s.den", "tactic": "apply Rat.eq_iff_mul_eq_mul.mp" }, { "state_after": "no goals", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\na✝ : ¬c = 0\nh : q * r = s\n⊢ s = ↑(q.num * r.num) / ↑(↑q.den * ↑r.den)", "tactic": "rw [← divInt_eq_div]" }, { "state_after": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * (↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num) =\n c * ((↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den)", "state_before": "case intro.intro\nq r : ℚ\ns : ℚ := q.num * r.num /. (↑q.den * ↑r.den)\nhs : ↑q.den * ↑r.den ≠ 0\nc : ℤ\nc_mul_num : q.num * r.num = c * (↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num\nc_mul_den : ↑q.den * ↑r.den = c * ↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den\n⊢ c * (↑(↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).den * (q * r).num) =\n c * ((↑(q.num * r.num) / ↑(↑q.den * ↑r.den)).num * ↑(q * r).den)", "tactic": "rw [Int.mul_assoc]" } ]
[ 145, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 126, 1 ]
Mathlib/Analysis/Convex/Integral.lean
ae_eq_const_or_norm_average_lt_of_norm_le_const
[ { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C\n\ncase inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "α : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "cases' le_or_lt C 0 with hC0 hC0" }, { "state_after": "case pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C\n\ncase neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : ¬Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "by_cases hfi : Integrable f μ" }, { "state_after": "case neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : ¬Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C\n\ncase pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C\n\ncase neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : ¬Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "swap" }, { "state_after": "case pos.inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ = ⊤\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C\n\ncase pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case pos\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "cases' (le_top : μ univ ≤ ∞).eq_or_lt with hμt hμt" }, { "state_after": "case pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "haveI : IsFiniteMeasure μ := ⟨hμt⟩" }, { "state_after": "case h_le\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C\n\ncase pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\nh_le : ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "replace h_le : ∀ᵐ x ∂μ, f x ∈ closedBall (0 : E) C" }, { "state_after": "no goals", "state_before": "case pos.inr\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\nh_le : ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "simpa only [interior_closedBall _ hC0.ne', mem_ball_zero_iff] using\n (strictConvex_closedBall ℝ (0 : E) C).ae_eq_const_or_average_mem_interior isClosed_ball h_le\n hfi" }, { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\nthis : f =ᶠ[ae μ] 0\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "have : f =ᵐ[μ] 0 := h_le.mono fun x hx => norm_le_zero_iff.1 (hx.trans hC0)" }, { "state_after": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\nthis : f =ᶠ[ae μ] 0\n⊢ f =ᶠ[ae μ] const α 0 ∨ ‖0‖ < C", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\nthis : f =ᶠ[ae μ] 0\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "simp only [average_congr this, Pi.zero_apply, average_zero]" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : C ≤ 0\nthis : f =ᶠ[ae μ] 0\n⊢ f =ᶠ[ae μ] const α 0 ∨ ‖0‖ < C", "tactic": "exact Or.inl this" }, { "state_after": "no goals", "state_before": "case neg\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : ¬Integrable f\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "simp [average_eq, integral_undef hfi, hC0, ENNReal.toReal_pos_iff]" }, { "state_after": "no goals", "state_before": "case pos.inl\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ = ⊤\n⊢ f =ᶠ[ae μ] const α (⨍ (x : α), f x ∂μ) ∨ ‖⨍ (x : α), f x ∂μ‖ < C", "tactic": "simp [average_eq, hμt, hC0]" }, { "state_after": "no goals", "state_before": "case h_le\nα : Type u_2\nE : Type u_1\nF : Type ?u.2443666\nm0 : MeasurableSpace α\ninst✝⁶ : NormedAddCommGroup E\ninst✝⁵ : NormedSpace ℝ E\ninst✝⁴ : CompleteSpace E\ninst✝³ : NormedAddCommGroup F\ninst✝² : NormedSpace ℝ F\ninst✝¹ : CompleteSpace F\nμ : MeasureTheory.Measure α\ns : Set E\nt : Set α\nf : α → E\ng : E → ℝ\nC : ℝ\ninst✝ : StrictConvexSpace ℝ E\nh_le : ∀ᵐ (x : α) ∂μ, ‖f x‖ ≤ C\nhC0 : 0 < C\nhfi : Integrable f\nhμt : ↑↑μ univ < ⊤\nthis : IsFiniteMeasure μ\n⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closedBall 0 C", "tactic": "simpa only [mem_closedBall_zero_iff]" } ]
[ 343, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 330, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.exists_ne_top'
[]
[ 261, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 260, 1 ]
Mathlib/Topology/Homotopy/Basic.lean
ContinuousMap.Homotopy.coe_toContinuousMap
[]
[ 154, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 153, 1 ]
Mathlib/Data/Finset/Lattice.lean
Finset.iSup_finset_image
[ { "state_after": "no goals", "state_before": "F : Type ?u.450915\nα : Type u_3\nβ : Type u_2\nγ : Type u_1\nι : Type ?u.450927\nκ : Type ?u.450930\ninst✝¹ : CompleteLattice β\ninst✝ : DecidableEq α\nf : γ → α\ng : α → β\ns : Finset γ\n⊢ (⨆ (x : α) (_ : x ∈ image f s), g x) = ⨆ (y : γ) (_ : y ∈ s), g (f y)", "tactic": "rw [← iSup_coe, coe_image, iSup_image, iSup_coe]" } ]
[ 1969, 101 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1968, 1 ]
Mathlib/RingTheory/Ideal/Operations.lean
RingHom.ker_coe_equiv
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nT : Type w\nF : Type ?u.1772041\ninst✝¹ : Ring R\ninst✝ : Semiring S\nrc : RingHomClass F R S\nf✝ : F\nf : R ≃+* S\n⊢ ker ↑f = ⊥", "tactic": "simpa only [← injective_iff_ker_eq_bot] using EquivLike.injective f" } ]
[ 2043, 70 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2042, 1 ]
Mathlib/Data/Set/Pointwise/Basic.lean
Set.Nonempty.mul_zero
[ { "state_after": "no goals", "state_before": "F : Type ?u.106599\nα : Type u_1\nβ : Type ?u.106605\nγ : Type ?u.106608\ninst✝ : MulZeroClass α\ns t : Set α\nhs : Set.Nonempty s\n⊢ 0 ⊆ s * 0", "tactic": "simpa [mem_mul] using hs" } ]
[ 1145, 60 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1144, 1 ]
Mathlib/Algebra/Lie/Subalgebra.lean
LieSubalgebra.homOfLe_apply
[]
[ 610, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 609, 1 ]
Mathlib/Topology/UrysohnsLemma.lean
Urysohns.CU.tendsto_approx_atTop
[]
[ 223, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 221, 1 ]
Mathlib/Topology/MetricSpace/Infsep.lean
Set.nontrivial_of_infsep_pos
[ { "state_after": "α : Type u_1\nβ : Type ?u.55856\ninst✝ : EDist α\nx y : α\ns : Set α\nhs : ¬Set.Nontrivial s\n⊢ ¬0 < infsep s", "state_before": "α : Type u_1\nβ : Type ?u.55856\ninst✝ : EDist α\nx y : α\ns : Set α\nhs : 0 < infsep s\n⊢ Set.Nontrivial s", "tactic": "contrapose hs" }, { "state_after": "α : Type u_1\nβ : Type ?u.55856\ninst✝ : EDist α\nx y : α\ns : Set α\nhs : Set.Subsingleton s\n⊢ ¬0 < infsep s", "state_before": "α : Type u_1\nβ : Type ?u.55856\ninst✝ : EDist α\nx y : α\ns : Set α\nhs : ¬Set.Nontrivial s\n⊢ ¬0 < infsep s", "tactic": "rw [not_nontrivial_iff] at hs" }, { "state_after": "no goals", "state_before": "α : Type u_1\nβ : Type ?u.55856\ninst✝ : EDist α\nx y : α\ns : Set α\nhs : Set.Subsingleton s\n⊢ ¬0 < infsep s", "tactic": "exact hs.infsep_zero ▸ lt_irrefl _" } ]
[ 362, 37 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 359, 1 ]
Mathlib/Data/Set/Pointwise/Interval.lean
Set.preimage_const_mul_Icc_of_neg
[ { "state_after": "no goals", "state_before": "α : Type u_1\ninst✝ : LinearOrderedField α\na✝ a b c : α\nh : c < 0\n⊢ (fun x x_1 => x * x_1) c ⁻¹' Icc a b = Icc (b / c) (a / c)", "tactic": "simpa only [mul_comm] using preimage_mul_const_Icc_of_neg a b h" } ]
[ 685, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 683, 1 ]
Mathlib/Data/PEquiv.lean
PEquiv.trans_single_of_eq_none
[ { "state_after": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nh : ↑(PEquiv.symm f) b = none\nx✝ : δ\na✝ : γ\n⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝", "state_before": "α : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nh : ↑(PEquiv.symm f) b = none\n⊢ PEquiv.trans f (single b c) = ⊥", "tactic": "ext" }, { "state_after": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝", "state_before": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nh : ↑(PEquiv.symm f) b = none\nx✝ : δ\na✝ : γ\n⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝", "tactic": "simp only [eq_none_iff_forall_not_mem, Option.mem_def, f.eq_some_iff] at h" }, { "state_after": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ (a✝ ∈ Option.bind (↑f x✝) fun x => if x = b then some c else none) ↔ a✝ ∈ none", "state_before": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ a✝ ∈ ↑(PEquiv.trans f (single b c)) x✝ ↔ a✝ ∈ ↑⊥ x✝", "tactic": "dsimp [PEquiv.trans, single]" }, { "state_after": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ ∀ (x : β), ↑f x✝ = some x → ¬(if x = b then some c else none) = some a✝", "state_before": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ (a✝ ∈ Option.bind (↑f x✝) fun x => if x = b then some c else none) ↔ a✝ ∈ none", "tactic": "simp" }, { "state_after": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝¹ : δ\na✝¹ : γ\nh : ∀ (a : δ), ¬↑f a = some b\nx✝ : β\na✝ : ↑f x✝¹ = some x✝\n⊢ ¬(if x✝ = b then some c else none) = some a✝¹", "state_before": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝ : δ\na✝ : γ\nh : ∀ (a : δ), ¬↑f a = some b\n⊢ ∀ (x : β), ↑f x✝ = some x → ¬(if x = b then some c else none) = some a✝", "tactic": "intros" }, { "state_after": "no goals", "state_before": "case h.a\nα : Type u\nβ : Type v\nγ : Type w\nδ : Type x\ninst✝² : DecidableEq α\ninst✝¹ : DecidableEq β\ninst✝ : DecidableEq γ\nb : β\nc : γ\nf : δ ≃. β\nx✝¹ : δ\na✝¹ : γ\nh : ∀ (a : δ), ¬↑f a = some b\nx✝ : β\na✝ : ↑f x✝¹ = some x✝\n⊢ ¬(if x✝ = b then some c else none) = some a✝¹", "tactic": "split_ifs <;> simp_all" } ]
[ 400, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 393, 1 ]
Std/Data/List/Basic.lean
List.takeDTR_go_eq
[ { "state_after": "no goals", "state_before": "α✝ : Type u_1\ndflt : α✝\nacc : Array α✝\nx✝ : List α✝\n⊢ takeDTR.go dflt 0 x✝ acc = acc.data ++ takeD 0 x✝ dflt", "tactic": "simp [takeDTR.go]" }, { "state_after": "no goals", "state_before": "α✝ : Type u_1\ndflt : α✝\nacc : Array α✝\nn✝ : Nat\n⊢ takeDTR.go dflt (n✝ + 1) [] acc = acc.data ++ takeD (n✝ + 1) [] dflt", "tactic": "simp [takeDTR.go]" }, { "state_after": "no goals", "state_before": "α✝ : Type u_1\ndflt : α✝\nacc : Array α✝\nn✝ : Nat\nhead✝ : α✝\nl : List α✝\n⊢ takeDTR.go dflt (n✝ + 1) (head✝ :: l) acc = acc.data ++ takeD (n✝ + 1) (head✝ :: l) dflt", "tactic": "simp [takeDTR.go, takeDTR_go_eq _ l]" } ]
[ 605, 57 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 602, 1 ]
Mathlib/Combinatorics/Composition.lean
Composition.single_blocksFun
[ { "state_after": "no goals", "state_before": "n✝ : ℕ\nc : Composition n✝\nn : ℕ\nh : 0 < n\ni : Fin (length (single n h))\n⊢ blocksFun (single n h) i = n", "tactic": "simp [blocksFun, single, blocks, i.2]" } ]
[ 588, 77 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 587, 1 ]
Mathlib/RingTheory/Polynomial/Basic.lean
Ideal.leadingCoeffNth_mono
[ { "state_after": "R : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\nr : R\nhr : r ∈ leadingCoeffNth I m\n⊢ r ∈ leadingCoeffNth I n", "state_before": "R : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\n⊢ leadingCoeffNth I m ≤ leadingCoeffNth I n", "tactic": "intro r hr" }, { "state_after": "R : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\nr : R\nhr : ∃ p, p ∈ I ∧ degree p ≤ ↑m ∧ Polynomial.leadingCoeff p = r\n⊢ ∃ p, p ∈ I ∧ degree p ≤ ↑n ∧ Polynomial.leadingCoeff p = r", "state_before": "R : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\nr : R\nhr : r ∈ leadingCoeffNth I m\n⊢ r ∈ leadingCoeffNth I n", "tactic": "simp only [SetLike.mem_coe, mem_leadingCoeffNth] at hr⊢" }, { "state_after": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ ∃ p_1, p_1 ∈ I ∧ degree p_1 ≤ ↑n ∧ Polynomial.leadingCoeff p_1 = Polynomial.leadingCoeff p", "state_before": "R : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\nr : R\nhr : ∃ p, p ∈ I ∧ degree p ≤ ↑m ∧ Polynomial.leadingCoeff p = r\n⊢ ∃ p, p ∈ I ∧ degree p ≤ ↑n ∧ Polynomial.leadingCoeff p = r", "tactic": "rcases hr with ⟨p, hpI, hpdeg, rfl⟩" }, { "state_after": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ degree (p * X ^ (n - m)) ≤ ↑n", "state_before": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ ∃ p_1, p_1 ∈ I ∧ degree p_1 ≤ ↑n ∧ Polynomial.leadingCoeff p_1 = Polynomial.leadingCoeff p", "tactic": "refine' ⟨p * X ^ (n - m), I.mul_mem_right _ hpI, _, leadingCoeff_mul_X_pow⟩" }, { "state_after": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ degree p + degree (X ^ (n - m)) ≤ ↑n", "state_before": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ degree (p * X ^ (n - m)) ≤ ↑n", "tactic": "refine' le_trans (degree_mul_le _ _) _" }, { "state_after": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ ↑m + ↑(n - m) ≤ ↑n", "state_before": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ degree p + degree (X ^ (n - m)) ≤ ↑n", "tactic": "refine' le_trans (add_le_add hpdeg (degree_X_pow_le _)) _" }, { "state_after": "no goals", "state_before": "case intro.intro.intro\nR : Type u\nS : Type ?u.180424\ninst✝¹ : CommSemiring R\ninst✝ : Semiring S\nI : Ideal R[X]\nm n : ℕ\nH : m ≤ n\np : R[X]\nhpI : p ∈ I\nhpdeg : degree p ≤ ↑m\n⊢ ↑m + ↑(n - m) ≤ ↑n", "tactic": "rw [Nat.cast_withBot, Nat.cast_withBot, ← WithBot.coe_add, add_tsub_cancel_of_le H,\n Nat.cast_withBot]" } ]
[ 598, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 590, 1 ]
Mathlib/MeasureTheory/Function/SimpleFunc.lean
MeasureTheory.SimpleFunc.const_mul_lintegral
[]
[ 1026, 49 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1020, 1 ]
Mathlib/GroupTheory/MonoidLocalization.lean
Submonoid.LocalizationMap.toMap_injective
[]
[ 571, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 570, 1 ]
Mathlib/Order/Filter/Germ.lean
Filter.Germ.mk'_eq_coe
[]
[ 137, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Topology/MetricSpace/Algebra.lean
dist_pair_smul
[]
[ 149, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 148, 1 ]
Mathlib/Data/Subtype.lean
Subtype.heq_iff_coe_eq
[]
[ 79, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 76, 1 ]
Mathlib/RingTheory/Subring/Basic.lean
Subring.toSubmonoid_strictMono
[]
[ 288, 98 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 288, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.continuous
[]
[ 677, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 676, 11 ]
Mathlib/Algebra/DirectSum/Ring.lean
DirectSum.of_zero_mul
[]
[ 444, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 443, 1 ]
Mathlib/GroupTheory/Subgroup/Basic.lean
Subgroup.mem_bot
[]
[ 864, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 863, 1 ]
Mathlib/Algebra/Order/Rearrangement.lean
Antivary.sum_smul_lt_sum_comp_perm_smul_iff
[ { "state_after": "no goals", "state_before": "ι : Type u_1\nα : Type u_2\nβ : Type u_3\ninst✝⁴ : LinearOrderedRing α\ninst✝³ : LinearOrderedAddCommGroup β\ninst✝² : Module α β\ninst✝¹ : OrderedSMul α β\ns : Finset ι\nσ : Perm ι\nf : ι → α\ng : ι → β\ninst✝ : Fintype ι\nhfg : Antivary f g\n⊢ ∑ i : ι, f i • g i < ∑ i : ι, f (↑σ i) • g i ↔ ¬Antivary (f ∘ ↑σ) g", "tactic": "simp [(hfg.antivaryOn _).sum_smul_lt_sum_comp_perm_smul_iff fun _ _ ↦ mem_univ _]" } ]
[ 334, 84 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 332, 1 ]
Mathlib/Algebra/Regular/Basic.lean
isRightRegular_zero_iff_subsingleton
[]
[ 221, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 220, 1 ]
Mathlib/Algebra/Order/Field/Power.lean
zpow_le_max_of_min_le
[]
[ 109, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 106, 1 ]
Mathlib/Algebra/Ring/Equiv.lean
RingEquiv.self_trans_symm
[]
[ 856, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 855, 1 ]
Mathlib/Order/Filter/Basic.lean
Filter.join_pure
[]
[ 1995, 68 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1995, 9 ]
Mathlib/RingTheory/Polynomial/Chebyshev.lean
Polynomial.Chebyshev.T_one
[]
[ 81, 33 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 81, 1 ]
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
LinearMap.toMatrix₂_basisFun
[ { "state_after": "case h.a.h\nR : Type u_1\nR₁ : Type ?u.1414675\nR₂ : Type ?u.1414678\nM : Type ?u.1414681\nM₁ : Type ?u.1414684\nM₂ : Type ?u.1414687\nM₁' : Type ?u.1414690\nM₂' : Type ?u.1414693\nn : Type u_2\nm : Type u_3\nn' : Type ?u.1414702\nm' : Type ?u.1414705\nι : Type ?u.1414708\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\nb₁ : Basis n R M₁\nb₂ : Basis m R M₂\nB : (n → R) →ₗ[R] (m → R) →ₗ[R] R\ni✝ : n\nx✝ : m\n⊢ ↑(toMatrix₂ (Pi.basisFun R n) (Pi.basisFun R m)) B i✝ x✝ = ↑toMatrix₂' B i✝ x✝", "state_before": "R : Type u_1\nR₁ : Type ?u.1414675\nR₂ : Type ?u.1414678\nM : Type ?u.1414681\nM₁ : Type ?u.1414684\nM₂ : Type ?u.1414687\nM₁' : Type ?u.1414690\nM₂' : Type ?u.1414693\nn : Type u_2\nm : Type u_3\nn' : Type ?u.1414702\nm' : Type ?u.1414705\nι : Type ?u.1414708\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\nb₁ : Basis n R M₁\nb₂ : Basis m R M₂\n⊢ toMatrix₂ (Pi.basisFun R n) (Pi.basisFun R m) = toMatrix₂'", "tactic": "ext B" }, { "state_after": "no goals", "state_before": "case h.a.h\nR : Type u_1\nR₁ : Type ?u.1414675\nR₂ : Type ?u.1414678\nM : Type ?u.1414681\nM₁ : Type ?u.1414684\nM₂ : Type ?u.1414687\nM₁' : Type ?u.1414690\nM₂' : Type ?u.1414693\nn : Type u_2\nm : Type u_3\nn' : Type ?u.1414702\nm' : Type ?u.1414705\nι : Type ?u.1414708\ninst✝⁸ : CommRing R\ninst✝⁷ : AddCommMonoid M₁\ninst✝⁶ : Module R M₁\ninst✝⁵ : AddCommMonoid M₂\ninst✝⁴ : Module R M₂\ninst✝³ : DecidableEq n\ninst✝² : Fintype n\ninst✝¹ : DecidableEq m\ninst✝ : Fintype m\nb₁ : Basis n R M₁\nb₂ : Basis m R M₂\nB : (n → R) →ₗ[R] (m → R) →ₗ[R] R\ni✝ : n\nx✝ : m\n⊢ ↑(toMatrix₂ (Pi.basisFun R n) (Pi.basisFun R m)) B i✝ x✝ = ↑toMatrix₂' B i✝ x✝", "tactic": "rw [LinearMap.toMatrix₂_apply, LinearMap.toMatrix₂'_apply, Pi.basisFun_apply, Pi.basisFun_apply]" } ]
[ 417, 99 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 414, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/ArctanDeriv.lean
Real.deriv_tan
[ { "state_after": "x : ℝ\nh : cos x = 0\nthis : ¬DifferentiableAt ℝ tan x\n⊢ deriv tan x = ↑1 / cos x ^ 2", "state_before": "x : ℝ\nh : cos x = 0\n⊢ deriv tan x = ↑1 / cos x ^ 2", "tactic": "have : ¬DifferentiableAt ℝ tan x := mt differentiableAt_tan.1 (Classical.not_not.2 h)" }, { "state_after": "no goals", "state_before": "x : ℝ\nh : cos x = 0\nthis : ¬DifferentiableAt ℝ tan x\n⊢ deriv tan x = ↑1 / cos x ^ 2", "tactic": "simp [deriv_zero_of_not_differentiableAt this, h, sq]" } ]
[ 68, 32 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 64, 1 ]
Mathlib/Data/List/Basic.lean
List.choose_property
[]
[ 3983, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 3982, 1 ]
Mathlib/Data/Real/Irrational.lean
irrational_add_nat_iff
[]
[ 558, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 557, 1 ]
Mathlib/Algebra/GCDMonoid/Basic.lean
normalize_eq_one
[]
[ 160, 89 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Combinatorics/SimpleGraph/Basic.lean
SimpleGraph.coe_edgeFinset
[]
[ 892, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 891, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
HasFDerivAt.sinh
[]
[ 1130, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1128, 1 ]
Mathlib/Algebra/Module/Torsion.lean
Submodule.torsion_gc
[]
[ 382, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 377, 1 ]
Mathlib/Analysis/NormedSpace/LinearIsometry.lean
LinearIsometryEquiv.map_smul
[]
[ 971, 19 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 970, 1 ]
Mathlib/Data/Set/Intervals/Basic.lean
Set.Iic_prod_eq
[]
[ 1896, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1895, 1 ]
Mathlib/Algebra/Hom/Ring.lean
NonUnitalRingHom.copy_eq
[]
[ 169, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
Units.inv_mul'
[]
[ 212, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 211, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.mem_carrier
[]
[ 66, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Analysis/LocallyConvex/BalancedCoreHull.lean
balancedCoreAux_balanced
[ { "state_after": "case intro.intro\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\n⊢ (fun x => a • x) y ∈ balancedCoreAux 𝕜 s", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\n⊢ Balanced 𝕜 (balancedCoreAux 𝕜 s)", "tactic": "rintro a ha x ⟨y, hy, rfl⟩" }, { "state_after": "case intro.intro.inl\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\nha : ‖0‖ ≤ 1\n⊢ (fun x => 0 • x) y ∈ balancedCoreAux 𝕜 s\n\ncase intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\nh : a ≠ 0\n⊢ (fun x => a • x) y ∈ balancedCoreAux 𝕜 s", "state_before": "case intro.intro\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\n⊢ (fun x => a • x) y ∈ balancedCoreAux 𝕜 s", "tactic": "obtain rfl | h := eq_or_ne a 0" }, { "state_after": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\n⊢ ∀ (r : 𝕜), 1 ≤ ‖r‖ → (fun x => a • x) y ∈ r • s", "state_before": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\nh : a ≠ 0\n⊢ (fun x => a • x) y ∈ balancedCoreAux 𝕜 s", "tactic": "rw [mem_balancedCoreAux_iff] at hy⊢" }, { "state_after": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\n⊢ (fun x => a • x) y ∈ r • s", "state_before": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\n⊢ ∀ (r : 𝕜), 1 ≤ ‖r‖ → (fun x => a • x) y ∈ r • s", "tactic": "intro r hr" }, { "state_after": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\nh'' : 1 ≤ ‖a⁻¹ • r‖\n⊢ (fun x => a • x) y ∈ r • s", "state_before": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\n⊢ (fun x => a • x) y ∈ r • s", "tactic": "have h'' : 1 ≤ ‖a⁻¹ • r‖ := by\n rw [norm_smul, norm_inv]\n exact one_le_mul_of_one_le_of_one_le (one_le_inv (norm_pos_iff.mpr h) ha) hr" }, { "state_after": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\nh'' : 1 ≤ ‖a⁻¹ • r‖\nh' : y ∈ (a⁻¹ • r) • s\n⊢ (fun x => a • x) y ∈ r • s", "state_before": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\nh'' : 1 ≤ ‖a⁻¹ • r‖\n⊢ (fun x => a • x) y ∈ r • s", "tactic": "have h' := hy (a⁻¹ • r) h''" }, { "state_after": "no goals", "state_before": "case intro.intro.inr\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\nh'' : 1 ≤ ‖a⁻¹ • r‖\nh' : y ∈ (a⁻¹ • r) • s\n⊢ (fun x => a • x) y ∈ r • s", "tactic": "rwa [smul_assoc, mem_inv_smul_set_iff₀ h] at h'" }, { "state_after": "no goals", "state_before": "case intro.intro.inl\n𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\ny : E\nhy : y ∈ balancedCoreAux 𝕜 s\nha : ‖0‖ ≤ 1\n⊢ (fun x => 0 • x) y ∈ balancedCoreAux 𝕜 s", "tactic": "simp_rw [zero_smul, h0]" }, { "state_after": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\n⊢ 1 ≤ ‖a‖⁻¹ * ‖r‖", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\n⊢ 1 ≤ ‖a⁻¹ • r‖", "tactic": "rw [norm_smul, norm_inv]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_2\nE : Type u_1\nι : Type ?u.47476\ninst✝² : NormedField 𝕜\ninst✝¹ : AddCommGroup E\ninst✝ : Module 𝕜 E\ns t : Set E\nh0 : 0 ∈ balancedCoreAux 𝕜 s\na : 𝕜\nha : ‖a‖ ≤ 1\ny : E\nhy : ∀ (r : 𝕜), 1 ≤ ‖r‖ → y ∈ r • s\nh : a ≠ 0\nr : 𝕜\nhr : 1 ≤ ‖r‖\n⊢ 1 ≤ ‖a‖⁻¹ * ‖r‖", "tactic": "exact one_le_mul_of_one_le_of_one_le (one_le_inv (norm_pos_iff.mpr h) ha) hr" } ]
[ 186, 50 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Analysis/Calculus/Deriv/Add.lean
deriv_sum
[]
[ 194, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 192, 1 ]