Datasets:

Modalities:
Audio
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
nielsr HF Staff commited on
Commit
0230867
·
verified ·
1 Parent(s): ed7fb2f

Add task category and sample usage, fix internal paper link

Browse files

This pull request improves the HiKE dataset card by:

* Adding the `task_categories: ['automatic-speech-recognition']` to the YAML metadata for better discoverability on the Hugging Face Hub.
* Fixing a broken internal link `[our paper]()` in the "Introduction" section to `[our paper](https://arxiv.org/abs/2509.24613)`, pointing to the arXiv paper.
* Adding a "Sample Usage" section with installation instructions and code snippets for running evaluations and evaluating custom models, directly sourced from the project's GitHub repository.

Files changed (1) hide show
  1. README.md +60 -5
README.md CHANGED
@@ -1,4 +1,10 @@
1
  ---
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: audio
@@ -30,10 +36,6 @@ configs:
30
  data_files:
31
  - split: test
32
  path: data/test-*
33
- license: apache-2.0
34
- language:
35
- - ko
36
- - en
37
  tags:
38
  - speech
39
  - recognition
@@ -51,7 +53,7 @@ HiKE is the first Korean-English Code-Switching (CS) Automatic Speech Recognitio
51
 
52
  Experimental results show that all multilingual ASR models exhibit significantly higher error rates on code-switching data, and that their CS-ASR capabilities can be improved through fine-tuning.
53
 
54
- For further details, please refer to [our paper]().
55
 
56
  [1] Ugan et al., [“PIER: A Novel Metric for Evaluating What Matters in Code-Switching”](https://arxiv.org/abs/2501.09512), ICASSP 2025
57
 
@@ -65,6 +67,59 @@ To provide more fine-grained comparison of model performance on different forms
65
  ### Loanword Labels
66
  Loanwords are words adopted from a foreign language and adapted to the phonology and orthography of the new language. For example, the Korean loanword **'버스' [bəs]** and the English word **'bus' [bʌs]** are pronounced almost identically and can be used interchangeably in a CS context. To avoid this problem, we meticulously labeled all loanwords contained in our dataset.
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  ## Citation
69
  ```
70
  @misc{paik2025hike,
 
1
  ---
2
+ language:
3
+ - ko
4
+ - en
5
+ license: apache-2.0
6
+ task_categories:
7
+ - automatic-speech-recognition
8
  dataset_info:
9
  features:
10
  - name: audio
 
36
  data_files:
37
  - split: test
38
  path: data/test-*
 
 
 
 
39
  tags:
40
  - speech
41
  - recognition
 
53
 
54
  Experimental results show that all multilingual ASR models exhibit significantly higher error rates on code-switching data, and that their CS-ASR capabilities can be improved through fine-tuning.
55
 
56
+ For further details, please refer to [our paper](https://arxiv.org/abs/2509.24613).
57
 
58
  [1] Ugan et al., [“PIER: A Novel Metric for Evaluating What Matters in Code-Switching”](https://arxiv.org/abs/2501.09512), ICASSP 2025
59
 
 
67
  ### Loanword Labels
68
  Loanwords are words adopted from a foreign language and adapted to the phonology and orthography of the new language. For example, the Korean loanword **'버스' [bəs]** and the English word **'bus' [bʌs]** are pronounced almost identically and can be used interchangeably in a CS context. To avoid this problem, we meticulously labeled all loanwords contained in our dataset.
69
 
70
+ ## Sample Usage
71
+ ### Install Dependencies
72
+ ```sh
73
+ git clone --recurse-submodules https://github.com/ThetaOne-AI/HiKE
74
+ cd HiKE
75
+ pip install -r requirements.txt
76
+ apt-get update && apt-get install -y ffmpeg # install ffmpeg if needed
77
+ ```
78
+
79
+ ### Run Evaluation
80
+ ```sh
81
+ bash scripts/evaluate_whisper.sh
82
+ # or
83
+ python src/main.py --model whisper --model_name openai/whisper-large --batch_size 8
84
+ ```
85
+
86
+ The results will be saved in `./outputs`.
87
+
88
+ ### Evaluate Your Model
89
+ - Implement a class that follows the `BaseASR` interface in `src/models/your_model.py`, and register it in `src/main.py`.
90
+
91
+ Create `src/models/your_model.py`:
92
+
93
+ ```python
94
+ from typing import List, Dict, Any
95
+ from src.models import BaseASR
96
+
97
+
98
+ class YourModel(BaseASR):
99
+ def __init__(self, model_name: str = "your/model-or-config"):
100
+ self.model_name = model_name
101
+ # TODO: load your model or client here
102
+
103
+ def generate(self, input, batch_size: int | None = None, **kwargs) -> List[Dict[str, Any]]:
104
+ if not isinstance(input, list):
105
+ input = [input]
106
+ return [{"text": your_transcribe_fn(x)} for x in input]
107
+ ```
108
+
109
+ Register in `src/main.py`:
110
+
111
+ ```python
112
+ elif model == "your_model":
113
+ from models.your_model import YourModel
114
+ asr = YourModel(model_name)
115
+ ```
116
+
117
+ Run:
118
+
119
+ ```sh
120
+ python src/main.py --model your_model --model_name your/model-or-name
121
+ ```
122
+
123
  ## Citation
124
  ```
125
  @misc{paik2025hike,