text
stringlengths 0
828
|
---|
e.g., `[1, 2, 4, 8, 16]`.
|
jitter (float): A factor between `-1.0` and `1.0`, used to
|
uniformly randomize and thus spread out timeouts in a distributed
|
system, avoiding rhythm effects. Positive values use the base
|
backoff curve as a maximum, negative values use the curve as a
|
minimum. Set to 1.0 or `True` for a jitter approximating
|
Ethernet's time-tested backoff solution. Defaults to `False`.
|
""""""
|
start = float(start)
|
stop = float(stop)
|
factor = float(factor)
|
if start < 0.0:
|
raise ValueError('expected start >= 0, not %r' % start)
|
if factor < 1.0:
|
raise ValueError('expected factor >= 1.0, not %r' % factor)
|
if stop == 0.0:
|
raise ValueError('expected stop >= 0')
|
if stop < start:
|
raise ValueError('expected stop >= start, not %r' % stop)
|
if count is None:
|
denom = start if start else 1
|
count = 1 + math.ceil(math.log(stop/denom, factor))
|
count = count if start else count + 1
|
if count != 'repeat' and count < 0:
|
raise ValueError('count must be positive or ""repeat"", not %r' % count)
|
if jitter:
|
jitter = float(jitter)
|
if not (-1.0 <= jitter <= 1.0):
|
raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter)
|
cur, i = start, 0
|
while count == 'repeat' or i < count:
|
if not jitter:
|
cur_ret = cur
|
elif jitter:
|
cur_ret = cur - (cur * jitter * random.random())
|
yield cur_ret
|
i += 1
|
if cur == 0:
|
cur = 1
|
elif cur < stop:
|
cur *= factor
|
if cur > stop:
|
cur = stop
|
return"
|
4967,"def bucketize(src, key=None, value_transform=None, key_filter=None):
|
""""""Group values in the *src* iterable by the value returned by *key*,
|
which defaults to :class:`bool`, grouping values by truthiness.
|
>>> bucketize(range(5))
|
{False: [0], True: [1, 2, 3, 4]}
|
>>> is_odd = lambda x: x % 2 == 1
|
>>> bucketize(range(5), is_odd)
|
{False: [0, 2, 4], True: [1, 3]}
|
Value lists are not deduplicated:
|
>>> bucketize([None, None, None, 'hello'])
|
{False: [None, None, None], True: ['hello']}
|
Bucketize into more than 3 groups
|
>>> bucketize(range(10), lambda x: x % 3)
|
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}
|
``bucketize`` has a couple of advanced options useful in certain
|
cases. *value_transform* can be used to modify values as they are
|
added to buckets, and *key_filter* will allow excluding certain
|
buckets from being collected.
|
>>> bucketize(range(5), value_transform=lambda x: x*x)
|
{False: [0], True: [1, 4, 9, 16]}
|
>>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
|
{0: [0, 3, 6, 9], 2: [2, 5, 8]}
|
Note in some of these examples there were at most two keys, ``True`` and
|
``False``, and each key present has a list with at least one
|
item. See :func:`partition` for a version specialized for binary
|
use cases.
|
""""""
|
if not is_iterable(src):
|
raise TypeError('expected an iterable')
|
if key is None:
|
key = bool
|
if not callable(key):
|
raise TypeError('expected callable key function')
|
if value_transform is None:
|
value_transform = lambda x: x
|
if not callable(value_transform):
|
raise TypeError('expected callable value transform function')
|
ret = {}
|
for val in src:
|
key_of_val = key(val)
|
if key_filter is None or key_filter(key_of_val):
|
ret.setdefault(key_of_val, []).append(value_transform(val))
|
return ret"
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.