File size: 9,383 Bytes
45d92bc 582dd5b 45d92bc 582dd5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
license: apache-2.0
task_categories:
- text-generation
- question-answering
language:
- en
tags:
- code
- api-documentation
- dataframe
- semantic-ai
- fenic
pretty_name: Fenic 0.4.0 API Documentation
size_categories:
- 1K<n<10K
configs:
- config_name: default
data_files:
- split: api
path: "api_df.parquet"
- split: hierarchy
path: "hierarchy_df.parquet"
- split: summary
path: "fenic_summary.parquet"
---
# Fenic 0.4.0 API Documentation Dataset
## Dataset Description
This dataset contains comprehensive API documentation for [Fenic 0.4.0](https://github.com/typedef-ai/fenic), a PySpark-inspired DataFrame framework designed for building production AI and agentic applications. The dataset provides structured information about all public and private API elements, including modules, classes, functions, methods, and attributes.
### Dataset Summary
[Fenic](https://github.com/typedef-ai/fenic) is a DataFrame framework that combines traditional data processing capabilities with semantic/AI operations. It provides:
- A familiar DataFrame API similar to PySpark
- Semantic functions powered by LLMs (map, extract, classify, etc.)
- Integration with multiple AI model providers (Anthropic, OpenAI, Google, Cohere)
- Advanced features like semantic joins and clustering
The dataset captures the complete API surface of Fenic 0.4.0, making it valuable for:
- Code generation and understanding
- API documentation analysis
- Framework comparison studies
- Training models on DataFrame/data processing APIs
## Dataset Structure
The dataset consists of three Parquet files:
### 1. `api_df.parquet` (2,522 rows × 16 columns)
Main API documentation with detailed information about each API element.
**Columns:**
- `type`: Element type (module, class, function, method, attribute)
- `name`: Element name
- `qualified_name`: Fully qualified name (e.g., `fenic.api.dataframe.DataFrame`)
- `docstring`: Documentation string
- `filepath`: Source file path
- `is_public`: Whether the element is public
- `is_private`: Whether the element is private
- `line_start`: Starting line number in source
- `line_end`: Ending line number in source
- `annotation`: Type annotation
- `returns`: Return type annotation
- `parameters`: Function/method parameters
- `parent_class`: Parent class for methods
- `value`: Value for attributes
- `bases`: Base classes for class definitions
- `api_element_summary`: Formatted summary of the element
### 2. `hierarchy_df.parquet` (2,522 rows × 18 columns)
Same as api_df but with additional hierarchy information.
**Additional Columns:**
- `path_parts`: List showing the hierarchical path
- `depth`: Depth in the API hierarchy
### 3. `fenic_summary.parquet` (1 row × 1 column)
High-level project summary.
**Columns:**
- `project_summary`: Comprehensive description of the Fenic framework
## Key API Components
### Core DataFrame Operations
- Standard operations: `select`, `filter`, `join`, `group_by`, `agg`, `sort`
- Data conversion: `to_pandas()`, `to_polars()`, `to_arrow()`, `to_pydict()`, `to_pylist()`
- Lazy evaluation with logical query plans
### Semantic Functions (`fenic.api.functions.semantic`)
- `map`: Apply generation prompts to columns
- `extract`: Extract structured data using Pydantic models
- `classify`: Text classification
- `predicate`: Boolean filtering with natural language
- `reduce`: Aggregate strings using natural language instructions
- `analyze_sentiment`: Sentiment analysis
- `summarize`: Text summarization
- `embed`: Generate embeddings
### Advanced Features
- Semantic joins and clustering
- Model client integrations (Anthropic, OpenAI, Google, Cohere)
- Query optimization and execution planning
- MCP (Model-based Code Production) tool generation
## Usage
### Loading with Fenic (Recommended)
[Fenic](https://github.com/typedef-ai/fenic) natively supports loading datasets directly from Hugging Face using the `hf://` scheme:
```python
import fenic as fc
# Create a Fenic session
session = fc.Session.get_or_create(
fc.SessionConfig(app_name="fenic_api_analysis")
)
# Load the API documentation split
api_df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet")
# Or load all splits at once
df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/*.parquet")
# Explore the dataset
api_df.show(5)
print(f"Total API elements: {api_df.count()}")
print(f"Schema: {api_df.schema}")
# Example: Find all public DataFrame methods
dataframe_methods = api_df.filter(
fc.col("qualified_name").contains("fenic.api.dataframe.DataFrame.") &
(fc.col("type") == "method") &
(fc.col("is_public") == True)
).select("name", "docstring", "parameters", "returns")
dataframe_methods.show(10)
# Example: Find all semantic functions
semantic_functions = api_df.filter(
fc.col("qualified_name").contains("fenic.api.functions.semantic.") &
(fc.col("type") == "function")
).select("name", "qualified_name", "docstring")
semantic_functions.show()
# Get statistics about the codebase
stats = api_df.group_by("type").agg(
fc.count("*").alias("count")
).order_by(fc.col("count").desc())
print("\nAPI Element Statistics:")
stats.show()
# Search for specific functionality
embedding_apis = api_df.filter(
fc.col("name").contains("embed") |
fc.col("docstring").contains("embedding")
).select("type", "qualified_name", "docstring")
print(f"\nFound {embedding_apis.count()} embedding-related APIs")
embedding_apis.show(5)
```
### Loading with Pandas
```python
import pandas as pd
from datasets import load_dataset
# Option 1: Using Hugging Face datasets library
dataset = load_dataset("YOUR_USERNAME/fenic-api-0.4.0")
# Access different splits and convert to pandas
api_df = dataset['api'].to_pandas()
hierarchy_df = dataset['hierarchy'].to_pandas()
summary_df = dataset['summary'].to_pandas()
# Option 2: Direct parquet loading
api_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet')
hierarchy_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/hierarchy_df.parquet')
summary_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/fenic_summary.parquet')
# Example: Find all public DataFrame methods
dataframe_methods = api_df[
(api_df['qualified_name'].str.startswith('fenic.api.dataframe.DataFrame.')) &
(api_df['type'] == 'method') &
(api_df['is_public'] == True)
]
print(f"Found {len(dataframe_methods)} DataFrame methods")
print(dataframe_methods[['name', 'docstring']].head(10))
# Example: Analyze module structure
modules = api_df[api_df['type'] == 'module']
print(f"\nTotal modules: {len(modules)}")
print("Top-level modules:")
print(modules[modules['qualified_name'].str.count('\.') == 1]['name'].unique())
# Example: Find all semantic functions
semantic_functions = api_df[
(api_df['qualified_name'].str.startswith('fenic.api.functions.semantic.')) &
(api_df['type'] == 'function')
]
print(f"\nSemantic functions available:")
for _, func in semantic_functions.iterrows():
doc_first_line = func['docstring'].split('\n')[0] if pd.notna(func['docstring']) else "No description"
print(f" • {func['name']}: {doc_first_line}")
```
### Authentication for Private Datasets
If you're using a private dataset, set your Hugging Face token:
```bash
export HF_TOKEN=your_token_here
```
Or in Python:
```python
import os
os.environ['HF_TOKEN'] = 'your_token_here'
```
## Dataset Creation
This dataset was automatically extracted from the Fenic 0.4.0 codebase using API documentation parsing tools. It captures the complete public and private API surface, including:
- All modules and submodules
- Classes with their methods and attributes
- Functions with their signatures
- Complete docstrings and type annotations
## Considerations for Using the Data
### Use Cases
- Training code generation models on DataFrame APIs
- Building API documentation search/retrieval systems
- Analyzing API design patterns in data processing frameworks
- Creating intelligent code completion for Fenic
### Limitations
- This dataset represents a snapshot of Fenic 0.4.0 and may not reflect newer versions
- Some internal/private APIs may change between versions
- Generated protobuf files are included but may be less useful for learning
## Additional Information
### Project Links
- **Fenic Framework**: [https://github.com/typedef-ai/fenic](https://github.com/typedef-ai/fenic)
- **Documentation**: See the official repository for the latest documentation
- **Issues**: Report issues with the dataset or framework on the GitHub repository
### Licensing
This dataset is released under the Apache 2.0 license, consistent with the Fenic framework's licensing.
### Citation
If you use this dataset, please cite:
```
@dataset{fenic_api_2025,
title={Fenic 0.4.0 API Documentation Dataset},
year={2025},
publisher={Hugging Face},
license={Apache-2.0}
}
```
### Maintenance
This dataset is a static snapshot of Fenic 0.4.0. For the latest API documentation and updates, refer to the official [Fenic repository](https://github.com/typedef-ai/fenic).
|