Dataset Viewer
Auto-converted to Parquet
type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
module
fenic
fenic
Fenic is an opinionated, PySpark-inspired DataFrame framework for building production AI and agentic applications.
site-packages/fenic/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: fenic Qualified Name: fenic Docstring: Fenic is an opinionated, PySpark-inspired DataFrame framework for building production AI and agentic applications. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.__all__
null
site-packages/fenic/__init__.py
false
false
113
233
null
null
null
null
['Session', 'SessionConfig', 'CloudConfig', 'OpenAIEmbeddingModel', 'OpenAILanguageModel', 'AnthropicLanguageModel', 'CohereEmbeddingModel', 'GoogleDeveloperLanguageModel', 'GoogleDeveloperEmbeddingModel', 'GoogleVertexLanguageModel', 'GoogleVertexEmbeddingModel', 'SemanticConfig', 'ModelAlias', 'DataFrameReader', 'DataFrameWriter', 'DataFrame', 'GroupedData', 'SemanticExtensions', 'Column', 'ColumnOrName', 'Catalog', 'DatasetMetadata', 'ArrayType', 'BooleanType', 'ColumnField', 'DataType', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JsonType', 'KeyPoints', 'MapExample', 'MapExampleCollection', 'MarkdownType', 'PredicateExample', 'PredicateExampleCollection', 'Schema', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'JoinExample', 'JoinExampleCollection', 'Paragraph', 'Schema', 'SemanticSimilarityMetric', 'StringType', 'StructField', 'StructType', 'TranscriptType', 'FuzzySimilarityMethod', 'semantic', 'text', 'json', 'markdown', 'embedding', 'array', 'array_agg', 'array_contains', 'array_size', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'async_udf', 'avg', 'coalesce', 'collect_list', 'count', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'first', 'max', 'mean', 'min', 'struct', 'sum', 'stddev', 'udf', 'when', 'col', 'lit', 'greatest', 'least', 'empty', 'null', 'tool_param', 'Lineage', 'QueryMetrics', 'LMMetrics', 'RMMetrics', 'OperatorMetrics', 'InvalidExampleCollectionError', 'configure_logging', 'DataLike', 'DataLikeType', 'QueryResult', 'ToolParam', 'BoundToolParam', 'ParameterizedToolDefinition', 'create_mcp_server', 'run_mcp_server_asgi', 'run_mcp_server_async', 'run_mcp_server_sync']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.__all__ Docstring: none Value: ['Session', 'SessionConfig', 'CloudConfig', 'OpenAIEmbeddingModel', 'OpenAILanguageModel', 'AnthropicLanguageModel', 'CohereEmbeddingModel', 'GoogleDeveloperLanguageModel', 'GoogleDeveloperEmbeddingModel', 'GoogleVertexLanguageModel', 'GoogleVertexEmbeddingModel', 'SemanticConfig', 'ModelAlias', 'DataFrameReader', 'DataFrameWriter', 'DataFrame', 'GroupedData', 'SemanticExtensions', 'Column', 'ColumnOrName', 'Catalog', 'DatasetMetadata', 'ArrayType', 'BooleanType', 'ColumnField', 'DataType', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JsonType', 'KeyPoints', 'MapExample', 'MapExampleCollection', 'MarkdownType', 'PredicateExample', 'PredicateExampleCollection', 'Schema', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'JoinExample', 'JoinExampleCollection', 'Paragraph', 'Schema', 'SemanticSimilarityMetric', 'StringType', 'StructField', 'StructType', 'TranscriptType', 'FuzzySimilarityMethod', 'semantic', 'text', 'json', 'markdown', 'embedding', 'array', 'array_agg', 'array_contains', 'array_size', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'async_udf', 'avg', 'coalesce', 'collect_list', 'count', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'first', 'max', 'mean', 'min', 'struct', 'sum', 'stddev', 'udf', 'when', 'col', 'lit', 'greatest', 'least', 'empty', 'null', 'tool_param', 'Lineage', 'QueryMetrics', 'LMMetrics', 'RMMetrics', 'OperatorMetrics', 'InvalidExampleCollectionError', 'configure_logging', 'DataLike', 'DataLikeType', 'QueryResult', 'ToolParam', 'BoundToolParam', 'ParameterizedToolDefinition', 'create_mcp_server', 'run_mcp_server_asgi', 'run_mcp_server_async', 'run_mcp_server_sync'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
_polars_plugins
fenic._polars_plugins
site-packages/fenic/_polars_plugins.abi3.so
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _polars_plugins Qualified Name: fenic._polars_plugins Docstring: Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic._polars_plugins.__all__
Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
site-packages/fenic/_polars_plugins.abi3.so
false
false
null
null
null
null
null
null
['py_validate_jq_query', 'py_validate_regex']
null
Type: attribute Member Name: __all__ Qualified Name: fenic._polars_plugins.__all__ Docstring: Built-in mutable sequence. If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified. Value: ['py_validate_jq_query', 'py_validate_regex'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__doc__
fenic._polars_plugins.__doc__
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.
site-packages/fenic/_polars_plugins.abi3.so
false
false
null
null
null
null
null
null
''
null
Type: attribute Member Name: __doc__ Qualified Name: fenic._polars_plugins.__doc__ Docstring: str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'. Value: '' Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__file__
fenic._polars_plugins.__file__
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.
site-packages/fenic/_polars_plugins.abi3.so
false
false
null
null
null
null
null
null
'/Users/kostaspardalis/Projects/fenic/examples/mcp/docs-server/.venv/lib/python3.10/site-packages/fenic/_polars_plugins.abi3.so'
null
Type: attribute Member Name: __file__ Qualified Name: fenic._polars_plugins.__file__ Docstring: str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'. Value: '/Users/kostaspardalis/Projects/fenic/examples/mcp/docs-server/.venv/lib/python3.10/site-packages/fenic/_polars_plugins.abi3.so' Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__name__
fenic._polars_plugins.__name__
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.
site-packages/fenic/_polars_plugins.abi3.so
false
false
null
null
null
null
null
null
'fenic._polars_plugins'
null
Type: attribute Member Name: __name__ Qualified Name: fenic._polars_plugins.__name__ Docstring: str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'. Value: 'fenic._polars_plugins' Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__package__
fenic._polars_plugins.__package__
str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'.
site-packages/fenic/_polars_plugins.abi3.so
false
false
null
null
null
null
null
null
'fenic'
null
Type: attribute Member Name: __package__ Qualified Name: fenic._polars_plugins.__package__ Docstring: str(object='') -> str str(bytes_or_buffer[, encoding[, errors]]) -> str Create a new string object from the given object. If encoding or errors is specified, then the object must expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding(). errors defaults to 'strict'. Value: 'fenic' Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
function
py_validate_jq_query
fenic._polars_plugins.py_validate_jq_query
null
site-packages/fenic/_polars_plugins.abi3.so
true
false
null
null
null
null
[ "query" ]
null
null
null
Type: function Member Name: py_validate_jq_query Qualified Name: fenic._polars_plugins.py_validate_jq_query Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["query"] Returns: none Parent Class: none
function
py_validate_regex
fenic._polars_plugins.py_validate_regex
null
site-packages/fenic/_polars_plugins.abi3.so
true
false
null
null
null
null
[ "regex" ]
null
null
null
Type: function Member Name: py_validate_regex Qualified Name: fenic._polars_plugins.py_validate_regex Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["regex"] Returns: none Parent Class: none
module
_constants
fenic._constants
null
site-packages/fenic/_constants.py
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _constants Qualified Name: fenic._constants Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
attribute
EXAMPLE_INPUT_KEY
fenic._constants.EXAMPLE_INPUT_KEY
null
site-packages/fenic/_constants.py
true
false
4
4
null
null
null
null
'input'
null
Type: attribute Member Name: EXAMPLE_INPUT_KEY Qualified Name: fenic._constants.EXAMPLE_INPUT_KEY Docstring: none Value: 'input' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
EXAMPLE_OUTPUT_KEY
fenic._constants.EXAMPLE_OUTPUT_KEY
null
site-packages/fenic/_constants.py
true
false
5
5
null
null
null
null
'output'
null
Type: attribute Member Name: EXAMPLE_OUTPUT_KEY Qualified Name: fenic._constants.EXAMPLE_OUTPUT_KEY Docstring: none Value: 'output' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
LEFT_ON_KEY
fenic._constants.LEFT_ON_KEY
null
site-packages/fenic/_constants.py
true
false
6
6
null
null
null
null
'left_on'
null
Type: attribute Member Name: LEFT_ON_KEY Qualified Name: fenic._constants.LEFT_ON_KEY Docstring: none Value: 'left_on' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
RIGHT_ON_KEY
fenic._constants.RIGHT_ON_KEY
null
site-packages/fenic/_constants.py
true
false
7
7
null
null
null
null
'right_on'
null
Type: attribute Member Name: RIGHT_ON_KEY Qualified Name: fenic._constants.RIGHT_ON_KEY Docstring: none Value: 'right_on' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
INDEX_DIR
fenic._constants.INDEX_DIR
null
site-packages/fenic/_constants.py
true
false
10
10
null
null
null
null
'indexes'
null
Type: attribute Member Name: INDEX_DIR Qualified Name: fenic._constants.INDEX_DIR Docstring: none Value: 'indexes' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
VECTOR_INDEX_DIR
fenic._constants.VECTOR_INDEX_DIR
null
site-packages/fenic/_constants.py
true
false
11
11
null
null
null
null
f'{INDEX_DIR}/vector'
null
Type: attribute Member Name: VECTOR_INDEX_DIR Qualified Name: fenic._constants.VECTOR_INDEX_DIR Docstring: none Value: f'{INDEX_DIR}/vector' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
TOKEN_OVERHEAD_JSON
fenic._constants.TOKEN_OVERHEAD_JSON
null
site-packages/fenic/_constants.py
true
false
14
14
null
null
null
null
5
null
Type: attribute Member Name: TOKEN_OVERHEAD_JSON Qualified Name: fenic._constants.TOKEN_OVERHEAD_JSON Docstring: none Value: 5 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
TOKEN_OVERHEAD_MISC
fenic._constants.TOKEN_OVERHEAD_MISC
null
site-packages/fenic/_constants.py
true
false
15
15
null
null
null
null
5
null
Type: attribute Member Name: TOKEN_OVERHEAD_MISC Qualified Name: fenic._constants.TOKEN_OVERHEAD_MISC Docstring: none Value: 5 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
PREFIX_TOKENS_PER_MESSAGE
fenic._constants.PREFIX_TOKENS_PER_MESSAGE
null
site-packages/fenic/_constants.py
true
false
16
16
null
null
null
null
4
null
Type: attribute Member Name: PREFIX_TOKENS_PER_MESSAGE Qualified Name: fenic._constants.PREFIX_TOKENS_PER_MESSAGE Docstring: none Value: 4 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
TOKENS_PER_NAME
fenic._constants.TOKENS_PER_NAME
null
site-packages/fenic/_constants.py
true
false
17
17
null
null
null
null
1
null
Type: attribute Member Name: TOKENS_PER_NAME Qualified Name: fenic._constants.TOKENS_PER_NAME Docstring: none Value: 1 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
DEFAULT_MAX_TOKENS
fenic._constants.DEFAULT_MAX_TOKENS
null
site-packages/fenic/_constants.py
true
false
20
20
null
null
null
null
512
null
Type: attribute Member Name: DEFAULT_MAX_TOKENS Qualified Name: fenic._constants.DEFAULT_MAX_TOKENS Docstring: none Value: 512 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
DEFAULT_TEMPERATURE
fenic._constants.DEFAULT_TEMPERATURE
null
site-packages/fenic/_constants.py
true
false
21
21
float
null
null
null
0
null
Type: attribute Member Name: DEFAULT_TEMPERATURE Qualified Name: fenic._constants.DEFAULT_TEMPERATURE Docstring: none Value: 0 Annotation: float is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
MAX_TOKENS_DETERMINISTIC_OUTPUT_SIZE
fenic._constants.MAX_TOKENS_DETERMINISTIC_OUTPUT_SIZE
null
site-packages/fenic/_constants.py
true
false
26
26
null
null
null
null
64
null
Type: attribute Member Name: MAX_TOKENS_DETERMINISTIC_OUTPUT_SIZE Qualified Name: fenic._constants.MAX_TOKENS_DETERMINISTIC_OUTPUT_SIZE Docstring: none Value: 64 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
API_KEY_SUFFIX
fenic._constants.API_KEY_SUFFIX
null
site-packages/fenic/_constants.py
true
false
28
28
null
null
null
null
'_API_KEY'
null
Type: attribute Member Name: API_KEY_SUFFIX Qualified Name: fenic._constants.API_KEY_SUFFIX Docstring: none Value: '_API_KEY' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
SQL_PLACEHOLDER_RE
fenic._constants.SQL_PLACEHOLDER_RE
null
site-packages/fenic/_constants.py
true
false
30
30
null
null
null
null
re.compile('\\{(\\w+)\\}')
null
Type: attribute Member Name: SQL_PLACEHOLDER_RE Qualified Name: fenic._constants.SQL_PLACEHOLDER_RE Docstring: none Value: re.compile('\\{(\\w+)\\}') Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
MILLISECOND_IN_SECONDS
fenic._constants.MILLISECOND_IN_SECONDS
null
site-packages/fenic/_constants.py
true
false
32
32
null
null
null
null
0.001
null
Type: attribute Member Name: MILLISECOND_IN_SECONDS Qualified Name: fenic._constants.MILLISECOND_IN_SECONDS Docstring: none Value: 0.001 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
MINUTE_IN_SECONDS
fenic._constants.MINUTE_IN_SECONDS
null
site-packages/fenic/_constants.py
true
false
33
33
null
null
null
null
60
null
Type: attribute Member Name: MINUTE_IN_SECONDS Qualified Name: fenic._constants.MINUTE_IN_SECONDS Docstring: none Value: 60 Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
PRETTY_PRINT_INDENT
fenic._constants.PRETTY_PRINT_INDENT
null
site-packages/fenic/_constants.py
true
false
34
34
null
null
null
null
' '
null
Type: attribute Member Name: PRETTY_PRINT_INDENT Qualified Name: fenic._constants.PRETTY_PRINT_INDENT Docstring: none Value: ' ' Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
logging
fenic.logging
Logging configuration utilities for Fenic.
site-packages/fenic/logging.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: logging Qualified Name: fenic.logging Docstring: Logging configuration utilities for Fenic. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
NOISY_LOGGER_NAMES
fenic.logging.NOISY_LOGGER_NAMES
null
site-packages/fenic/logging.py
true
false
7
7
null
null
null
null
('openai', 'httpx', 'google_genai', 'cohere', 'anthropic')
null
Type: attribute Member Name: NOISY_LOGGER_NAMES Qualified Name: fenic.logging.NOISY_LOGGER_NAMES Docstring: none Value: ('openai', 'httpx', 'google_genai', 'cohere', 'anthropic') Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
configure_logging
fenic.logging.configure_logging
Configure logging for the library and root logger in interactive environments. This function ensures that logs from the library's modules appear in output by setting up a default handler on the root logger *only if* one does not already exist. This is especially useful in notebooks, scripts, or REPLs where logging is often unset. It configures the root logger and sets the library's top-level logger to propagate logs to the root. If the root logger has no handlers, this function sets up a default configuration and silences noisy dependencies like 'openai' and 'httpx'. In more complex applications or when integrating with existing logging configurations, you might prefer to manage logging setup externally. In such cases, you may not need to call this function.
site-packages/fenic/logging.py
true
false
10
50
null
None
[ "log_level", "log_format", "log_stream" ]
null
null
null
Type: function Member Name: configure_logging Qualified Name: fenic.logging.configure_logging Docstring: Configure logging for the library and root logger in interactive environments. This function ensures that logs from the library's modules appear in output by setting up a default handler on the root logger *only if* one does not already exist. This is especially useful in notebooks, scripts, or REPLs where logging is often unset. It configures the root logger and sets the library's top-level logger to propagate logs to the root. If the root logger has no handlers, this function sets up a default configuration and silences noisy dependencies like 'openai' and 'httpx'. In more complex applications or when integrating with existing logging configurations, you might prefer to manage logging setup externally. In such cases, you may not need to call this function. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["log_level", "log_format", "log_stream"] Returns: None Parent Class: none
module
core
fenic.core
Core module for Fenic.
site-packages/fenic/core/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: core Qualified Name: fenic.core Docstring: Core module for Fenic. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.core.__all__
null
site-packages/fenic/core/__init__.py
false
false
52
100
null
null
null
null
['ArrayType', 'BooleanType', 'BranchSide', 'DataType', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JsonType', 'MarkdownType', 'StringType', 'StructField', 'StructType', 'TranscriptType', 'ColumnField', 'Schema', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'JoinExample', 'JoinExampleCollection', 'MapExample', 'MapExampleCollection', 'PredicateExample', 'PredicateExampleCollection', 'SemanticSimilarityMetric', 'KeyPoints', 'Paragraph', 'FuzzySimilarityMethod', 'QueryMetrics', 'LMMetrics', 'RMMetrics', 'OperatorMetrics', 'DataLike', 'DataLikeType', 'QueryResult', 'DatasetMetadata', 'ToolParam', 'BoundToolParam', 'ParameterizedToolDefinition']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.core.__all__ Docstring: none Value: ['ArrayType', 'BooleanType', 'BranchSide', 'DataType', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JsonType', 'MarkdownType', 'StringType', 'StructField', 'StructType', 'TranscriptType', 'ColumnField', 'Schema', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'JoinExample', 'JoinExampleCollection', 'MapExample', 'MapExampleCollection', 'PredicateExample', 'PredicateExampleCollection', 'SemanticSimilarityMetric', 'KeyPoints', 'Paragraph', 'FuzzySimilarityMethod', 'QueryMetrics', 'LMMetrics', 'RMMetrics', 'OperatorMetrics', 'DataLike', 'DataLikeType', 'QueryResult', 'DatasetMetadata', 'ToolParam', 'BoundToolParam', 'ParameterizedToolDefinition'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
metrics
fenic.core.metrics
Metrics tracking for query execution and model usage. This module defines classes for tracking various metrics during query execution, including language model usage, embedding model usage, operator performance, and overall query statistics.
site-packages/fenic/core/metrics.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: metrics Qualified Name: fenic.core.metrics Docstring: Metrics tracking for query execution and model usage. This module defines classes for tracking various metrics during query execution, including language model usage, embedding model usage, operator performance, and overall query statistics. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
LMMetrics
fenic.core.metrics.LMMetrics
Tracks language model usage metrics including token counts and costs. Attributes: num_uncached_input_tokens: Number of uncached tokens in the prompt/input num_cached_input_tokens: Number of cached tokens in the prompt/input, num_output_tokens: Number of tokens in the completion/output cost: Total cost in USD for the LM API call
site-packages/fenic/core/metrics.py
true
false
13
46
null
null
null
null
null
[]
Type: class Member Name: LMMetrics Qualified Name: fenic.core.metrics.LMMetrics Docstring: Tracks language model usage metrics including token counts and costs. Attributes: num_uncached_input_tokens: Number of uncached tokens in the prompt/input num_cached_input_tokens: Number of cached tokens in the prompt/input, num_output_tokens: Number of tokens in the completion/output cost: Total cost in USD for the LM API call Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__add__
fenic.core.metrics.LMMetrics.__add__
Add two LMMetrics instances together. Args: other: Another LMMetrics instance to add. Returns: A new LMMetrics instance with combined metrics.
site-packages/fenic/core/metrics.py
true
false
30
46
null
LMMetrics
[ "self", "other" ]
LMMetrics
null
null
Type: method Member Name: __add__ Qualified Name: fenic.core.metrics.LMMetrics.__add__ Docstring: Add two LMMetrics instances together. Args: other: Another LMMetrics instance to add. Returns: A new LMMetrics instance with combined metrics. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: LMMetrics Parent Class: LMMetrics
method
__init__
fenic.core.metrics.LMMetrics.__init__
null
site-packages/fenic/core/metrics.py
true
false
0
0
null
None
[ "self", "num_uncached_input_tokens", "num_cached_input_tokens", "num_output_tokens", "cost", "num_requests" ]
LMMetrics
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.metrics.LMMetrics.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "num_uncached_input_tokens", "num_cached_input_tokens", "num_output_tokens", "cost", "num_requests"] Returns: None Parent Class: LMMetrics
class
RMMetrics
fenic.core.metrics.RMMetrics
Tracks embedding model usage metrics including token counts and costs. Attributes: num_input_tokens: Number of tokens to embed cost: Total cost in USD to embed the tokens
site-packages/fenic/core/metrics.py
true
false
49
75
null
null
null
null
null
[]
Type: class Member Name: RMMetrics Qualified Name: fenic.core.metrics.RMMetrics Docstring: Tracks embedding model usage metrics including token counts and costs. Attributes: num_input_tokens: Number of tokens to embed cost: Total cost in USD to embed the tokens Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__add__
fenic.core.metrics.RMMetrics.__add__
Add two RMMetrics instances together. Args: other: Another RMMetrics instance to add. Returns: A new RMMetrics instance with combined metrics.
site-packages/fenic/core/metrics.py
true
false
62
75
null
RMMetrics
[ "self", "other" ]
RMMetrics
null
null
Type: method Member Name: __add__ Qualified Name: fenic.core.metrics.RMMetrics.__add__ Docstring: Add two RMMetrics instances together. Args: other: Another RMMetrics instance to add. Returns: A new RMMetrics instance with combined metrics. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: RMMetrics Parent Class: RMMetrics
method
__init__
fenic.core.metrics.RMMetrics.__init__
null
site-packages/fenic/core/metrics.py
true
false
0
0
null
None
[ "self", "num_input_tokens", "num_requests", "cost" ]
RMMetrics
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.metrics.RMMetrics.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "num_input_tokens", "num_requests", "cost"] Returns: None Parent Class: RMMetrics
class
OperatorMetrics
fenic.core.metrics.OperatorMetrics
Metrics for a single operator in the query execution plan. Attributes: operator_id: Unique identifier for the operator num_output_rows: Number of rows output by this operator execution_time_ms: Execution time in milliseconds lm_metrics: Language model usage metrics for this operator is_cache_hit: Whether results were retrieved from cache
site-packages/fenic/core/metrics.py
true
false
78
95
null
null
null
null
null
[]
Type: class Member Name: OperatorMetrics Qualified Name: fenic.core.metrics.OperatorMetrics Docstring: Metrics for a single operator in the query execution plan. Attributes: operator_id: Unique identifier for the operator num_output_rows: Number of rows output by this operator execution_time_ms: Execution time in milliseconds lm_metrics: Language model usage metrics for this operator is_cache_hit: Whether results were retrieved from cache Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.metrics.OperatorMetrics.__init__
null
site-packages/fenic/core/metrics.py
true
false
0
0
null
None
[ "self", "operator_id", "num_output_rows", "execution_time_ms", "lm_metrics", "rm_metrics", "is_cache_hit" ]
OperatorMetrics
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.metrics.OperatorMetrics.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "operator_id", "num_output_rows", "execution_time_ms", "lm_metrics", "rm_metrics", "is_cache_hit"] Returns: None Parent Class: OperatorMetrics
class
PhysicalPlanRepr
fenic.core.metrics.PhysicalPlanRepr
Tree node representing the physical execution plan, used for pretty printing execution plan.
site-packages/fenic/core/metrics.py
true
false
98
103
null
null
null
null
null
[]
Type: class Member Name: PhysicalPlanRepr Qualified Name: fenic.core.metrics.PhysicalPlanRepr Docstring: Tree node representing the physical execution plan, used for pretty printing execution plan. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.metrics.PhysicalPlanRepr.__init__
null
site-packages/fenic/core/metrics.py
true
false
0
0
null
None
[ "self", "operator_id", "children" ]
PhysicalPlanRepr
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.metrics.PhysicalPlanRepr.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "operator_id", "children"] Returns: None Parent Class: PhysicalPlanRepr
class
QueryMetrics
fenic.core.metrics.QueryMetrics
Comprehensive metrics for an executed query. Includes overall statistics and detailed metrics for each operator in the execution plan. Attributes: execution_id: Unique identifier for this query execution session_id: Identifier for the session this query belongs to execution_time_ms: Total query execution time in milliseconds num_output_rows: Total number of rows returned by the query total_lm_metrics: Aggregated language model metrics across all operators end_ts: Timestamp when query execution completed
site-packages/fenic/core/metrics.py
true
false
106
238
null
null
null
null
null
[]
Type: class Member Name: QueryMetrics Qualified Name: fenic.core.metrics.QueryMetrics Docstring: Comprehensive metrics for an executed query. Includes overall statistics and detailed metrics for each operator in the execution plan. Attributes: execution_id: Unique identifier for this query execution session_id: Identifier for the session this query belongs to execution_time_ms: Total query execution time in milliseconds num_output_rows: Total number of rows returned by the query total_lm_metrics: Aggregated language model metrics across all operators end_ts: Timestamp when query execution completed Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
to_dict
fenic.core.metrics.QueryMetrics.to_dict
Convert QueryMetrics to a dictionary for table storage. Returns: Dict containing all metrics fields suitable for database storage.
site-packages/fenic/core/metrics.py
true
false
140
161
null
Dict[str, Any]
[ "self" ]
QueryMetrics
null
null
Type: method Member Name: to_dict Qualified Name: fenic.core.metrics.QueryMetrics.to_dict Docstring: Convert QueryMetrics to a dictionary for table storage. Returns: Dict containing all metrics fields suitable for database storage. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Dict[str, Any] Parent Class: QueryMetrics
method
get_summary
fenic.core.metrics.QueryMetrics.get_summary
Summarize the query metrics in a single line. Returns: str: A concise summary of execution time, row count, and LM cost.
site-packages/fenic/core/metrics.py
true
false
163
174
null
str
[ "self" ]
QueryMetrics
null
null
Type: method Member Name: get_summary Qualified Name: fenic.core.metrics.QueryMetrics.get_summary Docstring: Summarize the query metrics in a single line. Returns: str: A concise summary of execution time, row count, and LM cost. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: QueryMetrics
method
get_execution_plan_details
fenic.core.metrics.QueryMetrics.get_execution_plan_details
Generate a formatted execution plan with detailed metrics. Produces a hierarchical representation of the query execution plan, including performance metrics and language model usage for each operator. Returns: str: A formatted string showing the execution plan with metrics.
site-packages/fenic/core/metrics.py
true
false
176
218
null
str
[ "self" ]
QueryMetrics
null
null
Type: method Member Name: get_execution_plan_details Qualified Name: fenic.core.metrics.QueryMetrics.get_execution_plan_details Docstring: Generate a formatted execution plan with detailed metrics. Produces a hierarchical representation of the query execution plan, including performance metrics and language model usage for each operator. Returns: str: A formatted string showing the execution plan with metrics. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: QueryMetrics
method
__str__
fenic.core.metrics.QueryMetrics.__str__
Generate a detailed string representation of the query metrics. Returns: str: A multi-line string containing execution time, row counts, language model and embedding model costs and token usage, and the execution plan details.
site-packages/fenic/core/metrics.py
true
false
220
238
null
str
[ "self" ]
QueryMetrics
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.metrics.QueryMetrics.__str__ Docstring: Generate a detailed string representation of the query metrics. Returns: str: A multi-line string containing execution time, row counts, language model and embedding model costs and token usage, and the execution plan details. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: QueryMetrics
method
__init__
fenic.core.metrics.QueryMetrics.__init__
null
site-packages/fenic/core/metrics.py
true
false
0
0
null
None
[ "self", "execution_id", "session_id", "execution_time_ms", "num_output_rows", "total_lm_metrics", "total_rm_metrics", "end_ts", "_operator_metrics", "_plan_repr" ]
QueryMetrics
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.metrics.QueryMetrics.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "execution_id", "session_id", "execution_time_ms", "num_output_rows", "total_lm_metrics", "total_rm_metrics", "end_ts", "_operator_metrics", "_plan_repr"] Returns: None Parent Class: QueryMetrics
module
error
fenic.core.error
Fenic error hierarchy.
site-packages/fenic/core/error.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: error Qualified Name: fenic.core.error Docstring: Fenic error hierarchy. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
FenicError
fenic.core.error.FenicError
Base exception for all fenic errors.
site-packages/fenic/core/error.py
true
false
12
15
null
null
null
null
null
[ "Exception" ]
Type: class Member Name: FenicError Qualified Name: fenic.core.error.FenicError Docstring: Base exception for all fenic errors. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ConfigurationError
fenic.core.error.ConfigurationError
Errors during session configuration or initialization.
site-packages/fenic/core/error.py
true
false
19
22
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: ConfigurationError Qualified Name: fenic.core.error.ConfigurationError Docstring: Errors during session configuration or initialization. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
SessionError
fenic.core.error.SessionError
Session lifecycle errors.
site-packages/fenic/core/error.py
true
false
25
28
null
null
null
null
null
[ "ConfigurationError" ]
Type: class Member Name: SessionError Qualified Name: fenic.core.error.SessionError Docstring: Session lifecycle errors. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CloudSessionError
fenic.core.error.CloudSessionError
Cloud session lifecycle errors.
site-packages/fenic/core/error.py
true
false
31
42
null
null
null
null
null
[ "SessionError" ]
Type: class Member Name: CloudSessionError Qualified Name: fenic.core.error.CloudSessionError Docstring: Cloud session lifecycle errors. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.CloudSessionError.__init__
Initialize a cloud session error. Args: error_message: The error message describing what went wrong.
site-packages/fenic/core/error.py
true
false
34
42
null
null
[ "self", "error_message" ]
CloudSessionError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.CloudSessionError.__init__ Docstring: Initialize a cloud session error. Args: error_message: The error message describing what went wrong. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "error_message"] Returns: none Parent Class: CloudSessionError
class
ValidationError
fenic.core.error.ValidationError
Invalid usage of public APIs or incorrect arguments.
site-packages/fenic/core/error.py
true
false
46
49
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: ValidationError Qualified Name: fenic.core.error.ValidationError Docstring: Invalid usage of public APIs or incorrect arguments. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
InvalidExampleCollectionError
fenic.core.error.InvalidExampleCollectionError
Exception raised when a semantic example collection is invalid.
site-packages/fenic/core/error.py
true
false
52
55
null
null
null
null
null
[ "ValidationError" ]
Type: class Member Name: InvalidExampleCollectionError Qualified Name: fenic.core.error.InvalidExampleCollectionError Docstring: Exception raised when a semantic example collection is invalid. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
PlanError
fenic.core.error.PlanError
Errors during logical plan construction and validation.
site-packages/fenic/core/error.py
true
false
59
62
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: PlanError Qualified Name: fenic.core.error.PlanError Docstring: Errors during logical plan construction and validation. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ColumnNotFoundError
fenic.core.error.ColumnNotFoundError
Column doesn't exist.
site-packages/fenic/core/error.py
true
false
65
78
null
null
null
null
null
[ "PlanError" ]
Type: class Member Name: ColumnNotFoundError Qualified Name: fenic.core.error.ColumnNotFoundError Docstring: Column doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.ColumnNotFoundError.__init__
Initialize a column not found error. Args: column_name: The name of the column that was not found. available_columns: List of column names that are available.
site-packages/fenic/core/error.py
true
false
68
78
null
null
[ "self", "column_name", "available_columns" ]
ColumnNotFoundError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.ColumnNotFoundError.__init__ Docstring: Initialize a column not found error. Args: column_name: The name of the column that was not found. available_columns: List of column names that are available. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "column_name", "available_columns"] Returns: none Parent Class: ColumnNotFoundError
class
TypeMismatchError
fenic.core.error.TypeMismatchError
Type validation errors.
site-packages/fenic/core/error.py
true
false
81
106
null
null
null
null
null
[ "PlanError" ]
Type: class Member Name: TypeMismatchError Qualified Name: fenic.core.error.TypeMismatchError Docstring: Type validation errors. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.TypeMismatchError.__init__
Initialize a type mismatch error. Args: expected: The expected data type. actual: The actual data type that was found. context: Additional context about where the type mismatch occurred.
site-packages/fenic/core/error.py
true
false
84
92
null
null
[ "self", "expected", "actual", "context" ]
TypeMismatchError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.TypeMismatchError.__init__ Docstring: Initialize a type mismatch error. Args: expected: The expected data type. actual: The actual data type that was found. context: Additional context about where the type mismatch occurred. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "expected", "actual", "context"] Returns: none Parent Class: TypeMismatchError
method
from_message
fenic.core.error.TypeMismatchError.from_message
Create a TypeMismatchError from a message string. Args: msg: The error message. Returns: A new TypeMismatchError instance with the given message.
site-packages/fenic/core/error.py
true
false
94
106
null
TypeMismatchError
[ "cls", "msg" ]
TypeMismatchError
null
null
Type: method Member Name: from_message Qualified Name: fenic.core.error.TypeMismatchError.from_message Docstring: Create a TypeMismatchError from a message string. Args: msg: The error message. Returns: A new TypeMismatchError instance with the given message. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["cls", "msg"] Returns: TypeMismatchError Parent Class: TypeMismatchError
class
CatalogError
fenic.core.error.CatalogError
Catalog and table management errors.
site-packages/fenic/core/error.py
true
false
110
113
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: CatalogError Qualified Name: fenic.core.error.CatalogError Docstring: Catalog and table management errors. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CatalogNotFoundError
fenic.core.error.CatalogNotFoundError
Catalog doesn't exist.
site-packages/fenic/core/error.py
true
false
116
125
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: CatalogNotFoundError Qualified Name: fenic.core.error.CatalogNotFoundError Docstring: Catalog doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.CatalogNotFoundError.__init__
Initialize a catalog not found error. Args: catalog_name: The name of the catalog that was not found.
site-packages/fenic/core/error.py
true
false
119
125
null
null
[ "self", "catalog_name" ]
CatalogNotFoundError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.CatalogNotFoundError.__init__ Docstring: Initialize a catalog not found error. Args: catalog_name: The name of the catalog that was not found. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name"] Returns: none Parent Class: CatalogNotFoundError
class
CatalogAlreadyExistsError
fenic.core.error.CatalogAlreadyExistsError
Catalog already exists.
site-packages/fenic/core/error.py
true
false
128
137
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: CatalogAlreadyExistsError Qualified Name: fenic.core.error.CatalogAlreadyExistsError Docstring: Catalog already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.CatalogAlreadyExistsError.__init__
Initialize a catalog already exists error. Args: catalog_name: The name of the catalog that already exists.
site-packages/fenic/core/error.py
true
false
131
137
null
null
[ "self", "catalog_name" ]
CatalogAlreadyExistsError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.CatalogAlreadyExistsError.__init__ Docstring: Initialize a catalog already exists error. Args: catalog_name: The name of the catalog that already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name"] Returns: none Parent Class: CatalogAlreadyExistsError
class
TableNotFoundError
fenic.core.error.TableNotFoundError
Table doesn't exist.
site-packages/fenic/core/error.py
true
false
140
152
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: TableNotFoundError Qualified Name: fenic.core.error.TableNotFoundError Docstring: Table doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.TableNotFoundError.__init__
Initialize a table not found error. Args: table_name: The name of the table that was not found. database: The name of the database containing the table.
site-packages/fenic/core/error.py
true
false
143
152
null
null
[ "self", "table_name", "database" ]
TableNotFoundError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.TableNotFoundError.__init__ Docstring: Initialize a table not found error. Args: table_name: The name of the table that was not found. database: The name of the database containing the table. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "database"] Returns: none Parent Class: TableNotFoundError
class
TableAlreadyExistsError
fenic.core.error.TableAlreadyExistsError
Table already exists.
site-packages/fenic/core/error.py
true
false
155
172
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: TableAlreadyExistsError Qualified Name: fenic.core.error.TableAlreadyExistsError Docstring: Table already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.TableAlreadyExistsError.__init__
Initialize a table already exists error. Args: table_name: The name of the table that already exists. database: Optional name of the database containing the table.
site-packages/fenic/core/error.py
true
false
158
172
null
null
[ "self", "table_name", "database" ]
TableAlreadyExistsError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.TableAlreadyExistsError.__init__ Docstring: Initialize a table already exists error. Args: table_name: The name of the table that already exists. database: Optional name of the database containing the table. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "database"] Returns: none Parent Class: TableAlreadyExistsError
class
ToolNotFoundError
fenic.core.error.ToolNotFoundError
Tool doesn't exist.
site-packages/fenic/core/error.py
true
false
174
183
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: ToolNotFoundError Qualified Name: fenic.core.error.ToolNotFoundError Docstring: Tool doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.ToolNotFoundError.__init__
Initialize a tool not found error. Args: tool_name: The name of the tool that was not found.
site-packages/fenic/core/error.py
true
false
177
183
null
null
[ "self", "tool_name" ]
ToolNotFoundError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.ToolNotFoundError.__init__ Docstring: Initialize a tool not found error. Args: tool_name: The name of the tool that was not found. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "tool_name"] Returns: none Parent Class: ToolNotFoundError
class
ToolAlreadyExistsError
fenic.core.error.ToolAlreadyExistsError
Tool already exists.
site-packages/fenic/core/error.py
true
false
185
194
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: ToolAlreadyExistsError Qualified Name: fenic.core.error.ToolAlreadyExistsError Docstring: Tool already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.ToolAlreadyExistsError.__init__
Initialize a tool already exists error. Args: tool_name: The name of the tool that already exists.
site-packages/fenic/core/error.py
true
false
188
194
null
null
[ "self", "tool_name" ]
ToolAlreadyExistsError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.ToolAlreadyExistsError.__init__ Docstring: Initialize a tool already exists error. Args: tool_name: The name of the tool that already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "tool_name"] Returns: none Parent Class: ToolAlreadyExistsError
class
DatabaseNotFoundError
fenic.core.error.DatabaseNotFoundError
Database doesn't exist.
site-packages/fenic/core/error.py
true
false
196
205
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: DatabaseNotFoundError Qualified Name: fenic.core.error.DatabaseNotFoundError Docstring: Database doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.DatabaseNotFoundError.__init__
Initialize a database not found error. Args: database_name: The name of the database that was not found.
site-packages/fenic/core/error.py
true
false
199
205
null
null
[ "self", "database_name" ]
DatabaseNotFoundError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.DatabaseNotFoundError.__init__ Docstring: Initialize a database not found error. Args: database_name: The name of the database that was not found. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name"] Returns: none Parent Class: DatabaseNotFoundError
class
DatabaseAlreadyExistsError
fenic.core.error.DatabaseAlreadyExistsError
Database already exists.
site-packages/fenic/core/error.py
true
false
208
217
null
null
null
null
null
[ "CatalogError" ]
Type: class Member Name: DatabaseAlreadyExistsError Qualified Name: fenic.core.error.DatabaseAlreadyExistsError Docstring: Database already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.DatabaseAlreadyExistsError.__init__
Initialize a database already exists error. Args: database_name: The name of the database that already exists.
site-packages/fenic/core/error.py
true
false
211
217
null
null
[ "self", "database_name" ]
DatabaseAlreadyExistsError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.DatabaseAlreadyExistsError.__init__ Docstring: Initialize a database already exists error. Args: database_name: The name of the database that already exists. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name"] Returns: none Parent Class: DatabaseAlreadyExistsError
class
ExecutionError
fenic.core.error.ExecutionError
Errors during physical plan execution.
site-packages/fenic/core/error.py
true
false
221
224
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: ExecutionError Qualified Name: fenic.core.error.ExecutionError Docstring: Errors during physical plan execution. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CloudExecutionError
fenic.core.error.CloudExecutionError
Errors during physical plan execution in a cloud session.
site-packages/fenic/core/error.py
true
false
227
238
null
null
null
null
null
[ "ExecutionError" ]
Type: class Member Name: CloudExecutionError Qualified Name: fenic.core.error.CloudExecutionError Docstring: Errors during physical plan execution in a cloud session. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.CloudExecutionError.__init__
Initialize a cloud execution error. Args: error_message: The error message describing what went wrong.
site-packages/fenic/core/error.py
true
false
230
238
null
null
[ "self", "error_message" ]
CloudExecutionError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.CloudExecutionError.__init__ Docstring: Initialize a cloud execution error. Args: error_message: The error message describing what went wrong. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "error_message"] Returns: none Parent Class: CloudExecutionError
class
LineageError
fenic.core.error.LineageError
Errors during lineage traversal.
site-packages/fenic/core/error.py
true
false
242
245
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: LineageError Qualified Name: fenic.core.error.LineageError Docstring: Errors during lineage traversal. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
InternalError
fenic.core.error.InternalError
Internal invariant violations.
site-packages/fenic/core/error.py
true
false
249
252
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: InternalError Qualified Name: fenic.core.error.InternalError Docstring: Internal invariant violations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
FileLoaderError
fenic.core.error.FileLoaderError
File loader error.
site-packages/fenic/core/error.py
true
false
256
265
null
null
null
null
null
[ "FenicError" ]
Type: class Member Name: FileLoaderError Qualified Name: fenic.core.error.FileLoaderError Docstring: File loader error. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.FileLoaderError.__init__
Initialize a file loader error. Args: exception: The exception that was raised.
site-packages/fenic/core/error.py
true
false
259
265
null
null
[ "self", "exception" ]
FileLoaderError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.FileLoaderError.__init__ Docstring: Initialize a file loader error. Args: exception: The exception that was raised. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "exception"] Returns: none Parent Class: FileLoaderError
class
UnsupportedFileTypeError
fenic.core.error.UnsupportedFileTypeError
Unsupported file type error.
site-packages/fenic/core/error.py
true
false
267
276
null
null
null
null
null
[ "FileLoaderError" ]
Type: class Member Name: UnsupportedFileTypeError Qualified Name: fenic.core.error.UnsupportedFileTypeError Docstring: Unsupported file type error. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.error.UnsupportedFileTypeError.__init__
Initialize a unsupported file type error. Args: file_type: The unsupported file type.
site-packages/fenic/core/error.py
true
false
270
276
null
null
[ "self", "file_type" ]
UnsupportedFileTypeError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.error.UnsupportedFileTypeError.__init__ Docstring: Initialize a unsupported file type error. Args: file_type: The unsupported file type. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "file_type"] Returns: none Parent Class: UnsupportedFileTypeError
module
_resolved_session_config
fenic.core._resolved_session_config
Internal configuration classes for resolved session settings. This module defines internal configuration classes that represent the fully resolved state of a session after processing user-provided configuration. These classes are used internally after the user creates a SessionConfig in the API layer.
site-packages/fenic/core/_resolved_session_config.py
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _resolved_session_config Qualified Name: fenic.core._resolved_session_config Docstring: Internal configuration classes for resolved session settings. This module defines internal configuration classes that represent the fully resolved state of a session after processing user-provided configuration. These classes are used internally after the user creates a SessionConfig in the API layer. Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
attribute
ReasoningEffort
fenic.core._resolved_session_config.ReasoningEffort
null
site-packages/fenic/core/_resolved_session_config.py
true
false
17
17
null
null
null
null
Literal['minimal', 'low', 'medium', 'high']
null
Type: attribute Member Name: ReasoningEffort Qualified Name: fenic.core._resolved_session_config.ReasoningEffort Docstring: none Value: Literal['minimal', 'low', 'medium', 'high'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
Verbosity
fenic.core._resolved_session_config.Verbosity
null
site-packages/fenic/core/_resolved_session_config.py
true
false
18
18
null
null
null
null
Literal['low', 'medium', 'high']
null
Type: attribute Member Name: Verbosity Qualified Name: fenic.core._resolved_session_config.Verbosity Docstring: none Value: Literal['low', 'medium', 'high'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CloudExecutorSize
fenic.core._resolved_session_config.CloudExecutorSize
null
site-packages/fenic/core/_resolved_session_config.py
true
false
22
26
null
null
null
null
null
[ "str", "Enum" ]
Type: class Member Name: CloudExecutorSize Qualified Name: fenic.core._resolved_session_config.CloudExecutorSize Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ResolvedAnthropicModelProfile
fenic.core._resolved_session_config.ResolvedAnthropicModelProfile
null
site-packages/fenic/core/_resolved_session_config.py
true
false
31
33
null
null
null
null
null
[]
Type: class Member Name: ResolvedAnthropicModelProfile Qualified Name: fenic.core._resolved_session_config.ResolvedAnthropicModelProfile Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedAnthropicModelProfile.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "thinking_token_budget" ]
ResolvedAnthropicModelProfile
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedAnthropicModelProfile.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "thinking_token_budget"] Returns: None Parent Class: ResolvedAnthropicModelProfile
class
ResolvedGoogleModelProfile
fenic.core._resolved_session_config.ResolvedGoogleModelProfile
null
site-packages/fenic/core/_resolved_session_config.py
true
false
35
39
null
null
null
null
null
[]
Type: class Member Name: ResolvedGoogleModelProfile Qualified Name: fenic.core._resolved_session_config.ResolvedGoogleModelProfile Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedGoogleModelProfile.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "thinking_token_budget", "embedding_dimensionality", "embedding_task_type" ]
ResolvedGoogleModelProfile
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedGoogleModelProfile.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "thinking_token_budget", "embedding_dimensionality", "embedding_task_type"] Returns: None Parent Class: ResolvedGoogleModelProfile
class
ResolvedOpenAIModelProfile
fenic.core._resolved_session_config.ResolvedOpenAIModelProfile
null
site-packages/fenic/core/_resolved_session_config.py
true
false
43
46
null
null
null
null
null
[]
Type: class Member Name: ResolvedOpenAIModelProfile Qualified Name: fenic.core._resolved_session_config.ResolvedOpenAIModelProfile Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
End of preview. Expand in Data Studio

Fenic 0.4.0 API Documentation Dataset

Dataset Description

This dataset contains comprehensive API documentation for Fenic 0.4.0, a PySpark-inspired DataFrame framework designed for building production AI and agentic applications. The dataset provides structured information about all public and private API elements, including modules, classes, functions, methods, and attributes.

Dataset Summary

Fenic is a DataFrame framework that combines traditional data processing capabilities with semantic/AI operations. It provides:

  • A familiar DataFrame API similar to PySpark
  • Semantic functions powered by LLMs (map, extract, classify, etc.)
  • Integration with multiple AI model providers (Anthropic, OpenAI, Google, Cohere)
  • Advanced features like semantic joins and clustering

The dataset captures the complete API surface of Fenic 0.4.0, making it valuable for:

  • Code generation and understanding
  • API documentation analysis
  • Framework comparison studies
  • Training models on DataFrame/data processing APIs

Dataset Structure

The dataset consists of three Parquet files:

1. api_df.parquet (2,522 rows × 16 columns)

Main API documentation with detailed information about each API element.

Columns:

  • type: Element type (module, class, function, method, attribute)
  • name: Element name
  • qualified_name: Fully qualified name (e.g., fenic.api.dataframe.DataFrame)
  • docstring: Documentation string
  • filepath: Source file path
  • is_public: Whether the element is public
  • is_private: Whether the element is private
  • line_start: Starting line number in source
  • line_end: Ending line number in source
  • annotation: Type annotation
  • returns: Return type annotation
  • parameters: Function/method parameters
  • parent_class: Parent class for methods
  • value: Value for attributes
  • bases: Base classes for class definitions
  • api_element_summary: Formatted summary of the element

2. hierarchy_df.parquet (2,522 rows × 18 columns)

Same as api_df but with additional hierarchy information.

Additional Columns:

  • path_parts: List showing the hierarchical path
  • depth: Depth in the API hierarchy

3. fenic_summary.parquet (1 row × 1 column)

High-level project summary.

Columns:

  • project_summary: Comprehensive description of the Fenic framework

Key API Components

Core DataFrame Operations

  • Standard operations: select, filter, join, group_by, agg, sort
  • Data conversion: to_pandas(), to_polars(), to_arrow(), to_pydict(), to_pylist()
  • Lazy evaluation with logical query plans

Semantic Functions (fenic.api.functions.semantic)

  • map: Apply generation prompts to columns
  • extract: Extract structured data using Pydantic models
  • classify: Text classification
  • predicate: Boolean filtering with natural language
  • reduce: Aggregate strings using natural language instructions
  • analyze_sentiment: Sentiment analysis
  • summarize: Text summarization
  • embed: Generate embeddings

Advanced Features

  • Semantic joins and clustering
  • Model client integrations (Anthropic, OpenAI, Google, Cohere)
  • Query optimization and execution planning
  • MCP (Model-based Code Production) tool generation

Usage

Loading with Fenic (Recommended)

Fenic natively supports loading datasets directly from Hugging Face using the hf:// scheme:

import fenic as fc

# Create a Fenic session
session = fc.Session.get_or_create(
    fc.SessionConfig(app_name="fenic_api_analysis")
)

# Load the API documentation split
api_df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet")

# Or load all splits at once
df = session.read.parquet("hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/*.parquet")

# Explore the dataset
api_df.show(5)
print(f"Total API elements: {api_df.count()}")
print(f"Schema: {api_df.schema}")

# Example: Find all public DataFrame methods
dataframe_methods = api_df.filter(
    fc.col("qualified_name").contains("fenic.api.dataframe.DataFrame.") &
    (fc.col("type") == "method") &
    (fc.col("is_public") == True)
).select("name", "docstring", "parameters", "returns")

dataframe_methods.show(10)

# Example: Find all semantic functions
semantic_functions = api_df.filter(
    fc.col("qualified_name").contains("fenic.api.functions.semantic.") &
    (fc.col("type") == "function")
).select("name", "qualified_name", "docstring")

semantic_functions.show()

# Get statistics about the codebase
stats = api_df.group_by("type").agg(
    fc.count("*").alias("count")
).order_by(fc.col("count").desc())

print("\nAPI Element Statistics:")
stats.show()

# Search for specific functionality
embedding_apis = api_df.filter(
    fc.col("name").contains("embed") | 
    fc.col("docstring").contains("embedding")
).select("type", "qualified_name", "docstring")

print(f"\nFound {embedding_apis.count()} embedding-related APIs")
embedding_apis.show(5)

Loading with Pandas

import pandas as pd
from datasets import load_dataset

# Option 1: Using Hugging Face datasets library
dataset = load_dataset("YOUR_USERNAME/fenic-api-0.4.0")

# Access different splits and convert to pandas
api_df = dataset['api'].to_pandas()
hierarchy_df = dataset['hierarchy'].to_pandas()
summary_df = dataset['summary'].to_pandas()

# Option 2: Direct parquet loading
api_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/api_df.parquet')
hierarchy_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/hierarchy_df.parquet')
summary_df = pd.read_parquet('hf://datasets/YOUR_USERNAME/fenic-api-0.4.0/fenic_summary.parquet')

# Example: Find all public DataFrame methods
dataframe_methods = api_df[
    (api_df['qualified_name'].str.startswith('fenic.api.dataframe.DataFrame.')) &
    (api_df['type'] == 'method') &
    (api_df['is_public'] == True)
]

print(f"Found {len(dataframe_methods)} DataFrame methods")
print(dataframe_methods[['name', 'docstring']].head(10))

# Example: Analyze module structure
modules = api_df[api_df['type'] == 'module']
print(f"\nTotal modules: {len(modules)}")
print("Top-level modules:")
print(modules[modules['qualified_name'].str.count('\.') == 1]['name'].unique())

# Example: Find all semantic functions
semantic_functions = api_df[
    (api_df['qualified_name'].str.startswith('fenic.api.functions.semantic.')) &
    (api_df['type'] == 'function')
]

print(f"\nSemantic functions available:")
for _, func in semantic_functions.iterrows():
    doc_first_line = func['docstring'].split('\n')[0] if pd.notna(func['docstring']) else "No description"
    print(f"  • {func['name']}: {doc_first_line}")

Authentication for Private Datasets

If you're using a private dataset, set your Hugging Face token:

export HF_TOKEN=your_token_here

Or in Python:

import os
os.environ['HF_TOKEN'] = 'your_token_here'

Dataset Creation

This dataset was automatically extracted from the Fenic 0.4.0 codebase using API documentation parsing tools. It captures the complete public and private API surface, including:

  • All modules and submodules
  • Classes with their methods and attributes
  • Functions with their signatures
  • Complete docstrings and type annotations

Considerations for Using the Data

Use Cases

  • Training code generation models on DataFrame APIs
  • Building API documentation search/retrieval systems
  • Analyzing API design patterns in data processing frameworks
  • Creating intelligent code completion for Fenic

Limitations

  • This dataset represents a snapshot of Fenic 0.4.0 and may not reflect newer versions
  • Some internal/private APIs may change between versions
  • Generated protobuf files are included but may be less useful for learning

Additional Information

Project Links

  • Fenic Framework: https://github.com/typedef-ai/fenic
  • Documentation: See the official repository for the latest documentation
  • Issues: Report issues with the dataset or framework on the GitHub repository

Licensing

This dataset is released under the Apache 2.0 license, consistent with the Fenic framework's licensing.

Citation

If you use this dataset, please cite:

@dataset{fenic_api_2025,
  title={Fenic 0.4.0 API Documentation Dataset},
  year={2025},
  publisher={Hugging Face},
  license={Apache-2.0}
}

Maintenance

This dataset is a static snapshot of Fenic 0.4.0. For the latest API documentation and updates, refer to the official Fenic repository.

Downloads last month
76