type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
class
SemanticConfig
fenic.api.session.config.SemanticConfig
Configuration for semantic language and embedding models. This class defines the configuration for both language models and optional embedding models used in semantic operations. It ensures that all configured models are valid and supported by their respective providers. Attributes: language_models: Mapping of model aliases to language model configurations. default_language_model: The alias of the default language model to use for semantic operations. Not required if only one language model is configured. embedding_models: Optional mapping of model aliases to embedding model configurations. default_embedding_model: The alias of the default embedding model to use for semantic operations. Note: The embedding model is optional and only required for operations that need semantic search or embedding capabilities. Example: Configuring semantic models with a single language model: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ) } ) ``` Configuring semantic models with multiple language models and an embedding model: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100 ), "gemini": GoogleDeveloperLanguageModel( model_name="gemini-2.0-flash", rpm=100, tpm=1000 ) }, default_language_model="gpt4", embedding_models={ "openai_embeddings": OpenAIEmbeddingModel( model_name="text-embedding-3-small", rpm=100, tpm=100 ) }, default_embedding_model="openai_embeddings" ) ``` Configuring models with profiles: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4o-mini", rpm=100, tpm=100, profiles={ "fast": OpenAILanguageModel.Profile(reasoning_effort="low"), "thorough": OpenAILanguageModel.Profile(reasoning_effort="high") }, default_profile="fast" ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100, profiles={ "fast": AnthropicLanguageModel.Profile(thinking_token_budget=1024), "thorough": AnthropicLanguageModel.Profile(thinking_token_budget=4096) }, default_profile="fast" ) }, default_language_model="gpt4" ) ```
site-packages/fenic/api/session/config.py
true
false
713
937
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: SemanticConfig Qualified Name: fenic.api.session.config.SemanticConfig Docstring: Configuration for semantic language and embedding models. This class defines the configuration for both language models and optional embedding models used in semantic operations. It ensures that all configured models are valid and supported by their respective providers. Attributes: language_models: Mapping of model aliases to language model configurations. default_language_model: The alias of the default language model to use for semantic operations. Not required if only one language model is configured. embedding_models: Optional mapping of model aliases to embedding model configurations. default_embedding_model: The alias of the default embedding model to use for semantic operations. Note: The embedding model is optional and only required for operations that need semantic search or embedding capabilities. Example: Configuring semantic models with a single language model: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ) } ) ``` Configuring semantic models with multiple language models and an embedding model: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100 ), "gemini": GoogleDeveloperLanguageModel( model_name="gemini-2.0-flash", rpm=100, tpm=1000 ) }, default_language_model="gpt4", embedding_models={ "openai_embeddings": OpenAIEmbeddingModel( model_name="text-embedding-3-small", rpm=100, tpm=100 ) }, default_embedding_model="openai_embeddings" ) ``` Configuring models with profiles: ```python config = SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4o-mini", rpm=100, tpm=100, profiles={ "fast": OpenAILanguageModel.Profile(reasoning_effort="low"), "thorough": OpenAILanguageModel.Profile(reasoning_effort="high") }, default_profile="fast" ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100, profiles={ "fast": AnthropicLanguageModel.Profile(thinking_token_budget=1024), "thorough": AnthropicLanguageModel.Profile(thinking_token_budget=4096) }, default_profile="fast" ) }, default_language_model="gpt4" ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
model_post_init
fenic.api.session.config.SemanticConfig.model_post_init
Post initialization hook to set defaults. This hook runs after the model is initialized and validated. It sets the default language and embedding models if they are not set and there is only one model available.
site-packages/fenic/api/session/config.py
true
false
816
847
null
None
[ "self", "__context" ]
SemanticConfig
null
null
Type: method Member Name: model_post_init Qualified Name: fenic.api.session.config.SemanticConfig.model_post_init Docstring: Post initialization hook to set defaults. This hook runs after the model is initialized and validated. It sets the default language and embedding models if they are not set and there is only one model available. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "__context"] Returns: None Parent Class: SemanticConfig
method
validate_models
fenic.api.session.config.SemanticConfig.validate_models
Validates that the selected models are supported by the system. This validator checks that both the language model and embedding model (if provided) are valid and supported by their respective providers. Returns: The validated SemanticConfig instance. Raises: ConfigurationError: If any of the models are not supported.
site-packages/fenic/api/session/config.py
true
false
849
937
null
SemanticConfig
[ "self" ]
SemanticConfig
null
null
Type: method Member Name: validate_models Qualified Name: fenic.api.session.config.SemanticConfig.validate_models Docstring: Validates that the selected models are supported by the system. This validator checks that both the language model and embedding model (if provided) are valid and supported by their respective providers. Returns: The validated SemanticConfig instance. Raises: ConfigurationError: If any of the models are not supported. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: SemanticConfig Parent Class: SemanticConfig
class
CloudExecutorSize
fenic.api.session.config.CloudExecutorSize
Enum defining available cloud executor sizes. This enum represents the different size options available for cloud-based execution environments. Attributes: SMALL: Small instance size. MEDIUM: Medium instance size. LARGE: Large instance size. XLARGE: Extra large instance size.
site-packages/fenic/api/session/config.py
true
false
940
955
null
null
null
null
null
[ "str", "Enum" ]
Type: class Member Name: CloudExecutorSize Qualified Name: fenic.api.session.config.CloudExecutorSize Docstring: Enum defining available cloud executor sizes. This enum represents the different size options available for cloud-based execution environments. Attributes: SMALL: Small instance size. MEDIUM: Medium instance size. LARGE: Large instance size. XLARGE: Extra large instance size. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
CloudConfig
fenic.api.session.config.CloudConfig
Configuration for cloud-based execution. This class defines settings for running operations in a cloud environment, allowing for scalable and distributed processing of language model operations. Attributes: size: Size of the cloud executor instance. If None, the default size will be used. Example: Configuring cloud execution with a specific size: ```python config = CloudConfig(size=CloudExecutorSize.MEDIUM) ``` Using default cloud configuration: ```python config = CloudConfig() ```
site-packages/fenic/api/session/config.py
true
false
958
981
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: CloudConfig Qualified Name: fenic.api.session.config.CloudConfig Docstring: Configuration for cloud-based execution. This class defines settings for running operations in a cloud environment, allowing for scalable and distributed processing of language model operations. Attributes: size: Size of the cloud executor instance. If None, the default size will be used. Example: Configuring cloud execution with a specific size: ```python config = CloudConfig(size=CloudExecutorSize.MEDIUM) ``` Using default cloud configuration: ```python config = CloudConfig() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
SessionConfig
fenic.api.session.config.SessionConfig
Configuration for a user session. This class defines the complete configuration for a user session, including application settings, model configurations, and optional cloud settings. It serves as the central configuration object for all language model operations. Attributes: app_name: Name of the application using this session. Defaults to "default_app". db_path: Optional path to a local database file for persistent storage. semantic: Configuration for semantic models (optional). cloud: Optional configuration for cloud execution. Note: The semantic configuration is optional. When not provided, only non-semantic operations are available. The cloud configuration is optional and only needed for distributed processing. Example: Configuring a basic session with a single language model: ```python config = SessionConfig( app_name="my_app", semantic=SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ) } ) ) ``` Configuring a session with multiple models and cloud execution: ```python config = SessionConfig( app_name="production_app", db_path=Path("/path/to/database.db"), semantic=SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100 ) }, default_language_model="gpt4", embedding_models={ "openai_embeddings": OpenAIEmbeddingModel( model_name="text-embedding-3-small", rpm=100, tpm=100 ) }, default_embedding_model="openai_embeddings" ), cloud=CloudConfig(size=CloudExecutorSize.MEDIUM) ) ```
site-packages/fenic/api/session/config.py
true
false
984
1,171
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: SessionConfig Qualified Name: fenic.api.session.config.SessionConfig Docstring: Configuration for a user session. This class defines the complete configuration for a user session, including application settings, model configurations, and optional cloud settings. It serves as the central configuration object for all language model operations. Attributes: app_name: Name of the application using this session. Defaults to "default_app". db_path: Optional path to a local database file for persistent storage. semantic: Configuration for semantic models (optional). cloud: Optional configuration for cloud execution. Note: The semantic configuration is optional. When not provided, only non-semantic operations are available. The cloud configuration is optional and only needed for distributed processing. Example: Configuring a basic session with a single language model: ```python config = SessionConfig( app_name="my_app", semantic=SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ) } ) ) ``` Configuring a session with multiple models and cloud execution: ```python config = SessionConfig( app_name="production_app", db_path=Path("/path/to/database.db"), semantic=SemanticConfig( language_models={ "gpt4": OpenAILanguageModel( model_name="gpt-4.1-nano", rpm=100, tpm=100 ), "claude": AnthropicLanguageModel( model_name="claude-3-5-haiku-latest", rpm=100, input_tpm=100, output_tpm=100 ) }, default_language_model="gpt4", embedding_models={ "openai_embeddings": OpenAIEmbeddingModel( model_name="text-embedding-3-small", rpm=100, tpm=100 ) }, default_embedding_model="openai_embeddings" ), cloud=CloudConfig(size=CloudExecutorSize.MEDIUM) ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
to_json
fenic.api.session.config.SessionConfig.to_json
Export the session config to a JSON string.
site-packages/fenic/api/session/config.py
true
false
1,059
1,061
null
str
[ "self" ]
SessionConfig
null
null
Type: method Member Name: to_json Qualified Name: fenic.api.session.config.SessionConfig.to_json Docstring: Export the session config to a JSON string. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: SessionConfig
method
_to_resolved_config
fenic.api.session.config.SessionConfig._to_resolved_config
null
site-packages/fenic/api/session/config.py
false
true
1,063
1,171
null
ResolvedSessionConfig
[ "self" ]
SessionConfig
null
null
Type: method Member Name: _to_resolved_config Qualified Name: fenic.api.session.config.SessionConfig._to_resolved_config Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self"] Returns: ResolvedSessionConfig Parent Class: SessionConfig
function
_validate_language_profile
fenic.api.session.config._validate_language_profile
Validate the language profile against the language model.
site-packages/fenic/api/session/config.py
false
true
1,173
1,182
null
None
[ "language_model", "model_alias", "completion_model_params", "profile", "profile_alias" ]
null
null
null
Type: function Member Name: _validate_language_profile Qualified Name: fenic.api.session.config._validate_language_profile Docstring: Validate the language profile against the language model. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["language_model", "model_alias", "completion_model_params", "profile", "profile_alias"] Returns: None Parent Class: none
function
_validate_embedding_profile
fenic.api.session.config._validate_embedding_profile
Validate Embedding profile against embedding model parameters.
site-packages/fenic/api/session/config.py
false
true
1,184
1,195
null
null
[ "embedding_model_parameters", "model_alias", "profile_alias", "profile" ]
null
null
null
Type: function Member Name: _validate_embedding_profile Qualified Name: fenic.api.session.config._validate_embedding_profile Docstring: Validate Embedding profile against embedding model parameters. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["embedding_model_parameters", "model_alias", "profile_alias", "profile"] Returns: none Parent Class: none
function
_get_model_provider_for_model_config
fenic.api.session.config._get_model_provider_for_model_config
Determine the ModelProvider for the given model configuration.
site-packages/fenic/api/session/config.py
false
true
1,197
1,210
null
ModelProvider
[ "model_config" ]
null
null
null
Type: function Member Name: _get_model_provider_for_model_config Qualified Name: fenic.api.session.config._get_model_provider_for_model_config Docstring: Determine the ModelProvider for the given model configuration. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["model_config"] Returns: ModelProvider Parent Class: none
module
session
fenic.api.session.session
Main session class for interacting with the DataFrame API.
site-packages/fenic/api/session/session.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: session Qualified Name: fenic.api.session.session Docstring: Main session class for interacting with the DataFrame API. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
Session
fenic.api.session.session.Session
The entry point to programming with the DataFrame API. Similar to PySpark's SparkSession. Example: Create a session with default configuration ```python session = Session.get_or_create(SessionConfig(app_name="my_app")) ``` Example: Create a session with cloud configuration ```python config = SessionConfig( app_name="my_app", cloud=True, api_key="your_api_key" ) session = Session.get_or_create(config) ```
site-packages/fenic/api/session/session.py
true
false
31
342
null
null
null
null
null
[]
Type: class Member Name: Session Qualified Name: fenic.api.session.session.Session Docstring: The entry point to programming with the DataFrame API. Similar to PySpark's SparkSession. Example: Create a session with default configuration ```python session = Session.get_or_create(SessionConfig(app_name="my_app")) ``` Example: Create a session with cloud configuration ```python config = SessionConfig( app_name="my_app", cloud=True, api_key="your_api_key" ) session = Session.get_or_create(config) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__new__
fenic.api.session.session.Session.__new__
Create a new Session instance.
site-packages/fenic/api/session/session.py
true
false
54
60
null
null
[ "cls" ]
Session
null
null
Type: method Member Name: __new__ Qualified Name: fenic.api.session.session.Session.__new__ Docstring: Create a new Session instance. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["cls"] Returns: none Parent Class: Session
method
get_or_create
fenic.api.session.session.Session.get_or_create
Gets an existing Session or creates a new one with the configured settings. Returns: A Session instance configured with the provided settings
site-packages/fenic/api/session/session.py
true
false
62
89
null
Session
[ "cls", "config" ]
Session
null
null
Type: method Member Name: get_or_create Qualified Name: fenic.api.session.session.Session.get_or_create Docstring: Gets an existing Session or creates a new one with the configured settings. Returns: A Session instance configured with the provided settings Value: none Annotation: none is Public? : true is Private? : false Parameters: ["cls", "config"] Returns: Session Parent Class: Session
method
_create_local_session
fenic.api.session.session.Session._create_local_session
Get or create a local session.
site-packages/fenic/api/session/session.py
false
true
91
101
null
Session
[ "cls", "session_state" ]
Session
null
null
Type: method Member Name: _create_local_session Qualified Name: fenic.api.session.session.Session._create_local_session Docstring: Get or create a local session. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "session_state"] Returns: Session Parent Class: Session
method
_create_cloud_session
fenic.api.session.session.Session._create_cloud_session
Create a cloud session.
site-packages/fenic/api/session/session.py
false
true
103
113
null
Session
[ "cls", "session_state" ]
Session
null
null
Type: method Member Name: _create_cloud_session Qualified Name: fenic.api.session.session.Session._create_cloud_session Docstring: Create a cloud session. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "session_state"] Returns: Session Parent Class: Session
method
create_dataframe
fenic.api.session.session.Session.create_dataframe
Create a DataFrame from a variety of Python-native data formats. Args: data: Input data. Must be one of: - Polars DataFrame - Pandas DataFrame - dict of column_name -> list of values - list of dicts (each dict representing a row) - pyarrow Table Returns: A new DataFrame instance Raises: ValueError: If the input format is unsupported or inconsistent with provided column names. Example: Create from Polars DataFrame ```python import polars as pl df = pl.DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(df) ``` Example: Create from Pandas DataFrame ```python import pandas as pd df = pd.DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(df) ``` Example: Create from dictionary ```python session.create_dataframe({"col1": [1, 2], "col2": ["a", "b"]}) ``` Example: Create from list of dictionaries ```python session.create_dataframe([ {"col1": 1, "col2": "a"}, {"col1": 2, "col2": "b"} ]) ``` Example: Create from pyarrow Table ```python import pyarrow as pa table = pa.Table.from_pydict({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(table) ```
site-packages/fenic/api/session/session.py
true
false
132
220
null
DataFrame
[ "self", "data" ]
Session
null
null
Type: method Member Name: create_dataframe Qualified Name: fenic.api.session.session.Session.create_dataframe Docstring: Create a DataFrame from a variety of Python-native data formats. Args: data: Input data. Must be one of: - Polars DataFrame - Pandas DataFrame - dict of column_name -> list of values - list of dicts (each dict representing a row) - pyarrow Table Returns: A new DataFrame instance Raises: ValueError: If the input format is unsupported or inconsistent with provided column names. Example: Create from Polars DataFrame ```python import polars as pl df = pl.DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(df) ``` Example: Create from Pandas DataFrame ```python import pandas as pd df = pd.DataFrame({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(df) ``` Example: Create from dictionary ```python session.create_dataframe({"col1": [1, 2], "col2": ["a", "b"]}) ``` Example: Create from list of dictionaries ```python session.create_dataframe([ {"col1": 1, "col2": "a"}, {"col1": 2, "col2": "b"} ]) ``` Example: Create from pyarrow Table ```python import pyarrow as pa table = pa.Table.from_pydict({"col1": [1, 2], "col2": ["a", "b"]}) session.create_dataframe(table) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "data"] Returns: DataFrame Parent Class: Session
method
table
fenic.api.session.session.Session.table
Returns the specified table as a DataFrame. Args: table_name: Name of the table Returns: Table as a DataFrame Raises: ValueError: If the table does not exist Example: Load an existing table ```python df = session.table("my_table") ```
site-packages/fenic/api/session/session.py
true
false
222
244
null
DataFrame
[ "self", "table_name" ]
Session
null
null
Type: method Member Name: table Qualified Name: fenic.api.session.session.Session.table Docstring: Returns the specified table as a DataFrame. Args: table_name: Name of the table Returns: Table as a DataFrame Raises: ValueError: If the table does not exist Example: Load an existing table ```python df = session.table("my_table") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name"] Returns: DataFrame Parent Class: Session
method
view
fenic.api.session.session.Session.view
Returns the specified view as a DataFrame. Args: view_name: Name of the view Returns: DataFrame: Dataframe with the given view
site-packages/fenic/api/session/session.py
true
false
246
263
null
DataFrame
[ "self", "view_name" ]
Session
null
null
Type: method Member Name: view Qualified Name: fenic.api.session.session.Session.view Docstring: Returns the specified view as a DataFrame. Args: view_name: Name of the view Returns: DataFrame: Dataframe with the given view Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name"] Returns: DataFrame Parent Class: Session
method
sql
fenic.api.session.session.Session.sql
Execute a read-only SQL query against one or more DataFrames using named placeholders. This allows you to execute ad hoc SQL queries using familiar syntax when it's more convenient than the DataFrame API. Placeholders in the SQL string (e.g. `{df}`) should correspond to keyword arguments (e.g. `df=my_dataframe`). For supported SQL syntax and functions, refer to the DuckDB SQL documentation: https://duckdb.org/docs/sql/introduction. Args: query: A SQL query string with placeholders like `{df}` **tables: Keyword arguments mapping placeholder names to DataFrames Returns: A lazy DataFrame representing the result of the SQL query Raises: ValidationError: If a placeholder is used in the query but not passed as a keyword argument Example: Simple join between two DataFrames ```python df1 = session.create_dataframe({"id": [1, 2]}) df2 = session.create_dataframe({"id": [2, 3]}) result = session.sql( "SELECT * FROM {df1} JOIN {df2} USING (id)", df1=df1, df2=df2 ) ``` Example: Complex query with multiple DataFrames ```python users = session.create_dataframe({"user_id": [1, 2], "name": ["Alice", "Bob"]}) orders = session.create_dataframe({"order_id": [1, 2], "user_id": [1, 2]}) products = session.create_dataframe({"product_id": [1, 2], "name": ["Widget", "Gadget"]}) result = session.sql(""" SELECT u.name, p.name as product FROM {users} u JOIN {orders} o ON u.user_id = o.user_id JOIN {products} p ON o.product_id = p.product_id """, users=users, orders=orders, products=products) ```
site-packages/fenic/api/session/session.py
true
false
265
335
null
DataFrame
[ "self", "query", "tables" ]
Session
null
null
Type: method Member Name: sql Qualified Name: fenic.api.session.session.Session.sql Docstring: Execute a read-only SQL query against one or more DataFrames using named placeholders. This allows you to execute ad hoc SQL queries using familiar syntax when it's more convenient than the DataFrame API. Placeholders in the SQL string (e.g. `{df}`) should correspond to keyword arguments (e.g. `df=my_dataframe`). For supported SQL syntax and functions, refer to the DuckDB SQL documentation: https://duckdb.org/docs/sql/introduction. Args: query: A SQL query string with placeholders like `{df}` **tables: Keyword arguments mapping placeholder names to DataFrames Returns: A lazy DataFrame representing the result of the SQL query Raises: ValidationError: If a placeholder is used in the query but not passed as a keyword argument Example: Simple join between two DataFrames ```python df1 = session.create_dataframe({"id": [1, 2]}) df2 = session.create_dataframe({"id": [2, 3]}) result = session.sql( "SELECT * FROM {df1} JOIN {df2} USING (id)", df1=df1, df2=df2 ) ``` Example: Complex query with multiple DataFrames ```python users = session.create_dataframe({"user_id": [1, 2], "name": ["Alice", "Bob"]}) orders = session.create_dataframe({"order_id": [1, 2], "user_id": [1, 2]}) products = session.create_dataframe({"product_id": [1, 2], "name": ["Widget", "Gadget"]}) result = session.sql(""" SELECT u.name, p.name as product FROM {users} u JOIN {orders} o ON u.user_id = o.user_id JOIN {products} p ON o.product_id = p.product_id """, users=users, orders=orders, products=products) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "query", "tables"] Returns: DataFrame Parent Class: Session
method
stop
fenic.api.session.session.Session.stop
Stops the session and closes all connections. A summary of your session's metrics will print once you stop your session.
site-packages/fenic/api/session/session.py
true
false
337
342
null
null
[ "self" ]
Session
null
null
Type: method Member Name: stop Qualified Name: fenic.api.session.session.Session.stop Docstring: Stops the session and closes all connections. A summary of your session's metrics will print once you stop your session. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: Session