type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
method
__rand__
fenic.api.column.Column.__rand__
Reverse logical AND operation.
site-packages/fenic/api/column.py
true
false
807
809
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __rand__ Qualified Name: fenic.api.column.Column.__rand__ Docstring: Reverse logical AND operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__or__
fenic.api.column.Column.__or__
Logical OR operation.
site-packages/fenic/api/column.py
true
false
811
813
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __or__ Qualified Name: fenic.api.column.Column.__or__ Docstring: Logical OR operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__ror__
fenic.api.column.Column.__ror__
Reverse logical OR operation.
site-packages/fenic/api/column.py
true
false
815
817
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __ror__ Qualified Name: fenic.api.column.Column.__ror__ Docstring: Reverse logical OR operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__add__
fenic.api.column.Column.__add__
Addition operation.
site-packages/fenic/api/column.py
true
false
819
821
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __add__ Qualified Name: fenic.api.column.Column.__add__ Docstring: Addition operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__radd__
fenic.api.column.Column.__radd__
Reverse addition operation.
site-packages/fenic/api/column.py
true
false
823
827
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __radd__ Qualified Name: fenic.api.column.Column.__radd__ Docstring: Reverse addition operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__sub__
fenic.api.column.Column.__sub__
Subtraction operation.
site-packages/fenic/api/column.py
true
false
829
831
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __sub__ Qualified Name: fenic.api.column.Column.__sub__ Docstring: Subtraction operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__rsub__
fenic.api.column.Column.__rsub__
Reverse subtraction operation.
site-packages/fenic/api/column.py
true
false
833
837
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __rsub__ Qualified Name: fenic.api.column.Column.__rsub__ Docstring: Reverse subtraction operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__mul__
fenic.api.column.Column.__mul__
Multiplication operation.
site-packages/fenic/api/column.py
true
false
839
841
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __mul__ Qualified Name: fenic.api.column.Column.__mul__ Docstring: Multiplication operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__rmul__
fenic.api.column.Column.__rmul__
Reverse multiplication operation.
site-packages/fenic/api/column.py
true
false
843
845
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __rmul__ Qualified Name: fenic.api.column.Column.__rmul__ Docstring: Reverse multiplication operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__truediv__
fenic.api.column.Column.__truediv__
Division operation.
site-packages/fenic/api/column.py
true
false
847
849
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __truediv__ Qualified Name: fenic.api.column.Column.__truediv__ Docstring: Division operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__rtruediv__
fenic.api.column.Column.__rtruediv__
Reverse division operation.
site-packages/fenic/api/column.py
true
false
851
855
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __rtruediv__ Qualified Name: fenic.api.column.Column.__rtruediv__ Docstring: Reverse division operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__bool__
fenic.api.column.Column.__bool__
Prevent boolean conversion of Column objects.
site-packages/fenic/api/column.py
true
false
857
861
null
null
[ "self" ]
Column
null
null
Type: method Member Name: __bool__ Qualified Name: fenic.api.column.Column.__bool__ Docstring: Prevent boolean conversion of Column objects. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: Column
attribute
ColumnOrName
fenic.api.column.ColumnOrName
null
site-packages/fenic/api/column.py
true
false
863
863
null
null
null
null
Union[Column, str]
null
Type: attribute Member Name: ColumnOrName Qualified Name: fenic.api.column.ColumnOrName Docstring: none Value: Union[Column, str] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
dataframe
fenic.api.dataframe
DataFrame API for Fenic - provides DataFrame and grouped data operations.
site-packages/fenic/api/dataframe/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: dataframe Qualified Name: fenic.api.dataframe Docstring: DataFrame API for Fenic - provides DataFrame and grouped data operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.api.dataframe.__all__
null
site-packages/fenic/api/dataframe/__init__.py
false
false
9
9
null
null
null
null
['DataFrame', 'GroupedData', 'SemanticExtensions']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.api.dataframe.__all__ Docstring: none Value: ['DataFrame', 'GroupedData', 'SemanticExtensions'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
_base_grouped_data
fenic.api.dataframe._base_grouped_data
null
site-packages/fenic/api/dataframe/_base_grouped_data.py
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _base_grouped_data Qualified Name: fenic.api.dataframe._base_grouped_data Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
class
BaseGroupedData
fenic.api.dataframe._base_grouped_data.BaseGroupedData
Base class for aggregation methods shared between GroupedData and SemanticallyGroupedData.
site-packages/fenic/api/dataframe/_base_grouped_data.py
true
false
14
83
null
null
null
null
null
[]
Type: class Member Name: BaseGroupedData Qualified Name: fenic.api.dataframe._base_grouped_data.BaseGroupedData Docstring: Base class for aggregation methods shared between GroupedData and SemanticallyGroupedData. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.dataframe._base_grouped_data.BaseGroupedData.__init__
null
site-packages/fenic/api/dataframe/_base_grouped_data.py
true
false
17
18
null
null
[ "self", "df" ]
BaseGroupedData
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.dataframe._base_grouped_data.BaseGroupedData.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "df"] Returns: none Parent Class: BaseGroupedData
method
_process_agg_dict
fenic.api.dataframe._base_grouped_data.BaseGroupedData._process_agg_dict
Process dictionary-style aggregation specifications.
site-packages/fenic/api/dataframe/_base_grouped_data.py
false
true
20
40
null
List[Column]
[ "self", "agg_dict" ]
BaseGroupedData
null
null
Type: method Member Name: _process_agg_dict Qualified Name: fenic.api.dataframe._base_grouped_data.BaseGroupedData._process_agg_dict Docstring: Process dictionary-style aggregation specifications. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "agg_dict"] Returns: List[Column] Parent Class: BaseGroupedData
method
_process_agg_exprs
fenic.api.dataframe._base_grouped_data.BaseGroupedData._process_agg_exprs
Process Column-style aggregation expressions.
site-packages/fenic/api/dataframe/_base_grouped_data.py
false
true
42
59
null
List[AliasExpr]
[ "self", "cols" ]
BaseGroupedData
null
null
Type: method Member Name: _process_agg_exprs Qualified Name: fenic.api.dataframe._base_grouped_data.BaseGroupedData._process_agg_exprs Docstring: Process Column-style aggregation expressions. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "cols"] Returns: List[AliasExpr] Parent Class: BaseGroupedData
method
_validate_agg_exprs
fenic.api.dataframe._base_grouped_data.BaseGroupedData._validate_agg_exprs
Validate aggregation expressions.
site-packages/fenic/api/dataframe/_base_grouped_data.py
false
true
61
83
null
None
[ "self", "exprs" ]
BaseGroupedData
null
null
Type: method Member Name: _validate_agg_exprs Qualified Name: fenic.api.dataframe._base_grouped_data.BaseGroupedData._validate_agg_exprs Docstring: Validate aggregation expressions. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "exprs"] Returns: None Parent Class: BaseGroupedData
module
dataframe
fenic.api.dataframe.dataframe
DataFrame class providing PySpark-inspired API for data manipulation.
site-packages/fenic/api/dataframe/dataframe.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: dataframe Qualified Name: fenic.api.dataframe.dataframe Docstring: DataFrame class providing PySpark-inspired API for data manipulation. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic.api.dataframe.dataframe.logger
null
site-packages/fenic/api/dataframe/dataframe.py
true
false
54
54
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic.api.dataframe.dataframe.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
DataFrame
fenic.api.dataframe.dataframe.DataFrame
A data collection organized into named columns. The DataFrame class represents a lazily evaluated computation on data. Operations on DataFrame build up a logical query plan that is only executed when an action like show(), to_polars(), to_pandas(), to_arrow(), to_pydict(), to_pylist(), or count() is called. The DataFrame supports method chaining for building complex transformations. Example: Create and transform a DataFrame ```python # Create a DataFrame from a dictionary df = session.create_dataframe({"id": [1, 2, 3], "value": ["a", "b", "c"]}) # Chain transformations result = df.filter(col("id") > 1).select("id", "value") # Show results result.show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 2| b| # | 3| c| # +---+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
57
1,560
null
null
null
null
null
[]
Type: class Member Name: DataFrame Qualified Name: fenic.api.dataframe.dataframe.DataFrame Docstring: A data collection organized into named columns. The DataFrame class represents a lazily evaluated computation on data. Operations on DataFrame build up a logical query plan that is only executed when an action like show(), to_polars(), to_pandas(), to_arrow(), to_pydict(), to_pylist(), or count() is called. The DataFrame supports method chaining for building complex transformations. Example: Create and transform a DataFrame ```python # Create a DataFrame from a dictionary df = session.create_dataframe({"id": [1, 2, 3], "value": ["a", "b", "c"]}) # Chain transformations result = df.filter(col("id") > 1).select("id", "value") # Show results result.show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 2| b| # | 3| c| # +---+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__new__
fenic.api.dataframe.dataframe.DataFrame.__new__
Prevent direct DataFrame construction. DataFrames must be created through Session.create_dataframe().
site-packages/fenic/api/dataframe/dataframe.py
true
false
89
98
null
null
[ "cls" ]
DataFrame
null
null
Type: method Member Name: __new__ Qualified Name: fenic.api.dataframe.dataframe.DataFrame.__new__ Docstring: Prevent direct DataFrame construction. DataFrames must be created through Session.create_dataframe(). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["cls"] Returns: none Parent Class: DataFrame
method
_from_logical_plan
fenic.api.dataframe.dataframe.DataFrame._from_logical_plan
Factory method to create DataFrame instances. This method is intended for internal use by the Session class and other DataFrame methods that need to create new DataFrame instances. Args: logical_plan: The logical plan for this DataFrame session_state: The session state for this DataFrame Returns: A new DataFrame instance
site-packages/fenic/api/dataframe/dataframe.py
false
true
100
123
null
DataFrame
[ "cls", "logical_plan", "session_state" ]
DataFrame
null
null
Type: method Member Name: _from_logical_plan Qualified Name: fenic.api.dataframe.dataframe.DataFrame._from_logical_plan Docstring: Factory method to create DataFrame instances. This method is intended for internal use by the Session class and other DataFrame methods that need to create new DataFrame instances. Args: logical_plan: The logical plan for this DataFrame session_state: The session state for this DataFrame Returns: A new DataFrame instance Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "logical_plan", "session_state"] Returns: DataFrame Parent Class: DataFrame
method
__getitem__
fenic.api.dataframe.dataframe.DataFrame.__getitem__
Enable DataFrame[column_name] syntax for column access. Args: col_name: Name of the column to access Returns: Column: Column object for the specified column Raises: TypeError: If item is not a string Examples: >>> df[col("age")] # Returns Column object for "age" >>> df.filter(df[col("age")] > 25) # Use in expressions
site-packages/fenic/api/dataframe/dataframe.py
true
false
168
196
null
Column
[ "self", "col_name" ]
DataFrame
null
null
Type: method Member Name: __getitem__ Qualified Name: fenic.api.dataframe.dataframe.DataFrame.__getitem__ Docstring: Enable DataFrame[column_name] syntax for column access. Args: col_name: Name of the column to access Returns: Column: Column object for the specified column Raises: TypeError: If item is not a string Examples: >>> df[col("age")] # Returns Column object for "age" >>> df.filter(df[col("age")] > 25) # Use in expressions Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_name"] Returns: Column Parent Class: DataFrame
method
__getattr__
fenic.api.dataframe.dataframe.DataFrame.__getattr__
Enable DataFrame.column_name syntax for column access. Args: col_name: Name of the column to access Returns: Column: Column object for the specified column Raises: TypeError: If col_name is not a string Examples: >>> df.age # Returns Column object for "age" >>> df.filter(col("age") > 25) # Use in expressions
site-packages/fenic/api/dataframe/dataframe.py
true
false
198
225
null
Column
[ "self", "col_name" ]
DataFrame
null
null
Type: method Member Name: __getattr__ Qualified Name: fenic.api.dataframe.dataframe.DataFrame.__getattr__ Docstring: Enable DataFrame.column_name syntax for column access. Args: col_name: Name of the column to access Returns: Column: Column object for the specified column Raises: TypeError: If col_name is not a string Examples: >>> df.age # Returns Column object for "age" >>> df.filter(col("age") > 25) # Use in expressions Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_name"] Returns: Column Parent Class: DataFrame
method
explain
fenic.api.dataframe.dataframe.DataFrame.explain
Display the logical plan of the DataFrame.
site-packages/fenic/api/dataframe/dataframe.py
true
false
227
229
null
None
[ "self" ]
DataFrame
null
null
Type: method Member Name: explain Qualified Name: fenic.api.dataframe.dataframe.DataFrame.explain Docstring: Display the logical plan of the DataFrame. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: DataFrame
method
show
fenic.api.dataframe.dataframe.DataFrame.show
Display the DataFrame content in a tabular form. This is an action that triggers computation of the DataFrame. The output is printed to stdout in a formatted table. Args: n: Number of rows to display explain_analyze: Whether to print the explain analyze plan
site-packages/fenic/api/dataframe/dataframe.py
true
false
231
245
null
None
[ "self", "n", "explain_analyze" ]
DataFrame
null
null
Type: method Member Name: show Qualified Name: fenic.api.dataframe.dataframe.DataFrame.show Docstring: Display the DataFrame content in a tabular form. This is an action that triggers computation of the DataFrame. The output is printed to stdout in a formatted table. Args: n: Number of rows to display explain_analyze: Whether to print the explain analyze plan Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "n", "explain_analyze"] Returns: None Parent Class: DataFrame
method
collect
fenic.api.dataframe.dataframe.DataFrame.collect
Execute the DataFrame computation and return the result as a QueryResult. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a QueryResult, which contains both the result data and the query metrics. Args: data_type: The type of data to return Returns: QueryResult: A QueryResult with materialized data and query metrics
site-packages/fenic/api/dataframe/dataframe.py
true
false
247
275
null
QueryResult
[ "self", "data_type" ]
DataFrame
null
null
Type: method Member Name: collect Qualified Name: fenic.api.dataframe.dataframe.DataFrame.collect Docstring: Execute the DataFrame computation and return the result as a QueryResult. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a QueryResult, which contains both the result data and the query metrics. Args: data_type: The type of data to return Returns: QueryResult: A QueryResult with materialized data and query metrics Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "data_type"] Returns: QueryResult Parent Class: DataFrame
method
to_polars
fenic.api.dataframe.dataframe.DataFrame.to_polars
Execute the DataFrame computation and return the result as a Polars DataFrame. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Polars DataFrame. Returns: pl.DataFrame: A Polars DataFrame with materialized results
site-packages/fenic/api/dataframe/dataframe.py
true
false
277
287
null
pl.DataFrame
[ "self" ]
DataFrame
null
null
Type: method Member Name: to_polars Qualified Name: fenic.api.dataframe.dataframe.DataFrame.to_polars Docstring: Execute the DataFrame computation and return the result as a Polars DataFrame. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Polars DataFrame. Returns: pl.DataFrame: A Polars DataFrame with materialized results Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: pl.DataFrame Parent Class: DataFrame
method
to_pandas
fenic.api.dataframe.dataframe.DataFrame.to_pandas
Execute the DataFrame computation and return a Pandas DataFrame. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Pandas DataFrame. Returns: pd.DataFrame: A Pandas DataFrame containing the computed results with
site-packages/fenic/api/dataframe/dataframe.py
true
false
289
299
null
pd.DataFrame
[ "self" ]
DataFrame
null
null
Type: method Member Name: to_pandas Qualified Name: fenic.api.dataframe.dataframe.DataFrame.to_pandas Docstring: Execute the DataFrame computation and return a Pandas DataFrame. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Pandas DataFrame. Returns: pd.DataFrame: A Pandas DataFrame containing the computed results with Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: pd.DataFrame Parent Class: DataFrame
method
to_arrow
fenic.api.dataframe.dataframe.DataFrame.to_arrow
Execute the DataFrame computation and return an Apache Arrow Table. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into an Apache Arrow Table with columnar memory layout optimized for analytics and zero-copy data exchange. Returns: pa.Table: An Apache Arrow Table containing the computed results
site-packages/fenic/api/dataframe/dataframe.py
true
false
301
312
null
pa.Table
[ "self" ]
DataFrame
null
null
Type: method Member Name: to_arrow Qualified Name: fenic.api.dataframe.dataframe.DataFrame.to_arrow Docstring: Execute the DataFrame computation and return an Apache Arrow Table. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into an Apache Arrow Table with columnar memory layout optimized for analytics and zero-copy data exchange. Returns: pa.Table: An Apache Arrow Table containing the computed results Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: pa.Table Parent Class: DataFrame
method
to_pydict
fenic.api.dataframe.dataframe.DataFrame.to_pydict
Execute the DataFrame computation and return a dictionary of column arrays. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python dictionary where each column becomes a list of values. Returns: Dict[str, List[Any]]: A dictionary containing the computed results with: - Keys: Column names as strings - Values: Lists containing all values for each column
site-packages/fenic/api/dataframe/dataframe.py
true
false
314
326
null
Dict[str, List[Any]]
[ "self" ]
DataFrame
null
null
Type: method Member Name: to_pydict Qualified Name: fenic.api.dataframe.dataframe.DataFrame.to_pydict Docstring: Execute the DataFrame computation and return a dictionary of column arrays. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python dictionary where each column becomes a list of values. Returns: Dict[str, List[Any]]: A dictionary containing the computed results with: - Keys: Column names as strings - Values: Lists containing all values for each column Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Dict[str, List[Any]] Parent Class: DataFrame
method
to_pylist
fenic.api.dataframe.dataframe.DataFrame.to_pylist
Execute the DataFrame computation and return a list of row dictionaries. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python list where each element is a dictionary representing one row with column names as keys. Returns: List[Dict[str, Any]]: A list containing the computed results with: - Each element: A dictionary representing one row - Dictionary keys: Column names as strings - Dictionary values: Cell values in Python native types - List length equals number of rows in the result
site-packages/fenic/api/dataframe/dataframe.py
true
false
328
343
null
List[Dict[str, Any]]
[ "self" ]
DataFrame
null
null
Type: method Member Name: to_pylist Qualified Name: fenic.api.dataframe.dataframe.DataFrame.to_pylist Docstring: Execute the DataFrame computation and return a list of row dictionaries. This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python list where each element is a dictionary representing one row with column names as keys. Returns: List[Dict[str, Any]]: A list containing the computed results with: - Each element: A dictionary representing one row - Dictionary keys: Column names as strings - Dictionary values: Cell values in Python native types - List length equals number of rows in the result Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[Dict[str, Any]] Parent Class: DataFrame
method
count
fenic.api.dataframe.dataframe.DataFrame.count
Count the number of rows in the DataFrame. This is an action that triggers computation of the DataFrame. The output is an integer representing the number of rows. Returns: int: The number of rows in the DataFrame
site-packages/fenic/api/dataframe/dataframe.py
true
false
345
354
null
int
[ "self" ]
DataFrame
null
null
Type: method Member Name: count Qualified Name: fenic.api.dataframe.dataframe.DataFrame.count Docstring: Count the number of rows in the DataFrame. This is an action that triggers computation of the DataFrame. The output is an integer representing the number of rows. Returns: int: The number of rows in the DataFrame Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: int Parent Class: DataFrame
method
lineage
fenic.api.dataframe.dataframe.DataFrame.lineage
Create a Lineage object to trace data through transformations. The Lineage interface allows you to trace how specific rows are transformed through your DataFrame operations, both forwards and backwards through the computation graph. Returns: Lineage: Interface for querying data lineage Example: ```python # Create lineage query lineage = df.lineage() # Trace specific rows backwards through transformations source_rows = lineage.backward(["result_uuid1", "result_uuid2"]) # Or trace forwards to see outputs result_rows = lineage.forward(["source_uuid1"]) ``` See Also: LineageQuery: Full documentation of lineage querying capabilities
site-packages/fenic/api/dataframe/dataframe.py
true
false
356
381
null
Lineage
[ "self" ]
DataFrame
null
null
Type: method Member Name: lineage Qualified Name: fenic.api.dataframe.dataframe.DataFrame.lineage Docstring: Create a Lineage object to trace data through transformations. The Lineage interface allows you to trace how specific rows are transformed through your DataFrame operations, both forwards and backwards through the computation graph. Returns: Lineage: Interface for querying data lineage Example: ```python # Create lineage query lineage = df.lineage() # Trace specific rows backwards through transformations source_rows = lineage.backward(["result_uuid1", "result_uuid2"]) # Or trace forwards to see outputs result_rows = lineage.forward(["source_uuid1"]) ``` See Also: LineageQuery: Full documentation of lineage querying capabilities Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Lineage Parent Class: DataFrame
method
persist
fenic.api.dataframe.dataframe.DataFrame.persist
Mark this DataFrame to be persisted after first computation. The persisted DataFrame will be cached after its first computation, avoiding recomputation in subsequent operations. This is useful for DataFrames that are reused multiple times in your workflow. Returns: DataFrame: Same DataFrame, but marked for persistence Example: ```python # Cache intermediate results for reuse filtered_df = (df .filter(col("age") > 25) .persist() # Cache these results ) # Both operations will use cached results result1 = filtered_df.group_by("department").count() result2 = filtered_df.select("name", "salary") ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
383
411
null
DataFrame
[ "self" ]
DataFrame
null
null
Type: method Member Name: persist Qualified Name: fenic.api.dataframe.dataframe.DataFrame.persist Docstring: Mark this DataFrame to be persisted after first computation. The persisted DataFrame will be cached after its first computation, avoiding recomputation in subsequent operations. This is useful for DataFrames that are reused multiple times in your workflow. Returns: DataFrame: Same DataFrame, but marked for persistence Example: ```python # Cache intermediate results for reuse filtered_df = (df .filter(col("age") > 25) .persist() # Cache these results ) # Both operations will use cached results result1 = filtered_df.group_by("department").count() result2 = filtered_df.select("name", "salary") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: DataFrame Parent Class: DataFrame
method
cache
fenic.api.dataframe.dataframe.DataFrame.cache
Alias for persist(). Mark DataFrame for caching after first computation. Returns: DataFrame: Same DataFrame, but marked for caching See Also: persist(): Full documentation of caching behavior
site-packages/fenic/api/dataframe/dataframe.py
true
false
413
422
null
DataFrame
[ "self" ]
DataFrame
null
null
Type: method Member Name: cache Qualified Name: fenic.api.dataframe.dataframe.DataFrame.cache Docstring: Alias for persist(). Mark DataFrame for caching after first computation. Returns: DataFrame: Same DataFrame, but marked for caching See Also: persist(): Full documentation of caching behavior Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: DataFrame Parent Class: DataFrame
method
select
fenic.api.dataframe.dataframe.DataFrame.select
Projects a set of Column expressions or column names. Args: *cols: Column expressions to select. Can be: - String column names (e.g., "id", "name") - Column objects (e.g., col("id"), col("age") + 1) Returns: DataFrame: A new DataFrame with selected columns Example: Select by column names ```python # Create a DataFrame df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]}) # Select by column names df.select(col("name"), col("age")).show() # Output: # +-----+---+ # | name|age| # +-----+---+ # |Alice| 25| # | Bob| 30| # +-----+---+ ``` Example: Select with expressions ```python # Select with expressions df.select(col("name"), col("age") + 1).show() # Output: # +-----+-------+ # | name|age + 1| # +-----+-------+ # |Alice| 26| # | Bob| 31| # +-----+-------+ ``` Example: Mix strings and expressions ```python # Mix strings and expressions df.select(col("name"), col("age") * 2).show() # Output: # +-----+-------+ # | name|age * 2| # +-----+-------+ # |Alice| 50| # | Bob| 60| # +-----+-------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
424
492
null
DataFrame
[ "self", "cols" ]
DataFrame
null
null
Type: method Member Name: select Qualified Name: fenic.api.dataframe.dataframe.DataFrame.select Docstring: Projects a set of Column expressions or column names. Args: *cols: Column expressions to select. Can be: - String column names (e.g., "id", "name") - Column objects (e.g., col("id"), col("age") + 1) Returns: DataFrame: A new DataFrame with selected columns Example: Select by column names ```python # Create a DataFrame df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]}) # Select by column names df.select(col("name"), col("age")).show() # Output: # +-----+---+ # | name|age| # +-----+---+ # |Alice| 25| # | Bob| 30| # +-----+---+ ``` Example: Select with expressions ```python # Select with expressions df.select(col("name"), col("age") + 1).show() # Output: # +-----+-------+ # | name|age + 1| # +-----+-------+ # |Alice| 26| # | Bob| 31| # +-----+-------+ ``` Example: Mix strings and expressions ```python # Mix strings and expressions df.select(col("name"), col("age") * 2).show() # Output: # +-----+-------+ # | name|age * 2| # +-----+-------+ # |Alice| 50| # | Bob| 60| # +-----+-------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols"] Returns: DataFrame Parent Class: DataFrame
method
where
fenic.api.dataframe.dataframe.DataFrame.where
Filters rows using the given condition (alias for filter()). Args: condition: A Column expression that evaluates to a boolean Returns: DataFrame: Filtered DataFrame See Also: filter(): Full documentation of filtering behavior
site-packages/fenic/api/dataframe/dataframe.py
true
false
494
506
null
DataFrame
[ "self", "condition" ]
DataFrame
null
null
Type: method Member Name: where Qualified Name: fenic.api.dataframe.dataframe.DataFrame.where Docstring: Filters rows using the given condition (alias for filter()). Args: condition: A Column expression that evaluates to a boolean Returns: DataFrame: Filtered DataFrame See Also: filter(): Full documentation of filtering behavior Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "condition"] Returns: DataFrame Parent Class: DataFrame
method
filter
fenic.api.dataframe.dataframe.DataFrame.filter
Filters rows using the given condition. Args: condition: A Column expression that evaluates to a boolean Returns: DataFrame: Filtered DataFrame Example: Filter with numeric comparison ```python # Create a DataFrame df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]}) # Filter with numeric comparison df.filter(col("age") > 25).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ``` Example: Filter with semantic predicate ```python # Filter with semantic predicate df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ``` Example: Filter with multiple conditions ```python # Filter with multiple conditions df.filter((col("age") > 25) & (col("age") <= 35)).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
508
562
null
DataFrame
[ "self", "condition" ]
DataFrame
null
null
Type: method Member Name: filter Qualified Name: fenic.api.dataframe.dataframe.DataFrame.filter Docstring: Filters rows using the given condition. Args: condition: A Column expression that evaluates to a boolean Returns: DataFrame: Filtered DataFrame Example: Filter with numeric comparison ```python # Create a DataFrame df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]}) # Filter with numeric comparison df.filter(col("age") > 25).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ``` Example: Filter with semantic predicate ```python # Filter with semantic predicate df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ``` Example: Filter with multiple conditions ```python # Filter with multiple conditions df.filter((col("age") > 25) & (col("age") <= 35)).show() # Output: # +---+-------+ # |age| name| # +---+-------+ # | 30| Bob| # | 35|Charlie| # +---+-------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "condition"] Returns: DataFrame Parent Class: DataFrame
method
with_column
fenic.api.dataframe.dataframe.DataFrame.with_column
Add a new column or replace an existing column. Args: col_name: Name of the new column col: Column expression or value to assign to the column. If not a Column, it will be treated as a literal value. Returns: DataFrame: New DataFrame with added/replaced column Example: Add literal column ```python # Create a DataFrame df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]}) # Add literal column df.with_column("constant", lit(1)).show() # Output: # +-----+---+--------+ # | name|age|constant| # +-----+---+--------+ # |Alice| 25| 1| # | Bob| 30| 1| # +-----+---+--------+ ``` Example: Add computed column ```python # Add computed column df.with_column("double_age", col("age") * 2).show() # Output: # +-----+---+----------+ # | name|age|double_age| # +-----+---+----------+ # |Alice| 25| 50| # | Bob| 30| 60| # +-----+---+----------+ ``` Example: Replace existing column ```python # Replace existing column df.with_column("age", col("age") + 1).show() # Output: # +-----+---+ # | name|age| # +-----+---+ # |Alice| 26| # | Bob| 31| # +-----+---+ ``` Example: Add column with complex expression ```python # Add column with complex expression df.with_column( "age_category", when(col("age") < 30, "young") .when(col("age") < 50, "middle") .otherwise("senior") ).show() # Output: # +-----+---+------------+ # | name|age|age_category| # +-----+---+------------+ # |Alice| 25| young| # | Bob| 30| middle| # +-----+---+------------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
564
649
null
DataFrame
[ "self", "col_name", "col" ]
DataFrame
null
null
Type: method Member Name: with_column Qualified Name: fenic.api.dataframe.dataframe.DataFrame.with_column Docstring: Add a new column or replace an existing column. Args: col_name: Name of the new column col: Column expression or value to assign to the column. If not a Column, it will be treated as a literal value. Returns: DataFrame: New DataFrame with added/replaced column Example: Add literal column ```python # Create a DataFrame df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]}) # Add literal column df.with_column("constant", lit(1)).show() # Output: # +-----+---+--------+ # | name|age|constant| # +-----+---+--------+ # |Alice| 25| 1| # | Bob| 30| 1| # +-----+---+--------+ ``` Example: Add computed column ```python # Add computed column df.with_column("double_age", col("age") * 2).show() # Output: # +-----+---+----------+ # | name|age|double_age| # +-----+---+----------+ # |Alice| 25| 50| # | Bob| 30| 60| # +-----+---+----------+ ``` Example: Replace existing column ```python # Replace existing column df.with_column("age", col("age") + 1).show() # Output: # +-----+---+ # | name|age| # +-----+---+ # |Alice| 26| # | Bob| 31| # +-----+---+ ``` Example: Add column with complex expression ```python # Add column with complex expression df.with_column( "age_category", when(col("age") < 30, "young") .when(col("age") < 50, "middle") .otherwise("senior") ).show() # Output: # +-----+---+------------+ # | name|age|age_category| # +-----+---+------------+ # |Alice| 25| young| # | Bob| 30| middle| # +-----+---+------------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_name", "col"] Returns: DataFrame Parent Class: DataFrame
method
with_column_renamed
fenic.api.dataframe.dataframe.DataFrame.with_column_renamed
Rename a column. No-op if the column does not exist. Args: col_name: Name of the column to rename. new_col_name: New name for the column. Returns: DataFrame: New DataFrame with the column renamed. Example: Rename a column ```python # Create sample DataFrame df = session.create_dataframe({ "age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"] }) # Rename a column df.with_column_renamed("age", "age_in_years").show() # Output: # +------------+-------+ # |age_in_years| name| # +------------+-------+ # | 25| Alice| # | 30| Bob| # | 35|Charlie| # +------------+-------+ ``` Example: Rename multiple columns ```python # Rename multiple columns df = (df .with_column_renamed("age", "age_in_years") .with_column_renamed("name", "full_name") ).show() # Output: # +------------+----------+ # |age_in_years|full_name | # +------------+----------+ # | 25| Alice| # | 30| Bob| # | 35| Charlie| # +------------+----------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
651
715
null
DataFrame
[ "self", "col_name", "new_col_name" ]
DataFrame
null
null
Type: method Member Name: with_column_renamed Qualified Name: fenic.api.dataframe.dataframe.DataFrame.with_column_renamed Docstring: Rename a column. No-op if the column does not exist. Args: col_name: Name of the column to rename. new_col_name: New name for the column. Returns: DataFrame: New DataFrame with the column renamed. Example: Rename a column ```python # Create sample DataFrame df = session.create_dataframe({ "age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"] }) # Rename a column df.with_column_renamed("age", "age_in_years").show() # Output: # +------------+-------+ # |age_in_years| name| # +------------+-------+ # | 25| Alice| # | 30| Bob| # | 35|Charlie| # +------------+-------+ ``` Example: Rename multiple columns ```python # Rename multiple columns df = (df .with_column_renamed("age", "age_in_years") .with_column_renamed("name", "full_name") ).show() # Output: # +------------+----------+ # |age_in_years|full_name | # +------------+----------+ # | 25| Alice| # | 30| Bob| # | 35| Charlie| # +------------+----------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_name", "new_col_name"] Returns: DataFrame Parent Class: DataFrame
method
drop
fenic.api.dataframe.dataframe.DataFrame.drop
Remove one or more columns from this DataFrame. Args: *col_names: Names of columns to drop. Returns: DataFrame: New DataFrame without specified columns. Raises: ValueError: If any specified column doesn't exist in the DataFrame. ValueError: If dropping the columns would result in an empty DataFrame. Example: Drop single column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3], "name": ["Alice", "Bob", "Charlie"], "age": [25, 30, 35] }) # Drop single column df.drop("age").show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 1| Alice| # | 2| Bob| # | 3|Charlie| # +---+-------+ ``` Example: Drop multiple columns ```python # Drop multiple columns df.drop(col("id"), "age").show() # Output: # +-------+ # | name| # +-------+ # | Alice| # | Bob| # |Charlie| # +-------+ ``` Example: Error when dropping non-existent column ```python # This will raise a ValueError df.drop("non_existent_column") # ValueError: Column 'non_existent_column' not found in DataFrame ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
717
797
null
DataFrame
[ "self", "col_names" ]
DataFrame
null
null
Type: method Member Name: drop Qualified Name: fenic.api.dataframe.dataframe.DataFrame.drop Docstring: Remove one or more columns from this DataFrame. Args: *col_names: Names of columns to drop. Returns: DataFrame: New DataFrame without specified columns. Raises: ValueError: If any specified column doesn't exist in the DataFrame. ValueError: If dropping the columns would result in an empty DataFrame. Example: Drop single column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3], "name": ["Alice", "Bob", "Charlie"], "age": [25, 30, 35] }) # Drop single column df.drop("age").show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 1| Alice| # | 2| Bob| # | 3|Charlie| # +---+-------+ ``` Example: Drop multiple columns ```python # Drop multiple columns df.drop(col("id"), "age").show() # Output: # +-------+ # | name| # +-------+ # | Alice| # | Bob| # |Charlie| # +-------+ ``` Example: Error when dropping non-existent column ```python # This will raise a ValueError df.drop("non_existent_column") # ValueError: Column 'non_existent_column' not found in DataFrame ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_names"] Returns: DataFrame Parent Class: DataFrame
method
union
fenic.api.dataframe.dataframe.DataFrame.union
Return a new DataFrame containing the union of rows in this and another DataFrame. This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union(). Args: other: Another DataFrame with the same schema. Returns: DataFrame: A new DataFrame containing rows from both DataFrames. Raises: ValueError: If the DataFrames have different schemas. TypeError: If other is not a DataFrame. Example: Union two DataFrames ```python # Create two DataFrames df1 = session.create_dataframe({ "id": [1, 2], "value": ["a", "b"] }) df2 = session.create_dataframe({ "id": [3, 4], "value": ["c", "d"] }) # Union the DataFrames df1.union(df2).show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 3| c| # | 4| d| # +---+-----+ ``` Example: Union with duplicates ```python # Create DataFrames with overlapping data df1 = session.create_dataframe({ "id": [1, 2], "value": ["a", "b"] }) df2 = session.create_dataframe({ "id": [2, 3], "value": ["b", "c"] }) # Union with duplicates df1.union(df2).show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 2| b| # | 3| c| # +---+-----+ # Remove duplicates after union df1.union(df2).drop_duplicates().show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 3| c| # +---+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
799
879
null
DataFrame
[ "self", "other" ]
DataFrame
null
null
Type: method Member Name: union Qualified Name: fenic.api.dataframe.dataframe.DataFrame.union Docstring: Return a new DataFrame containing the union of rows in this and another DataFrame. This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union(). Args: other: Another DataFrame with the same schema. Returns: DataFrame: A new DataFrame containing rows from both DataFrames. Raises: ValueError: If the DataFrames have different schemas. TypeError: If other is not a DataFrame. Example: Union two DataFrames ```python # Create two DataFrames df1 = session.create_dataframe({ "id": [1, 2], "value": ["a", "b"] }) df2 = session.create_dataframe({ "id": [3, 4], "value": ["c", "d"] }) # Union the DataFrames df1.union(df2).show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 3| c| # | 4| d| # +---+-----+ ``` Example: Union with duplicates ```python # Create DataFrames with overlapping data df1 = session.create_dataframe({ "id": [1, 2], "value": ["a", "b"] }) df2 = session.create_dataframe({ "id": [2, 3], "value": ["b", "c"] }) # Union with duplicates df1.union(df2).show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 2| b| # | 3| c| # +---+-----+ # Remove duplicates after union df1.union(df2).drop_duplicates().show() # Output: # +---+-----+ # | id|value| # +---+-----+ # | 1| a| # | 2| b| # | 3| c| # +---+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: DataFrame Parent Class: DataFrame
method
limit
fenic.api.dataframe.dataframe.DataFrame.limit
Limits the number of rows to the specified number. Args: n: Maximum number of rows to return. Returns: DataFrame: DataFrame with at most n rows. Raises: TypeError: If n is not an integer. Example: Limit rows ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3, 4, 5], "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"] }) # Get first 3 rows df.limit(3).show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 1| Alice| # | 2| Bob| # | 3|Charlie| # +---+-------+ ``` Example: Limit with other operations ```python # Limit after filtering df.filter(col("id") > 2).limit(2).show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 3|Charlie| # | 4| Dave| # +---+-------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
881
928
null
DataFrame
[ "self", "n" ]
DataFrame
null
null
Type: method Member Name: limit Qualified Name: fenic.api.dataframe.dataframe.DataFrame.limit Docstring: Limits the number of rows to the specified number. Args: n: Maximum number of rows to return. Returns: DataFrame: DataFrame with at most n rows. Raises: TypeError: If n is not an integer. Example: Limit rows ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3, 4, 5], "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"] }) # Get first 3 rows df.limit(3).show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 1| Alice| # | 2| Bob| # | 3|Charlie| # +---+-------+ ``` Example: Limit with other operations ```python # Limit after filtering df.filter(col("id") > 2).limit(2).show() # Output: # +---+-------+ # | id| name| # +---+-------+ # | 3|Charlie| # | 4| Dave| # +---+-------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "n"] Returns: DataFrame Parent Class: DataFrame
method
join
fenic.api.dataframe.dataframe.DataFrame.join
Joins this DataFrame with another DataFrame. The Dataframes must have no duplicate column names between them. This API only supports equi-joins. For non-equi-joins, use session.sql(). Args: other: DataFrame to join with. on: Join condition(s). Can be: - A column name (str) - A list of column names (List[str]) - A Column expression (e.g., col('a')) - A list of Column expressions - `None` for cross joins left_on: Column(s) from the left DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('a'), col('a') + 1) - A list of column names or expressions right_on: Column(s) from the right DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('b'), upper(col('b'))) - A list of column names or expressions how: Type of join to perform. Returns: Joined DataFrame. Raises: ValidationError: If cross join is used with an ON clause. ValidationError: If join condition is invalid. ValidationError: If both 'on' and 'left_on'/'right_on' parameters are provided. ValidationError: If only one of 'left_on' or 'right_on' is provided. ValidationError: If 'left_on' and 'right_on' have different lengths Example: Inner join on column name ```python # Create sample DataFrames df1 = session.create_dataframe({ "id": [1, 2, 3], "name": ["Alice", "Bob", "Charlie"] }) df2 = session.create_dataframe({ "id": [1, 2, 4], "age": [25, 30, 35] }) # Join on single column df1.join(df2, on=col("id")).show() # Output: # +---+-----+---+ # | id| name|age| # +---+-----+---+ # | 1|Alice| 25| # | 2| Bob| 30| # +---+-----+---+ ``` Example: Join with expression ```python # Join with Column expressions df1.join( df2, left_on=col("id"), right_on=col("id"), ).show() # Output: # +---+-----+---+ # | id| name|age| # +---+-----+---+ # | 1|Alice| 25| # | 2| Bob| 30| # +---+-----+---+ ``` Example: Cross join ```python # Cross join (cartesian product) df1.join(df2, how="cross").show() # Output: # +---+-----+---+---+ # | id| name| id|age| # +---+-----+---+---+ # | 1|Alice| 1| 25| # | 1|Alice| 2| 30| # | 1|Alice| 4| 35| # | 2| Bob| 1| 25| # | 2| Bob| 2| 30| # | 2| Bob| 4| 35| # | 3|Charlie| 1| 25| # | 3|Charlie| 2| 30| # | 3|Charlie| 4| 35| # +---+-----+---+---+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
949
1,066
null
DataFrame
[ "self", "other", "on", "left_on", "right_on", "how" ]
DataFrame
null
null
Type: method Member Name: join Qualified Name: fenic.api.dataframe.dataframe.DataFrame.join Docstring: Joins this DataFrame with another DataFrame. The Dataframes must have no duplicate column names between them. This API only supports equi-joins. For non-equi-joins, use session.sql(). Args: other: DataFrame to join with. on: Join condition(s). Can be: - A column name (str) - A list of column names (List[str]) - A Column expression (e.g., col('a')) - A list of Column expressions - `None` for cross joins left_on: Column(s) from the left DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('a'), col('a') + 1) - A list of column names or expressions right_on: Column(s) from the right DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('b'), upper(col('b'))) - A list of column names or expressions how: Type of join to perform. Returns: Joined DataFrame. Raises: ValidationError: If cross join is used with an ON clause. ValidationError: If join condition is invalid. ValidationError: If both 'on' and 'left_on'/'right_on' parameters are provided. ValidationError: If only one of 'left_on' or 'right_on' is provided. ValidationError: If 'left_on' and 'right_on' have different lengths Example: Inner join on column name ```python # Create sample DataFrames df1 = session.create_dataframe({ "id": [1, 2, 3], "name": ["Alice", "Bob", "Charlie"] }) df2 = session.create_dataframe({ "id": [1, 2, 4], "age": [25, 30, 35] }) # Join on single column df1.join(df2, on=col("id")).show() # Output: # +---+-----+---+ # | id| name|age| # +---+-----+---+ # | 1|Alice| 25| # | 2| Bob| 30| # +---+-----+---+ ``` Example: Join with expression ```python # Join with Column expressions df1.join( df2, left_on=col("id"), right_on=col("id"), ).show() # Output: # +---+-----+---+ # | id| name|age| # +---+-----+---+ # | 1|Alice| 25| # | 2| Bob| 30| # +---+-----+---+ ``` Example: Cross join ```python # Cross join (cartesian product) df1.join(df2, how="cross").show() # Output: # +---+-----+---+---+ # | id| name| id|age| # +---+-----+---+---+ # | 1|Alice| 1| 25| # | 1|Alice| 2| 30| # | 1|Alice| 4| 35| # | 2| Bob| 1| 25| # | 2| Bob| 2| 30| # | 2| Bob| 4| 35| # | 3|Charlie| 1| 25| # | 3|Charlie| 2| 30| # | 3|Charlie| 4| 35| # +---+-----+---+---+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other", "on", "left_on", "right_on", "how"] Returns: DataFrame Parent Class: DataFrame
method
explode
fenic.api.dataframe.dataframe.DataFrame.explode
Create a new row for each element in an array column. This operation is useful for flattening nested data structures. For each row in the input DataFrame that contains an array/list in the specified column, this method will: 1. Create N new rows, where N is the length of the array 2. Each new row will be identical to the original row, except the array column will contain just a single element from the original array 3. Rows with NULL values or empty arrays in the specified column are filtered out Args: column: Name of array column to explode (as string) or Column expression. Returns: DataFrame: New DataFrame with the array column exploded into multiple rows. Raises: TypeError: If column argument is not a string or Column. Example: Explode array column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3, 4], "tags": [["red", "blue"], ["green"], [], None], "name": ["Alice", "Bob", "Carol", "Dave"] }) # Explode the tags column df.explode("tags").show() # Output: # +---+-----+-----+ # | id| tags| name| # +---+-----+-----+ # | 1| red|Alice| # | 1| blue|Alice| # | 2|green| Bob| # +---+-----+-----+ ``` Example: Using column expression ```python # Explode using column expression df.explode(col("tags")).show() # Output: # +---+-----+-----+ # | id| tags| name| # +---+-----+-----+ # | 1| red|Alice| # | 1| blue|Alice| # | 2|green| Bob| # +---+-----+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,068
1,125
null
DataFrame
[ "self", "column" ]
DataFrame
null
null
Type: method Member Name: explode Qualified Name: fenic.api.dataframe.dataframe.DataFrame.explode Docstring: Create a new row for each element in an array column. This operation is useful for flattening nested data structures. For each row in the input DataFrame that contains an array/list in the specified column, this method will: 1. Create N new rows, where N is the length of the array 2. Each new row will be identical to the original row, except the array column will contain just a single element from the original array 3. Rows with NULL values or empty arrays in the specified column are filtered out Args: column: Name of array column to explode (as string) or Column expression. Returns: DataFrame: New DataFrame with the array column exploded into multiple rows. Raises: TypeError: If column argument is not a string or Column. Example: Explode array column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2, 3, 4], "tags": [["red", "blue"], ["green"], [], None], "name": ["Alice", "Bob", "Carol", "Dave"] }) # Explode the tags column df.explode("tags").show() # Output: # +---+-----+-----+ # | id| tags| name| # +---+-----+-----+ # | 1| red|Alice| # | 1| blue|Alice| # | 2|green| Bob| # +---+-----+-----+ ``` Example: Using column expression ```python # Explode using column expression df.explode(col("tags")).show() # Output: # +---+-----+-----+ # | id| tags| name| # +---+-----+-----+ # | 1| red|Alice| # | 1| blue|Alice| # | 2|green| Bob| # +---+-----+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "column"] Returns: DataFrame Parent Class: DataFrame
method
group_by
fenic.api.dataframe.dataframe.DataFrame.group_by
Groups the DataFrame using the specified columns. Args: *cols: Columns to group by. Can be column names as strings or Column expressions. Returns: GroupedData: Object for performing aggregations on the grouped data. Example: Group by single column ```python # Create sample DataFrame df = session.create_dataframe({ "department": ["IT", "HR", "IT", "HR", "IT"], "salary": [80000, 70000, 90000, 75000, 85000] }) # Group by single column df.group_by(col("department")).agg(count("*")).show() # Output: # +----------+-----+ # |department|count| # +----------+-----+ # | IT| 3| # | HR| 2| # +----------+-----+ ``` Example: Group by multiple columns ```python # Group by multiple columns df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show() # Output: # +----------+--------+-----------+ # |department|location|avg(salary)| # +----------+--------+-----------+ # | IT| NYC| 85000.0| # | HR| NYC| 72500.0| # +----------+--------+-----------+ ``` Example: Group by expression ```python # Group by expression df.group_by(lower(col("department")).alias("department")).agg(count("*")).show() # Output: # +---------+-----+ # |department|count| # +----------+-----+ # | it| 3| # | hr| 2| # +---------+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,127
1,181
null
GroupedData
[ "self", "cols" ]
DataFrame
null
null
Type: method Member Name: group_by Qualified Name: fenic.api.dataframe.dataframe.DataFrame.group_by Docstring: Groups the DataFrame using the specified columns. Args: *cols: Columns to group by. Can be column names as strings or Column expressions. Returns: GroupedData: Object for performing aggregations on the grouped data. Example: Group by single column ```python # Create sample DataFrame df = session.create_dataframe({ "department": ["IT", "HR", "IT", "HR", "IT"], "salary": [80000, 70000, 90000, 75000, 85000] }) # Group by single column df.group_by(col("department")).agg(count("*")).show() # Output: # +----------+-----+ # |department|count| # +----------+-----+ # | IT| 3| # | HR| 2| # +----------+-----+ ``` Example: Group by multiple columns ```python # Group by multiple columns df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show() # Output: # +----------+--------+-----------+ # |department|location|avg(salary)| # +----------+--------+-----------+ # | IT| NYC| 85000.0| # | HR| NYC| 72500.0| # +----------+--------+-----------+ ``` Example: Group by expression ```python # Group by expression df.group_by(lower(col("department")).alias("department")).agg(count("*")).show() # Output: # +---------+-----+ # |department|count| # +----------+-----+ # | it| 3| # | hr| 2| # +---------+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols"] Returns: GroupedData Parent Class: DataFrame
method
agg
fenic.api.dataframe.dataframe.DataFrame.agg
Aggregate on the entire DataFrame without groups. This is equivalent to group_by() without any grouping columns. Args: *exprs: Aggregation expressions or dictionary of aggregations. Returns: DataFrame: Aggregation results. Example: Multiple aggregations ```python # Create sample DataFrame df = session.create_dataframe({ "salary": [80000, 70000, 90000, 75000, 85000], "age": [25, 30, 35, 28, 32] }) # Multiple aggregations df.agg( count().alias("total_rows"), avg(col("salary")).alias("avg_salary") ).show() # Output: # +----------+-----------+ # |total_rows|avg_salary| # +----------+-----------+ # | 5| 80000.0| # +----------+-----------+ ``` Example: Dictionary style ```python # Dictionary style df.agg({col("salary"): "avg", col("age"): "max"}).show() # Output: # +-----------+--------+ # |avg(salary)|max(age)| # +-----------+--------+ # | 80000.0| 35| # +-----------+--------+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,183
1,227
null
DataFrame
[ "self", "exprs" ]
DataFrame
null
null
Type: method Member Name: agg Qualified Name: fenic.api.dataframe.dataframe.DataFrame.agg Docstring: Aggregate on the entire DataFrame without groups. This is equivalent to group_by() without any grouping columns. Args: *exprs: Aggregation expressions or dictionary of aggregations. Returns: DataFrame: Aggregation results. Example: Multiple aggregations ```python # Create sample DataFrame df = session.create_dataframe({ "salary": [80000, 70000, 90000, 75000, 85000], "age": [25, 30, 35, 28, 32] }) # Multiple aggregations df.agg( count().alias("total_rows"), avg(col("salary")).alias("avg_salary") ).show() # Output: # +----------+-----------+ # |total_rows|avg_salary| # +----------+-----------+ # | 5| 80000.0| # +----------+-----------+ ``` Example: Dictionary style ```python # Dictionary style df.agg({col("salary"): "avg", col("age"): "max"}).show() # Output: # +-----------+--------+ # |avg(salary)|max(age)| # +-----------+--------+ # | 80000.0| 35| # +-----------+--------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "exprs"] Returns: DataFrame Parent Class: DataFrame
method
drop_duplicates
fenic.api.dataframe.dataframe.DataFrame.drop_duplicates
Return a DataFrame with duplicate rows removed. Args: subset: Column names to consider when identifying duplicates. If not provided, all columns are considered. Returns: DataFrame: A new DataFrame with duplicate rows removed. Raises: ValueError: If a specified column is not present in the current DataFrame schema. Example: Remove duplicates considering specific columns ```python # Create sample DataFrame df = session.create_dataframe({ "c1": [1, 2, 3, 1], "c2": ["a", "a", "a", "a"], "c3": ["b", "b", "b", "b"] }) # Remove duplicates considering all columns df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show() # Output: # +---+---+---+ # | c1| c2| c3| # +---+---+---+ # | 1| a| b| # | 2| a| b| # | 3| a| b| # +---+---+---+ # Remove duplicates considering only c1 df.drop_duplicates([col("c1")]).show() # Output: # +---+---+---+ # | c1| c2| c3| # +---+---+---+ # | 1| a| b| # | 2| a| b| # | 3| a| b| # +---+---+---+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,229
1,286
null
DataFrame
[ "self", "subset" ]
DataFrame
null
null
Type: method Member Name: drop_duplicates Qualified Name: fenic.api.dataframe.dataframe.DataFrame.drop_duplicates Docstring: Return a DataFrame with duplicate rows removed. Args: subset: Column names to consider when identifying duplicates. If not provided, all columns are considered. Returns: DataFrame: A new DataFrame with duplicate rows removed. Raises: ValueError: If a specified column is not present in the current DataFrame schema. Example: Remove duplicates considering specific columns ```python # Create sample DataFrame df = session.create_dataframe({ "c1": [1, 2, 3, 1], "c2": ["a", "a", "a", "a"], "c3": ["b", "b", "b", "b"] }) # Remove duplicates considering all columns df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show() # Output: # +---+---+---+ # | c1| c2| c3| # +---+---+---+ # | 1| a| b| # | 2| a| b| # | 3| a| b| # +---+---+---+ # Remove duplicates considering only c1 df.drop_duplicates([col("c1")]).show() # Output: # +---+---+---+ # | c1| c2| c3| # +---+---+---+ # | 1| a| b| # | 2| a| b| # | 3| a| b| # +---+---+---+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "subset"] Returns: DataFrame Parent Class: DataFrame
method
sort
fenic.api.dataframe.dataframe.DataFrame.sort
Sort the DataFrame by the specified columns. Args: cols: Columns to sort by. This can be: - A single column name (str) - A Column expression (e.g., `col("name")`) - A list of column names or Column expressions - Column expressions may include sorting directives such as `asc("col")`, `desc("col")`, `asc_nulls_last("col")`, etc. - If no columns are provided, the operation is a no-op. ascending: A boolean or list of booleans indicating sort order. - If `True`, sorts in ascending order; if `False`, descending. - If a list is provided, its length must match the number of columns. - Cannot be used if any of the columns use `asc()`/`desc()` expressions. - If not specified and no sort expressions are used, columns will be sorted in ascending order by default. Returns: DataFrame: A new DataFrame sorted by the specified columns. Raises: ValueError: - If `ascending` is provided and its length does not match `cols` - If both `ascending` and column expressions like `asc()`/`desc()` are used TypeError: - If `cols` is not a column name, Column, or list of column names/Columns - If `ascending` is not a boolean or list of booleans Example: Sort in ascending order ```python # Create sample DataFrame df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) # Sort by age in ascending order df.sort(asc(col("age"))).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 2|Alice| # | 5| Bob| # +---+-----+ ``` Example: Sort in descending order ```python # Sort by age in descending order df.sort(col("age").desc()).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # +---+-----+ ``` Example: Sort with boolean ascending parameter ```python # Sort by age in descending order using boolean df.sort(col("age"), ascending=False).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # +---+-----+ ``` Example: Multiple columns with different sort orders ```python # Create sample DataFrame df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"]) # Sort by age descending, then name ascending df.sort(desc(col("age")), col("name")).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # | 2| Bob| # +---+-----+ ``` Example: Multiple columns with list of ascending strategies ```python # Sort both columns in descending order df.sort([col("age"), col("name")], ascending=[False, False]).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2| Bob| # | 2|Alice| # +---+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,288
1,450
null
DataFrame
[ "self", "cols", "ascending" ]
DataFrame
null
null
Type: method Member Name: sort Qualified Name: fenic.api.dataframe.dataframe.DataFrame.sort Docstring: Sort the DataFrame by the specified columns. Args: cols: Columns to sort by. This can be: - A single column name (str) - A Column expression (e.g., `col("name")`) - A list of column names or Column expressions - Column expressions may include sorting directives such as `asc("col")`, `desc("col")`, `asc_nulls_last("col")`, etc. - If no columns are provided, the operation is a no-op. ascending: A boolean or list of booleans indicating sort order. - If `True`, sorts in ascending order; if `False`, descending. - If a list is provided, its length must match the number of columns. - Cannot be used if any of the columns use `asc()`/`desc()` expressions. - If not specified and no sort expressions are used, columns will be sorted in ascending order by default. Returns: DataFrame: A new DataFrame sorted by the specified columns. Raises: ValueError: - If `ascending` is provided and its length does not match `cols` - If both `ascending` and column expressions like `asc()`/`desc()` are used TypeError: - If `cols` is not a column name, Column, or list of column names/Columns - If `ascending` is not a boolean or list of booleans Example: Sort in ascending order ```python # Create sample DataFrame df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"]) # Sort by age in ascending order df.sort(asc(col("age"))).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 2|Alice| # | 5| Bob| # +---+-----+ ``` Example: Sort in descending order ```python # Sort by age in descending order df.sort(col("age").desc()).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # +---+-----+ ``` Example: Sort with boolean ascending parameter ```python # Sort by age in descending order using boolean df.sort(col("age"), ascending=False).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # +---+-----+ ``` Example: Multiple columns with different sort orders ```python # Create sample DataFrame df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"]) # Sort by age descending, then name ascending df.sort(desc(col("age")), col("name")).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2|Alice| # | 2| Bob| # +---+-----+ ``` Example: Multiple columns with list of ascending strategies ```python # Sort both columns in descending order df.sort([col("age"), col("name")], ascending=[False, False]).show() # Output: # +---+-----+ # |age| name| # +---+-----+ # | 5| Bob| # | 2| Bob| # | 2|Alice| # +---+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols", "ascending"] Returns: DataFrame Parent Class: DataFrame
method
order_by
fenic.api.dataframe.dataframe.DataFrame.order_by
Sort the DataFrame by the specified columns. Alias for sort(). Returns: DataFrame: sorted Dataframe. See Also: sort(): Full documentation of sorting behavior and parameters.
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,452
1,465
null
DataFrame
[ "self", "cols", "ascending" ]
DataFrame
null
null
Type: method Member Name: order_by Qualified Name: fenic.api.dataframe.dataframe.DataFrame.order_by Docstring: Sort the DataFrame by the specified columns. Alias for sort(). Returns: DataFrame: sorted Dataframe. See Also: sort(): Full documentation of sorting behavior and parameters. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols", "ascending"] Returns: DataFrame Parent Class: DataFrame
method
unnest
fenic.api.dataframe.dataframe.DataFrame.unnest
Unnest the specified struct columns into separate columns. This operation flattens nested struct data by expanding each field of a struct into its own top-level column. For each specified column containing a struct: 1. Each field in the struct becomes a separate column. 2. New columns are named after the corresponding struct fields. 3. The new columns are inserted into the DataFrame in place of the original struct column. 4. The overall column order is preserved. Args: *col_names: One or more struct columns to unnest. Each can be a string (column name) or a Column expression. Returns: DataFrame: A new DataFrame with the specified struct columns expanded. Raises: TypeError: If any argument is not a string or Column. ValueError: If a specified column does not contain struct data. Example: Unnest struct column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2], "tags": [{"red": 1, "blue": 2}, {"red": 3}], "name": ["Alice", "Bob"] }) # Unnest the tags column df.unnest(col("tags")).show() # Output: # +---+---+----+-----+ # | id| red|blue| name| # +---+---+----+-----+ # | 1| 1| 2|Alice| # | 2| 3|null| Bob| # +---+---+----+-----+ ``` Example: Unnest multiple struct columns ```python # Create sample DataFrame with multiple struct columns df = session.create_dataframe({ "id": [1, 2], "tags": [{"red": 1, "blue": 2}, {"red": 3}], "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}], "name": ["Alice", "Bob"] }) # Unnest multiple struct columns df.unnest(col("tags"), col("info")).show() # Output: # +---+---+----+---+----+-----+ # | id| red|blue|age|city| name| # +---+---+----+---+----+-----+ # | 1| 1| 2| 25| NY|Alice| # | 2| 3|null| 30| LA| Bob| # +---+---+----+---+----+-----+ ```
site-packages/fenic/api/dataframe/dataframe.py
true
false
1,467
1,541
null
DataFrame
[ "self", "col_names" ]
DataFrame
null
null
Type: method Member Name: unnest Qualified Name: fenic.api.dataframe.dataframe.DataFrame.unnest Docstring: Unnest the specified struct columns into separate columns. This operation flattens nested struct data by expanding each field of a struct into its own top-level column. For each specified column containing a struct: 1. Each field in the struct becomes a separate column. 2. New columns are named after the corresponding struct fields. 3. The new columns are inserted into the DataFrame in place of the original struct column. 4. The overall column order is preserved. Args: *col_names: One or more struct columns to unnest. Each can be a string (column name) or a Column expression. Returns: DataFrame: A new DataFrame with the specified struct columns expanded. Raises: TypeError: If any argument is not a string or Column. ValueError: If a specified column does not contain struct data. Example: Unnest struct column ```python # Create sample DataFrame df = session.create_dataframe({ "id": [1, 2], "tags": [{"red": 1, "blue": 2}, {"red": 3}], "name": ["Alice", "Bob"] }) # Unnest the tags column df.unnest(col("tags")).show() # Output: # +---+---+----+-----+ # | id| red|blue| name| # +---+---+----+-----+ # | 1| 1| 2|Alice| # | 2| 3|null| Bob| # +---+---+----+-----+ ``` Example: Unnest multiple struct columns ```python # Create sample DataFrame with multiple struct columns df = session.create_dataframe({ "id": [1, 2], "tags": [{"red": 1, "blue": 2}, {"red": 3}], "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}], "name": ["Alice", "Bob"] }) # Unnest multiple struct columns df.unnest(col("tags"), col("info")).show() # Output: # +---+---+----+---+----+-----+ # | id| red|blue|age|city| name| # +---+---+----+---+----+-----+ # | 1| 1| 2| 25| NY|Alice| # | 2| 3|null| 30| LA| Bob| # +---+---+----+---+----+-----+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "col_names"] Returns: DataFrame Parent Class: DataFrame
method
_ensure_same_session
fenic.api.dataframe.dataframe.DataFrame._ensure_same_session
Ensure that any session context passed are from the same session context. This check prevents accidental combinations of DataFrames created in different sessions, which can lead to inconsistent behavior due to differing configurations, catalogs, or function registries.
site-packages/fenic/api/dataframe/dataframe.py
false
true
1,543
1,560
null
null
[ "cls", "session_state", "other_session_states" ]
DataFrame
null
null
Type: method Member Name: _ensure_same_session Qualified Name: fenic.api.dataframe.dataframe.DataFrame._ensure_same_session Docstring: Ensure that any session context passed are from the same session context. This check prevents accidental combinations of DataFrames created in different sessions, which can lead to inconsistent behavior due to differing configurations, catalogs, or function registries. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "session_state", "other_session_states"] Returns: none Parent Class: DataFrame
module
grouped_data
fenic.api.dataframe.grouped_data
GroupedData class for aggregations on grouped DataFrames.
site-packages/fenic/api/dataframe/grouped_data.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: grouped_data Qualified Name: fenic.api.dataframe.grouped_data Docstring: GroupedData class for aggregations on grouped DataFrames. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
GroupedData
fenic.api.dataframe.grouped_data.GroupedData
Methods for aggregations on a grouped DataFrame.
site-packages/fenic/api/dataframe/grouped_data.py
true
false
19
94
null
null
null
null
null
[ "BaseGroupedData" ]
Type: class Member Name: GroupedData Qualified Name: fenic.api.dataframe.grouped_data.GroupedData Docstring: Methods for aggregations on a grouped DataFrame. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.dataframe.grouped_data.GroupedData.__init__
Initialize grouped data. Args: df: The DataFrame to group. by: Optional list of columns to group by.
site-packages/fenic/api/dataframe/grouped_data.py
true
false
22
43
null
null
[ "self", "df", "by" ]
GroupedData
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.dataframe.grouped_data.GroupedData.__init__ Docstring: Initialize grouped data. Args: df: The DataFrame to group. by: Optional list of columns to group by. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "df", "by"] Returns: none Parent Class: GroupedData
method
agg
fenic.api.dataframe.grouped_data.GroupedData.agg
Compute aggregations on grouped data and return the result as a DataFrame. This method applies aggregate functions to the grouped data. Args: *exprs: Aggregation expressions. Can be: - Column expressions with aggregate functions (e.g., `count("*")`, `sum("amount")`) - A dictionary mapping column names to aggregate function names (e.g., `{"amount": "sum", "age": "avg"}`) Returns: DataFrame: A new DataFrame with one row per group and columns for group keys and aggregated values Raises: ValueError: If arguments are not Column expressions or a dictionary ValueError: If dictionary values are not valid aggregate function names Example: Count employees by department ```python # Group by department and count employees df.group_by("department").agg(count("*").alias("employee_count")) ``` Example: Multiple aggregations ```python # Multiple aggregations df.group_by("department").agg( count("*").alias("employee_count"), avg("salary").alias("avg_salary"), max("age").alias("max_age") ) ``` Example: Dictionary style aggregations ```python # Dictionary style for simple aggregations df.group_by("department", "location").agg({"salary": "avg", "age": "max"}) ```
site-packages/fenic/api/dataframe/grouped_data.py
true
false
45
94
null
DataFrame
[ "self", "exprs" ]
GroupedData
null
null
Type: method Member Name: agg Qualified Name: fenic.api.dataframe.grouped_data.GroupedData.agg Docstring: Compute aggregations on grouped data and return the result as a DataFrame. This method applies aggregate functions to the grouped data. Args: *exprs: Aggregation expressions. Can be: - Column expressions with aggregate functions (e.g., `count("*")`, `sum("amount")`) - A dictionary mapping column names to aggregate function names (e.g., `{"amount": "sum", "age": "avg"}`) Returns: DataFrame: A new DataFrame with one row per group and columns for group keys and aggregated values Raises: ValueError: If arguments are not Column expressions or a dictionary ValueError: If dictionary values are not valid aggregate function names Example: Count employees by department ```python # Group by department and count employees df.group_by("department").agg(count("*").alias("employee_count")) ``` Example: Multiple aggregations ```python # Multiple aggregations df.group_by("department").agg( count("*").alias("employee_count"), avg("salary").alias("avg_salary"), max("age").alias("max_age") ) ``` Example: Dictionary style aggregations ```python # Dictionary style for simple aggregations df.group_by("department", "location").agg({"salary": "avg", "age": "max"}) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "exprs"] Returns: DataFrame Parent Class: GroupedData
module
_join_utils
fenic.api.dataframe._join_utils
Utility functions for DataFrame join operations.
site-packages/fenic/api/dataframe/_join_utils.py
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _join_utils Qualified Name: fenic.api.dataframe._join_utils Docstring: Utility functions for DataFrame join operations. Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
function
validate_join_parameters
fenic.api.dataframe._join_utils.validate_join_parameters
Validate join parameter combinations.
site-packages/fenic/api/dataframe/_join_utils.py
true
false
10
51
null
None
[ "self", "on", "left_on", "right_on", "how" ]
null
null
null
Type: function Member Name: validate_join_parameters Qualified Name: fenic.api.dataframe._join_utils.validate_join_parameters Docstring: Validate join parameter combinations. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "on", "left_on", "right_on", "how"] Returns: None Parent Class: none
function
build_join_conditions
fenic.api.dataframe._join_utils.build_join_conditions
Build left and right join condition lists.
site-packages/fenic/api/dataframe/_join_utils.py
true
false
53
82
null
Tuple[List, List]
[ "on", "left_on", "right_on" ]
null
null
null
Type: function Member Name: build_join_conditions Qualified Name: fenic.api.dataframe._join_utils.build_join_conditions Docstring: Build left and right join condition lists. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["on", "left_on", "right_on"] Returns: Tuple[List, List] Parent Class: none
function
_has_join_conditions
fenic.api.dataframe._join_utils._has_join_conditions
Check if any join conditions are specified.
site-packages/fenic/api/dataframe/_join_utils.py
false
true
84
94
null
bool
[ "on", "left_on", "right_on" ]
null
null
null
Type: function Member Name: _has_join_conditions Qualified Name: fenic.api.dataframe._join_utils._has_join_conditions Docstring: Check if any join conditions are specified. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["on", "left_on", "right_on"] Returns: bool Parent Class: none
function
_validate_join_condition_lengths
fenic.api.dataframe._join_utils._validate_join_condition_lengths
Validate that left_on and right_on have matching lengths.
site-packages/fenic/api/dataframe/_join_utils.py
false
true
96
108
null
None
[ "left_on", "right_on" ]
null
null
null
Type: function Member Name: _validate_join_condition_lengths Qualified Name: fenic.api.dataframe._join_utils._validate_join_condition_lengths Docstring: Validate that left_on and right_on have matching lengths. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["left_on", "right_on"] Returns: None Parent Class: none
module
semantic_extensions
fenic.api.dataframe.semantic_extensions
Semantic extensions for DataFrames providing clustering and semantic join operations.
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: semantic_extensions Qualified Name: fenic.api.dataframe.semantic_extensions Docstring: Semantic extensions for DataFrames providing clustering and semantic join operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
SemanticExtensions
fenic.api.dataframe.semantic_extensions.SemanticExtensions
A namespace for semantic dataframe operators.
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
26
368
null
null
null
null
null
[]
Type: class Member Name: SemanticExtensions Qualified Name: fenic.api.dataframe.semantic_extensions.SemanticExtensions Docstring: A namespace for semantic dataframe operators. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.dataframe.semantic_extensions.SemanticExtensions.__init__
Initialize semantic extensions. Args: df: The DataFrame to extend with semantic operations.
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
29
35
null
null
[ "self", "df" ]
SemanticExtensions
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.dataframe.semantic_extensions.SemanticExtensions.__init__ Docstring: Initialize semantic extensions. Args: df: The DataFrame to extend with semantic operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "df"] Returns: none Parent Class: SemanticExtensions
method
with_cluster_labels
fenic.api.dataframe.semantic_extensions.SemanticExtensions.with_cluster_labels
Cluster rows using K-means and add cluster metadata columns. This method clusters rows based on the given embedding column or expression using K-means. It adds a new column with cluster assignments, and optionally includes the centroid embedding for each assigned cluster. Args: by: Column or expression producing embeddings to cluster (e.g., `embed(col("text"))`). num_clusters: Number of clusters to compute (must be > 0). max_iter: Maximum iterations for a single run of the k-means algorithm. The algorithm stops when it either converges or reaches this limit. num_init: Number of independent runs of k-means with different centroid seeds. The best result is selected. label_column: Name of the output column for cluster IDs. Default is "cluster_label". centroid_column: If provided, adds a column with this name containing the centroid embedding for each row's assigned cluster. Returns: A DataFrame with all original columns plus: - `<label_column>`: integer cluster assignment (0 to num_clusters - 1) - `<centroid_column>`: cluster centroid embedding, if specified Example: Basic clustering ```python # Cluster customer feedback and add cluster metadata clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", num_clusters=5) # Then use regular operations to analyze clusters clustered_df.group_by("cluster_label").agg(count("*"), avg("rating")) ``` Example: Filter outliers using centroids ```python # Cluster and filter out rows far from their centroid clustered_df = df.semantic.with_cluster_labels("embeddings", num_clusters=3, num_init=10, centroid_column="cluster_centroid") clean_df = clustered_df.filter( embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7 ) ```
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
37
130
null
DataFrame
[ "self", "by", "num_clusters", "max_iter", "num_init", "label_column", "centroid_column" ]
SemanticExtensions
null
null
Type: method Member Name: with_cluster_labels Qualified Name: fenic.api.dataframe.semantic_extensions.SemanticExtensions.with_cluster_labels Docstring: Cluster rows using K-means and add cluster metadata columns. This method clusters rows based on the given embedding column or expression using K-means. It adds a new column with cluster assignments, and optionally includes the centroid embedding for each assigned cluster. Args: by: Column or expression producing embeddings to cluster (e.g., `embed(col("text"))`). num_clusters: Number of clusters to compute (must be > 0). max_iter: Maximum iterations for a single run of the k-means algorithm. The algorithm stops when it either converges or reaches this limit. num_init: Number of independent runs of k-means with different centroid seeds. The best result is selected. label_column: Name of the output column for cluster IDs. Default is "cluster_label". centroid_column: If provided, adds a column with this name containing the centroid embedding for each row's assigned cluster. Returns: A DataFrame with all original columns plus: - `<label_column>`: integer cluster assignment (0 to num_clusters - 1) - `<centroid_column>`: cluster centroid embedding, if specified Example: Basic clustering ```python # Cluster customer feedback and add cluster metadata clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", num_clusters=5) # Then use regular operations to analyze clusters clustered_df.group_by("cluster_label").agg(count("*"), avg("rating")) ``` Example: Filter outliers using centroids ```python # Cluster and filter out rows far from their centroid clustered_df = df.semantic.with_cluster_labels("embeddings", num_clusters=3, num_init=10, centroid_column="cluster_centroid") clean_df = clustered_df.filter( embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7 ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "by", "num_clusters", "max_iter", "num_init", "label_column", "centroid_column"] Returns: DataFrame Parent Class: SemanticExtensions
method
join
fenic.api.dataframe.semantic_extensions.SemanticExtensions.join
Performs a semantic join between two DataFrames using a natural language predicate. This method evaluates a boolean predicate for each potential row pair between the two DataFrames, including only those pairs where the predicate evaluates to True. The join process: 1. For each row in the left DataFrame, evaluates the predicate in the jinja template against each row in the right DataFrame 2. Includes row pairs where the predicate returns True 3. Excludes row pairs where the predicate returns False 4. Returns a new DataFrame containing all columns from both DataFrames for the matched pairs The jinja template must use exactly two column placeholders: - One from the left DataFrame: `{{ left_on }}` - One from the right DataFrame: `{{ right_on }}` Args: other: The DataFrame to join with. predicate: A Jinja2 template containing the natural language predicate. Must include placeholders for exactly one column from each DataFrame. The template is evaluated as a boolean - True includes the pair, False excludes it. left_on: The column from the left DataFrame (self) to use in the join predicate. right_on: The column from the right DataFrame (other) to use in the join predicate. strict: If True, when either the left_on or right_on column has a None value for a row pair, that pair is automatically excluded from the join (predicate is not evaluated). If False, None values are rendered according to Jinja2's null rendering behavior. Default is True. examples: Optional JoinExampleCollection containing labeled examples to guide the join. Each example should have: - left: Sample value from the left column - right: Sample value from the right column - output: Boolean indicating whether this pair should be joined (True) or not (False) model_alias: Optional alias for the language model to use. If None, uses the default model. Returns: DataFrame: A new DataFrame containing matched row pairs with all columns from both DataFrames. Example: Basic semantic join ```python # Match job listings with candidate resumes based on title/skills # Only includes pairs where the predicate evaluates to True df_jobs.semantic.join(df_resumes, predicate=dedent(''' Job Description: {{left_on}} Candidate Background: {{right_on}} The candidate is qualified for the job.'''), left_on=col("job_description"), right_on=col("work_experience"), examples=examples ) ``` Example: Semantic join with examples ```python # Improve join quality with examples examples = JoinExampleCollection() examples.create_example(JoinExample( left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL", right="Senior Software Engineer - Backend", output=True)) # This pair WILL be included in similar cases examples.create_example(JoinExample( left="5 years experience with growth strategy, private equity due diligence, and M&A", right="Product Manager - Hardware", output=False)) # This pair will NOT be included in similar cases df_jobs.semantic.join( other=df_resumes, predicate=dedent(''' Job Description: {{left_on}} Candidate Background: {{right_on}} The candidate is qualified for the job.'''), left_on=col("job_description"), right_on=col("work_experience"), examples=examples ) ```
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
132
251
null
DataFrame
[ "self", "other", "predicate", "left_on", "right_on", "strict", "examples", "model_alias" ]
SemanticExtensions
null
null
Type: method Member Name: join Qualified Name: fenic.api.dataframe.semantic_extensions.SemanticExtensions.join Docstring: Performs a semantic join between two DataFrames using a natural language predicate. This method evaluates a boolean predicate for each potential row pair between the two DataFrames, including only those pairs where the predicate evaluates to True. The join process: 1. For each row in the left DataFrame, evaluates the predicate in the jinja template against each row in the right DataFrame 2. Includes row pairs where the predicate returns True 3. Excludes row pairs where the predicate returns False 4. Returns a new DataFrame containing all columns from both DataFrames for the matched pairs The jinja template must use exactly two column placeholders: - One from the left DataFrame: `{{ left_on }}` - One from the right DataFrame: `{{ right_on }}` Args: other: The DataFrame to join with. predicate: A Jinja2 template containing the natural language predicate. Must include placeholders for exactly one column from each DataFrame. The template is evaluated as a boolean - True includes the pair, False excludes it. left_on: The column from the left DataFrame (self) to use in the join predicate. right_on: The column from the right DataFrame (other) to use in the join predicate. strict: If True, when either the left_on or right_on column has a None value for a row pair, that pair is automatically excluded from the join (predicate is not evaluated). If False, None values are rendered according to Jinja2's null rendering behavior. Default is True. examples: Optional JoinExampleCollection containing labeled examples to guide the join. Each example should have: - left: Sample value from the left column - right: Sample value from the right column - output: Boolean indicating whether this pair should be joined (True) or not (False) model_alias: Optional alias for the language model to use. If None, uses the default model. Returns: DataFrame: A new DataFrame containing matched row pairs with all columns from both DataFrames. Example: Basic semantic join ```python # Match job listings with candidate resumes based on title/skills # Only includes pairs where the predicate evaluates to True df_jobs.semantic.join(df_resumes, predicate=dedent(''' Job Description: {{left_on}} Candidate Background: {{right_on}} The candidate is qualified for the job.'''), left_on=col("job_description"), right_on=col("work_experience"), examples=examples ) ``` Example: Semantic join with examples ```python # Improve join quality with examples examples = JoinExampleCollection() examples.create_example(JoinExample( left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL", right="Senior Software Engineer - Backend", output=True)) # This pair WILL be included in similar cases examples.create_example(JoinExample( left="5 years experience with growth strategy, private equity due diligence, and M&A", right="Product Manager - Hardware", output=False)) # This pair will NOT be included in similar cases df_jobs.semantic.join( other=df_resumes, predicate=dedent(''' Job Description: {{left_on}} Candidate Background: {{right_on}} The candidate is qualified for the job.'''), left_on=col("job_description"), right_on=col("work_experience"), examples=examples ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other", "predicate", "left_on", "right_on", "strict", "examples", "model_alias"] Returns: DataFrame Parent Class: SemanticExtensions
method
sim_join
fenic.api.dataframe.semantic_extensions.SemanticExtensions.sim_join
Performs a semantic similarity join between two DataFrames using embedding expressions. For each row in the left DataFrame, returns the top `k` most semantically similar rows from the right DataFrame based on the specified similarity metric. Args: other: The right-hand DataFrame to join with. left_on: Expression or column representing embeddings in the left DataFrame. right_on: Expression or column representing embeddings in the right DataFrame. k: Number of most similar matches to return per row. similarity_metric: Similarity metric to use: "l2", "cosine", or "dot". similarity_score_column: If set, adds a column with this name containing similarity scores. If None, the scores are omitted. Returns: A DataFrame containing one row for each of the top-k matches per row in the left DataFrame. The result includes all columns from both DataFrames, optionally augmented with a similarity score column if `similarity_score_column` is provided. Raises: ValidationError: If `k` is not positive or if the columns are invalid. ValidationError: If `similarity_metric` is not one of "l2", "cosine", "dot" Example: Match queries to FAQ entries ```python # Match customer queries to FAQ entries df_queries.semantic.sim_join( df_faqs, left_on=embeddings(col("query_text")), right_on=embeddings(col("faq_question")), k=1 ) ``` Example: Link headlines to articles ```python # Link news headlines to full articles df_headlines.semantic.sim_join( df_articles, left_on=embeddings(col("headline")), right_on=embeddings(col("content")), k=3, return_similarity_scores=True ) ``` Example: Find similar job postings ```python # Find similar job postings across two sources df_linkedin.semantic.sim_join( df_indeed, left_on=embeddings(col("job_title")), right_on=embeddings(col("job_description")), k=2 ) ```
site-packages/fenic/api/dataframe/semantic_extensions.py
true
false
253
365
null
DataFrame
[ "self", "other", "left_on", "right_on", "k", "similarity_metric", "similarity_score_column" ]
SemanticExtensions
null
null
Type: method Member Name: sim_join Qualified Name: fenic.api.dataframe.semantic_extensions.SemanticExtensions.sim_join Docstring: Performs a semantic similarity join between two DataFrames using embedding expressions. For each row in the left DataFrame, returns the top `k` most semantically similar rows from the right DataFrame based on the specified similarity metric. Args: other: The right-hand DataFrame to join with. left_on: Expression or column representing embeddings in the left DataFrame. right_on: Expression or column representing embeddings in the right DataFrame. k: Number of most similar matches to return per row. similarity_metric: Similarity metric to use: "l2", "cosine", or "dot". similarity_score_column: If set, adds a column with this name containing similarity scores. If None, the scores are omitted. Returns: A DataFrame containing one row for each of the top-k matches per row in the left DataFrame. The result includes all columns from both DataFrames, optionally augmented with a similarity score column if `similarity_score_column` is provided. Raises: ValidationError: If `k` is not positive or if the columns are invalid. ValidationError: If `similarity_metric` is not one of "l2", "cosine", "dot" Example: Match queries to FAQ entries ```python # Match customer queries to FAQ entries df_queries.semantic.sim_join( df_faqs, left_on=embeddings(col("query_text")), right_on=embeddings(col("faq_question")), k=1 ) ``` Example: Link headlines to articles ```python # Link news headlines to full articles df_headlines.semantic.sim_join( df_articles, left_on=embeddings(col("headline")), right_on=embeddings(col("content")), k=3, return_similarity_scores=True ) ``` Example: Find similar job postings ```python # Find similar job postings across two sources df_linkedin.semantic.sim_join( df_indeed, left_on=embeddings(col("job_title")), right_on=embeddings(col("job_description")), k=2 ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other", "left_on", "right_on", "k", "similarity_metric", "similarity_score_column"] Returns: DataFrame Parent Class: SemanticExtensions
module
io
fenic.api.io
IO module for reading and writing DataFrames to external storage.
site-packages/fenic/api/io/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: io Qualified Name: fenic.api.io Docstring: IO module for reading and writing DataFrames to external storage. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.api.io.__all__
null
site-packages/fenic/api/io/__init__.py
false
false
6
6
null
null
null
null
['DataFrameReader', 'DataFrameWriter']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.api.io.__all__ Docstring: none Value: ['DataFrameReader', 'DataFrameWriter'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
reader
fenic.api.io.reader
Reader interface for loading DataFrames from external storage systems.
site-packages/fenic/api/io/reader.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: reader Qualified Name: fenic.api.io.reader Docstring: Reader interface for loading DataFrames from external storage systems. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
DataFrameReader
fenic.api.io.reader.DataFrameReader
Interface used to load a DataFrame from external storage systems. Similar to PySpark's DataFrameReader. Supported External Storage Schemes: - Amazon S3 (s3://) - Format: s3://{bucket_name}/{path_to_file} - Notes: - Uses boto3 to aquire AWS credentials. - Examples: - s3://my-bucket/data.csv - s3://my-bucket/data/*.parquet - Hugging Face Datasets (hf://) - Format: hf://{repo_type}/{repo_id}/{path_to_file} - Notes: - Supports glob patterns (*, **) - Supports dataset revisions and branch aliases (e.g., @refs/convert/parquet, @~parquet) - HF_TOKEN environment variable is required to read private datasets. - Examples: - hf://datasets/datasets-examples/doc-formats-csv-1/data.csv - hf://datasets/cais/mmlu/astronomy/*.parquet - hf://datasets/datasets-examples/doc-formats-csv-1@~parquet/**/*.parquet - Local Files (file:// or implicit) - Format: file://{absolute_or_relative_path} - Notes: - Paths without a scheme (e.g., ./data.csv or /tmp/data.parquet) are treated as local files - Examples: - file:///home/user/data.csv - ./data/*.parquet
site-packages/fenic/api/io/reader.py
true
false
21
335
null
null
null
null
null
[]
Type: class Member Name: DataFrameReader Qualified Name: fenic.api.io.reader.DataFrameReader Docstring: Interface used to load a DataFrame from external storage systems. Similar to PySpark's DataFrameReader. Supported External Storage Schemes: - Amazon S3 (s3://) - Format: s3://{bucket_name}/{path_to_file} - Notes: - Uses boto3 to aquire AWS credentials. - Examples: - s3://my-bucket/data.csv - s3://my-bucket/data/*.parquet - Hugging Face Datasets (hf://) - Format: hf://{repo_type}/{repo_id}/{path_to_file} - Notes: - Supports glob patterns (*, **) - Supports dataset revisions and branch aliases (e.g., @refs/convert/parquet, @~parquet) - HF_TOKEN environment variable is required to read private datasets. - Examples: - hf://datasets/datasets-examples/doc-formats-csv-1/data.csv - hf://datasets/cais/mmlu/astronomy/*.parquet - hf://datasets/datasets-examples/doc-formats-csv-1@~parquet/**/*.parquet - Local Files (file:// or implicit) - Format: file://{absolute_or_relative_path} - Notes: - Paths without a scheme (e.g., ./data.csv or /tmp/data.parquet) are treated as local files - Examples: - file:///home/user/data.csv - ./data/*.parquet Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.io.reader.DataFrameReader.__init__
Creates a DataFrameReader. Args: session_state: The session state to use for reading
site-packages/fenic/api/io/reader.py
true
false
60
67
null
null
[ "self", "session_state" ]
DataFrameReader
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.io.reader.DataFrameReader.__init__ Docstring: Creates a DataFrameReader. Args: session_state: The session state to use for reading Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "session_state"] Returns: none Parent Class: DataFrameReader
method
csv
fenic.api.io.reader.DataFrameReader.csv
Load a DataFrame from one or more CSV files. Args: paths: A single file path, a glob pattern (e.g., "data/*.csv"), or a list of paths. schema: (optional) A complete schema definition of column names and their types. Only primitive types are supported. - For e.g.: - Schema([ColumnField(name="id", data_type=IntegerType), ColumnField(name="name", data_type=StringType)]) - If provided, all files must match this schema exactly—all column names must be present, and values must be convertible to the specified types. Partial schemas are not allowed. merge_schemas: Whether to merge schemas across all files. - If True: Column names are unified across files. Missing columns are filled with nulls. Column types are inferred and widened as needed. - If False (default): Only accepts columns from the first file. Column types from the first file are inferred and applied across all files. If subsequent files do not have the same column name and order as the first file, an error is raised. - The "first file" is defined as: - The first file in lexicographic order (for glob patterns), or - The first file in the provided list (for lists of paths). Notes: - The first row in each file is assumed to be a header row. - Delimiters (e.g., comma, tab) are automatically inferred. - You may specify either `schema` or `merge_schemas=True`, but not both. - Any date/datetime columns are cast to strings during ingestion. Raises: ValidationError: If both `schema` and `merge_schemas=True` are provided. ValidationError: If any path does not end with `.csv`. PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False. Example: Read a single CSV file ```python df = session.read.csv("file.csv") ``` Example: Read multiple CSV files with schema merging ```python df = session.read.csv("data/*.csv", merge_schemas=True) ``` Example: Read CSV files with explicit schema ```python df = session.read.csv( ["a.csv", "b.csv"], schema=Schema([ ColumnField(name="id", data_type=IntegerType), ColumnField(name="value", data_type=FloatType) ]) ) ```
site-packages/fenic/api/io/reader.py
true
false
69
151
null
DataFrame
[ "self", "paths", "schema", "merge_schemas" ]
DataFrameReader
null
null
Type: method Member Name: csv Qualified Name: fenic.api.io.reader.DataFrameReader.csv Docstring: Load a DataFrame from one or more CSV files. Args: paths: A single file path, a glob pattern (e.g., "data/*.csv"), or a list of paths. schema: (optional) A complete schema definition of column names and their types. Only primitive types are supported. - For e.g.: - Schema([ColumnField(name="id", data_type=IntegerType), ColumnField(name="name", data_type=StringType)]) - If provided, all files must match this schema exactly—all column names must be present, and values must be convertible to the specified types. Partial schemas are not allowed. merge_schemas: Whether to merge schemas across all files. - If True: Column names are unified across files. Missing columns are filled with nulls. Column types are inferred and widened as needed. - If False (default): Only accepts columns from the first file. Column types from the first file are inferred and applied across all files. If subsequent files do not have the same column name and order as the first file, an error is raised. - The "first file" is defined as: - The first file in lexicographic order (for glob patterns), or - The first file in the provided list (for lists of paths). Notes: - The first row in each file is assumed to be a header row. - Delimiters (e.g., comma, tab) are automatically inferred. - You may specify either `schema` or `merge_schemas=True`, but not both. - Any date/datetime columns are cast to strings during ingestion. Raises: ValidationError: If both `schema` and `merge_schemas=True` are provided. ValidationError: If any path does not end with `.csv`. PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False. Example: Read a single CSV file ```python df = session.read.csv("file.csv") ``` Example: Read multiple CSV files with schema merging ```python df = session.read.csv("data/*.csv", merge_schemas=True) ``` Example: Read CSV files with explicit schema ```python df = session.read.csv( ["a.csv", "b.csv"], schema=Schema([ ColumnField(name="id", data_type=IntegerType), ColumnField(name="value", data_type=FloatType) ]) ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "paths", "schema", "merge_schemas"] Returns: DataFrame Parent Class: DataFrameReader
method
parquet
fenic.api.io.reader.DataFrameReader.parquet
Load a DataFrame from one or more Parquet files. Args: paths: A single file path, a glob pattern (e.g., "data/*.parquet"), or a list of paths. merge_schemas: If True, infers and merges schemas across all files. Missing columns are filled with nulls, and differing types are widened to a common supertype. Behavior: - If `merge_schemas=False` (default), all files must match the schema of the first file exactly. Subsequent files must contain all columns from the first file with compatible data types. If any column is missing or has incompatible types, an error is raised. - If `merge_schemas=True`, column names are unified across all files, and data types are automatically widened to accommodate all values. - The "first file" is defined as: - The first file in lexicographic order (for glob patterns), or - The first file in the provided list (for lists of paths). Notes: - Date and datetime columns are cast to strings during ingestion. Raises: ValidationError: If any file does not have a `.parquet` extension. PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False. Example: Read a single Parquet file ```python df = session.read.parquet("file.parquet") ``` Example: Read multiple Parquet files ```python df = session.read.parquet("data/*.parquet") ``` Example: Read Parquet files with schema merging ```python df = session.read.parquet(["a.parquet", "b.parquet"], merge_schemas=True) ```
site-packages/fenic/api/io/reader.py
true
false
153
202
null
DataFrame
[ "self", "paths", "merge_schemas" ]
DataFrameReader
null
null
Type: method Member Name: parquet Qualified Name: fenic.api.io.reader.DataFrameReader.parquet Docstring: Load a DataFrame from one or more Parquet files. Args: paths: A single file path, a glob pattern (e.g., "data/*.parquet"), or a list of paths. merge_schemas: If True, infers and merges schemas across all files. Missing columns are filled with nulls, and differing types are widened to a common supertype. Behavior: - If `merge_schemas=False` (default), all files must match the schema of the first file exactly. Subsequent files must contain all columns from the first file with compatible data types. If any column is missing or has incompatible types, an error is raised. - If `merge_schemas=True`, column names are unified across all files, and data types are automatically widened to accommodate all values. - The "first file" is defined as: - The first file in lexicographic order (for glob patterns), or - The first file in the provided list (for lists of paths). Notes: - Date and datetime columns are cast to strings during ingestion. Raises: ValidationError: If any file does not have a `.parquet` extension. PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False. Example: Read a single Parquet file ```python df = session.read.parquet("file.parquet") ``` Example: Read multiple Parquet files ```python df = session.read.parquet("data/*.parquet") ``` Example: Read Parquet files with schema merging ```python df = session.read.parquet(["a.parquet", "b.parquet"], merge_schemas=True) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "paths", "merge_schemas"] Returns: DataFrame Parent Class: DataFrameReader
method
_read_file
fenic.api.io.reader.DataFrameReader._read_file
Internal helper method to read files of a specific format. Args: paths: Path(s) to the file(s). Can be a single path or a list of paths. file_format: Format of the file (e.g., "csv", "parquet"). file_extension: Expected file extension (e.g., ".csv", ".parquet"). **options: Additional options to pass to the file reader. Returns: DataFrame loaded from the specified file(s). Raises: ValidationError: If any path doesn't end with the expected file extension. ValidationError: If paths is not a string, Path, or list of strings/Paths.
site-packages/fenic/api/io/reader.py
false
true
204
264
null
DataFrame
[ "self", "paths", "file_format", "file_extension", "options" ]
DataFrameReader
null
null
Type: method Member Name: _read_file Qualified Name: fenic.api.io.reader.DataFrameReader._read_file Docstring: Internal helper method to read files of a specific format. Args: paths: Path(s) to the file(s). Can be a single path or a list of paths. file_format: Format of the file (e.g., "csv", "parquet"). file_extension: Expected file extension (e.g., ".csv", ".parquet"). **options: Additional options to pass to the file reader. Returns: DataFrame loaded from the specified file(s). Raises: ValidationError: If any path doesn't end with the expected file extension. ValidationError: If paths is not a string, Path, or list of strings/Paths. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "paths", "file_format", "file_extension", "options"] Returns: DataFrame Parent Class: DataFrameReader
method
docs
fenic.api.io.reader.DataFrameReader.docs
Load a DataFrame from a list of paths of documents (markdown or json). Args: paths: Glob pattern (or list of glob patterns) to the folder(s) to load. data_type: Data type that will be used to cast the content of the files. One of MarkdownType or JsonType. exclude: A regex pattern to exclude files. If it is not provided no files will be excluded. recursive: Whether to recursively load files from the folder. Returns: DataFrame: A dataframe with all the documents found in the paths. Each document is a row in the dataframe. Raises: ValidationError: If any file does not have a `.md` or `.json` depending on the data_type. UnsupportedFileTypeError: If the data_type is not supported. Notes: - Each row in the dataframe corresponds to a file in the list of paths. - The dataframe has the following columns: - file_path: The path to the file. - error: The error message if the file failed to be loaded. - content: The content of the file casted to the data_type. - Recursive loading is supported in conjunction with the '**' glob pattern, e.g. `data/**/*.md` will load all markdown files in the `data` folder and all subfolders when recursive is set to True. Without recursive = True, then ** behaves like a single '*' pattern. Example: Read all the markdown files in a folder and all its subfolders. ```python df = session.read.docs("data/docs/**/*.md", data_type=MarkdownType, recursive=True) ``` Example: Read a folder of markdown files excluding some files. ```python df = session.read.docs("data/docs/*.md", data_type=MarkdownType, exclude=r"\.bak.md$") ```
site-packages/fenic/api/io/reader.py
true
false
266
335
null
DataFrame
[ "self", "paths", "data_type", "exclude", "recursive" ]
DataFrameReader
null
null
Type: method Member Name: docs Qualified Name: fenic.api.io.reader.DataFrameReader.docs Docstring: Load a DataFrame from a list of paths of documents (markdown or json). Args: paths: Glob pattern (or list of glob patterns) to the folder(s) to load. data_type: Data type that will be used to cast the content of the files. One of MarkdownType or JsonType. exclude: A regex pattern to exclude files. If it is not provided no files will be excluded. recursive: Whether to recursively load files from the folder. Returns: DataFrame: A dataframe with all the documents found in the paths. Each document is a row in the dataframe. Raises: ValidationError: If any file does not have a `.md` or `.json` depending on the data_type. UnsupportedFileTypeError: If the data_type is not supported. Notes: - Each row in the dataframe corresponds to a file in the list of paths. - The dataframe has the following columns: - file_path: The path to the file. - error: The error message if the file failed to be loaded. - content: The content of the file casted to the data_type. - Recursive loading is supported in conjunction with the '**' glob pattern, e.g. `data/**/*.md` will load all markdown files in the `data` folder and all subfolders when recursive is set to True. Without recursive = True, then ** behaves like a single '*' pattern. Example: Read all the markdown files in a folder and all its subfolders. ```python df = session.read.docs("data/docs/**/*.md", data_type=MarkdownType, recursive=True) ``` Example: Read a folder of markdown files excluding some files. ```python df = session.read.docs("data/docs/*.md", data_type=MarkdownType, exclude=r"\.bak.md$") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "paths", "data_type", "exclude", "recursive"] Returns: DataFrame Parent Class: DataFrameReader
module
writer
fenic.api.io.writer
Writer interface for saving DataFrames to external storage systems.
site-packages/fenic/api/io/writer.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: writer Qualified Name: fenic.api.io.writer Docstring: Writer interface for saving DataFrames to external storage systems. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic.api.io.writer.logger
null
site-packages/fenic/api/io/writer.py
true
false
18
18
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic.api.io.writer.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
DataFrameWriter
fenic.api.io.writer.DataFrameWriter
Interface used to write a DataFrame to external storage systems. Similar to PySpark's DataFrameWriter. Supported External Storage Schemes: - Amazon S3 (s3://) - Format: s3://{bucket_name}/{path_to_file} - Notes: - Uses boto3 to aquire AWS credentials. - Examples: - s3://my-bucket/data.csv - s3://my-bucket/data/*.parquet - Local Files (file:// or implicit) - Format: file://{absolute_or_relative_path} - Notes: - Paths without a scheme (e.g., ./data.csv or /tmp/data.parquet) are treated as local files - Examples: - file:///home/user/data.csv - ./data/*.parquet
site-packages/fenic/api/io/writer.py
true
false
21
223
null
null
null
null
null
[]
Type: class Member Name: DataFrameWriter Qualified Name: fenic.api.io.writer.DataFrameWriter Docstring: Interface used to write a DataFrame to external storage systems. Similar to PySpark's DataFrameWriter. Supported External Storage Schemes: - Amazon S3 (s3://) - Format: s3://{bucket_name}/{path_to_file} - Notes: - Uses boto3 to aquire AWS credentials. - Examples: - s3://my-bucket/data.csv - s3://my-bucket/data/*.parquet - Local Files (file:// or implicit) - Format: file://{absolute_or_relative_path} - Notes: - Paths without a scheme (e.g., ./data.csv or /tmp/data.parquet) are treated as local files - Examples: - file:///home/user/data.csv - ./data/*.parquet Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.io.writer.DataFrameWriter.__init__
Initialize a DataFrameWriter. Args: dataframe: The DataFrame to write.
site-packages/fenic/api/io/writer.py
true
false
47
53
null
null
[ "self", "dataframe" ]
DataFrameWriter
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.io.writer.DataFrameWriter.__init__ Docstring: Initialize a DataFrameWriter. Args: dataframe: The DataFrame to write. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "dataframe"] Returns: none Parent Class: DataFrameWriter
method
save_as_table
fenic.api.io.writer.DataFrameWriter.save_as_table
Saves the content of the DataFrame as the specified table. Args: table_name: Name of the table to save to mode: Write mode. Default is "error". - error: Raises an error if table exists - append: Appends data to table if it exists - overwrite: Overwrites existing table - ignore: Silently ignores operation if table exists Returns: QueryMetrics: The query metrics Example: Save with error mode (default) ```python df.write.save_as_table("my_table") # Raises error if table exists ``` Example: Save with append mode ```python df.write.save_as_table("my_table", mode="append") # Adds to existing table ``` Example: Save with overwrite mode ```python df.write.save_as_table("my_table", mode="overwrite") # Replaces existing table ```
site-packages/fenic/api/io/writer.py
true
false
55
99
null
QueryMetrics
[ "self", "table_name", "mode" ]
DataFrameWriter
null
null
Type: method Member Name: save_as_table Qualified Name: fenic.api.io.writer.DataFrameWriter.save_as_table Docstring: Saves the content of the DataFrame as the specified table. Args: table_name: Name of the table to save to mode: Write mode. Default is "error". - error: Raises an error if table exists - append: Appends data to table if it exists - overwrite: Overwrites existing table - ignore: Silently ignores operation if table exists Returns: QueryMetrics: The query metrics Example: Save with error mode (default) ```python df.write.save_as_table("my_table") # Raises error if table exists ``` Example: Save with append mode ```python df.write.save_as_table("my_table", mode="append") # Adds to existing table ``` Example: Save with overwrite mode ```python df.write.save_as_table("my_table", mode="overwrite") # Replaces existing table ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "mode"] Returns: QueryMetrics Parent Class: DataFrameWriter
method
save_as_view
fenic.api.io.writer.DataFrameWriter.save_as_view
Saves the content of the DataFrame as a view. Args: view_name: Name of the view to save to description: Optional human-readable view description to store in the catalog. Returns: None.
site-packages/fenic/api/io/writer.py
true
false
101
117
null
None
[ "self", "view_name", "description" ]
DataFrameWriter
null
null
Type: method Member Name: save_as_view Qualified Name: fenic.api.io.writer.DataFrameWriter.save_as_view Docstring: Saves the content of the DataFrame as a view. Args: view_name: Name of the view to save to description: Optional human-readable view description to store in the catalog. Returns: None. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name", "description"] Returns: None Parent Class: DataFrameWriter
method
csv
fenic.api.io.writer.DataFrameWriter.csv
Saves the content of the DataFrame as a single CSV file with comma as the delimiter and headers in the first row. Args: file_path: Path to save the CSV file to mode: Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists Returns: QueryMetrics: The query metrics Example: Save with overwrite mode (default) ```python df.write.csv("output.csv") # Overwrites if exists ``` Example: Save with error mode ```python df.write.csv("output.csv", mode="error") # Raises error if exists ``` Example: Save with ignore mode ```python df.write.csv("output.csv", mode="ignore") # Skips if exists ```
site-packages/fenic/api/io/writer.py
true
false
119
170
null
QueryMetrics
[ "self", "file_path", "mode" ]
DataFrameWriter
null
null
Type: method Member Name: csv Qualified Name: fenic.api.io.writer.DataFrameWriter.csv Docstring: Saves the content of the DataFrame as a single CSV file with comma as the delimiter and headers in the first row. Args: file_path: Path to save the CSV file to mode: Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists Returns: QueryMetrics: The query metrics Example: Save with overwrite mode (default) ```python df.write.csv("output.csv") # Overwrites if exists ``` Example: Save with error mode ```python df.write.csv("output.csv", mode="error") # Raises error if exists ``` Example: Save with ignore mode ```python df.write.csv("output.csv", mode="ignore") # Skips if exists ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "file_path", "mode"] Returns: QueryMetrics Parent Class: DataFrameWriter
method
parquet
fenic.api.io.writer.DataFrameWriter.parquet
Saves the content of the DataFrame as a single Parquet file. Args: file_path: Path to save the Parquet file to mode: Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists Returns: QueryMetrics: The query metrics Example: Save with overwrite mode (default) ```python df.write.parquet("output.parquet") # Overwrites if exists ``` Example: Save with error mode ```python df.write.parquet("output.parquet", mode="error") # Raises error if exists ``` Example: Save with ignore mode ```python df.write.parquet("output.parquet", mode="ignore") # Skips if exists ```
site-packages/fenic/api/io/writer.py
true
false
172
223
null
QueryMetrics
[ "self", "file_path", "mode" ]
DataFrameWriter
null
null
Type: method Member Name: parquet Qualified Name: fenic.api.io.writer.DataFrameWriter.parquet Docstring: Saves the content of the DataFrame as a single Parquet file. Args: file_path: Path to save the Parquet file to mode: Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists Returns: QueryMetrics: The query metrics Example: Save with overwrite mode (default) ```python df.write.parquet("output.parquet") # Overwrites if exists ``` Example: Save with error mode ```python df.write.parquet("output.parquet", mode="error") # Raises error if exists ``` Example: Save with ignore mode ```python df.write.parquet("output.parquet", mode="ignore") # Skips if exists ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "file_path", "mode"] Returns: QueryMetrics Parent Class: DataFrameWriter
module
mcp
fenic.api.mcp
MCP Tool Creation/Server Management API.
site-packages/fenic/api/mcp/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: mcp Qualified Name: fenic.api.mcp Docstring: MCP Tool Creation/Server Management API. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.api.mcp.__all__
null
site-packages/fenic/api/mcp/__init__.py
false
false
10
15
null
null
null
null
['create_mcp_server', 'run_mcp_server_sync', 'run_mcp_server_async', 'run_mcp_server_asgi']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.api.mcp.__all__ Docstring: none Value: ['create_mcp_server', 'run_mcp_server_sync', 'run_mcp_server_async', 'run_mcp_server_asgi'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
server
fenic.api.mcp.server
Create MCP servers using Fenic DataFrames. This module exposes helpers to: - Build a Fenic-backed MCP server from datasets and tools - Run the server synchronously or asynchronously
site-packages/fenic/api/mcp/server.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: server Qualified Name: fenic.api.mcp.server Docstring: Create MCP servers using Fenic DataFrames. This module exposes helpers to: - Build a Fenic-backed MCP server from datasets and tools - Run the server synchronously or asynchronously Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
create_mcp_server
fenic.api.mcp.server.create_mcp_server
Create an MCP server from datasets and tools. Args: session: Fenic session used to execute tools. server_name: Name of the MCP server. tools: Tools to register (optional). concurrency_limit: Maximum number of concurrent tool executions.
site-packages/fenic/api/mcp/server.py
true
false
15
34
null
FenicMCPServer
[ "session", "server_name", "tools", "concurrency_limit" ]
null
null
null
Type: function Member Name: create_mcp_server Qualified Name: fenic.api.mcp.server.create_mcp_server Docstring: Create an MCP server from datasets and tools. Args: session: Fenic session used to execute tools. server_name: Name of the MCP server. tools: Tools to register (optional). concurrency_limit: Maximum number of concurrent tool executions. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["session", "server_name", "tools", "concurrency_limit"] Returns: FenicMCPServer Parent Class: none
function
run_mcp_server_asgi
fenic.api.mcp.server.run_mcp_server_asgi
Run an MCP server as a Starlette ASGI app. Returns a Starlette ASGI app that can be integrated into any ASGI server. This is useful for running the MCP server in a production environment, or running the MCP server as part of a larger application. Args: server: MCP server to run. stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP. Notes: Some additional possible keyword arguments: - `middleware`: A list of Starlette `ASGIMiddleware` middleware to apply to the app.
site-packages/fenic/api/mcp/server.py
true
false
36
62
null
null
[ "server", "stateless_http", "port", "host", "path", "kwargs" ]
null
null
null
Type: function Member Name: run_mcp_server_asgi Qualified Name: fenic.api.mcp.server.run_mcp_server_asgi Docstring: Run an MCP server as a Starlette ASGI app. Returns a Starlette ASGI app that can be integrated into any ASGI server. This is useful for running the MCP server in a production environment, or running the MCP server as part of a larger application. Args: server: MCP server to run. stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP. Notes: Some additional possible keyword arguments: - `middleware`: A list of Starlette `ASGIMiddleware` middleware to apply to the app. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["server", "stateless_http", "port", "host", "path", "kwargs"] Returns: none Parent Class: none
function
run_mcp_server_sync
fenic.api.mcp.server.run_mcp_server_sync
Run an MCP server synchronously. Use this when calling from synchronous code. This creates a new event loop and runs the server in it. Args: server: MCP server to run. transport: Transport protocol (http, stdio). stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP.
site-packages/fenic/api/mcp/server.py
true
false
64
87
null
null
[ "server", "transport", "stateless_http", "port", "host", "path", "kwargs" ]
null
null
null
Type: function Member Name: run_mcp_server_sync Qualified Name: fenic.api.mcp.server.run_mcp_server_sync Docstring: Run an MCP server synchronously. Use this when calling from synchronous code. This creates a new event loop and runs the server in it. Args: server: MCP server to run. transport: Transport protocol (http, stdio). stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["server", "transport", "stateless_http", "port", "host", "path", "kwargs"] Returns: none Parent Class: none
function
run_mcp_server_async
fenic.api.mcp.server.run_mcp_server_async
Run an MCP server asynchronously. Use this when calling from asynchronous code. This does not create a new event loop. Args: server: MCP server to run. transport: Transport protocol (http, stdio). stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP.
site-packages/fenic/api/mcp/server.py
true
false
90
113
null
null
[ "server", "transport", "stateless_http", "port", "host", "path", "kwargs" ]
null
null
null
Type: function Member Name: run_mcp_server_async Qualified Name: fenic.api.mcp.server.run_mcp_server_async Docstring: Run an MCP server asynchronously. Use this when calling from asynchronous code. This does not create a new event loop. Args: server: MCP server to run. transport: Transport protocol (http, stdio). stateless_http: If True, use stateless HTTP. port: Port to listen on. host: Host to listen on. path: Path to listen on. kwargs: Additional transport-specific arguments to pass to FastMCP. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["server", "transport", "stateless_http", "port", "host", "path", "kwargs"] Returns: none Parent Class: none
module
functions
fenic.api.functions
Functions for working with DataFrame columns.
site-packages/fenic/api/functions/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: functions Qualified Name: fenic.api.functions Docstring: Functions for working with DataFrame columns. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.api.functions.__all__
null
site-packages/fenic/api/functions/__init__.py
false
false
34
77
null
null
null
null
['semantic', 'text', 'embedding', 'array', 'array_agg', 'async_udf', 'avg', 'collect_list', 'coalesce', 'count', 'json', 'markdown', 'max', 'mean', 'min', 'struct', 'sum', 'udf', 'col', 'lit', 'array_size', 'array_contains', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'extract', 'token_chunk', 'concat', 'concat_ws', 'array_join', 'replace', 'when', 'first', 'stddev', 'greatest', 'least', 'empty', 'null', 'tool_param']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.api.functions.__all__ Docstring: none Value: ['semantic', 'text', 'embedding', 'array', 'array_agg', 'async_udf', 'avg', 'collect_list', 'coalesce', 'count', 'json', 'markdown', 'max', 'mean', 'min', 'struct', 'sum', 'udf', 'col', 'lit', 'array_size', 'array_contains', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'extract', 'token_chunk', 'concat', 'concat_ws', 'array_join', 'replace', 'when', 'first', 'stddev', 'greatest', 'least', 'empty', 'null', 'tool_param'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
semantic
fenic.api.functions.semantic
Semantic functions for Fenic DataFrames - LLM-based operations.
site-packages/fenic/api/functions/semantic.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: semantic Qualified Name: fenic.api.functions.semantic Docstring: Semantic functions for Fenic DataFrames - LLM-based operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
map
fenic.api.functions.semantic.map
Applies a generation prompt to one or more columns, enabling rich summarization and generation tasks. Args: prompt: A Jinja2 template for the generation prompt. References column values using {{ column_name }} syntax. Each placeholder is replaced with the corresponding value from the current row during execution. strict: If True, when any of the provided columns has a None value for a row, the entire row's output will be None (template is not rendered). If False, None values are handled using Jinja2's null rendering behavior. Default is True. examples: Optional few-shot examples to guide the model's output format and style. response_format: Optional Pydantic model to enforce structured output. Must include descriptions for each field. model_alias: Optional language model alias. If None, uses the default model. temperature: Language model temperature (default: 0.0). max_output_tokens: Maximum tokens to generate (default: 512). **columns: Named column arguments that correspond to template variables. Keys must match the variable names used in the template. Returns: Column: A column expression representing the semantic mapping operation. Example: Mapping without examples ```python fc.semantic.map( "Write a compelling one-line description for {{ name }}: {{ details }}", name=fc.col("name"), details=fc.col("details") ) ``` Example: Mapping with few-shot examples ```python examples = MapExampleCollection() examples.create_example(MapExample( input={"name": "GlowMate", "details": "A rechargeable bedside lamp with adjustable color temperatures, touch controls, and a sleek minimalist design."}, output="The modern touch-controlled lamp for better sleep and style." )) examples.create_example(MapExample( input={"name": "AquaPure", "details": "A compact water filter that attaches to your faucet, removes over 99% of contaminants, and improves taste instantly."}, output="Clean, great-tasting water straight from your tap." )) fc.semantic.map( "Write a compelling one-line description for {{ name }}: {{ details }}", name=fc.col("name"), details=fc.col("details"), examples=examples ) ```
site-packages/fenic/api/functions/semantic.py
true
false
38
136
null
Column
[ "prompt", "strict", "examples", "response_format", "model_alias", "temperature", "max_output_tokens", "columns" ]
null
null
null
Type: function Member Name: map Qualified Name: fenic.api.functions.semantic.map Docstring: Applies a generation prompt to one or more columns, enabling rich summarization and generation tasks. Args: prompt: A Jinja2 template for the generation prompt. References column values using {{ column_name }} syntax. Each placeholder is replaced with the corresponding value from the current row during execution. strict: If True, when any of the provided columns has a None value for a row, the entire row's output will be None (template is not rendered). If False, None values are handled using Jinja2's null rendering behavior. Default is True. examples: Optional few-shot examples to guide the model's output format and style. response_format: Optional Pydantic model to enforce structured output. Must include descriptions for each field. model_alias: Optional language model alias. If None, uses the default model. temperature: Language model temperature (default: 0.0). max_output_tokens: Maximum tokens to generate (default: 512). **columns: Named column arguments that correspond to template variables. Keys must match the variable names used in the template. Returns: Column: A column expression representing the semantic mapping operation. Example: Mapping without examples ```python fc.semantic.map( "Write a compelling one-line description for {{ name }}: {{ details }}", name=fc.col("name"), details=fc.col("details") ) ``` Example: Mapping with few-shot examples ```python examples = MapExampleCollection() examples.create_example(MapExample( input={"name": "GlowMate", "details": "A rechargeable bedside lamp with adjustable color temperatures, touch controls, and a sleek minimalist design."}, output="The modern touch-controlled lamp for better sleep and style." )) examples.create_example(MapExample( input={"name": "AquaPure", "details": "A compact water filter that attaches to your faucet, removes over 99% of contaminants, and improves taste instantly."}, output="Clean, great-tasting water straight from your tap." )) fc.semantic.map( "Write a compelling one-line description for {{ name }}: {{ details }}", name=fc.col("name"), details=fc.col("details"), examples=examples ) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["prompt", "strict", "examples", "response_format", "model_alias", "temperature", "max_output_tokens", "columns"] Returns: Column Parent Class: none