type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
method
__init__
fenic._gen.protos.logical_plan.v1.plans_pb2.SemanticCluster.__init__
null
site-packages/fenic/_gen/protos/logical_plan/v1/plans_pb2.py
true
false
277
277
null
None
[ "self", "input", "by_expr", "num_clusters", "max_iter", "num_init", "label_column", "centroid_column" ]
SemanticCluster
null
null
Type: method Member Name: __init__ Qualified Name: fenic._gen.protos.logical_plan.v1.plans_pb2.SemanticCluster.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "input", "by_expr", "num_clusters", "max_iter", "num_init", "label_column", "centroid_column"] Returns: None Parent Class: SemanticCluster
class
FileSink
fenic._gen.protos.logical_plan.v1.plans_pb2.FileSink
null
site-packages/fenic/_gen/protos/logical_plan/v1/plans_pb2.py
true
false
279
289
null
null
null
null
null
[ "_message.Message" ]
Type: class Member Name: FileSink Qualified Name: fenic._gen.protos.logical_plan.v1.plans_pb2.FileSink Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._gen.protos.logical_plan.v1.plans_pb2.FileSink.__init__
null
site-packages/fenic/_gen/protos/logical_plan/v1/plans_pb2.py
true
false
289
289
null
None
[ "self", "child", "sink_type", "path", "mode" ]
FileSink
null
null
Type: method Member Name: __init__ Qualified Name: fenic._gen.protos.logical_plan.v1.plans_pb2.FileSink.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "child", "sink_type", "path", "mode"] Returns: None Parent Class: FileSink
class
TableSink
fenic._gen.protos.logical_plan.v1.plans_pb2.TableSink
null
site-packages/fenic/_gen/protos/logical_plan/v1/plans_pb2.py
true
false
291
299
null
null
null
null
null
[ "_message.Message" ]
Type: class Member Name: TableSink Qualified Name: fenic._gen.protos.logical_plan.v1.plans_pb2.TableSink Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic._gen.protos.logical_plan.v1.plans_pb2.TableSink.__init__
null
site-packages/fenic/_gen/protos/logical_plan/v1/plans_pb2.py
true
false
299
299
null
None
[ "self", "child", "table_name", "mode" ]
TableSink
null
null
Type: method Member Name: __init__ Qualified Name: fenic._gen.protos.logical_plan.v1.plans_pb2.TableSink.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "child", "table_name", "mode"] Returns: None Parent Class: TableSink
module
api
fenic.api
Query module for semantic operations on DataFrames.
site-packages/fenic/api/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: api Qualified Name: fenic.api Docstring: Query module for semantic operations on DataFrames. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.api.__all__
null
site-packages/fenic/api/__init__.py
false
false
67
137
null
null
null
null
['Session', 'SessionConfig', 'OpenAILanguageModel', 'OpenAIEmbeddingModel', 'AnthropicLanguageModel', 'CohereEmbeddingModel', 'GoogleDeveloperEmbeddingModel', 'GoogleDeveloperLanguageModel', 'GoogleVertexEmbeddingModel', 'GoogleVertexLanguageModel', 'SemanticConfig', 'CloudConfig', 'DataFrameReader', 'DataFrameWriter', 'DataFrame', 'GroupedData', 'SemanticExtensions', 'Column', 'ColumnOrName', 'Catalog', 'semantic', 'text', 'json', 'markdown', 'embedding', 'array', 'array_agg', 'array_contains', 'array_size', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'async_udf', 'avg', 'coalesce', 'collect_list', 'count', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'first', 'max', 'mean', 'min', 'struct', 'sum', 'stddev', 'udf', 'when', 'col', 'lit', 'empty', 'null', 'greatest', 'least', 'tool_param', 'Lineage', 'create_mcp_server', 'run_mcp_server_sync', 'run_mcp_server_async', 'run_mcp_server_asgi']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.api.__all__ Docstring: none Value: ['Session', 'SessionConfig', 'OpenAILanguageModel', 'OpenAIEmbeddingModel', 'AnthropicLanguageModel', 'CohereEmbeddingModel', 'GoogleDeveloperEmbeddingModel', 'GoogleDeveloperLanguageModel', 'GoogleVertexEmbeddingModel', 'GoogleVertexLanguageModel', 'SemanticConfig', 'CloudConfig', 'DataFrameReader', 'DataFrameWriter', 'DataFrame', 'GroupedData', 'SemanticExtensions', 'Column', 'ColumnOrName', 'Catalog', 'semantic', 'text', 'json', 'markdown', 'embedding', 'array', 'array_agg', 'array_contains', 'array_size', 'asc', 'asc_nulls_first', 'asc_nulls_last', 'async_udf', 'avg', 'coalesce', 'collect_list', 'count', 'desc', 'desc_nulls_first', 'desc_nulls_last', 'first', 'max', 'mean', 'min', 'struct', 'sum', 'stddev', 'udf', 'when', 'col', 'lit', 'empty', 'null', 'greatest', 'least', 'tool_param', 'Lineage', 'create_mcp_server', 'run_mcp_server_sync', 'run_mcp_server_async', 'run_mcp_server_asgi'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
catalog
fenic.api.catalog
Catalog API for managing database objects in Fenic.
site-packages/fenic/api/catalog.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: catalog Qualified Name: fenic.api.catalog Docstring: Catalog API for managing database objects in Fenic. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
Catalog
fenic.api.catalog.Catalog
Entry point for catalog operations. Provides methods to manage catalogs, databases, and tables, as well as read-only access to system tables such as `fenic_system.query_metrics`. ### Catalog and Database Management Example: ```python # Create a catalog session.catalog.create_catalog("my_catalog") # → True # Set active catalog session.catalog.set_current_catalog("my_catalog") # Create a database session.catalog.create_database("my_database") # → True # Set active database session.catalog.set_current_database("my_database") # Create a table session.catalog.create_table( "my_table", Schema([ColumnField("id", IntegerType)]) ) # → True ``` ### Metrics Table (Local Sessions Only) Query metrics are recorded for each session and stored locally in `fenic_system.query_metrics`. Metrics can be loaded into a DataFrame for analysis. Example: ```python # Load all metrics for the current application metrics_df = session.table("fenic_system.query_metrics") # Show the 10 most recent queries in the application recent_queries = session.sql(""" SELECT * FROM {df} ORDER BY CAST(end_ts AS TIMESTAMP) DESC LIMIT 10 """, df=metrics_df) recent_queries.show() # Find query metrics for a specific session with non-zero LM costs specific_session_queries = session.sql(""" SELECT * FROM {df} WHERE session_id = '9e7e256f-fad9-4cd9-844e-399d795aaea0' AND total_lm_cost > 0 ORDER BY CAST(end_ts AS TIMESTAMP) ASC """, df=metrics_df) specific_session_queries.show() # Aggregate total LM costs and requests between a specific time window metrics_window = session.sql(""" SELECT CAST(SUM(total_lm_cost) AS DOUBLE) AS total_lm_cost_in_window, CAST(SUM(total_lm_requests) AS DOUBLE) AS total_lm_requests_in_window FROM {df} WHERE CAST(end_ts AS TIMESTAMP) BETWEEN CAST('2025-08-29 10:00:00' AS TIMESTAMP) AND CAST('2025-08-29 12:00:00' AS TIMESTAMP) """, df=metrics_df) metrics_window.show() ```
site-packages/fenic/api/catalog.py
true
false
13
776
null
null
null
null
null
[]
Type: class Member Name: Catalog Qualified Name: fenic.api.catalog.Catalog Docstring: Entry point for catalog operations. Provides methods to manage catalogs, databases, and tables, as well as read-only access to system tables such as `fenic_system.query_metrics`. ### Catalog and Database Management Example: ```python # Create a catalog session.catalog.create_catalog("my_catalog") # → True # Set active catalog session.catalog.set_current_catalog("my_catalog") # Create a database session.catalog.create_database("my_database") # → True # Set active database session.catalog.set_current_database("my_database") # Create a table session.catalog.create_table( "my_table", Schema([ColumnField("id", IntegerType)]) ) # → True ``` ### Metrics Table (Local Sessions Only) Query metrics are recorded for each session and stored locally in `fenic_system.query_metrics`. Metrics can be loaded into a DataFrame for analysis. Example: ```python # Load all metrics for the current application metrics_df = session.table("fenic_system.query_metrics") # Show the 10 most recent queries in the application recent_queries = session.sql(""" SELECT * FROM {df} ORDER BY CAST(end_ts AS TIMESTAMP) DESC LIMIT 10 """, df=metrics_df) recent_queries.show() # Find query metrics for a specific session with non-zero LM costs specific_session_queries = session.sql(""" SELECT * FROM {df} WHERE session_id = '9e7e256f-fad9-4cd9-844e-399d795aaea0' AND total_lm_cost > 0 ORDER BY CAST(end_ts AS TIMESTAMP) ASC """, df=metrics_df) specific_session_queries.show() # Aggregate total LM costs and requests between a specific time window metrics_window = session.sql(""" SELECT CAST(SUM(total_lm_cost) AS DOUBLE) AS total_lm_cost_in_window, CAST(SUM(total_lm_requests) AS DOUBLE) AS total_lm_requests_in_window FROM {df} WHERE CAST(end_ts AS TIMESTAMP) BETWEEN CAST('2025-08-29 10:00:00' AS TIMESTAMP) AND CAST('2025-08-29 12:00:00' AS TIMESTAMP) """, df=metrics_df) metrics_window.show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.catalog.Catalog.__init__
Initialize a Catalog instance. Args: catalog: The underlying catalog implementation.
site-packages/fenic/api/catalog.py
true
false
86
92
null
null
[ "self", "catalog" ]
Catalog
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.catalog.Catalog.__init__ Docstring: Initialize a Catalog instance. Args: catalog: The underlying catalog implementation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog"] Returns: none Parent Class: Catalog
method
does_catalog_exist
fenic.api.catalog.Catalog.does_catalog_exist
Checks if a catalog with the specified name exists. Args: catalog_name (str): Name of the catalog to check. Returns: bool: True if the catalog exists, False otherwise. Example: Check if a catalog exists ```python # Check if 'my_catalog' exists session.catalog.does_catalog_exist('my_catalog') # Returns: True ```
site-packages/fenic/api/catalog.py
true
false
95
112
null
bool
[ "self", "catalog_name" ]
Catalog
null
null
Type: method Member Name: does_catalog_exist Qualified Name: fenic.api.catalog.Catalog.does_catalog_exist Docstring: Checks if a catalog with the specified name exists. Args: catalog_name (str): Name of the catalog to check. Returns: bool: True if the catalog exists, False otherwise. Example: Check if a catalog exists ```python # Check if 'my_catalog' exists session.catalog.does_catalog_exist('my_catalog') # Returns: True ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name"] Returns: bool Parent Class: Catalog
method
get_current_catalog
fenic.api.catalog.Catalog.get_current_catalog
Returns the name of the current catalog. Returns: str: The name of the current catalog. Example: Get current catalog name ```python # Get the name of the current catalog session.catalog.get_current_catalog() # Returns: 'default' ```
site-packages/fenic/api/catalog.py
true
false
114
127
null
str
[ "self" ]
Catalog
null
null
Type: method Member Name: get_current_catalog Qualified Name: fenic.api.catalog.Catalog.get_current_catalog Docstring: Returns the name of the current catalog. Returns: str: The name of the current catalog. Example: Get current catalog name ```python # Get the name of the current catalog session.catalog.get_current_catalog() # Returns: 'default' ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: Catalog
method
set_current_catalog
fenic.api.catalog.Catalog.set_current_catalog
Sets the current catalog. Args: catalog_name (str): Name of the catalog to set as current. Raises: ValueError: If the specified catalog doesn't exist. Example: Set current catalog ```python # Set 'my_catalog' as the current catalog session.catalog.set_current_catalog('my_catalog') ```
site-packages/fenic/api/catalog.py
true
false
129
145
null
None
[ "self", "catalog_name" ]
Catalog
null
null
Type: method Member Name: set_current_catalog Qualified Name: fenic.api.catalog.Catalog.set_current_catalog Docstring: Sets the current catalog. Args: catalog_name (str): Name of the catalog to set as current. Raises: ValueError: If the specified catalog doesn't exist. Example: Set current catalog ```python # Set 'my_catalog' as the current catalog session.catalog.set_current_catalog('my_catalog') ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name"] Returns: None Parent Class: Catalog
method
list_catalogs
fenic.api.catalog.Catalog.list_catalogs
Returns a list of available catalogs. Returns: List[str]: A list of catalog names available in the system. Returns an empty list if no catalogs are found. Example: List all catalogs ```python # Get all available catalogs session.catalog.list_catalogs() # Returns: ['default', 'my_catalog', 'other_catalog'] ```
site-packages/fenic/api/catalog.py
true
false
147
161
null
List[str]
[ "self" ]
Catalog
null
null
Type: method Member Name: list_catalogs Qualified Name: fenic.api.catalog.Catalog.list_catalogs Docstring: Returns a list of available catalogs. Returns: List[str]: A list of catalog names available in the system. Returns an empty list if no catalogs are found. Example: List all catalogs ```python # Get all available catalogs session.catalog.list_catalogs() # Returns: ['default', 'my_catalog', 'other_catalog'] ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[str] Parent Class: Catalog
method
create_catalog
fenic.api.catalog.Catalog.create_catalog
Creates a new catalog. Args: catalog_name (str): Name of the catalog to create. ignore_if_exists (bool): If True, return False when the catalog already exists. If False, raise an error when the catalog already exists. Defaults to True. Raises: CatalogAlreadyExistsError: If the catalog already exists and ignore_if_exists is False. Returns: bool: True if the catalog was created successfully, False if the catalog already exists and ignore_if_exists is True. Example: Create a new catalog ```python # Create a new catalog named 'my_catalog' session.catalog.create_catalog('my_catalog') # Returns: True ``` Example: Create an existing catalog with ignore_if_exists ```python # Try to create an existing catalog with ignore_if_exists=True session.catalog.create_catalog('my_catalog', ignore_if_exists=True) # Returns: False ``` Example: Create an existing catalog without ignore_if_exists ```python # Try to create an existing catalog with ignore_if_exists=False session.catalog.create_catalog('my_catalog', ignore_if_exists=False) # Raises: CatalogAlreadyExistsError ```
site-packages/fenic/api/catalog.py
true
false
163
201
null
bool
[ "self", "catalog_name", "ignore_if_exists" ]
Catalog
null
null
Type: method Member Name: create_catalog Qualified Name: fenic.api.catalog.Catalog.create_catalog Docstring: Creates a new catalog. Args: catalog_name (str): Name of the catalog to create. ignore_if_exists (bool): If True, return False when the catalog already exists. If False, raise an error when the catalog already exists. Defaults to True. Raises: CatalogAlreadyExistsError: If the catalog already exists and ignore_if_exists is False. Returns: bool: True if the catalog was created successfully, False if the catalog already exists and ignore_if_exists is True. Example: Create a new catalog ```python # Create a new catalog named 'my_catalog' session.catalog.create_catalog('my_catalog') # Returns: True ``` Example: Create an existing catalog with ignore_if_exists ```python # Try to create an existing catalog with ignore_if_exists=True session.catalog.create_catalog('my_catalog', ignore_if_exists=True) # Returns: False ``` Example: Create an existing catalog without ignore_if_exists ```python # Try to create an existing catalog with ignore_if_exists=False session.catalog.create_catalog('my_catalog', ignore_if_exists=False) # Raises: CatalogAlreadyExistsError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name", "ignore_if_exists"] Returns: bool Parent Class: Catalog
method
drop_catalog
fenic.api.catalog.Catalog.drop_catalog
Drops a catalog. Args: catalog_name (str): Name of the catalog to drop. ignore_if_not_exists (bool): If True, silently return if the catalog doesn't exist. If False, raise an error if the catalog doesn't exist. Defaults to True. Raises: CatalogNotFoundError: If the catalog does not exist and ignore_if_not_exists is False Returns: bool: True if the catalog was dropped successfully, False if the catalog didn't exist and ignore_if_not_exists is True. Example: Drop a non-existent catalog ```python # Try to drop a non-existent catalog session.catalog.drop_catalog('my_catalog') # Returns: False ``` Example: Drop a non-existent catalog without ignore_if_not_exists ```python # Try to drop a non-existent catalog with ignore_if_not_exists=False session.catalog.drop_catalog('my_catalog', ignore_if_not_exists=False) # Raises: CatalogNotFoundError ```
site-packages/fenic/api/catalog.py
true
false
203
236
null
bool
[ "self", "catalog_name", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: drop_catalog Qualified Name: fenic.api.catalog.Catalog.drop_catalog Docstring: Drops a catalog. Args: catalog_name (str): Name of the catalog to drop. ignore_if_not_exists (bool): If True, silently return if the catalog doesn't exist. If False, raise an error if the catalog doesn't exist. Defaults to True. Raises: CatalogNotFoundError: If the catalog does not exist and ignore_if_not_exists is False Returns: bool: True if the catalog was dropped successfully, False if the catalog didn't exist and ignore_if_not_exists is True. Example: Drop a non-existent catalog ```python # Try to drop a non-existent catalog session.catalog.drop_catalog('my_catalog') # Returns: False ``` Example: Drop a non-existent catalog without ignore_if_not_exists ```python # Try to drop a non-existent catalog with ignore_if_not_exists=False session.catalog.drop_catalog('my_catalog', ignore_if_not_exists=False) # Raises: CatalogNotFoundError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "catalog_name", "ignore_if_not_exists"] Returns: bool Parent Class: Catalog
method
does_database_exist
fenic.api.catalog.Catalog.does_database_exist
Checks if a database with the specified name exists. Args: database_name (str): Fully qualified or relative database name to check. Returns: bool: True if the database exists, False otherwise. Example: Check if a database exists ```python # Check if 'my_database' exists session.catalog.does_database_exist('my_database') # Returns: True ```
site-packages/fenic/api/catalog.py
true
false
238
255
null
bool
[ "self", "database_name" ]
Catalog
null
null
Type: method Member Name: does_database_exist Qualified Name: fenic.api.catalog.Catalog.does_database_exist Docstring: Checks if a database with the specified name exists. Args: database_name (str): Fully qualified or relative database name to check. Returns: bool: True if the database exists, False otherwise. Example: Check if a database exists ```python # Check if 'my_database' exists session.catalog.does_database_exist('my_database') # Returns: True ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name"] Returns: bool Parent Class: Catalog
method
get_current_database
fenic.api.catalog.Catalog.get_current_database
Returns the name of the current database in the current catalog. Returns: str: The name of the current database. Example: Get current database name ```python # Get the name of the current database session.catalog.get_current_database() # Returns: 'default' ```
site-packages/fenic/api/catalog.py
true
false
257
270
null
str
[ "self" ]
Catalog
null
null
Type: method Member Name: get_current_database Qualified Name: fenic.api.catalog.Catalog.get_current_database Docstring: Returns the name of the current database in the current catalog. Returns: str: The name of the current database. Example: Get current database name ```python # Get the name of the current database session.catalog.get_current_database() # Returns: 'default' ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: Catalog
method
set_current_database
fenic.api.catalog.Catalog.set_current_database
Sets the current database. Args: database_name (str): Fully qualified or relative database name to set as current. Raises: DatabaseNotFoundError: If the specified database doesn't exist. Example: Set current database ```python # Set 'my_database' as the current database session.catalog.set_current_database('my_database') ```
site-packages/fenic/api/catalog.py
true
false
272
288
null
None
[ "self", "database_name" ]
Catalog
null
null
Type: method Member Name: set_current_database Qualified Name: fenic.api.catalog.Catalog.set_current_database Docstring: Sets the current database. Args: database_name (str): Fully qualified or relative database name to set as current. Raises: DatabaseNotFoundError: If the specified database doesn't exist. Example: Set current database ```python # Set 'my_database' as the current database session.catalog.set_current_database('my_database') ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name"] Returns: None Parent Class: Catalog
method
list_databases
fenic.api.catalog.Catalog.list_databases
Returns a list of databases in the current catalog. Returns: List[str]: A list of database names in the current catalog. Returns an empty list if no databases are found. Example: List all databases ```python # Get all databases in the current catalog session.catalog.list_databases() # Returns: ['default', 'my_database', 'other_database'] ```
site-packages/fenic/api/catalog.py
true
false
290
304
null
List[str]
[ "self" ]
Catalog
null
null
Type: method Member Name: list_databases Qualified Name: fenic.api.catalog.Catalog.list_databases Docstring: Returns a list of databases in the current catalog. Returns: List[str]: A list of database names in the current catalog. Returns an empty list if no databases are found. Example: List all databases ```python # Get all databases in the current catalog session.catalog.list_databases() # Returns: ['default', 'my_database', 'other_database'] ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[str] Parent Class: Catalog
method
create_database
fenic.api.catalog.Catalog.create_database
Creates a new database. Args: database_name (str): Fully qualified or relative database name to create. ignore_if_exists (bool): If True, return False when the database already exists. If False, raise an error when the database already exists. Defaults to True. Raises: DatabaseAlreadyExistsError: If the database already exists and ignore_if_exists is False. Returns: bool: True if the database was created successfully, False if the database already exists and ignore_if_exists is True. Example: Create a new database ```python # Create a new database named 'my_database' session.catalog.create_database('my_database') # Returns: True ``` Example: Create an existing database with ignore_if_exists ```python # Try to create an existing database with ignore_if_exists=True session.catalog.create_database('my_database', ignore_if_exists=True) # Returns: False ``` Example: Create an existing database without ignore_if_exists ```python # Try to create an existing database with ignore_if_exists=False session.catalog.create_database('my_database', ignore_if_exists=False) # Raises: DatabaseAlreadyExistsError ```
site-packages/fenic/api/catalog.py
true
false
306
346
null
bool
[ "self", "database_name", "ignore_if_exists" ]
Catalog
null
null
Type: method Member Name: create_database Qualified Name: fenic.api.catalog.Catalog.create_database Docstring: Creates a new database. Args: database_name (str): Fully qualified or relative database name to create. ignore_if_exists (bool): If True, return False when the database already exists. If False, raise an error when the database already exists. Defaults to True. Raises: DatabaseAlreadyExistsError: If the database already exists and ignore_if_exists is False. Returns: bool: True if the database was created successfully, False if the database already exists and ignore_if_exists is True. Example: Create a new database ```python # Create a new database named 'my_database' session.catalog.create_database('my_database') # Returns: True ``` Example: Create an existing database with ignore_if_exists ```python # Try to create an existing database with ignore_if_exists=True session.catalog.create_database('my_database', ignore_if_exists=True) # Returns: False ``` Example: Create an existing database without ignore_if_exists ```python # Try to create an existing database with ignore_if_exists=False session.catalog.create_database('my_database', ignore_if_exists=False) # Raises: DatabaseAlreadyExistsError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name", "ignore_if_exists"] Returns: bool Parent Class: Catalog
method
drop_database
fenic.api.catalog.Catalog.drop_database
Drops a database. Args: database_name (str): Fully qualified or relative database name to drop. cascade (bool): If True, drop all tables in the database. Defaults to False. ignore_if_not_exists (bool): If True, silently return if the database doesn't exist. If False, raise an error if the database doesn't exist. Defaults to True. Raises: DatabaseNotFoundError: If the database does not exist and ignore_if_not_exists is False CatalogError: If the current database is being dropped, if the database is not empty and cascade is False Returns: bool: True if the database was dropped successfully, False if the database didn't exist and ignore_if_not_exists is True. Example: Drop a non-existent database ```python # Try to drop a non-existent database session.catalog.drop_database('my_database') # Returns: False ``` Example: Drop a non-existent database without ignore_if_not_exists ```python # Try to drop a non-existent database with ignore_if_not_exists=False session.catalog.drop_database('my_database', ignore_if_not_exists=False) # Raises: DatabaseNotFoundError ```
site-packages/fenic/api/catalog.py
true
false
348
387
null
bool
[ "self", "database_name", "cascade", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: drop_database Qualified Name: fenic.api.catalog.Catalog.drop_database Docstring: Drops a database. Args: database_name (str): Fully qualified or relative database name to drop. cascade (bool): If True, drop all tables in the database. Defaults to False. ignore_if_not_exists (bool): If True, silently return if the database doesn't exist. If False, raise an error if the database doesn't exist. Defaults to True. Raises: DatabaseNotFoundError: If the database does not exist and ignore_if_not_exists is False CatalogError: If the current database is being dropped, if the database is not empty and cascade is False Returns: bool: True if the database was dropped successfully, False if the database didn't exist and ignore_if_not_exists is True. Example: Drop a non-existent database ```python # Try to drop a non-existent database session.catalog.drop_database('my_database') # Returns: False ``` Example: Drop a non-existent database without ignore_if_not_exists ```python # Try to drop a non-existent database with ignore_if_not_exists=False session.catalog.drop_database('my_database', ignore_if_not_exists=False) # Raises: DatabaseNotFoundError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "database_name", "cascade", "ignore_if_not_exists"] Returns: bool Parent Class: Catalog
method
does_table_exist
fenic.api.catalog.Catalog.does_table_exist
Checks if a table with the specified name exists. Args: table_name (str): Fully qualified or relative table name to check. Returns: bool: True if the table exists, False otherwise. Example: Check if a table exists ```python # Check if 'my_table' exists session.catalog.does_table_exist('my_table') # Returns: True ```
site-packages/fenic/api/catalog.py
true
false
389
406
null
bool
[ "self", "table_name" ]
Catalog
null
null
Type: method Member Name: does_table_exist Qualified Name: fenic.api.catalog.Catalog.does_table_exist Docstring: Checks if a table with the specified name exists. Args: table_name (str): Fully qualified or relative table name to check. Returns: bool: True if the table exists, False otherwise. Example: Check if a table exists ```python # Check if 'my_table' exists session.catalog.does_table_exist('my_table') # Returns: True ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name"] Returns: bool Parent Class: Catalog
method
list_tables
fenic.api.catalog.Catalog.list_tables
Returns a list of tables stored in the current database. This method queries the current database to retrieve all available table names. Returns: List[str]: A list of table names stored in the database. Returns an empty list if no tables are found. Example: List all tables ```python # Get all tables in the current database session.catalog.list_tables() # Returns: ['table1', 'table2', 'table3'] ```
site-packages/fenic/api/catalog.py
true
false
408
424
null
List[str]
[ "self" ]
Catalog
null
null
Type: method Member Name: list_tables Qualified Name: fenic.api.catalog.Catalog.list_tables Docstring: Returns a list of tables stored in the current database. This method queries the current database to retrieve all available table names. Returns: List[str]: A list of table names stored in the database. Returns an empty list if no tables are found. Example: List all tables ```python # Get all tables in the current database session.catalog.list_tables() # Returns: ['table1', 'table2', 'table3'] ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[str] Parent Class: Catalog
method
describe_table
fenic.api.catalog.Catalog.describe_table
Returns the schema of the specified table. Args: table_name (str): Fully qualified or relative table name to describe. Returns: DatasetMetadata: An object containing: schema: A schema object describing the table's structure with field names and types. description: A natural language description of the table's contents and uses. Raises: TableNotFoundError: If the table doesn't exist. Example: Describe a table's schema ```python # For a table created with: create_table('t1', Schema([ColumnField('id', IntegerType)]), description='My table description') session.catalog.describe_table('t1') # Returns: DatasetMetadata(schema=Schema([ # ColumnField('id', IntegerType), # ]), description="My table description") ```
site-packages/fenic/api/catalog.py
true
false
426
450
null
DatasetMetadata
[ "self", "table_name" ]
Catalog
null
null
Type: method Member Name: describe_table Qualified Name: fenic.api.catalog.Catalog.describe_table Docstring: Returns the schema of the specified table. Args: table_name (str): Fully qualified or relative table name to describe. Returns: DatasetMetadata: An object containing: schema: A schema object describing the table's structure with field names and types. description: A natural language description of the table's contents and uses. Raises: TableNotFoundError: If the table doesn't exist. Example: Describe a table's schema ```python # For a table created with: create_table('t1', Schema([ColumnField('id', IntegerType)]), description='My table description') session.catalog.describe_table('t1') # Returns: DatasetMetadata(schema=Schema([ # ColumnField('id', IntegerType), # ]), description="My table description") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name"] Returns: DatasetMetadata Parent Class: Catalog
method
set_table_description
fenic.api.catalog.Catalog.set_table_description
Set or unset the description for a table. Args: table_name: Fully qualified or relative table name to set the description for. description: The description to set for the table. Raises: TableNotFoundError: If the table doesn't exist.
site-packages/fenic/api/catalog.py
true
false
452
463
null
None
[ "self", "table_name", "description" ]
Catalog
null
null
Type: method Member Name: set_table_description Qualified Name: fenic.api.catalog.Catalog.set_table_description Docstring: Set or unset the description for a table. Args: table_name: Fully qualified or relative table name to set the description for. description: The description to set for the table. Raises: TableNotFoundError: If the table doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "description"] Returns: None Parent Class: Catalog
method
drop_table
fenic.api.catalog.Catalog.drop_table
Drops the specified table. By default this method will return False if the table doesn't exist. Args: table_name (str): Fully qualified or relative table name to drop. ignore_if_not_exists (bool): If True, return False when the table doesn't exist. If False, raise an error when the table doesn't exist. Defaults to True. Returns: bool: True if the table was dropped successfully, False if the table didn't exist and ignore_if_not_exist is True. Raises: TableNotFoundError: If the table doesn't exist and ignore_if_not_exists is False Example: Drop an existing table ```python # Drop an existing table 't1' session.catalog.drop_table('t1') # Returns: True ``` Example: Drop a non-existent table with ignore_if_not_exists ```python # Try to drop a non-existent table with ignore_if_not_exists=True session.catalog.drop_table('t2', ignore_if_not_exists=True) # Returns: False ``` Example: Drop a non-existent table without ignore_if_not_exists ```python # Try to drop a non-existent table with ignore_if_not_exists=False session.catalog.drop_table('t2', ignore_if_not_exists=False) # Raises: TableNotFoundError ```
site-packages/fenic/api/catalog.py
true
false
465
505
null
bool
[ "self", "table_name", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: drop_table Qualified Name: fenic.api.catalog.Catalog.drop_table Docstring: Drops the specified table. By default this method will return False if the table doesn't exist. Args: table_name (str): Fully qualified or relative table name to drop. ignore_if_not_exists (bool): If True, return False when the table doesn't exist. If False, raise an error when the table doesn't exist. Defaults to True. Returns: bool: True if the table was dropped successfully, False if the table didn't exist and ignore_if_not_exist is True. Raises: TableNotFoundError: If the table doesn't exist and ignore_if_not_exists is False Example: Drop an existing table ```python # Drop an existing table 't1' session.catalog.drop_table('t1') # Returns: True ``` Example: Drop a non-existent table with ignore_if_not_exists ```python # Try to drop a non-existent table with ignore_if_not_exists=True session.catalog.drop_table('t2', ignore_if_not_exists=True) # Returns: False ``` Example: Drop a non-existent table without ignore_if_not_exists ```python # Try to drop a non-existent table with ignore_if_not_exists=False session.catalog.drop_table('t2', ignore_if_not_exists=False) # Raises: TableNotFoundError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "ignore_if_not_exists"] Returns: bool Parent Class: Catalog
method
create_table
fenic.api.catalog.Catalog.create_table
Creates a new table. Args: table_name (str): Fully qualified or relative table name to create. schema (Schema): Schema of the table to create. ignore_if_exists (bool): If True, return False when the table already exists. If False, raise an error when the table already exists. Defaults to True. description (Optional[str]): Description of the table to create. Defaults to None. Returns: bool: True if the table was created successfully, False if the table already exists and ignore_if_exists is True. Raises: TableAlreadyExistsError: If the table already exists and ignore_if_exists is False Example: Create a new table ```python # Create a new table with an integer column session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), description='My table description') # Returns: True ``` Example: Create an existing table with ignore_if_exists ```python # Try to create an existing table with ignore_if_exists=True session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), ignore_if_exists=True, description='My table description') # Returns: False ``` Example: Create an existing table without ignore_if_exists ```python # Try to create an existing table with ignore_if_exists=False session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), ignore_if_exists=False, description='My table description') # Raises: TableAlreadyExistsError ```
site-packages/fenic/api/catalog.py
true
false
507
556
null
bool
[ "self", "table_name", "schema", "ignore_if_exists", "description" ]
Catalog
null
null
Type: method Member Name: create_table Qualified Name: fenic.api.catalog.Catalog.create_table Docstring: Creates a new table. Args: table_name (str): Fully qualified or relative table name to create. schema (Schema): Schema of the table to create. ignore_if_exists (bool): If True, return False when the table already exists. If False, raise an error when the table already exists. Defaults to True. description (Optional[str]): Description of the table to create. Defaults to None. Returns: bool: True if the table was created successfully, False if the table already exists and ignore_if_exists is True. Raises: TableAlreadyExistsError: If the table already exists and ignore_if_exists is False Example: Create a new table ```python # Create a new table with an integer column session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), description='My table description') # Returns: True ``` Example: Create an existing table with ignore_if_exists ```python # Try to create an existing table with ignore_if_exists=True session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), ignore_if_exists=True, description='My table description') # Returns: False ``` Example: Create an existing table without ignore_if_exists ```python # Try to create an existing table with ignore_if_exists=False session.catalog.create_table('my_table', Schema([ ColumnField('id', IntegerType), ]), ignore_if_exists=False, description='My table description') # Raises: TableAlreadyExistsError ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "table_name", "schema", "ignore_if_exists", "description"] Returns: bool Parent Class: Catalog
method
list_views
fenic.api.catalog.Catalog.list_views
Returns a list of views stored in the current database. This method queries the current database to retrieve all available view names. Returns: List[str]: A list of view names stored in the database. Returns an empty list if no views are found. Example: >>> session.catalog.list_views() ['view1', 'view2', 'view3'].
site-packages/fenic/api/catalog.py
true
false
558
571
null
List[str]
[ "self" ]
Catalog
null
null
Type: method Member Name: list_views Qualified Name: fenic.api.catalog.Catalog.list_views Docstring: Returns a list of views stored in the current database. This method queries the current database to retrieve all available view names. Returns: List[str]: A list of view names stored in the database. Returns an empty list if no views are found. Example: >>> session.catalog.list_views() ['view1', 'view2', 'view3']. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[str] Parent Class: Catalog
method
describe_view
fenic.api.catalog.Catalog.describe_view
Returns the schema and description of the specified view. Args: view_name (str): Fully qualified or relative view name to describe. Returns: DatasetMetadata: An object containing: schema: A schema object describing the view's structure with field names and types. description: A natural language description of the view's contents and uses. Raises: TableNotFoundError: If the view doesn't exist.
site-packages/fenic/api/catalog.py
true
false
573
589
null
DatasetMetadata
[ "self", "view_name" ]
Catalog
null
null
Type: method Member Name: describe_view Qualified Name: fenic.api.catalog.Catalog.describe_view Docstring: Returns the schema and description of the specified view. Args: view_name (str): Fully qualified or relative view name to describe. Returns: DatasetMetadata: An object containing: schema: A schema object describing the view's structure with field names and types. description: A natural language description of the view's contents and uses. Raises: TableNotFoundError: If the view doesn't exist. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name"] Returns: DatasetMetadata Parent Class: Catalog
method
set_view_description
fenic.api.catalog.Catalog.set_view_description
Set the description for a view. Args: view_name (str): Fully qualified or relative view name to set the description for. description (str): The description to set for the view. Raises: TableNotFoundError: If the view doesn't exist. ValidationError: If the description is empty. Example: Set a description for a view ```python # Set a description for a view 'v1' session.catalog.set_view_description('v1', 'My view description')
site-packages/fenic/api/catalog.py
true
false
591
608
null
None
[ "self", "view_name", "description" ]
Catalog
null
null
Type: method Member Name: set_view_description Qualified Name: fenic.api.catalog.Catalog.set_view_description Docstring: Set the description for a view. Args: view_name (str): Fully qualified or relative view name to set the description for. description (str): The description to set for the view. Raises: TableNotFoundError: If the view doesn't exist. ValidationError: If the description is empty. Example: Set a description for a view ```python # Set a description for a view 'v1' session.catalog.set_view_description('v1', 'My view description') Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name", "description"] Returns: None Parent Class: Catalog
method
does_view_exist
fenic.api.catalog.Catalog.does_view_exist
Checks if a view with the specified name exists. Args: view_name (str): Fully qualified or relative view name to check. Returns: bool: True if the view exists, False otherwise. Example: >>> session.catalog.does_view_exist('my_view') True.
site-packages/fenic/api/catalog.py
true
false
610
624
null
bool
[ "self", "view_name" ]
Catalog
null
null
Type: method Member Name: does_view_exist Qualified Name: fenic.api.catalog.Catalog.does_view_exist Docstring: Checks if a view with the specified name exists. Args: view_name (str): Fully qualified or relative view name to check. Returns: bool: True if the view exists, False otherwise. Example: >>> session.catalog.does_view_exist('my_view') True. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name"] Returns: bool Parent Class: Catalog
method
drop_view
fenic.api.catalog.Catalog.drop_view
Drops the specified view. By default this method will return False if the view doesn't exist. Args: view_name (str): Fully qualified or relative view name to drop. ignore_if_not_exists (bool, optional): If True, return False when the view doesn't exist. If False, raise an error when the view doesn't exist. Defaults to True. Returns: bool: True if the view was dropped successfully, False if the view didn't exist and ignore_if_not_exist is True. Raises: TableNotFoundError: If the view doesn't exist and ignore_if_not_exists is False Example: >>> # For an existing view 'v1' >>> session.catalog.drop_table('v1') True >>> # For a non-existent table 'v2' >>> session.catalog.drop_table('v2', ignore_if_not_exists=True) False >>> session.catalog.drop_table('v2', ignore_if_not_exists=False) # Raises TableNotFoundError.
site-packages/fenic/api/catalog.py
true
false
626
654
null
bool
[ "self", "view_name", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: drop_view Qualified Name: fenic.api.catalog.Catalog.drop_view Docstring: Drops the specified view. By default this method will return False if the view doesn't exist. Args: view_name (str): Fully qualified or relative view name to drop. ignore_if_not_exists (bool, optional): If True, return False when the view doesn't exist. If False, raise an error when the view doesn't exist. Defaults to True. Returns: bool: True if the view was dropped successfully, False if the view didn't exist and ignore_if_not_exist is True. Raises: TableNotFoundError: If the view doesn't exist and ignore_if_not_exists is False Example: >>> # For an existing view 'v1' >>> session.catalog.drop_table('v1') True >>> # For a non-existent table 'v2' >>> session.catalog.drop_table('v2', ignore_if_not_exists=True) False >>> session.catalog.drop_table('v2', ignore_if_not_exists=False) # Raises TableNotFoundError. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "view_name", "ignore_if_not_exists"] Returns: bool Parent Class: Catalog
method
get_tool
fenic.api.catalog.Catalog.get_tool
Returns the tool with the specified name from the current catalog. Args: tool_name (str): The name of the tool to get. ignore_if_not_exists (bool): If True, return None when the tool doesn't exist. If False, raise an error when the tool doesn't exist. Defaults to True. Raises: ToolNotFoundError: If the tool doesn't exist and ignore_if_not_exists is False Returns: Tool: The tool with the specified name.
site-packages/fenic/api/catalog.py
true
false
656
672
null
ParameterizedToolDefinition
[ "self", "tool_name", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: get_tool Qualified Name: fenic.api.catalog.Catalog.get_tool Docstring: Returns the tool with the specified name from the current catalog. Args: tool_name (str): The name of the tool to get. ignore_if_not_exists (bool): If True, return None when the tool doesn't exist. If False, raise an error when the tool doesn't exist. Defaults to True. Raises: ToolNotFoundError: If the tool doesn't exist and ignore_if_not_exists is False Returns: Tool: The tool with the specified name. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "tool_name", "ignore_if_not_exists"] Returns: ParameterizedToolDefinition Parent Class: Catalog
method
create_tool
fenic.api.catalog.Catalog.create_tool
Creates a new tool in the current catalog. Args: tool_name (str): The name of the tool. tool_description (str): The description of the tool. tool_query (DataFrame): The query to execute when the tool is called. tool_params (Sequence[ToolParam]): The parameters of the tool. result_limit (int): The maximum number of rows to return from the tool. ignore_if_exists (bool): If True, return False when the tool already exists. If False, raise an error when the tool already exists. Defaults to True. Returns: bool: True if the tool was created successfully, False otherwise. Raises: ToolAlreadyExistsError: If the tool already exists. Examples: ```python # Create a new tool with a single parameter df = session.create_dataframe(...) session.catalog.create_tool( tool_name="my_tool", tool_description="A tool that does something", tool_query=df, result_limit=100, tool_params=[ToolParam(name="param1", description="A parameter", allowed_values=["value1", "value2"])], ) # Returns: True ```
site-packages/fenic/api/catalog.py
true
false
674
724
null
bool
[ "self", "tool_name", "tool_description", "tool_query", "tool_params", "result_limit", "ignore_if_exists" ]
Catalog
null
null
Type: method Member Name: create_tool Qualified Name: fenic.api.catalog.Catalog.create_tool Docstring: Creates a new tool in the current catalog. Args: tool_name (str): The name of the tool. tool_description (str): The description of the tool. tool_query (DataFrame): The query to execute when the tool is called. tool_params (Sequence[ToolParam]): The parameters of the tool. result_limit (int): The maximum number of rows to return from the tool. ignore_if_exists (bool): If True, return False when the tool already exists. If False, raise an error when the tool already exists. Defaults to True. Returns: bool: True if the tool was created successfully, False otherwise. Raises: ToolAlreadyExistsError: If the tool already exists. Examples: ```python # Create a new tool with a single parameter df = session.create_dataframe(...) session.catalog.create_tool( tool_name="my_tool", tool_description="A tool that does something", tool_query=df, result_limit=100, tool_params=[ToolParam(name="param1", description="A parameter", allowed_values=["value1", "value2"])], ) # Returns: True ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "tool_name", "tool_description", "tool_query", "tool_params", "result_limit", "ignore_if_exists"] Returns: bool Parent Class: Catalog
method
drop_tool
fenic.api.catalog.Catalog.drop_tool
Drops the specified tool from the current catalog. Args: tool_name (str): The name of the tool to drop. ignore_if_not_exists (bool): If True, return False when the tool doesn't exist. If False, raise an error when the tool doesn't exist. Defaults to True. Returns: bool: True if the tool was dropped successfully, False if the tool didn't exist and ignore_if_not_exists is True. Raises: ToolNotFoundError: If the tool doesn't exist and ignore_if_not_exists is False Example: >>> session.catalog.drop_tool('my_tool') True >>> session.catalog.drop_tool('my_tool', ignore_if_not_exists=True) False >>> session.catalog.drop_tool('my_tool', ignore_if_not_exists=False) # Raises ToolNotFoundError.
site-packages/fenic/api/catalog.py
true
false
726
751
null
bool
[ "self", "tool_name", "ignore_if_not_exists" ]
Catalog
null
null
Type: method Member Name: drop_tool Qualified Name: fenic.api.catalog.Catalog.drop_tool Docstring: Drops the specified tool from the current catalog. Args: tool_name (str): The name of the tool to drop. ignore_if_not_exists (bool): If True, return False when the tool doesn't exist. If False, raise an error when the tool doesn't exist. Defaults to True. Returns: bool: True if the tool was dropped successfully, False if the tool didn't exist and ignore_if_not_exists is True. Raises: ToolNotFoundError: If the tool doesn't exist and ignore_if_not_exists is False Example: >>> session.catalog.drop_tool('my_tool') True >>> session.catalog.drop_tool('my_tool', ignore_if_not_exists=True) False >>> session.catalog.drop_tool('my_tool', ignore_if_not_exists=False) # Raises ToolNotFoundError. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "tool_name", "ignore_if_not_exists"] Returns: bool Parent Class: Catalog
method
list_tools
fenic.api.catalog.Catalog.list_tools
Lists the tools available in the current catalog.
site-packages/fenic/api/catalog.py
true
false
753
755
null
List[ParameterizedToolDefinition]
[ "self" ]
Catalog
null
null
Type: method Member Name: list_tools Qualified Name: fenic.api.catalog.Catalog.list_tools Docstring: Lists the tools available in the current catalog. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[ParameterizedToolDefinition] Parent Class: Catalog
module
window
fenic.api.window
Window functions for DataFrame operations.
site-packages/fenic/api/window.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: window Qualified Name: fenic.api.window Docstring: Window functions for DataFrame operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
WindowFrameBoundary
fenic.api.window.WindowFrameBoundary
Enumeration of special boundary types for window frames. These define the limits of a window frame relative to the current row.
site-packages/fenic/api/window.py
true
false
13
20
null
null
null
null
null
[ "Enum" ]
Type: class Member Name: WindowFrameBoundary Qualified Name: fenic.api.window.WindowFrameBoundary Docstring: Enumeration of special boundary types for window frames. These define the limits of a window frame relative to the current row. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
FrameBound
fenic.api.window.FrameBound
Type alias for window frame boundaries. Can be either: - An integer offset (positive for following rows, negative for preceding rows) - A WindowFrameBoundary enum value for special boundaries
site-packages/fenic/api/window.py
true
false
23
23
null
null
null
null
Union[int, WindowFrameBoundary]
null
Type: attribute Member Name: FrameBound Qualified Name: fenic.api.window.FrameBound Docstring: Type alias for window frame boundaries. Can be either: - An integer offset (positive for following rows, negative for preceding rows) - A WindowFrameBoundary enum value for special boundaries Value: Union[int, WindowFrameBoundary] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
Window
fenic.api.window.Window
Represents the specification for a window in window functions. Including partitioning, ordering, and frame boundaries.
site-packages/fenic/api/window.py
true
false
32
119
null
null
null
null
null
[]
Type: class Member Name: Window Qualified Name: fenic.api.window.Window Docstring: Represents the specification for a window in window functions. Including partitioning, ordering, and frame boundaries. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.window.Window.__init__
Creates a new Window.
site-packages/fenic/api/window.py
true
false
38
42
null
null
[ "self" ]
Window
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.window.Window.__init__ Docstring: Creates a new Window. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: Window
method
partition_by
fenic.api.window.Window.partition_by
Returns this Window with the given partitioning columns. Args: *cols: Column names or Column expressions to partition by. Returns: This Window with updated partitioning (for chaining).
site-packages/fenic/api/window.py
true
false
44
54
null
Window
[ "self", "cols" ]
Window
null
null
Type: method Member Name: partition_by Qualified Name: fenic.api.window.Window.partition_by Docstring: Returns this Window with the given partitioning columns. Args: *cols: Column names or Column expressions to partition by. Returns: This Window with updated partitioning (for chaining). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols"] Returns: Window Parent Class: Window
method
order_by
fenic.api.window.Window.order_by
Returns this Window with the given ordering columns. Args: *cols: Column names or Column expressions to order by. Returns: This Window with updated ordering (for chaining).
site-packages/fenic/api/window.py
true
false
56
66
null
Window
[ "self", "cols" ]
Window
null
null
Type: method Member Name: order_by Qualified Name: fenic.api.window.Window.order_by Docstring: Returns this Window with the given ordering columns. Args: *cols: Column names or Column expressions to order by. Returns: This Window with updated ordering (for chaining). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "cols"] Returns: Window Parent Class: Window
method
rows_between
fenic.api.window.Window.rows_between
Specifies a row-based frame between start (inclusive) and end (exclusive) rows. Args: start: Start offset (can be negative). end: End offset. Returns: This Window with row frame boundaries (for chaining).
site-packages/fenic/api/window.py
true
false
68
79
null
Window
[ "self", "start", "end" ]
Window
null
null
Type: method Member Name: rows_between Qualified Name: fenic.api.window.Window.rows_between Docstring: Specifies a row-based frame between start (inclusive) and end (exclusive) rows. Args: start: Start offset (can be negative). end: End offset. Returns: This Window with row frame boundaries (for chaining). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "start", "end"] Returns: Window Parent Class: Window
method
range_between
fenic.api.window.Window.range_between
Specifies a range-based frame between start (inclusive) and end (exclusive) values. Args: start: Start value. end: End value. Returns: This Window with range frame boundaries (for chaining).
site-packages/fenic/api/window.py
true
false
81
92
null
Window
[ "self", "start", "end" ]
Window
null
null
Type: method Member Name: range_between Qualified Name: fenic.api.window.Window.range_between Docstring: Specifies a range-based frame between start (inclusive) and end (exclusive) values. Args: start: Start value. end: End value. Returns: This Window with range frame boundaries (for chaining). Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "start", "end"] Returns: Window Parent Class: Window
method
_finalize
fenic.api.window.Window._finalize
Internal: Finalizes the window by assigning a default frame if none is set. This is meant to be called during logical plan construction.
site-packages/fenic/api/window.py
false
true
94
113
null
None
[ "self" ]
Window
null
null
Type: method Member Name: _finalize Qualified Name: fenic.api.window.Window._finalize Docstring: Internal: Finalizes the window by assigning a default frame if none is set. This is meant to be called during logical plan construction. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self"] Returns: None Parent Class: Window
class
_WindowFrame
fenic.api.window._WindowFrame
null
site-packages/fenic/api/window.py
false
true
122
147
null
null
null
null
null
[]
Type: class Member Name: _WindowFrame Qualified Name: fenic.api.window._WindowFrame Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__post_init__
fenic.api.window._WindowFrame.__post_init__
null
site-packages/fenic/api/window.py
true
false
128
147
null
null
[ "self" ]
_WindowFrame
null
null
Type: method Member Name: __post_init__ Qualified Name: fenic.api.window._WindowFrame.__post_init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: _WindowFrame
method
__init__
fenic.api.window._WindowFrame.__init__
null
site-packages/fenic/api/window.py
true
false
0
0
null
None
[ "self", "start", "end", "frame_type" ]
_WindowFrame
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.window._WindowFrame.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "start", "end", "frame_type"] Returns: None Parent Class: _WindowFrame
module
lineage
fenic.api.lineage
Query interface for tracing data lineage through a query plan.
site-packages/fenic/api/lineage.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: lineage Qualified Name: fenic.api.lineage Docstring: Query interface for tracing data lineage through a query plan. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
Lineage
fenic.api.lineage.Lineage
Query interface for tracing data lineage through a query plan. This class allows you to navigate through the query plan both forwards and backwards, tracing how specific rows are transformed through each operation. Example: ```python # Create a lineage query starting from the root query = LineageQuery(lineage, session.execution) # Or start from a specific source query.start_from_source("my_table") # Trace rows backwards through a transformation result = query.backward(["uuid1", "uuid2"]) # Trace rows forward to see their outputs result = query.forward(["uuid3", "uuid4"]) ```
site-packages/fenic/api/lineage.py
true
false
12
157
null
null
null
null
null
[]
Type: class Member Name: Lineage Qualified Name: fenic.api.lineage.Lineage Docstring: Query interface for tracing data lineage through a query plan. This class allows you to navigate through the query plan both forwards and backwards, tracing how specific rows are transformed through each operation. Example: ```python # Create a lineage query starting from the root query = LineageQuery(lineage, session.execution) # Or start from a specific source query.start_from_source("my_table") # Trace rows backwards through a transformation result = query.backward(["uuid1", "uuid2"]) # Trace rows forward to see their outputs result = query.forward(["uuid3", "uuid4"]) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.api.lineage.Lineage.__init__
Initialize a Lineage instance. Args: lineage: The underlying lineage implementation.
site-packages/fenic/api/lineage.py
true
false
34
40
null
null
[ "self", "lineage" ]
Lineage
null
null
Type: method Member Name: __init__ Qualified Name: fenic.api.lineage.Lineage.__init__ Docstring: Initialize a Lineage instance. Args: lineage: The underlying lineage implementation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "lineage"] Returns: none Parent Class: Lineage
method
get_source_names
fenic.api.lineage.Lineage.get_source_names
Get the names of all sources in the query plan. Used to determine where to start the lineage traversal.
site-packages/fenic/api/lineage.py
true
false
42
45
null
List[str]
[ "self" ]
Lineage
null
null
Type: method Member Name: get_source_names Qualified Name: fenic.api.lineage.Lineage.get_source_names Docstring: Get the names of all sources in the query plan. Used to determine where to start the lineage traversal. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: List[str] Parent Class: Lineage
method
show
fenic.api.lineage.Lineage.show
Print the operator tree of the query.
site-packages/fenic/api/lineage.py
true
false
47
49
null
None
[ "self" ]
Lineage
null
null
Type: method Member Name: show Qualified Name: fenic.api.lineage.Lineage.show Docstring: Print the operator tree of the query. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: None Parent Class: Lineage
method
start_from_source
fenic.api.lineage.Lineage.start_from_source
Set the current position to a specific source in the query plan. Args: source_name: Name of the source table to start from Example: ```python query.start_from_source("customers") # Now you can trace forward from the customers table ```
site-packages/fenic/api/lineage.py
true
false
51
64
null
None
[ "self", "source_name" ]
Lineage
null
null
Type: method Member Name: start_from_source Qualified Name: fenic.api.lineage.Lineage.start_from_source Docstring: Set the current position to a specific source in the query plan. Args: source_name: Name of the source table to start from Example: ```python query.start_from_source("customers") # Now you can trace forward from the customers table ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "source_name"] Returns: None Parent Class: Lineage
method
forwards
fenic.api.lineage.Lineage.forwards
Trace rows forward to see how they are transformed by the next operation. Args: row_ids: List of UUIDs identifying the rows to trace Returns: DataFrame containing the transformed rows in the next operation Raises: ValueError: If at root node or if row_ids format is invalid Example: ```python # Trace how specific customer rows are transformed transformed = query.forward(["customer_uuid1", "customer_uuid2"]) ```
site-packages/fenic/api/lineage.py
true
false
66
85
null
pl.DataFrame
[ "self", "row_ids" ]
Lineage
null
null
Type: method Member Name: forwards Qualified Name: fenic.api.lineage.Lineage.forwards Docstring: Trace rows forward to see how they are transformed by the next operation. Args: row_ids: List of UUIDs identifying the rows to trace Returns: DataFrame containing the transformed rows in the next operation Raises: ValueError: If at root node or if row_ids format is invalid Example: ```python # Trace how specific customer rows are transformed transformed = query.forward(["customer_uuid1", "customer_uuid2"]) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "row_ids"] Returns: pl.DataFrame Parent Class: Lineage
method
backwards
fenic.api.lineage.Lineage.backwards
Trace rows backwards to see which input rows produced them. Args: ids: List of UUIDs identifying the rows to trace back branch_side: For operators with multiple inputs (like joins), specify which input to trace ("left" or "right"). Not needed for single-input operations. Returns: DataFrame containing the source rows that produced the specified outputs Raises: ValueError: If invalid ids format or incorrect branch_side specification Example: ```python # Simple backward trace source_rows = query.backward(["result_uuid1"]) # Trace back through a join left_rows = query.backward(["join_uuid1"], branch_side="left") right_rows = query.backward(["join_uuid1"], branch_side="right") ```
site-packages/fenic/api/lineage.py
true
false
87
114
null
pl.DataFrame
[ "self", "ids", "branch_side" ]
Lineage
null
null
Type: method Member Name: backwards Qualified Name: fenic.api.lineage.Lineage.backwards Docstring: Trace rows backwards to see which input rows produced them. Args: ids: List of UUIDs identifying the rows to trace back branch_side: For operators with multiple inputs (like joins), specify which input to trace ("left" or "right"). Not needed for single-input operations. Returns: DataFrame containing the source rows that produced the specified outputs Raises: ValueError: If invalid ids format or incorrect branch_side specification Example: ```python # Simple backward trace source_rows = query.backward(["result_uuid1"]) # Trace back through a join left_rows = query.backward(["join_uuid1"], branch_side="left") right_rows = query.backward(["join_uuid1"], branch_side="right") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "ids", "branch_side"] Returns: pl.DataFrame Parent Class: Lineage
method
skip_forwards
fenic.api.lineage.Lineage.skip_forwards
[Not Implemented] Trace rows forward through multiple operations at once. This method will allow efficient tracing through multiple operations without intermediate results. Args: row_ids: List of UUIDs identifying the rows to trace Returns: DataFrame containing the final transformed rows Raises: NotImplementedError: This method is not yet implemented
site-packages/fenic/api/lineage.py
true
false
116
131
null
pl.DataFrame
[ "self", "row_ids" ]
Lineage
null
null
Type: method Member Name: skip_forwards Qualified Name: fenic.api.lineage.Lineage.skip_forwards Docstring: [Not Implemented] Trace rows forward through multiple operations at once. This method will allow efficient tracing through multiple operations without intermediate results. Args: row_ids: List of UUIDs identifying the rows to trace Returns: DataFrame containing the final transformed rows Raises: NotImplementedError: This method is not yet implemented Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "row_ids"] Returns: pl.DataFrame Parent Class: Lineage
method
skip_backwards
fenic.api.lineage.Lineage.skip_backwards
[Not Implemented] Trace rows backwards through multiple operations at once. This method will allow efficient tracing through multiple operations without intermediate results. Args: ids: List of UUIDs identifying the rows to trace back Returns: Dictionary mapping operation names to their source DataFrames Raises: NotImplementedError: This method is not yet implemented
site-packages/fenic/api/lineage.py
true
false
133
148
null
Dict[str, pl.DataFrame]
[ "self", "ids" ]
Lineage
null
null
Type: method Member Name: skip_backwards Qualified Name: fenic.api.lineage.Lineage.skip_backwards Docstring: [Not Implemented] Trace rows backwards through multiple operations at once. This method will allow efficient tracing through multiple operations without intermediate results. Args: ids: List of UUIDs identifying the rows to trace back Returns: Dictionary mapping operation names to their source DataFrames Raises: NotImplementedError: This method is not yet implemented Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "ids"] Returns: Dict[str, pl.DataFrame] Parent Class: Lineage
method
get_result_df
fenic.api.lineage.Lineage.get_result_df
Get the result of the query as a Polars DataFrame.
site-packages/fenic/api/lineage.py
true
false
150
152
null
pl.DataFrame
[ "self" ]
Lineage
null
null
Type: method Member Name: get_result_df Qualified Name: fenic.api.lineage.Lineage.get_result_df Docstring: Get the result of the query as a Polars DataFrame. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: pl.DataFrame Parent Class: Lineage
method
get_source_df
fenic.api.lineage.Lineage.get_source_df
Get a query source by name as a Polars DataFrame.
site-packages/fenic/api/lineage.py
true
false
154
157
null
pl.DataFrame
[ "self", "source_name" ]
Lineage
null
null
Type: method Member Name: get_source_df Qualified Name: fenic.api.lineage.Lineage.get_source_df Docstring: Get a query source by name as a Polars DataFrame. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "source_name"] Returns: pl.DataFrame Parent Class: Lineage
module
column
fenic.api.column
Column API for Fenic DataFrames - represents column expressions and operations.
site-packages/fenic/api/column.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: column Qualified Name: fenic.api.column Docstring: Column API for Fenic DataFrames - represents column expressions and operations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
Column
fenic.api.column.Column
A column expression in a DataFrame. This class represents a column expression that can be used in DataFrame operations. It provides methods for accessing, transforming, and combining column data. Example: Create a column reference ```python # Reference a column by name using col() function col("column_name") ``` Example: Use column in operations ```python # Perform arithmetic operations df.select(col("price") * col("quantity")) ``` Example: Chain column operations ```python # Chain multiple operations df.select(col("name").upper().contains("John")) ```
site-packages/fenic/api/column.py
true
false
50
861
null
null
null
null
null
[]
Type: class Member Name: Column Qualified Name: fenic.api.column.Column Docstring: A column expression in a DataFrame. This class represents a column expression that can be used in DataFrame operations. It provides methods for accessing, transforming, and combining column data. Example: Create a column reference ```python # Reference a column by name using col() function col("column_name") ``` Example: Use column in operations ```python # Perform arithmetic operations df.select(col("price") * col("quantity")) ``` Example: Chain column operations ```python # Chain multiple operations df.select(col("name").upper().contains("John")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__new__
fenic.api.column.Column.__new__
Prevent direct Column construction.
site-packages/fenic/api/column.py
true
false
77
81
null
null
[ "cls" ]
Column
null
null
Type: method Member Name: __new__ Qualified Name: fenic.api.column.Column.__new__ Docstring: Prevent direct Column construction. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["cls"] Returns: none Parent Class: Column
method
get_item
fenic.api.column.Column.get_item
Access an item in a struct or array column. This method allows accessing elements in complex data types: - For array columns, the key should be an integer index or a column expression that evaluates to an integer - For struct columns, the key should be a literal field name Args: key (Union[str, int]): The index (for arrays) or field name (for structs) to access Returns: Column: A Column representing the accessed item Example: Access an array element ```python # Get the first element from an array column df.select(col("array_column").get_item(0)) ``` Example: Access a struct field ```python # Get a field from a struct column df.select(col("struct_column").get_item("field_name")) ```
site-packages/fenic/api/column.py
true
false
83
114
null
Column
[ "self", "key" ]
Column
null
null
Type: method Member Name: get_item Qualified Name: fenic.api.column.Column.get_item Docstring: Access an item in a struct or array column. This method allows accessing elements in complex data types: - For array columns, the key should be an integer index or a column expression that evaluates to an integer - For struct columns, the key should be a literal field name Args: key (Union[str, int]): The index (for arrays) or field name (for structs) to access Returns: Column: A Column representing the accessed item Example: Access an array element ```python # Get the first element from an array column df.select(col("array_column").get_item(0)) ``` Example: Access a struct field ```python # Get a field from a struct column df.select(col("struct_column").get_item("field_name")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "key"] Returns: Column Parent Class: Column
method
__getitem__
fenic.api.column.Column.__getitem__
Access an item in a struct or array column using [] syntax. This method provides a convenient syntax for accessing elements in complex data types: - For array columns: col("array_column")[0] - For struct columns: col("struct_column")["field_name"] Args: key (Union[str, int]): The index (for arrays) or field name (for structs) to access Returns: Column: A Column representing the accessed item Example: Access an array element ```python # Get the first element from an array column using [] syntax df.select(col("array_column")[0]) ``` Example: Access a struct field ```python # Get a field from a struct column using [] syntax df.select(col("struct_column")["field_name"]) ```
site-packages/fenic/api/column.py
true
false
116
146
null
Column
[ "self", "key" ]
Column
null
null
Type: method Member Name: __getitem__ Qualified Name: fenic.api.column.Column.__getitem__ Docstring: Access an item in a struct or array column using [] syntax. This method provides a convenient syntax for accessing elements in complex data types: - For array columns: col("array_column")[0] - For struct columns: col("struct_column")["field_name"] Args: key (Union[str, int]): The index (for arrays) or field name (for structs) to access Returns: Column: A Column representing the accessed item Example: Access an array element ```python # Get the first element from an array column using [] syntax df.select(col("array_column")[0]) ``` Example: Access a struct field ```python # Get a field from a struct column using [] syntax df.select(col("struct_column")["field_name"]) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "key"] Returns: Column Parent Class: Column
method
__getattr__
fenic.api.column.Column.__getattr__
Access an attribute of a struct column. This method allows accessing fields in struct columns using dot notation. Args: name (str): The name of the field to access Returns: Column: A Column representing the accessed field Example: Access a struct field using dot notation ```python # Get a field from a struct column using dot notation df.select(col("struct_column").field_name) ```
site-packages/fenic/api/column.py
true
false
148
169
null
Column
[ "self", "name" ]
Column
null
null
Type: method Member Name: __getattr__ Qualified Name: fenic.api.column.Column.__getattr__ Docstring: Access an attribute of a struct column. This method allows accessing fields in struct columns using dot notation. Args: name (str): The name of the field to access Returns: Column: A Column representing the accessed field Example: Access a struct field using dot notation ```python # Get a field from a struct column using dot notation df.select(col("struct_column").field_name) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "name"] Returns: Column Parent Class: Column
method
alias
fenic.api.column.Column.alias
Create an alias for this column. This method assigns a new name to the column expression, which is useful for renaming columns or providing names for complex expressions. Args: name (str): The alias name to assign Returns: Column: Column with the specified alias Example: Rename a column ```python # Rename a column to a new name df.select(col("original_name").alias("new_name")) ``` Example: Name a complex expression ```python # Give a name to a calculated column df.select((col("price") * col("quantity")).alias("total_value")) ```
site-packages/fenic/api/column.py
true
false
171
195
null
Column
[ "self", "name" ]
Column
null
null
Type: method Member Name: alias Qualified Name: fenic.api.column.Column.alias Docstring: Create an alias for this column. This method assigns a new name to the column expression, which is useful for renaming columns or providing names for complex expressions. Args: name (str): The alias name to assign Returns: Column: Column with the specified alias Example: Rename a column ```python # Rename a column to a new name df.select(col("original_name").alias("new_name")) ``` Example: Name a complex expression ```python # Give a name to a calculated column df.select((col("price") * col("quantity")).alias("total_value")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "name"] Returns: Column Parent Class: Column
method
cast
fenic.api.column.Column.cast
Cast the column to a new data type. This method creates an expression that casts the column to a specified data type. The casting behavior depends on the source and target types: Primitive type casting: - Numeric types (IntegerType, FloatType, DoubleType) can be cast between each other - Numeric types can be cast to/from StringType - BooleanType can be cast to/from numeric types and StringType - StringType cannot be directly cast to BooleanType (will raise TypeError) Complex type casting: - ArrayType can only be cast to another ArrayType (with castable element types) - StructType can only be cast to another StructType (with matching/castable fields) - Primitive types cannot be cast to/from complex types Args: data_type (DataType): The target DataType to cast the column to Returns: Column: A Column representing the casted expression Example: Cast integer to string ```python # Convert an integer column to string type df.select(col("int_col").cast(StringType)) ``` Example: Cast array of integers to array of strings ```python # Convert an array of integers to an array of strings df.select(col("int_array").cast(ArrayType(element_type=StringType))) ``` Example: Cast struct fields to different types ```python # Convert struct fields to different types new_type = StructType([ StructField("id", StringType), StructField("value", FloatType) ]) df.select(col("data_struct").cast(new_type)) ``` Raises: TypeError: If the requested cast operation is not supported
site-packages/fenic/api/column.py
true
false
197
247
null
Column
[ "self", "data_type" ]
Column
null
null
Type: method Member Name: cast Qualified Name: fenic.api.column.Column.cast Docstring: Cast the column to a new data type. This method creates an expression that casts the column to a specified data type. The casting behavior depends on the source and target types: Primitive type casting: - Numeric types (IntegerType, FloatType, DoubleType) can be cast between each other - Numeric types can be cast to/from StringType - BooleanType can be cast to/from numeric types and StringType - StringType cannot be directly cast to BooleanType (will raise TypeError) Complex type casting: - ArrayType can only be cast to another ArrayType (with castable element types) - StructType can only be cast to another StructType (with matching/castable fields) - Primitive types cannot be cast to/from complex types Args: data_type (DataType): The target DataType to cast the column to Returns: Column: A Column representing the casted expression Example: Cast integer to string ```python # Convert an integer column to string type df.select(col("int_col").cast(StringType)) ``` Example: Cast array of integers to array of strings ```python # Convert an array of integers to an array of strings df.select(col("int_array").cast(ArrayType(element_type=StringType))) ``` Example: Cast struct fields to different types ```python # Convert struct fields to different types new_type = StructType([ StructField("id", StringType), StructField("value", FloatType) ]) df.select(col("data_struct").cast(new_type)) ``` Raises: TypeError: If the requested cast operation is not supported Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "data_type"] Returns: Column Parent Class: Column
method
desc
fenic.api.column.Column.desc
Mark this column for descending sort order. Returns: Column: A sort expression with descending order. Example: Sort by age in descending order ```python # Sort a dataframe by age in descending order df.sort(col("age").desc()).show() ```
site-packages/fenic/api/column.py
true
false
249
263
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: desc Qualified Name: fenic.api.column.Column.desc Docstring: Mark this column for descending sort order. Returns: Column: A sort expression with descending order. Example: Sort by age in descending order ```python # Sort a dataframe by age in descending order df.sort(col("age").desc()).show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
desc_nulls_first
fenic.api.column.Column.desc_nulls_first
Alias for desc(). Returns: Column: A sort expression with descending order and nulls first. Example: Sort by age in descending order with nulls first ```python df.sort(col("age").desc_nulls_first()).show() ```
site-packages/fenic/api/column.py
true
false
265
276
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: desc_nulls_first Qualified Name: fenic.api.column.Column.desc_nulls_first Docstring: Alias for desc(). Returns: Column: A sort expression with descending order and nulls first. Example: Sort by age in descending order with nulls first ```python df.sort(col("age").desc_nulls_first()).show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
desc_nulls_last
fenic.api.column.Column.desc_nulls_last
Mark this column for descending sort order with nulls last. Returns: Column: A sort expression with descending order and nulls last. Example: Sort by age in descending order with nulls last ```python # Sort a dataframe by age in descending order, with nulls appearing last df.sort(col("age").desc_nulls_last()).show() ```
site-packages/fenic/api/column.py
true
false
278
292
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: desc_nulls_last Qualified Name: fenic.api.column.Column.desc_nulls_last Docstring: Mark this column for descending sort order with nulls last. Returns: Column: A sort expression with descending order and nulls last. Example: Sort by age in descending order with nulls last ```python # Sort a dataframe by age in descending order, with nulls appearing last df.sort(col("age").desc_nulls_last()).show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
asc
fenic.api.column.Column.asc
Mark this column for ascending sort order. Returns: Column: A sort expression with ascending order and nulls first. Example: Sort by age in ascending order ```python # Sort a dataframe by age in ascending order df.sort(col("age").asc()).show() ```
site-packages/fenic/api/column.py
true
false
294
306
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: asc Qualified Name: fenic.api.column.Column.asc Docstring: Mark this column for ascending sort order. Returns: Column: A sort expression with ascending order and nulls first. Example: Sort by age in ascending order ```python # Sort a dataframe by age in ascending order df.sort(col("age").asc()).show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
asc_nulls_first
fenic.api.column.Column.asc_nulls_first
Alias for asc(). Returns: Column: A Column expression that provides a column and sort order to the sort function
site-packages/fenic/api/column.py
true
false
308
314
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: asc_nulls_first Qualified Name: fenic.api.column.Column.asc_nulls_first Docstring: Alias for asc(). Returns: Column: A Column expression that provides a column and sort order to the sort function Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
asc_nulls_last
fenic.api.column.Column.asc_nulls_last
Mark this column for ascending sort order with nulls last. Returns: Column: A sort expression with ascending order and nulls last. Example: Sort by age in ascending order with nulls last ```python # Sort a dataframe by age in ascending order, with nulls appearing last df.sort(col("age").asc_nulls_last()).show() ```
site-packages/fenic/api/column.py
true
false
316
330
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: asc_nulls_last Qualified Name: fenic.api.column.Column.asc_nulls_last Docstring: Mark this column for ascending sort order with nulls last. Returns: Column: A sort expression with ascending order and nulls last. Example: Sort by age in ascending order with nulls last ```python # Sort a dataframe by age in ascending order, with nulls appearing last df.sort(col("age").asc_nulls_last()).show() ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
contains
fenic.api.column.Column.contains
Check if the column contains a substring. This method creates a boolean expression that checks if each value in the column contains the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to search for (can be a string or column expression) Returns: Column: A boolean column indicating whether each value contains the substring Example: Find rows where name contains "john" ```python # Filter rows where the name column contains "john" df.filter(col("name").contains("john")) ``` Example: Find rows where text contains a dynamic pattern ```python # Filter rows where text contains a value from another column df.filter(col("text").contains(col("pattern"))) ```
site-packages/fenic/api/column.py
true
false
332
361
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: contains Qualified Name: fenic.api.column.Column.contains Docstring: Check if the column contains a substring. This method creates a boolean expression that checks if each value in the column contains the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to search for (can be a string or column expression) Returns: Column: A boolean column indicating whether each value contains the substring Example: Find rows where name contains "john" ```python # Filter rows where the name column contains "john" df.filter(col("name").contains("john")) ``` Example: Find rows where text contains a dynamic pattern ```python # Filter rows where text contains a value from another column df.filter(col("text").contains(col("pattern"))) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
contains_any
fenic.api.column.Column.contains_any
Check if the column contains any of the specified substrings. This method creates a boolean expression that checks if each value in the column contains any of the specified substrings. The matching can be case-sensitive or case-insensitive. Args: others (List[str]): List of substrings to search for case_insensitive (bool): Whether to perform case-insensitive matching (default: True) Returns: Column: A boolean column indicating whether each value contains any substring Example: Find rows where name contains "john" or "jane" (case-insensitive) ```python # Filter rows where name contains either "john" or "jane" df.filter(col("name").contains_any(["john", "jane"])) ``` Example: Case-sensitive matching ```python # Filter rows with case-sensitive matching df.filter(col("name").contains_any(["John", "Jane"], case_insensitive=False)) ```
site-packages/fenic/api/column.py
true
false
363
391
null
Column
[ "self", "others", "case_insensitive" ]
Column
null
null
Type: method Member Name: contains_any Qualified Name: fenic.api.column.Column.contains_any Docstring: Check if the column contains any of the specified substrings. This method creates a boolean expression that checks if each value in the column contains any of the specified substrings. The matching can be case-sensitive or case-insensitive. Args: others (List[str]): List of substrings to search for case_insensitive (bool): Whether to perform case-insensitive matching (default: True) Returns: Column: A boolean column indicating whether each value contains any substring Example: Find rows where name contains "john" or "jane" (case-insensitive) ```python # Filter rows where name contains either "john" or "jane" df.filter(col("name").contains_any(["john", "jane"])) ``` Example: Case-sensitive matching ```python # Filter rows with case-sensitive matching df.filter(col("name").contains_any(["John", "Jane"], case_insensitive=False)) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "others", "case_insensitive"] Returns: Column Parent Class: Column
method
starts_with
fenic.api.column.Column.starts_with
Check if the column starts with a substring. This method creates a boolean expression that checks if each value in the column starts with the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to check for at the start (can be a string or column expression) Returns: Column: A boolean column indicating whether each value starts with the substring Example: Find rows where name starts with "Mr" ```python # Filter rows where name starts with "Mr" df.filter(col("name").starts_with("Mr")) ``` Example: Find rows where text starts with a dynamic pattern ```python # Filter rows where text starts with a value from another column df.filter(col("text").starts_with(col("prefix"))) ``` Raises: ValueError: If the substring starts with a regular expression anchor (^)
site-packages/fenic/api/column.py
true
false
393
427
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: starts_with Qualified Name: fenic.api.column.Column.starts_with Docstring: Check if the column starts with a substring. This method creates a boolean expression that checks if each value in the column starts with the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to check for at the start (can be a string or column expression) Returns: Column: A boolean column indicating whether each value starts with the substring Example: Find rows where name starts with "Mr" ```python # Filter rows where name starts with "Mr" df.filter(col("name").starts_with("Mr")) ``` Example: Find rows where text starts with a dynamic pattern ```python # Filter rows where text starts with a value from another column df.filter(col("text").starts_with(col("prefix"))) ``` Raises: ValueError: If the substring starts with a regular expression anchor (^) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
ends_with
fenic.api.column.Column.ends_with
Check if the column ends with a substring. This method creates a boolean expression that checks if each value in the column ends with the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to check for at the end (can be a string or column expression) Returns: Column: A boolean column indicating whether each value ends with the substring Example: Find rows where email ends with "@gmail.com" ```python df.filter(col("email").ends_with("@gmail.com")) ``` Example: Find rows where text ends with a dynamic pattern ```python df.filter(col("text").ends_with(col("suffix"))) ``` Raises: ValueError: If the substring ends with a regular expression anchor ($)
site-packages/fenic/api/column.py
true
false
429
461
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: ends_with Qualified Name: fenic.api.column.Column.ends_with Docstring: Check if the column ends with a substring. This method creates a boolean expression that checks if each value in the column ends with the specified substring. The substring can be either a literal string or a column expression. Args: other (Union[str, Column]): The substring to check for at the end (can be a string or column expression) Returns: Column: A boolean column indicating whether each value ends with the substring Example: Find rows where email ends with "@gmail.com" ```python df.filter(col("email").ends_with("@gmail.com")) ``` Example: Find rows where text ends with a dynamic pattern ```python df.filter(col("text").ends_with(col("suffix"))) ``` Raises: ValueError: If the substring ends with a regular expression anchor ($) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
rlike
fenic.api.column.Column.rlike
Check if the column matches a regular expression pattern. This method creates a boolean expression that checks if each value in the column matches the specified regular expression pattern. Args: other (Union[str, Column]): The regular expression pattern to match against. Can be a string or a a column expression that resolves to a string. Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where phone number matches pattern ```python # Filter rows where phone number matches a specific pattern df.filter(col("phone").rlike(r"^\d{3}-\d{3}-\d{4}$")) ``` Example: Find rows where text contains word boundaries ```python # Filter rows where text contains a word with boundaries df.filter(col("text").rlike(r"\bhello\b")) ```
site-packages/fenic/api/column.py
true
false
463
492
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: rlike Qualified Name: fenic.api.column.Column.rlike Docstring: Check if the column matches a regular expression pattern. This method creates a boolean expression that checks if each value in the column matches the specified regular expression pattern. Args: other (Union[str, Column]): The regular expression pattern to match against. Can be a string or a a column expression that resolves to a string. Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where phone number matches pattern ```python # Filter rows where phone number matches a specific pattern df.filter(col("phone").rlike(r"^\d{3}-\d{3}-\d{4}$")) ``` Example: Find rows where text contains word boundaries ```python # Filter rows where text contains a word with boundaries df.filter(col("text").rlike(r"\bhello\b")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
like
fenic.api.column.Column.like
Check if the column matches a SQL LIKE pattern. This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern. The pattern can be a string or a a column expression that resolves to a string. SQL LIKE pattern syntax: - % matches any sequence of characters - _ matches any single character Args: other (str): The SQL LIKE pattern to match against Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where name starts with "J" and ends with "n" ```python # Filter rows where name matches the pattern "J%n" df.filter(col("name").like("J%n")) ``` Example: Find rows where code matches specific pattern ```python # Filter rows where code matches the pattern "A_B%" df.filter(col("code").like("A_B%")) ```
site-packages/fenic/api/column.py
true
false
494
528
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: like Qualified Name: fenic.api.column.Column.like Docstring: Check if the column matches a SQL LIKE pattern. This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern. The pattern can be a string or a a column expression that resolves to a string. SQL LIKE pattern syntax: - % matches any sequence of characters - _ matches any single character Args: other (str): The SQL LIKE pattern to match against Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where name starts with "J" and ends with "n" ```python # Filter rows where name matches the pattern "J%n" df.filter(col("name").like("J%n")) ``` Example: Find rows where code matches specific pattern ```python # Filter rows where code matches the pattern "A_B%" df.filter(col("code").like("A_B%")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
ilike
fenic.api.column.Column.ilike
Check if the column matches a SQL LIKE pattern (case-insensitive). This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern, ignoring case. The pattern can be a string or a a column expression that resolves to a string. SQL LIKE pattern syntax: - % matches any sequence of characters - _ matches any single character Args: other (str): The SQL LIKE pattern to match against Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where name starts with "j" and ends with "n" (case-insensitive) ```python # Filter rows where name matches the pattern "j%n" (case-insensitive) df.filter(col("name").ilike("j%n")) ``` Example: Find rows where code matches pattern (case-insensitive) ```python # Filter rows where code matches the pattern "a_b%" (case-insensitive) df.filter(col("code").ilike("a_b%")) ```
site-packages/fenic/api/column.py
true
false
530
564
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: ilike Qualified Name: fenic.api.column.Column.ilike Docstring: Check if the column matches a SQL LIKE pattern (case-insensitive). This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern, ignoring case. The pattern can be a string or a a column expression that resolves to a string. SQL LIKE pattern syntax: - % matches any sequence of characters - _ matches any single character Args: other (str): The SQL LIKE pattern to match against Returns: Column: A boolean column indicating whether each value matches the pattern Example: Find rows where name starts with "j" and ends with "n" (case-insensitive) ```python # Filter rows where name matches the pattern "j%n" (case-insensitive) df.filter(col("name").ilike("j%n")) ``` Example: Find rows where code matches pattern (case-insensitive) ```python # Filter rows where code matches the pattern "a_b%" (case-insensitive) df.filter(col("code").ilike("a_b%")) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
is_null
fenic.api.column.Column.is_null
Check if the column contains NULL values. This method creates an expression that evaluates to TRUE when the column value is NULL. Returns: Column: A Column representing a boolean expression that is TRUE when this column is NULL Example: Filter rows where a column is NULL ```python # Filter rows where some_column is NULL df.filter(col("some_column").is_null()) ``` Example: Use in a complex condition ```python # Filter rows where col1 is NULL or col2 is greater than 100 df.filter(col("col1").is_null() | (col("col2") > 100)) ```
site-packages/fenic/api/column.py
true
false
566
586
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: is_null Qualified Name: fenic.api.column.Column.is_null Docstring: Check if the column contains NULL values. This method creates an expression that evaluates to TRUE when the column value is NULL. Returns: Column: A Column representing a boolean expression that is TRUE when this column is NULL Example: Filter rows where a column is NULL ```python # Filter rows where some_column is NULL df.filter(col("some_column").is_null()) ``` Example: Use in a complex condition ```python # Filter rows where col1 is NULL or col2 is greater than 100 df.filter(col("col1").is_null() | (col("col2") > 100)) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
is_not_null
fenic.api.column.Column.is_not_null
Check if the column contains non-NULL values. This method creates an expression that evaluates to TRUE when the column value is not NULL. Returns: Column: A Column representing a boolean expression that is TRUE when this column is not NULL Example: Filter rows where a column is not NULL ```python df.filter(col("some_column").is_not_null()) ``` Example: Use in a complex condition ```python df.filter(col("col1").is_not_null() & (col("col2") <= 50)) ```
site-packages/fenic/api/column.py
true
false
588
606
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: is_not_null Qualified Name: fenic.api.column.Column.is_not_null Docstring: Check if the column contains non-NULL values. This method creates an expression that evaluates to TRUE when the column value is not NULL. Returns: Column: A Column representing a boolean expression that is TRUE when this column is not NULL Example: Filter rows where a column is not NULL ```python df.filter(col("some_column").is_not_null()) ``` Example: Use in a complex condition ```python df.filter(col("col1").is_not_null() & (col("col2") <= 50)) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
when
fenic.api.column.Column.when
Evaluates a list of conditions and returns one of multiple possible result expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs. Args: condition (Column): A boolean Column expression value (Column): A literal value or Column expression to return if the condition is true Returns: Column: A Column expression representing whether each element of Column matches the condition Raises: TypeError: If the condition is not a boolean Column expression Example: Use when/otherwise for conditional logic ```python # Create a DataFrame with age and name columns df = session.createDataFrame( {"age": [2, 5]}, {"name": ["Alice", "Bob"]} ) # Use when/otherwise to create a case result column df.select( col("name"), when(col("age") > 3, 1).otherwise(0).alias("case_result") ).show() # Output: # +-----+-----------+ # | name|case_result| # +-----+-----------+ # |Alice| 0| # | Bob| 1| # +-----+-----------+ ```
site-packages/fenic/api/column.py
true
false
608
645
null
Column
[ "self", "condition", "value" ]
Column
null
null
Type: method Member Name: when Qualified Name: fenic.api.column.Column.when Docstring: Evaluates a list of conditions and returns one of multiple possible result expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs. Args: condition (Column): A boolean Column expression value (Column): A literal value or Column expression to return if the condition is true Returns: Column: A Column expression representing whether each element of Column matches the condition Raises: TypeError: If the condition is not a boolean Column expression Example: Use when/otherwise for conditional logic ```python # Create a DataFrame with age and name columns df = session.createDataFrame( {"age": [2, 5]}, {"name": ["Alice", "Bob"]} ) # Use when/otherwise to create a case result column df.select( col("name"), when(col("age") > 3, 1).otherwise(0).alias("case_result") ).show() # Output: # +-----+-----------+ # | name|case_result| # +-----+-----------+ # |Alice| 0| # | Bob| 1| # +-----+-----------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "condition", "value"] Returns: Column Parent Class: Column
method
otherwise
fenic.api.column.Column.otherwise
Evaluates a list of conditions and returns one of multiple possible result expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs. Args: value (Column): A literal value or Column expression to return Returns: Column: A Column expression representing whether each element of Column is not matched by any previous conditions Example: Use when/otherwise for conditional logic ```python # Create a DataFrame with age and name columns df = session.createDataFrame( {"age": [2, 5]}, {"name": ["Alice", "Bob"]} ) # Use when/otherwise to create a case result column df.select( col("name"), when(col("age") > 3, 1).otherwise(0).alias("case_result") ).show() # Output: # +-----+-----------+ # | name|case_result| # +-----+-----------+ # |Alice| 0| # | Bob| 1| # +-----+-----------+ ```
site-packages/fenic/api/column.py
true
false
647
680
null
Column
[ "self", "value" ]
Column
null
null
Type: method Member Name: otherwise Qualified Name: fenic.api.column.Column.otherwise Docstring: Evaluates a list of conditions and returns one of multiple possible result expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs. Args: value (Column): A literal value or Column expression to return Returns: Column: A Column expression representing whether each element of Column is not matched by any previous conditions Example: Use when/otherwise for conditional logic ```python # Create a DataFrame with age and name columns df = session.createDataFrame( {"age": [2, 5]}, {"name": ["Alice", "Bob"]} ) # Use when/otherwise to create a case result column df.select( col("name"), when(col("age") > 3, 1).otherwise(0).alias("case_result") ).show() # Output: # +-----+-----------+ # | name|case_result| # +-----+-----------+ # |Alice| 0| # | Bob| 1| # +-----+-----------+ ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "value"] Returns: Column Parent Class: Column
method
is_in
fenic.api.column.Column.is_in
Check if the column is in a list of values or a column expression. Args: other (Union[List[Any], ColumnOrName]): A list of values or a Column expression Returns: Column: A Column expression representing whether each element of Column is in the list Example: Check if name is in a list of values ```python # Filter rows where name is in a list of values df.filter(col("name").is_in(["Alice", "Bob"])) ``` Example: Check if value is in another column ```python # Filter rows where name is in another column df.filter(col("name").is_in(col("other_column"))) ```
site-packages/fenic/api/column.py
true
false
682
710
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: is_in Qualified Name: fenic.api.column.Column.is_in Docstring: Check if the column is in a list of values or a column expression. Args: other (Union[List[Any], ColumnOrName]): A list of values or a Column expression Returns: Column: A Column expression representing whether each element of Column is in the list Example: Check if name is in a list of values ```python # Filter rows where name is in a list of values df.filter(col("name").is_in(["Alice", "Bob"])) ``` Example: Check if value is in another column ```python # Filter rows where name is in another column df.filter(col("name").is_in(col("other_column"))) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
_from_logical_expr
fenic.api.column.Column._from_logical_expr
Create a Column from a LogicalExpr. Enforces that SortExpr and AggregateExpr do not appear nested inside the expression by checking immediate children, ensuring these expressions only appear at the root of the tree.
site-packages/fenic/api/column.py
false
true
712
742
null
Column
[ "cls", "logical_expr" ]
Column
null
null
Type: method Member Name: _from_logical_expr Qualified Name: fenic.api.column.Column._from_logical_expr Docstring: Create a Column from a LogicalExpr. Enforces that SortExpr and AggregateExpr do not appear nested inside the expression by checking immediate children, ensuring these expressions only appear at the root of the tree. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "logical_expr"] Returns: Column Parent Class: Column
method
_from_column_name
fenic.api.column.Column._from_column_name
null
site-packages/fenic/api/column.py
false
true
744
750
null
null
[ "cls", "col_name" ]
Column
null
null
Type: method Member Name: _from_column_name Qualified Name: fenic.api.column.Column._from_column_name Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "col_name"] Returns: none Parent Class: Column
method
_from_col_or_name
fenic.api.column.Column._from_col_or_name
null
site-packages/fenic/api/column.py
false
true
752
757
null
Column
[ "cls", "col_or_name" ]
Column
null
null
Type: method Member Name: _from_col_or_name Qualified Name: fenic.api.column.Column._from_col_or_name Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["cls", "col_or_name"] Returns: Column Parent Class: Column
method
_create_binary_expr
fenic.api.column.Column._create_binary_expr
null
site-packages/fenic/api/column.py
false
true
759
773
null
Column
[ "self", "other", "op", "expr_class", "reverse" ]
Column
null
null
Type: method Member Name: _create_binary_expr Qualified Name: fenic.api.column.Column._create_binary_expr Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["self", "other", "op", "expr_class", "reverse"] Returns: Column Parent Class: Column
method
__invert__
fenic.api.column.Column.__invert__
Logical NOT operation.
site-packages/fenic/api/column.py
true
false
775
777
null
Column
[ "self" ]
Column
null
null
Type: method Member Name: __invert__ Qualified Name: fenic.api.column.Column.__invert__ Docstring: Logical NOT operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: Column Parent Class: Column
method
__gt__
fenic.api.column.Column.__gt__
Greater than comparison.
site-packages/fenic/api/column.py
true
false
779
781
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __gt__ Qualified Name: fenic.api.column.Column.__gt__ Docstring: Greater than comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__ge__
fenic.api.column.Column.__ge__
Greater than or equal comparison.
site-packages/fenic/api/column.py
true
false
783
785
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __ge__ Qualified Name: fenic.api.column.Column.__ge__ Docstring: Greater than or equal comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__lt__
fenic.api.column.Column.__lt__
Less than comparison.
site-packages/fenic/api/column.py
true
false
787
789
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __lt__ Qualified Name: fenic.api.column.Column.__lt__ Docstring: Less than comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__le__
fenic.api.column.Column.__le__
Less than or equal comparison.
site-packages/fenic/api/column.py
true
false
791
793
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __le__ Qualified Name: fenic.api.column.Column.__le__ Docstring: Less than or equal comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__eq__
fenic.api.column.Column.__eq__
Equality comparison.
site-packages/fenic/api/column.py
true
false
795
797
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.api.column.Column.__eq__ Docstring: Equality comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__ne__
fenic.api.column.Column.__ne__
Not equal comparison.
site-packages/fenic/api/column.py
true
false
799
801
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __ne__ Qualified Name: fenic.api.column.Column.__ne__ Docstring: Not equal comparison. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column
method
__and__
fenic.api.column.Column.__and__
Logical AND operation.
site-packages/fenic/api/column.py
true
false
803
805
null
Column
[ "self", "other" ]
Column
null
null
Type: method Member Name: __and__ Qualified Name: fenic.api.column.Column.__and__ Docstring: Logical AND operation. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: Column Parent Class: Column