type
stringclasses
5 values
name
stringlengths
1
55
qualified_name
stringlengths
5
143
docstring
stringlengths
0
3.59k
filepath
stringclasses
180 values
is_public
bool
2 classes
is_private
bool
2 classes
line_start
float64
0
1.54k
line_end
float64
0
1.56k
annotation
stringclasses
8 values
returns
stringclasses
236 values
parameters
listlengths
0
74
parent_class
stringclasses
298 values
value
stringclasses
112 values
bases
listlengths
0
3
api_element_summary
stringlengths
199
23k
method
__init__
fenic.core._resolved_session_config.ResolvedOpenAIModelProfile.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "reasoning_effort", "verbosity" ]
ResolvedOpenAIModelProfile
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedOpenAIModelProfile.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "reasoning_effort", "verbosity"] Returns: None Parent Class: ResolvedOpenAIModelProfile
class
ResolvedCohereModelProfile
fenic.core._resolved_session_config.ResolvedCohereModelProfile
null
site-packages/fenic/core/_resolved_session_config.py
true
false
48
51
null
null
null
null
null
[]
Type: class Member Name: ResolvedCohereModelProfile Qualified Name: fenic.core._resolved_session_config.ResolvedCohereModelProfile Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedCohereModelProfile.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "embedding_dimensionality", "embedding_task_type" ]
ResolvedCohereModelProfile
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedCohereModelProfile.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "embedding_dimensionality", "embedding_task_type"] Returns: None Parent Class: ResolvedCohereModelProfile
class
ResolvedOpenAIModelConfig
fenic.core._resolved_session_config.ResolvedOpenAIModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
53
60
null
null
null
null
null
[]
Type: class Member Name: ResolvedOpenAIModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedOpenAIModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedOpenAIModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_name", "rpm", "tpm", "model_provider", "profiles", "default_profile" ]
ResolvedOpenAIModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedOpenAIModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_name", "rpm", "tpm", "model_provider", "profiles", "default_profile"] Returns: None Parent Class: ResolvedOpenAIModelConfig
class
ResolvedAnthropicModelConfig
fenic.core._resolved_session_config.ResolvedAnthropicModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
63
71
null
null
null
null
null
[]
Type: class Member Name: ResolvedAnthropicModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedAnthropicModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedAnthropicModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_name", "rpm", "input_tpm", "output_tpm", "model_provider", "profiles", "default_profile" ]
ResolvedAnthropicModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedAnthropicModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_name", "rpm", "input_tpm", "output_tpm", "model_provider", "profiles", "default_profile"] Returns: None Parent Class: ResolvedAnthropicModelConfig
class
ResolvedGoogleModelConfig
fenic.core._resolved_session_config.ResolvedGoogleModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
73
80
null
null
null
null
null
[]
Type: class Member Name: ResolvedGoogleModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedGoogleModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedGoogleModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_name", "model_provider", "rpm", "tpm", "profiles", "default_profile" ]
ResolvedGoogleModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedGoogleModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_name", "model_provider", "rpm", "tpm", "profiles", "default_profile"] Returns: None Parent Class: ResolvedGoogleModelConfig
class
ResolvedCohereModelConfig
fenic.core._resolved_session_config.ResolvedCohereModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
82
89
null
null
null
null
null
[]
Type: class Member Name: ResolvedCohereModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedCohereModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedCohereModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_name", "rpm", "tpm", "model_provider", "profiles", "default_profile" ]
ResolvedCohereModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedCohereModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_name", "rpm", "tpm", "model_provider", "profiles", "default_profile"] Returns: None Parent Class: ResolvedCohereModelConfig
attribute
ResolvedModelConfig
fenic.core._resolved_session_config.ResolvedModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
91
91
null
null
null
null
Union[ResolvedOpenAIModelConfig, ResolvedAnthropicModelConfig, ResolvedGoogleModelConfig, ResolvedCohereModelConfig]
null
Type: attribute Member Name: ResolvedModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedModelConfig Docstring: none Value: Union[ResolvedOpenAIModelConfig, ResolvedAnthropicModelConfig, ResolvedGoogleModelConfig, ResolvedCohereModelConfig] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ResolvedSemanticConfig
fenic.core._resolved_session_config.ResolvedSemanticConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
96
99
null
null
null
null
null
[]
Type: class Member Name: ResolvedSemanticConfig Qualified Name: fenic.core._resolved_session_config.ResolvedSemanticConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedSemanticConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "language_models", "embedding_models" ]
ResolvedSemanticConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedSemanticConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "language_models", "embedding_models"] Returns: None Parent Class: ResolvedSemanticConfig
class
ResolvedLanguageModelConfig
fenic.core._resolved_session_config.ResolvedLanguageModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
101
104
null
null
null
null
null
[]
Type: class Member Name: ResolvedLanguageModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedLanguageModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedLanguageModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_configs", "default_model" ]
ResolvedLanguageModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedLanguageModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_configs", "default_model"] Returns: None Parent Class: ResolvedLanguageModelConfig
class
ResolvedEmbeddingModelConfig
fenic.core._resolved_session_config.ResolvedEmbeddingModelConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
106
109
null
null
null
null
null
[]
Type: class Member Name: ResolvedEmbeddingModelConfig Qualified Name: fenic.core._resolved_session_config.ResolvedEmbeddingModelConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedEmbeddingModelConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "model_configs", "default_model" ]
ResolvedEmbeddingModelConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedEmbeddingModelConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "model_configs", "default_model"] Returns: None Parent Class: ResolvedEmbeddingModelConfig
class
ResolvedCloudConfig
fenic.core._resolved_session_config.ResolvedCloudConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
111
113
null
null
null
null
null
[]
Type: class Member Name: ResolvedCloudConfig Qualified Name: fenic.core._resolved_session_config.ResolvedCloudConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedCloudConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "size" ]
ResolvedCloudConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedCloudConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "size"] Returns: None Parent Class: ResolvedCloudConfig
class
ResolvedSessionConfig
fenic.core._resolved_session_config.ResolvedSessionConfig
null
site-packages/fenic/core/_resolved_session_config.py
true
false
116
121
null
null
null
null
null
[]
Type: class Member Name: ResolvedSessionConfig Qualified Name: fenic.core._resolved_session_config.ResolvedSessionConfig Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._resolved_session_config.ResolvedSessionConfig.__init__
null
site-packages/fenic/core/_resolved_session_config.py
true
false
0
0
null
None
[ "self", "app_name", "db_path", "semantic", "cloud" ]
ResolvedSessionConfig
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._resolved_session_config.ResolvedSessionConfig.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "app_name", "db_path", "semantic", "cloud"] Returns: None Parent Class: ResolvedSessionConfig
module
_utils
fenic.core._utils
null
site-packages/fenic/core/_utils/__init__.py
false
true
null
null
null
null
null
null
null
null
Type: module Member Name: _utils Qualified Name: fenic.core._utils Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
module
misc
fenic.core._utils.misc
null
site-packages/fenic/core/_utils/misc.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: misc Qualified Name: fenic.core._utils.misc Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
get_content_hash
fenic.core._utils.misc.get_content_hash
Generate a short, consistent hash for a string. This uses UUIDv5 (namespaced UUID) to generate a deterministic hash of the content string, and returns the first 8 characters for brevity. Args: content: The input string to hash. Returns: A short string representing the hash of the input. Example: >>> get_content_hash("hello") 'aaf4c61d' # (your output will vary depending on namespace and content)
site-packages/fenic/core/_utils/misc.py
true
false
4
20
null
str
[ "content" ]
null
null
null
Type: function Member Name: get_content_hash Qualified Name: fenic.core._utils.misc.get_content_hash Docstring: Generate a short, consistent hash for a string. This uses UUIDv5 (namespaced UUID) to generate a deterministic hash of the content string, and returns the first 8 characters for brevity. Args: content: The input string to hash. Returns: A short string representing the hash of the input. Example: >>> get_content_hash("hello") 'aaf4c61d' # (your output will vary depending on namespace and content) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["content"] Returns: str Parent Class: none
function
generate_unique_arrow_view_name
fenic.core._utils.misc.generate_unique_arrow_view_name
Generate a unique temporary view name for an Arrow table. This is useful for assigning a one-off name to a view or table when working with in-memory or temporary datasets. Returns: A string representing a unique temporary view name. Example: >>> generate_unique_arrow_view_name() 'temp_arrow_view_1a2b3c4d5e6f...'
site-packages/fenic/core/_utils/misc.py
true
false
23
36
null
str
[]
null
null
null
Type: function Member Name: generate_unique_arrow_view_name Qualified Name: fenic.core._utils.misc.generate_unique_arrow_view_name Docstring: Generate a unique temporary view name for an Arrow table. This is useful for assigning a one-off name to a view or table when working with in-memory or temporary datasets. Returns: A string representing a unique temporary view name. Example: >>> generate_unique_arrow_view_name() 'temp_arrow_view_1a2b3c4d5e6f...' Value: none Annotation: none is Public? : true is Private? : false Parameters: [] Returns: str Parent Class: none
module
json_schema_utils
fenic.core._utils.json_schema_utils
null
site-packages/fenic/core/_utils/json_schema_utils.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: json_schema_utils Qualified Name: fenic.core._utils.json_schema_utils Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
unwrap_optional_union
fenic.core._utils.json_schema_utils.unwrap_optional_union
If node is an anyOf/oneOf with a null branch, return the first non-null branch. Otherwise return node unchanged.
site-packages/fenic/core/_utils/json_schema_utils.py
true
false
7
18
null
Dict[str, Any]
[ "node" ]
null
null
null
Type: function Member Name: unwrap_optional_union Qualified Name: fenic.core._utils.json_schema_utils.unwrap_optional_union Docstring: If node is an anyOf/oneOf with a null branch, return the first non-null branch. Otherwise return node unchanged. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["node"] Returns: Dict[str, Any] Parent Class: none
function
to_strict_json_schema
fenic.core._utils.json_schema_utils.to_strict_json_schema
Return a strict JSON Schema suitable for a Model Provider. All Model Providers have different requirements for supported features and formats of JSON schemas. This function is a best-effort attempt to generate a JSON schema that is strict enough for the most inflexible model provider: OpenAI. Other model provider implementations may need to apply additional transformations to the schema before passing it to the model provider. Rules (adapted from OpenAI's internal logic): - Set additionalProperties: false for all objects (when not present) - Set required to all keys in properties - Recurse into properties, items, anyOf, allOf (flatten allOf of length 1) - Strip default when it's None - If a node has $ref alongside other keys, inline the ref target and re-ensure strictness This function deep-copies the input once and then mutates the copy in-place. This performs all the operations that would have been performed if a Pydantic Model were to be passed to the LLM Model Provider.
site-packages/fenic/core/_utils/json_schema_utils.py
true
false
20
123
null
Dict[str, Any]
[ "schema" ]
null
null
null
Type: function Member Name: to_strict_json_schema Qualified Name: fenic.core._utils.json_schema_utils.to_strict_json_schema Docstring: Return a strict JSON Schema suitable for a Model Provider. All Model Providers have different requirements for supported features and formats of JSON schemas. This function is a best-effort attempt to generate a JSON schema that is strict enough for the most inflexible model provider: OpenAI. Other model provider implementations may need to apply additional transformations to the schema before passing it to the model provider. Rules (adapted from OpenAI's internal logic): - Set additionalProperties: false for all objects (when not present) - Set required to all keys in properties - Recurse into properties, items, anyOf, allOf (flatten allOf of length 1) - Strip default when it's None - If a node has $ref alongside other keys, inline the ref target and re-ensure strictness This function deep-copies the input once and then mutates the copy in-place. This performs all the operations that would have been performed if a Pydantic Model were to be passed to the LLM Model Provider. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["schema"] Returns: Dict[str, Any] Parent Class: none
module
type_inference
fenic.core._utils.type_inference
null
site-packages/fenic/core/_utils/type_inference.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: type_inference Qualified Name: fenic.core._utils.type_inference Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
TypeInferenceError
fenic.core._utils.type_inference.TypeInferenceError
null
site-packages/fenic/core/_utils/type_inference.py
true
false
22
26
null
null
null
null
null
[ "ValueError" ]
Type: class Member Name: TypeInferenceError Qualified Name: fenic.core._utils.type_inference.TypeInferenceError Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core._utils.type_inference.TypeInferenceError.__init__
null
site-packages/fenic/core/_utils/type_inference.py
true
false
23
26
null
null
[ "self", "message", "path" ]
TypeInferenceError
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core._utils.type_inference.TypeInferenceError.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "message", "path"] Returns: none Parent Class: TypeInferenceError
function
infer_pytype_from_dtype
fenic.core._utils.type_inference.infer_pytype_from_dtype
null
site-packages/fenic/core/_utils/type_inference.py
true
false
28
48
null
type
[ "dtype" ]
null
null
null
Type: function Member Name: infer_pytype_from_dtype Qualified Name: fenic.core._utils.type_inference.infer_pytype_from_dtype Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["dtype"] Returns: type Parent Class: none
function
infer_dtype_from_pyobj
fenic.core._utils.type_inference.infer_dtype_from_pyobj
null
site-packages/fenic/core/_utils/type_inference.py
true
false
50
86
null
DataType
[ "value", "path" ]
null
null
null
Type: function Member Name: infer_dtype_from_pyobj Qualified Name: fenic.core._utils.type_inference.infer_dtype_from_pyobj Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["value", "path"] Returns: DataType Parent Class: none
function
_find_common_supertype
fenic.core._utils.type_inference._find_common_supertype
null
site-packages/fenic/core/_utils/type_inference.py
false
true
89
126
null
DataType
[ "type1", "type2", "path" ]
null
null
null
Type: function Member Name: _find_common_supertype Qualified Name: fenic.core._utils.type_inference._find_common_supertype Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: ["type1", "type2", "path"] Returns: DataType Parent Class: none
module
structured_outputs
fenic.core._utils.structured_outputs
null
site-packages/fenic/core/_utils/structured_outputs.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: structured_outputs Qualified Name: fenic.core._utils.structured_outputs Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
logger
fenic.core._utils.structured_outputs.logger
null
site-packages/fenic/core/_utils/structured_outputs.py
true
false
16
16
null
null
null
null
logging.getLogger(__name__)
null
Type: attribute Member Name: logger Qualified Name: fenic.core._utils.structured_outputs.logger Docstring: none Value: logging.getLogger(__name__) Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
OutputFormatValidationError
fenic.core._utils.structured_outputs.OutputFormatValidationError
Error raised when a semantic operation schema is invalid.
site-packages/fenic/core/_utils/structured_outputs.py
true
false
18
19
null
null
null
null
null
[ "Exception" ]
Type: class Member Name: OutputFormatValidationError Qualified Name: fenic.core._utils.structured_outputs.OutputFormatValidationError Docstring: Error raised when a semantic operation schema is invalid. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
validate_output_format
fenic.core._utils.structured_outputs.validate_output_format
Check a Pydantic model type to ensure it is valid schema for semantic operations. This function validates schemas used by semantic operations like extract, map, etc. to ensure they have proper field descriptions and supported types. Args: model: The Pydantic model class to validate Raises: SemanticSchemaValidationError: If the schema is invalid
site-packages/fenic/core/_utils/structured_outputs.py
true
false
22
49
null
None
[ "model" ]
null
null
null
Type: function Member Name: validate_output_format Qualified Name: fenic.core._utils.structured_outputs.validate_output_format Docstring: Check a Pydantic model type to ensure it is valid schema for semantic operations. This function validates schemas used by semantic operations like extract, map, etc. to ensure they have proper field descriptions and supported types. Args: model: The Pydantic model class to validate Raises: SemanticSchemaValidationError: If the schema is invalid Value: none Annotation: none is Public? : true is Private? : false Parameters: ["model"] Returns: None Parent Class: none
function
_validate_semantic_field_type
fenic.core._utils.structured_outputs._validate_semantic_field_type
Recursively validate field types for semantic operations.
site-packages/fenic/core/_utils/structured_outputs.py
false
true
52
95
null
None
[ "annotation", "field_name" ]
null
null
null
Type: function Member Name: _validate_semantic_field_type Qualified Name: fenic.core._utils.structured_outputs._validate_semantic_field_type Docstring: Recursively validate field types for semantic operations. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["annotation", "field_name"] Returns: None Parent Class: none
function
convert_pydantic_model_to_key_descriptions
fenic.core._utils.structured_outputs.convert_pydantic_model_to_key_descriptions
Extract keys, types, and descriptions from a Pydantic model, including nested models and lists. This function is used by structured semantic operations (extract, map, etc.) to convert Pydantic schema models into human-readable field descriptions for LLM prompts. Args: schema (Type[BaseModel]): The Pydantic model class. Returns: str: Formatted string of model keys and descriptions.
site-packages/fenic/core/_utils/structured_outputs.py
true
false
98
185
null
str
[ "schema" ]
null
null
null
Type: function Member Name: convert_pydantic_model_to_key_descriptions Qualified Name: fenic.core._utils.structured_outputs.convert_pydantic_model_to_key_descriptions Docstring: Extract keys, types, and descriptions from a Pydantic model, including nested models and lists. This function is used by structured semantic operations (extract, map, etc.) to convert Pydantic schema models into human-readable field descriptions for LLM prompts. Args: schema (Type[BaseModel]): The Pydantic model class. Returns: str: Formatted string of model keys and descriptions. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["schema"] Returns: str Parent Class: none
module
schema
fenic.core._utils.schema
Utilities for converting between different schema representations.
site-packages/fenic/core/_utils/schema.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: schema Qualified Name: fenic.core._utils.schema Docstring: Utilities for converting between different schema representations. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
convert_polars_schema_to_custom_schema
fenic.core._utils.schema.convert_polars_schema_to_custom_schema
Convert a Polars schema to a fenic Schema. Args: polars_schema: The Polars schema to convert Returns: The corresponding fenic Schema with equivalent column fields Example: >>> custom_schema = convert_polars_schema_to_custom_schema(df.schema)
site-packages/fenic/core/_utils/schema.py
true
false
28
50
null
Schema
[ "polars_schema" ]
null
null
null
Type: function Member Name: convert_polars_schema_to_custom_schema Qualified Name: fenic.core._utils.schema.convert_polars_schema_to_custom_schema Docstring: Convert a Polars schema to a fenic Schema. Args: polars_schema: The Polars schema to convert Returns: The corresponding fenic Schema with equivalent column fields Example: >>> custom_schema = convert_polars_schema_to_custom_schema(df.schema) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["polars_schema"] Returns: Schema Parent Class: none
function
convert_custom_schema_to_polars_schema
fenic.core._utils.schema.convert_custom_schema_to_polars_schema
Convert a fenic Schema to a Polars schema. Args: custom_schema: The fenic Schema to convert Returns: The corresponding Polars schema with equivalent fields Example: >>> polars_schema = convert_custom_schema_to_polars_schema(custom_schema)
site-packages/fenic/core/_utils/schema.py
true
false
53
72
null
pl.Schema
[ "custom_schema" ]
null
null
null
Type: function Member Name: convert_custom_schema_to_polars_schema Qualified Name: fenic.core._utils.schema.convert_custom_schema_to_polars_schema Docstring: Convert a fenic Schema to a Polars schema. Args: custom_schema: The fenic Schema to convert Returns: The corresponding Polars schema with equivalent fields Example: >>> polars_schema = convert_custom_schema_to_polars_schema(custom_schema) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["custom_schema"] Returns: pl.Schema Parent Class: none
function
convert_pydantic_type_to_custom_struct_type
fenic.core._utils.schema.convert_pydantic_type_to_custom_struct_type
Convert a Pydantic model to a custom StructType. Args: model: The Pydantic model to convert (either an instance or a class) Returns: The corresponding custom StructType Raises: ValueError: If the model is not a Pydantic model Example: >>> struct_type = convert_pydantic_type_to_custom_struct_type(model)
site-packages/fenic/core/_utils/schema.py
true
false
75
131
null
StructType
[ "model" ]
null
null
null
Type: function Member Name: convert_pydantic_type_to_custom_struct_type Qualified Name: fenic.core._utils.schema.convert_pydantic_type_to_custom_struct_type Docstring: Convert a Pydantic model to a custom StructType. Args: model: The Pydantic model to convert (either an instance or a class) Returns: The corresponding custom StructType Raises: ValueError: If the model is not a Pydantic model Example: >>> struct_type = convert_pydantic_type_to_custom_struct_type(model) Value: none Annotation: none is Public? : true is Private? : false Parameters: ["model"] Returns: StructType Parent Class: none
function
convert_custom_dtype_to_polars
fenic.core._utils.schema.convert_custom_dtype_to_polars
Convert custom data type to the Polars data type. Args: custom_dtype: Custom data type Returns: pl.DataType: Corresponding Polars data type Raises: ValueError: If the custom data type is not supported
site-packages/fenic/core/_utils/schema.py
true
false
133
181
null
pl.DataType
[ "custom_dtype" ]
null
null
null
Type: function Member Name: convert_custom_dtype_to_polars Qualified Name: fenic.core._utils.schema.convert_custom_dtype_to_polars Docstring: Convert custom data type to the Polars data type. Args: custom_dtype: Custom data type Returns: pl.DataType: Corresponding Polars data type Raises: ValueError: If the custom data type is not supported Value: none Annotation: none is Public? : true is Private? : false Parameters: ["custom_dtype"] Returns: pl.DataType Parent Class: none
function
_convert_pytype_to_custom_dtype
fenic.core._utils.schema._convert_pytype_to_custom_dtype
Convert a basic Python type to a PrimitiveType.
site-packages/fenic/core/_utils/schema.py
false
true
184
197
null
_PrimitiveType
[ "py_type" ]
null
null
null
Type: function Member Name: _convert_pytype_to_custom_dtype Qualified Name: fenic.core._utils.schema._convert_pytype_to_custom_dtype Docstring: Convert a basic Python type to a PrimitiveType. Value: none Annotation: none is Public? : false is Private? : true Parameters: ["py_type"] Returns: _PrimitiveType Parent Class: none
function
_convert_polars_dtype_to_custom_dtype
fenic.core._utils.schema._convert_polars_dtype_to_custom_dtype
Convert Polars data type to the custom PrimitiveType enum or complex type. Args: polars_dtype: Polars data type Returns: Union[PrimitiveType, ArrayType, StructType]: Corresponding custom data type Raises: ValueError: If the Polars data type is not supported
site-packages/fenic/core/_utils/schema.py
false
true
200
250
null
DataType
[ "polars_dtype" ]
null
null
null
Type: function Member Name: _convert_polars_dtype_to_custom_dtype Qualified Name: fenic.core._utils.schema._convert_polars_dtype_to_custom_dtype Docstring: Convert Polars data type to the custom PrimitiveType enum or complex type. Args: polars_dtype: Polars data type Returns: Union[PrimitiveType, ArrayType, StructType]: Corresponding custom data type Raises: ValueError: If the Polars data type is not supported Value: none Annotation: none is Public? : false is Private? : true Parameters: ["polars_dtype"] Returns: DataType Parent Class: none
function
_unwrap_optional_type
fenic.core._utils.schema._unwrap_optional_type
Unwrap Optional type and return (actual_type, is_optional).
site-packages/fenic/core/_utils/schema.py
false
true
252
268
null
type
[ "annotation" ]
null
null
null
Type: function Member Name: _unwrap_optional_type Qualified Name: fenic.core._utils.schema._unwrap_optional_type Docstring: Unwrap Optional type and return (actual_type, is_optional). Value: none Annotation: none is Public? : false is Private? : true Parameters: ["annotation"] Returns: type Parent Class: none
module
types
fenic.core.types
Schema module for defining and manipulating DataFrame schemas.
site-packages/fenic/core/types/__init__.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: types Qualified Name: fenic.core.types Docstring: Schema module for defining and manipulating DataFrame schemas. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
__all__
fenic.core.types.__all__
null
site-packages/fenic/core/types/__init__.py
false
false
47
84
null
null
null
null
['ArrayType', 'BooleanType', 'BranchSide', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'ColumnField', 'DataType', 'DataLike', 'DataLikeType', 'QueryResult', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JoinExample', 'JoinExampleCollection', 'JsonType', 'MapExample', 'MapExampleCollection', 'MarkdownType', 'PredicateExample', 'PredicateExampleCollection', 'QueryResult', 'Schema', 'SemanticSimilarityMetric', 'StringType', 'StructField', 'StructType', 'KeyPoints', 'Paragraph', 'TranscriptType', 'FuzzySimilarityMethod', 'DatasetMetadata']
null
Type: attribute Member Name: __all__ Qualified Name: fenic.core.types.__all__ Docstring: none Value: ['ArrayType', 'BooleanType', 'BranchSide', 'ClassDefinition', 'ClassifyExample', 'ClassifyExampleCollection', 'ColumnField', 'DataType', 'DataLike', 'DataLikeType', 'QueryResult', 'DocumentPathType', 'DoubleType', 'EmbeddingType', 'FloatType', 'HtmlType', 'IntegerType', 'JoinExample', 'JoinExampleCollection', 'JsonType', 'MapExample', 'MapExampleCollection', 'MarkdownType', 'PredicateExample', 'PredicateExampleCollection', 'QueryResult', 'Schema', 'SemanticSimilarityMetric', 'StringType', 'StructField', 'StructType', 'KeyPoints', 'Paragraph', 'TranscriptType', 'FuzzySimilarityMethod', 'DatasetMetadata'] Annotation: none is Public? : false is Private? : false Parameters: none Returns: none Parent Class: none
module
query_result
fenic.core.types.query_result
QueryResult class and related types.
site-packages/fenic/core/types/query_result.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: query_result Qualified Name: fenic.core.types.query_result Docstring: QueryResult class and related types. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
DataLikeType
fenic.core.types.query_result.DataLikeType
String literal type for specifying data output formats. Valid values: - "polars": Native Polars DataFrame format - "pandas": Pandas DataFrame with PyArrow extension arrays - "pydict": Python dictionary with column names as keys, lists as values - "pylist": Python list of dictionaries, each representing one row - "arrow": Apache Arrow Table format Used as input parameter for methods that can return data in multiple formats.
site-packages/fenic/core/types/query_result.py
true
false
13
13
null
null
null
null
Literal['polars', 'pandas', 'pydict', 'pylist', 'arrow']
null
Type: attribute Member Name: DataLikeType Qualified Name: fenic.core.types.query_result.DataLikeType Docstring: String literal type for specifying data output formats. Valid values: - "polars": Native Polars DataFrame format - "pandas": Pandas DataFrame with PyArrow extension arrays - "pydict": Python dictionary with column names as keys, lists as values - "pylist": Python list of dictionaries, each representing one row - "arrow": Apache Arrow Table format Used as input parameter for methods that can return data in multiple formats. Value: Literal['polars', 'pandas', 'pydict', 'pylist', 'arrow'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
DataLike
fenic.core.types.query_result.DataLike
Union type representing any supported data format for both input and output operations. This type encompasses all possible data structures that can be: 1. Used as input when creating DataFrames 2. Returned as output from query results Supported formats: - pl.DataFrame: Native Polars DataFrame with efficient columnar storage - pd.DataFrame: Pandas DataFrame, optionally with PyArrow extension arrays - Dict[str, List[Any]]: Column-oriented dictionary where: * Keys are column names (str) * Values are lists containing all values for that column - List[Dict[str, Any]]: Row-oriented list where: * Each element is a dictionary representing one row * Dictionary keys are column names, values are cell values - pa.Table: Apache Arrow Table with columnar memory layout Usage: - Input: Used in create_dataframe() to accept data in various formats - Output: Used in QueryResult.data to return results in requested format The specific type returned depends on the DataLikeType format specified when collecting query results.
site-packages/fenic/core/types/query_result.py
true
false
28
34
null
null
null
null
Union[pl.DataFrame, pd.DataFrame, Dict[str, List[Any]], List[Dict[str, Any]], pa.Table]
null
Type: attribute Member Name: DataLike Qualified Name: fenic.core.types.query_result.DataLike Docstring: Union type representing any supported data format for both input and output operations. This type encompasses all possible data structures that can be: 1. Used as input when creating DataFrames 2. Returned as output from query results Supported formats: - pl.DataFrame: Native Polars DataFrame with efficient columnar storage - pd.DataFrame: Pandas DataFrame, optionally with PyArrow extension arrays - Dict[str, List[Any]]: Column-oriented dictionary where: * Keys are column names (str) * Values are lists containing all values for that column - List[Dict[str, Any]]: Row-oriented list where: * Each element is a dictionary representing one row * Dictionary keys are column names, values are cell values - pa.Table: Apache Arrow Table with columnar memory layout Usage: - Input: Used in create_dataframe() to accept data in various formats - Output: Used in QueryResult.data to return results in requested format The specific type returned depends on the DataLikeType format specified when collecting query results. Value: Union[pl.DataFrame, pd.DataFrame, Dict[str, List[Any]], List[Dict[str, Any]], pa.Table] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
QueryResult
fenic.core.types.query_result.QueryResult
Container for query execution results and associated metadata. This dataclass bundles together the materialized data from a query execution along with metrics about the execution process. It provides a unified interface for accessing both the computed results and performance information. Attributes: data (DataLike): The materialized query results in the requested format. Can be any of the supported data types (Polars/Pandas DataFrame, Arrow Table, or Python dict/list structures). metrics (QueryMetrics): Execution metadata including timing information, memory usage, rows processed, and other performance metrics collected during query execution. Example: Access query results and metrics ```python # Execute query and get results with metrics result = df.filter(col("age") > 25).collect("pandas") pandas_df = result.data # Access the Pandas DataFrame print(result.metrics.execution_time) # Access execution metrics print(result.metrics.rows_processed) # Access row count ``` Example: Work with different data formats ```python # Get results in different formats polars_result = df.collect("polars") arrow_result = df.collect("arrow") dict_result = df.collect("pydict") # All contain the same data, different formats print(type(polars_result.data)) # <class 'polars.DataFrame'> print(type(arrow_result.data)) # <class 'pyarrow.lib.Table'> print(type(dict_result.data)) # <class 'dict'> ``` Note: The actual type of the `data` attribute depends on the format requested during collection. Use type checking or isinstance() if you need to handle the data differently based on its format.
site-packages/fenic/core/types/query_result.py
true
false
61
106
null
null
null
null
null
[]
Type: class Member Name: QueryResult Qualified Name: fenic.core.types.query_result.QueryResult Docstring: Container for query execution results and associated metadata. This dataclass bundles together the materialized data from a query execution along with metrics about the execution process. It provides a unified interface for accessing both the computed results and performance information. Attributes: data (DataLike): The materialized query results in the requested format. Can be any of the supported data types (Polars/Pandas DataFrame, Arrow Table, or Python dict/list structures). metrics (QueryMetrics): Execution metadata including timing information, memory usage, rows processed, and other performance metrics collected during query execution. Example: Access query results and metrics ```python # Execute query and get results with metrics result = df.filter(col("age") > 25).collect("pandas") pandas_df = result.data # Access the Pandas DataFrame print(result.metrics.execution_time) # Access execution metrics print(result.metrics.rows_processed) # Access row count ``` Example: Work with different data formats ```python # Get results in different formats polars_result = df.collect("polars") arrow_result = df.collect("arrow") dict_result = df.collect("pydict") # All contain the same data, different formats print(type(polars_result.data)) # <class 'polars.DataFrame'> print(type(arrow_result.data)) # <class 'pyarrow.lib.Table'> print(type(dict_result.data)) # <class 'dict'> ``` Note: The actual type of the `data` attribute depends on the format requested during collection. Use type checking or isinstance() if you need to handle the data differently based on its format. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__init__
fenic.core.types.query_result.QueryResult.__init__
null
site-packages/fenic/core/types/query_result.py
true
false
0
0
null
None
[ "self", "data", "metrics" ]
QueryResult
null
null
Type: method Member Name: __init__ Qualified Name: fenic.core.types.query_result.QueryResult.__init__ Docstring: none Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "data", "metrics"] Returns: None Parent Class: QueryResult
module
enums
fenic.core.types.enums
Enums used in the DataFrame API.
site-packages/fenic/core/types/enums.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: enums Qualified Name: fenic.core.types.enums Docstring: Enums used in the DataFrame API. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
SemanticSimilarityMetric
fenic.core.types.enums.SemanticSimilarityMetric
Type alias representing supported semantic similarity metrics. Valid values: - "cosine": Cosine similarity, measures the cosine of the angle between two vectors. - "l2": Euclidean (L2) distance, measures the straight-line distance between two vectors. - "dot": Dot product similarity, the raw inner product of two vectors. These metrics are commonly used for comparing embedding vectors in semantic search and other similarity-based applications.
site-packages/fenic/core/types/enums.py
true
false
6
6
null
null
null
null
Literal['cosine', 'l2', 'dot']
null
Type: attribute Member Name: SemanticSimilarityMetric Qualified Name: fenic.core.types.enums.SemanticSimilarityMetric Docstring: Type alias representing supported semantic similarity metrics. Valid values: - "cosine": Cosine similarity, measures the cosine of the angle between two vectors. - "l2": Euclidean (L2) distance, measures the straight-line distance between two vectors. - "dot": Dot product similarity, the raw inner product of two vectors. These metrics are commonly used for comparing embedding vectors in semantic search and other similarity-based applications. Value: Literal['cosine', 'l2', 'dot'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
BranchSide
fenic.core.types.enums.BranchSide
Type alias representing the side of a branch in a lineage graph. Valid values: - "left": The left branch of a join. - "right": The right branch of a join.
site-packages/fenic/core/types/enums.py
true
false
21
21
null
null
null
null
Literal['left', 'right']
null
Type: attribute Member Name: BranchSide Qualified Name: fenic.core.types.enums.BranchSide Docstring: Type alias representing the side of a branch in a lineage graph. Valid values: - "left": The left branch of a join. - "right": The right branch of a join. Value: Literal['left', 'right'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
TranscriptFormatType
fenic.core.types.enums.TranscriptFormatType
Type alias representing supported transcript formats. Valid values: - "srt": SubRip Subtitle format with indexed entries and timestamp ranges - "generic": Conversation transcript format with speaker names and timestamps - "webvtt": Web Video Text Tracks format with speaker names and timestamps All formats are parsed into a unified schema with fields: index, speaker, start_time, end_time, duration, content, format.
site-packages/fenic/core/types/enums.py
true
false
31
31
null
null
null
null
Literal['srt', 'generic', 'webvtt']
null
Type: attribute Member Name: TranscriptFormatType Qualified Name: fenic.core.types.enums.TranscriptFormatType Docstring: Type alias representing supported transcript formats. Valid values: - "srt": SubRip Subtitle format with indexed entries and timestamp ranges - "generic": Conversation transcript format with speaker names and timestamps - "webvtt": Web Video Text Tracks format with speaker names and timestamps All formats are parsed into a unified schema with fields: index, speaker, start_time, end_time, duration, content, format. Value: Literal['srt', 'generic', 'webvtt'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
JoinType
fenic.core.types.enums.JoinType
Type alias representing supported join types. Valid values: - "inner": Inner join, returns only rows that have matching values in both tables. - "outer": Outer join, returns all rows from both tables, filling missing values with nulls. - "left": Left join, returns all rows from the left table and matching rows from the right table. - "right": Right join, returns all rows from the right table and matching rows from the left table. - "cross": Cross join, returns the Cartesian product of the two tables.
site-packages/fenic/core/types/enums.py
true
false
45
45
null
null
null
null
Literal['inner', 'full', 'left', 'right', 'cross']
null
Type: attribute Member Name: JoinType Qualified Name: fenic.core.types.enums.JoinType Docstring: Type alias representing supported join types. Valid values: - "inner": Inner join, returns only rows that have matching values in both tables. - "outer": Outer join, returns all rows from both tables, filling missing values with nulls. - "left": Left join, returns all rows from the left table and matching rows from the right table. - "right": Right join, returns all rows from the right table and matching rows from the left table. - "cross": Cross join, returns the Cartesian product of the two tables. Value: Literal['inner', 'full', 'left', 'right', 'cross'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
FuzzySimilarityMethod
fenic.core.types.enums.FuzzySimilarityMethod
Type alias representing the supported fuzzy string similarity algorithms. These algorithms quantify the similarity or difference between two strings using various distance or similarity metrics: - "indel": Computes the Indel (Insertion-Deletion) distance, which counts only insertions and deletions needed to transform one string into another, excluding substitutions. This is equivalent to the Longest Common Subsequence (LCS) problem. Useful when character substitutions should not be considered as valid operations (e.g., DNA sequence alignment where only insertions/deletions occur). - "levenshtein": Computes the Levenshtein distance, which is the minimum number of single-character edits (insertions, deletions, or substitutions) required to transform one string into another. Suitable for general-purpose fuzzy matching where transpositions do not matter. - "damerau_levenshtein": An extension of Levenshtein distance that also accounts for transpositions of adjacent characters (e.g., "ab" → "ba"). This metric is more accurate for real-world typos and keyboard errors. - "jaro": Measures similarity based on the number and order of common characters between two strings. It is particularly effective for short strings such as names. Returns a normalized score between 0 (no similarity) and 1 (exact match). - "jaro_winkler": A variant of the Jaro distance that gives more weight to common prefixes. Designed to improve accuracy on strings with shared beginnings (e.g., first names, surnames). - "hamming": Measures the number of differing characters between two strings of equal length. Only valid when both strings are the same length. It does not support insertions or deletions—only substitutions. Choose the method based on the type of expected variation (e.g., typos, transpositions, or structural changes).
site-packages/fenic/core/types/enums.py
true
false
58
58
null
null
null
null
Literal['indel', 'levenshtein', 'damerau_levenshtein', 'jaro_winkler', 'jaro', 'hamming']
null
Type: attribute Member Name: FuzzySimilarityMethod Qualified Name: fenic.core.types.enums.FuzzySimilarityMethod Docstring: Type alias representing the supported fuzzy string similarity algorithms. These algorithms quantify the similarity or difference between two strings using various distance or similarity metrics: - "indel": Computes the Indel (Insertion-Deletion) distance, which counts only insertions and deletions needed to transform one string into another, excluding substitutions. This is equivalent to the Longest Common Subsequence (LCS) problem. Useful when character substitutions should not be considered as valid operations (e.g., DNA sequence alignment where only insertions/deletions occur). - "levenshtein": Computes the Levenshtein distance, which is the minimum number of single-character edits (insertions, deletions, or substitutions) required to transform one string into another. Suitable for general-purpose fuzzy matching where transpositions do not matter. - "damerau_levenshtein": An extension of Levenshtein distance that also accounts for transpositions of adjacent characters (e.g., "ab" → "ba"). This metric is more accurate for real-world typos and keyboard errors. - "jaro": Measures similarity based on the number and order of common characters between two strings. It is particularly effective for short strings such as names. Returns a normalized score between 0 (no similarity) and 1 (exact match). - "jaro_winkler": A variant of the Jaro distance that gives more weight to common prefixes. Designed to improve accuracy on strings with shared beginnings (e.g., first names, surnames). - "hamming": Measures the number of differing characters between two strings of equal length. Only valid when both strings are the same length. It does not support insertions or deletions—only substitutions. Choose the method based on the type of expected variation (e.g., typos, transpositions, or structural changes). Value: Literal['indel', 'levenshtein', 'damerau_levenshtein', 'jaro_winkler', 'jaro', 'hamming'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
StringCasingType
fenic.core.types.enums.StringCasingType
Type alias representing the type of string casing. Valid values: - "lower": Convert to lowercase. - "upper": Convert to uppercase. - "title": Convert to title case.
site-packages/fenic/core/types/enums.py
true
false
80
80
null
null
null
null
Literal['lower', 'upper', 'title']
null
Type: attribute Member Name: StringCasingType Qualified Name: fenic.core.types.enums.StringCasingType Docstring: Type alias representing the type of string casing. Valid values: - "lower": Convert to lowercase. - "upper": Convert to uppercase. - "title": Convert to title case. Value: Literal['lower', 'upper', 'title'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
attribute
StripCharsSide
fenic.core.types.enums.StripCharsSide
Type alias representing the side of a string to strip characters from. Valid values: - "left": Strip characters from the left side. - "right": Strip characters from the right side. - "both": Strip characters from both sides.
site-packages/fenic/core/types/enums.py
true
false
91
91
null
null
null
null
Literal['left', 'right', 'both']
null
Type: attribute Member Name: StripCharsSide Qualified Name: fenic.core.types.enums.StripCharsSide Docstring: Type alias representing the side of a string to strip characters from. Valid values: - "left": Strip characters from the left side. - "right": Strip characters from the right side. - "both": Strip characters from both sides. Value: Literal['left', 'right', 'both'] Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
semantic
fenic.core.types.semantic
Types used to configure model selection for semantic functions.
site-packages/fenic/core/types/semantic.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: semantic Qualified Name: fenic.core.types.semantic Docstring: Types used to configure model selection for semantic functions. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ModelAlias
fenic.core.types.semantic.ModelAlias
A combination of a model name and a required profile for that model. Model aliases are used to select a specific model to use in a semantic operation. Both the model name and profile must be specified when creating a ModelAlias. Attributes: name: The name of the model. profile: The name of a profile configuration to use for the model. Example: ```python model_alias = ModelAlias(name="o4-mini", profile="low") ```
site-packages/fenic/core/types/semantic.py
true
false
11
28
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: ModelAlias Qualified Name: fenic.core.types.semantic.ModelAlias Docstring: A combination of a model name and a required profile for that model. Model aliases are used to select a specific model to use in a semantic operation. Both the model name and profile must be specified when creating a ModelAlias. Attributes: name: The name of the model. profile: The name of a profile configuration to use for the model. Example: ```python model_alias = ModelAlias(name="o4-mini", profile="low") ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
function
_resolve_model_alias
fenic.core.types.semantic._resolve_model_alias
Convert a model alias from the API layer to the expression layer format. Args: model_alias: Either a string, a ModelAlias, or None Returns: A ResolvedModelAlias with optional profile, or None
site-packages/fenic/core/types/semantic.py
false
true
30
46
null
Optional[ResolvedModelAlias]
[ "model_alias" ]
null
null
null
Type: function Member Name: _resolve_model_alias Qualified Name: fenic.core.types.semantic._resolve_model_alias Docstring: Convert a model alias from the API layer to the expression layer format. Args: model_alias: Either a string, a ModelAlias, or None Returns: A ResolvedModelAlias with optional profile, or None Value: none Annotation: none is Public? : false is Private? : true Parameters: ["model_alias"] Returns: Optional[ResolvedModelAlias] Parent Class: none
module
classify
fenic.core.types.classify
Definition of a ClassDefinition class with optional description for semantic.classify.
site-packages/fenic/core/types/classify.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: classify Qualified Name: fenic.core.types.classify Docstring: Definition of a ClassDefinition class with optional description for semantic.classify. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
ClassDefinition
fenic.core.types.classify.ClassDefinition
Definition of a classification class with optional description. Used to define the available classes for semantic classification operations. The description helps the LLM understand what each class represents.
site-packages/fenic/core/types/classify.py
true
false
6
14
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: ClassDefinition Qualified Name: fenic.core.types.classify.ClassDefinition Docstring: Definition of a classification class with optional description. Used to define the available classes for semantic classification operations. The description helps the LLM understand what each class represents. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
module
summarize
fenic.core.types.summarize
Summary structures for different formats of summaries.
site-packages/fenic/core/types/summarize.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: summarize Qualified Name: fenic.core.types.summarize Docstring: Summary structures for different formats of summaries. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
KeyPoints
fenic.core.types.summarize.KeyPoints
Summary as a concise bulleted list. Each bullet should capture a distinct and essential idea, with a maximum number of points specified. Attributes: max_points: The maximum number of key points to include in the summary.
site-packages/fenic/core/types/summarize.py
true
false
6
27
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: KeyPoints Qualified Name: fenic.core.types.summarize.KeyPoints Docstring: Summary as a concise bulleted list. Each bullet should capture a distinct and essential idea, with a maximum number of points specified. Attributes: max_points: The maximum number of key points to include in the summary. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.summarize.KeyPoints.__str__
Return a description of the summary format for KeyPoints.
site-packages/fenic/core/types/summarize.py
true
false
17
23
null
null
[ "self" ]
KeyPoints
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.summarize.KeyPoints.__str__ Docstring: Return a description of the summary format for KeyPoints. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: KeyPoints
method
max_tokens
fenic.core.types.summarize.KeyPoints.max_tokens
Calculate the maximum number of tokens for the summary based on the number of key points.
site-packages/fenic/core/types/summarize.py
true
false
25
27
null
int
[ "self" ]
KeyPoints
null
null
Type: method Member Name: max_tokens Qualified Name: fenic.core.types.summarize.KeyPoints.max_tokens Docstring: Calculate the maximum number of tokens for the summary based on the number of key points. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: int Parent Class: KeyPoints
class
Paragraph
fenic.core.types.summarize.Paragraph
Summary as a cohesive narrative. The summary should flow naturally and not exceed a specified maximum word count. Attributes: max_words: The maximum number of words allowed in the summary.
site-packages/fenic/core/types/summarize.py
true
false
29
48
null
null
null
null
null
[ "BaseModel" ]
Type: class Member Name: Paragraph Qualified Name: fenic.core.types.summarize.Paragraph Docstring: Summary as a cohesive narrative. The summary should flow naturally and not exceed a specified maximum word count. Attributes: max_words: The maximum number of words allowed in the summary. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.summarize.Paragraph.__str__
Return a description of the summary format for Paragraph.
site-packages/fenic/core/types/summarize.py
true
false
40
44
null
null
[ "self" ]
Paragraph
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.summarize.Paragraph.__str__ Docstring: Return a description of the summary format for Paragraph. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: Paragraph
method
max_tokens
fenic.core.types.summarize.Paragraph.max_tokens
Calculate the maximum number of tokens for the summary based on the number of words.
site-packages/fenic/core/types/summarize.py
true
false
46
48
null
int
[ "self" ]
Paragraph
null
null
Type: method Member Name: max_tokens Qualified Name: fenic.core.types.summarize.Paragraph.max_tokens Docstring: Calculate the maximum number of tokens for the summary based on the number of words. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: int Parent Class: Paragraph
module
datatypes
fenic.core.types.datatypes
Core data type definitions for the DataFrame API. This module defines the type system used throughout the DataFrame API. It includes: - Base classes for all data types - Primitive types (string, integer, float, etc.) - Composite types (arrays, structs) - Specialized types (embeddings, markdown, etc.)
site-packages/fenic/core/types/datatypes.py
true
false
null
null
null
null
null
null
null
null
Type: module Member Name: datatypes Qualified Name: fenic.core.types.datatypes Docstring: Core data type definitions for the DataFrame API. This module defines the type system used throughout the DataFrame API. It includes: - Base classes for all data types - Primitive types (string, integer, float, etc.) - Composite types (arrays, structs) - Specialized types (embeddings, markdown, etc.) Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
class
DataType
fenic.core.types.datatypes.DataType
Base class for all data types. You won't instantiate this class directly. Instead, use one of the concrete types like `StringType`, `ArrayType`, or `StructType`. Used for casting, type validation, and schema inference in the DataFrame API.
site-packages/fenic/core/types/datatypes.py
true
false
19
67
null
null
null
null
null
[ "ABC" ]
Type: class Member Name: DataType Qualified Name: fenic.core.types.datatypes.DataType Docstring: Base class for all data types. You won't instantiate this class directly. Instead, use one of the concrete types like `StringType`, `ArrayType`, or `StructType`. Used for casting, type validation, and schema inference in the DataFrame API. Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes.DataType.__str__
Return a string representation of the data type. Returns: A string describing the data type.
site-packages/fenic/core/types/datatypes.py
true
false
28
35
null
str
[ "self" ]
DataType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes.DataType.__str__ Docstring: Return a string representation of the data type. Returns: A string describing the data type. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: DataType
method
__eq__
fenic.core.types.datatypes.DataType.__eq__
Compare this data type with another object for equality. Args: other: The object to compare with. Returns: True if the objects are equal, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
37
47
null
bool
[ "self", "other" ]
DataType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes.DataType.__eq__ Docstring: Compare this data type with another object for equality. Args: other: The object to compare with. Returns: True if the objects are equal, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: DataType
method
__ne__
fenic.core.types.datatypes.DataType.__ne__
Compare this data type with another object for inequality. Args: other: The object to compare with. Returns: True if the objects are not equal, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
49
58
null
bool
[ "self", "other" ]
DataType
null
null
Type: method Member Name: __ne__ Qualified Name: fenic.core.types.datatypes.DataType.__ne__ Docstring: Compare this data type with another object for inequality. Args: other: The object to compare with. Returns: True if the objects are not equal, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: DataType
method
__hash__
fenic.core.types.datatypes.DataType.__hash__
Return a hash value for this data type. Returns: An integer hash value.
site-packages/fenic/core/types/datatypes.py
true
false
60
67
null
null
[ "self" ]
DataType
null
null
Type: method Member Name: __hash__ Qualified Name: fenic.core.types.datatypes.DataType.__hash__ Docstring: Return a hash value for this data type. Returns: An integer hash value. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: none Parent Class: DataType
class
_PrimitiveType
fenic.core.types.datatypes._PrimitiveType
Marker class for all primitive type.
site-packages/fenic/core/types/datatypes.py
false
true
70
73
null
null
null
null
null
[ "DataType" ]
Type: class Member Name: _PrimitiveType Qualified Name: fenic.core.types.datatypes._PrimitiveType Docstring: Marker class for all primitive type. Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
class
_LogicalType
fenic.core.types.datatypes._LogicalType
Marker class for all logical types.
site-packages/fenic/core/types/datatypes.py
false
true
76
79
null
null
null
null
null
[ "DataType" ]
Type: class Member Name: _LogicalType Qualified Name: fenic.core.types.datatypes._LogicalType Docstring: Marker class for all logical types. Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
class
_StringType
fenic.core.types.datatypes._StringType
null
site-packages/fenic/core/types/datatypes.py
false
true
85
104
null
null
null
null
null
[ "_PrimitiveType" ]
Type: class Member Name: _StringType Qualified Name: fenic.core.types.datatypes._StringType Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes._StringType.__str__
Return a string representation of the string type. Returns: The string "StringType".
site-packages/fenic/core/types/datatypes.py
true
false
87
93
null
str
[ "self" ]
_StringType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes._StringType.__str__ Docstring: Return a string representation of the string type. Returns: The string "StringType". Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: _StringType
method
__eq__
fenic.core.types.datatypes._StringType.__eq__
Compare this string type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a string type, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
95
104
null
bool
[ "self", "other" ]
_StringType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes._StringType.__eq__ Docstring: Compare this string type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a string type, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: _StringType
class
_IntegerType
fenic.core.types.datatypes._IntegerType
null
site-packages/fenic/core/types/datatypes.py
false
true
107
126
null
null
null
null
null
[ "_PrimitiveType" ]
Type: class Member Name: _IntegerType Qualified Name: fenic.core.types.datatypes._IntegerType Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes._IntegerType.__str__
Return a string representation of the integer type. Returns: The string "IntegerType".
site-packages/fenic/core/types/datatypes.py
true
false
109
115
null
str
[ "self" ]
_IntegerType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes._IntegerType.__str__ Docstring: Return a string representation of the integer type. Returns: The string "IntegerType". Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: _IntegerType
method
__eq__
fenic.core.types.datatypes._IntegerType.__eq__
Compare this integer type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also an integer type, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
117
126
null
bool
[ "self", "other" ]
_IntegerType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes._IntegerType.__eq__ Docstring: Compare this integer type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also an integer type, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: _IntegerType
class
_FloatType
fenic.core.types.datatypes._FloatType
null
site-packages/fenic/core/types/datatypes.py
false
true
129
148
null
null
null
null
null
[ "_PrimitiveType" ]
Type: class Member Name: _FloatType Qualified Name: fenic.core.types.datatypes._FloatType Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes._FloatType.__str__
Return a string representation of the float type. Returns: The string "FloatType".
site-packages/fenic/core/types/datatypes.py
true
false
131
137
null
str
[ "self" ]
_FloatType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes._FloatType.__str__ Docstring: Return a string representation of the float type. Returns: The string "FloatType". Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: _FloatType
method
__eq__
fenic.core.types.datatypes._FloatType.__eq__
Compare this float type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a float type, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
139
148
null
bool
[ "self", "other" ]
_FloatType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes._FloatType.__eq__ Docstring: Compare this float type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a float type, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: _FloatType
class
_DoubleType
fenic.core.types.datatypes._DoubleType
null
site-packages/fenic/core/types/datatypes.py
false
true
151
170
null
null
null
null
null
[ "_PrimitiveType" ]
Type: class Member Name: _DoubleType Qualified Name: fenic.core.types.datatypes._DoubleType Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes._DoubleType.__str__
Return a string representation of the double type. Returns: The string "DoubleType".
site-packages/fenic/core/types/datatypes.py
true
false
153
159
null
str
[ "self" ]
_DoubleType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes._DoubleType.__str__ Docstring: Return a string representation of the double type. Returns: The string "DoubleType". Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: _DoubleType
method
__eq__
fenic.core.types.datatypes._DoubleType.__eq__
Compare this double type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a double type, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
161
170
null
bool
[ "self", "other" ]
_DoubleType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes._DoubleType.__eq__ Docstring: Compare this double type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a double type, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: _DoubleType
class
_BooleanType
fenic.core.types.datatypes._BooleanType
null
site-packages/fenic/core/types/datatypes.py
false
true
173
192
null
null
null
null
null
[ "_PrimitiveType" ]
Type: class Member Name: _BooleanType Qualified Name: fenic.core.types.datatypes._BooleanType Docstring: none Value: none Annotation: none is Public? : false is Private? : true Parameters: none Returns: none Parent Class: none
method
__str__
fenic.core.types.datatypes._BooleanType.__str__
Return a string representation of the boolean type. Returns: The string "BooleanType".
site-packages/fenic/core/types/datatypes.py
true
false
175
181
null
str
[ "self" ]
_BooleanType
null
null
Type: method Member Name: __str__ Qualified Name: fenic.core.types.datatypes._BooleanType.__str__ Docstring: Return a string representation of the boolean type. Returns: The string "BooleanType". Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self"] Returns: str Parent Class: _BooleanType
method
__eq__
fenic.core.types.datatypes._BooleanType.__eq__
Compare this boolean type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a boolean type, False otherwise.
site-packages/fenic/core/types/datatypes.py
true
false
183
192
null
bool
[ "self", "other" ]
_BooleanType
null
null
Type: method Member Name: __eq__ Qualified Name: fenic.core.types.datatypes._BooleanType.__eq__ Docstring: Compare this boolean type with another object for equality. Args: other: The object to compare with. Returns: True if the other object is also a boolean type, False otherwise. Value: none Annotation: none is Public? : true is Private? : false Parameters: ["self", "other"] Returns: bool Parent Class: _BooleanType
class
ArrayType
fenic.core.types.datatypes.ArrayType
A type representing a homogeneous variable-length array (list) of elements. Attributes: element_type: The data type of each element in the array. Example: Create an array of strings ```python ArrayType(StringType) ArrayType(element_type=StringType) ```
site-packages/fenic/core/types/datatypes.py
true
false
198
232
null
null
null
null
null
[ "DataType" ]
Type: class Member Name: ArrayType Qualified Name: fenic.core.types.datatypes.ArrayType Docstring: A type representing a homogeneous variable-length array (list) of elements. Attributes: element_type: The data type of each element in the array. Example: Create an array of strings ```python ArrayType(StringType) ArrayType(element_type=StringType) ``` Value: none Annotation: none is Public? : true is Private? : false Parameters: none Returns: none Parent Class: none