Search is not available for this dataset
text
string
meta
dict
module Prelude.Variables where open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.List variable ℓ ℓ₁ ℓ₂ ℓ₃ : Level A B C : Set ℓ F M : Set ℓ₁ → Set ℓ₂ x y z : A xs ys zs : List A n m : Nat
{ "alphanum_fraction": 0.6752136752, "avg_line_length": 15.6, "ext": "agda", "hexsha": "bebf415b55c625313f7ca7702ca1a3cca81b4f3c", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/Variables.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/Variables.agda", "max_line_length": 30, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/Variables.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 93, "size": 234 }
-- Solver for functors {-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Functor renaming (id to idF) module Experiment.Categories.Solver.MultiFunctor {o ℓ e} where import Categories.Morphism.Reasoning as MR open import Level open import Relation.Binary using (Rel) infixr 9 _:∘_ data Expr : (𝒞 : Category o ℓ e) → Rel (Category.Obj 𝒞) (suc (o ⊔ ℓ ⊔ e)) where :id : ∀ {𝒞 A} → Expr 𝒞 A A _:∘_ : ∀ {𝒞 A B C} → Expr 𝒞 B C → Expr 𝒞 A B → Expr 𝒞 A C :F₁ : ∀ {𝒞 𝒟} (F : Functor 𝒟 𝒞) {A B} → Expr 𝒟 A B → Expr 𝒞 (Functor.F₀ F A) (Functor.F₀ F B) ∥_∥ : ∀ {𝒞 A B} → 𝒞 [ A , B ] → Expr 𝒞 A B -- Semantics _⟦_⟧ : ∀ 𝒞 {A B} → Expr 𝒞 A B → 𝒞 [ A , B ] 𝒞 ⟦ :id ⟧ = Category.id 𝒞 𝒞 ⟦ e₁ :∘ e₂ ⟧ = 𝒞 [ 𝒞 ⟦ e₁ ⟧ ∘ 𝒞 ⟦ e₂ ⟧ ] 𝒞 ⟦ :F₁ F e ⟧ = Functor.F₁ F (_ ⟦ e ⟧) 𝒞 ⟦ ∥ f ∥ ⟧ = f N∘ : ∀ (𝒞 𝒟 : Category o ℓ e) (F : Functor 𝒟 𝒞) {A B C} → Expr 𝒟 B C → 𝒞 [ A , Functor.F₀ F B ] → 𝒞 [ A , Functor.F₀ F C ] N∘ 𝒞 𝒟 F :id g = g N∘ 𝒞 𝒟 F (e₁ :∘ e₂) g = N∘ 𝒞 𝒟 F e₁ (N∘ 𝒞 𝒟 F e₂ g) N∘ 𝒞 𝒟 F (:F₁ {𝒟 = ℰ} G e) g = N∘ 𝒞 ℰ (F ∘F G) e g N∘ 𝒞 𝒟 F ∥ f ∥ g = 𝒞 [ Functor.F₁ F f ∘ g ] _⟦_⟧N : ∀ 𝒞 {A B} → Expr 𝒞 A B → 𝒞 [ A , B ] 𝒞 ⟦ e ⟧N = N∘ 𝒞 𝒞 idF e (Category.id 𝒞) N∘≈⟦⟧ : ∀ 𝒞 𝒟 (F : Functor 𝒟 𝒞) {A B C} (e : Expr 𝒟 B C) (g : 𝒞 [ A , Functor.F₀ F B ]) → 𝒞 [ N∘ 𝒞 𝒟 F e g ≈ 𝒞 [ Functor.F₁ F (𝒟 ⟦ e ⟧) ∘ g ] ] N∘≈⟦⟧ 𝒞 𝒟 F :id g = begin g ≈˘⟨ identityˡ ⟩ id ∘ g ≈˘⟨ identity ⟩∘⟨refl ⟩ F₁ (Category.id 𝒟) ∘ g ∎ where open Category 𝒞 open Functor F open HomReasoning N∘≈⟦⟧ 𝒞 𝒟 F (e₁ :∘ e₂) g = begin N∘ 𝒞 𝒟 F e₁ (N∘ 𝒞 𝒟 F e₂ g) ≈⟨ N∘≈⟦⟧ 𝒞 𝒟 F e₁ (N∘ 𝒞 𝒟 F e₂ g) ⟩ F₁ (𝒟 ⟦ e₁ ⟧) ∘ N∘ 𝒞 𝒟 F e₂ g ≈⟨ pushʳ (N∘≈⟦⟧ 𝒞 𝒟 F e₂ g) ⟩ (F₁ (𝒟 ⟦ e₁ ⟧) ∘ F₁ (𝒟 ⟦ e₂ ⟧)) ∘ g ≈˘⟨ homomorphism ⟩∘⟨refl ⟩ F₁ (𝒟 [ 𝒟 ⟦ e₁ ⟧ ∘ 𝒟 ⟦ e₂ ⟧ ]) ∘ g ∎ where open Category 𝒞 open HomReasoning open MR 𝒞 open Functor F N∘≈⟦⟧ 𝒞 𝒟 F (:F₁ {𝒟 = ℰ} G e) g = N∘≈⟦⟧ 𝒞 ℰ (F ∘F G) e g N∘≈⟦⟧ 𝒞 𝒟 F ∥ f ∥ g = Category.Equiv.refl 𝒞 ⟦e⟧N≈⟦e⟧ : ∀ 𝒞 {A B} (e : Expr 𝒞 A B) → 𝒞 [ 𝒞 ⟦ e ⟧N ≈ 𝒞 ⟦ e ⟧ ] ⟦e⟧N≈⟦e⟧ 𝒞 e = N∘≈⟦⟧ 𝒞 𝒞 idF e id ○ identityʳ where open Category 𝒞 open HomReasoning solve : ∀ {𝒞 A B} (e₁ e₂ : Expr 𝒞 A B) → 𝒞 [ 𝒞 ⟦ e₁ ⟧N ≈ 𝒞 ⟦ e₂ ⟧N ] → 𝒞 [ 𝒞 ⟦ e₁ ⟧ ≈ 𝒞 ⟦ e₂ ⟧ ] solve {𝒞 = 𝒞} e₁ e₂ eq = begin 𝒞 ⟦ e₁ ⟧ ≈˘⟨ ⟦e⟧N≈⟦e⟧ 𝒞 e₁ ⟩ 𝒞 ⟦ e₁ ⟧N ≈⟨ eq ⟩ 𝒞 ⟦ e₂ ⟧N ≈⟨ ⟦e⟧N≈⟦e⟧ 𝒞 e₂ ⟩ 𝒞 ⟦ e₂ ⟧ ∎ where open Category 𝒞 open HomReasoning ∥-∥ : ∀ {𝒞 A B} {f : 𝒞 [ A , B ]} → Expr 𝒞 A B ∥-∥ {f = f} = ∥ f ∥
{ "alphanum_fraction": 0.4508104033, "avg_line_length": 33.1625, "ext": "agda", "hexsha": "bac69bb2613253eedd7f3fe21189df2c008a76dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Categories/Solver/MultiFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Categories/Solver/MultiFunctor.agda", "max_line_length": 79, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Categories/Solver/MultiFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1618, "size": 2653 }
-- Andreas, 2017-05-17, issue #2574 reported by G. Allais open import Issue2574Import -- The imported module should be clickable. open import Issue2574ImportBlank -- The imported module should be clickable.
{ "alphanum_fraction": 0.7557603687, "avg_line_length": 43.4, "ext": "agda", "hexsha": "742bff859d73034454263bd8b447af4822457943", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2574.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2574.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2574.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 53, "size": 217 }
-- Currently this test case is broken. Once Issue 3451 has been fixed -- it should be moved to test/Fail (and this comment should be -- removed). -- The option --guardedness turns off sized types. {-# OPTIONS --guardedness #-} open import Agda.Builtin.Size record Stream (A : Set) (i : Size) : Set where coinductive field head : A tail : {j : Size< i} → Stream A j open Stream postulate destroy-guardedness : {A : Set} → A → A repeat : ∀ {A i} → A → Stream A i repeat x .head = x repeat x .tail = destroy-guardedness (repeat x)
{ "alphanum_fraction": 0.664845173, "avg_line_length": 21.96, "ext": "agda", "hexsha": "7196c668b4b77272b606c77f22dd1e6e15dfa7c1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "phadej/agda", "max_forks_repo_path": "test/Succeed/Issue1209-7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "phadej/agda", "max_issues_repo_path": "test/Succeed/Issue1209-7.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "phadej/agda", "max_stars_repo_path": "test/Succeed/Issue1209-7.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 161, "size": 549 }
module Class.MonadTrans where open import Class.Monad open import Level record MonadTrans {a} (T : (Set a -> Set a) -> Set a -> Set a) : Set (suc a) where field embed : {A : Set a} {M : Set a -> Set a} {{_ : Monad M}} -> M A -> T M A open MonadTrans {{...}} public
{ "alphanum_fraction": 0.5948905109, "avg_line_length": 24.9090909091, "ext": "agda", "hexsha": "9b89f98a38ba6c28df2fc3351d0611d53617ca9e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Class/MonadTrans.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Class/MonadTrans.agda", "max_line_length": 82, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Class/MonadTrans.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 90, "size": 274 }
module Numeral.Natural.Relation.Order where import Lvl open import Functional open import Logic open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Relator.Equals open import Relator.Equals.Proofs open import Relator.Ordering -- Inequalities/Comparisons data _≤_ : ℕ → ℕ → Stmt{Lvl.𝟎} where min : ∀{y} → (𝟎 ≤ y) succ : ∀{x y} → (x ≤ y) → (𝐒(x) ≤ 𝐒(y)) _<_ : ℕ → ℕ → Stmt _<_ a b = (𝐒(a) ≤ b) open From-[≤][<] (_≤_) (_<_) public
{ "alphanum_fraction": 0.6897880539, "avg_line_length": 21.625, "ext": "agda", "hexsha": "d4ed03d63167e37fa7c1fa1c4b65b6d1f2c4b4d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Order.agda", "max_line_length": 43, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 183, "size": 519 }
module Eq.ObsTheory where open import Prelude open import T open import DynTheory open import SubstTheory open import Contexts open import Eq.Defs open import Eq.KleeneTheory open ObservEq ---- Proofs about observational equivalence -- observational equivalence being an equiv reln follows trivially from kleene equiv being one obs-refl : ∀ {Γ} {A} → Reflexive (ObservEq Γ A) obs-refl = obs (λ C → kleene-refl) obs-sym : ∀ {Γ} {A} → Symmetric (ObservEq Γ A) obs-sym eq = obs (λ C → kleene-sym (observe eq C)) obs-trans : ∀ {Γ} {A} → Transitive (ObservEq Γ A) obs-trans eq1 eq2 = obs (λ C → kleene-trans (observe eq1 C) (observe eq2 C)) obs-is-equivalence : ∀{Γ} {A} → IsEquivalence (ObservEq Γ A) obs-is-equivalence = record { refl_ = obs-refl ; sym_ = obs-sym ; trans_ = obs-trans } obs-congruence : Congruence ObservEq obs-congruence {e = e} {e' = e'} oeq C = obs help where help : (C₁ : TCtx _ _ _ _) → KleeneEq (C₁ < C < e > >) (C₁ < C < e' > >) help C' with observe oeq (C' << C >>) ... | keq = ID.coe2 KleeneEq (composing-commutes C' C e) (composing-commutes C' C e') keq obs-consistent : Consistent ObservEq obs-consistent oeq = observe oeq ∘ obs-is-con-congruence : IsConsistentCongruence ObservEq obs-is-con-congruence = record { equiv = obs-is-equivalence ; cong = obs-congruence ; consistent = obs-consistent } -- Prove that observational equivalence is the coarsest consistent congruence. -- That is, that it contains all other consistent congruences. -- That is, if two terms are related by a consistent congruence, they are -- observationally equivalence. obs-is-coarsest : (R : TRel) → IsConsistentCongruence R → {Γ : Ctx} {A : TTp} → (R Γ A) ⊆ (ObservEq Γ A) obs-is-coarsest R isCC eq = obs help where help : (C : TCtx _ _ _ _) → KleeneEq (C < _ >) (C < _ >) help C with (IsConsistentCongruence.cong isCC) eq C ... | eqC = (IsConsistentCongruence.consistent isCC) eqC -- Produce a program context that is "equivalent" to a substitution. -- Essentially the idea is, if we have a substitution -- γ = e1/x1,...,en/xn, we produce the term -- (λx1. ⋯ λxn. ∘) e1 ⋯ en -- -- It took me a while of fiddling around before I came up with this -- implementation based on composing contexts, but it works really nicely. -- -- The earlier version that I got closest to making work placed the -- terms we were substituting underneath other lambdas, which almost -- works; since it requires weakening the terms, it means to prove -- subst-ctx-respect-obs we would need to show that weakening preserves -- observational equivalence. I don't know how to do this without using -- that observational and logical equivalence coincide. subst-ctx : ∀{Γ C} → (γ : TSubst Γ []) → (TCtx Γ C [] C) subst-ctx {[]} γ = ∘ subst-ctx {A :: Γ} {C} γ with (subst-ctx {Γ} {A ⇒ C} (dropγ γ)) ... | D = (D << Λ ∘ >>) $e (γ Z) -- This would basically be the end of the world in call by value. -- On paper, this proof goes: -- -- Given some substitution γ[x -> e'], want to show that -- (C << (λ x. ∘) >> e') < e > e'~>* γ[x -> e'](e), where C is the context constructed for γ. -- We know that (C << (λ x. ∘) >> e') < e > = C << (λ x. e) >> e'. -- By induction, we have that "C << (λ x. e) >> ~>* (λ x. γ(e))", and by compatability rules, -- C << (λ x. e) >> e' ~>* (λ x. γ(e)) e' -- Then, by beta, we have that (λ x. γ(e)) e' ~> γ([e'/x]e)). subst-ctx-substs : ∀{Γ A} → (γ : TSubst Γ []) → (e : TExp Γ A) → (subst-ctx γ) < e > ~>* ssubst γ e subst-ctx-substs {[]} γ e = ID.coe1 (_~>*_ e) (symm (closed-subst γ e)) eval-refl subst-ctx-substs {x :: Γ} γ e with subst-ctx-substs (dropγ γ) (Λ e) ... | recursive-eval with eval-compat (step-app-l {e₂ = γ Z}) recursive-eval ... | compat-eval with step-beta {e = ssubst (liftγ (dropγ γ)) e} {e' = γ Z} ... | step with eval-trans compat-eval (eval-step step) ... | eval with composing-commutes (subst-ctx (dropγ γ)) (Λ ∘) e ... | ctx-eq with (symm (subcomp (singγ (γ Z)) (liftγ (dropγ γ)) e) ≡≡ symm (subeq (drop-fix γ) e)) ... | subst-eq = ID.coe2 (λ y z → (y $ γ Z) ~>* z) (symm ctx-eq) subst-eq eval -- Straightforward extension of the above theorem to kleene equivalence at nat type. subst-ctx-substs-eq : ∀{Γ} → (γ : TSubst Γ []) → (e : TExp Γ nat) → (subst-ctx γ) < e > ≃ ssubst γ e subst-ctx-substs-eq γ e with subst-ctx-substs γ e | kleene-refl {x = ssubst γ e} ... | eval | kleeneq n val E1 E2 = kleeneq n val (eval-trans eval E1) E2 -- Prove that observationally equivalent substitutions yield -- contexts that are observationally equivalent when applied to a term. subst-ctx-respect-obs : ∀{Γ} {A} (e : TExp Γ A) {γ γ' : TSubst Γ []} → SubstRel (ObservEq []) Γ γ γ' → [] ⊢ subst-ctx γ < e > ≅ subst-ctx γ' < e > :: A subst-ctx-respect-obs {[]} e η = obs-refl subst-ctx-respect-obs {B :: Γ} {A} e {γ} {γ'} η with subst-ctx-respect-obs (Λ e) {dropγ γ} {dropγ γ'} (λ x → η (S x)) ... | D-D'-equiv with obs-congruence D-D'-equiv (∘ $e γ Z) ... | cong1 with obs-congruence (η Z) ((subst-ctx (dropγ γ') < Λ e >) e$ ∘) ... | cong2 with obs-trans cong1 cong2 ... | equiv = ID.coe2 (ObservEq [] A) (symm (resp (λ x → x $ γ Z) (composing-commutes (subst-ctx (dropγ γ)) (Λ ∘) e))) (symm (resp (λ x → x $ γ' Z) (composing-commutes (subst-ctx (dropγ γ')) (Λ ∘) e))) equiv -- Applying a substitution to two obs equivalent terms yields observational equivalent output. -- Takes advantage of substitution contexts. substs-respect-obs-1 : ∀{Γ} {A} {e e' : TExp Γ A} {γ : TSubst Γ []} → Γ ⊢ e ≅ e' :: A → [] ⊢ ssubst γ e ≅ ssubst γ e' :: A substs-respect-obs-1 {Γ} {A} {e} {e'} {γ} (obs observe) = obs help where help : (C : TCtx [] A [] nat) → KleeneEq (C < ssubst γ e >) (C < ssubst γ e' >) help C with observe (subst-ctx γ << weaken-closed-tctx C >>) ... | D-equiv with ID.coe2 KleeneEq (composing-commutes (subst-ctx γ) (weaken-closed-tctx C) e) (composing-commutes (subst-ctx γ) (weaken-closed-tctx C) e') D-equiv ... | D-equiv2 with subst-ctx-substs-eq γ ((weaken-closed-tctx C) < e >) | subst-ctx-substs-eq γ ((weaken-closed-tctx C) < e' >) ... | sub-equiv1 | sub-equiv2 with kleene-trans (kleene-sym sub-equiv1) (kleene-trans D-equiv2 sub-equiv2) ... | equiv = ID.coe2 KleeneEq (symm (subst-commutes-w-closed-tctx γ C e)) (symm (subst-commutes-w-closed-tctx γ C e')) equiv -- Applying observationally equivalent substitutions a term -- yields observational equivalent output. -- Takes advantage of substitution contexts. -- There is much in this proof that is similar to substs-respect-obs-1. -- Maybe they could have been merged more? substs-respect-obs-2 : ∀{Γ} {A} (e : TExp Γ A) {γ γ' : TSubst Γ []} → SubstRel (ObservEq []) Γ γ γ' → [] ⊢ ssubst γ e ≅ ssubst γ' e :: A substs-respect-obs-2 {Γ} {A} e {γ} {γ'} η = obs help where help : (C : TCtx [] A [] nat) → KleeneEq (C < ssubst γ e >) (C < ssubst γ' e >) help C with subst-ctx-respect-obs (weaken-closed-tctx C < e >) η ... | oeq with obs-consistent oeq ... | keq with subst-ctx-substs-eq γ ((weaken-closed-tctx C) < e >) | subst-ctx-substs-eq γ' ((weaken-closed-tctx C) < e >) ... | sub-equiv1 | sub-equiv2 with kleene-trans (kleene-sym sub-equiv1) (kleene-trans keq sub-equiv2) ... | equiv = ID.coe2 KleeneEq (symm (subst-commutes-w-closed-tctx γ C e)) (symm (subst-commutes-w-closed-tctx γ' C e)) equiv -- Combine the two previous theorems. substs-respect-obs : ∀{Γ} {A} {e e' : TExp Γ A} {γ γ' : TSubst Γ []} → Γ ⊢ e ≅ e' :: A → SubstRel (ObservEq []) Γ γ γ' → [] ⊢ ssubst γ e ≅ ssubst γ' e' :: A substs-respect-obs {Γ} {A} {e} {e'} {γ} {γ'} oeq η = obs-trans (substs-respect-obs-2 e η) (substs-respect-obs-1 oeq)
{ "alphanum_fraction": 0.5859780379, "avg_line_length": 50.2242424242, "ext": "agda", "hexsha": "00202b1aa54c41d5ae33cb52a5a4636e135adfad", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z", "max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msullivan/godels-t", "max_forks_repo_path": "Eq/ObsTheory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msullivan/godels-t", "max_issues_repo_path": "Eq/ObsTheory.agda", "max_line_length": 99, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msullivan/godels-t", "max_stars_repo_path": "Eq/ObsTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z", "num_tokens": 2736, "size": 8287 }
{-# OPTIONS --without-K #-} module function.fibration where open import level open import sum open import equality.core open import function.core open import function.isomorphism.core open import function.isomorphism.coherent open import function.isomorphism.lift open import function.isomorphism.univalence open import function.isomorphism.utils open import function.extensionality.core open import function.extensionality.proof open import function.overloading open import hott.level.core open import hott.equivalence.core open import hott.equivalence.alternative open import hott.univalence open import sets.unit Fibration : ∀ {i} j → Set i → Set _ Fibration j X = Σ (Set j) λ Y → Y → X fib : ∀ {i j}{X : Set i}(Y : X → Set j) → Σ X Y → X fib Y = proj₁ fib-iso : ∀ {i j}{X : Set i}{Y : X → Set j} → (x : X) → fib Y ⁻¹ x ≅ Y x fib-iso {X = X}{Y = Y} x = begin fib Y ⁻¹ x ≅⟨ refl≅ ⟩ ( Σ (Σ X Y) λ { (x' , y) → x' ≡ x } ) ≅⟨ Σ-assoc-iso ⟩ ( Σ X λ x' → Y x' × x' ≡ x ) ≅⟨ (Σ-ap-iso refl≅ λ x' → ×-comm) ⟩ ( Σ X λ x' → x' ≡ x × Y x' ) ≅⟨ sym≅ Σ-assoc-iso ⟩ ( Σ (singleton' x) λ { (x' , _) → Y x' } ) ≅⟨ Σ-ap-iso' (contr-⊤-iso (singl-contr' x)) (λ _ → refl≅) ⟩ ( ⊤ × Y x ) ≅⟨ ×-left-unit ⟩ Y x ∎ where open ≅-Reasoning total-iso : ∀ {i j}{X : Set i}{Y : Set j}(p : Y → X) → (Σ X (_⁻¹_ p)) ≅ Y total-iso {X = X}{Y = Y} p = begin ( Σ X λ x → (Σ Y λ y → p y ≡ x) ) ≅⟨ Σ-comm-iso ⟩ ( Σ Y λ y → (Σ X λ x → p y ≡ x) ) ≅⟨ ( Σ-ap-iso refl≅ λ y → contr-⊤-iso (singl-contr (p y)) ) ⟩ (Y × ⊤) ≅⟨ ×-right-unit ⟩ Y ∎ where open ≅-Reasoning fib-eq-iso : ∀ {i j}{X : Set i}{Y₁ Y₂ : Set j} → (p₁ : Y₁ → X) (p₂ : Y₂ → X) → _≡_ {A = Fibration _ X} (Y₁ , p₁) (Y₂ , p₂) ≅ ( Σ (Y₁ ≅' Y₂) λ q → p₁ ≡ p₂ ∘ apply q ) fib-eq-iso {i}{j}{X}{Y₁}{Y₂} p₁ p₂ = begin _≡_ {A = Fibration _ X} (Y₁ , p₁) (Y₂ , p₂) ≅⟨ sym≅ Σ-split-iso ⟩ ( Σ (Y₁ ≡ Y₂) λ q → subst (λ Y → Y → X) q p₁ ≡ p₂ ) ≅⟨ ( Σ-ap-iso refl≅ λ q → lem q p₁ p₂ ) ⟩ ( Σ (Y₁ ≡ Y₂) λ q → p₁ ≡ p₂ ∘ coerce q ) ≅⟨ step ⟩ ( Σ (Y₁ ≅' Y₂) λ q → p₁ ≡ p₂ ∘ apply q ) ∎ where open ≅-Reasoning abstract step : ( Σ (Y₁ ≡ Y₂) λ q → p₁ ≡ p₂ ∘ coerce q ) ≅ ( Σ (Y₁ ≅' Y₂) λ q → p₁ ≡ p₂ ∘ apply q ) step = Σ-ap-iso (uni-iso ·≅ ≈⇔≅') λ q → refl≅ abstract lem : {Y₁ Y₂ : Set j}(q : Y₁ ≡ Y₂)(p₁ : Y₁ → X)(p₂ : Y₂ → X) → (subst (λ Y → Y → X) q p₁ ≡ p₂) ≅ (p₁ ≡ p₂ ∘ coerce q) lem refl p₁ p₂ = refl≅ fibration-iso : ∀ {i} j {X : Set i} → (Σ (Set (i ⊔ j)) λ Y → Y → X) ≅ (X → Set (i ⊔ j)) fibration-iso {i} j {X} = record { to = λ { (Y , p) x → p ⁻¹ x } ; from = λ P → (Σ X P , fib P) ; iso₁ = λ { (Y , p) → α Y p } ; iso₂ = λ P → funext λ x → ≅⇒≡ (fib-iso x) } where α : (Y : Set (i ⊔ j))(p : Y → X) → _≡_ {A = Σ (Set (i ⊔ j)) λ Y → Y → X} (Σ X (_⁻¹_ p) , proj₁) (Y , p) α Y p = invert (fib-eq-iso proj₁ p) ( ≅⇒≅' (total-iso p) , funext λ { (y , x , eq) → sym eq } ) family-eq-iso : ∀ {i j₁ j₂}{X : Set i}{Y₁ : X → Set j₁}{Y₂ : X → Set j₂} → (isom : Σ X Y₁ ≅ Σ X Y₂) → (∀ x y → proj₁ (apply≅ isom (x , y)) ≡ x) → (x : X) → Y₁ x ≅ Y₂ x family-eq-iso {i}{j₁}{j₂}{X}{Y₁}{Y₂} isom comm x = lift-iso _ (Y₁ x) ·≅ ≡⇒≅ (funext-inv eq' x) ·≅ sym≅ (lift-iso _ (Y₂ x)) where open _≅_ isom to-we : weak-equiv to to-we = proj₂ (≅⇒≈ isom) P₁ : X → Set (i ⊔ j₁ ⊔ j₂) P₁ x = ↑ (i ⊔ j₂) (Y₁ x) p₁ : Σ X P₁ → X p₁ = proj₁ P₂ : X → Set (i ⊔ j₁ ⊔ j₂) P₂ x = ↑ (i ⊔ j₁) (Y₂ x) p₂ : Σ X P₂ → X p₂ = proj₁ total : Σ X P₁ ≅ Σ X P₂ total = (Σ-ap-iso refl≅ λ x → sym≅ (lift-iso _ _)) ·≅ isom ·≅ (Σ-ap-iso refl≅ λ x → lift-iso _ _) comm' : (a : Σ X P₁) → p₁ a ≡ p₂ (apply total a) comm' (x , lift u) = sym (comm x u) eq' : P₁ ≡ P₂ eq' = iso⇒inj (sym≅ (fibration-iso (i ⊔ j₁ ⊔ j₂))) (invert (fib-eq-iso p₁ p₂) (≅⇒≅' total , funext comm')) fib-compose : ∀ {i j k}{X : Set i}{Y : Set j}{Z : Set k} → (f : X → Y)(g : Y → Z)(z : Z) → (g ∘' f) ⁻¹ z ≅ ( Σ (g ⁻¹ z) λ { (y , _) → f ⁻¹ y } ) fib-compose {X = X}{Y}{Z} f g z = begin (g ∘' f) ⁻¹ z ≅⟨ refl≅ ⟩ ( Σ X λ x → g (f x) ≡ z ) ≅⟨ Σ-ap-iso refl≅ (λ _ → sym≅ ×-left-unit) ⟩ ( Σ X λ x → ⊤ × g (f x) ≡ z) ≅⟨ ( Σ-ap-iso refl≅ λ x → Σ-ap-iso (sym≅ (contr-⊤-iso (singl-contr (f x))) ) λ _ → refl≅ ) ⟩ ( Σ X λ x → singleton (f x) × g (f x) ≡ z ) ≅⟨ ( Σ-ap-iso refl≅ λ x → Σ-assoc-iso ) ⟩ ( Σ X λ x → Σ Y λ y → (f x ≡ y) × (g (f x) ≡ z) ) ≅⟨ ( Σ-ap-iso refl≅ λ x → Σ-ap-iso refl≅ λ y → Σ-ap-iso refl≅ λ p → ≡⇒≅ (ap (λ u → g u ≡ z) p) ) ⟩ ( Σ X λ x → Σ Y λ y → (f x ≡ y) × (g y ≡ z) ) ≅⟨ Σ-comm-iso ⟩ ( Σ Y λ y → Σ X λ x → (f x ≡ y) × (g y ≡ z) ) ≅⟨ ( Σ-ap-iso refl≅ λ y → sym≅ Σ-assoc-iso ) ⟩ ( Σ Y λ y → (f ⁻¹ y) × (g y ≡ z) ) ≅⟨ ( Σ-ap-iso refl≅ λ y → ×-comm ) ⟩ ( Σ Y λ y → (g y ≡ z) × (f ⁻¹ y) ) ≅⟨ sym≅ Σ-assoc-iso ⟩ ( Σ (g ⁻¹ z) λ { (y , _) → f ⁻¹ y } ) ∎ where open ≅-Reasoning
{ "alphanum_fraction": 0.4452526799, "avg_line_length": 29.5141242938, "ext": "agda", "hexsha": "08cb22ca80e1b40111618ff7ecb70c571c58125f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "function/fibration.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "function/fibration.agda", "max_line_length": 72, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "function/fibration.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 2548, "size": 5224 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module Reflective where record ReflectiveSubuniverse {ℓ} : Type (lsucc ℓ) where field P : Type ℓ → Type ℓ R : Type ℓ → Type ℓ η : (A : Type ℓ) → A → R A -- replete : (A B : Type ℓ) → P A → A ≃ B → P B
{ "alphanum_fraction": 0.5282392027, "avg_line_length": 17.7058823529, "ext": "agda", "hexsha": "536bb4c0703ef50be4afc2f2f6efddda5d2533ce", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/modalities/Reflective.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/modalities/Reflective.agda", "max_line_length": 57, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/modalities/Reflective.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 107, "size": 301 }
{-# OPTIONS --safe #-} module Cubical.Categories.Morphism where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category private variable ℓ ℓ' : Level -- C needs to be explicit for these definitions as Agda can't infer it module _ (C : Category ℓ ℓ') where open Category C private variable x y z w : ob isMonic : Hom[ x , y ] → Type (ℓ-max ℓ ℓ') isMonic {x} {y} f = ∀ {z} {a a' : Hom[ z , x ]} → f ∘ a ≡ f ∘ a' → a ≡ a' isEpic : (Hom[ x , y ]) → Type (ℓ-max ℓ ℓ') isEpic {x} {y} g = ∀ {z} {b b' : Hom[ y , z ]} → b ∘ g ≡ b' ∘ g → b ≡ b' -- A morphism is split monic if it has a *retraction* isSplitMon : (Hom[ x , y ]) → Type ℓ' isSplitMon {x} {y} f = ∃[ r ∈ Hom[ y , x ] ] r ∘ f ≡ id -- A morphism is split epic if it has a *section* isSplitEpi : (Hom[ x , y ]) → Type ℓ' isSplitEpi {x} {y} g = ∃[ s ∈ Hom[ y , x ] ] g ∘ s ≡ id record areInv (f : Hom[ x , y ]) (g : Hom[ y , x ]) : Type ℓ' where field sec : g ⋆ f ≡ id ret : f ⋆ g ≡ id record isIso (f : Hom[ x , y ]) : Type ℓ' where field inv : Hom[ y , x ] sec : inv ⋆ f ≡ id ret : f ⋆ inv ≡ id -- C can be implicit here module _ {C : Category ℓ ℓ'} where open Category C private variable x y z w : ob open areInv symAreInv : {f : Hom[ x , y ]} {g : Hom[ y , x ]} → areInv C f g → areInv C g f sec (symAreInv x) = ret x ret (symAreInv x) = sec x -- equational reasoning with inverses invMoveR : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ z , x ]} {k : Hom[ z , y ]} → areInv C f g → h ⋆ f ≡ k → h ≡ k ⋆ g invMoveR {f = f} {g} {h} {k} ai p = h ≡⟨ sym (⋆IdR _) ⟩ (h ⋆ id) ≡⟨ cong (h ⋆_) (sym (ai .ret)) ⟩ (h ⋆ (f ⋆ g)) ≡⟨ sym (⋆Assoc _ _ _) ⟩ ((h ⋆ f) ⋆ g) ≡⟨ cong (_⋆ g) p ⟩ k ⋆ g ∎ invMoveL : ∀ {f : Hom[ x , y ]} {g : Hom[ y , x ]} {h : Hom[ y , z ]} {k : Hom[ x , z ]} → areInv C f g → f ⋆ h ≡ k → h ≡ g ⋆ k invMoveL {f = f} {g} {h} {k} ai p = h ≡⟨ sym (⋆IdL _) ⟩ id ⋆ h ≡⟨ cong (_⋆ h) (sym (ai .sec)) ⟩ (g ⋆ f) ⋆ h ≡⟨ ⋆Assoc _ _ _ ⟩ g ⋆ (f ⋆ h) ≡⟨ cong (g ⋆_) p ⟩ (g ⋆ k) ∎ open isIso isIso→areInv : ∀ {f : Hom[ x , y ]} → (isI : isIso C f) → areInv C f (isI .inv) sec (isIso→areInv isI) = sec isI ret (isIso→areInv isI) = ret isI open CatIso -- isIso agrees with CatIso isIso→CatIso : ∀ {f : C [ x , y ]} → isIso C f → CatIso C x y mor (isIso→CatIso {f = f} x) = f inv (isIso→CatIso x) = inv x sec (isIso→CatIso x) = sec x ret (isIso→CatIso x) = ret x CatIso→isIso : (cIso : CatIso C x y) → isIso C (cIso .mor) inv (CatIso→isIso f) = inv f sec (CatIso→isIso f) = sec f ret (CatIso→isIso f) = ret f CatIso→areInv : (cIso : CatIso C x y) → areInv C (cIso .mor) (cIso .inv) CatIso→areInv cIso = isIso→areInv (CatIso→isIso cIso) -- reverse of an iso is also an iso symCatIso : ∀ {x y} → CatIso C x y → CatIso C y x symCatIso (catiso mor inv sec ret) = catiso inv mor ret sec
{ "alphanum_fraction": 0.4812423124, "avg_line_length": 25.0153846154, "ext": "agda", "hexsha": "0cf33a1c9392d9545951d1ec9b4b880a36d0851b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Categories/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Categories/Morphism.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Categories/Morphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 1397, "size": 3252 }
------------------------------------------------------------------------ -- Pi with partiality algebra families as codomains ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-algebra.Pi where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (T) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Partiality-algebra as PA hiding (id; _∘_) open Partiality-algebra-with open Partiality-algebra -- Applies an increasing sequence of functions to a value. at-with : ∀ {a b p q} {A : Type a} {T : A → Type p} {B : A → Type b} (P : (x : A) → Partiality-algebra-with (T x) q (B x)) → let module P x = Partiality-algebra-with (P x) in (∃ λ (f : ℕ → (x : A) → T x) → ∀ n x → P._⊑_ x (f n x) (f (suc n) x)) → (x : A) → ∃ λ (f : ℕ → T x) → ∀ n → P._⊑_ x (f n) (f (suc n)) at-with _ s x = Σ-map (λ f n → f n x) (λ f n → f n x) s -- Applies an increasing sequence of functions to a value. at : ∀ {a b p q} {A : Type a} {B : A → Type b} (P : (x : A) → Partiality-algebra p q (B x)) → let module P x = Partiality-algebra (P x) in (∃ λ (f : ℕ → (x : A) → P.T x) → ∀ n x → P._⊑_ x (f n x) (f (suc n) x)) → (x : A) → ∃ λ (f : ℕ → P.T x) → ∀ n → P._⊑_ x (f n) (f (suc n)) at P = at-with (partiality-algebra-with ∘ P) -- A kind of dependent function space from types to -- Partiality-algebra-with families. Π-with : ∀ {a b p q} (A : Type a) {T : A → Type p} {B : A → Type b} → ((x : A) → Partiality-algebra-with (T x) q (B x)) → Partiality-algebra-with ((x : A) → T x) (a ⊔ q) ((x : A) → B x) _⊑_ (Π-with A P) = λ f g → ∀ x → _⊑_ (P x) (f x) (g x) never (Π-with A P) = λ x → never (P x) now (Π-with A P) = λ f x → now (P x) (f x) ⨆ (Π-with A P) = λ s x → ⨆ (P x) (at-with P s x) antisymmetry (Π-with A P) = λ p q → ⟨ext⟩ λ x → antisymmetry (P x) (p x) (q x) T-is-set-unused (Π-with A P) = Π-closure ext 2 λ x → T-is-set-unused (P x) ⊑-refl (Π-with A P) = λ f x → ⊑-refl (P x) (f x) ⊑-trans (Π-with A P) = λ f g x → ⊑-trans (P x) (f x) (g x) never⊑ (Π-with A P) = λ f x → never⊑ (P x) (f x) upper-bound (Π-with A P) = λ s n x → upper-bound (P x) (at-with P s x) n least-upper-bound (Π-with A P) = λ s ub is-ub x → least-upper-bound (P x) (at-with P s x) (ub x) (λ n → is-ub n x) ⊑-propositional (Π-with A P) = Π-closure ext 1 λ x → ⊑-propositional (P x) -- A kind of dependent function space from types to partiality algebra -- families. Π : ∀ {a b p q} → (A : Type a) {B : A → Type b} → ((x : A) → Partiality-algebra p q (B x)) → Partiality-algebra (a ⊔ p) (a ⊔ q) ((x : A) → B x) T (Π A P) = (x : A) → T (P x) partiality-algebra-with (Π A P) = Π-with A (partiality-algebra-with ∘ P)
{ "alphanum_fraction": 0.4632194521, "avg_line_length": 39.6219512195, "ext": "agda", "hexsha": "51b846fc8b7482af8edb13c7d637ab4d4c4de900", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra/Pi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra/Pi.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra/Pi.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 1145, "size": 3249 }
-- {-# OPTIONS -v tc.with.strip:40 #-} module Issue824 where record R : Set where data D : Set → Set₁ where d : ∀ {A} → D A → D A postulate d′ : D R data P : R → D R → Set₁ where p : {x : R} {y : D R} → P x y → P x (d y) Foo : P _ (d d′) → Set₁ Foo (p _) with Set Foo (p _) | _ = Set -- Bug.agda:18,1-19,20 -- Inaccessible (dotted) patterns from the parent clause must also be -- inaccessible in the with clause, when checking the pattern -- {.Bug.recCon-NOT-PRINTED}, -- when checking that the clause -- Foo (p _) with unit -- Foo (p _) | _ = Set -- has type P (record {}) (d d′) → Set₁ -- See also issue 635 and issue 665. -- Andreas, 2013-03-21: should work now.
{ "alphanum_fraction": 0.6029411765, "avg_line_length": 21.935483871, "ext": "agda", "hexsha": "46981a99b235dde0518c79379937da892a2d52ef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue824.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue824.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue824.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 241, "size": 680 }
------------------------------------------------------------------------ -- Call-by-value (CBV) reduction in pure type systems (PTS) ------------------------------------------------------------------------ module Pts.Reduction.Cbv where open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Data.Star using (map; gmap) import Relation.Binary.EquivalenceClosure as EqClos import Relation.Binary.PropositionalEquality as PropEq open import Relation.Binary.Reduction open import Pts.Syntax open import Pts.Reduction.Full as Full hiding (reduction) -- All remaining submodules are parametrized by a given set of sorts. module _ {Sort : Set} where open Syntax Sort open Substitution Sort using (_[_]) ---------------------------------------------------------------------- -- Call-by-value (CBV) reduction and equivalence relations -- Untyped values with up to n free variables. data Val {n} : Term n → Set where sort : ∀ s → Val (sort s) -- sort Π : ∀ a b → Val (Π a b) -- dependent product ƛ : ∀ a b → Val (ƛ a b) -- abstraction infixl 9 _·₁_ _·₂_ infix 5 _→v_ -- One-step CBV reduction. data _→v_ {n} : Term n → Term n → Set where cont : ∀ a b {c} (v : Val c) → (ƛ a b) · c →v b [ c ] _·₁_ : ∀ {a₁ a₂} → a₁ →v a₂ → ∀ b → a₁ · b →v a₂ · b _·₂_ : ∀ {a b₁ b₂} (v : Val a) → b₁ →v b₂ → a · b₁ →v a · b₂ reduction : Reduction Term reduction = record { _→1_ = _→v_ } -- CBV reduction and equivalence. open Reduction reduction public renaming (_→*_ to _→v*_; _↔_ to _≡v_) ---------------------------------------------------------------------- -- Substitutions in CBV reductions/equivalence -- -- The applications _/→v_, _/→v*_ and _/≡v_ below may be considered -- substitution lemmas, i.e. they establish the commutativity of the -- respective reductions/equivalence with substitutions. -- Application of generic substitutions to the -- reductions/equivalence. record CbvSubstApp {T} (l : Lift T Term) : Set where open Lift l open SubstApp Sort l open PropEq hiding ([_]) -- Substitutions commute. field /-sub-↑ : ∀ {m n} a b (σ : Sub T m n) → a [ b ] / σ ≡ (a / σ ↑) [ b / σ ] infixl 8 _/Val_ _/→v_ -- Application of substitutions preserves values. _/Val_ : ∀ {m n a} → Val a → (σ : Sub T m n) → Val (a / σ) sort s /Val σ = sort s Π a b /Val σ = Π (a / σ) (b / σ ↑) ƛ a b /Val σ = ƛ (a / σ) (b / σ ↑) -- Substitution commutes with one-step reduction. _/→v_ : ∀ {m n a b} → a →v b → (σ : Sub T m n) → a / σ →v b / σ cont a b c /→v σ = subst (_→v_ _) (sym (/-sub-↑ b _ σ)) (cont (a / σ) (b / σ ↑) (c /Val σ)) a₁→a₂ ·₁ b /→v σ = (a₁→a₂ /→v σ) ·₁ (b / σ) a ·₂ b₁→b₂ /→v σ = (a /Val σ) ·₂ (b₁→b₂ /→v σ) redSubstApp : RedSubstApp reduction (record { _/_ = _/_ }) redSubstApp = record { _/→1_ = _/→v_ } open RedSubstApp redSubstApp public hiding (_/→1_) renaming (_/→*_ to _/→v*_; _/↔_ to _/≡v_) -- Term substitutions in reductions/equivalences. module CbvSubstitution where open Substitution Sort using (termSubst; weaken; sub-commutes; varLiftSubLemmas) -- Application of renamings to reductions/equivalences. varSubstApp : CbvSubstApp (TermSubst.varLift termSubst) varSubstApp = record { /-sub-↑ = /-sub-↑ } where open LiftSubLemmas varLiftSubLemmas private module V = CbvSubstApp varSubstApp -- Weakening of one-step CBV reductions. weaken-→v : ∀ {n} {a b : Term n} → a →v b → weaken a →v weaken b weaken-→v a→b = a→b V./→v VarSubst.wk -- Weakening of CBV reductions. weaken-→v* : ∀ {n} {a b : Term n} → a →v* b → weaken a →v* weaken b weaken-→v* = gmap weaken weaken-→v -- Weakening of equivalences. weaken-≡v : ∀ {n} {a b : Term n} → a ≡v b → weaken a ≡v weaken b weaken-≡v = EqClos.gmap weaken weaken-→v -- Application of term substitutions to reductions/equivalences. termSubstApp : CbvSubstApp (TermSubst.termLift termSubst) termSubstApp = record { /-sub-↑ = λ a _ _ → sub-commutes a } open CbvSubstApp termSubstApp public ---------------------------------------------------------------------- -- Properties of the CBV reductions/equivalence -- Inclusions. →v⇒→v* = →1⇒→* reduction →v*⇒≡v = →*⇒↔ reduction →v⇒≡v = →1⇒↔ reduction -- CBV reduction is a preorder. →v*-predorder = →*-predorder reduction -- Preorder reasoning for CBV reduction. module →v*-Reasoning = →*-Reasoning reduction -- Terms together with CBV equivalence form a setoid. ≡v-setoid = ↔-setoid reduction -- Equational reasoning for CBV equivalence. module ≡v-Reasoning = ↔-Reasoning reduction ---------------------------------------------------------------------- -- Relationships between CBV reduction and full β-reduction -- One-step CBV reduction implies one-step β-reduction. →v⇒→β : ∀ {n} {a b : Term n} → a →v b → a →β b →v⇒→β (cont a b c) = cont a b _ →v⇒→β (a₁→a₂ ·₁ b) = →v⇒→β a₁→a₂ ·₁ b →v⇒→β (a ·₂ b₁→b₂) = _ ·₂ →v⇒→β b₁→b₂ -- CBV reduction implies parallel reduction. →v*⇒→β* : ∀ {n} {a b : Term n} → a →v* b → a →β* b →v*⇒→β* = map →v⇒→β -- CBV equivalence implies parallel equivalence. ≡v⇒≡p : ∀ {n} {a b : Term n} → a ≡v b → a ≡β b ≡v⇒≡p = EqClos.map →v⇒→β
{ "alphanum_fraction": 0.5599480327, "avg_line_length": 34.987012987, "ext": "agda", "hexsha": "4ece549f0d9ed7a25f7a6603588bddaf73564e1d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z", "max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/pts-agda", "max_forks_repo_path": "src/Pts/Reduction/Cbv.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/pts-agda", "max_issues_repo_path": "src/Pts/Reduction/Cbv.agda", "max_line_length": 78, "max_stars_count": 21, "max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/pts-agda", "max_stars_repo_path": "src/Pts/Reduction/Cbv.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z", "num_tokens": 1841, "size": 5388 }
module LocalVsImportedModuleClash where X = TODO--This-shouldn't-happen-if-the-scope-checker-does-it's-job
{ "alphanum_fraction": 0.7981651376, "avg_line_length": 21.8, "ext": "agda", "hexsha": "00f19139db5e95ac11ea6765d5bce948f511bafd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/LocalVsImportedModuleClash.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/LocalVsImportedModuleClash.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/LocalVsImportedModuleClash.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 33, "size": 109 }
{-# OPTIONS --without-K --safe #-} module Categories.NaturalTransformation.NaturalIsomorphism.Equivalence where -- a certain notion of equivalence between Natural Isomorphisms. open import Level open import Data.Product using (_×_; _,_; map; zip) open import Relation.Binary using (IsEquivalence) open import Categories.Category open import Categories.Functor using (Functor) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (_≃_) open import Categories.NaturalTransformation.Equivalence open NaturalIsomorphism private variable o ℓ e o′ ℓ′ e′ : Level C D : Category o ℓ e infix 4 _≅_ _≅_ : ∀ {F G : Functor C D} → (α β : NaturalIsomorphism F G) → Set _ α ≅ β = F⇒G α ≃ F⇒G β × F⇐G α ≃ F⇐G β ≅-isEquivalence : ∀ {F G : Functor C D} → IsEquivalence (_≅_ {F = F} {G = G}) ≅-isEquivalence {D = D} {F = F} {G = G} = record { refl = H.refl , H.refl ; sym = map (λ z → H.sym z) (λ z → H.sym z) -- eta expansion needed ; trans = zip (λ a b → H.trans a b) λ a b → H.trans a b -- ditto } where module H = Category.HomReasoning D
{ "alphanum_fraction": 0.6828358209, "avg_line_length": 33.5, "ext": "agda", "hexsha": "3a21fd58d9283c62191600b3e4d0210c3f235824", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Equivalence.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 354, "size": 1072 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.DiffInt where open import Cubical.HITs.SetQuotients open import Cubical.Foundations.Prelude open import Cubical.Data.Int.MoreInts.DiffInt renaming (ℤ to ℤType ; _+_ to _+ℤ_ ; _-_ to _-ℤ_) open import Cubical.Algebra.Group.Base open import Cubical.Algebra.Semigroup.Base open import Cubical.Algebra.Monoid.Base open GroupStr ℤ-isGroup : IsGroup {G = ℤType} ([ 0 , 0 ]) (_+ℤ_) (-ℤ_) IsSemigroup.is-set (IsMonoid.isSemigroup (IsGroup.isMonoid ℤ-isGroup)) = ℤ-isSet IsSemigroup.assoc (IsMonoid.isSemigroup (IsGroup.isMonoid ℤ-isGroup)) = +ℤ-assoc IsMonoid.identity (IsGroup.isMonoid ℤ-isGroup) = λ x → (zero-identityʳ 0 x , zero-identityˡ 0 x) IsGroup.inverse ℤ-isGroup = λ x → (-ℤ-invʳ x , -ℤ-invˡ x) ℤ : Group₀ fst ℤ = ℤType 1g (snd ℤ) = [ 0 , 0 ] _·_ (snd ℤ) = _+ℤ_ inv (snd ℤ) = -ℤ_ isGroup (snd ℤ) = ℤ-isGroup
{ "alphanum_fraction": 0.722095672, "avg_line_length": 35.12, "ext": "agda", "hexsha": "f9fd62d140f794d4abc8e3d95194cf98918d6e2a", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_line_length": 97, "max_stars_count": 301, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 332, "size": 878 }
open import Common.Size postulate A : Set f : Size → A -- k' < k < j <= i + 2 =/=> ∃ l < i test : ∀ i (j : Size< (↑ ↑ ↑ i)) (k : Size< j) (k' : Size< k) → Size → Set → (((l : Size< i) → A) → A) → A test i j k k' _ _ ret = ret λ l → f l
{ "alphanum_fraction": 0.4338842975, "avg_line_length": 24.2, "ext": "agda", "hexsha": "e8ab94c35738b9dbc95c4424446f70b24138da39", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1523d.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1523d.agda", "max_line_length": 106, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1523d.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 109, "size": 242 }
module RTP where open import RTN public {- data Bool : Set where False : Bool True : Bool -} postulate Int : Set String : Set Float : Set Char : Set {-# BUILTIN FLOAT Float #-} {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} -- postulate primShowBool : Bool -> String postulate primShowInt : Int -> String postulate primShowChar : Char -> String postulate primStringAppend : String -> String -> String postulate primStringReverse : String -> String -- postulate primStringToList : String -> List Char -- postulate primStringFromList -- Int stuff postulate primIntZero : Int postulate primIntOne : Int postulate primIntSucc : Int -> Int postulate primNatToInt : Nat -> Int postulate primIntToNat : Int -> Nat postulate primIntAdd : Int -> Int -> Int postulate primIntSub : Int -> Int -> Int postulate primIntMul : Int -> Int -> Int postulate primIntDiv : Int -> Int -> Int postulate primIntMod : Int -> Int -> Int
{ "alphanum_fraction": 0.6630218688, "avg_line_length": 23.3953488372, "ext": "agda", "hexsha": "d381f6a5bcd6c99a716a888f8b8dccaa24029a63", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "src/rts/RTP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "src/rts/RTP.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/rts/RTP.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 285, "size": 1006 }
open import Agda.Primitive using (lzero; lsuc; _⊔_; Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst) open import Relation.Binary using (Setoid) -- A formalization of raw syntax module Syntax where -- Syntactic classes data ObjectClass : Set where Ty Tm : ObjectClass data Class : Set where obj : ObjectClass → Class EqTy EqTm : Class -- Variable context shape infixl 6 _⊕_ data VShape : Set where 𝟘 : VShape 𝟙 : VShape _⊕_ : VShape → VShape → VShape data var : VShape → Set where var-here : var 𝟙 var-left : ∀ {γ δ} → var γ → var (γ ⊕ δ) var-right : ∀ {γ δ} → var δ → var (γ ⊕ δ) -- Metavariable context shapes infixl 9 _⊕ᵐᵛ_ data MShape : Set where 𝟘ᵐᵛ : MShape 𝟙ᵐᵛ : ∀ (cl : Class) (γ : VShape) → MShape _⊕ᵐᵛ_ : MShape → MShape → MShape infix 8 [_,_]∈_ data [_,_]∈_ : Class → VShape → MShape → Set where mv-here : ∀ cl γ → [ cl , γ ]∈ 𝟙ᵐᵛ cl γ mv-left : ∀ {𝕂 𝕄} cl γ → [ cl , γ ]∈ 𝕂 → [ cl , γ ]∈ 𝕂 ⊕ᵐᵛ 𝕄 mv-right : ∀ {𝕂 𝕄} cl γ → [ cl , γ ]∈ 𝕄 → [ cl , γ ]∈ 𝕂 ⊕ᵐᵛ 𝕄 -- Symbol signature record Signature : Set₁ where field symb : ObjectClass → Set -- a set of symbol names, one for each class symb-arg : ∀ {cl} → symb cl → MShape -- Expressions module Expression (𝕊 : Signature) where open Signature 𝕊 data Expr : Class → (𝕄 : MShape) → (γ : VShape) → Set Arg : ∀ (cl : Class) (𝕄 : MShape) (γ : VShape) (δ : VShape) → Set Arg cl 𝕄 γ δ = Expr cl 𝕄 (γ ⊕ δ) ExprObj : ∀ (cl : ObjectClass) (𝕄 : MShape) (γ : VShape) → Set ExprObj cl = Expr (obj cl) ExprTm = ExprObj Tm ExprTy = ExprObj Ty data Expr where expr-var : ∀ {𝕄} {γ} (x : var γ) → ExprTm 𝕄 γ expr-symb : ∀ {cl 𝕄 γ} (S : symb cl) → (es : ∀ {clⁱ γⁱ} (i : [ clⁱ , γⁱ ]∈ symb-arg S) → Arg clⁱ 𝕄 γ γⁱ) → ExprObj cl 𝕄 γ expr-meta : ∀ {cl 𝕄 γ} {γᴹ} (M : [ obj cl , γᴹ ]∈ 𝕄) → (ts : ∀ (i : var γᴹ) → ExprTm 𝕄 γ) → ExprObj cl 𝕄 γ expr-eqty : ∀ {γ} {𝕄} → Expr EqTy 𝕄 γ expr-eqtm : ∀ {γ} {𝕄} → Expr EqTm 𝕄 γ expr-meta-generic : ∀ {𝕄} {cl} {γ γᴹ} (M : [ cl , γᴹ ]∈ 𝕄) → Arg cl 𝕄 γ γᴹ expr-meta-generic {cl = obj _} M = expr-meta M (λ i → expr-var (var-right i)) expr-meta-generic {cl = EqTy} M = expr-eqty expr-meta-generic {cl = EqTm} M = expr-eqtm -- Syntactic equality module Equality {𝕊 : Signature} where open Signature 𝕊 open Expression 𝕊 infix 4 _≈_ data _≈_ : ∀ {cl 𝕄 γ} → Expr cl 𝕄 γ → Expr cl 𝕄 γ → Set where ≈-≡ : ∀ {cl 𝕄 γ} {t u : Expr cl 𝕄 γ} (ξ : t ≡ u) → t ≈ u ≈-symb : ∀ {cl 𝕄 γ} {S : symb cl} → {ds es : ∀ {cⁱ γⁱ} (i : [ cⁱ , γⁱ ]∈ symb-arg S) → Arg cⁱ 𝕄 γ γⁱ} (ξ : ∀ {cⁱ γⁱ} (i : [ cⁱ , γⁱ ]∈ symb-arg S) → ds i ≈ es i) → expr-symb S ds ≈ expr-symb S es ≈-meta : ∀ {cl 𝕄 γ} {γᴹ} {M : [ obj cl , γᴹ ]∈ 𝕄} → {ts us : ∀ (i : var γᴹ) → ExprTm 𝕄 γ} (ξ : ∀ i → ts i ≈ us i) → expr-meta M ts ≈ expr-meta M us ≈-refl : ∀ {cl 𝕄 γ} {t : Expr cl 𝕄 γ} → t ≈ t ≈-refl = ≈-≡ refl ≈-eqty : ∀ {𝕄 γ} {s t : Expr EqTy 𝕄 γ} → s ≈ t ≈-eqty {s = expr-eqty} {t = expr-eqty} = ≈-refl ≈-eqtm : ∀ {𝕄 γ} {s t : Expr EqTm 𝕄 γ} → s ≈ t ≈-eqtm {s = expr-eqtm} {t = expr-eqtm} = ≈-refl ≈-sym : ∀ {cl 𝕄 γ} {t u : Expr cl 𝕄 γ} → t ≈ u → u ≈ t ≈-sym (≈-≡ refl) = ≈-≡ refl ≈-sym (≈-symb ε) = ≈-symb (λ i → ≈-sym (ε i)) ≈-sym (≈-meta ε) = ≈-meta (λ i → ≈-sym (ε i)) ≈-trans : ∀ {cl 𝕄 γ} {t u v : Expr cl 𝕄 γ} → t ≈ u → u ≈ v → t ≈ v ≈-trans (≈-≡ refl) ξ = ξ ≈-trans (≈-symb ζ) (≈-≡ refl) = ≈-symb ζ ≈-trans (≈-symb ζ) (≈-symb ξ) = ≈-symb (λ i → ≈-trans (ζ i) (ξ i)) ≈-trans (≈-meta ζ) (≈-≡ refl) = ≈-meta ζ ≈-trans (≈-meta ζ) (≈-meta ξ) = ≈-meta (λ i → ≈-trans (ζ i) (ξ i)) -- the setoid of expressions Expr-setoid : ∀ (cl : Class) (𝕄 : MShape) (γ : VShape) → Setoid lzero lzero Expr-setoid cl 𝕄 γ = record { Carrier = Expr cl 𝕄 γ ; _≈_ = _≈_ ; isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } } infix 4 _%_≈_ _%_≈_ : ∀ (𝕊 : Signature) {cl 𝕄 γ} → (t u : Expression.Expr 𝕊 cl 𝕄 γ) → Set _%_≈_ 𝕊 = Equality._≈_ {𝕊 = 𝕊}
{ "alphanum_fraction": 0.5024538444, "avg_line_length": 31.2335766423, "ext": "agda", "hexsha": "aa2d0cc7e01fac4fc5512ce86b1377cc01333d77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/dependent-type-theory-syntax", "max_forks_repo_path": "src/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/dependent-type-theory-syntax", "max_issues_repo_path": "src/Syntax.agda", "max_line_length": 112, "max_stars_count": 7, "max_stars_repo_head_hexsha": "9b634d284a0ec5108c68489575194cd573f38908", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejbauer/dependent-type-theory-syntax", "max_stars_repo_path": "src/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-14T01:48:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T11:14:42.000Z", "num_tokens": 2033, "size": 4279 }
-- 2011-10-01 Andreas module EtaContractIrrelevant where import Common.Level data _≡_ {a}{A : Set a}(x : A) : A → Set where refl : x ≡ x subst : ∀ {a b}{A : Set a}(P : A → Set b){x y : A} → x ≡ y → P x → P y subst P refl x = x postulate Val : Set Pred = Val → Set fam : Pred → Set1 fam A = {a : Val} → .(A a) → Pred postulate π : (A : Pred)(F : fam A) → Pred πCong : {A A' : Pred}(A≡A' : A ≡ A') → {F : fam A } {F' : fam A'} (F≡F' : (λ {a} Aa → F {a = a} Aa) ≡ (λ {a} Aa → F' {a = a} (subst (λ A → A a) A≡A' Aa))) → π A F ≡ π A' F' πCong refl refl = refl -- needs eta-contraction for irrelevant functions F F'
{ "alphanum_fraction": 0.5085271318, "avg_line_length": 20.8064516129, "ext": "agda", "hexsha": "f289589a76bd8053bcf072f33e72c1c0812766f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/EtaContractIrrelevant.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/EtaContractIrrelevant.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/EtaContractIrrelevant.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 287, "size": 645 }
------------------------------------------------------------------------ -- Termination ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Prelude module Delay-monad.Termination {a} {A : Type a} where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Double-negation equality-with-J open import Monad equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity hiding (_∎; step-≡ˡ) -- Termination predicates. Terminates : Size → Delay A ∞ → A → Type a Terminates i x y = [ i ] now y ≈ x infix 4 _⇓_ _⇓_ : Delay A ∞ → A → Type a _⇓_ = Terminates ∞ -- Terminates i is pointwise isomorphic to Terminates ∞. -- -- Note that Terminates carves out an "inductive fragment" of [_]_≈_: -- the only "coinductive" constructor, later, does not target -- Terminates. Terminates↔⇓ : ∀ {i x y} → Terminates i x y ↔ x ⇓ y Terminates↔⇓ = record { surjection = record { logical-equivalence = record { to = to ; from = from _ } ; right-inverse-of = to∘from } ; left-inverse-of = from∘to } where to : ∀ {i x y} → Terminates i x y → x ⇓ y to now = now to (laterʳ p) = laterʳ (to p) from : ∀ i {x y} → x ⇓ y → Terminates i x y from _ now = now from _ (laterʳ p) = laterʳ (from _ p) to∘from : ∀ {i x y} (p : x ⇓ y) → to (from i p) ≡ p to∘from now = refl to∘from (laterʳ p) = cong laterʳ (to∘from p) from∘to : ∀ {i x y} (p : Terminates i x y) → from i (to p) ≡ p from∘to now = refl from∘to (laterʳ p) = cong laterʳ (from∘to p) -- The termination relation respects weak bisimilarity. -- -- This function cannot be made size-preserving in its second argument -- (unless A is uninhabited), see Delay-monad.Bisimilarity.Negative. ⇓-respects-≈ : ∀ {i x y z} → Terminates i x z → x ≈ y → Terminates i y z ⇓-respects-≈ = transitive-≈-now -- If a computation does not terminate, then it is weakly bisimilar -- to never. ¬⇓→⇑ : ∀ {i} x → ¬ (∃ λ y → x ⇓ y) → [ i ] never ≈ x ¬⇓→⇑ (now x) ¬⇓ = ⊥-elim (¬⇓ (_ , now)) ¬⇓→⇑ (later x) ¬⇓ = later λ { .force → ¬⇓→⇑ _ (¬⇓ ∘ Σ-map id laterʳ) } -- In the double-negation monad every computation is weakly -- bisimilar to either never or now something. ¬¬[⇑⊎⇓] : ∀ x → ¬¬ (never ≈ x ⊎ ∃ λ y → x ⇓ y) ¬¬[⇑⊎⇓] x = [ inj₂ , inj₁ ∘ ¬⇓→⇑ _ ] ⟨$⟩ excluded-middle -- If A is a set, then the termination predicate is propositional. Terminates-propositional : Is-set A → ∀ {i x y} → Is-proposition (Terminates i x y) Terminates-propositional A-set {i} = λ p q → irr p q refl where irr : ∀ {x y y′} (p : [ i ] now y ≈ x) (q : [ i ] now y′ ≈ x) (y≡y′ : y ≡ y′) → subst (([ i ]_≈ x) ∘ now) y≡y′ p ≡ q irr (laterʳ p) (laterʳ q) refl = cong laterʳ (irr p q refl) irr {y = y} now now y≡y = subst (([ i ]_≈ now y) ∘ now) y≡y now ≡⟨ cong (λ eq → subst (([ i ]_≈ now y) ∘ now) eq _) (A-set y≡y refl) ⟩ subst (([ i ]_≈ now y) ∘ now) refl now ≡⟨⟩ now ∎ -- If x terminates with y and z, then y is equal to z. termination-value-unique : ∀ {i x y z} → Terminates i x y → Terminates i x z → y ≡ z termination-value-unique now now = refl termination-value-unique (laterʳ p) (laterʳ q) = termination-value-unique p q -- If A is a set, then ∃ λ y → x ⇓ y is propositional. ∃-Terminates-propositional : Is-set A → ∀ {i x} → Is-proposition (∃ (Terminates i x)) ∃-Terminates-propositional A-set (y₁ , x⇓y₁) (y₂ , x⇓y₂) = Σ-≡,≡→≡ (termination-value-unique x⇓y₁ x⇓y₂) (Terminates-propositional A-set _ _)
{ "alphanum_fraction": 0.5641846811, "avg_line_length": 30.7131147541, "ext": "agda", "hexsha": "90a9c56d4e5697ac2e2f0caaedc335263a2d64cd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/delay-monad", "max_forks_repo_path": "src/Delay-monad/Termination.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/delay-monad", "max_issues_repo_path": "src/Delay-monad/Termination.agda", "max_line_length": 114, "max_stars_count": null, "max_stars_repo_head_hexsha": "495f9996673d0f1f34ce202902daaa6c39f8925e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/delay-monad", "max_stars_repo_path": "src/Delay-monad/Termination.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1410, "size": 3747 }
-- Module shadowing using generated modules for records and datatypes module Issue260a where module D where data D : Set where
{ "alphanum_fraction": 0.8046875, "avg_line_length": 21.3333333333, "ext": "agda", "hexsha": "8e7d1d6e7e3d0848dcb3d8c605adc5d3622baeeb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue260a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue260a.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue260a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 128 }
interleaved mutual data Nat : Set record IsNat (n : Nat) : Set isNat : (n : Nat) → IsNat n
{ "alphanum_fraction": 0.612244898, "avg_line_length": 16.3333333333, "ext": "agda", "hexsha": "8469fbf473a80fe1dea33927f712d7b86720d5fa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2858-missing.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2858-missing.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2858-missing.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 37, "size": 98 }
module string-thms where open import bool open import eq open import string postulate =string-refl : (s : string) → s =string s ≡ tt =string-to-≡ : (a b : string) → a =string b ≡ tt → a ≡ b ≡string-to-= : (a b : string) → a ≡ b → a =string b ≡ tt ≡string-to-= a .a refl = =string-refl a
{ "alphanum_fraction": 0.612244898, "avg_line_length": 22.6153846154, "ext": "agda", "hexsha": "ac56c512f083fde31f78af97642aa795494fdc3b", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "string-thms.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "string-thms.agda", "max_line_length": 58, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "string-thms.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 111, "size": 294 }
{-# OPTIONS --without-K #-} module hott.truncation.core where open import sum open import equality open import function.core open import function.fibration open import function.extensionality open import function.isomorphism open import sets.nat.core open import hott.equivalence open import hott.level.core open import hott.level.closure module _ {i j i' j'}{A : Set i}{A' : Set i'} {B : A → Set j}{B' : A' → Set j'} (f : A → A') (g : (a : A) → B a → B' (f a)) where private E E' : Set _ E = Σ A B E' = Σ A' B' p : E → A p = proj₁ p' : E' → A' p' = proj₁ t : E → E' t (a , b) = (f a , g a b) module _ (f-equiv : weak-equiv f) (t-equiv : weak-equiv t) where private φ : A ≅ A' φ = ≈⇒≅ (f , f-equiv) τ : E ≅ E' τ = ≈⇒≅ (t , t-equiv) lem : (a : A)(e : E) → (p e ≡ a) ≅ (p' (t e) ≡ f a) lem a e = iso≡ φ fib-equiv : (a : A) → B a ≅ B' (f a) fib-equiv a = sym≅ (fib-iso a) ·≅ Σ-ap-iso τ (lem a) ·≅ fib-iso (f a) postulate Trunc : ∀ {i} → ℕ → Set i → Set i Trunc-level : ∀ {i} n {X : Set i} → h n (Trunc n X) [_] : ∀ {i n} {X : Set i} → X → Trunc n X Trunc-ext : ∀ {i j} n (X : Set i)(Y : Set j) → (Trunc n X → Y) → X → Y Trunc-ext n X Y f x = f [ x ] postulate Trunc-univ : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y → weak-equiv (Trunc-ext n X Y) Trunc-elim-iso : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y → (Trunc n X → Y) ≅ (X → Y) Trunc-elim-iso n X Y hY = ≈⇒≅ (Trunc-ext n X Y , Trunc-univ n X Y hY) Trunc-elim : ∀ {i j} n (X : Set i)(Y : Set j) → h n Y → (X → Y) → (Trunc n X → Y) Trunc-elim n X Y hY = invert (Trunc-elim-iso n X Y hY) Trunc-elim-β : ∀ {i j} n (X : Set i)(Y : Set j)(hY : h n Y) → (f : X → Y)(x : X) → Trunc-elim n X Y hY f [ x ] ≡ f x Trunc-elim-β n X Y hY f x = funext-inv (_≅_.iso₂ (Trunc-elim-iso n X Y hY) f) x module _ {i j} n {X : Set i} (Y : Trunc n X → Set j) (hY : (x : Trunc n X) → h n (Y x)) where private Z : Set _ Z = Σ (Trunc n X) Y hZ : h n Z hZ = Σ-level (Trunc-level n) hY Sec₂ : ∀ {k}{A : Set k} → (A → Trunc n X) → Set _ Sec₂ {A = A} r = (x : A) → Y (r x) Sec : ∀ {k} → Set k → Set _ Sec A = Σ (A → Trunc n X) Sec₂ τ : Sec (Trunc n X) ≅ Sec X τ = sym≅ ΠΣ-swap-iso ·≅ Trunc-elim-iso n X Z hZ ·≅ ΠΣ-swap-iso ψ : (r : Trunc n X → Trunc n X) → (Sec₂ r) ≅ Sec₂ (r ∘ [_]) ψ = fib-equiv {A = Trunc n X → Trunc n X}{A' = X → Trunc n X}{B = Sec₂} {B' = Sec₂} (Trunc-ext n X (Trunc n X)) (λ r g x → g [ x ]) (Trunc-univ n X (Trunc n X) (Trunc-level n)) (proj₂ (≅⇒≈ τ)) Trunc-dep-iso : Sec₂ (λ x → x) ≅ Sec₂ [_] Trunc-dep-iso = ψ (λ x → x) Trunc-dep-elim : ((x : X) → Y [ x ]) → (x : Trunc n X) → Y x Trunc-dep-elim = invert Trunc-dep-iso Trunc-dep-elim-β : (d : ((x : X) → Y [ x ])) → (x : X) → Trunc-dep-elim d [ x ] ≡ d x Trunc-dep-elim-β d = funext-inv (_≅_.iso₂ Trunc-dep-iso d)
{ "alphanum_fraction": 0.475848564, "avg_line_length": 27.8545454545, "ext": "agda", "hexsha": "1d848ff41537a68a0c30fc42e08bad375583e2a3", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/truncation/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/truncation/core.agda", "max_line_length": 87, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/truncation/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 1322, "size": 3064 }
module Human.Humanity where -- Use agda-prelude instead of agda-stdlib? open import Human.JS public open import Human.Unit public open import Human.Nat public open import Human.List public open import Human.Bool public open import Human.String public open import Human.IO public open import Human.Float public open import Human.Int public Lazy : ∀ (A : Set) → Set Lazy A = Unit → A then:_ : ∀ {A : Set} → A → Lazy A then: a = λ x → a else:_ : ∀ {A : Set} → A → Lazy A else: a = λ x → a if : ∀ {A : Set} → Bool → Lazy A → Lazy A → A if true t f = t unit if false t f = f unit init-to : ∀ {A : Set} → Nat → A → (Nat → A → A) → A init-to zero x fn = x init-to (suc i) x fn = init-to i (fn zero x) (λ i → fn (suc i)) {-# COMPILE JS init-to = A => n => x => fn => { for (var i = 0, l = n.toJSValue(); i < l; ++i) x = fn(agdaRTS.primIntegerFromString(String(i)))(x); return x; } #-} syntax init-to m x (λ i → b) = init x for i to m do: b init-from-to : ∀ {A : Set} → Nat → A → Nat → (Nat → A → A) → A init-from-to n x m f = init-to (m - n) x (λ i x → f (n + i) x) syntax init-from-to n x m (λ i → b) = init x for i from n to m do: b for-to : Nat → (Nat → IO Unit) → IO Unit for-to zero act = return unit for-to (suc n) act = act zero >> for-to n (λ i → act (suc i)) syntax for-from-to n m (λ i → b) = for i from n to m do: b for-from-to : Nat → Nat → (Nat → IO Unit) → IO Unit for-from-to n m f = for-to (m - n) (λ i → f (n + i)) syntax for-to m (λ i → b) = for i to m do: b _++_ : String → String → String _++_ = primStringAppend show : Nat → String show zero = "Z" show (suc n) = "S" ++ show n Program : Set Program = Lazy (IO Unit) _f+_ : Float → Float → Float _f+_ = primFloatPlus
{ "alphanum_fraction": 0.5913348946, "avg_line_length": 26.6875, "ext": "agda", "hexsha": "0bc67cac4dcae8e189789bb14f93897d84f532e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/JuiceMaker", "max_forks_repo_path": "src/Human/Humanity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/JuiceMaker", "max_issues_repo_path": "src/Human/Humanity.agda", "max_line_length": 163, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/JuiceMaker", "max_stars_repo_path": "src/Human/Humanity.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z", "num_tokens": 608, "size": 1708 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Interleavings of lists using setoid equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid) module Data.List.Relation.Ternary.Interleaving.Setoid {c ℓ} (S : Setoid c ℓ) where open import Level using (_⊔_) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Ternary.Interleaving.Properties import Data.List.Relation.Ternary.Interleaving as General open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definition Interleaving : List A → List A → List A → Set (c ⊔ ℓ) Interleaving = General.Interleaving _≈_ _≈_ ------------------------------------------------------------------------ -- Re-export the basic combinators open General hiding (Interleaving) public
{ "alphanum_fraction": 0.5245901639, "avg_line_length": 33.6551724138, "ext": "agda", "hexsha": "7a7e4c38af2e24f3ef077ae25f59374ec6aef65e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Ternary/Interleaving/Setoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 194, "size": 976 }
-- Andreas, 2015-12-29 record ⊤ : Set where data P : ⊤ → Set where c : P record{} test : (x : ⊤) (p : P x) → Set test _ c with ⊤ test _ y | z = ⊤ -- Expected error: with-clause pattern mismatch. -- The error should be printed nicely, like: -- -- With clause pattern x is not an instance of its parent pattern -- record {} -- when checking that the clause -- test c with Set -- test x y | z = ⊤ -- has type (x : ⊤) → P x → Set
{ "alphanum_fraction": 0.6087962963, "avg_line_length": 20.5714285714, "ext": "agda", "hexsha": "b3e9cfe766c17d3341a72036ac13263a61d73d61", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/WithClausePatternMismatch.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/WithClausePatternMismatch.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/WithClausePatternMismatch.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 142, "size": 432 }
{- Product of structures S and T: X ↦ S X × T X -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Product where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Foundations.SIP open import Cubical.Data.Sigma private variable ℓ ℓ₁ ℓ₁' ℓ₂ ℓ₂' : Level ProductStructure : (S₁ : Type ℓ → Type ℓ₁) (S₂ : Type ℓ → Type ℓ₂) → Type ℓ → Type (ℓ-max ℓ₁ ℓ₂) ProductStructure S₁ S₂ X = S₁ X × S₂ X ProductEquivStr : {S₁ : Type ℓ → Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') {S₂ : Type ℓ → Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') → StrEquiv (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂') ProductEquivStr ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f) productUnivalentStr : {S₁ : Type ℓ → Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') (θ₁ : UnivalentStr S₁ ι₁) {S₂ : Type ℓ → Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') (θ₂ : UnivalentStr S₂ ι₂) → UnivalentStr (ProductStructure S₁ S₂) (ProductEquivStr ι₁ ι₂) productUnivalentStr {S₁ = S₁} ι₁ θ₁ {S₂} ι₂ θ₂ {X , s₁ , s₂} {Y , t₁ , t₂} e = compEquiv (Σ-cong-equiv (θ₁ e) (λ _ → θ₂ e)) ΣPath≃PathΣ productEquivAction : {S₁ : Type ℓ → Type ℓ₁} (α₁ : EquivAction S₁) {S₂ : Type ℓ → Type ℓ₂} (α₂ : EquivAction S₂) → EquivAction (ProductStructure S₁ S₂) productEquivAction α₁ α₂ e = Σ-cong-equiv (α₁ e) (λ _ → α₂ e) productTransportStr : {S₁ : Type ℓ → Type ℓ₁} (α₁ : EquivAction S₁) (τ₁ : TransportStr α₁) {S₂ : Type ℓ → Type ℓ₂} (α₂ : EquivAction S₂) (τ₂ : TransportStr α₂) → TransportStr (productEquivAction α₁ α₂) productTransportStr _ τ₁ _ τ₂ e (s₁ , s₂) = ΣPathP (τ₁ e s₁ , τ₂ e s₂)
{ "alphanum_fraction": 0.6711111111, "avg_line_length": 35.2941176471, "ext": "agda", "hexsha": "f9df3681868fd4561d9f99bf2bc12f618bed65f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Product.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 760, "size": 1800 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Group.EilenbergMacLane.WedgeConnectivity where open import Cubical.Algebra.Group.EilenbergMacLane.Base open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Algebra.Group.Base open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec; elim to trElim) open import Cubical.HITs.EilenbergMacLane1 open import Cubical.Algebra.AbGroup.Base open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.Data.Nat open import Cubical.HITs.Susp {- This file contains a direct construction of the wedge connectivity lemma for EM spaces. This direct construction gives nicer reductions and computes better than the more general theorem. The main results are in the module "wedgeConEM" at the end of this file. -} private variable ℓ ℓ' ℓ'' : Level -- One of the base cases, stated separately to avoid termination issues wedgeConFun' : (G : AbGroup ℓ) (H : AbGroup ℓ') (n : ℕ) → {A : EM-raw G (suc n) → EM-raw H (suc zero) → Type ℓ''} → ((x : _) (y : _) → isOfHLevel (suc n + suc zero) (A x y)) → (f : (x : _) → A ptEM-raw x) → (g : (x : _) → A x ptEM-raw) → f ptEM-raw ≡ g ptEM-raw → (x : _) (y : _) → A x y wedgeConFun'ᵣ : (G : AbGroup ℓ) (H : AbGroup ℓ') (n : ℕ) → {A : EM-raw G (suc n) → EM-raw H (suc zero) → Type ℓ''} → (hLev : ((x : _) (y : _) → isOfHLevel (suc n + suc zero) (A x y))) → (f : (x : _) → A ptEM-raw x) → (g : (x : _) → A x ptEM-raw) → (p : f ptEM-raw ≡ g ptEM-raw) → (x : _) → wedgeConFun' G H n hLev f g p x ptEM-raw ≡ g x wedgeConFun' G H zero {A = A} hlev f g p = elimSet _ (λ _ → isSetΠ λ _ → hlev _ _) f mainpath where I→A : (x : fst G) → (i : I) → A (emloop x i) embase I→A x i = hcomp (λ k → λ {(i = i0) → p (~ k) ; (i = i1) → p (~ k)}) (g (emloop x i)) SquareP2 : (x : _) (z : _) → SquareP (λ i j → A (emloop x i) (emloop z j)) (cong f (emloop z)) (cong f (emloop z)) (λ i → I→A x i) λ i → I→A x i SquareP2 x z = toPathP (isOfHLevelPathP' 1 (λ _ _ → hlev _ _ _ _) _ _ _ _) CubeP2 : (x : _) (g h : _) → PathP (λ k → PathP (λ j → PathP (λ i → A (emloop x i) (emcomp g h j k)) (f (emcomp g h j k)) (f (emcomp g h j k))) (λ i → SquareP2 x g i k) λ i → SquareP2 x ((snd (AbGroup→Group H) GroupStr.· g) h) i k) (λ _ i → I→A x i) λ j i → SquareP2 x h i j CubeP2 x g h = toPathP (isOfHLevelPathP' 1 (isOfHLevelPathP 2 (hlev _ _) _ _) _ _ _ _) mainpath : (x : _) → PathP (λ i → (y : EM₁ (AbGroup→Group H)) → A (emloop x i) y) f f mainpath x i embase = I→A x i mainpath x i (emloop z j) = SquareP2 x z i j mainpath x i (emcomp g h j k) = CubeP2 x g h k j i mainpath x i (emsquash y z p q r s j k' l) = mega i j k' l where mega : PathP (λ i → PathP (λ j → PathP (λ k → PathP (λ l → A (emloop x i) (emsquash y z p q r s j k l)) (mainpath x i y) (mainpath x i z)) (λ l → mainpath x i (p l)) λ l → mainpath x i (q l)) (λ k l → mainpath x i (r k l)) λ k l → mainpath x i (s k l)) (λ j mainpath l → f (emsquash y z p q r s j mainpath l)) λ j mainpath l → f (emsquash y z p q r s j mainpath l) mega = toPathP (isOfHLevelPathP' 1 (isOfHLevelPathP 2 (isOfHLevelPathP 2 (hlev _ _) _ _) _ _) _ _ _ _) wedgeConFun' G H (suc n) {A = A} hLev f g p north y = f y wedgeConFun' G H (suc n) {A = A} hLev f g p south y = subst (λ x → A x y) (merid ptEM-raw) (f y) wedgeConFun' G H (suc n) {A = A} hLev f g p (merid a i) y = mainₗ a y i module _ where llem₁ : g south ≡ subst (λ x₁ → A x₁ ptEM-raw) (merid ptEM-raw) (f ptEM-raw) llem₁ = (λ i → transp (λ j → A (merid ptEM-raw (j ∨ ~ i)) ptEM-raw) (~ i) (g (merid ptEM-raw (~ i)))) ∙ cong (subst (λ x₁ → A x₁ ptEM-raw) (merid ptEM-raw)) (sym p) llem₁' : Square (λ i → transp (λ j → A (merid ptEM-raw (i ∨ j)) ptEM-raw) i (g (merid ptEM-raw i))) refl (cong (subst (λ x → A x ptEM-raw) (merid ptEM-raw)) (sym p)) llem₁ llem₁' i j = hcomp (λ k → λ { (i = i0) → transp (λ z → A (merid ptEM-raw (j ∨ z)) ptEM-raw) j (g (merid ptEM-raw j)) ; (i = i1) → subst (λ x₁ → A x₁ ptEM-raw) (merid ptEM-raw) (p (~ k)) ; (j = i0) → (subst (λ x → A x ptEM-raw) (merid ptEM-raw)) (p (~ k ∨ ~ i))}) (transp (λ k → A (merid ptEM-raw (k ∨ ~ i ∧ j)) ptEM-raw) (~ i ∧ j) (g (merid ptEM-raw (~ i ∧ j)))) llem₂ : (λ i₁ → transp (λ j → A (merid ptEM-raw (i₁ ∧ j)) ptEM-raw) (~ i₁) (f ptEM-raw)) ≡ (λ i₁ → hcomp (λ k → λ { (i₁ = i0) → p (~ k) ; (i₁ = i1) → llem₁ k }) (g (merid ptEM-raw i₁))) llem₂ i j = hcomp (λ k → λ { (i = i0) → transp (λ j₁ → A (merid ptEM-raw (j ∧ j₁)) ptEM-raw) (~ j) (p (~ k)) ; (j = i0) → p (~ k) ; (j = i1) → llem₁' k i}) (transp (λ k → A (merid ptEM-raw ((i ∨ k) ∧ j)) ptEM-raw) (i ∨ ~ j) (g (merid ptEM-raw (i ∧ j)))) mainₗ : (a : _) (y : _) → PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid ptEM-raw) (f y)) mainₗ = wedgeConFun' G H n (λ _ _ → isOfHLevelPathP' (suc (n + 1)) (hLev _ _) _ _) (λ x i → transp (λ j → A (merid ptEM-raw (i ∧ j)) x) (~ i) (f x)) (λ x i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₁ k}) (g (merid x i))) llem₂ mainP : (y : _) → mainₗ y ptEM-raw ≡ λ i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₁ k}) (g (merid y i)) mainP y = wedgeConFun'ᵣ G H n (λ _ _ → isOfHLevelPathP' (suc (n + 1)) (hLev _ _) _ _) (λ x i → transp (λ j → A (merid ptEM-raw (i ∧ j)) x) (~ i) (f x)) (λ x i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₁ k}) (g (merid x i))) llem₂ y wedgeConFun'ᵣ G H zero {A = A} hLev f g p = elimProp _ (λ _ → hLev _ _ _ _) p wedgeConFun'ᵣ G H (suc n) {A = A} hLev f g p north = p wedgeConFun'ᵣ G H (suc n) {A = A} hLev f g p south = sym (llem₁ G H n hLev f g p ptEM-raw i0 ptEM-raw) wedgeConFun'ᵣ G H (suc n) {A = A} hLev f g p (merid a i) k = P k i where llem : _ llem i j = hcomp (λ k → λ { (i = i1) → g (merid a j) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → llem₁ G H n hLev f g p ptEM-raw i0 ptEM-raw (~ i ∧ k)}) (g (merid a j)) P : PathP (λ k → PathP (λ i → A (merid a i) ptEM-raw) (p k) (llem₁ G H n hLev f g p ptEM-raw i0 ptEM-raw (~ k))) (λ i → mainₗ G H n hLev f g p a i ptEM-raw a ptEM-raw i) λ i → g (merid a i) P = mainP G H n hLev f g p a i0 ptEM-raw a ◁ llem -- Here, the actual stuff gets proved. However an additional natural number is stuck into the context -- to convince the termination checker private wedgeConFun : (G : AbGroup ℓ) (H : AbGroup ℓ') (k n m : ℕ) → (n + m ≡ k) → {A : EM-raw G (suc n) → EM-raw H (suc m) → Type ℓ''} → ((x : _) (y : _) → isOfHLevel (suc n + suc m) (A x y)) → (f : (x : _) → A ptEM-raw x) → (g : (x : _) → A x ptEM-raw) → f ptEM-raw ≡ g ptEM-raw → (x : _) (y : _) → A x y wedgeconLeft : (G : AbGroup ℓ) (H : AbGroup ℓ') (k n m : ℕ) (P : n + m ≡ k) {A : EM-raw G (suc n) → EM-raw H (suc m) → Type ℓ''} → (hLev : ((x : _) (y : _) → isOfHLevel (suc n + suc m) (A x y))) → (f : (x : _) → A ptEM-raw x) → (g : (x : _) → A x ptEM-raw) → (p : f ptEM-raw ≡ g ptEM-raw) → (x : _) → wedgeConFun G H k n m P hLev f g p ptEM-raw x ≡ f x wedgeconRight : (G : AbGroup ℓ) (H : AbGroup ℓ') (k n m : ℕ) (P : n + m ≡ k) {A : EM-raw G (suc n) → EM-raw H (suc m) → Type ℓ''} → (hLev : ((x : _) (y : _) → isOfHLevel (suc n + suc m) (A x y))) → (f : (x : _) → A ptEM-raw x) → (g : (x : _) → A x ptEM-raw) → (p : f ptEM-raw ≡ g ptEM-raw) → (x : _) → wedgeConFun G H k n m P hLev f g p x ptEM-raw ≡ g x wedgeConFun G H k n zero P {A = A} hLev f g p = wedgeConFun' G H n hLev f g p wedgeConFun G H k zero (suc m) P {A = A} hLev f g p x y = wedgeConFun' H G (suc m) {A = λ x y → A y x} (λ x y → subst (λ n → isOfHLevel (2 + n) (A y x)) (+-comm 1 m) (hLev y x)) g f (sym p) y x wedgeConFun G H l (suc n) (suc m) P {A = A} hlev f g p north y = f y wedgeConFun G H l (suc n) (suc m) P {A = A} hlev f g p south y = subst (λ x → A x y) (merid ptEM-raw) (f y) wedgeConFun G H zero (suc n) (suc m) P {A = A} hlev f g p (merid a i) y = ⊥-path i where ⊥-path : PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid ptEM-raw) (f y)) ⊥-path = ⊥-rec (snotz P) wedgeConFun G H (suc l) (suc n) (suc m) P {A = A} hlev f g p (merid a i) y = mmain a y i module _ where llem₃ : g south ≡ (subst (λ x → A x ptEM-raw) (merid ptEM-raw) (f ptEM-raw)) llem₃ = ((λ i → transp (λ j → A (merid ptEM-raw (~ i ∨ j)) ptEM-raw) (~ i) (g (merid ptEM-raw (~ i))))) ∙ cong (subst (λ x → A x ptEM-raw) (merid ptEM-raw)) (sym p) llem₃' : Square (λ i → transp (λ j → A (merid ptEM-raw (~ i ∨ j)) ptEM-raw) (~ i) (g (merid ptEM-raw (~ i)))) (refl {x = subst (λ x → A x ptEM-raw) (merid ptEM-raw) (f ptEM-raw)}) llem₃ ((cong (transport (λ z → A (merid ptEM-raw z) ptEM-raw)) (sym p))) llem₃' i j = hcomp (λ k → λ { (i = i0) → transp (λ j₁ → A (merid ptEM-raw (~ j ∨ j₁)) ptEM-raw) (~ j) (g (merid ptEM-raw (~ j))) ; (i = i1) → subst (λ x → A x ptEM-raw) (merid ptEM-raw) (p (~ k)) ; (j = i1) → cong (transport (λ z → A (merid ptEM-raw z) ptEM-raw)) (sym p) (i ∧ k)}) (transp (λ j₁ → A (merid ptEM-raw ((~ j ∧ ~ i) ∨ j₁)) ptEM-raw) (~ j ∧ ~ i) (g (merid ptEM-raw (~ j ∧ ~ i)))) llem₄ : (λ i₁ → transp (λ j → A (merid ptEM-raw (j ∧ i₁)) ptEM-raw) (~ i₁) (f ptEM-raw)) ≡ (λ i₁ → hcomp (λ k → λ { (i₁ = i0) → p (~ k) ; (i₁ = i1) → llem₃ k }) (g (merid ptEM-raw i₁))) llem₄ i j = hcomp (λ k → λ { (i = i0) → transp (λ z → A (merid ptEM-raw (z ∧ j)) ptEM-raw) (~ j) (p (~ k)) ; (j = i0) → p (~ k) ; (j = i1) → llem₃' k (~ i)}) (transp (λ z → A (merid ptEM-raw ((i ∨ z) ∧ j)) ptEM-raw) (i ∨ ~ j) (g (merid ptEM-raw (i ∧ j)))) mmain : (a : _) (y : _) → PathP (λ i → A (merid a i) y) (f y) (subst (λ x → A x y) (merid ptEM-raw) (f y)) mmain = wedgeConFun G H l n (suc m) (cong predℕ P) (λ _ _ → isOfHLevelPathP' (suc (n + (suc (suc m)))) (hlev _ _) _ _) (λ x i → transp (λ j → A (merid ptEM-raw (j ∧ i)) x) (~ i) (f x)) (λ y i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₃ k}) (g (merid y i))) llem₄ mainR : (x : _) → mmain x ptEM-raw ≡ λ i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₃ k}) (g (merid x i)) mainR x = wedgeconRight G H l n (suc m) (cong predℕ P) (λ _ _ → isOfHLevelPathP' (suc (n + (suc (suc m)))) (hlev _ _) _ _) (λ x i → transp (λ j → A (merid ptEM-raw (j ∧ i)) x) (~ i) (f x)) (λ y i → hcomp (λ k → λ { (i = i0) → p (~ k) ; (i = i1) → llem₃ k}) (g (merid y i))) llem₄ x wedgeconLeft G H k zero zero P {A = A} hLev f g p _ = refl wedgeconLeft G H k (suc n) zero P {A = A} hLev f g p _ = refl wedgeconLeft G H k zero (suc m) P {A = A} hLev f g p x = wedgeConFun'ᵣ H G (suc m) (λ x₁ y → subst (λ n → (x₂ y₁ : A y x₁) → isOfHLevel (suc n) (x₂ ≡ y₁)) (+-comm 1 m) (hLev y x₁)) g f (λ i → p (~ i)) x wedgeconLeft G H k (suc n) (suc m) P {A = A} hLev f g p _ = refl wedgeconRight G H k n zero P {A = A} hLev f g p = wedgeConFun'ᵣ G H n hLev f g p wedgeconRight G H k zero (suc m) P {A = A} hLev f g p _ = refl wedgeconRight G H zero (suc n) (suc m) P {A = A} hLev f g p x = ⊥-rec (snotz P) wedgeconRight G H l (suc n) (suc m) P {A = A} hLev f g p north = p wedgeconRight G H l (suc n) (suc m) P {A = A} hLev f g p south = sym (llem₃ G H _ n m refl hLev f g p ptEM-raw i0 ptEM-raw) wedgeconRight G H (suc l) (suc n) (suc m) P {A = A} hLev f g p (merid a i) k = help k i where llem : _ llem i j = hcomp (λ k → λ { (i = i1) → g (merid a j) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → llem₃ G H l n m P hLev f g p ptEM-raw i0 ptEM-raw (~ i ∧ k)}) (g (merid a j)) help : PathP (λ k → PathP (λ i → A (merid a i) ptEM-raw) (p k) (llem₃ G H l n m P hLev f g p ptEM-raw i0 ptEM-raw (~ k))) (λ i → mmain G H l n m P hLev f g p a i north a north i) (cong g (merid a)) help = mainR G H l n m P hLev f g p a i0 ptEM-raw a ◁ llem module wedgeConEM (G : AbGroup ℓ) (H : AbGroup ℓ') (n m : ℕ) {A : EM-raw G (suc n) → EM-raw H (suc m) → Type ℓ''} (hLev : ((x : _) (y : _) → isOfHLevel (suc n + suc m) (A x y))) (f : (x : _) → A ptEM-raw x) (g : (x : _) → A x ptEM-raw) (p : f ptEM-raw ≡ g ptEM-raw) where fun : (x : EM-raw G (suc n)) (y : EM-raw H (suc m)) → A x y fun = wedgeConFun G H (n + m) n m refl hLev f g p left : (x : EM-raw H (suc m)) → fun ptEM-raw x ≡ f x left = wedgeconLeft G H (n + m) n m refl hLev f g p right : (x : EM-raw G (suc n)) → fun x ptEM-raw ≡ g x right = wedgeconRight G H (n + m) n m refl hLev f g p
{ "alphanum_fraction": 0.4651550981, "avg_line_length": 50.2727272727, "ext": "agda", "hexsha": "1a9ae3a272fbd5aafc260206d65287f215888be2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/WedgeConnectivity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/WedgeConnectivity.agda", "max_line_length": 122, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/EilenbergMacLane/WedgeConnectivity.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 5863, "size": 14378 }
-- Andreas, 2014-10-23 -- If you must, you can split on a shadowed hidden var... data ℕ : Set where zero : ℕ suc : ℕ → ℕ f : {n n : ℕ} → Set₁ f = Set where g : {n n : ℕ} → Set → Set g _ = {!.n!}
{ "alphanum_fraction": 0.5142857143, "avg_line_length": 15, "ext": "agda", "hexsha": "9feaf4e701b89bf44d65d3876ed5e829d209c7e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/interaction/Issue1325b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/interaction/Issue1325b.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue1325b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 88, "size": 210 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.Block as Block import LibraBFT.Impl.Consensus.ConsensusTypes.QuorumCert as QuorumCert open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Hash open import Util.Prelude module LibraBFT.Impl.Consensus.LedgerRecoveryData where postulate -- TODO-2: compareX, sortBy, findIndex, deleteAt, find compareX : (Epoch × Round) → (Epoch × Round) → Ordering sortBy : (Block → Block → Ordering) → List Block → List Block findIndex : (Block → Bool) → List Block → Maybe ℕ deleteAt : ℕ → List Block → List Block find : (QuorumCert → Bool) → List QuorumCert -> Maybe QuorumCert findRoot : List Block → List QuorumCert → LedgerRecoveryData → Either ErrLog (RootInfo × List Block × List QuorumCert) findRoot blocks0 quorumCerts0 (LedgerRecoveryData∙new storageLedger) = do (rootId , (blocks1 , quorumCerts)) ← if storageLedger ^∙ liEndsEpoch then (do genesis ← Block.makeGenesisBlockFromLedgerInfo storageLedger let genesisQC = QuorumCert.certificateForGenesisFromLedgerInfo storageLedger (genesis ^∙ bId) pure (genesis ^∙ bId , (genesis ∷ blocks0 , genesisQC ∷ quorumCerts0))) else pure (storageLedger ^∙ liConsensusBlockId , (blocks0 , quorumCerts0)) let sorter : Block → Block → Ordering sorter bl br = compareX (bl ^∙ bEpoch , bl ^∙ bRound) (br ^∙ bEpoch , br ^∙ bRound) sortedBlocks = sortBy sorter blocks1 rootIdx ← maybeS (findIndex (λ x → x ^∙ bId == rootId) sortedBlocks) (Left fakeErr) -- ["unable to find root", show rootId] (pure ∘ id) rootBlock ← maybeS (sortedBlocks !? rootIdx) (Left fakeErr) -- ["sortedBlocks !? rootIdx"] (pure ∘ id) let blocks = deleteAt rootIdx sortedBlocks rootQuorumCert ← maybeS (find (λ x → x ^∙ qcCertifiedBlock ∙ biId == rootBlock ^∙ bId) quorumCerts) (Left fakeErr) -- ["No QC found for root", show rootId] (pure ∘ id) rootLedgerInfo ← maybeS (find (λ x → x ^∙ qcCommitInfo ∙ biId == rootBlock ^∙ bId) quorumCerts) (Left fakeErr) -- ["No LI found for root", show rootId] (pure ∘ id) pure (RootInfo∙new rootBlock rootQuorumCert rootLedgerInfo , blocks , quorumCerts) {- where here t = "LedgerRecoveryData":"findRoot":t deleteAt idx xs = lft ++ tail rgt where (lft, rgt) = splitAt idx xs tail = \case [] -> []; (_:xs) -> xs -}
{ "alphanum_fraction": 0.6699716714, "avg_line_length": 44.8253968254, "ext": "agda", "hexsha": "ff05293907015c90b7dfbf1e93b2a4cd5a6aecf6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/LedgerRecoveryData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/LedgerRecoveryData.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/LedgerRecoveryData.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 851, "size": 2824 }
{-# OPTIONS --without-K --safe #-} -- a categorical (i.e. non-skeletal) version of Lawvere Theory, -- as per https://ncatlab.org/nlab/show/Lawvere+theory module Categories.Theory.Lawvere where open import Data.Nat using (ℕ) open import Data.Product using (Σ; _,_) open import Level open import Categories.Category.Cartesian.Structure open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Instance.Setoids open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-CartesianCategory) open import Categories.Category.Product open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Cartesian open import Categories.Functor.Cartesian.Properties import Categories.Morphism as Mor open import Categories.NaturalTransformation using (NaturalTransformation) private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level record FiniteProduct (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where field T : CartesianCategory o ℓ e module T = CartesianCategory T open Mor T.U field generic : T.Obj field obj-iso-to-generic-power : ∀ x → Σ ℕ (λ n → x ≅ T.power generic n) record LT-Hom (T₁ : FiniteProduct o ℓ e) (T₂ : FiniteProduct o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module T₁ = FiniteProduct T₁ module T₂ = FiniteProduct T₂ field cartF : CartesianF T₁.T T₂.T module cartF = CartesianF cartF LT-id : {A : FiniteProduct o ℓ e} → LT-Hom A A LT-id = record { cartF = idF-CartesianF _ } LT-∘ : {A : FiniteProduct o ℓ e} {B : FiniteProduct o′ ℓ′ e′} {C : FiniteProduct o″ ℓ″ e″} → LT-Hom B C → LT-Hom A B → LT-Hom A C LT-∘ G H = record { cartF = ∘-CartesianF (cartF G) (cartF H) } where open LT-Hom record T-Algebra (FP : FiniteProduct o ℓ e) : Set (o ⊔ ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) where private module FP = FiniteProduct FP field cartF : CartesianF FP.T (Setoids-CartesianCategory ℓ′ e′) module cartF = CartesianF cartF mod : Functor FP.T.U (Setoids ℓ′ e′) mod = cartF.F
{ "alphanum_fraction": 0.6932876041, "avg_line_length": 29.5797101449, "ext": "agda", "hexsha": "9ab04215902086144c88112aa3616eac5c15994b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Theory/Lawvere.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Theory/Lawvere.agda", "max_line_length": 109, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Theory/Lawvere.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 657, "size": 2041 }
{-# OPTIONS --without-K --safe #-} module Data.Maybe.Base where open import Level data Maybe (A : Type a) : Type a where nothing : Maybe A just : A → Maybe A maybe : {B : Maybe A → Type b} → B nothing → ((x : A) → B (just x)) → (x : Maybe A) → B x maybe b f nothing = b maybe b f (just x) = f x mapMaybe : (A → B) → Maybe A → Maybe B mapMaybe f nothing = nothing mapMaybe f (just x) = just (f x) infixr 2 _|?_ _|?_ : Maybe A → A → A nothing |? x = x just x |? _ = x
{ "alphanum_fraction": 0.5755693582, "avg_line_length": 21, "ext": "agda", "hexsha": "8d62b5fe992895f60b313067cd9abef750feb427", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Maybe/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Maybe/Base.agda", "max_line_length": 89, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Maybe/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 173, "size": 483 }
{-# OPTIONS --cubical --safe #-} -- First and second species counterpoint module Counterpoint where open import Data.Bool using (Bool; true; false; if_then_else_; _∨_; _∧_; not) open import Data.Fin using (Fin; #_) open import Data.Integer using (+_) open import Data.List using (List; []; _∷_; mapMaybe; map; zip; _++_; concatMap) open import Data.Maybe using (Maybe; just; nothing) open import Data.Nat using (suc; _+_; _<ᵇ_; compare; _∸_; ℕ; zero) renaming (_≡ᵇ_ to _==_) open import Data.Product using (_×_; _,_; proj₁; proj₂; uncurry) open import Data.Vec using ([]; _∷_; Vec; lookup; drop; reverse) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open import Music open import Note open import Pitch open import Interval open import Util using (pairs) ------------------------------------------------ -- First species -- Beginning must be the 1st, 5th, or 8th data BeginningError : Set where not158 : PitchInterval → BeginningError checkBeginning : PitchInterval → Maybe BeginningError checkBeginning pi@(_ , i) = if ((i == per1) ∨ (i == per5) ∨ (i == per8)) then nothing else just (not158 pi) ------------------------------------------------ -- Intervals in middle bars must be consonant and non-unison data IntervalError : Set where dissonant : Upi → IntervalError unison : Pitch → IntervalError intervalCheck : PitchInterval → Maybe IntervalError intervalCheck (p , i) with isConsonant i | isUnison i intervalCheck (p , i) | false | _ = just (dissonant i) intervalCheck (p , i) | _ | true = just (unison p) intervalCheck (p , i) | _ | _ = nothing checkIntervals : List PitchInterval → List IntervalError checkIntervals = mapMaybe intervalCheck ------------------------------------------------ -- Perfect intervals must not approached by parallel or similar motion data Motion : Set where contrary : Motion parallel : Motion similar : Motion oblique : Motion motion : PitchInterval → PitchInterval → Motion motion (p , i) (q , j) = let p' = p + i; q' = q + j in if i == j then parallel else (if (p == q) ∨ (p' == q') then oblique else (if p <ᵇ q then (if p' <ᵇ q' then similar else contrary) else (if p' <ᵇ q' then contrary else similar))) data MotionError : Set where parallel : PitchInterval → PitchInterval → MotionError similar : PitchInterval → PitchInterval → MotionError motionCheck : PitchInterval → PitchInterval → Maybe MotionError motionCheck i1 i2 with motion i1 i2 | isPerfect (proj₂ i2) motionCheck i1 i2 | contrary | _ = nothing motionCheck i1 i2 | oblique | _ = nothing motionCheck i1 i2 | parallel | false = nothing motionCheck i1 i2 | parallel | true = just (parallel i1 i2) motionCheck i1 i2 | similar | false = nothing motionCheck i1 i2 | similar | true = just (similar i1 i2) checkMotion : List PitchInterval → List MotionError checkMotion = mapMaybe (uncurry motionCheck) ∘ pairs ------------------------------------------------ -- Ending must be the 1st or 8th approached by a cadence data EndingError : Set where not18 : PitchInterval → EndingError not27 : PitchInterval → EndingError tooShort : List PitchInterval → EndingError endingCheck : PitchInterval → PitchInterval → Maybe EndingError endingCheck pi1@(p , i) (q , 0) = if ((p + 1 == q) ∧ (i == min3)) then nothing else just (not27 pi1) endingCheck pi1@(p , i) (q , 12) = if ((q + 2 == p) ∧ (i == maj6) ∨ (p + 1 == q) ∧ (i == min10)) then nothing else just (not27 pi1) endingCheck pi1 pi2 = just (not18 pi2) checkEnding : List PitchInterval → PitchInterval → Maybe EndingError checkEnding [] _ = just (tooShort []) checkEnding (p ∷ []) q = endingCheck p q checkEnding (p ∷ ps) q = checkEnding ps q ------------------------------------------------ -- Correct first species counterpoint record FirstSpecies : Set where constructor firstSpecies field firstBar : PitchInterval middleBars : List PitchInterval lastBar : PitchInterval beginningOk : checkBeginning firstBar ≡ nothing intervalsOk : checkIntervals middleBars ≡ [] motionOk : checkMotion (firstBar ∷ middleBars) ≡ [] -- no need to include the last bar, -- since endingOK guarantees contrary motion in the ending endingOk : checkEnding middleBars lastBar ≡ nothing ------------------------------------------------ -- Second Species PitchInterval2 : Set PitchInterval2 = Pitch × Upi × Upi strongBeat : PitchInterval2 → PitchInterval strongBeat (p , i , _) = p , i weakBeat : PitchInterval2 → PitchInterval weakBeat (p , _ , i) = p , i expandPitchInterval2 : PitchInterval2 → List PitchInterval expandPitchInterval2 (p , i , j) = (p , i) ∷ (p , j) ∷ [] expandPitchIntervals2 : List PitchInterval2 → List PitchInterval expandPitchIntervals2 = concatMap expandPitchInterval2 ------------------------------------------------ -- Beginning must be the 5th or 8th data BeginningError2 : Set where not58 : PitchInterval → BeginningError2 checkBeginning2 : PitchInterval → Maybe BeginningError2 checkBeginning2 pi@(_ , i) = if ((i == per5) ∨ (i == per8)) then nothing else just (not58 pi) checkEnding2 : List PitchInterval2 → PitchInterval → Maybe EndingError checkEnding2 [] _ = just (tooShort []) checkEnding2 (p ∷ []) q = endingCheck (weakBeat p) q checkEnding2 (_ ∷ p ∷ ps) q = checkEnding2 (p ∷ ps) q ------------------------------------------------ -- Strong beats must be consonant and non-unison checkStrongBeats : List PitchInterval2 → List IntervalError checkStrongBeats = checkIntervals ∘ map strongBeat ------------------------------------------------ -- Weak beats may be dissonant or unison checkWeakBeat : PitchInterval2 → Pitch → Maybe IntervalError checkWeakBeat (p , i , j) q with isConsonant j | isUnison j checkWeakBeat (p , i , j) q | false | _ = if isPassingTone (secondPitch (p , i)) (secondPitch (p , j)) q then nothing else just (dissonant j) checkWeakBeat (p , i , j) q | _ | true = if isOppositeStep (secondPitch (p , i)) (secondPitch (p , j)) q then nothing else just (unison p) checkWeakBeat (p , i , j) q | _ | _ = nothing checkWeakBeats : List PitchInterval2 → Pitch → List IntervalError checkWeakBeats [] p = [] checkWeakBeats pis@(_ ∷ qis) p = mapMaybe (uncurry checkWeakBeat) (zip pis (map (λ {(q , i , j) → proj₂ (pitchIntervalToPitchPair (q , i))}) qis ++ (p ∷ []))) ------------------------------------------------ -- Perfect intervals on strong beats must not be approached by parallel or similar motion checkMotion2 : List PitchInterval → List MotionError checkMotion2 [] = [] checkMotion2 (_ ∷ []) = [] checkMotion2 (p ∷ q ∷ ps) = checkMotion (p ∷ q ∷ []) ++ checkMotion2 ps ------------------------------------------------ -- Correct second species counterpoint record SecondSpecies : Set where constructor secondSpecies field firstBar : PitchInterval -- require counterpont to start with a rest, which is preferred middleBars : List PitchInterval2 lastBar : PitchInterval -- require counterpoint to end with only a single whole note, which is preferred beginningOk : checkBeginning2 firstBar ≡ nothing strongBeatsOk : checkStrongBeats middleBars ≡ [] weakBeatsOk : checkWeakBeats middleBars (secondPitch lastBar) ≡ [] motionOk : checkMotion2 (firstBar ∷ (expandPitchIntervals2 middleBars)) ≡ [] endingOk : checkEnding2 middleBars lastBar ≡ nothing
{ "alphanum_fraction": 0.6375049039, "avg_line_length": 35.9014084507, "ext": "agda", "hexsha": "211d10afce5b8e5ebb7a24f17ae2bb8fc67eb27d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Counterpoint.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Counterpoint.agda", "max_line_length": 114, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Counterpoint.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 2063, "size": 7647 }
{-# OPTIONS --rewriting #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite open import Agda.Builtin.Unit postulate A : Set a : A f : {X : Set} → X → A g : {X : Set} → A → X rew-fg : {X : Set} (a : A) → f (g {X} a) ≡ a {-# REWRITE rew-fg #-} test : f tt ≡ a test = refl
{ "alphanum_fraction": 0.575562701, "avg_line_length": 18.2941176471, "ext": "agda", "hexsha": "c822bf0bd547bb24aaa580453cf6bcff01b253f2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5923.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5923.agda", "max_line_length": 46, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5923.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 121, "size": 311 }
module VecFlip where open import AgdaPrelude goodNil : Vec Nat Zero goodNil = Nil Nat badNil : Vec Zero Nat badNil = Nil Nat
{ "alphanum_fraction": 0.7519379845, "avg_line_length": 11.7272727273, "ext": "agda", "hexsha": "38a1878175f00ef820335c837ec4e5664ee4b579", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "thesisExamples/VecFlip.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "thesisExamples/VecFlip.agda", "max_line_length": 23, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "thesisExamples/VecFlip.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 38, "size": 129 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.HomSequence where infix 15 _⊣|ᴳ infixr 10 _→⟨_⟩ᴳ_ data HomSequence {i} : (G : Group i) (H : Group i) → Type (lsucc i) where _⊣|ᴳ : (G : Group i) → HomSequence G G _→⟨_⟩ᴳ_ : (G : Group i) {H K : Group i} → (G →ᴳ H) → HomSequence H K → HomSequence G K HomSeq-++ : ∀ {i} {G H K : Group i} → HomSequence G H → HomSequence H K → HomSequence G K HomSeq-++ (_ ⊣|ᴳ) seq = seq HomSeq-++ (_ →⟨ φ ⟩ᴳ seq₁) seq₂ = _ →⟨ φ ⟩ᴳ HomSeq-++ seq₁ seq₂ HomSeq-snoc : ∀ {i} {G H K : Group i} → HomSequence G H → (H →ᴳ K) → HomSequence G K HomSeq-snoc seq φ = HomSeq-++ seq (_ →⟨ φ ⟩ᴳ _ ⊣|ᴳ) {- maps between two hom sequences -} infix 15 _↓|ᴳ infixr 10 _↓⟨_⟩ᴳ_ data HomSeqMap {i₀ i₁} : {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} → HomSequence G₀ H₀ → HomSequence G₁ H₁ → (G₀ →ᴳ G₁) → (H₀ →ᴳ H₁) → Type (lsucc (lmax i₀ i₁)) where _↓|ᴳ : {G₀ : Group i₀} {G₁ : Group i₁} (ξ : G₀ →ᴳ G₁) → HomSeqMap (G₀ ⊣|ᴳ) (G₁ ⊣|ᴳ) ξ ξ _↓⟨_⟩ᴳ_ : {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} → {φ : G₀ →ᴳ H₀} {seq₀ : HomSequence H₀ K₀} → {ψ : G₁ →ᴳ H₁} {seq₁ : HomSequence H₁ K₁} → (ξG : G₀ →ᴳ G₁) {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} → CommSquareᴳ φ ψ ξG ξH → HomSeqMap seq₀ seq₁ ξH ξK → HomSeqMap (G₀ →⟨ φ ⟩ᴳ seq₀) (G₁ →⟨ ψ ⟩ᴳ seq₁) ξG ξK HomSeqMap-snoc : ∀ {i₀ i₁} {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {φ₀ : H₀ →ᴳ K₀} {φ₁ : H₁ →ᴳ K₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} → HomSeqMap seq₀ seq₁ ξG ξH → CommSquareᴳ φ₀ φ₁ ξH ξK → HomSeqMap (HomSeq-snoc seq₀ φ₀) (HomSeq-snoc seq₁ φ₁) ξG ξK HomSeqMap-snoc (ξG ↓|ᴳ) □ = ξG ↓⟨ □ ⟩ᴳ _ ↓|ᴳ HomSeqMap-snoc (ξG ↓⟨ □₁ ⟩ᴳ seq) □₂ = ξG ↓⟨ □₁ ⟩ᴳ HomSeqMap-snoc seq □₂ {- equivalences between two hom sequences -} is-seqᴳ-equiv : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) is-seqᴳ-equiv (ξ ↓|ᴳ) = is-equiv (GroupHom.f ξ) is-seqᴳ-equiv (ξ ↓⟨ _ ⟩ᴳ seq) = is-equiv (GroupHom.f ξ) × is-seqᴳ-equiv seq is-seqᴳ-equiv-snoc : ∀ {i₀ i₁} {G₀ H₀ K₀ : Group i₀} {G₁ H₁ K₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {φ₀ : H₀ →ᴳ K₀} {φ₁ : H₁ →ᴳ K₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {ξK : K₀ →ᴳ K₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} {cs : CommSquareᴳ φ₀ φ₁ ξH ξK} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξK) → is-seqᴳ-equiv (HomSeqMap-snoc seq-map cs) is-seqᴳ-equiv-snoc {seq-map = ξG ↓|ᴳ} ξG-is-equiv ξH-is-equiv = ξG-is-equiv , ξH-is-equiv is-seqᴳ-equiv-snoc {seq-map = ξG ↓⟨ _ ⟩ᴳ seq} (ξG-is-equiv , seq-is-equiv) ξH-is-equiv = ξG-is-equiv , is-seqᴳ-equiv-snoc seq-is-equiv ξH-is-equiv private is-seqᴳ-equiv-head : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξG) is-seqᴳ-equiv-head {seq-map = ξ ↓|ᴳ} ise = ise is-seqᴳ-equiv-head {seq-map = ξ ↓⟨ _ ⟩ᴳ _} ise = fst ise is-seqᴳ-equiv-last : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} → is-seqᴳ-equiv seq-map → is-equiv (GroupHom.f ξH) is-seqᴳ-equiv-last {seq-map = ξ ↓|ᴳ} ise = ise is-seqᴳ-equiv-last {seq-map = _ ↓⟨ _ ⟩ᴳ rest} (_ , rest-ise) = is-seqᴳ-equiv-last rest-ise module is-seqᴳ-equiv {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {seq-map : HomSeqMap seq₀ seq₁ ξG ξH} (seq-map-is-equiv : is-seqᴳ-equiv seq-map) where head = is-seqᴳ-equiv-head seq-map-is-equiv last = is-seqᴳ-equiv-last seq-map-is-equiv HomSeqEquiv : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} (seq₀ : HomSequence G₀ H₀) (seq₁ : HomSequence G₁ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) → Type (lsucc (lmax i₀ i₁)) HomSeqEquiv seq₀ seq₁ ξG ξH = Σ (HomSeqMap seq₀ seq₁ ξG ξH) is-seqᴳ-equiv HomSeqEquiv-inverse : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (equiv : HomSeqEquiv seq₀ seq₁ ξG ξH) → HomSeqEquiv seq₁ seq₀ (GroupIso.g-hom (ξG , is-seqᴳ-equiv-head (snd equiv))) (GroupIso.g-hom (ξH , is-seqᴳ-equiv-last (snd equiv))) HomSeqEquiv-inverse ((ξ ↓|ᴳ) , ξ-ise) = (GroupIso.g-hom (ξ , ξ-ise) ↓|ᴳ) , is-equiv-inverse ξ-ise HomSeqEquiv-inverse ((ξ ↓⟨ □ ⟩ᴳ rest) , (ξ-ise , rest-ise)) = (GroupIso.g-hom (ξ , ξ-ise) ↓⟨ CommSquareᴳ-inverse-v □ ξ-ise (is-seqᴳ-equiv-head rest-ise) ⟩ᴳ fst rest-inverse-equiv) , is-equiv-inverse ξ-ise , snd rest-inverse-equiv where rest-inverse-equiv = HomSeqEquiv-inverse (rest , rest-ise) {- Doesn't seem useful. infix 15 _↕|ᴳ infixr 10 _↕⟨_⟩ᴳ_ _↕|ᴳ : ∀ {i} {G₀ G₁ : Group i} (iso : G₀ ≃ᴳ G₁) → HomSeqEquiv (G₀ ⊣|ᴳ) (G₁ ⊣|ᴳ) (fst iso) (fst iso) iso ↕|ᴳ = (fst iso ↓|ᴳ) , snd iso _↕⟨_⟩ᴳ_ : ∀ {i} {G₀ G₁ H₀ H₁ K₀ K₁ : Group i} → {φ : G₀ →ᴳ H₀} {seq₀ : HomSequence H₀ K₀} → {ψ : G₁ →ᴳ H₁} {seq₁ : HomSequence H₁ K₁} → (isoG : G₀ ≃ᴳ G₁) {isoH : H₀ ≃ᴳ H₁} {isoK : K₀ ≃ᴳ K₁} → HomCommSquare φ ψ (fst isoG) (fst isoH) → HomSeqEquiv seq₀ seq₁ (fst isoH) (fst isoK) → HomSeqEquiv (G₀ →⟨ φ ⟩ᴳ seq₀) (G₁ →⟨ ψ ⟩ᴳ seq₁) (fst isoG) (fst isoK) (ξG , hG-is-equiv) ↕⟨ sqr ⟩ᴳ (seq-map , seq-map-is-equiv) = (ξG ↓⟨ sqr ⟩ᴳ seq-map) , hG-is-equiv , seq-map-is-equiv -} private hom-seq-map-index-type : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → ℕ → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) hom-seq-map-index-type _ (_ ↓|ᴳ) = Lift ⊤ hom-seq-map-index-type O (_↓⟨_⟩ᴳ_ {φ = φ} {ψ = ψ} ξG {ξH} _ _) = CommSquareᴳ φ ψ ξG ξH hom-seq-map-index-type (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-map-index-type n seq-map abstract hom-seq-map-index : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (n : ℕ) (seq-map : HomSeqMap seq₀ seq₁ ξG ξH) → hom-seq-map-index-type n seq-map hom-seq-map-index _ (_ ↓|ᴳ) = lift tt hom-seq-map-index O (_ ↓⟨ □ ⟩ᴳ _) = □ hom-seq-map-index (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-map-index n seq-map private hom-seq-equiv-index-type : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → ℕ → HomSeqMap seq₀ seq₁ ξG ξH → Type (lmax i₀ i₁) hom-seq-equiv-index-type {ξG = ξG} O _ = is-equiv (GroupHom.f ξG) hom-seq-equiv-index-type (S _) (_ ↓|ᴳ) = Lift ⊤ hom-seq-equiv-index-type (S n) (_ ↓⟨ _ ⟩ᴳ seq-map) = hom-seq-equiv-index-type n seq-map abstract hom-seq-equiv-index : ∀ {i₀ i₁} {G₀ H₀ : Group i₀} {G₁ H₁ : Group i₁} {seq₀ : HomSequence G₀ H₀} {seq₁ : HomSequence G₁ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} (n : ℕ) (seq-equiv : HomSeqEquiv seq₀ seq₁ ξG ξH) → hom-seq-equiv-index-type n (fst seq-equiv) hom-seq-equiv-index O (seq-map , ise) = is-seqᴳ-equiv-head ise hom-seq-equiv-index (S _) ((_ ↓|ᴳ) , _) = lift tt hom-seq-equiv-index (S n) ((_ ↓⟨ _ ⟩ᴳ seq-map) , ise) = hom-seq-equiv-index n (seq-map , snd ise)
{ "alphanum_fraction": 0.5927419355, "avg_line_length": 40.4347826087, "ext": "agda", "hexsha": "57a8b8e2c0920ed035bb69bc78b745728dcca12c", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/HomSequence.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/HomSequence.agda", "max_line_length": 92, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/HomSequence.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 3765, "size": 7440 }
------------------------------------------------------------------------------ -- Conversion rules for inequalities ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Data.Nat.Inequalities.ConversionRules where open import Common.FOL.Relation.Binary.EqReasoning open import LTC-PCF.Base open import LTC-PCF.Data.Nat.Inequalities ------------------------------------------------------------------------------ private -- Before to prove some properties for lt it is convenient -- to descompose the behavior of the function step by step. -- Initially, we define the possible states (lt-s₁, -- lt-s₂, ...). Then we write down the proof for -- the execution step from the state p to the state q, e.g. -- -- proof₁→proof₂ : ∀ m n → lt-s₂ m n → lt-s₃ m n. -- The terms lt-00, lt-0S, lt-S0 and lt-SS show the use of the -- states lt-s₁, lt-s₂, ..., and the proofs associated with the -- execution steps. ---------------------------------------------------------------------- -- The steps of lt. -- Initially, the conversion rule fix-eq is applied. lt-s₁ : D → D → D lt-s₁ m n = lth (fix lth) · m · n -- First argument application. lt-s₂ : D → D lt-s₂ m = lam (λ n → if (iszero₁ n) then false else (if (iszero₁ m) then true else (fix lth · pred₁ m · pred₁ n))) -- Second argument application. lt-s₃ : D → D → D lt-s₃ m n = if (iszero₁ n) then false else (if (iszero₁ m) then true else (fix lth · pred₁ m · pred₁ n)) -- Reduction iszero₁ n ≡ b. lt-s₄ : D → D → D → D lt-s₄ m n b = if b then false else (if (iszero₁ m) then true else (fix lth · pred₁ m · pred₁ n)) -- Reduction iszero₁ n ≡ true. -- It should be -- lt-s₅ : D → D → D -- lt-s₅ m n = false -- but we do not give a name to this step. -- Reduction iszero₁ n ≡ false. lt-s₅ : D → D → D lt-s₅ m n = if (iszero₁ m) then true else (fix lth · pred₁ m · pred₁ n) -- Reduction iszero₁ m ≡ b. lt-s₆ : D → D → D → D lt-s₆ m n b = if b then true else (fix lth · pred₁ m · pred₁ n) -- Reduction iszero₁ m ≡ true. -- It should be -- lt-s₇ : D → D → D -- lt-s₇ m n = true -- but we do not give a name to this step. -- Reduction iszero₁ m ≡ false. lt-s₇ : D → D → D lt-s₇ m n = fix lth · pred₁ m · pred₁ n -- Reduction pred₁ (succ m) ≡ m. lt-s₈ : D → D → D lt-s₈ m n = fix lth · m · pred₁ n -- Reduction pred₁ (succ n) ≡ n. lt-s₉ : D → D → D lt-s₉ m n = fix lth · m · n ---------------------------------------------------------------------- -- The execution steps {- To prove the execution steps, e.g. proof₃→proof₄ : ∀ m n → lt-s₃ m n → lt-s₄ m n) we usually need to prove that C [m] ≡ C [n] (1) given that m ≡ n, (2) where (2) is a conversion rule usually. We prove (1) using subst : ∀ {x y} (A : D → Set) → x ≡ y → A x → A y where • P is given by λ t → C [m] ≡ C [t], • x ≡ y is given m ≡ n and • P x is given by C [m] ≡ C [m] (i.e. refl). -} -- Application of the conversion rule fix-eq. proof₀₋₁ : ∀ m n → fix lth · m · n ≡ lt-s₁ m n proof₀₋₁ m n = subst (λ x → x · m · n ≡ lth (fix lth) · m · n) (sym (fix-eq lth)) refl -- Application of the first argument. proof₁₋₂ : ∀ m n → lt-s₁ m n ≡ lt-s₂ m · n proof₁₋₂ m n = subst (λ x → x · n ≡ lt-s₂ m · n) (sym (beta lt-s₂ m)) refl -- Application of the second argument. proof₂₋₃ : ∀ m n → lt-s₂ m · n ≡ lt-s₃ m n proof₂₋₃ m n = beta (lt-s₃ m) n -- Reduction iszero n ≡ b using that proof. proof₃₋₄ : ∀ m n b → iszero₁ n ≡ b → lt-s₃ m n ≡ lt-s₄ m n b proof₃₋₄ m n .(iszero₁ n) refl = refl -- Reduction of iszero₁ n ≡ true using the conversion rule if-true. proof₄₊ : ∀ m n → lt-s₄ m n true ≡ false proof₄₊ m n = if-true false -- Reduction of iszero₁ n ≡ false ... using the conversion rule -- if-false. proof₄₋₅ : ∀ m n → lt-s₄ m n false ≡ lt-s₅ m n proof₄₋₅ m n = if-false (lt-s₅ m n) -- Reduction iszero₁ m ≡ b using that proof. proof₅₋₆ : ∀ m n b → iszero₁ m ≡ b → lt-s₅ m n ≡ lt-s₆ m n b proof₅₋₆ m n .(iszero₁ m) refl = refl -- Reduction of iszero₁ m ≡ true using the conversion rule if-true. proof₆₊ : ∀ m n → lt-s₆ m n true ≡ true proof₆₊ m n = if-true true -- Reduction of iszero₁ m ≡ false ... using the conversion rule -- if-false. proof₆₋₇ : ∀ m n → lt-s₆ m n false ≡ lt-s₇ m n proof₆₋₇ m n = if-false (lt-s₇ m n) -- Reduction pred (succ m) ≡ m using the conversion rule pred-S. proof₇₋₈ : ∀ m n → lt-s₇ (succ₁ m) n ≡ lt-s₈ m n proof₇₋₈ m n = subst (λ x → lt-s₈ x n ≡ lt-s₈ m n) (sym (pred-S m)) refl -- Reduction pred (succ n) ≡ n using the conversion rule pred-S. proof₈₋₉ : ∀ m n → lt-s₈ m (succ₁ n) ≡ lt-s₉ m n proof₈₋₉ m n = subst (λ x → lt-s₉ m x ≡ lt-s₉ m n) (sym (pred-S n)) refl ------------------------------------------------------------------------------ private X≮0 : ∀ n → n ≮ zero X≮0 n = fix lth · n · zero ≡⟨ proof₀₋₁ n zero ⟩ lt-s₁ n zero ≡⟨ proof₁₋₂ n zero ⟩ lt-s₂ n · zero ≡⟨ proof₂₋₃ n zero ⟩ lt-s₃ n zero ≡⟨ proof₃₋₄ n zero true iszero-0 ⟩ lt-s₄ n zero true ≡⟨ proof₄₊ n zero ⟩ false ∎ lt-00 : zero ≮ zero lt-00 = X≮0 zero lt-0S : ∀ n → zero < succ₁ n lt-0S n = fix lth · zero · (succ₁ n) ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩ lt-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) ⟩ lt-s₂ zero · (succ₁ n) ≡⟨ proof₂₋₃ zero (succ₁ n) ⟩ lt-s₃ zero (succ₁ n) ≡⟨ proof₃₋₄ zero (succ₁ n) false (iszero-S n) ⟩ lt-s₄ zero (succ₁ n) false ≡⟨ proof₄₋₅ zero (succ₁ n) ⟩ lt-s₅ zero (succ₁ n) ≡⟨ proof₅₋₆ zero (succ₁ n) true iszero-0 ⟩ lt-s₆ zero (succ₁ n) true ≡⟨ proof₆₊ zero (succ₁ n) ⟩ true ∎ lt-S0 : ∀ n → succ₁ n ≮ zero lt-S0 n = X≮0 (succ₁ n) lt-SS : ∀ m n → lt (succ₁ m) (succ₁ n) ≡ lt m n lt-SS m n = fix lth · (succ₁ m) · (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩ lt-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) ⟩ lt-s₂ (succ₁ m) · (succ₁ n) ≡⟨ proof₂₋₃ (succ₁ m) (succ₁ n) ⟩ lt-s₃ (succ₁ m) (succ₁ n) ≡⟨ proof₃₋₄ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩ lt-s₄ (succ₁ m) (succ₁ n) false ≡⟨ proof₄₋₅ (succ₁ m) (succ₁ n) ⟩ lt-s₅ (succ₁ m) (succ₁ n) ≡⟨ proof₅₋₆ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩ lt-s₆ (succ₁ m) (succ₁ n) false ≡⟨ proof₆₋₇ (succ₁ m) (succ₁ n) ⟩ lt-s₇ (succ₁ m) (succ₁ n) ≡⟨ proof₇₋₈ m (succ₁ n) ⟩ lt-s₈ m (succ₁ n) ≡⟨ proof₈₋₉ m n ⟩ lt-s₉ m n ∎
{ "alphanum_fraction": 0.4847649249, "avg_line_length": 32.6711711712, "ext": "agda", "hexsha": "912056fc1d84ae0339931ae237fc7032f4a1e9d6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/ConversionRules.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/ConversionRules.agda", "max_line_length": 87, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Nat/Inequalities/ConversionRules.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2687, "size": 7253 }
--{-# OPTIONS --with-K #-} open import Data open import Data.Tuple using (_⨯_ ; _,_) open import Logic.Predicate import Lvl open import Syntax.Number import Type as Meta -- `Constants` is the type of all possible constant terms. -- `Sort` is a subset of `Constants` that indicate the sorts of the type system (the types of types). -- `Axioms` pairs constant terms with types. -- `Rules` pairs product terms with types. module Formalization.PureTypeSystem (Constants : Meta.Type{0}) where -- TODO: I don't really have a reference for any of the definitions so they may be incorrect open import Numeral.Natural open import Numeral.Finite private variable ℓ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable d d₁ d₂ d₃ : ℕ data Term : ℕ → Meta.Type{0} where Apply : Term(d) → Term(d) → Term(d) Abstract : Term(d) → Term(𝐒(d)) → Term(d) Var : 𝕟(d) → Term(d) Constant : Constants → Term(d) Product : Term(d) → Term(𝐒(d)) → Term(d) Expression : Meta.Type{0} Expression = Term(0) module VarNumeralSyntax where -- Syntax for writing Var as a numeral. instance Term-from-ℕ : ∀{N} → Numeral(Term(N)) Numeral.restriction-ℓ ( Term-from-ℕ {N} ) = Numeral.restriction-ℓ ( 𝕟-from-ℕ {N} ) Numeral.restriction ( Term-from-ℕ {N} ) = Numeral.restriction ( 𝕟-from-ℕ {N} ) num ⦃ Term-from-ℕ {N} ⦄ (n) ⦃ proof ⦄ = Var(num n) module ExplicitLambdaSyntax where open VarNumeralSyntax public infixr 100 𝜆[_::_] Π[_::_] infixl 101 _←_ pattern 𝜆[_::_] d type expr = Term.Abstract{d} type expr pattern Π[_::_] d type expr = Term.Product{d} type expr pattern _←_ a b = Term.Apply a b module _ where var-𝐒 : Term(d) → Term(𝐒(d)) var-𝐒 (Apply f x) = Apply (var-𝐒(f)) (var-𝐒(x)) var-𝐒 (Abstract{d} type body) = Abstract{𝐒(d)} (var-𝐒 type) (var-𝐒(body)) var-𝐒 (Var{𝐒(d)} n) = Var{𝐒(𝐒(d))} (𝐒(n)) var-𝐒 (Constant c) = Constant c var-𝐒 (Product a b) = Product (var-𝐒 a) (var-𝐒 b) substituteVar0 : Term(d) → Term(𝐒(d)) → Term(d) substituteVar0 val (Apply f x) = Apply (substituteVar0 val f) (substituteVar0 val x) substituteVar0 val (Abstract type body) = Abstract (substituteVar0 val type) (substituteVar0 (var-𝐒 val) body) substituteVar0 val (Var 𝟎) = val substituteVar0 val (Var(𝐒 i)) = Var i substituteVar0 val (Constant c) = Constant c substituteVar0 val (Product a b) = Product (substituteVar0 val a) (substituteVar0 (var-𝐒 val) b) open import Relator.Equals private variable x y : Term(d) substituteVar0-var-𝐒 : (substituteVar0 y (var-𝐒 x) ≡ x) substituteVar0-var-𝐒 {d}{y}{Apply f x} rewrite substituteVar0-var-𝐒 {d}{y}{f} rewrite substituteVar0-var-𝐒 {d}{y}{x} = [≡]-intro substituteVar0-var-𝐒 {d}{y}{Abstract t x} rewrite substituteVar0-var-𝐒 {d}{y}{t} rewrite substituteVar0-var-𝐒 {𝐒 d}{var-𝐒 y}{x} = [≡]-intro substituteVar0-var-𝐒 {_}{_}{Var 𝟎} = [≡]-intro substituteVar0-var-𝐒 {_}{_}{Var(𝐒 _)} = [≡]-intro substituteVar0-var-𝐒 {_}{_}{Constant c} = [≡]-intro substituteVar0-var-𝐒 {d}{y}{Product t x} rewrite substituteVar0-var-𝐒 {d}{y}{t} rewrite substituteVar0-var-𝐒 {𝐒 d}{var-𝐒 y}{x} = [≡]-intro {-# REWRITE substituteVar0-var-𝐒 #-} module _ where -- postulate _β⥈*_ : Term(d) → Term(d) → Meta.Type{0} open import Relator.ReflexiveTransitiveClosure private variable f g x y : Term(d) -- β-reduction (beta) with its compatible closure over `Apply`. -- Reduces a term of form `f(x)` to `f[0 ≔ x]`. data _β⇴_ : Term(d₁) → Term(d₂) → Meta.Type{1} where β : ∀{f : Term(𝐒(d))}{x ty : Term(d)} → (Apply(Abstract ty (f))(x) β⇴ substituteVar0(x)(f)) cong-applyₗ : (f β⇴ g) → (Apply f(x) β⇴ Apply g(x)) cong-applyᵣ : (x β⇴ y) → (Apply f(x) β⇴ Apply f(y)) _β⇴*_ : Term(d) → Term(d) → Meta.Type _β⇴*_ = ReflexiveTransitiveClosure(_β⇴_) _β⥈_ : Term(d) → Term(d) → Meta.Type _β⥈_ = SymmetricClosure(_β⇴_) _β⥈*_ : Term(d) → Term(d) → Meta.Type _β⥈*_ = ReflexiveTransitiveClosure(_β⥈_) {- module _ where open import Data.Boolean open import Data.Boolean.Stmt open import Data.Option import Data.Option.Functions as Option open import Logic.Propositional open import Functional private variable T A B : Meta.Type{ℓ} private variable x : A private variable y : B private variable m m₁ m₂ : T private variable f : A → B open import Relator.Equals record MapContainer (A : Meta.Type{ℓ₁}) (B : A → Meta.Type{ℓ₂}) (Map : Meta.Type{ℓ₃}) : Meta.Type{Lvl.𝐒(ℓ₁) Lvl.⊔ Lvl.𝐒(ℓ₂) Lvl.⊔ ℓ₃} where field ∅ : Map has : A → Map → Bool get : (a : A) → Map → Option(B(a)) set : (a : A) → B(a) → Map → Map unset : A → Map → Map union : Map → Map → Map -- map : (B → B) → (Map → Map) _⊆_ : Map → Map → Meta.Type{0} _≡ₘ_ : Map → Map → Meta.Type{0} field get-of-∅ : (get x ∅ ≡ None) get-has : (Option.isSome(get x m) ≡ has x m) get-of-set : (get x (set x y m) ≡ Some(y)) get-of-unset : (get x (unset x m) ≡ None) get-of-union : (get x (union m₁ m₂) ≡ (get x m₁) Option.Same.orᵣ (get x m₂)) -- get-of-map : (get x (map f m) ≡ Option.map f(get x m)) submap-get : (m₁ ⊆ m₂) ↔ (∀{x} → (IsFalse(has x m₁) ∨ (get x m₁ ≡ get x m₂))) equiv-get : (m₁ ≡ₘ m₂) ↔ (∀{x} → (get x m₁ ≡ get x m₂)) -} open import Numeral.CoordinateVector open import Type.Dependent module Typing (Sort : ∀{d} → Term(d) → Meta.Type{0}) (Axioms : Constants → Expression → Meta.Type{0}) (Rules : ∀{d₁ d₂ d₃} → ∃(Sort{d₁}) → ∃(Sort{d₂}) → ∃(Sort{d₃}) → Meta.Type{0}) where data Context : ℕ → Meta.Type{0} where ∅ : Context(𝟎) _⊱_ : Context(d) → Term(d) → Context(𝐒(d)) get : (i : 𝕟(𝐒(d))) → Context(𝐒(d)) → Term(d) get 𝟎 (_ ⊱ x) = x get {𝐒 _} (𝐒 i) (l ⊱ _) = var-𝐒(get i l) private variable A A₁ A₂ B B₁ B₂ F F₁ F₂ X X₁ X₂ BX T T₁ T₂ : Term(d) private variable c : Constants private variable i i₁ i₂ : 𝕟(d) private variable s s₁ s₂ s₃ : ∃(Sort) private variable Γ Δ : Context(d) -- Subtyping rules. _<:_ = _β⥈*_ open import Data.Option open import Relator.Equals -- Typing rules. (TODO: I think there are some issues with the depth indexing) data _⊢_::_ : Context(d₁) → Term(d₂) → Term(d₃) → Meta.Type{1} where constants : (Axioms c A) → (Γ ⊢ (Constant{d₂} c) :: A) variables : (Γ ⊢ (get i Γ) :: ([∃]-witness s)) → (Γ ⊢ (Var i) :: (get i Γ)) weakening : (Γ ⊢ B :: ([∃]-witness s)) → (Γ ⊢ X :: A) → ((Γ ⊱ B) ⊢ X :: A) product : (Rules s₁ s₂ s₃) → (Γ ⊢ A :: ([∃]-witness s₁)) → ((Γ ⊱ A) ⊢ B :: ([∃]-witness s₂)) → (Γ ⊢ (Product A B) :: ([∃]-witness s₃)) application : (Γ ⊢ F :: Product A B) → (Γ ⊢ X :: A) → (Γ ⊢ Apply F X :: substituteVar0 X B) abstraction : (Γ ⊢ (Product A B) :: ([∃]-witness s)) → ((Γ ⊱ A) ⊢ F :: B) → (Γ ⊢ (Abstract A F) :: (Product A B)) -- conversion : (Γ ⊢ B :: Constant([∃]-witness s)) → (A <: B) → (Γ ⊢ X :: A) → (Γ ⊢ X :: B) {- 3: 6 4: 7 0: 3 1: 4 𝕟-to-ℕ (Wrapping.[−] i₁) ≡ 𝕟-to-ℕ (Wrapping.[−] i₂) -} data _≡d_ : Term(d₁) → Term(d₂) → Meta.Type{0} where application : (F₁ ≡d F₂) → (X₁ ≡d X₂) → (Apply F₁ X₁ ≡d Apply F₂ X₂) abstraction : (T₁ ≡d T₂) → (B₁ ≡d B₂) → Abstract T₁ B₁ ≡d Abstract T₂ B₂ var-left : (Var{𝐒(d₁)} {!d₁ −₀ d₂!} ≡d Var{𝐒(d₂)} 𝟎) var-right : (Var{𝐒(d₁)} 𝟎 ≡d Var{𝐒(d₂)} {!d₁ −₀ d₂!}) var-step : (Var i₁ ≡d Var i₂) → (Var(𝐒(i₁)) ≡d Var(𝐒(i₂))) constant : Constant{d₁} c ≡d Constant{d₂} c product : (A₁ ≡d A₂) → (B₁ ≡d B₂) → Product A₁ B₁ ≡d Product A₂ B₂ open import Logic.Propositional open import Syntax.Function open import Type.Dependent.Functions -- typing-substitution : ((set Var0 B (Γ ∪ Δ)) ⊢ A :: B) → ((Γ ∪ map(\(intro e p) → {!substituteVar0 X p!}) Δ) ⊢ (substituteVar0 X A) :: (substituteVar0 X B)) import Data.Either as Either open import Logic.Classical module _ ⦃ classical-sort : ∀{d}{c} → Classical(Sort{d} c) ⦄ -- (axioms-term-or-sort : ∀{A B} → (Axioms A B) → (Sort(B) ∨ ∃(d ↦ ∃{Obj = ∃(Sort{d})}(s ↦ Γ ⊢ B :: ([∃]-witness s))))) where sort-substituteVar0 : Sort(X) → Sort(A) → Sort(substituteVar0 X A) sort-substituteVar0 {A = Apply F X} _ sort-A = {!!} sort-substituteVar0 {A = Abstract T B} _ sort-A = {!!} sort-substituteVar0 {A = Var 𝟎} sort-X sort-A = sort-X sort-substituteVar0 {A = Var (𝐒 i)} _ sort-A = {!!} sort-substituteVar0 {A = Constant c} _ sort-A = {!sort-A!} sort-substituteVar0 {A = Product A B} _ sort-A = {!!} -- When a term has a type, the type is either a sort or its type is a sort. type-is-term-or-sort : (Γ ⊢ A :: B) → (Sort(B) ∨ ∃{Obj = ∃(d ↦ ∃(Sort{d}))}(s ↦ Γ ⊢ B :: ([∃]-witness([∃]-proof s)))) type-is-term-or-sort (constants {c} axiom) = {!!} type-is-term-or-sort (variables {s = s} ty) = [∨]-introᵣ ([∃]-intro ([∃]-intro _ ⦃ s ⦄) ⦃ ty ⦄) type-is-term-or-sort (weakening{s = s} pre post) = Either.mapRight ([∃]-map-proof (weakening{s = s} pre)) (type-is-term-or-sort post) type-is-term-or-sort (product{s₃ = s₃} r a b) = [∨]-introₗ ([∃]-proof s₃) type-is-term-or-sort (application {F = F} ab a) = {!!} type-is-term-or-sort (abstraction{s = s} ab f) = [∨]-introᵣ ([∃]-intro ([∃]-intro _ ⦃ s ⦄) ⦃ ab ⦄) {-type-is-term-or-sort (constants {c} axiom) = ? -- axioms-term-or-sort axiom type-is-term-or-sort (variables {s = s} ty) = [∨]-introᵣ {!!} type-is-term-or-sort (product{s₃ = s₃} r a b) = [∨]-introₗ ([∃]-proof s₃) type-is-term-or-sort (application {F = Apply F F₁} ab a) = {!!} type-is-term-or-sort (application {F = Abstract F F₁} (abstraction ab ab₁) a) = {!!} type-is-term-or-sort (application {F = Constant x} ab a) = {!!} type-is-term-or-sort (application {F = Product F F₁} ab a) = {!!} type-is-term-or-sort (abstraction{s = s} ab f) = [∨]-introᵣ ([∃]-intro s ⦃ ab ⦄) -} -- A supermap of the context have the same typings. -- typing-supercontext : (Γ ⊆ Δ) → ((Γ ⊢ A :: B) → (Δ ⊢ A :: B)) -- TODO: Confluence, subject reduction open import Data.Option.Equiv.Id open import Data.Option.Proofs open import Relator.Equals.Proofs open import Structure.Function open import Structure.Function.Domain hiding (Constant) open import Structure.Relator.Properties open import Structure.Setoid.Uniqueness open import Syntax.Transitivity instance Constant-injective : Injective(Constant{d}) Injective.proof Constant-injective [≡]-intro = [≡]-intro instance Var-injective : Injective(Var{d}) Injective.proof Var-injective [≡]-intro = [≡]-intro Productₗ-injective : ∀{ty₁ ty₂}{f₁ f₂} → (Product{d} ty₁ f₁ ≡ Product{d} ty₂ f₂) → (ty₁ ≡ ty₂) Productₗ-injective [≡]-intro = [≡]-intro Productᵣ-injective : ∀{ty₁ ty₂}{f₁ f₂} → (Product{d} ty₁ f₁ ≡ Product{d} ty₂ f₂) → (f₁ ≡ f₂) -- TODO: Here is an example of what axiom K does. If one had `Product ty f₁ ≡ Product ty f₂` instead, then it cannot pattern match on the identity because of `ty` being the same on both sides. Productᵣ-injective [≡]-intro = [≡]-intro Applyₗ-injective : ∀{f₁ f₂}{x₁ x₂} → (Apply{d} f₁ x₁ ≡ Apply{d} f₂ x₂) → (f₁ ≡ f₂) Applyₗ-injective [≡]-intro = [≡]-intro Applyᵣ-injective : ∀{f₁ f₂}{x₁ x₂} → (Apply{d} f₁ x₁ ≡ Apply{d} f₂ x₂) → (x₁ ≡ x₂) Applyᵣ-injective [≡]-intro = [≡]-intro Abstractₗ-injective : ∀{T₁ T₂}{body₁ body₂} → (Abstract{d} T₁ body₁ ≡ Abstract{d} T₂ body₂) → (T₁ ≡ T₂) Abstractₗ-injective [≡]-intro = [≡]-intro Abstractᵣ-injective : ∀{T₁ T₂}{body₁ body₂} → (Abstract{d} T₁ body₁ ≡ Abstract{d} T₂ body₂) → (body₁ ≡ body₂) Abstractᵣ-injective [≡]-intro = [≡]-intro open import Functional open import Logic.Predicate.Equiv import Structure.Relator.Function.Multi as Relator open import Structure.Operator -- Every typable term have an unique type when all constants and products also have an unique type. {-typing-uniqueness : Relator.Names.Function(1)(Axioms) → (∀{d₁ d₂ d₃ : ℕ} → Relator.Names.Function(2) ⦃ [≡∃]-equiv ⦄ ⦃ [≡∃]-equiv ⦄ ⦃ [≡∃]-equiv ⦄ (Rules{d₁}{d₂}{d₃})) → Unique(Γ ⊢ X ::_) typing-uniqueness ax rul (constants px) (constants py) = ax [≡]-intro px py typing-uniqueness ax rul (variables _ pix) (variables _ piy) = injective(Some) (transitivity(_≡_) (symmetry(_≡_) pix) piy) typing-uniqueness ax rul (product rx px px₁) (product ry py py₁) rewrite typing-uniqueness ax rul px py = rul (typing-uniqueness ax rul px py) (typing-uniqueness ax rul px₁ py₁) rx ry typing-uniqueness ax rul (application px px₁) (application py py₁) = congruence₁(substituteVar0 _) (Productᵣ-injective (typing-uniqueness ax rul px py)) typing-uniqueness ax rul (abstraction px px₁) (abstraction py py₁) = congruence₁(Product _) {!!} -- (typing-uniqueness ax rul px₁ {!!}) -- typing-uniqueness {𝐒 d} ax rul {x}{y} px (conversion py x₁ py₁) rewrite typing-uniqueness ax rul px py₁ = {!x!} -- typing-uniqueness {𝐒 d} ax rul (conversion px x px₁) py = {!!} -} {- typing-uniqueness : Relator.Names.Function(1)(Axioms) → (∀{d₁ d₂ d₃ : ℕ} → Relator.Names.Function(2) ⦃ [≡∃]-equiv ⦄ ⦃ [≡∃]-equiv ⦄ ⦃ [≡∃]-equiv ⦄ (Rules{d₁}{d₂}{d₃})) → (∀{d : ℕ} → Relator.Names.Function(2)(_⊢_::_ {d = d})) typing-uniqueness ax rul gam exp (constants px) (constants py) = ax (injective(Constant) exp) px py typing-uniqueness ax rul {x = Γ₁}{y = Γ₂} gam exp {y₁} {y₂} (variables _ pix) (variables _ piy) = injective(Some) $ Some y₁ 🝖[ _≡_ ]-[ pix ]-sym get _ Γ₁ 🝖[ _≡_ ]-[ congruence₂(get) (injective(Var) exp) gam ] get _ Γ₂ 🝖[ _≡_ ]-[ piy ] Some y₂ 🝖-end typing-uniqueness ax rul gam exp (product rx px px₁) (product ry py py₁) = rul XY AB rx ry where XY = typing-uniqueness ax rul gam (Productₗ-injective exp) px py AB = typing-uniqueness ax rul (congruence₃(push) (Productₗ-injective exp) XY gam) (Productᵣ-injective exp) px₁ py₁ typing-uniqueness ax rul gam exp (application px px₁) (application py py₁) = congruence₂(substituteVar0) (Applyᵣ-injective exp) (Productᵣ-injective (typing-uniqueness ax rul gam (Applyₗ-injective exp) px py)) typing-uniqueness ax rul gam exp (abstraction px px₁) (abstraction py py₁) = congruence₂(Product) {!!} {!!} where X₁X₂ = Abstractₗ-injective exp AB : _ Y₁Y₂ : _ Y₁Y₂ = typing-uniqueness ax rul (congruence₃(push) X₁X₂ AB gam) (Abstractᵣ-injective exp) px₁ py₁ AB = typing-uniqueness ax rul gam (congruence₂(Product) X₁X₂ Y₁Y₂) px py -- congruence₂(Product) (Abstractₗ-injective exp) (typing-uniqueness ax rul (congruence₃(push) (Abstractₗ-injective exp) (typing-uniqueness ax rul gam {!!} px py) gam) (Abstractᵣ-injective exp) px₁ py₁) -}
{ "alphanum_fraction": 0.6075992157, "avg_line_length": 45.6512345679, "ext": "agda", "hexsha": "b29cde43fc6a772c743963eff0a040b91a658476", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/PureTypeSystem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/PureTypeSystem.agda", "max_line_length": 287, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/PureTypeSystem.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5740, "size": 14791 }
------------------------------------------------------------------------ -- Vectors ------------------------------------------------------------------------ module Data.Vec where open import Data.Nat open import Data.Fin using (Fin; zero; suc) open import Data.List as List using (List) open import Data.Product using (_×_; _,_) ------------------------------------------------------------------------ -- Types infixr 5 _∷_ data Vec (a : Set) : ℕ → Set where [] : Vec a zero _∷_ : ∀ {n} (x : a) (xs : Vec a n) → Vec a (suc n) infix 4 _∈_ _[_]=_ data _∈_ {a : Set} : a → {n : ℕ} → Vec a n → Set where here : ∀ {n} {x} {xs : Vec a n} → x ∈ x ∷ xs there : ∀ {n} {x y} {xs : Vec a n} (x∈xs : x ∈ xs) → x ∈ y ∷ xs data _[_]=_ {a : Set} : {n : ℕ} → Vec a n → Fin n → a → Set where here : ∀ {n} {x} {xs : Vec a n} → x ∷ xs [ zero ]= x there : ∀ {n} {i} {x y} {xs : Vec a n} (xs[i]=x : xs [ i ]= x) → y ∷ xs [ suc i ]= x ------------------------------------------------------------------------ -- Some operations head : ∀ {a n} → Vec a (1 + n) → a head (x ∷ xs) = x tail : ∀ {a n} → Vec a (1 + n) → Vec a n tail (x ∷ xs) = xs [_] : ∀ {a} → a → Vec a 1 [ x ] = x ∷ [] infixr 5 _++_ _++_ : ∀ {a m n} → Vec a m → Vec a n → Vec a (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) map : ∀ {a b n} → (a → b) → Vec a n → Vec b n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs zipWith : ∀ {a b c n} → (a → b → c) → Vec a n → Vec b n → Vec c n zipWith _⊕_ [] [] = [] zipWith _⊕_ (x ∷ xs) (y ∷ ys) = (x ⊕ y) ∷ zipWith _⊕_ xs ys zip : ∀ {a b n} → Vec a n → Vec b n → Vec (a × b) n zip = zipWith _,_ replicate : ∀ {a n} → a → Vec a n replicate {n = zero} x = [] replicate {n = suc n} x = x ∷ replicate x foldr : ∀ {a} (b : ℕ → Set) {m} → (∀ {n} → a → b n → b (suc n)) → b zero → Vec a m → b m foldr b _⊕_ n [] = n foldr b _⊕_ n (x ∷ xs) = x ⊕ foldr b _⊕_ n xs foldr₁ : ∀ {a : Set} {m} → (a → a → a) → Vec a (suc m) → a foldr₁ _⊕_ (x ∷ []) = x foldr₁ _⊕_ (x ∷ y ∷ ys) = x ⊕ foldr₁ _⊕_ (y ∷ ys) foldl : ∀ {a : Set} (b : ℕ → Set) {m} → (∀ {n} → b n → a → b (suc n)) → b zero → Vec a m → b m foldl b _⊕_ n [] = n foldl b _⊕_ n (x ∷ xs) = foldl (λ n → b (suc n)) _⊕_ (n ⊕ x) xs foldl₁ : ∀ {a : Set} {m} → (a → a → a) → Vec a (suc m) → a foldl₁ _⊕_ (x ∷ xs) = foldl _ _⊕_ x xs concat : ∀ {a m n} → Vec (Vec a m) n → Vec a (n * m) concat [] = [] concat (xs ∷ xss) = xs ++ concat xss infixr 5 _++'_ data SplitAt {a : Set} (m : ℕ) {n : ℕ} : Vec a (m + n) → Set where _++'_ : (xs : Vec a m) (ys : Vec a n) → SplitAt m (xs ++ ys) splitAt : ∀ {a} m {n} (xs : Vec a (m + n)) → SplitAt m xs splitAt zero xs = [] ++' xs splitAt (suc m) (x ∷ xs) with splitAt m xs splitAt (suc m) (x ∷ .(ys ++ zs)) | ys ++' zs = (x ∷ ys) ++' zs take : ∀ {a} m {n} → Vec a (m + n) → Vec a m take m xs with splitAt m xs take m .(xs ++ ys) | xs ++' ys = xs drop : ∀ {a} m {n} → Vec a (m + n) → Vec a n drop m xs with splitAt m xs drop m .(xs ++ ys) | xs ++' ys = ys data Group {a : Set} (n k : ℕ) : Vec a (n * k) → Set where concat' : (xss : Vec (Vec a k) n) → Group n k (concat xss) group : ∀ {a} n k (xs : Vec a (n * k)) → Group n k xs group zero k [] = concat' [] group (suc n) k xs with splitAt k xs group (suc n) k .(ys ++ zs) | ys ++' zs with group n k zs group (suc n) k .(ys ++ concat zss) | ys ++' ._ | concat' zss = concat' (ys ∷ zss) reverse : ∀ {a n} → Vec a n → Vec a n reverse {a} = foldl (Vec a) (λ rev x → x ∷ rev) [] sum : ∀ {n} → Vec ℕ n → ℕ sum = foldr _ _+_ 0 toList : ∀ {a n} → Vec a n → List a toList [] = List.[] toList (x ∷ xs) = List._∷_ x (toList xs) fromList : ∀ {a} → (xs : List a) → Vec a (List.length xs) fromList List.[] = [] fromList (List._∷_ x xs) = x ∷ fromList xs -- Snoc. infixl 5 _∷ʳ_ _∷ʳ_ : ∀ {a n} → Vec a n → a → Vec a (1 + n) [] ∷ʳ y = [ y ] (x ∷ xs) ∷ʳ y = x ∷ (xs ∷ʳ y) infixl 5 _∷ʳ'_ data InitLast {a : Set} (n : ℕ) : Vec a (1 + n) → Set where _∷ʳ'_ : (xs : Vec a n) (x : a) → InitLast n (xs ∷ʳ x) initLast : ∀ {a n} (xs : Vec a (1 + n)) → InitLast n xs initLast {n = zero} (x ∷ []) = [] ∷ʳ' x initLast {n = suc n} (x ∷ xs) with initLast xs initLast {n = suc n} (x ∷ .(ys ∷ʳ y)) | ys ∷ʳ' y = (x ∷ ys) ∷ʳ' y init : ∀ {a n} → Vec a (1 + n) → Vec a n init xs with initLast xs init .(ys ∷ʳ y) | ys ∷ʳ' y = ys last : ∀ {a n} → Vec a (1 + n) → a last xs with initLast xs last .(ys ∷ʳ y) | ys ∷ʳ' y = y infixl 1 _>>=_ _>>=_ : ∀ {A B m n} → Vec A m → (A → Vec B n) → Vec B (m * n) xs >>= f = concat (map f xs) infixl 4 _⊛_ _⊛_ : ∀ {A B m n} → Vec (A → B) m → Vec A n → Vec B (m * n) fs ⊛ xs = fs >>= λ f → map f xs -- Interleaves the two vectors. infixr 5 _⋎_ _⋎_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m +⋎ n) [] ⋎ ys = ys (x ∷ xs) ⋎ ys = x ∷ (ys ⋎ xs) lookup : ∀ {a n} → Fin n → Vec a n → a lookup zero (x ∷ xs) = x lookup (suc i) (x ∷ xs) = lookup i xs -- Update. infixl 6 _[_]≔_ _[_]≔_ : ∀ {A n} → Vec A n → Fin n → A → Vec A n [] [ () ]≔ y (x ∷ xs) [ zero ]≔ y = y ∷ xs (x ∷ xs) [ suc i ]≔ y = x ∷ xs [ i ]≔ y -- Generates a vector containing all elements in Fin n. This function -- is not placed in Data.Fin since Data.Vec depends on Data.Fin. allFin : ∀ n → Vec (Fin n) n allFin zero = [] allFin (suc n) = zero ∷ map suc (allFin n)
{ "alphanum_fraction": 0.4362870743, "avg_line_length": 27.7258883249, "ext": "agda", "hexsha": "36c8ec8952128f49758918322d6f40d3647d6f99", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Vec.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Vec.agda", "max_line_length": 82, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 2369, "size": 5462 }
module bool where open import level ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- open import unit open import empty data 𝔹 : Set where tt : 𝔹 ff : 𝔹 -- this is an alias for Mac users who cannot see blackboard b. bool : Set bool = 𝔹 {-# BUILTIN BOOL 𝔹 #-} {-# BUILTIN TRUE tt #-} {-# BUILTIN FALSE ff #-} ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infix 7 ~_ infix 6 _xor_ _nand_ infixr 6 _&&_ infixr 5 _||_ infix 4 if_then_else_ if*_then_else_ infixr 4 _imp_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- toSet : 𝔹 → Set toSet tt = ⊤ toSet ff = ⊥ -- not ~_ : 𝔹 → 𝔹 ~ tt = ff ~ ff = tt -- and _&&_ : 𝔹 → 𝔹 → 𝔹 tt && b = b ff && b = ff -- or _||_ : 𝔹 → 𝔹 → 𝔹 tt || b = tt ff || b = b if_then_else_ : ∀ {ℓ} {A : Set ℓ} → 𝔹 → A → A → A if tt then y else z = y if ff then y else z = z if*_then_else_ : ∀ {ℓ} {A B : Set ℓ} → (b : 𝔹) → A → B → if b then A else B if* tt then a else b = a if* ff then a else b = b _xor_ : 𝔹 → 𝔹 → 𝔹 tt xor ff = tt ff xor tt = tt tt xor tt = ff ff xor ff = ff -- implication _imp_ : 𝔹 → 𝔹 → 𝔹 tt imp b2 = b2 ff imp b2 = tt -- also called the Sheffer stroke _nand_ : 𝔹 → 𝔹 → 𝔹 tt nand tt = ff tt nand ff = tt ff nand tt = tt ff nand ff = tt _nor_ : 𝔹 → 𝔹 → 𝔹 x nor y = ~ (x || y)
{ "alphanum_fraction": 0.4137931034, "avg_line_length": 18, "ext": "agda", "hexsha": "25d7538e286c3cf4c80e556eb74caf62b8e9e273", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "bool.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 527, "size": 1566 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.PushoutSplit module cw.cohomology.CofiberGrid {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A → B) (g : B → C) where {- A -------> B -----------> C | | _/| | | _/ | | | __.D_ | v v .--' | `-.v 1 ------> B/A ------|-> C/A | | | | v | | __.E_ | v .--' `-.v 1 ---------> C/B -} open import cw.cohomology.GridMap f g private B-to-B/A : B → B/A B-to-B/A = cfcod' f D-span : Span D-span = span B/A C B B-to-B/A g D : Type (lmax i (lmax j k)) D = Pushout D-span private module VSplit = PushoutRSplit (λ _ → tt) f g module C/AToD = VSplit.Split C/A-to-D : C/A → D C/A-to-D = C/AToD.f B/A-to-D : B/A → D B/A-to-D = left private E : Type (lmax i (lmax j k)) E = Cofiber B/A-to-D private module HSplit = PushoutLSplit B-to-B/A (λ _ → tt) g module C/BToE = HSplit.Split C/B-to-E : C/B → E C/B-to-E = C/BToE.f private module DToC/B = HSplit.Inner D-to-C/B : D → C/B D-to-C/B = DToC/B.f D-to-E : D → E D-to-E = cfcod C/A-to-D-to-C/B : ∀ c/a → D-to-C/B (C/A-to-D c/a) == C/A-to-C/B c/a C/A-to-D-to-C/B = Cofiber-elim idp (λ c → idp) (λ a → ↓-='-in' $ ! $ ap (D-to-C/B ∘ C/A-to-D) (glue a) =⟨ ap-∘ D-to-C/B C/A-to-D (glue a) ⟩ ap D-to-C/B (ap C/A-to-D (glue a)) =⟨ C/AToD.glue-β a |in-ctx ap D-to-C/B ⟩ ap D-to-C/B (ap left (glue a) ∙ glue (f a)) =⟨ ap-∙ D-to-C/B (ap left (glue a)) (glue (f a)) ⟩ ap D-to-C/B (ap left (glue a)) ∙ ap D-to-C/B (glue (f a)) =⟨ ap2 _∙_ (∘-ap D-to-C/B left (glue a)) (DToC/B.glue-β (f a)) ⟩ ap (λ _ → cfbase) (glue a) ∙ glue (f a) =⟨ ap-cst cfbase (glue a) |in-ctx _∙ glue (f a) ⟩ glue (f a) =⟨ ! $ C/AToC/B.glue-β a ⟩ ap C/A-to-C/B (glue a) =∎) D-to-C/B-to-E : ∀ d → C/B-to-E (D-to-C/B d) == D-to-E d D-to-C/B-to-E = HSplit.split-inner {- The public interface -} C/A-to-C/B-comm-square : CommSquare C/A-to-C/B D-to-E C/A-to-D C/B-to-E C/A-to-C/B-comm-square = comm-sqr λ c/a → ap C/B-to-E (! (C/A-to-D-to-C/B c/a)) ∙ D-to-C/B-to-E (C/A-to-D c/a) B/A-to-C/A-comm-square : CommSquare B/A-to-C/A B/A-to-D (idf B/A) C/A-to-D B/A-to-C/A-comm-square = comm-sqr VSplit.split-inner C/A-to-D-is-equiv : is-equiv C/A-to-D C/A-to-D-is-equiv = snd VSplit.split-equiv C/B-to-E-is-equiv : is-equiv C/B-to-E C/B-to-E-is-equiv = snd HSplit.split-equiv
{ "alphanum_fraction": 0.4516479536, "avg_line_length": 27.8888888889, "ext": "agda", "hexsha": "46da7b9fea7bba3bb37d5d1ca2c4c7b73fd5497f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/CofiberGrid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/CofiberGrid.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/CofiberGrid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1084, "size": 2761 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Pullback.Limit {o ℓ e} (C : Category o ℓ e) where open import Data.Product using (∃₂; _,_) open import Function using (_$_) open import Categories.Category.Instance.Span open import Categories.Functor open import Categories.Diagram.Pullback C open import Categories.Morphism.Reasoning C as MR hiding (center) import Relation.Binary.PropositionalEquality as ≡ import Categories.Category.Construction.Cones as Con import Categories.Diagram.Limit as Lim private module C = Category C module Span = Category Span open Category C variable X Y Z : Obj f g h : X ⇒ Y open HomReasoning module _ {F : Functor Span.op C} where open Functor F open Lim F open Con F private W = F₀ center A = F₀ left B = F₀ right A⇒W : A ⇒ W A⇒W = F₁ span-arrˡ B⇒W : B ⇒ W B⇒W = F₁ span-arrʳ limit⇒pullback : Limit → Pullback A⇒W B⇒W limit⇒pullback lim = record { p₁ = proj left ; p₂ = proj right ; commute = trans (limit-commute span-arrˡ) (sym (limit-commute span-arrʳ)) ; universal = universal ; unique = commute′ ; p₁∘universal≈h₁ = commute ; p₂∘universal≈h₂ = commute } where open Limit lim universal : A⇒W ∘ f ≈ B⇒W ∘ g → dom f ⇒ apex universal {f = f} {g = g} eq = rep $ record { apex = record { ψ = λ { center → B⇒W ∘ g ; left → f ; right → g } ; commute = λ { {center} {center} span-id → elimˡ identity ; {left} {center} span-arrˡ → eq ; {left} {left} span-id → elimˡ identity ; {right} {center} span-arrʳ → refl ; {right} {right} span-id → elimˡ identity } } } proj-center : proj center ≈ B⇒W ∘ proj right proj-center = sym (limit-commute span-arrʳ) commute′ : ∀ {eq : A⇒W ∘ f ≈ B⇒W ∘ g} → proj left ∘ h ≈ f → proj right ∘ h ≈ g → h ≈ universal eq commute′ {f = f} {g = g} {h = h} {eq = eq} eq₁ eq₂ = sym $ terminal.!-unique $ record { arr = h ; commute = λ { {center} → begin proj center ∘ h ≈⟨ pushˡ proj-center ⟩ B⇒W ∘ proj right ∘ h ≈⟨ refl⟩∘⟨ eq₂ ⟩ B⇒W ∘ g ∎ ; {left} → eq₁ ; {right} → eq₂ } } module _ (p : Pullback f g) where open Pullback p pullback⇒limit-F : Functor Span.op C pullback⇒limit-F = record { F₀ = λ { center → cod f ; left → dom f ; right → dom g } ; F₁ = λ { {center} {.center} span-id → C.id ; {left} {.left} span-id → C.id ; {right} {.right} span-id → C.id ; {.left} {.center} span-arrˡ → f ; {.right} {.center} span-arrʳ → g } ; identity = λ { {center} → refl ; {left} → refl ; {right} → refl } ; homomorphism = λ { {center} {.center} {.center} {span-id} {span-id} → sym identityˡ ; {left} {.left} {.left} {span-id} {span-id} → sym identityˡ ; {right} {.right} {.right} {span-id} {span-id} → sym identityˡ ; {.left} {.left} {.center} {span-id} {span-arrˡ} → sym identityʳ ; {.right} {.right} {.center} {span-id} {span-arrʳ} → sym identityʳ ; {.left} {.center} {.center} {span-arrˡ} {span-id} → sym identityˡ ; {.right} {.center} {.center} {span-arrʳ} {span-id} → sym identityˡ } ; F-resp-≈ = λ { {center} {.center} {span-id} {.span-id} ≡.refl → refl ; {left} {.left} {span-id} {.span-id} ≡.refl → refl ; {right} {.right} {span-id} {.span-id} ≡.refl → refl ; {.left} {.center} {span-arrˡ} {.span-arrˡ} ≡.refl → refl ; {.right} {.center} {span-arrʳ} {.span-arrʳ} ≡.refl → refl } } open Functor pullback⇒limit-F open Lim pullback⇒limit-F open Con pullback⇒limit-F pullback⇒limit : Limit pullback⇒limit = record { terminal = record { ⊤ = ⊤ ; ! = ! ; !-unique = !-unique } } where ⊤ : Cone ⊤ = record { apex = record { ψ = λ { center → g ∘ p₂ ; left → p₁ ; right → p₂ } ; commute = λ { {center} {.center} span-id → identityˡ ; {left} {.left} span-id → identityˡ ; {right} {.right} span-id → identityˡ ; {.left} {.center} span-arrˡ → commute ; {.right} {.center} span-arrʳ → refl } } } ! : ∀ {A : Cone} → Cone⇒ A ⊤ ! {A} = record { arr = universal commute′ ; commute = λ { {center} → begin (g ∘ p₂) ∘ universal _ ≈⟨ pullʳ p₂∘universal≈h₂ ⟩ g ∘ A.ψ right ≈⟨ A.commute span-arrʳ ⟩ A.ψ center ∎ ; {left} → p₁∘universal≈h₁ ; {right} → p₂∘universal≈h₂ } } where module A = Cone A commute′ = trans (A.commute span-arrˡ) (sym (A.commute span-arrʳ)) !-unique : ∀ {A : Cone} (h : Cone⇒ A ⊤) → Cones [ ! ≈ h ] !-unique {A} h = sym (unique h.commute h.commute) where module h = Cone⇒ h
{ "alphanum_fraction": 0.4214651312, "avg_line_length": 37.2142857143, "ext": "agda", "hexsha": "1b68b6e9854f17f1d4bf742f00868318c4856593", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Pullback/Limit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Pullback/Limit.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Pullback/Limit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1831, "size": 6252 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Domain where -- Stdlib imports open import Level using (Level; _⊔_) open import Function.Base using (flip; _∘_) open import Data.Product using (_×_; _,_; ∃; ∃-syntax; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂; swap) open import Relation.Unary using (Pred; _∈_; _∉_) open import Relation.Binary using (Rel; REL) -- Local imports open import Dodo.Unary.Equality open import Dodo.Unary.Union open import Dodo.Binary.Equality open import Dodo.Binary.Composition -- # Definitions -- | The domain of the binary relation dom : ∀ {a b ℓ : Level} {A : Set a} {B : Set b} → REL A B ℓ -------------- → Pred A (b ⊔ ℓ) dom R x = ∃[ y ] (R x y) -- | The co-domain (or range) of the binary relation -- -- -- # Design decision: Not range -- -- It is somewhat arbitrary what constitutes the /co-domain/ of a binary relation, -- and how it differs from its /range/. Usually, the /co-domain/ denotes the set of -- /possible/ outputs of a function, while the /range/ denotes the set of /actual/ -- outputs. When considering functions, the /domain/ is a set of /independent/ variables, -- while the /co-domain/ is the set variables that are /dependent/ on the domain. -- -- However, when considering /relations/ (as opposed to mere functions), this dependency -- is (usually) absent; Or could be inverted, where the domain "depends on" the codomain. -- Under such interpretation, distinguishing co-domain from range is rather arbitrary. codom : ∀ {a b ℓ : Level} {A : Set a} {B : Set b} → REL A B ℓ -------------- → Pred B (a ⊔ ℓ) codom R y = ∃[ x ] (R x y) -- | The domain and co-domain of the binary relation -- -- Conventionally named after: Union (of) Domain (and) Range udr : ∀ {a ℓ : Level} {A : Set a} → Rel A ℓ -------------- → Pred A (a ⊔ ℓ) udr R = dom R ∪₁ codom R -- # Operations -- ## Operations: dom / codom / udr -- | Weakens an element of a relation's domain to an element of its udr. -- -- Note that Agda is unable to infer `R` from `x ∈ dom R`. -- (As `R` may be beta-reduced inside the latter, I think) dom⇒udr : ∀ {a ℓ : Level} {A : Set a} (R : Rel A ℓ) {x : A} → x ∈ dom R → x ∈ udr R dom⇒udr _ = inj₁ -- | Weakens an element of a relation's co-domain to an element of its udr. -- -- Note that Agda is unable to infer `R` from `x ∈ dom R`. -- (As `R` may be beta-reduced inside the latter, I think) codom⇒udr : ∀ {a ℓ : Level} {A : Set a} (R : Rel A ℓ) {x : A} → x ∈ codom R → x ∈ udr R codom⇒udr _ = inj₂ module _ {a b ℓ : Level} {A : Set a} {B : Set b} where -- | Takes an inhabitant of `R x y` as proof that `x` is in the domain of `R`. -- -- Note that `R` must be provided /explicitly/, as it may not always be inferred -- from its applied type. take-dom : (R : REL A B ℓ) → {x : A} {y : B} → R x y → x ∈ dom R take-dom R {x} {y} Rxy = (y , Rxy) -- | Takes an inhabitant of `R x y` as proof that `y` is in the co-domain of `R`. -- -- Note that `R` must be provided /explicitly/, as it may not always be inferred -- from its applied type. take-codom : (R : REL A B ℓ) → {x : A} {y : B} → R x y → y ∈ codom R take-codom R {x} {y} Rxy = (x , Rxy) module _ {a ℓ : Level} {A : Set a} where -- | Takes an inhabitant of `R x y` as proof that `x` is in the udr of `R`. -- -- Note that `R` must be provided /explicitly/, as it may not always be inferred -- from its applied type. take-udrˡ : (R : Rel A ℓ) → {x y : A} → R x y → x ∈ udr R take-udrˡ R Rxy = dom⇒udr R (take-dom R Rxy) -- | Takes an inhabitant of `R x y` as proof that `y` is in the udr of `R`. -- -- Note that `R` must be provided /explicitly/, as it may not always be inferred -- from its applied type. take-udrʳ : (R : Rel A ℓ) → {x y : A} → R x y → y ∈ udr R take-udrʳ R Rxy = codom⇒udr R (take-codom R Rxy) module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where dom-preserves-⊆ : P ⊆₂ Q → dom P ⊆₁ dom Q dom-preserves-⊆ P⊆Q = ⊆: λ{x (y , Pxy) → (y , un-⊆₂ P⊆Q x y Pxy)} codom-preserves-⊆ : P ⊆₂ Q → codom P ⊆₁ codom Q codom-preserves-⊆ P⊆Q = ⊆: λ{y (x , Pxy) → (x , un-⊆₂ P⊆Q x y Pxy)} module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where udr-preserves-⊆ : P ⊆₂ Q → udr P ⊆₁ udr Q udr-preserves-⊆ P⊆Q = ⊆: lemma where lemma : udr P ⊆₁' udr Q lemma x (inj₁ x∈dom) = dom⇒udr Q (⊆₁-apply (dom-preserves-⊆ P⊆Q) x∈dom) lemma y (inj₂ y∈codom) = codom⇒udr Q (⊆₁-apply (codom-preserves-⊆ P⊆Q) y∈codom) module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Rel A ℓ₁} {Q : Rel A ℓ₂} where udr-combine-⨾ : udr (P ⨾ Q) ⊆₁ udr P ∪₁ udr Q udr-combine-⨾ = ⊆: lemma where lemma : udr (P ⨾ Q) ⊆₁' (udr P ∪₁ udr Q) lemma _ (inj₁ (a , (Pxb ⨾[ b ]⨾ Qba))) = inj₁ (inj₁ (b , Pxb)) lemma _ (inj₂ (a , (Pab ⨾[ b ]⨾ Qbx))) = inj₂ (inj₂ (b , Qbx)) module _ {a ℓ : Level} {A : Set a} {P : Rel A ℓ} where udr-flip : udr P ⇔₁ udr (flip P) udr-flip = ⇔: (λ _ → swap) (λ _ → swap) dom-flip : dom P ⇔₁ codom (flip P) dom-flip = ⇔: (λ _ z → z) (λ _ z → z) codom-flip : codom P ⇔₁ dom (flip P) codom-flip = ⇔: (λ _ z → z) (λ _ z → z)
{ "alphanum_fraction": 0.575399061, "avg_line_length": 34.5779220779, "ext": "agda", "hexsha": "0d476b138830272ac95d524c889a8b74621e8089", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Domain.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Domain.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Domain.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2040, "size": 5325 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Empty where -- Stdlib imports open import Level using (Level; _⊔_) open import Relation.Nullary using (¬_) open import Relation.Binary using (REL; Rel) -- # Definitions -- | A predicate stating no inhabitants exist for the given relation Empty₂ : ∀ {a b ℓ : Level} {A : Set a} {B : Set b} → REL A B ℓ → Set (a ⊔ b ⊔ ℓ) Empty₂ {A = A} {B = B} r = ∀ (x : A) (y : B) → ¬ r x y -- | Negation of a binary relation ¬₂_ : ∀ {a b ℓ : Level} {A : Set a} {B : Set b} → REL A B ℓ → REL A B ℓ ¬₂_ r x y = ¬ r x y
{ "alphanum_fraction": 0.5971479501, "avg_line_length": 28.05, "ext": "agda", "hexsha": "acad012e76533aa6a9d123270fae82e4407d9498", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Empty.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 200, "size": 561 }
module Text.Greek.SBLGNT.Heb where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΕΒΡΑΙΟΥΣ : List (Word) ΠΡΟΣ-ΕΒΡΑΙΟΥΣ = word (Π ∷ ο ∷ ∙λ ∷ υ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ς ∷ []) "Heb.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.1" ∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ό ∷ π ∷ ω ∷ ς ∷ []) "Heb.1.1" ∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Heb.1.1" ∷ word (ὁ ∷ []) "Heb.1.1" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.1.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.1.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Heb.1.1" ∷ word (ἐ ∷ ν ∷ []) "Heb.1.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.1.1" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Heb.1.1" ∷ word (ἐ ∷ π ∷ []) "Heb.1.2" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.1.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.2" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.1.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.1.2" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.1.2" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.1.2" ∷ word (ἐ ∷ ν ∷ []) "Heb.1.2" ∷ word (υ ∷ ἱ ∷ ῷ ∷ []) "Heb.1.2" ∷ word (ὃ ∷ ν ∷ []) "Heb.1.2" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.1.2" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.1.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.1.2" ∷ word (δ ∷ ι ∷ []) "Heb.1.2" ∷ word (ο ∷ ὗ ∷ []) "Heb.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.2" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.1.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.2" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Heb.1.2" ∷ word (ὃ ∷ ς ∷ []) "Heb.1.3" ∷ word (ὢ ∷ ν ∷ []) "Heb.1.3" ∷ word (ἀ ∷ π ∷ α ∷ ύ ∷ γ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Heb.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.3" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Heb.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.3" ∷ word (χ ∷ α ∷ ρ ∷ α ∷ κ ∷ τ ∷ ὴ ∷ ρ ∷ []) "Heb.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.3" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.1.3" ∷ word (φ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.1.3" ∷ word (τ ∷ ε ∷ []) "Heb.1.3" ∷ word (τ ∷ ὰ ∷ []) "Heb.1.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.1.3" ∷ word (τ ∷ ῷ ∷ []) "Heb.1.3" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.3" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.1.3" ∷ word (δ ∷ ι ∷ []) "Heb.1.3" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.1.3" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Heb.1.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.1.3" ∷ word (π ∷ ο ∷ ι ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.1.3" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.1.3" ∷ word (ἐ ∷ ν ∷ []) "Heb.1.3" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Heb.1.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.3" ∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.1.3" ∷ word (ἐ ∷ ν ∷ []) "Heb.1.3" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.1.3" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Heb.1.4" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.1.4" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.1.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.4" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.1.4" ∷ word (ὅ ∷ σ ∷ ῳ ∷ []) "Heb.1.4" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ ο ∷ ρ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.1.4" ∷ word (π ∷ α ∷ ρ ∷ []) "Heb.1.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.4" ∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.1.4" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Heb.1.4" ∷ word (Τ ∷ ί ∷ ν ∷ ι ∷ []) "Heb.1.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.1.5" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Heb.1.5" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.1.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.1.5" ∷ word (Υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Heb.1.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.1.5" ∷ word (ε ∷ ἶ ∷ []) "Heb.1.5" ∷ word (σ ∷ ύ ∷ []) "Heb.1.5" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Heb.1.5" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.1.5" ∷ word (γ ∷ ε ∷ γ ∷ έ ∷ ν ∷ ν ∷ η ∷ κ ∷ ά ∷ []) "Heb.1.5" ∷ word (σ ∷ ε ∷ []) "Heb.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.5" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.1.5" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Heb.1.5" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.1.5" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Heb.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.1.5" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Heb.1.5" ∷ word (μ ∷ ο ∷ ι ∷ []) "Heb.1.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.1.5" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Heb.1.5" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Heb.1.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.1.6" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.1.6" ∷ word (ε ∷ ἰ ∷ σ ∷ α ∷ γ ∷ ά ∷ γ ∷ ῃ ∷ []) "Heb.1.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.1.6" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ ο ∷ ν ∷ []) "Heb.1.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.1.6" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Heb.1.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.1.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.1.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Heb.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.1.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.1.6" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Heb.1.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.1.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.1.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.1.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.1.7" ∷ word (Ὁ ∷ []) "Heb.1.7" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.1.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.1.7" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.1.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.7" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.1.7" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.1.7" ∷ word (φ ∷ ∙λ ∷ ό ∷ γ ∷ α ∷ []) "Heb.1.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.1.8" ∷ word (δ ∷ ὲ ∷ []) "Heb.1.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.1.8" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Heb.1.8" ∷ word (Ὁ ∷ []) "Heb.1.8" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Heb.1.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.8" ∷ word (ὁ ∷ []) "Heb.1.8" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.1.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.1.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.1.8" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.1.8" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.8" ∷ word (ἡ ∷ []) "Heb.1.8" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ς ∷ []) "Heb.1.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.8" ∷ word (ε ∷ ὐ ∷ θ ∷ ύ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Heb.1.8" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ς ∷ []) "Heb.1.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.1.8" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.1.8" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.8" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.1.9" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Heb.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.9" ∷ word (ἐ ∷ μ ∷ ί ∷ σ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.1.9" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Heb.1.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.1.9" ∷ word (ἔ ∷ χ ∷ ρ ∷ ι ∷ σ ∷ έ ∷ ν ∷ []) "Heb.1.9" ∷ word (σ ∷ ε ∷ []) "Heb.1.9" ∷ word (ὁ ∷ []) "Heb.1.9" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.1.9" ∷ word (ὁ ∷ []) "Heb.1.9" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.1.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.9" ∷ word (ἔ ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Heb.1.9" ∷ word (ἀ ∷ γ ∷ α ∷ ∙λ ∷ ∙λ ∷ ι ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.1.9" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.1.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.9" ∷ word (μ ∷ ε ∷ τ ∷ ό ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.1.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.9" ∷ word (κ ∷ α ∷ ί ∷ []) "Heb.1.10" ∷ word (Σ ∷ ὺ ∷ []) "Heb.1.10" ∷ word (κ ∷ α ∷ τ ∷ []) "Heb.1.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ά ∷ ς ∷ []) "Heb.1.10" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Heb.1.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.1.10" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Heb.1.10" ∷ word (ἐ ∷ θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ω ∷ σ ∷ α ∷ ς ∷ []) "Heb.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Heb.1.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.10" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.1.10" ∷ word (σ ∷ ο ∷ ύ ∷ []) "Heb.1.10" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.1.10" ∷ word (ο ∷ ἱ ∷ []) "Heb.1.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ί ∷ []) "Heb.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.1.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.1.11" ∷ word (σ ∷ ὺ ∷ []) "Heb.1.11" ∷ word (δ ∷ ὲ ∷ []) "Heb.1.11" ∷ word (δ ∷ ι ∷ α ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ ς ∷ []) "Heb.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.1.11" ∷ word (ὡ ∷ ς ∷ []) "Heb.1.11" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.1.11" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.1.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.12" ∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Heb.1.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ό ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Heb.1.12" ∷ word (ἑ ∷ ∙λ ∷ ί ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Heb.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.1.12" ∷ word (ὡ ∷ ς ∷ []) "Heb.1.12" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.1.12" ∷ word (σ ∷ ὺ ∷ []) "Heb.1.12" ∷ word (δ ∷ ὲ ∷ []) "Heb.1.12" ∷ word (ὁ ∷ []) "Heb.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.1.12" ∷ word (ε ∷ ἶ ∷ []) "Heb.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.1.12" ∷ word (τ ∷ ὰ ∷ []) "Heb.1.12" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Heb.1.12" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.1.12" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.1.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.1.13" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Heb.1.13" ∷ word (δ ∷ ὲ ∷ []) "Heb.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.13" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.1.13" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ []) "Heb.1.13" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.1.13" ∷ word (Κ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "Heb.1.13" ∷ word (ἐ ∷ κ ∷ []) "Heb.1.13" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.1.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.1.13" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Heb.1.13" ∷ word (ἂ ∷ ν ∷ []) "Heb.1.13" ∷ word (θ ∷ ῶ ∷ []) "Heb.1.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.13" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.1.13" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.13" ∷ word (ὑ ∷ π ∷ ο ∷ π ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.1.13" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Heb.1.13" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.1.13" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "Heb.1.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.1.14" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Heb.1.14" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ι ∷ κ ∷ ὰ ∷ []) "Heb.1.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.1.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.1.14" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Heb.1.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Heb.1.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.1.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.1.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.1.14" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.1.14" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Heb.1.14" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Heb.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.2.1" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Heb.2.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "Heb.2.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.2.1" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.2.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.1" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.2.1" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.2.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ρ ∷ υ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.2.1" ∷ word (ε ∷ ἰ ∷ []) "Heb.2.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.2" ∷ word (ὁ ∷ []) "Heb.2.2" ∷ word (δ ∷ ι ∷ []) "Heb.2.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.2.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.2.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.2.2" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Heb.2.2" ∷ word (β ∷ έ ∷ β ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Heb.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Heb.2.2" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ β ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Heb.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ὴ ∷ []) "Heb.2.2" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Heb.2.2" ∷ word (ἔ ∷ ν ∷ δ ∷ ι ∷ κ ∷ ο ∷ ν ∷ []) "Heb.2.2" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.2.2" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Heb.2.3" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.2.3" ∷ word (ἐ ∷ κ ∷ φ ∷ ε ∷ υ ∷ ξ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.2.3" ∷ word (τ ∷ η ∷ ∙λ ∷ ι ∷ κ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Heb.2.3" ∷ word (ἀ ∷ μ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.2.3" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.2.3" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.2.3" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Heb.2.3" ∷ word (∙λ ∷ α ∷ β ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Heb.2.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.2.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.2.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.2.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.2.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.2.3" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.2.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.2.3" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.2.3" ∷ word (ἐ ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "Heb.2.3" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ π ∷ ι ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.2.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.2.4" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Heb.2.4" ∷ word (τ ∷ ε ∷ []) "Heb.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.4" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.4" ∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Heb.2.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Heb.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.2.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.2.4" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.2.4" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.2.4" ∷ word (Ο ∷ ὐ ∷ []) "Heb.2.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.5" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Heb.2.5" ∷ word (ὑ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Heb.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.2.5" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Heb.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.2.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.2.5" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.2.5" ∷ word (ἧ ∷ ς ∷ []) "Heb.2.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.2.5" ∷ word (δ ∷ ι ∷ ε ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ α ∷ τ ∷ ο ∷ []) "Heb.2.6" ∷ word (δ ∷ έ ∷ []) "Heb.2.6" ∷ word (π ∷ ο ∷ ύ ∷ []) "Heb.2.6" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.2.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.2.6" ∷ word (Τ ∷ ί ∷ []) "Heb.2.6" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.2.6" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Heb.2.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.2.6" ∷ word (μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ῃ ∷ []) "Heb.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.2.6" ∷ word (ἢ ∷ []) "Heb.2.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Heb.2.6" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Heb.2.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.2.6" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ έ ∷ π ∷ τ ∷ ῃ ∷ []) "Heb.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.2.6" ∷ word (ἠ ∷ ∙λ ∷ ά ∷ τ ∷ τ ∷ ω ∷ σ ∷ α ∷ ς ∷ []) "Heb.2.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.2.7" ∷ word (β ∷ ρ ∷ α ∷ χ ∷ ύ ∷ []) "Heb.2.7" ∷ word (τ ∷ ι ∷ []) "Heb.2.7" ∷ word (π ∷ α ∷ ρ ∷ []) "Heb.2.7" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.2.7" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Heb.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.7" ∷ word (τ ∷ ι ∷ μ ∷ ῇ ∷ []) "Heb.2.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ φ ∷ ά ∷ ν ∷ ω ∷ σ ∷ α ∷ ς ∷ []) "Heb.2.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.2.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.8" ∷ word (ὑ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ α ∷ ς ∷ []) "Heb.2.8" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Heb.2.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.2.8" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Heb.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.2.8" ∷ word (ἐ ∷ ν ∷ []) "Heb.2.8" ∷ word (τ ∷ ῷ ∷ []) "Heb.2.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.8" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ι ∷ []) "Heb.2.8" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Heb.2.8" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Heb.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.2.8" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ό ∷ τ ∷ α ∷ κ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.2.8" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Heb.2.8" ∷ word (δ ∷ ὲ ∷ []) "Heb.2.8" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Heb.2.8" ∷ word (ὁ ∷ ρ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.2.8" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.8" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ε ∷ τ ∷ α ∷ γ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Heb.2.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.2.9" ∷ word (δ ∷ ὲ ∷ []) "Heb.2.9" ∷ word (β ∷ ρ ∷ α ∷ χ ∷ ύ ∷ []) "Heb.2.9" ∷ word (τ ∷ ι ∷ []) "Heb.2.9" ∷ word (π ∷ α ∷ ρ ∷ []) "Heb.2.9" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.2.9" ∷ word (ἠ ∷ ∙λ ∷ α ∷ τ ∷ τ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Heb.2.9" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.2.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.2.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.2.9" ∷ word (τ ∷ ὸ ∷ []) "Heb.2.9" ∷ word (π ∷ ά ∷ θ ∷ η ∷ μ ∷ α ∷ []) "Heb.2.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.9" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.2.9" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Heb.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.9" ∷ word (τ ∷ ι ∷ μ ∷ ῇ ∷ []) "Heb.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Heb.2.9" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Heb.2.9" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.2.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.2.9" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.2.9" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.2.9" ∷ word (γ ∷ ε ∷ ύ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.9" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.2.9" ∷ word (Ἔ ∷ π ∷ ρ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Heb.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.2.10" ∷ word (δ ∷ ι ∷ []) "Heb.2.10" ∷ word (ὃ ∷ ν ∷ []) "Heb.2.10" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.10" ∷ word (δ ∷ ι ∷ []) "Heb.2.10" ∷ word (ο ∷ ὗ ∷ []) "Heb.2.10" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.2.10" ∷ word (υ ∷ ἱ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.2.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.2.10" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "Heb.2.10" ∷ word (ἀ ∷ γ ∷ α ∷ γ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.2.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ η ∷ γ ∷ ὸ ∷ ν ∷ []) "Heb.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.2.10" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.2.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.2.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.2.10" ∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.2.10" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Heb.2.10" ∷ word (ὅ ∷ []) "Heb.2.11" ∷ word (τ ∷ ε ∷ []) "Heb.2.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.11" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Heb.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.11" ∷ word (ο ∷ ἱ ∷ []) "Heb.2.11" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.2.11" ∷ word (ἐ ∷ ξ ∷ []) "Heb.2.11" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Heb.2.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.2.11" ∷ word (δ ∷ ι ∷ []) "Heb.2.11" ∷ word (ἣ ∷ ν ∷ []) "Heb.2.11" ∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Heb.2.11" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.2.11" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.2.11" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.2.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.2.12" ∷ word (Ἀ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ῶ ∷ []) "Heb.2.12" ∷ word (τ ∷ ὸ ∷ []) "Heb.2.12" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Heb.2.12" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.2.12" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.12" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.2.12" ∷ word (ἐ ∷ ν ∷ []) "Heb.2.12" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Heb.2.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.2.12" ∷ word (ὑ ∷ μ ∷ ν ∷ ή ∷ σ ∷ ω ∷ []) "Heb.2.12" ∷ word (σ ∷ ε ∷ []) "Heb.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.2.13" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Heb.2.13" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.2.13" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.2.13" ∷ word (ἐ ∷ π ∷ []) "Heb.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.2.13" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Heb.2.13" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Heb.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.13" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.13" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Heb.2.13" ∷ word (ἅ ∷ []) "Heb.2.13" ∷ word (μ ∷ ο ∷ ι ∷ []) "Heb.2.13" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Heb.2.13" ∷ word (ὁ ∷ []) "Heb.2.13" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.2.13" ∷ word (Ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.2.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.2.14" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.14" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Heb.2.14" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ι ∷ ν ∷ ώ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.2.14" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.14" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ό ∷ ς ∷ []) "Heb.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.2.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "Heb.2.14" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Heb.2.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.2.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.2.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.14" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.2.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ []) "Heb.2.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.2.14" ∷ word (τ ∷ ὸ ∷ []) "Heb.2.14" ∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "Heb.2.14" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.14" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.2.14" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ []) "Heb.2.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.2.14" ∷ word (δ ∷ ι ∷ ά ∷ β ∷ ο ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.15" ∷ word (ἀ ∷ π ∷ α ∷ ∙λ ∷ ∙λ ∷ ά ∷ ξ ∷ ῃ ∷ []) "Heb.2.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.2.15" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Heb.2.15" ∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "Heb.2.15" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.2.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.2.15" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.2.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.15" ∷ word (ζ ∷ ῆ ∷ ν ∷ []) "Heb.2.15" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ι ∷ []) "Heb.2.15" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Heb.2.15" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.2.15" ∷ word (ο ∷ ὐ ∷ []) "Heb.2.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.16" ∷ word (δ ∷ ή ∷ π ∷ ο ∷ υ ∷ []) "Heb.2.16" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.2.16" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.2.16" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.2.16" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.2.16" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.16" ∷ word (ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.2.17" ∷ word (ὤ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Heb.2.17" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.2.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.2.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.17" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Heb.2.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.2.17" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ή ∷ μ ∷ ω ∷ ν ∷ []) "Heb.2.17" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.2.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.2.17" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.2.17" ∷ word (τ ∷ ὰ ∷ []) "Heb.2.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.2.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.2.17" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Heb.2.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.2.17" ∷ word (τ ∷ ὸ ∷ []) "Heb.2.17" ∷ word (ἱ ∷ ∙λ ∷ ά ∷ σ ∷ κ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.2.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.2.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.2.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.2.17" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Heb.2.17" ∷ word (ἐ ∷ ν ∷ []) "Heb.2.18" ∷ word (ᾧ ∷ []) "Heb.2.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.2.18" ∷ word (π ∷ έ ∷ π ∷ ο ∷ ν ∷ θ ∷ ε ∷ ν ∷ []) "Heb.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.2.18" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ε ∷ ί ∷ ς ∷ []) "Heb.2.18" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.2.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.2.18" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.2.18" ∷ word (β ∷ ο ∷ η ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.2.18" ∷ word (Ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.3.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Heb.3.1" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "Heb.3.1" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.3.1" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.3.1" ∷ word (μ ∷ έ ∷ τ ∷ ο ∷ χ ∷ ο ∷ ι ∷ []) "Heb.3.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ ο ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Heb.3.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.3.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.3.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.1" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.3.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.3.1" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.3.2" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "Heb.3.2" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.2" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Heb.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.3.2" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.2" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.3.2" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.2" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.2" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Heb.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.2" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.3.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.3.3" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Heb.3.3" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.3.3" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ν ∷ []) "Heb.3.3" ∷ word (ἠ ∷ ξ ∷ ί ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.3" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.3.3" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Heb.3.3" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Heb.3.3" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "Heb.3.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Heb.3.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.3.3" ∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "Heb.3.3" ∷ word (ὁ ∷ []) "Heb.3.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Heb.3.3" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.3.3" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Heb.3.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.3.4" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "Heb.3.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.4" ∷ word (ὑ ∷ π ∷ ό ∷ []) "Heb.3.4" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Heb.3.4" ∷ word (ὁ ∷ []) "Heb.3.4" ∷ word (δ ∷ ὲ ∷ []) "Heb.3.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.3.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Heb.3.4" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.5" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.3.5" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.3.5" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.3.5" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.5" ∷ word (ὅ ∷ ∙λ ∷ ῳ ∷ []) "Heb.3.5" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.5" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Heb.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.5" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.5" ∷ word (θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ω ∷ ν ∷ []) "Heb.3.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.3.5" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.3.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.3.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ η ∷ σ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.3.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.3.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.3.6" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Heb.3.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.3.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.3.6" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.6" ∷ word (ὅ ∷ ς ∷ []) "Heb.3.6" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ς ∷ []) "Heb.3.6" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.3.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.3.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.3.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.3.6" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.3.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.6" ∷ word (τ ∷ ὸ ∷ []) "Heb.3.6" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "Heb.3.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.6" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Heb.3.6" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ σ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.3.6" ∷ word (Δ ∷ ι ∷ ό ∷ []) "Heb.3.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.3.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.3.7" ∷ word (τ ∷ ὸ ∷ []) "Heb.3.7" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Heb.3.7" ∷ word (τ ∷ ὸ ∷ []) "Heb.3.7" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.3.7" ∷ word (Σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.3.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.7" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Heb.3.7" ∷ word (μ ∷ ὴ ∷ []) "Heb.3.8" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ύ ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "Heb.3.8" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.3.8" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.3.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.8" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.8" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.8" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ι ∷ κ ∷ ρ ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "Heb.3.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.3.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.3.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.3.8" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Heb.3.8" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.8" ∷ word (τ ∷ ῇ ∷ []) "Heb.3.8" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Heb.3.8" ∷ word (ο ∷ ὗ ∷ []) "Heb.3.9" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Heb.3.9" ∷ word (ο ∷ ἱ ∷ []) "Heb.3.9" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Heb.3.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.9" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ ί ∷ ᾳ ∷ []) "Heb.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Heb.3.9" ∷ word (τ ∷ ὰ ∷ []) "Heb.3.9" ∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "Heb.3.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.3.9" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.3.10" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Heb.3.10" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.3.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ χ ∷ θ ∷ ι ∷ σ ∷ α ∷ []) "Heb.3.10" ∷ word (τ ∷ ῇ ∷ []) "Heb.3.10" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Heb.3.10" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Heb.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.10" ∷ word (ε ∷ ἶ ∷ π ∷ ο ∷ ν ∷ []) "Heb.3.10" ∷ word (Ἀ ∷ ε ∷ ὶ ∷ []) "Heb.3.10" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.10" ∷ word (τ ∷ ῇ ∷ []) "Heb.3.10" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Heb.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.3.10" ∷ word (δ ∷ ὲ ∷ []) "Heb.3.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.3.10" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Heb.3.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.3.10" ∷ word (ὁ ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.3.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.3.10" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.11" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ α ∷ []) "Heb.3.11" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.11" ∷ word (τ ∷ ῇ ∷ []) "Heb.3.11" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῇ ∷ []) "Heb.3.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.3.11" ∷ word (Ε ∷ ἰ ∷ []) "Heb.3.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.3.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.3.11" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Heb.3.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.3.11" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Heb.3.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Heb.3.12" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.3.12" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.12" ∷ word (ἔ ∷ ν ∷ []) "Heb.3.12" ∷ word (τ ∷ ι ∷ ν ∷ ι ∷ []) "Heb.3.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.12" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Heb.3.12" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὰ ∷ []) "Heb.3.12" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.3.12" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.12" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.12" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Heb.3.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.3.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.3.12" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.3.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.3.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Heb.3.13" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.3.13" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.3.13" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ η ∷ ν ∷ []) "Heb.3.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.3.13" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Heb.3.13" ∷ word (ο ∷ ὗ ∷ []) "Heb.3.13" ∷ word (τ ∷ ὸ ∷ []) "Heb.3.13" ∷ word (Σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.3.13" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Heb.3.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.3.13" ∷ word (μ ∷ ὴ ∷ []) "Heb.3.13" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "Heb.3.13" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.3.13" ∷ word (ἐ ∷ ξ ∷ []) "Heb.3.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.13" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ ῃ ∷ []) "Heb.3.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.13" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.3.13" ∷ word (μ ∷ έ ∷ τ ∷ ο ∷ χ ∷ ο ∷ ι ∷ []) "Heb.3.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.3.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.3.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.14" ∷ word (γ ∷ ε ∷ γ ∷ ό ∷ ν ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Heb.3.14" ∷ word (ἐ ∷ ά ∷ ν ∷ π ∷ ε ∷ ρ ∷ []) "Heb.3.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.3.14" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Heb.3.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.14" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.3.14" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Heb.3.14" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.3.14" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Heb.3.14" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ σ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.3.14" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.15" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.3.15" ∷ word (Σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.3.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.3.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.3.15" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Heb.3.15" ∷ word (Μ ∷ ὴ ∷ []) "Heb.3.15" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ύ ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "Heb.3.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.3.15" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.3.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.3.15" ∷ word (ὡ ∷ ς ∷ []) "Heb.3.15" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.15" ∷ word (τ ∷ ῷ ∷ []) "Heb.3.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ι ∷ κ ∷ ρ ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "Heb.3.15" ∷ word (τ ∷ ί ∷ ν ∷ ε ∷ ς ∷ []) "Heb.3.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.3.16" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.3.16" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ί ∷ κ ∷ ρ ∷ α ∷ ν ∷ α ∷ ν ∷ []) "Heb.3.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Heb.3.16" ∷ word (ο ∷ ὐ ∷ []) "Heb.3.16" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.3.16" ∷ word (ο ∷ ἱ ∷ []) "Heb.3.16" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.3.16" ∷ word (ἐ ∷ ξ ∷ []) "Heb.3.16" ∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ο ∷ υ ∷ []) "Heb.3.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.3.16" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.3.16" ∷ word (τ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Heb.3.17" ∷ word (δ ∷ ὲ ∷ []) "Heb.3.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ χ ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.3.17" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.3.17" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Heb.3.17" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "Heb.3.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.3.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.3.17" ∷ word (ὧ ∷ ν ∷ []) "Heb.3.17" ∷ word (τ ∷ ὰ ∷ []) "Heb.3.17" ∷ word (κ ∷ ῶ ∷ ∙λ ∷ α ∷ []) "Heb.3.17" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Heb.3.17" ∷ word (ἐ ∷ ν ∷ []) "Heb.3.17" ∷ word (τ ∷ ῇ ∷ []) "Heb.3.17" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Heb.3.17" ∷ word (τ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "Heb.3.18" ∷ word (δ ∷ ὲ ∷ []) "Heb.3.18" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Heb.3.18" ∷ word (μ ∷ ὴ ∷ []) "Heb.3.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.3.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.3.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.3.18" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.3.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.3.18" ∷ word (ε ∷ ἰ ∷ []) "Heb.3.18" ∷ word (μ ∷ ὴ ∷ []) "Heb.3.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.3.18" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ή ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.3.19" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.3.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.3.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.3.19" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.3.19" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.3.19" ∷ word (δ ∷ ι ∷ []) "Heb.3.19" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Heb.3.19" ∷ word (Φ ∷ ο ∷ β ∷ η ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.4.1" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.4.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ι ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Heb.4.1" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.4.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.4.1" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.4.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.1" ∷ word (δ ∷ ο ∷ κ ∷ ῇ ∷ []) "Heb.4.1" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.4.1" ∷ word (ἐ ∷ ξ ∷ []) "Heb.4.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.4.1" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Heb.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.2" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Heb.4.2" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.2" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.4.2" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "Heb.4.2" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.4.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Heb.4.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.4.2" ∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.4.2" ∷ word (ὁ ∷ []) "Heb.4.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.4.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ῆ ∷ ς ∷ []) "Heb.4.2" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.4.2" ∷ word (μ ∷ ὴ ∷ []) "Heb.4.2" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ε ∷ κ ∷ ε ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.4.2" ∷ word (τ ∷ ῇ ∷ []) "Heb.4.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.4.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.4.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.4.2" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.4.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.3" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.4.3" ∷ word (ο ∷ ἱ ∷ []) "Heb.4.3" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.4.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.4.3" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.4.3" ∷ word (Ὡ ∷ ς ∷ []) "Heb.4.3" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ α ∷ []) "Heb.4.3" ∷ word (ἐ ∷ ν ∷ []) "Heb.4.3" ∷ word (τ ∷ ῇ ∷ []) "Heb.4.3" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῇ ∷ []) "Heb.4.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.4.3" ∷ word (Ε ∷ ἰ ∷ []) "Heb.4.3" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.4.3" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Heb.4.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.4.3" ∷ word (κ ∷ α ∷ ί ∷ τ ∷ ο ∷ ι ∷ []) "Heb.4.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.4.3" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.4.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.4.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.4.3" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Heb.4.3" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.4.3" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.4.4" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Heb.4.4" ∷ word (π ∷ ο ∷ υ ∷ []) "Heb.4.4" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.4.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.4" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ η ∷ ς ∷ []) "Heb.4.4" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.4.4" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.4.4" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ α ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.4.4" ∷ word (ὁ ∷ []) "Heb.4.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.4.4" ∷ word (ἐ ∷ ν ∷ []) "Heb.4.4" ∷ word (τ ∷ ῇ ∷ []) "Heb.4.4" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Heb.4.4" ∷ word (τ ∷ ῇ ∷ []) "Heb.4.4" ∷ word (ἑ ∷ β ∷ δ ∷ ό ∷ μ ∷ ῃ ∷ []) "Heb.4.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.4.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.4.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.4.4" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.4.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.5" ∷ word (ἐ ∷ ν ∷ []) "Heb.4.5" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Heb.4.5" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.4.5" ∷ word (Ε ∷ ἰ ∷ []) "Heb.4.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.4.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.4.5" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Heb.4.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.4.5" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.4.6" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.4.6" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.4.6" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Heb.4.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.4.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.6" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Heb.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.6" ∷ word (ο ∷ ἱ ∷ []) "Heb.4.6" ∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.4.6" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.4.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.4.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Heb.4.6" ∷ word (δ ∷ ι ∷ []) "Heb.4.6" ∷ word (ἀ ∷ π ∷ ε ∷ ί ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Heb.4.6" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.4.7" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "Heb.4.7" ∷ word (ὁ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Heb.4.7" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.4.7" ∷ word (Σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.4.7" ∷ word (ἐ ∷ ν ∷ []) "Heb.4.7" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Heb.4.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.4.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.4.7" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.4.7" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Heb.4.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.4.7" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.4.7" ∷ word (Σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.4.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.4.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.7" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.4.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Heb.4.7" ∷ word (μ ∷ ὴ ∷ []) "Heb.4.7" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ύ ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "Heb.4.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.4.7" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.4.7" ∷ word (ε ∷ ἰ ∷ []) "Heb.4.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.4.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.4.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Heb.4.8" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ α ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.4.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.4.8" ∷ word (ἂ ∷ ν ∷ []) "Heb.4.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.4.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ς ∷ []) "Heb.4.8" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Heb.4.8" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.4.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Heb.4.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.4.8" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Heb.4.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.4.9" ∷ word (σ ∷ α ∷ β ∷ β ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Heb.4.9" ∷ word (τ ∷ ῷ ∷ []) "Heb.4.9" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "Heb.4.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.4.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.4.9" ∷ word (ὁ ∷ []) "Heb.4.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.4.10" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Heb.4.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.4.10" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.4.10" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ π ∷ α ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.4.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.4.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.4.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.10" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Heb.4.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.4.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.4.10" ∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.4.10" ∷ word (ὁ ∷ []) "Heb.4.10" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.4.10" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.4.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.4.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Heb.4.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.4.11" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ π ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.4.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.4.11" ∷ word (μ ∷ ὴ ∷ []) "Heb.4.11" ∷ word (ἐ ∷ ν ∷ []) "Heb.4.11" ∷ word (τ ∷ ῷ ∷ []) "Heb.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.4.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.4.11" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ ί ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.4.11" ∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "Heb.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.11" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.11" ∷ word (Ζ ∷ ῶ ∷ ν ∷ []) "Heb.4.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.4.12" ∷ word (ὁ ∷ []) "Heb.4.12" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.4.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.4.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ὴ ∷ ς ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (τ ∷ ο ∷ μ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.4.12" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.4.12" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Heb.4.12" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Heb.4.12" ∷ word (δ ∷ ί ∷ σ ∷ τ ∷ ο ∷ μ ∷ ο ∷ ν ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (δ ∷ ι ∷ ϊ ∷ κ ∷ ν ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.4.12" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Heb.4.12" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Heb.4.12" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.4.12" ∷ word (ἁ ∷ ρ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.4.12" ∷ word (τ ∷ ε ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (μ ∷ υ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.4.12" ∷ word (ἐ ∷ ν ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ν ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.12" ∷ word (ἐ ∷ ν ∷ ν ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.4.13" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.4.13" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Heb.4.13" ∷ word (ἀ ∷ φ ∷ α ∷ ν ∷ ὴ ∷ ς ∷ []) "Heb.4.13" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Heb.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.4.13" ∷ word (δ ∷ ὲ ∷ []) "Heb.4.13" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὰ ∷ []) "Heb.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.13" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ χ ∷ η ∷ ∙λ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Heb.4.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.4.13" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.4.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.4.13" ∷ word (ὃ ∷ ν ∷ []) "Heb.4.13" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.4.13" ∷ word (ὁ ∷ []) "Heb.4.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.4.13" ∷ word (Ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.4.14" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.4.14" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.4.14" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Heb.4.14" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ τ ∷ α ∷ []) "Heb.4.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.4.14" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.4.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.4.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.4.14" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Heb.4.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.4.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.4.14" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.14" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.14" ∷ word (ο ∷ ὐ ∷ []) "Heb.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.4.15" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.15" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.4.15" ∷ word (μ ∷ ὴ ∷ []) "Heb.4.15" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.4.15" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ α ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.4.15" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.4.15" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.4.15" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.4.15" ∷ word (π ∷ ε ∷ π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Heb.4.15" ∷ word (δ ∷ ὲ ∷ []) "Heb.4.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.4.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.4.15" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.4.15" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Heb.4.15" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.4.15" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.4.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.4.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.4.16" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.4.16" ∷ word (τ ∷ ῷ ∷ []) "Heb.4.16" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ῳ ∷ []) "Heb.4.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.4.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Heb.4.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.4.16" ∷ word (∙λ ∷ ά ∷ β ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.16" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Heb.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.4.16" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Heb.4.16" ∷ word (ε ∷ ὕ ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.4.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.4.16" ∷ word (ε ∷ ὔ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.4.16" ∷ word (β ∷ ο ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Heb.4.16" ∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Heb.5.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.5.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.5.1" ∷ word (ἐ ∷ ξ ∷ []) "Heb.5.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Heb.5.1" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.5.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.5.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Heb.5.1" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ τ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.5.1" ∷ word (τ ∷ ὰ ∷ []) "Heb.5.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.5.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.5.1" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Heb.5.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.5.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ῃ ∷ []) "Heb.5.1" ∷ word (δ ∷ ῶ ∷ ρ ∷ ά ∷ []) "Heb.5.1" ∷ word (τ ∷ ε ∷ []) "Heb.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.1" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.5.1" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.5.1" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.5.1" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ι ∷ ο ∷ π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.5.2" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.5.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.5.2" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Heb.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.2" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.5.2" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.5.2" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Heb.5.2" ∷ word (ἀ ∷ σ ∷ θ ∷ έ ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Heb.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.3" ∷ word (δ ∷ ι ∷ []) "Heb.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Heb.5.3" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "Heb.5.3" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.5.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.5.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.5.3" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Heb.5.3" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.5.3" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.5.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.5.3" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.5.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.4" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Heb.5.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Heb.5.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.5.4" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Heb.5.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.5.4" ∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "Heb.5.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.5.4" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.5.4" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.5.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.5.4" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Heb.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.4" ∷ word (Ἀ ∷ α ∷ ρ ∷ ώ ∷ ν ∷ []) "Heb.5.4" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.5" ∷ word (ὁ ∷ []) "Heb.5.5" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.5.5" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Heb.5.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.5.5" ∷ word (ἐ ∷ δ ∷ ό ∷ ξ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Heb.5.5" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Heb.5.5" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.5.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Heb.5.5" ∷ word (ὁ ∷ []) "Heb.5.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.5.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.5.5" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.5.5" ∷ word (Υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Heb.5.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.5.5" ∷ word (ε ∷ ἶ ∷ []) "Heb.5.5" ∷ word (σ ∷ ύ ∷ []) "Heb.5.5" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Heb.5.5" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.5.5" ∷ word (γ ∷ ε ∷ γ ∷ έ ∷ ν ∷ ν ∷ η ∷ κ ∷ ά ∷ []) "Heb.5.5" ∷ word (σ ∷ ε ∷ []) "Heb.5.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.6" ∷ word (ἐ ∷ ν ∷ []) "Heb.5.6" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "Heb.5.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.5.6" ∷ word (Σ ∷ ὺ ∷ []) "Heb.5.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.5.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.5.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.5.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.5.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.5.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.5.6" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.5.6" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.5.6" ∷ word (ὃ ∷ ς ∷ []) "Heb.5.7" ∷ word (ἐ ∷ ν ∷ []) "Heb.5.7" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.5.7" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Heb.5.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.5.7" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.5.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.5.7" ∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Heb.5.7" ∷ word (τ ∷ ε ∷ []) "Heb.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.7" ∷ word (ἱ ∷ κ ∷ ε ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.5.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.5.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.5.7" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.5.7" ∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.5.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.5.7" ∷ word (ἐ ∷ κ ∷ []) "Heb.5.7" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.5.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.5.7" ∷ word (κ ∷ ρ ∷ α ∷ υ ∷ γ ∷ ῆ ∷ ς ∷ []) "Heb.5.7" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.7" ∷ word (δ ∷ α ∷ κ ∷ ρ ∷ ύ ∷ ω ∷ ν ∷ []) "Heb.5.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ς ∷ []) "Heb.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.7" ∷ word (ε ∷ ἰ ∷ σ ∷ α ∷ κ ∷ ο ∷ υ ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.5.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.5.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.5.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.5.7" ∷ word (κ ∷ α ∷ ί ∷ π ∷ ε ∷ ρ ∷ []) "Heb.5.8" ∷ word (ὢ ∷ ν ∷ []) "Heb.5.8" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Heb.5.8" ∷ word (ἔ ∷ μ ∷ α ∷ θ ∷ ε ∷ ν ∷ []) "Heb.5.8" ∷ word (ἀ ∷ φ ∷ []) "Heb.5.8" ∷ word (ὧ ∷ ν ∷ []) "Heb.5.8" ∷ word (ἔ ∷ π ∷ α ∷ θ ∷ ε ∷ ν ∷ []) "Heb.5.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.5.8" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ή ∷ ν ∷ []) "Heb.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.9" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ω ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.5.9" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Heb.5.9" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.5.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.5.9" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.5.9" ∷ word (α ∷ ἴ ∷ τ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.5.9" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.5.9" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.5.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ γ ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.5.10" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.5.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.5.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.5.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.5.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.5.10" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.5.10" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.5.10" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.5.11" ∷ word (ο ∷ ὗ ∷ []) "Heb.5.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Heb.5.11" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.5.11" ∷ word (ὁ ∷ []) "Heb.5.11" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.11" ∷ word (δ ∷ υ ∷ σ ∷ ε ∷ ρ ∷ μ ∷ ή ∷ ν ∷ ε ∷ υ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.5.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.5.11" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.5.11" ∷ word (ν ∷ ω ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Heb.5.11" ∷ word (γ ∷ ε ∷ γ ∷ ό ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Heb.5.11" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.5.11" ∷ word (ἀ ∷ κ ∷ ο ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.5.12" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.5.12" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Heb.5.12" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "Heb.5.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.5.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.5.12" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Heb.5.12" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.5.12" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.5.12" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.5.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.5.12" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.5.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.5.12" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "Heb.5.12" ∷ word (τ ∷ ὰ ∷ []) "Heb.5.12" ∷ word (σ ∷ τ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ []) "Heb.5.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.5.12" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Heb.5.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.5.12" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.5.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.5.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.12" ∷ word (γ ∷ ε ∷ γ ∷ ό ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Heb.5.12" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.5.12" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.5.12" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.5.12" ∷ word (ο ∷ ὐ ∷ []) "Heb.5.12" ∷ word (σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ᾶ ∷ ς ∷ []) "Heb.5.12" ∷ word (τ ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ ς ∷ []) "Heb.5.12" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Heb.5.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.5.13" ∷ word (ὁ ∷ []) "Heb.5.13" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ω ∷ ν ∷ []) "Heb.5.13" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.5.13" ∷ word (ἄ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.5.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "Heb.5.13" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.5.13" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "Heb.5.13" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Heb.5.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.5.13" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Heb.5.14" ∷ word (δ ∷ έ ∷ []) "Heb.5.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.5.14" ∷ word (ἡ ∷ []) "Heb.5.14" ∷ word (σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ὰ ∷ []) "Heb.5.14" ∷ word (τ ∷ ρ ∷ ο ∷ φ ∷ ή ∷ []) "Heb.5.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.5.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.5.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.5.14" ∷ word (ἕ ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.5.14" ∷ word (τ ∷ ὰ ∷ []) "Heb.5.14" ∷ word (α ∷ ἰ ∷ σ ∷ θ ∷ η ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "Heb.5.14" ∷ word (γ ∷ ε ∷ γ ∷ υ ∷ μ ∷ ν ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Heb.5.14" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.5.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.5.14" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "Heb.5.14" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Heb.5.14" ∷ word (τ ∷ ε ∷ []) "Heb.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.5.14" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ῦ ∷ []) "Heb.5.14" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Heb.6.1" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.6.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.6.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Heb.6.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.6.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Heb.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.6.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.6.1" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Heb.6.1" ∷ word (φ ∷ ε ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.6.1" ∷ word (μ ∷ ὴ ∷ []) "Heb.6.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.6.1" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.6.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.6.1" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.1" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.6.1" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.6.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.6.1" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Heb.6.1" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.6.2" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Heb.6.2" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ώ ∷ ς ∷ []) "Heb.6.2" ∷ word (τ ∷ ε ∷ []) "Heb.6.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.6.2" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ώ ∷ ς ∷ []) "Heb.6.2" ∷ word (τ ∷ ε ∷ []) "Heb.6.2" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.2" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.6.2" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.6.3" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.6.3" ∷ word (ἐ ∷ ά ∷ ν ∷ π ∷ ε ∷ ρ ∷ []) "Heb.6.3" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ π ∷ ῃ ∷ []) "Heb.6.3" ∷ word (ὁ ∷ []) "Heb.6.3" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.6.3" ∷ word (Ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.6.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.6.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.6.4" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.6.4" ∷ word (φ ∷ ω ∷ τ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.6.4" ∷ word (γ ∷ ε ∷ υ ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.6.4" ∷ word (τ ∷ ε ∷ []) "Heb.6.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.4" ∷ word (δ ∷ ω ∷ ρ ∷ ε ∷ ᾶ ∷ ς ∷ []) "Heb.6.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.4" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.4" ∷ word (μ ∷ ε ∷ τ ∷ ό ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.6.4" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.6.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.6.4" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.5" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Heb.6.5" ∷ word (γ ∷ ε ∷ υ ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.6.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.6.5" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Heb.6.5" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Heb.6.5" ∷ word (τ ∷ ε ∷ []) "Heb.6.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.6.5" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ε ∷ σ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.6.6" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.6.6" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ α ∷ ι ∷ ν ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.6.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.6" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "Heb.6.6" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.6.6" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.6.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.6.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Heb.6.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.6" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ ι ∷ γ ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.6.6" ∷ word (γ ∷ ῆ ∷ []) "Heb.6.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.6.7" ∷ word (ἡ ∷ []) "Heb.6.7" ∷ word (π ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Heb.6.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.6.7" ∷ word (ἐ ∷ π ∷ []) "Heb.6.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.6.7" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.6.7" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Heb.6.7" ∷ word (ὑ ∷ ε ∷ τ ∷ ό ∷ ν ∷ []) "Heb.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.7" ∷ word (τ ∷ ί ∷ κ ∷ τ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.6.7" ∷ word (β ∷ ο ∷ τ ∷ ά ∷ ν ∷ η ∷ ν ∷ []) "Heb.6.7" ∷ word (ε ∷ ὔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ ν ∷ []) "Heb.6.7" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.6.7" ∷ word (δ ∷ ι ∷ []) "Heb.6.7" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Heb.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.7" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Heb.6.7" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Heb.6.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.6.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.6.7" ∷ word (ἐ ∷ κ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.6.8" ∷ word (δ ∷ ὲ ∷ []) "Heb.6.8" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Heb.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.8" ∷ word (τ ∷ ρ ∷ ι ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.6.8" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Heb.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.8" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ρ ∷ α ∷ ς ∷ []) "Heb.6.8" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Heb.6.8" ∷ word (ἧ ∷ ς ∷ []) "Heb.6.8" ∷ word (τ ∷ ὸ ∷ []) "Heb.6.8" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Heb.6.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.8" ∷ word (κ ∷ α ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.6.8" ∷ word (Π ∷ ε ∷ π ∷ ε ∷ ί ∷ σ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.6.9" ∷ word (δ ∷ ὲ ∷ []) "Heb.6.9" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.6.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.6.9" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Heb.6.9" ∷ word (τ ∷ ὰ ∷ []) "Heb.6.9" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ σ ∷ σ ∷ ο ∷ ν ∷ α ∷ []) "Heb.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.9" ∷ word (ἐ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Heb.6.9" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.9" ∷ word (ε ∷ ἰ ∷ []) "Heb.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.9" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.6.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.6.9" ∷ word (ο ∷ ὐ ∷ []) "Heb.6.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.6.10" ∷ word (ἄ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "Heb.6.10" ∷ word (ὁ ∷ []) "Heb.6.10" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.6.10" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ θ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.6.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "Heb.6.10" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.10" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Heb.6.10" ∷ word (ἧ ∷ ς ∷ []) "Heb.6.10" ∷ word (ἐ ∷ ν ∷ ε ∷ δ ∷ ε ∷ ί ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Heb.6.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.10" ∷ word (τ ∷ ὸ ∷ []) "Heb.6.10" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Heb.6.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.6.10" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.6.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.6.10" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Heb.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.10" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.6.10" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.6.11" ∷ word (δ ∷ ὲ ∷ []) "Heb.6.11" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.6.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.6.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Heb.6.11" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ κ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.6.11" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ὴ ∷ ν ∷ []) "Heb.6.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.6.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.6.11" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Heb.6.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.11" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Heb.6.11" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Heb.6.11" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.6.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.6.12" ∷ word (μ ∷ ὴ ∷ []) "Heb.6.12" ∷ word (ν ∷ ω ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Heb.6.12" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Heb.6.12" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Heb.6.12" ∷ word (δ ∷ ὲ ∷ []) "Heb.6.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.6.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.6.12" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.12" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.12" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.6.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.6.12" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.12" ∷ word (Τ ∷ ῷ ∷ []) "Heb.6.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.6.13" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.6.13" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.13" ∷ word (ὁ ∷ []) "Heb.6.13" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.6.13" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.6.13" ∷ word (κ ∷ α ∷ τ ∷ []) "Heb.6.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "Heb.6.13" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Heb.6.13" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.13" ∷ word (ὀ ∷ μ ∷ ό ∷ σ ∷ α ∷ ι ∷ []) "Heb.6.13" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Heb.6.13" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.6.13" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.6.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.6.14" ∷ word (Ε ∷ ἰ ∷ []) "Heb.6.14" ∷ word (μ ∷ ὴ ∷ ν ∷ []) "Heb.6.14" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ῶ ∷ ν ∷ []) "Heb.6.14" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ ω ∷ []) "Heb.6.14" ∷ word (σ ∷ ε ∷ []) "Heb.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.14" ∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ ύ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.6.14" ∷ word (π ∷ ∙λ ∷ η ∷ θ ∷ υ ∷ ν ∷ ῶ ∷ []) "Heb.6.14" ∷ word (σ ∷ ε ∷ []) "Heb.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.6.15" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.6.15" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ υ ∷ χ ∷ ε ∷ ν ∷ []) "Heb.6.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.15" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.15" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Heb.6.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.6.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.6.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.16" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.16" ∷ word (ὀ ∷ μ ∷ ν ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.6.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.16" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Heb.6.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.6.16" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.16" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.16" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.6.16" ∷ word (ὁ ∷ []) "Heb.6.16" ∷ word (ὅ ∷ ρ ∷ κ ∷ ο ∷ ς ∷ []) "Heb.6.16" ∷ word (ἐ ∷ ν ∷ []) "Heb.6.17" ∷ word (ᾧ ∷ []) "Heb.6.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.6.17" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.17" ∷ word (ὁ ∷ []) "Heb.6.17" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.6.17" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ ε ∷ ῖ ∷ ξ ∷ α ∷ ι ∷ []) "Heb.6.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.6.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Heb.6.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.17" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.6.17" ∷ word (τ ∷ ὸ ∷ []) "Heb.6.17" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ο ∷ ν ∷ []) "Heb.6.17" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.17" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.6.17" ∷ word (ἐ ∷ μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.6.17" ∷ word (ὅ ∷ ρ ∷ κ ∷ ῳ ∷ []) "Heb.6.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.6.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.6.18" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Heb.6.18" ∷ word (π ∷ ρ ∷ α ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.6.18" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ θ ∷ έ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.6.18" ∷ word (ἐ ∷ ν ∷ []) "Heb.6.18" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Heb.6.18" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.6.18" ∷ word (ψ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.6.18" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Heb.6.18" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Heb.6.18" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.6.18" ∷ word (ἔ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.6.18" ∷ word (ο ∷ ἱ ∷ []) "Heb.6.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ υ ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.6.18" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.6.18" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.18" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Heb.6.18" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Heb.6.18" ∷ word (ἣ ∷ ν ∷ []) "Heb.6.19" ∷ word (ὡ ∷ ς ∷ []) "Heb.6.19" ∷ word (ἄ ∷ γ ∷ κ ∷ υ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.6.19" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.6.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.6.19" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Heb.6.19" ∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ []) "Heb.6.19" ∷ word (τ ∷ ε ∷ []) "Heb.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.19" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Heb.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.6.19" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Heb.6.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.19" ∷ word (τ ∷ ὸ ∷ []) "Heb.6.19" ∷ word (ἐ ∷ σ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.6.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.6.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ε ∷ τ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.6.19" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Heb.6.20" ∷ word (π ∷ ρ ∷ ό ∷ δ ∷ ρ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Heb.6.20" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.6.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.6.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.6.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Heb.6.20" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.6.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.6.20" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.6.20" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.6.20" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.6.20" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.6.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.6.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.6.20" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.6.20" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.1" ∷ word (ὁ ∷ []) "Heb.7.1" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.7.1" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.1" ∷ word (Σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Heb.7.1" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.7.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.1" ∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Heb.7.1" ∷ word (ὁ ∷ []) "Heb.7.1" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.7.1" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.7.1" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Heb.7.1" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.7.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.1" ∷ word (κ ∷ ο ∷ π ∷ ῆ ∷ ς ∷ []) "Heb.7.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.1" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Heb.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.1" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.7.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.7.1" ∷ word (ᾧ ∷ []) "Heb.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.2" ∷ word (δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Heb.7.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.7.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.7.2" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.2" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Heb.7.2" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.7.2" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.2" ∷ word (ἑ ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.2" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.2" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "Heb.7.2" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.2" ∷ word (Σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "Heb.7.2" ∷ word (ὅ ∷ []) "Heb.7.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.7.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.2" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.2" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ ω ∷ ρ ∷ []) "Heb.7.3" ∷ word (ἀ ∷ μ ∷ ή ∷ τ ∷ ω ∷ ρ ∷ []) "Heb.7.3" ∷ word (ἀ ∷ γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Heb.7.3" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "Heb.7.3" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.7.3" ∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "Heb.7.3" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Heb.7.3" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Heb.7.3" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Heb.7.3" ∷ word (ἀ ∷ φ ∷ ω ∷ μ ∷ ο ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.3" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.3" ∷ word (τ ∷ ῷ ∷ []) "Heb.7.3" ∷ word (υ ∷ ἱ ∷ ῷ ∷ []) "Heb.7.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.7.3" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Heb.7.3" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.3" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.3" ∷ word (δ ∷ ι ∷ η ∷ ν ∷ ε ∷ κ ∷ έ ∷ ς ∷ []) "Heb.7.3" ∷ word (Θ ∷ ε ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Heb.7.4" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.4" ∷ word (π ∷ η ∷ ∙λ ∷ ί ∷ κ ∷ ο ∷ ς ∷ []) "Heb.7.4" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.4" ∷ word (ᾧ ∷ []) "Heb.7.4" ∷ word (δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Heb.7.4" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.7.4" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.4" ∷ word (ἐ ∷ κ ∷ []) "Heb.7.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.4" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ θ ∷ ι ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Heb.7.4" ∷ word (ὁ ∷ []) "Heb.7.4" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ η ∷ ς ∷ []) "Heb.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.5" ∷ word (ο ∷ ἱ ∷ []) "Heb.7.5" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.5" ∷ word (ἐ ∷ κ ∷ []) "Heb.7.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.5" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Heb.7.5" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Heb.7.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.5" ∷ word (ἱ ∷ ε ∷ ρ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.7.5" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.7.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Heb.7.5" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.7.5" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ κ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.7.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.5" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Heb.7.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.5" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.7.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.7.5" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.7.5" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.7.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.7.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.7.5" ∷ word (κ ∷ α ∷ ί ∷ π ∷ ε ∷ ρ ∷ []) "Heb.7.5" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "Heb.7.5" ∷ word (ἐ ∷ κ ∷ []) "Heb.7.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.5" ∷ word (ὀ ∷ σ ∷ φ ∷ ύ ∷ ο ∷ ς ∷ []) "Heb.7.5" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Heb.7.5" ∷ word (ὁ ∷ []) "Heb.7.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.6" ∷ word (μ ∷ ὴ ∷ []) "Heb.7.6" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.6" ∷ word (ἐ ∷ ξ ∷ []) "Heb.7.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.7.6" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.6" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ά ∷ μ ∷ []) "Heb.7.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.6" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.7.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.7.6" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.6" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.6" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.7.7" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.7" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Heb.7.7" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.7" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.7" ∷ word (ἔ ∷ ∙λ ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.7.7" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.7.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.7" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.8" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Heb.7.8" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.8" ∷ word (δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Heb.7.8" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.7.8" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Heb.7.8" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.7.8" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Heb.7.8" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.8" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.7.8" ∷ word (ζ ∷ ῇ ∷ []) "Heb.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.9" ∷ word (ὡ ∷ ς ∷ []) "Heb.7.9" ∷ word (ἔ ∷ π ∷ ο ∷ ς ∷ []) "Heb.7.9" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.7.9" ∷ word (δ ∷ ι ∷ []) "Heb.7.9" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.7.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.9" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ []) "Heb.7.9" ∷ word (ὁ ∷ []) "Heb.7.9" ∷ word (δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ α ∷ ς ∷ []) "Heb.7.9" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Heb.7.9" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ κ ∷ ά ∷ τ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.9" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.7.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.10" ∷ word (ἐ ∷ ν ∷ []) "Heb.7.10" ∷ word (τ ∷ ῇ ∷ []) "Heb.7.10" ∷ word (ὀ ∷ σ ∷ φ ∷ ύ ∷ ϊ ∷ []) "Heb.7.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.10" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.7.10" ∷ word (ἦ ∷ ν ∷ []) "Heb.7.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Heb.7.10" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.7.10" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.7.10" ∷ word (Ε ∷ ἰ ∷ []) "Heb.7.11" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.7.11" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "Heb.7.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.7.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.11" ∷ word (Λ ∷ ε ∷ υ ∷ ι ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "Heb.7.11" ∷ word (ἱ ∷ ε ∷ ρ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.11" ∷ word (ἦ ∷ ν ∷ []) "Heb.7.11" ∷ word (ὁ ∷ []) "Heb.7.11" ∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "Heb.7.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.11" ∷ word (ἐ ∷ π ∷ []) "Heb.7.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.7.11" ∷ word (ν ∷ ε ∷ ν ∷ ο ∷ μ ∷ ο ∷ θ ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.11" ∷ word (τ ∷ ί ∷ ς ∷ []) "Heb.7.11" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.7.11" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ []) "Heb.7.11" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.11" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.7.11" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.7.11" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.7.11" ∷ word (ἀ ∷ ν ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.7.11" ∷ word (ἱ ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.11" ∷ word (ο ∷ ὐ ∷ []) "Heb.7.11" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.11" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.7.11" ∷ word (Ἀ ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "Heb.7.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.7.11" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ τ ∷ ι ∷ θ ∷ ε ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.12" ∷ word (ἱ ∷ ε ∷ ρ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.12" ∷ word (ἐ ∷ ξ ∷ []) "Heb.7.12" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ς ∷ []) "Heb.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.12" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ []) "Heb.7.12" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "Heb.7.12" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.12" ∷ word (ἐ ∷ φ ∷ []) "Heb.7.13" ∷ word (ὃ ∷ ν ∷ []) "Heb.7.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.13" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Heb.7.13" ∷ word (φ ∷ υ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.7.13" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.7.13" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ σ ∷ χ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.13" ∷ word (ἀ ∷ φ ∷ []) "Heb.7.13" ∷ word (ἧ ∷ ς ∷ []) "Heb.7.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.7.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ σ ∷ χ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.13" ∷ word (τ ∷ ῷ ∷ []) "Heb.7.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "Heb.7.13" ∷ word (π ∷ ρ ∷ ό ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.7.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.7.14" ∷ word (ἐ ∷ ξ ∷ []) "Heb.7.14" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Heb.7.14" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ έ ∷ τ ∷ α ∷ ∙λ ∷ κ ∷ ε ∷ ν ∷ []) "Heb.7.14" ∷ word (ὁ ∷ []) "Heb.7.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.7.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.7.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.14" ∷ word (ἣ ∷ ν ∷ []) "Heb.7.14" ∷ word (φ ∷ υ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Heb.7.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.7.14" ∷ word (ἱ ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Heb.7.14" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Heb.7.14" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.7.14" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.7.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.7.15" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.7.15" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ δ ∷ η ∷ ∙λ ∷ ό ∷ ν ∷ []) "Heb.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.7.15" ∷ word (ε ∷ ἰ ∷ []) "Heb.7.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.15" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Heb.7.15" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.7.15" ∷ word (ἀ ∷ ν ∷ ί ∷ σ ∷ τ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.15" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.15" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.7.15" ∷ word (ὃ ∷ ς ∷ []) "Heb.7.16" ∷ word (ο ∷ ὐ ∷ []) "Heb.7.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.16" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.7.16" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.7.16" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Heb.7.16" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Heb.7.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.7.16" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.16" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Heb.7.16" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Heb.7.16" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Heb.7.16" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.7.17" ∷ word (Σ ∷ ὺ ∷ []) "Heb.7.17" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.17" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.7.17" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.17" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.7.17" ∷ word (Μ ∷ ε ∷ ∙λ ∷ χ ∷ ι ∷ σ ∷ έ ∷ δ ∷ ε ∷ κ ∷ []) "Heb.7.17" ∷ word (ἀ ∷ θ ∷ έ ∷ τ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Heb.7.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.18" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.18" ∷ word (π ∷ ρ ∷ ο ∷ α ∷ γ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Heb.7.18" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.7.18" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.7.18" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.7.18" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὲ ∷ ς ∷ []) "Heb.7.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.18" ∷ word (ἀ ∷ ν ∷ ω ∷ φ ∷ ε ∷ ∙λ ∷ έ ∷ ς ∷ []) "Heb.7.18" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Heb.7.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.19" ∷ word (ἐ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.19" ∷ word (ὁ ∷ []) "Heb.7.19" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Heb.7.19" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ σ ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ []) "Heb.7.19" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.19" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.19" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Heb.7.19" ∷ word (δ ∷ ι ∷ []) "Heb.7.19" ∷ word (ἧ ∷ ς ∷ []) "Heb.7.19" ∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.7.19" ∷ word (τ ∷ ῷ ∷ []) "Heb.7.19" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.7.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.7.20" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.7.20" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Heb.7.20" ∷ word (ο ∷ ὐ ∷ []) "Heb.7.20" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.7.20" ∷ word (ὁ ∷ ρ ∷ κ ∷ ω ∷ μ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.20" ∷ word (ο ∷ ἱ ∷ []) "Heb.7.20" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.20" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.7.20" ∷ word (ὁ ∷ ρ ∷ κ ∷ ω ∷ μ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Heb.7.20" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.7.20" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Heb.7.20" ∷ word (ὁ ∷ []) "Heb.7.21" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.21" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.7.21" ∷ word (ὁ ∷ ρ ∷ κ ∷ ω ∷ μ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.7.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.21" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.7.21" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.7.21" ∷ word (Ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.21" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.7.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.21" ∷ word (ο ∷ ὐ ∷ []) "Heb.7.21" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ μ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.21" ∷ word (Σ ∷ ὺ ∷ []) "Heb.7.21" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.7.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.21" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.7.21" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.7.22" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.7.22" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.22" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.7.22" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Heb.7.22" ∷ word (ἔ ∷ γ ∷ γ ∷ υ ∷ ο ∷ ς ∷ []) "Heb.7.22" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Heb.7.22" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.7.23" ∷ word (ο ∷ ἱ ∷ []) "Heb.7.23" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.7.23" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ έ ∷ ς ∷ []) "Heb.7.23" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.7.23" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Heb.7.23" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.7.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.7.23" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.23" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Heb.7.23" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.7.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Heb.7.23" ∷ word (ὁ ∷ []) "Heb.7.24" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.7.24" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.24" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Heb.7.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.7.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.24" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.7.24" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.7.24" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Heb.7.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.7.24" ∷ word (ἱ ∷ ε ∷ ρ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Heb.7.24" ∷ word (ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.7.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.25" ∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.7.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.25" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.25" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ὲ ∷ ς ∷ []) "Heb.7.25" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.7.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.7.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.7.25" ∷ word (δ ∷ ι ∷ []) "Heb.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.7.25" ∷ word (τ ∷ ῷ ∷ []) "Heb.7.25" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.7.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Heb.7.25" ∷ word (ζ ∷ ῶ ∷ ν ∷ []) "Heb.7.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.25" ∷ word (τ ∷ ὸ ∷ []) "Heb.7.25" ∷ word (ἐ ∷ ν ∷ τ ∷ υ ∷ γ ∷ χ ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Heb.7.25" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.7.25" ∷ word (Τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.26" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.26" ∷ word (ἔ ∷ π ∷ ρ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Heb.7.26" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ύ ∷ ς ∷ []) "Heb.7.26" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (ἄ ∷ κ ∷ α ∷ κ ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (ἀ ∷ μ ∷ ί ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (κ ∷ ε ∷ χ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.7.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.26" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Heb.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.7.26" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.26" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Heb.7.26" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.7.26" ∷ word (ὃ ∷ ς ∷ []) "Heb.7.27" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.7.27" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Heb.7.27" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.7.27" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.7.27" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "Heb.7.27" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Heb.7.27" ∷ word (ο ∷ ἱ ∷ []) "Heb.7.27" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.7.27" ∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.7.27" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.7.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.27" ∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.7.27" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.7.27" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.27" ∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.7.27" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "Heb.7.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.7.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.7.27" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Heb.7.27" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.7.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.27" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.7.27" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "Heb.7.27" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.7.27" ∷ word (ἀ ∷ ν ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ς ∷ []) "Heb.7.27" ∷ word (ὁ ∷ []) "Heb.7.28" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Heb.7.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.7.28" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Heb.7.28" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.7.28" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.7.28" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.7.28" ∷ word (ἀ ∷ σ ∷ θ ∷ έ ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Heb.7.28" ∷ word (ὁ ∷ []) "Heb.7.28" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Heb.7.28" ∷ word (δ ∷ ὲ ∷ []) "Heb.7.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.28" ∷ word (ὁ ∷ ρ ∷ κ ∷ ω ∷ μ ∷ ο ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.7.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.7.28" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.7.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.28" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.7.28" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Heb.7.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.7.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.7.28" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.7.28" ∷ word (τ ∷ ε ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Heb.7.28" ∷ word (Κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Heb.8.1" ∷ word (δ ∷ ὲ ∷ []) "Heb.8.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.8.1" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.8.1" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.8.1" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.8.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.8.1" ∷ word (ὃ ∷ ς ∷ []) "Heb.8.1" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.8.1" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.1" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Heb.8.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.8.1" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Heb.8.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.8.1" ∷ word (μ ∷ ε ∷ γ ∷ α ∷ ∙λ ∷ ω ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.8.1" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.8.1" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.8.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.8.2" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.8.2" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ὸ ∷ ς ∷ []) "Heb.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.8.2" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.8.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.8.2" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.8.2" ∷ word (ἣ ∷ ν ∷ []) "Heb.8.2" ∷ word (ἔ ∷ π ∷ η ∷ ξ ∷ ε ∷ ν ∷ []) "Heb.8.2" ∷ word (ὁ ∷ []) "Heb.8.2" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.8.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.8.2" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Heb.8.2" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Heb.8.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.8.3" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.8.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.8.3" ∷ word (τ ∷ ὸ ∷ []) "Heb.8.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.8.3" ∷ word (δ ∷ ῶ ∷ ρ ∷ ά ∷ []) "Heb.8.3" ∷ word (τ ∷ ε ∷ []) "Heb.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.3" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.8.3" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ τ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.8.3" ∷ word (ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.8.3" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Heb.8.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.8.3" ∷ word (τ ∷ ι ∷ []) "Heb.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.8.3" ∷ word (ὃ ∷ []) "Heb.8.3" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ ῃ ∷ []) "Heb.8.3" ∷ word (ε ∷ ἰ ∷ []) "Heb.8.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.8.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.8.4" ∷ word (ἦ ∷ ν ∷ []) "Heb.8.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.4" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.8.4" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "Heb.8.4" ∷ word (ἂ ∷ ν ∷ []) "Heb.8.4" ∷ word (ἦ ∷ ν ∷ []) "Heb.8.4" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ύ ∷ ς ∷ []) "Heb.8.4" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.8.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.8.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.8.4" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.8.4" ∷ word (τ ∷ ὰ ∷ []) "Heb.8.4" ∷ word (δ ∷ ῶ ∷ ρ ∷ α ∷ []) "Heb.8.4" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Heb.8.5" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ ί ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.5" ∷ word (σ ∷ κ ∷ ι ∷ ᾷ ∷ []) "Heb.8.5" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.8.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.8.5" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Heb.8.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.8.5" ∷ word (κ ∷ ε ∷ χ ∷ ρ ∷ η ∷ μ ∷ ά ∷ τ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Heb.8.5" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.8.5" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.8.5" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.8.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.8.5" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ή ∷ ν ∷ []) "Heb.8.5" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Heb.8.5" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Heb.8.5" ∷ word (φ ∷ η ∷ σ ∷ ί ∷ ν ∷ []) "Heb.8.5" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Heb.8.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.8.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.8.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.5" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "Heb.8.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.5" ∷ word (δ ∷ ε ∷ ι ∷ χ ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "Heb.8.5" ∷ word (σ ∷ ο ∷ ι ∷ []) "Heb.8.5" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.5" ∷ word (τ ∷ ῷ ∷ []) "Heb.8.5" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Heb.8.5" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Heb.8.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.8.6" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ ο ∷ ρ ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.8.6" ∷ word (τ ∷ έ ∷ τ ∷ υ ∷ χ ∷ ε ∷ ν ∷ []) "Heb.8.6" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.8.6" ∷ word (ὅ ∷ σ ∷ ῳ ∷ []) "Heb.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.6" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Heb.8.6" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.8.6" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.8.6" ∷ word (μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Heb.8.6" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.8.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.6" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Heb.8.6" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.8.6" ∷ word (ν ∷ ε ∷ ν ∷ ο ∷ μ ∷ ο ∷ θ ∷ έ ∷ τ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.8.6" ∷ word (Ε ∷ ἰ ∷ []) "Heb.8.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.8.7" ∷ word (ἡ ∷ []) "Heb.8.7" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Heb.8.7" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Heb.8.7" ∷ word (ἦ ∷ ν ∷ []) "Heb.8.7" ∷ word (ἄ ∷ μ ∷ ε ∷ μ ∷ π ∷ τ ∷ ο ∷ ς ∷ []) "Heb.8.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.8.7" ∷ word (ἂ ∷ ν ∷ []) "Heb.8.7" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.8.7" ∷ word (ἐ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Heb.8.7" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Heb.8.7" ∷ word (μ ∷ ε ∷ μ ∷ φ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.8.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.8.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.8.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.8.8" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Heb.8.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Heb.8.8" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.8.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.8.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.8" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ []) "Heb.8.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.8" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.8.8" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Heb.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.8" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.8.8" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Heb.8.8" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "Heb.8.8" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ ν ∷ []) "Heb.8.8" ∷ word (ο ∷ ὐ ∷ []) "Heb.8.9" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.8.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.8.9" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "Heb.8.9" ∷ word (ἣ ∷ ν ∷ []) "Heb.8.9" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ []) "Heb.8.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.8.9" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Heb.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Heb.8.9" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Heb.8.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.8.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.8.9" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.9" ∷ word (ἐ ∷ ξ ∷ α ∷ γ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.8.9" ∷ word (ἐ ∷ κ ∷ []) "Heb.8.9" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.8.9" ∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ο ∷ υ ∷ []) "Heb.8.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.8.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.8.9" ∷ word (ἐ ∷ ν ∷ έ ∷ μ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Heb.8.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.9" ∷ word (τ ∷ ῇ ∷ []) "Heb.8.9" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ ῃ ∷ []) "Heb.8.9" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.8.9" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "Heb.8.9" ∷ word (ἠ ∷ μ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ α ∷ []) "Heb.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.8.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.8.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.8.10" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Heb.8.10" ∷ word (ἡ ∷ []) "Heb.8.10" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "Heb.8.10" ∷ word (ἣ ∷ ν ∷ []) "Heb.8.10" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.8.10" ∷ word (τ ∷ ῷ ∷ []) "Heb.8.10" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Heb.8.10" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Heb.8.10" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.8.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.8.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.8.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Heb.8.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.8.10" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.8.10" ∷ word (δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.8.10" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.8.10" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.8.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.8.10" ∷ word (δ ∷ ι ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "Heb.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.8.10" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.10" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Heb.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.10" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.8.10" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Heb.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.8.10" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Heb.8.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "Heb.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.8.10" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Heb.8.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.11" ∷ word (ο ∷ ὐ ∷ []) "Heb.8.11" ∷ word (μ ∷ ὴ ∷ []) "Heb.8.11" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ ξ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.8.11" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.8.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ί ∷ τ ∷ η ∷ ν ∷ []) "Heb.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.11" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.8.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Heb.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.8.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.8.11" ∷ word (Γ ∷ ν ∷ ῶ ∷ θ ∷ ι ∷ []) "Heb.8.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.8.11" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.8.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.8.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.8.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Heb.8.11" ∷ word (μ ∷ ε ∷ []) "Heb.8.11" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.8.11" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Heb.8.11" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Heb.8.11" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Heb.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.8.12" ∷ word (ἵ ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.8.12" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.8.12" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.8.12" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.8.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.8.12" ∷ word (ο ∷ ὐ ∷ []) "Heb.8.12" ∷ word (μ ∷ ὴ ∷ []) "Heb.8.12" ∷ word (μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ῶ ∷ []) "Heb.8.12" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.8.12" ∷ word (ἐ ∷ ν ∷ []) "Heb.8.13" ∷ word (τ ∷ ῷ ∷ []) "Heb.8.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.8.13" ∷ word (Κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Heb.8.13" ∷ word (π ∷ ε ∷ π ∷ α ∷ ∙λ ∷ α ∷ ί ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Heb.8.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.8.13" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Heb.8.13" ∷ word (τ ∷ ὸ ∷ []) "Heb.8.13" ∷ word (δ ∷ ὲ ∷ []) "Heb.8.13" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.8.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.8.13" ∷ word (γ ∷ η ∷ ρ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.8.13" ∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Heb.8.13" ∷ word (ἀ ∷ φ ∷ α ∷ ν ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Heb.8.13" ∷ word (Ε ∷ ἶ ∷ χ ∷ ε ∷ []) "Heb.9.1" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.9.1" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.9.1" ∷ word (ἡ ∷ []) "Heb.9.1" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Heb.9.1" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.9.1" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.1" ∷ word (τ ∷ ό ∷ []) "Heb.9.1" ∷ word (τ ∷ ε ∷ []) "Heb.9.1" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.9.1" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "Heb.9.1" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Heb.9.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.2" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Heb.9.2" ∷ word (ἡ ∷ []) "Heb.9.2" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Heb.9.2" ∷ word (ἐ ∷ ν ∷ []) "Heb.9.2" ∷ word (ᾗ ∷ []) "Heb.9.2" ∷ word (ἥ ∷ []) "Heb.9.2" ∷ word (τ ∷ ε ∷ []) "Heb.9.2" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ []) "Heb.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.2" ∷ word (ἡ ∷ []) "Heb.9.2" ∷ word (τ ∷ ρ ∷ ά ∷ π ∷ ε ∷ ζ ∷ α ∷ []) "Heb.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.2" ∷ word (ἡ ∷ []) "Heb.9.2" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "Heb.9.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.2" ∷ word (ἄ ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.9.2" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.9.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.2" ∷ word (Ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.9.2" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.9.3" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.3" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.3" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.9.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Heb.9.3" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ []) "Heb.9.3" ∷ word (ἡ ∷ []) "Heb.9.3" ∷ word (∙λ ∷ ε ∷ γ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Heb.9.3" ∷ word (Ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.9.3" ∷ word (Ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.9.3" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.9.4" ∷ word (θ ∷ υ ∷ μ ∷ ι ∷ α ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.4" ∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.4" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.9.4" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ ε ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Heb.9.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ θ ∷ ε ∷ ν ∷ []) "Heb.9.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "Heb.9.4" ∷ word (ἐ ∷ ν ∷ []) "Heb.9.4" ∷ word (ᾗ ∷ []) "Heb.9.4" ∷ word (σ ∷ τ ∷ ά ∷ μ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.4" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ῆ ∷ []) "Heb.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.9.4" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.4" ∷ word (μ ∷ ά ∷ ν ∷ ν ∷ α ∷ []) "Heb.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.4" ∷ word (ἡ ∷ []) "Heb.9.4" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ς ∷ []) "Heb.9.4" ∷ word (Ἀ ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "Heb.9.4" ∷ word (ἡ ∷ []) "Heb.9.4" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Heb.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.4" ∷ word (α ∷ ἱ ∷ []) "Heb.9.4" ∷ word (π ∷ ∙λ ∷ ά ∷ κ ∷ ε ∷ ς ∷ []) "Heb.9.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.4" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.9.4" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ά ∷ ν ∷ ω ∷ []) "Heb.9.5" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.9.5" ∷ word (Χ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ β ∷ ὶ ∷ ν ∷ []) "Heb.9.5" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Heb.9.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.9.5" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.5" ∷ word (ἱ ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.9.5" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.9.5" ∷ word (ὧ ∷ ν ∷ []) "Heb.9.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.9.5" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.9.5" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Heb.9.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.9.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.9.5" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.9.5" ∷ word (Τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.9.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.6" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.9.6" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ κ ∷ ε ∷ υ ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.9.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.6" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.9.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.6" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "Heb.9.6" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Heb.9.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.6" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.9.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.6" ∷ word (ο ∷ ἱ ∷ []) "Heb.9.6" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.9.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.9.6" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.6" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.9.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.7" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.7" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.9.7" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.7" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.9.7" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.7" ∷ word (ὁ ∷ []) "Heb.9.7" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ύ ∷ ς ∷ []) "Heb.9.7" ∷ word (ο ∷ ὐ ∷ []) "Heb.9.7" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.9.7" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.7" ∷ word (ὃ ∷ []) "Heb.9.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "Heb.9.7" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.9.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.7" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Heb.9.7" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.9.8" ∷ word (δ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.9.8" ∷ word (μ ∷ ή ∷ π ∷ ω ∷ []) "Heb.9.8" ∷ word (π ∷ ε ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.9.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.9.8" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Heb.9.8" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.9.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.8" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "Heb.9.8" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.9.8" ∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Heb.9.8" ∷ word (σ ∷ τ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.8" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.9.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Heb.9.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.9" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.9.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.9" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Heb.9.9" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.9.9" ∷ word (ἣ ∷ ν ∷ []) "Heb.9.9" ∷ word (δ ∷ ῶ ∷ ρ ∷ ά ∷ []) "Heb.9.9" ∷ word (τ ∷ ε ∷ []) "Heb.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.9" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "Heb.9.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.9" ∷ word (μ ∷ ὴ ∷ []) "Heb.9.9" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Heb.9.9" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.9.9" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.9" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Heb.9.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.9" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.9.9" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Heb.9.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.9.10" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.10" ∷ word (π ∷ ό ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.10" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ ό ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Heb.9.10" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.10" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.9.10" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.9.10" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "Heb.9.10" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "Heb.9.10" ∷ word (δ ∷ ι ∷ ο ∷ ρ ∷ θ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.9.10" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Heb.9.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.9.11" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.11" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.9.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.11" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.9.11" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῶ ∷ ν ∷ []) "Heb.9.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.11" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.11" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.9.11" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.9.11" ∷ word (ο ∷ ὐ ∷ []) "Heb.9.11" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ι ∷ ή ∷ τ ∷ ο ∷ υ ∷ []) "Heb.9.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.9.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.9.11" ∷ word (ο ∷ ὐ ∷ []) "Heb.9.11" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Heb.9.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.11" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.9.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Heb.9.12" ∷ word (δ ∷ ι ∷ []) "Heb.9.12" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.12" ∷ word (τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Heb.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.12" ∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ω ∷ ν ∷ []) "Heb.9.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.12" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.12" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.9.12" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.12" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.9.12" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "Heb.9.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.12" ∷ word (τ ∷ ὰ ∷ []) "Heb.9.12" ∷ word (ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.9.12" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Heb.9.12" ∷ word (∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.12" ∷ word (ε ∷ ὑ ∷ ρ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.12" ∷ word (ε ∷ ἰ ∷ []) "Heb.9.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.13" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.13" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.9.13" ∷ word (τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Heb.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.13" ∷ word (τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.13" ∷ word (σ ∷ π ∷ ο ∷ δ ∷ ὸ ∷ ς ∷ []) "Heb.9.13" ∷ word (δ ∷ α ∷ μ ∷ ά ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.9.13" ∷ word (ῥ ∷ α ∷ ν ∷ τ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.9.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.9.13" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.9.13" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Heb.9.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.9.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.13" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.9.13" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Heb.9.13" ∷ word (π ∷ ό ∷ σ ∷ ῳ ∷ []) "Heb.9.14" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.9.14" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.14" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.9.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.9.14" ∷ word (ὃ ∷ ς ∷ []) "Heb.9.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.14" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.9.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Heb.9.14" ∷ word (ἄ ∷ μ ∷ ω ∷ μ ∷ ο ∷ ν ∷ []) "Heb.9.14" ∷ word (τ ∷ ῷ ∷ []) "Heb.9.14" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.9.14" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ ε ∷ ῖ ∷ []) "Heb.9.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.14" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.9.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.9.14" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.9.14" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.9.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.14" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.14" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.9.14" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.9.14" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "Heb.9.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.9.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.9.15" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.9.15" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.9.15" ∷ word (μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Heb.9.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Heb.9.15" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Heb.9.15" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Heb.9.15" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Heb.9.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.15" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.9.15" ∷ word (τ ∷ ῇ ∷ []) "Heb.9.15" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Heb.9.15" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ ῃ ∷ []) "Heb.9.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ σ ∷ ε ∷ ω ∷ ν ∷ []) "Heb.9.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.15" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Heb.9.15" ∷ word (∙λ ∷ ά ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.15" ∷ word (ο ∷ ἱ ∷ []) "Heb.9.15" ∷ word (κ ∷ ε ∷ κ ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.9.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.15" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.9.15" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.15" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Heb.9.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.16" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "Heb.9.16" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.9.16" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ []) "Heb.9.16" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.9.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.16" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Heb.9.16" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "Heb.9.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.9.17" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.17" ∷ word (β ∷ ε ∷ β ∷ α ∷ ί ∷ α ∷ []) "Heb.9.17" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.9.17" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.9.17" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ε ∷ ι ∷ []) "Heb.9.17" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Heb.9.17" ∷ word (ζ ∷ ῇ ∷ []) "Heb.9.17" ∷ word (ὁ ∷ []) "Heb.9.17" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.9.17" ∷ word (ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.9.18" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Heb.9.18" ∷ word (ἡ ∷ []) "Heb.9.18" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Heb.9.18" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.9.18" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.18" ∷ word (ἐ ∷ γ ∷ κ ∷ ε ∷ κ ∷ α ∷ ί ∷ ν ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.18" ∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ σ ∷ η ∷ ς ∷ []) "Heb.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.19" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Heb.9.19" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.9.19" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.9.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.19" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.9.19" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.9.19" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.9.19" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Heb.9.19" ∷ word (τ ∷ ῷ ∷ []) "Heb.9.19" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "Heb.9.19" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Heb.9.19" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.19" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.9.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.19" ∷ word (μ ∷ ό ∷ σ ∷ χ ∷ ω ∷ ν ∷ []) "Heb.9.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.9.19" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.19" ∷ word (ἐ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.9.19" ∷ word (κ ∷ ο ∷ κ ∷ κ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Heb.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.19" ∷ word (ὑ ∷ σ ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Heb.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Heb.9.19" ∷ word (τ ∷ ε ∷ []) "Heb.9.19" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.19" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Heb.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.9.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.19" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Heb.9.19" ∷ word (ἐ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.9.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.9.20" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.9.20" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.20" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.9.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.20" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.9.20" ∷ word (ἧ ∷ ς ∷ []) "Heb.9.20" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Heb.9.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.9.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.9.20" ∷ word (ὁ ∷ []) "Heb.9.20" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.9.21" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ὴ ∷ ν ∷ []) "Heb.9.21" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.9.21" ∷ word (τ ∷ ὰ ∷ []) "Heb.9.21" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Heb.9.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.21" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.21" ∷ word (τ ∷ ῷ ∷ []) "Heb.9.21" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.9.21" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Heb.9.21" ∷ word (ἐ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.9.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.22" ∷ word (σ ∷ χ ∷ ε ∷ δ ∷ ὸ ∷ ν ∷ []) "Heb.9.22" ∷ word (ἐ ∷ ν ∷ []) "Heb.9.22" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.9.22" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.22" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.9.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.22" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.22" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.9.22" ∷ word (α ∷ ἱ ∷ μ ∷ α ∷ τ ∷ ε ∷ κ ∷ χ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.22" ∷ word (ο ∷ ὐ ∷ []) "Heb.9.22" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.22" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "Heb.9.22" ∷ word (Ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ []) "Heb.9.23" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.9.23" ∷ word (τ ∷ ὰ ∷ []) "Heb.9.23" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.9.23" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ ί ∷ γ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.9.23" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.23" ∷ word (ἐ ∷ ν ∷ []) "Heb.9.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.23" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Heb.9.23" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Heb.9.23" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.23" ∷ word (τ ∷ ὰ ∷ []) "Heb.9.23" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ α ∷ []) "Heb.9.23" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ σ ∷ ι ∷ []) "Heb.9.23" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.9.23" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.9.23" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Heb.9.23" ∷ word (ο ∷ ὐ ∷ []) "Heb.9.24" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.9.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.24" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ α ∷ []) "Heb.9.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.9.24" ∷ word (ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.9.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Heb.9.24" ∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ τ ∷ υ ∷ π ∷ α ∷ []) "Heb.9.24" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.24" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Heb.9.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Heb.9.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.9.24" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Heb.9.24" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Heb.9.24" ∷ word (ἐ ∷ μ ∷ φ ∷ α ∷ ν ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Heb.9.24" ∷ word (τ ∷ ῷ ∷ []) "Heb.9.24" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ῳ ∷ []) "Heb.9.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.9.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.9.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.9.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.9.24" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "Heb.9.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.9.25" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Heb.9.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ῃ ∷ []) "Heb.9.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.9.25" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "Heb.9.25" ∷ word (ὁ ∷ []) "Heb.9.25" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.9.25" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.25" ∷ word (τ ∷ ὰ ∷ []) "Heb.9.25" ∷ word (ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.9.25" ∷ word (κ ∷ α ∷ τ ∷ []) "Heb.9.25" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.25" ∷ word (ἐ ∷ ν ∷ []) "Heb.9.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.9.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Heb.9.25" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.9.26" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ []) "Heb.9.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Heb.9.26" ∷ word (π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.9.26" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.9.26" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.9.26" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "Heb.9.26" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "Heb.9.26" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.26" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.9.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.9.26" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Heb.9.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.9.26" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.9.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.26" ∷ word (ἀ ∷ θ ∷ έ ∷ τ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.9.26" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.26" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.9.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.9.26" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.9.26" ∷ word (π ∷ ε ∷ φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.27" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.9.27" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Heb.9.27" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.27" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Heb.9.27" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.9.27" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.9.27" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.9.27" ∷ word (δ ∷ ὲ ∷ []) "Heb.9.27" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.9.27" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ς ∷ []) "Heb.9.27" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.9.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.9.28" ∷ word (ὁ ∷ []) "Heb.9.28" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Heb.9.28" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.9.28" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ ε ∷ χ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.9.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.28" ∷ word (τ ∷ ὸ ∷ []) "Heb.9.28" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Heb.9.28" ∷ word (ἀ ∷ ν ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.9.28" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.28" ∷ word (ἐ ∷ κ ∷ []) "Heb.9.28" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Heb.9.28" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.9.28" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.9.28" ∷ word (ὀ ∷ φ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.9.28" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.9.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.9.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.9.28" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Heb.9.28" ∷ word (Σ ∷ κ ∷ ι ∷ ὰ ∷ ν ∷ []) "Heb.10.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Heb.10.1" ∷ word (ὁ ∷ []) "Heb.10.1" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Heb.10.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.1" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.1" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῶ ∷ ν ∷ []) "Heb.10.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Heb.10.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.1" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "Heb.10.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.1" ∷ word (π ∷ ρ ∷ α ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.1" ∷ word (κ ∷ α ∷ τ ∷ []) "Heb.10.1" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.10.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.10.1" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.10.1" ∷ word (ἃ ∷ ς ∷ []) "Heb.10.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.1" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.1" ∷ word (δ ∷ ι ∷ η ∷ ν ∷ ε ∷ κ ∷ ὲ ∷ ς ∷ []) "Heb.10.1" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.10.1" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.1" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Heb.10.1" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.10.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.2" ∷ word (ἂ ∷ ν ∷ []) "Heb.10.2" ∷ word (ἐ ∷ π ∷ α ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Heb.10.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ε ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Heb.10.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.10.2" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.2" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.2" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.10.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.10.2" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.2" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.2" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.10.2" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.10.2" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Heb.10.3" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.3" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.10.3" ∷ word (ἀ ∷ ν ∷ ά ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Heb.10.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.3" ∷ word (κ ∷ α ∷ τ ∷ []) "Heb.10.3" ∷ word (ἐ ∷ ν ∷ ι ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.10.3" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.10.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.4" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.10.4" ∷ word (τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.4" ∷ word (τ ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Heb.10.4" ∷ word (ἀ ∷ φ ∷ α ∷ ι ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.10.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.4" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.10.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.10.5" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Heb.10.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.10.5" ∷ word (Θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ὰ ∷ ν ∷ []) "Heb.10.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.5" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.5" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Heb.10.5" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.5" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ τ ∷ ί ∷ σ ∷ ω ∷ []) "Heb.10.5" ∷ word (μ ∷ ο ∷ ι ∷ []) "Heb.10.5" ∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.10.6" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.6" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.6" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Heb.10.7" ∷ word (ε ∷ ἶ ∷ π ∷ ο ∷ ν ∷ []) "Heb.10.7" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Heb.10.7" ∷ word (ἥ ∷ κ ∷ ω ∷ []) "Heb.10.7" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ι ∷ []) "Heb.10.7" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.10.7" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.7" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.10.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Heb.10.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.10.7" ∷ word (ὁ ∷ []) "Heb.10.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.10.7" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.7" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Heb.10.7" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.10.7" ∷ word (ἀ ∷ ν ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.10.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.10.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.10.8" ∷ word (Θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ὰ ∷ ς ∷ []) "Heb.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.8" ∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.10.8" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.8" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Heb.10.8" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.8" ∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Heb.10.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.10.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.10.8" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.8" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Heb.10.9" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.10.9" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Heb.10.9" ∷ word (ἥ ∷ κ ∷ ω ∷ []) "Heb.10.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.9" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.10.9" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.9" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ ά ∷ []) "Heb.10.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Heb.10.9" ∷ word (ἀ ∷ ν ∷ α ∷ ι ∷ ρ ∷ ε ∷ ῖ ∷ []) "Heb.10.9" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.9" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.10.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.10.9" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.9" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.10.9" ∷ word (σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Heb.10.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.10" ∷ word (ᾧ ∷ []) "Heb.10.10" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.10.10" ∷ word (ἡ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.10.10" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Heb.10.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.10.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.10" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.10" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Heb.10.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.10.10" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "Heb.10.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.10.11" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Heb.10.11" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.10.11" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Heb.10.11" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.10.11" ∷ word (κ ∷ α ∷ θ ∷ []) "Heb.10.11" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.10.11" ∷ word (∙λ ∷ ε ∷ ι ∷ τ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Heb.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.11" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Heb.10.11" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Heb.10.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.10.11" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.11" ∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Heb.10.11" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Heb.10.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.10.11" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.11" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.12" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.12" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.12" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.10.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ς ∷ []) "Heb.10.12" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.12" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.12" ∷ word (δ ∷ ι ∷ η ∷ ν ∷ ε ∷ κ ∷ ὲ ∷ ς ∷ []) "Heb.10.12" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.10.12" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.12" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Heb.10.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.10.12" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "Heb.10.13" ∷ word (ἐ ∷ κ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.13" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Heb.10.13" ∷ word (τ ∷ ε ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.13" ∷ word (ο ∷ ἱ ∷ []) "Heb.10.13" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Heb.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.10.13" ∷ word (ὑ ∷ π ∷ ο ∷ π ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.10.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.13" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Heb.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.10.13" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Heb.10.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ᾷ ∷ []) "Heb.10.14" ∷ word (τ ∷ ε ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Heb.10.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.14" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.14" ∷ word (δ ∷ ι ∷ η ∷ ν ∷ ε ∷ κ ∷ ὲ ∷ ς ∷ []) "Heb.10.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.14" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.14" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Heb.10.15" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.15" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.10.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.15" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.15" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Heb.10.15" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.15" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.10.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.10.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.15" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.15" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Heb.10.15" ∷ word (Α ∷ ὕ ∷ τ ∷ η ∷ []) "Heb.10.16" ∷ word (ἡ ∷ []) "Heb.10.16" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "Heb.10.16" ∷ word (ἣ ∷ ν ∷ []) "Heb.10.16" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.10.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.10.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.10.16" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.10.16" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Heb.10.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Heb.10.16" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.10.16" ∷ word (δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.16" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.10.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.10.16" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.10.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.10.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.16" ∷ word (δ ∷ ι ∷ ά ∷ ν ∷ ο ∷ ι ∷ α ∷ ν ∷ []) "Heb.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.10.16" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ ά ∷ ψ ∷ ω ∷ []) "Heb.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Heb.10.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.10.17" ∷ word (ο ∷ ὐ ∷ []) "Heb.10.17" ∷ word (μ ∷ ὴ ∷ []) "Heb.10.17" ∷ word (μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.10.17" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.10.17" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Heb.10.18" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.18" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ς ∷ []) "Heb.10.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.18" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Heb.10.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ ο ∷ ρ ∷ ὰ ∷ []) "Heb.10.18" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.10.18" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.18" ∷ word (Ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.10.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Heb.10.19" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.19" ∷ word (ε ∷ ἴ ∷ σ ∷ ο ∷ δ ∷ ο ∷ ν ∷ []) "Heb.10.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.19" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.10.19" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.19" ∷ word (τ ∷ ῷ ∷ []) "Heb.10.19" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.10.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Heb.10.19" ∷ word (ἣ ∷ ν ∷ []) "Heb.10.20" ∷ word (ἐ ∷ ν ∷ ε ∷ κ ∷ α ∷ ί ∷ ν ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Heb.10.20" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.10.20" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Heb.10.20" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ φ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.10.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.20" ∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "Heb.10.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.10.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.20" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ ε ∷ τ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.20" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.10.20" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.10.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.20" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.10.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.10.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.21" ∷ word (ἱ ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Heb.10.21" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Heb.10.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.10.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.10.21" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.10.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.10.21" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.10.22" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.10.22" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ι ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.10.22" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.22" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.22" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Heb.10.22" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.10.22" ∷ word (ῥ ∷ ε ∷ ρ ∷ α ∷ ν ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.10.22" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.10.22" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.22" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.10.22" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.10.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.10.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.22" ∷ word (∙λ ∷ ε ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.10.22" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.22" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Heb.10.22" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "Heb.10.22" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ῷ ∷ []) "Heb.10.22" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.10.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.23" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.23" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Heb.10.23" ∷ word (ἀ ∷ κ ∷ ∙λ ∷ ι ∷ ν ∷ ῆ ∷ []) "Heb.10.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.10.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.23" ∷ word (ὁ ∷ []) "Heb.10.23" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.24" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ ο ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.10.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.24" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ξ ∷ υ ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Heb.10.24" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "Heb.10.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.24" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Heb.10.24" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.10.24" ∷ word (μ ∷ ὴ ∷ []) "Heb.10.25" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.25" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὴ ∷ ν ∷ []) "Heb.10.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.10.25" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.10.25" ∷ word (ἔ ∷ θ ∷ ο ∷ ς ∷ []) "Heb.10.25" ∷ word (τ ∷ ι ∷ σ ∷ ί ∷ ν ∷ []) "Heb.10.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.10.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.25" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Heb.10.25" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.10.25" ∷ word (ὅ ∷ σ ∷ ῳ ∷ []) "Heb.10.25" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Heb.10.25" ∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.25" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.10.25" ∷ word (Ἑ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "Heb.10.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.26" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ α ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.26" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.10.26" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.10.26" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.26" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.10.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.26" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.26" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.26" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Heb.10.26" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.10.26" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.10.26" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ε ∷ ί ∷ π ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.26" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "Heb.10.26" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ρ ∷ ὰ ∷ []) "Heb.10.27" ∷ word (δ ∷ έ ∷ []) "Heb.10.27" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.10.27" ∷ word (ἐ ∷ κ ∷ δ ∷ ο ∷ χ ∷ ὴ ∷ []) "Heb.10.27" ∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.10.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.27" ∷ word (π ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.10.27" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Heb.10.27" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "Heb.10.27" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.27" ∷ word (ὑ ∷ π ∷ ε ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Heb.10.27" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.28" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.10.28" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Heb.10.28" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.10.28" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.10.28" ∷ word (ο ∷ ἰ ∷ κ ∷ τ ∷ ι ∷ ρ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.10.28" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.10.28" ∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Heb.10.28" ∷ word (ἢ ∷ []) "Heb.10.28" ∷ word (τ ∷ ρ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "Heb.10.28" ∷ word (μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.28" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Heb.10.28" ∷ word (π ∷ ό ∷ σ ∷ ῳ ∷ []) "Heb.10.29" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Heb.10.29" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.29" ∷ word (ἀ ∷ ξ ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.29" ∷ word (τ ∷ ι ∷ μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.10.29" ∷ word (ὁ ∷ []) "Heb.10.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.10.29" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Heb.10.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.29" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.10.29" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.29" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.29" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.10.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.29" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.10.29" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Heb.10.29" ∷ word (ἡ ∷ γ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.29" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.29" ∷ word (ᾧ ∷ []) "Heb.10.29" ∷ word (ἡ ∷ γ ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Heb.10.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.29" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.29" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Heb.10.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.10.29" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.29" ∷ word (ἐ ∷ ν ∷ υ ∷ β ∷ ρ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Heb.10.29" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Heb.10.30" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.10.30" ∷ word (ε ∷ ἰ ∷ π ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Heb.10.30" ∷ word (Ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Heb.10.30" ∷ word (ἐ ∷ κ ∷ δ ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Heb.10.30" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Heb.10.30" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ω ∷ []) "Heb.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.30" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.10.30" ∷ word (Κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ῖ ∷ []) "Heb.10.30" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.10.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.10.30" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Heb.10.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.10.30" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.10.31" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.31" ∷ word (ἐ ∷ μ ∷ π ∷ ε ∷ σ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.10.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.31" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.10.31" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.10.31" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.10.31" ∷ word (Ἀ ∷ ν ∷ α ∷ μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.10.32" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.32" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.10.32" ∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.10.32" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.10.32" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.32" ∷ word (α ∷ ἷ ∷ ς ∷ []) "Heb.10.32" ∷ word (φ ∷ ω ∷ τ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.32" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Heb.10.32" ∷ word (ἄ ∷ θ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.32" ∷ word (ὑ ∷ π ∷ ε ∷ μ ∷ ε ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Heb.10.32" ∷ word (π ∷ α ∷ θ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.32" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.10.33" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.10.33" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.10.33" ∷ word (τ ∷ ε ∷ []) "Heb.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.33" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.33" ∷ word (θ ∷ ε ∷ α ∷ τ ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.10.33" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.10.33" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.33" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὶ ∷ []) "Heb.10.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.33" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.10.33" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.10.33" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.10.34" ∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Heb.10.34" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ π ∷ α ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Heb.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.34" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.34" ∷ word (ἁ ∷ ρ ∷ π ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "Heb.10.34" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.10.34" ∷ word (ὑ ∷ π ∷ α ∷ ρ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.10.34" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.10.34" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.10.34" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.10.34" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ δ ∷ έ ∷ ξ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Heb.10.34" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.34" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.10.34" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.10.34" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ α ∷ []) "Heb.10.34" ∷ word (ὕ ∷ π ∷ α ∷ ρ ∷ ξ ∷ ι ∷ ν ∷ []) "Heb.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.34" ∷ word (μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.10.34" ∷ word (μ ∷ ὴ ∷ []) "Heb.10.35" ∷ word (ἀ ∷ π ∷ ο ∷ β ∷ ά ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "Heb.10.35" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.10.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.35" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.35" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.10.35" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.10.35" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Heb.10.35" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Heb.10.35" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.35" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.10.36" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.36" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.10.36" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.36" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.10.36" ∷ word (τ ∷ ὸ ∷ []) "Heb.10.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Heb.10.36" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.10.36" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.10.36" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.10.36" ∷ word (κ ∷ ο ∷ μ ∷ ί ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Heb.10.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.10.36" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Heb.10.36" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.10.37" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.10.37" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.10.37" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Heb.10.37" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Heb.10.37" ∷ word (ὁ ∷ []) "Heb.10.37" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.10.37" ∷ word (ἥ ∷ ξ ∷ ε ∷ ι ∷ []) "Heb.10.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.37" ∷ word (ο ∷ ὐ ∷ []) "Heb.10.37" ∷ word (χ ∷ ρ ∷ ο ∷ ν ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Heb.10.37" ∷ word (ὁ ∷ []) "Heb.10.38" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.38" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ό ∷ ς ∷ []) "Heb.10.38" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.10.38" ∷ word (ἐ ∷ κ ∷ []) "Heb.10.38" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.10.38" ∷ word (ζ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.10.38" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.10.38" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.10.38" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.38" ∷ word (ε ∷ ὐ ∷ δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "Heb.10.38" ∷ word (ἡ ∷ []) "Heb.10.38" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "Heb.10.38" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.10.38" ∷ word (ἐ ∷ ν ∷ []) "Heb.10.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.10.38" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.10.39" ∷ word (δ ∷ ὲ ∷ []) "Heb.10.39" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.10.39" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "Heb.10.39" ∷ word (ὑ ∷ π ∷ ο ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.10.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.39" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Heb.10.39" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.10.39" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.10.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.10.39" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.10.39" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Heb.10.39" ∷ word (Ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.11.1" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.11.1" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.11.1" ∷ word (ὑ ∷ π ∷ ό ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Heb.11.1" ∷ word (π ∷ ρ ∷ α ∷ γ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.11.1" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ο ∷ ς ∷ []) "Heb.11.1" ∷ word (ο ∷ ὐ ∷ []) "Heb.11.1" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.11.1" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.2" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Heb.11.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.2" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.2" ∷ word (ο ∷ ἱ ∷ []) "Heb.11.2" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Heb.11.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.3" ∷ word (ν ∷ ο ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.11.3" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ τ ∷ ί ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.11.3" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.3" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Heb.11.3" ∷ word (ῥ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.11.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.11.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.3" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.3" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.3" ∷ word (ἐ ∷ κ ∷ []) "Heb.11.3" ∷ word (φ ∷ α ∷ ι ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.11.3" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.3" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.3" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Heb.11.3" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.4" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Heb.11.4" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.4" ∷ word (Ἅ ∷ β ∷ ε ∷ ∙λ ∷ []) "Heb.11.4" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.11.4" ∷ word (Κ ∷ ά ∷ ϊ ∷ ν ∷ []) "Heb.11.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Heb.11.4" ∷ word (τ ∷ ῷ ∷ []) "Heb.11.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.11.4" ∷ word (δ ∷ ι ∷ []) "Heb.11.4" ∷ word (ἧ ∷ ς ∷ []) "Heb.11.4" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ θ ∷ η ∷ []) "Heb.11.4" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Heb.11.4" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "Heb.11.4" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.11.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.11.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.11.4" ∷ word (δ ∷ ώ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "Heb.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.4" ∷ word (δ ∷ ι ∷ []) "Heb.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.11.4" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ὼ ∷ ν ∷ []) "Heb.11.4" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.11.4" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Heb.11.4" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.5" ∷ word (Ἑ ∷ ν ∷ ὼ ∷ χ ∷ []) "Heb.11.5" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ τ ∷ έ ∷ θ ∷ η ∷ []) "Heb.11.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.5" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.5" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.11.5" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.5" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Heb.11.5" ∷ word (η ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ε ∷ τ ∷ ο ∷ []) "Heb.11.5" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Heb.11.5" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.11.5" ∷ word (ὁ ∷ []) "Heb.11.5" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.11.5" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Heb.11.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.5" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.5" ∷ word (μ ∷ ε ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.11.5" ∷ word (ε ∷ ὐ ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Heb.11.5" ∷ word (τ ∷ ῷ ∷ []) "Heb.11.5" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.11.5" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.11.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.6" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.6" ∷ word (ε ∷ ὐ ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.11.6" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Heb.11.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.6" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Heb.11.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.6" ∷ word (τ ∷ ῷ ∷ []) "Heb.11.6" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.11.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.11.6" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.11.6" ∷ word (ἐ ∷ κ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.11.6" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ α ∷ π ∷ ο ∷ δ ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Heb.11.6" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.11.6" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.7" ∷ word (χ ∷ ρ ∷ η ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.11.7" ∷ word (Ν ∷ ῶ ∷ ε ∷ []) "Heb.11.7" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.7" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ π ∷ ω ∷ []) "Heb.11.7" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.11.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ α ∷ β ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.11.7" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ κ ∷ ε ∷ ύ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.7" ∷ word (κ ∷ ι ∷ β ∷ ω ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.11.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.7" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.7" ∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "Heb.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.7" ∷ word (δ ∷ ι ∷ []) "Heb.11.7" ∷ word (ἧ ∷ ς ∷ []) "Heb.11.7" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Heb.11.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.7" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Heb.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.7" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.11.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.11.7" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.11.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Heb.11.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Heb.11.7" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.8" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.11.8" ∷ word (ὑ ∷ π ∷ ή ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.11.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.8" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Heb.11.8" ∷ word (ὃ ∷ ν ∷ []) "Heb.11.8" ∷ word (ἤ ∷ μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Heb.11.8" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Heb.11.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.8" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.8" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.11.8" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.8" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.8" ∷ word (π ∷ ο ∷ ῦ ∷ []) "Heb.11.8" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.11.8" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.9" ∷ word (π ∷ α ∷ ρ ∷ ῴ ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.9" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Heb.11.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.9" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.9" ∷ word (ὡ ∷ ς ∷ []) "Heb.11.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.9" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.11.9" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ι ∷ κ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.11.9" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.11.9" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Heb.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.9" ∷ word (Ἰ ∷ α ∷ κ ∷ ὼ ∷ β ∷ []) "Heb.11.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.9" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ω ∷ ν ∷ []) "Heb.11.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.9" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.11.9" ∷ word (ἐ ∷ ξ ∷ ε ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Heb.11.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.10" ∷ word (θ ∷ ε ∷ μ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Heb.11.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.10" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.11.10" ∷ word (ἧ ∷ ς ∷ []) "Heb.11.10" ∷ word (τ ∷ ε ∷ χ ∷ ν ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Heb.11.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.10" ∷ word (δ ∷ η ∷ μ ∷ ι ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ὸ ∷ ς ∷ []) "Heb.11.10" ∷ word (ὁ ∷ []) "Heb.11.10" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.11.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Heb.11.11" ∷ word (Σ ∷ ά ∷ ρ ∷ ρ ∷ ᾳ ∷ []) "Heb.11.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Heb.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Heb.11.11" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.11.11" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Heb.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.11" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.11.11" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.11.11" ∷ word (ἡ ∷ ∙λ ∷ ι ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.11" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Heb.11.11" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.11.11" ∷ word (ἡ ∷ γ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Heb.11.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.11" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.11" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.12" ∷ word (ἀ ∷ φ ∷ []) "Heb.11.12" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "Heb.11.12" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.12" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Heb.11.12" ∷ word (ν ∷ ε ∷ ν ∷ ε ∷ κ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Heb.11.12" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Heb.11.12" ∷ word (τ ∷ ὰ ∷ []) "Heb.11.12" ∷ word (ἄ ∷ σ ∷ τ ∷ ρ ∷ α ∷ []) "Heb.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.12" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Heb.11.12" ∷ word (τ ∷ ῷ ∷ []) "Heb.11.12" ∷ word (π ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ []) "Heb.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.12" ∷ word (ὡ ∷ ς ∷ []) "Heb.11.12" ∷ word (ἡ ∷ []) "Heb.11.12" ∷ word (ἄ ∷ μ ∷ μ ∷ ο ∷ ς ∷ []) "Heb.11.12" ∷ word (ἡ ∷ []) "Heb.11.12" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.11.12" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.12" ∷ word (χ ∷ ε ∷ ῖ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Heb.11.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.12" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Heb.11.12" ∷ word (ἡ ∷ []) "Heb.11.12" ∷ word (ἀ ∷ ν ∷ α ∷ ρ ∷ ί ∷ θ ∷ μ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Heb.11.12" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.11.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.11.13" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Heb.11.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.13" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.13" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.11.13" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.11.13" ∷ word (π ∷ ό ∷ ρ ∷ ρ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Heb.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Heb.11.13" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.13" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.13" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.11.13" ∷ word (ξ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ί ∷ δ ∷ η ∷ μ ∷ ο ∷ ί ∷ []) "Heb.11.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.13" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.11.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.13" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.11.13" ∷ word (ο ∷ ἱ ∷ []) "Heb.11.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.14" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Heb.11.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.14" ∷ word (ἐ ∷ μ ∷ φ ∷ α ∷ ν ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.11.14" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ α ∷ []) "Heb.11.14" ∷ word (ἐ ∷ π ∷ ι ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.15" ∷ word (ε ∷ ἰ ∷ []) "Heb.11.15" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.11.15" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Heb.11.15" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.15" ∷ word (ἀ ∷ φ ∷ []) "Heb.11.15" ∷ word (ἧ ∷ ς ∷ []) "Heb.11.15" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.15" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Heb.11.15" ∷ word (ἂ ∷ ν ∷ []) "Heb.11.15" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.11.15" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ά ∷ μ ∷ ψ ∷ α ∷ ι ∷ []) "Heb.11.15" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Heb.11.16" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.16" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.16" ∷ word (ὀ ∷ ρ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.11.16" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.11.16" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.11.16" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.11.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.11.16" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.16" ∷ word (ὁ ∷ []) "Heb.11.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.11.16" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.11.16" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.11.16" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.11.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.11.16" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ ή ∷ ν ∷ ο ∷ χ ∷ ε ∷ ν ∷ []) "Heb.11.17" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Heb.11.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.17" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Heb.11.17" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.17" ∷ word (μ ∷ ο ∷ ν ∷ ο ∷ γ ∷ ε ∷ ν ∷ ῆ ∷ []) "Heb.11.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ φ ∷ ε ∷ ρ ∷ ε ∷ ν ∷ []) "Heb.11.17" ∷ word (ὁ ∷ []) "Heb.11.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.11.17" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.17" ∷ word (ἀ ∷ ν ∷ α ∷ δ ∷ ε ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.11.18" ∷ word (ὃ ∷ ν ∷ []) "Heb.11.18" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "Heb.11.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.11.18" ∷ word (Ἐ ∷ ν ∷ []) "Heb.11.18" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Heb.11.18" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Heb.11.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "Heb.11.18" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Heb.11.18" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.19" ∷ word (ἐ ∷ κ ∷ []) "Heb.11.19" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.11.19" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.11.19" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.11.19" ∷ word (ὁ ∷ []) "Heb.11.19" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.11.19" ∷ word (ὅ ∷ θ ∷ ε ∷ ν ∷ []) "Heb.11.19" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.19" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "Heb.11.19" ∷ word (ἐ ∷ κ ∷ ο ∷ μ ∷ ί ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Heb.11.19" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.20" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.20" ∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.11.20" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.20" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Heb.11.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.20" ∷ word (Ἰ ∷ α ∷ κ ∷ ὼ ∷ β ∷ []) "Heb.11.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.20" ∷ word (Ἠ ∷ σ ∷ α ∷ ῦ ∷ []) "Heb.11.20" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.21" ∷ word (Ἰ ∷ α ∷ κ ∷ ὼ ∷ β ∷ []) "Heb.11.21" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Heb.11.21" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.21" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Heb.11.21" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Heb.11.21" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.21" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.11.21" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.21" ∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.11.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.21" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ υ ∷ []) "Heb.11.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.21" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.22" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Heb.11.22" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.11.22" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.22" ∷ word (ἐ ∷ ξ ∷ ό ∷ δ ∷ ο ∷ υ ∷ []) "Heb.11.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.22" ∷ word (υ ∷ ἱ ∷ ῶ ∷ ν ∷ []) "Heb.11.22" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Heb.11.22" ∷ word (ἐ ∷ μ ∷ ν ∷ η ∷ μ ∷ ό ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.22" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.22" ∷ word (ὀ ∷ σ ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Heb.11.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.22" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Heb.11.22" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.23" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.11.23" ∷ word (γ ∷ ε ∷ ν ∷ ν ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.11.23" ∷ word (ἐ ∷ κ ∷ ρ ∷ ύ ∷ β ∷ η ∷ []) "Heb.11.23" ∷ word (τ ∷ ρ ∷ ί ∷ μ ∷ η ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.23" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.11.23" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.23" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.23" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "Heb.11.23" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Heb.11.23" ∷ word (ἀ ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Heb.11.23" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.23" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Heb.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.11.23" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.23" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.23" ∷ word (δ ∷ ι ∷ ά ∷ τ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Heb.11.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.23" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.11.23" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.24" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.11.24" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Heb.11.24" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.24" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Heb.11.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.11.24" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Heb.11.24" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.11.24" ∷ word (Φ ∷ α ∷ ρ ∷ α ∷ ώ ∷ []) "Heb.11.24" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.11.25" ∷ word (ἑ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.25" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ κ ∷ ο ∷ υ ∷ χ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.11.25" ∷ word (τ ∷ ῷ ∷ []) "Heb.11.25" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "Heb.11.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.11.25" ∷ word (ἢ ∷ []) "Heb.11.25" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.11.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.11.25" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.25" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.25" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ α ∷ []) "Heb.11.26" ∷ word (π ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.26" ∷ word (ἡ ∷ γ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.26" ∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ο ∷ υ ∷ []) "Heb.11.26" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.11.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.26" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Heb.11.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.26" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.11.26" ∷ word (ἀ ∷ π ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Heb.11.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.11.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.26" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ α ∷ π ∷ ο ∷ δ ∷ ο ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.26" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.27" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ε ∷ ν ∷ []) "Heb.11.27" ∷ word (Α ∷ ἴ ∷ γ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.27" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.27" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.11.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.27" ∷ word (θ ∷ υ ∷ μ ∷ ὸ ∷ ν ∷ []) "Heb.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.27" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.11.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.11.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.27" ∷ word (ἀ ∷ ό ∷ ρ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.11.27" ∷ word (ὡ ∷ ς ∷ []) "Heb.11.27" ∷ word (ὁ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.11.27" ∷ word (ἐ ∷ κ ∷ α ∷ ρ ∷ τ ∷ έ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Heb.11.27" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.28" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.11.28" ∷ word (τ ∷ ὸ ∷ []) "Heb.11.28" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Heb.11.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.28" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ χ ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.28" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.11.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.11.28" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.28" ∷ word (ὁ ∷ []) "Heb.11.28" ∷ word (ὀ ∷ ∙λ ∷ ο ∷ θ ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "Heb.11.28" ∷ word (τ ∷ ὰ ∷ []) "Heb.11.28" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ό ∷ τ ∷ ο ∷ κ ∷ α ∷ []) "Heb.11.28" ∷ word (θ ∷ ί ∷ γ ∷ ῃ ∷ []) "Heb.11.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.11.28" ∷ word (Π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.29" ∷ word (δ ∷ ι ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.29" ∷ word (Ἐ ∷ ρ ∷ υ ∷ θ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Heb.11.29" ∷ word (Θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.29" ∷ word (ὡ ∷ ς ∷ []) "Heb.11.29" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.11.29" ∷ word (ξ ∷ η ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.11.29" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.11.29" ∷ word (ἧ ∷ ς ∷ []) "Heb.11.29" ∷ word (π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.11.29" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.29" ∷ word (ο ∷ ἱ ∷ []) "Heb.11.29" ∷ word (Α ∷ ἰ ∷ γ ∷ ύ ∷ π ∷ τ ∷ ι ∷ ο ∷ ι ∷ []) "Heb.11.29" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ π ∷ ό ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.29" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.30" ∷ word (τ ∷ ὰ ∷ []) "Heb.11.30" ∷ word (τ ∷ ε ∷ ί ∷ χ ∷ η ∷ []) "Heb.11.30" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ὼ ∷ []) "Heb.11.30" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.30" ∷ word (κ ∷ υ ∷ κ ∷ ∙λ ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "Heb.11.30" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.11.30" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Heb.11.30" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.11.30" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Heb.11.31" ∷ word (Ῥ ∷ α ∷ ὰ ∷ β ∷ []) "Heb.11.31" ∷ word (ἡ ∷ []) "Heb.11.31" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ []) "Heb.11.31" ∷ word (ο ∷ ὐ ∷ []) "Heb.11.31" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Heb.11.31" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.11.31" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ή ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.31" ∷ word (δ ∷ ε ∷ ξ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Heb.11.31" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.31" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Heb.11.31" ∷ word (μ ∷ ε ∷ τ ∷ []) "Heb.11.31" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Heb.11.31" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Heb.11.32" ∷ word (τ ∷ ί ∷ []) "Heb.11.32" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.11.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Heb.11.32" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Heb.11.32" ∷ word (μ ∷ ε ∷ []) "Heb.11.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.11.32" ∷ word (δ ∷ ι ∷ η ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.32" ∷ word (ὁ ∷ []) "Heb.11.32" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.32" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.32" ∷ word (Γ ∷ ε ∷ δ ∷ ε ∷ ώ ∷ ν ∷ []) "Heb.11.32" ∷ word (Β ∷ α ∷ ρ ∷ ά ∷ κ ∷ []) "Heb.11.32" ∷ word (Σ ∷ α ∷ μ ∷ ψ ∷ ώ ∷ ν ∷ []) "Heb.11.32" ∷ word (Ἰ ∷ ε ∷ φ ∷ θ ∷ ά ∷ ε ∷ []) "Heb.11.32" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Heb.11.32" ∷ word (τ ∷ ε ∷ []) "Heb.11.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.32" ∷ word (Σ ∷ α ∷ μ ∷ ο ∷ υ ∷ ὴ ∷ ∙λ ∷ []) "Heb.11.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.32" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.11.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.11.32" ∷ word (ο ∷ ἳ ∷ []) "Heb.11.33" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.11.33" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.33" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ω ∷ ν ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Heb.11.33" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.33" ∷ word (ε ∷ ἰ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Heb.11.33" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "Heb.11.33" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ υ ∷ χ ∷ ο ∷ ν ∷ []) "Heb.11.33" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.11.33" ∷ word (ἔ ∷ φ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Heb.11.33" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.11.33" ∷ word (∙λ ∷ ε ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.11.33" ∷ word (ἔ ∷ σ ∷ β ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.34" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Heb.11.34" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "Heb.11.34" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Heb.11.34" ∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.11.34" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Heb.11.34" ∷ word (ἐ ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.34" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.11.34" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.11.34" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.34" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ὶ ∷ []) "Heb.11.34" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.34" ∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ῳ ∷ []) "Heb.11.34" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Heb.11.34" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Heb.11.34" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.11.34" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Heb.11.35" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Heb.11.35" ∷ word (ἐ ∷ ξ ∷ []) "Heb.11.35" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.35" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.35" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.11.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Heb.11.35" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Heb.11.35" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.35" ∷ word (ἐ ∷ τ ∷ υ ∷ μ ∷ π ∷ α ∷ ν ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.35" ∷ word (ο ∷ ὐ ∷ []) "Heb.11.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.35" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.11.35" ∷ word (κ ∷ ρ ∷ ε ∷ ί ∷ τ ∷ τ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Heb.11.35" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.35" ∷ word (τ ∷ ύ ∷ χ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.35" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Heb.11.36" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.36" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ι ∷ γ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.11.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.36" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ί ∷ γ ∷ ω ∷ ν ∷ []) "Heb.11.36" ∷ word (π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Heb.11.36" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Heb.11.36" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Heb.11.36" ∷ word (δ ∷ ὲ ∷ []) "Heb.11.36" ∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.11.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.36" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῆ ∷ ς ∷ []) "Heb.11.36" ∷ word (ἐ ∷ ∙λ ∷ ι ∷ θ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.37" ∷ word (ἐ ∷ π ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.11.37" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.37" ∷ word (φ ∷ ό ∷ ν ∷ ῳ ∷ []) "Heb.11.37" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ί ∷ ρ ∷ η ∷ ς ∷ []) "Heb.11.37" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Heb.11.37" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Heb.11.37" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.37" ∷ word (μ ∷ η ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.11.37" ∷ word (ἐ ∷ ν ∷ []) "Heb.11.37" ∷ word (α ∷ ἰ ∷ γ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Heb.11.37" ∷ word (δ ∷ έ ∷ ρ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.37" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.37" ∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.37" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ υ ∷ χ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.37" ∷ word (ὧ ∷ ν ∷ []) "Heb.11.38" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.11.38" ∷ word (ἦ ∷ ν ∷ []) "Heb.11.38" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.11.38" ∷ word (ὁ ∷ []) "Heb.11.38" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "Heb.11.38" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.11.38" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.11.38" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.11.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.38" ∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ []) "Heb.11.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.38" ∷ word (σ ∷ π ∷ η ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Heb.11.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.38" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.11.38" ∷ word (ὀ ∷ π ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.11.38" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.38" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.11.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.11.39" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.39" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.11.39" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.11.39" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.11.39" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.11.39" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.11.39" ∷ word (ἐ ∷ κ ∷ ο ∷ μ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Heb.11.39" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.11.39" ∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Heb.11.39" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.11.40" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.11.40" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.11.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.11.40" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Heb.11.40" ∷ word (τ ∷ ι ∷ []) "Heb.11.40" ∷ word (π ∷ ρ ∷ ο ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Heb.11.40" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.11.40" ∷ word (μ ∷ ὴ ∷ []) "Heb.11.40" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.11.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.11.40" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.11.40" ∷ word (Τ ∷ ο ∷ ι ∷ γ ∷ α ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.1" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.12.1" ∷ word (τ ∷ ο ∷ σ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.12.1" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.12.1" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.12.1" ∷ word (ν ∷ έ ∷ φ ∷ ο ∷ ς ∷ []) "Heb.12.1" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Heb.12.1" ∷ word (ὄ ∷ γ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.12.1" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.12.1" ∷ word (ε ∷ ὐ ∷ π ∷ ε ∷ ρ ∷ ί ∷ σ ∷ τ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Heb.12.1" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.1" ∷ word (δ ∷ ι ∷ []) "Heb.12.1" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῆ ∷ ς ∷ []) "Heb.12.1" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.12.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.1" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.12.1" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.12.1" ∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ α ∷ []) "Heb.12.1" ∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.12.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.12.2" ∷ word (ἀ ∷ ρ ∷ χ ∷ η ∷ γ ∷ ὸ ∷ ν ∷ []) "Heb.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.2" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ω ∷ τ ∷ ὴ ∷ ν ∷ []) "Heb.12.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.12.2" ∷ word (ὃ ∷ ς ∷ []) "Heb.12.2" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Heb.12.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.2" ∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Heb.12.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Heb.12.2" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.12.2" ∷ word (ὑ ∷ π ∷ έ ∷ μ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Heb.12.2" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.12.2" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.12.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.12.2" ∷ word (ἐ ∷ ν ∷ []) "Heb.12.2" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ᾷ ∷ []) "Heb.12.2" ∷ word (τ ∷ ε ∷ []) "Heb.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.12.2" ∷ word (θ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ []) "Heb.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.12.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.12.2" ∷ word (κ ∷ ε ∷ κ ∷ ά ∷ θ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Heb.12.2" ∷ word (Ἀ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Heb.12.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.3" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Heb.12.3" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ μ ∷ ε ∷ ν ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Heb.12.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Heb.12.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.12.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Heb.12.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.12.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.12.3" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.12.3" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.3" ∷ word (κ ∷ ά ∷ μ ∷ η ∷ τ ∷ ε ∷ []) "Heb.12.3" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.12.3" ∷ word (ψ ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.12.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.12.3" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.3" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Heb.12.4" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Heb.12.4" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.12.4" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ τ ∷ ε ∷ []) "Heb.12.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.12.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.12.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.4" ∷ word (ἀ ∷ ν ∷ τ ∷ α ∷ γ ∷ ω ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.5" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Heb.12.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.12.5" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "Heb.12.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.12.5" ∷ word (ὡ ∷ ς ∷ []) "Heb.12.5" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.5" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.5" ∷ word (Υ ∷ ἱ ∷ έ ∷ []) "Heb.12.5" ∷ word (μ ∷ ο ∷ υ ∷ []) "Heb.12.5" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.5" ∷ word (ὀ ∷ ∙λ ∷ ι ∷ γ ∷ ώ ∷ ρ ∷ ε ∷ ι ∷ []) "Heb.12.5" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.12.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.12.5" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Heb.12.5" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ύ ∷ ο ∷ υ ∷ []) "Heb.12.5" ∷ word (ὑ ∷ π ∷ []) "Heb.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.12.5" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Heb.12.5" ∷ word (ὃ ∷ ν ∷ []) "Heb.12.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.6" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾷ ∷ []) "Heb.12.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.12.6" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "Heb.12.6" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ι ∷ γ ∷ ο ∷ ῖ ∷ []) "Heb.12.6" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Heb.12.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Heb.12.6" ∷ word (ὃ ∷ ν ∷ []) "Heb.12.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.12.7" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.7" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Heb.12.7" ∷ word (ὡ ∷ ς ∷ []) "Heb.12.7" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.12.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.7" ∷ word (ὁ ∷ []) "Heb.12.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.12.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "Heb.12.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.7" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Heb.12.7" ∷ word (ὃ ∷ ν ∷ []) "Heb.12.7" ∷ word (ο ∷ ὐ ∷ []) "Heb.12.7" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "Heb.12.7" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Heb.12.7" ∷ word (ε ∷ ἰ ∷ []) "Heb.12.8" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.8" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ς ∷ []) "Heb.12.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Heb.12.8" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.12.8" ∷ word (ἧ ∷ ς ∷ []) "Heb.12.8" ∷ word (μ ∷ έ ∷ τ ∷ ο ∷ χ ∷ ο ∷ ι ∷ []) "Heb.12.8" ∷ word (γ ∷ ε ∷ γ ∷ ό ∷ ν ∷ α ∷ σ ∷ ι ∷ []) "Heb.12.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.8" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Heb.12.8" ∷ word (ν ∷ ό ∷ θ ∷ ο ∷ ι ∷ []) "Heb.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.8" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Heb.12.8" ∷ word (υ ∷ ἱ ∷ ο ∷ ί ∷ []) "Heb.12.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Heb.12.8" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Heb.12.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.12.9" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.12.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.9" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὸ ∷ ς ∷ []) "Heb.12.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.12.9" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.12.9" ∷ word (ε ∷ ἴ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.12.9" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ τ ∷ ὰ ∷ ς ∷ []) "Heb.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.9" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ρ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.12.9" ∷ word (ο ∷ ὐ ∷ []) "Heb.12.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Heb.12.9" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.12.9" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.12.9" ∷ word (τ ∷ ῷ ∷ []) "Heb.12.9" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Heb.12.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.12.9" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.9" ∷ word (ζ ∷ ή ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.12.9" ∷ word (ο ∷ ἱ ∷ []) "Heb.12.10" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.12.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.12.10" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ ς ∷ []) "Heb.12.10" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.12.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Heb.12.10" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.10" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.10" ∷ word (ἐ ∷ π ∷ α ∷ ί ∷ δ ∷ ε ∷ υ ∷ ο ∷ ν ∷ []) "Heb.12.10" ∷ word (ὁ ∷ []) "Heb.12.10" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.12.10" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.10" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.12.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.12.10" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.10" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.12.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.10" ∷ word (ἁ ∷ γ ∷ ι ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Heb.12.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.12.10" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Heb.12.11" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.11" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ί ∷ α ∷ []) "Heb.12.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.12.11" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Heb.12.11" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.11" ∷ word (π ∷ α ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.12.11" ∷ word (ο ∷ ὐ ∷ []) "Heb.12.11" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "Heb.12.11" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.12.11" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Heb.12.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.12.11" ∷ word (∙λ ∷ ύ ∷ π ∷ η ∷ ς ∷ []) "Heb.12.11" ∷ word (ὕ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.12.11" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.11" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Heb.12.11" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Heb.12.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.11" ∷ word (δ ∷ ι ∷ []) "Heb.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.12.11" ∷ word (γ ∷ ε ∷ γ ∷ υ ∷ μ ∷ ν ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.12.11" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ί ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Heb.12.11" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "Heb.12.11" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "Heb.12.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Heb.12.12" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Heb.12.12" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Heb.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.12" ∷ word (τ ∷ ὰ ∷ []) "Heb.12.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ ε ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Heb.12.12" ∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ α ∷ []) "Heb.12.12" ∷ word (ἀ ∷ ν ∷ ο ∷ ρ ∷ θ ∷ ώ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Heb.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.13" ∷ word (τ ∷ ρ ∷ ο ∷ χ ∷ ι ∷ ὰ ∷ ς ∷ []) "Heb.12.13" ∷ word (ὀ ∷ ρ ∷ θ ∷ ὰ ∷ ς ∷ []) "Heb.12.13" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Heb.12.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.13" ∷ word (π ∷ ο ∷ σ ∷ ὶ ∷ ν ∷ []) "Heb.12.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.12.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.12.13" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.13" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.13" ∷ word (χ ∷ ω ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Heb.12.13" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ α ∷ π ∷ ῇ ∷ []) "Heb.12.13" ∷ word (ἰ ∷ α ∷ θ ∷ ῇ ∷ []) "Heb.12.13" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.13" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.12.13" ∷ word (Ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Heb.12.14" ∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.12.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.12.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.14" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Heb.12.14" ∷ word (ο ∷ ὗ ∷ []) "Heb.12.14" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Heb.12.14" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Heb.12.14" ∷ word (ὄ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.12.14" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.15" ∷ word (μ ∷ ή ∷ []) "Heb.12.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.12.15" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.12.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.12.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.12.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Heb.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.12.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.12.15" ∷ word (μ ∷ ή ∷ []) "Heb.12.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.12.15" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "Heb.12.15" ∷ word (π ∷ ι ∷ κ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Heb.12.15" ∷ word (ἄ ∷ ν ∷ ω ∷ []) "Heb.12.15" ∷ word (φ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Heb.12.15" ∷ word (ἐ ∷ ν ∷ ο ∷ χ ∷ ∙λ ∷ ῇ ∷ []) "Heb.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.15" ∷ word (δ ∷ ι ∷ []) "Heb.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Heb.12.15" ∷ word (μ ∷ ι ∷ α ∷ ν ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.12.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Heb.12.15" ∷ word (μ ∷ ή ∷ []) "Heb.12.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "Heb.12.16" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ς ∷ []) "Heb.12.16" ∷ word (ἢ ∷ []) "Heb.12.16" ∷ word (β ∷ έ ∷ β ∷ η ∷ ∙λ ∷ ο ∷ ς ∷ []) "Heb.12.16" ∷ word (ὡ ∷ ς ∷ []) "Heb.12.16" ∷ word (Ἠ ∷ σ ∷ α ∷ ῦ ∷ []) "Heb.12.16" ∷ word (ὃ ∷ ς ∷ []) "Heb.12.16" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Heb.12.16" ∷ word (β ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.12.16" ∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Heb.12.16" ∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "Heb.12.16" ∷ word (τ ∷ ὰ ∷ []) "Heb.12.16" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ τ ∷ ό ∷ κ ∷ ι ∷ α ∷ []) "Heb.12.16" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.12.16" ∷ word (ἴ ∷ σ ∷ τ ∷ ε ∷ []) "Heb.12.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.17" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "Heb.12.17" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.12.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.12.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.12.17" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.17" ∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "Heb.12.17" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Heb.12.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.17" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Heb.12.17" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Heb.12.17" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Heb.12.17" ∷ word (κ ∷ α ∷ ί ∷ π ∷ ε ∷ ρ ∷ []) "Heb.12.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.12.17" ∷ word (δ ∷ α ∷ κ ∷ ρ ∷ ύ ∷ ω ∷ ν ∷ []) "Heb.12.17" ∷ word (ἐ ∷ κ ∷ ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Heb.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Heb.12.17" ∷ word (Ο ∷ ὐ ∷ []) "Heb.12.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.18" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ ύ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Heb.12.18" ∷ word (ψ ∷ η ∷ ∙λ ∷ α ∷ φ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Heb.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.18" ∷ word (κ ∷ ε ∷ κ ∷ α ∷ υ ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Heb.12.18" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Heb.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.18" ∷ word (γ ∷ ν ∷ ό ∷ φ ∷ ῳ ∷ []) "Heb.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.18" ∷ word (ζ ∷ ό ∷ φ ∷ ῳ ∷ []) "Heb.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.18" ∷ word (θ ∷ υ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Heb.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.19" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Heb.12.19" ∷ word (ἤ ∷ χ ∷ ῳ ∷ []) "Heb.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.19" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Heb.12.19" ∷ word (ῥ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.12.19" ∷ word (ἧ ∷ ς ∷ []) "Heb.12.19" ∷ word (ο ∷ ἱ ∷ []) "Heb.12.19" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.19" ∷ word (π ∷ α ∷ ρ ∷ ῃ ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Heb.12.19" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.19" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ε ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Heb.12.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Heb.12.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.12.20" ∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.12.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.20" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.20" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.12.20" ∷ word (Κ ∷ ἂ ∷ ν ∷ []) "Heb.12.20" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Heb.12.20" ∷ word (θ ∷ ί ∷ γ ∷ ῃ ∷ []) "Heb.12.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.12.20" ∷ word (ὄ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.12.20" ∷ word (∙λ ∷ ι ∷ θ ∷ ο ∷ β ∷ ο ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.20" ∷ word (κ ∷ α ∷ ί ∷ []) "Heb.12.21" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ []) "Heb.12.21" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Heb.12.21" ∷ word (ἦ ∷ ν ∷ []) "Heb.12.21" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.21" ∷ word (φ ∷ α ∷ ν ∷ τ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Heb.12.21" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Heb.12.21" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Heb.12.21" ∷ word (Ἔ ∷ κ ∷ φ ∷ ο ∷ β ∷ ό ∷ ς ∷ []) "Heb.12.21" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Heb.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.21" ∷ word (ἔ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "Heb.12.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.12.22" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ ύ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Heb.12.22" ∷ word (Σ ∷ ι ∷ ὼ ∷ ν ∷ []) "Heb.12.22" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Heb.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.22" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Heb.12.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.12.22" ∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.12.22" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ὴ ∷ μ ∷ []) "Heb.12.22" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ῳ ∷ []) "Heb.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.22" ∷ word (μ ∷ υ ∷ ρ ∷ ι ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Heb.12.22" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Heb.12.22" ∷ word (π ∷ α ∷ ν ∷ η ∷ γ ∷ ύ ∷ ρ ∷ ε ∷ ι ∷ []) "Heb.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Heb.12.23" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ τ ∷ ό ∷ κ ∷ ω ∷ ν ∷ []) "Heb.12.23" ∷ word (ἀ ∷ π ∷ ο ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.12.23" ∷ word (ἐ ∷ ν ∷ []) "Heb.12.23" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.12.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.23" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ ῇ ∷ []) "Heb.12.23" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.12.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.12.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.23" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Heb.12.23" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Heb.12.23" ∷ word (τ ∷ ε ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.12.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.24" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.12.24" ∷ word (ν ∷ έ ∷ α ∷ ς ∷ []) "Heb.12.24" ∷ word (μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ ῃ ∷ []) "Heb.12.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Heb.12.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.24" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.12.24" ∷ word (ῥ ∷ α ∷ ν ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Heb.12.24" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.12.24" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "Heb.12.24" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Heb.12.24" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.24" ∷ word (Ἅ ∷ β ∷ ε ∷ ∙λ ∷ []) "Heb.12.24" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Heb.12.25" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ή ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Heb.12.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.25" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Heb.12.25" ∷ word (ε ∷ ἰ ∷ []) "Heb.12.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.12.25" ∷ word (ἐ ∷ ξ ∷ έ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Heb.12.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Heb.12.25" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Heb.12.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.25" ∷ word (χ ∷ ρ ∷ η ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Heb.12.25" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Heb.12.25" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Heb.12.25" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Heb.12.25" ∷ word (ο ∷ ἱ ∷ []) "Heb.12.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.25" ∷ word (ἀ ∷ π ∷ []) "Heb.12.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Heb.12.25" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.12.25" ∷ word (ο ∷ ὗ ∷ []) "Heb.12.26" ∷ word (ἡ ∷ []) "Heb.12.26" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Heb.12.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.12.26" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Heb.12.26" ∷ word (ἐ ∷ σ ∷ ά ∷ ∙λ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Heb.12.26" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Heb.12.26" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Heb.12.26" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.26" ∷ word (ἐ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ τ ∷ α ∷ ι ∷ []) "Heb.12.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Heb.12.26" ∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Heb.12.26" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.12.26" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Heb.12.26" ∷ word (σ ∷ ε ∷ ί ∷ σ ∷ ω ∷ []) "Heb.12.26" ∷ word (ο ∷ ὐ ∷ []) "Heb.12.26" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Heb.12.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.12.26" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Heb.12.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.12.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.12.26" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ό ∷ ν ∷ []) "Heb.12.26" ∷ word (τ ∷ ὸ ∷ []) "Heb.12.27" ∷ word (δ ∷ ὲ ∷ []) "Heb.12.27" ∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Heb.12.27" ∷ word (ἅ ∷ π ∷ α ∷ ξ ∷ []) "Heb.12.27" ∷ word (δ ∷ η ∷ ∙λ ∷ ο ∷ ῖ ∷ []) "Heb.12.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.12.27" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.12.27" ∷ word (μ ∷ ε ∷ τ ∷ ά ∷ θ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Heb.12.27" ∷ word (ὡ ∷ ς ∷ []) "Heb.12.27" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.12.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.12.27" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Heb.12.27" ∷ word (τ ∷ ὰ ∷ []) "Heb.12.27" ∷ word (μ ∷ ὴ ∷ []) "Heb.12.27" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Heb.12.27" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.12.28" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Heb.12.28" ∷ word (ἀ ∷ σ ∷ ά ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.12.28" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.12.28" ∷ word (ἔ ∷ χ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.12.28" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Heb.12.28" ∷ word (δ ∷ ι ∷ []) "Heb.12.28" ∷ word (ἧ ∷ ς ∷ []) "Heb.12.28" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.12.28" ∷ word (ε ∷ ὐ ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ ω ∷ ς ∷ []) "Heb.12.28" ∷ word (τ ∷ ῷ ∷ []) "Heb.12.28" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.12.28" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.12.28" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Heb.12.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.28" ∷ word (δ ∷ έ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.12.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.12.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.12.29" ∷ word (ὁ ∷ []) "Heb.12.29" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.12.29" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.12.29" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Heb.12.29" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ν ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Heb.12.29" ∷ word (Ἡ ∷ []) "Heb.13.1" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ί ∷ α ∷ []) "Heb.13.1" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "Heb.13.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.2" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ ξ ∷ ε ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Heb.13.2" ∷ word (μ ∷ ὴ ∷ []) "Heb.13.2" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.2" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ς ∷ []) "Heb.13.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.2" ∷ word (ἔ ∷ ∙λ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Heb.13.2" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Heb.13.2" ∷ word (ξ ∷ ε ∷ ν ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.2" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Heb.13.2" ∷ word (μ ∷ ι ∷ μ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.13.3" ∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ί ∷ ω ∷ ν ∷ []) "Heb.13.3" ∷ word (ὡ ∷ ς ∷ []) "Heb.13.3" ∷ word (σ ∷ υ ∷ ν ∷ δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Heb.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.13.3" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ υ ∷ χ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.13.3" ∷ word (ὡ ∷ ς ∷ []) "Heb.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.13.3" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.3" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.3" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.13.3" ∷ word (τ ∷ ί ∷ μ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.13.4" ∷ word (ὁ ∷ []) "Heb.13.4" ∷ word (γ ∷ ά ∷ μ ∷ ο ∷ ς ∷ []) "Heb.13.4" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.4" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.4" ∷ word (ἡ ∷ []) "Heb.13.4" ∷ word (κ ∷ ο ∷ ί ∷ τ ∷ η ∷ []) "Heb.13.4" ∷ word (ἀ ∷ μ ∷ ί ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Heb.13.4" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.13.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.4" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.13.4" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ῖ ∷ []) "Heb.13.4" ∷ word (ὁ ∷ []) "Heb.13.4" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.13.4" ∷ word (ἀ ∷ φ ∷ ι ∷ ∙λ ∷ ά ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ς ∷ []) "Heb.13.5" ∷ word (ὁ ∷ []) "Heb.13.5" ∷ word (τ ∷ ρ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Heb.13.5" ∷ word (ἀ ∷ ρ ∷ κ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Heb.13.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.13.5" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.13.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.5" ∷ word (ε ∷ ἴ ∷ ρ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Heb.13.5" ∷ word (Ο ∷ ὐ ∷ []) "Heb.13.5" ∷ word (μ ∷ ή ∷ []) "Heb.13.5" ∷ word (σ ∷ ε ∷ []) "Heb.13.5" ∷ word (ἀ ∷ ν ∷ ῶ ∷ []) "Heb.13.5" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "Heb.13.5" ∷ word (ο ∷ ὐ ∷ []) "Heb.13.5" ∷ word (μ ∷ ή ∷ []) "Heb.13.5" ∷ word (σ ∷ ε ∷ []) "Heb.13.5" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ π ∷ ω ∷ []) "Heb.13.5" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Heb.13.6" ∷ word (θ ∷ α ∷ ρ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.13.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.13.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Heb.13.6" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Heb.13.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Heb.13.6" ∷ word (β ∷ ο ∷ η ∷ θ ∷ ό ∷ ς ∷ []) "Heb.13.6" ∷ word (ο ∷ ὐ ∷ []) "Heb.13.6" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.13.6" ∷ word (τ ∷ ί ∷ []) "Heb.13.6" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Heb.13.6" ∷ word (μ ∷ ο ∷ ι ∷ []) "Heb.13.6" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Heb.13.6" ∷ word (Μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.13.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.13.7" ∷ word (ἡ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Heb.13.7" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Heb.13.7" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.13.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.13.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Heb.13.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.13.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Heb.13.7" ∷ word (ὧ ∷ ν ∷ []) "Heb.13.7" ∷ word (ἀ ∷ ν ∷ α ∷ θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.13.7" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.7" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ ς ∷ []) "Heb.13.7" ∷ word (μ ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.13.7" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.13.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Heb.13.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.13.8" ∷ word (ἐ ∷ χ ∷ θ ∷ ὲ ∷ ς ∷ []) "Heb.13.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.8" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Heb.13.8" ∷ word (ὁ ∷ []) "Heb.13.8" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Heb.13.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.13.8" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.13.8" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Heb.13.8" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Heb.13.9" ∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Heb.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.9" ∷ word (ξ ∷ έ ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Heb.13.9" ∷ word (μ ∷ ὴ ∷ []) "Heb.13.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Heb.13.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.9" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "Heb.13.9" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.13.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.13.9" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Heb.13.9" ∷ word (ο ∷ ὐ ∷ []) "Heb.13.9" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.9" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.9" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Heb.13.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.13.9" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Heb.13.9" ∷ word (ο ∷ ἱ ∷ []) "Heb.13.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.9" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.13.10" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.13.10" ∷ word (ἐ ∷ ξ ∷ []) "Heb.13.10" ∷ word (ο ∷ ὗ ∷ []) "Heb.13.10" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Heb.13.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Heb.13.10" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.13.10" ∷ word (ο ∷ ἱ ∷ []) "Heb.13.10" ∷ word (τ ∷ ῇ ∷ []) "Heb.13.10" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ῇ ∷ []) "Heb.13.10" ∷ word (∙λ ∷ α ∷ τ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.10" ∷ word (ὧ ∷ ν ∷ []) "Heb.13.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.11" ∷ word (ε ∷ ἰ ∷ σ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.13.11" ∷ word (ζ ∷ ῴ ∷ ω ∷ ν ∷ []) "Heb.13.11" ∷ word (τ ∷ ὸ ∷ []) "Heb.13.11" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "Heb.13.11" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.13.11" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Heb.13.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.13.11" ∷ word (τ ∷ ὰ ∷ []) "Heb.13.11" ∷ word (ἅ ∷ γ ∷ ι ∷ α ∷ []) "Heb.13.11" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.13.11" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Heb.13.11" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Heb.13.11" ∷ word (τ ∷ ὰ ∷ []) "Heb.13.11" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Heb.13.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ί ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Heb.13.11" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Heb.13.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.11" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.13.11" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "Heb.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.12" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Heb.13.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.13.12" ∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ σ ∷ ῃ ∷ []) "Heb.13.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.13.12" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Heb.13.12" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Heb.13.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.12" ∷ word (∙λ ∷ α ∷ ό ∷ ν ∷ []) "Heb.13.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Heb.13.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.12" ∷ word (π ∷ ύ ∷ ∙λ ∷ η ∷ ς ∷ []) "Heb.13.12" ∷ word (ἔ ∷ π ∷ α ∷ θ ∷ ε ∷ ν ∷ []) "Heb.13.12" ∷ word (τ ∷ ο ∷ ί ∷ ν ∷ υ ∷ ν ∷ []) "Heb.13.13" ∷ word (ἐ ∷ ξ ∷ ε ∷ ρ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.13.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Heb.13.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Heb.13.13" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Heb.13.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ μ ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Heb.13.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.13" ∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "Heb.13.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.13" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.13" ∷ word (ο ∷ ὐ ∷ []) "Heb.13.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.14" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.13.14" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Heb.13.14" ∷ word (μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.13.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Heb.13.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Heb.13.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Heb.13.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Heb.13.14" ∷ word (ἐ ∷ π ∷ ι ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "Heb.13.14" ∷ word (δ ∷ ι ∷ []) "Heb.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Heb.13.15" ∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Heb.13.15" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Heb.13.15" ∷ word (α ∷ ἰ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.13.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.15" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Heb.13.15" ∷ word (τ ∷ ῷ ∷ []) "Heb.13.15" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Heb.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Heb.13.15" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Heb.13.15" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Heb.13.15" ∷ word (χ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Heb.13.15" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.13.15" ∷ word (τ ∷ ῷ ∷ []) "Heb.13.15" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.16" ∷ word (δ ∷ ὲ ∷ []) "Heb.13.16" ∷ word (ε ∷ ὐ ∷ π ∷ ο ∷ ι ∷ ΐ ∷ α ∷ ς ∷ []) "Heb.13.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.16" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Heb.13.16" ∷ word (μ ∷ ὴ ∷ []) "Heb.13.16" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.16" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Heb.13.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.16" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Heb.13.16" ∷ word (ε ∷ ὐ ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Heb.13.16" ∷ word (ὁ ∷ []) "Heb.13.16" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Heb.13.16" ∷ word (Π ∷ ε ∷ ί ∷ θ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Heb.13.17" ∷ word (ἡ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Heb.13.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.17" ∷ word (ὑ ∷ π ∷ ε ∷ ί ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.13.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Heb.13.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.17" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.17" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Heb.13.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.13.17" ∷ word (ψ ∷ υ ∷ χ ∷ ῶ ∷ ν ∷ []) "Heb.13.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.17" ∷ word (ὡ ∷ ς ∷ []) "Heb.13.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Heb.13.17" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ώ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.13.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.13.17" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Heb.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.13.17" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.17" ∷ word (μ ∷ ὴ ∷ []) "Heb.13.17" ∷ word (σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.17" ∷ word (ἀ ∷ ∙λ ∷ υ ∷ σ ∷ ι ∷ τ ∷ ε ∷ ∙λ ∷ ὲ ∷ ς ∷ []) "Heb.13.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.17" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.13.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.13.17" ∷ word (Π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.18" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Heb.13.18" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.18" ∷ word (π ∷ ε ∷ ι ∷ θ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Heb.13.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Heb.13.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Heb.13.18" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.18" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Heb.13.18" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.18" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Heb.13.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Heb.13.18" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Heb.13.18" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Heb.13.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ς ∷ []) "Heb.13.19" ∷ word (δ ∷ ὲ ∷ []) "Heb.13.19" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Heb.13.19" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Heb.13.19" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.13.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Heb.13.19" ∷ word (τ ∷ ά ∷ χ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.13.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ θ ∷ ῶ ∷ []) "Heb.13.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.13.19" ∷ word (Ὁ ∷ []) "Heb.13.20" ∷ word (δ ∷ ὲ ∷ []) "Heb.13.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Heb.13.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.20" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "Heb.13.20" ∷ word (ὁ ∷ []) "Heb.13.20" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ α ∷ γ ∷ ὼ ∷ ν ∷ []) "Heb.13.20" ∷ word (ἐ ∷ κ ∷ []) "Heb.13.20" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Heb.13.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.20" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Heb.13.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Heb.13.20" ∷ word (π ∷ ρ ∷ ο ∷ β ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Heb.13.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.20" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Heb.13.20" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.20" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Heb.13.20" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Heb.13.20" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Heb.13.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.20" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.13.20" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Heb.13.20" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Heb.13.21" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.13.21" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.21" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "Heb.13.21" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "Heb.13.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.13.21" ∷ word (τ ∷ ὸ ∷ []) "Heb.13.21" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Heb.13.21" ∷ word (τ ∷ ὸ ∷ []) "Heb.13.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Heb.13.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.21" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "Heb.13.21" ∷ word (ἐ ∷ ν ∷ []) "Heb.13.21" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.13.21" ∷ word (τ ∷ ὸ ∷ []) "Heb.13.21" ∷ word (ε ∷ ὐ ∷ ά ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Heb.13.21" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Heb.13.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Heb.13.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Heb.13.21" ∷ word (ᾧ ∷ []) "Heb.13.21" ∷ word (ἡ ∷ []) "Heb.13.21" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "Heb.13.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Heb.13.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.13.21" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Heb.13.21" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Heb.13.21" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "Heb.13.22" ∷ word (δ ∷ ὲ ∷ []) "Heb.13.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.13.22" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Heb.13.22" ∷ word (ἀ ∷ ν ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Heb.13.22" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "Heb.13.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Heb.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Heb.13.22" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Heb.13.22" ∷ word (β ∷ ρ ∷ α ∷ χ ∷ έ ∷ ω ∷ ν ∷ []) "Heb.13.22" ∷ word (ἐ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ []) "Heb.13.22" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Heb.13.22" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Heb.13.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Heb.13.23" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Heb.13.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.23" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ν ∷ []) "Heb.13.23" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ε ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Heb.13.23" ∷ word (μ ∷ ε ∷ θ ∷ []) "Heb.13.23" ∷ word (ο ∷ ὗ ∷ []) "Heb.13.23" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Heb.13.23" ∷ word (τ ∷ ά ∷ χ ∷ ι ∷ ο ∷ ν ∷ []) "Heb.13.23" ∷ word (ἔ ∷ ρ ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Heb.13.23" ∷ word (ὄ ∷ ψ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Heb.13.23" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.13.23" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Heb.13.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.13.24" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.13.24" ∷ word (ἡ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Heb.13.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Heb.13.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Heb.13.24" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Heb.13.24" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Heb.13.24" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Heb.13.24" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Heb.13.24" ∷ word (ο ∷ ἱ ∷ []) "Heb.13.24" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Heb.13.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Heb.13.24" ∷ word (Ἰ ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Heb.13.24" ∷ word (ἡ ∷ []) "Heb.13.25" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Heb.13.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Heb.13.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Heb.13.25" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Heb.13.25" ∷ []
{ "alphanum_fraction": 0.3305637491, "avg_line_length": 46.404569349, "ext": "agda", "hexsha": "5a6608e2e9d2c1dda535e4bedf0318484333ca3b", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Heb.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Heb.agda", "max_line_length": 95, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Heb.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 166434, "size": 229517 }
------------------------------------------------------------------------------ -- Totality of predecessor function ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.PredTotality where open import FOTC.Base data N : D → Set where nzero : N zero nsucc : ∀ {n} → N n → N (succ₁ n) -- Induction principle generated by Coq 8.4pl4 when we define the data -- type N in Prop. N-ind₁ : (A : D → Set) → A zero → (∀ {n} → N n → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₁ A A0 h nzero = A0 N-ind₁ A A0 h (nsucc Nn) = h Nn (N-ind₁ A A0 h Nn) -- The induction principle removing the hypothesis N n from the -- inductive step. N-ind₂ : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ n)) → ∀ {n} → N n → A n N-ind₂ A A0 h nzero = A0 N-ind₂ A A0 h (nsucc Nn) = h (N-ind₂ A A0 h Nn) -- Proof by pattern matching. pred-N : ∀ {n} → N n → N (pred₁ n) pred-N nzero = subst N (sym pred-0) nzero pred-N (nsucc {n} Nn) = subst N (sym (pred-S n)) Nn -- Proof using N-ind₁. pred-N₁ : ∀ {n} → N n → N (pred₁ n) pred-N₁ = N-ind₁ A A0 is where A : D → Set A i = N (pred₁ i) A0 : A zero A0 = subst N (sym pred-0) nzero is : ∀ {i} → N i → A i → A (succ₁ i) is {i} Ni Ai = subst N (sym (pred-S i)) Ni -- Proof using N-ind₂. -- pred-N₂ : ∀ {n} → N n → N (pred₁ n) -- pred-N₂ = N-ind₂ A A0 is -- where -- A : D → Set -- A i = N (pred₁ i) -- A0 : A zero -- A0 = subst N (sym pred-0) nzero -- is : ∀ {i} → A i → A (succ₁ i) -- is {i} Ai = {!!}
{ "alphanum_fraction": 0.4724847137, "avg_line_length": 26.8507462687, "ext": "agda", "hexsha": "b0b87d768ef23605cd081dd3b537f768dcecfd9d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/PredTotality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/PredTotality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/PredTotality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 629, "size": 1799 }
postulate F : Set → Set _ : {@0 A : Set} → F λ { → A }
{ "alphanum_fraction": 0.4237288136, "avg_line_length": 14.75, "ext": "agda", "hexsha": "a3031ee04816d6761d14a2b8cd2562337bf5eaf4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue5341.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue5341.agda", "max_line_length": 32, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue5341.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 59 }
-- Andreas 2019-11-06, issue #4172, examples by nad. -- Single constructor matches for non-indexed types should be ok -- even when argument is erased, as long as pattern variables -- are only used in erased context on the rhs. -- https://github.com/agda/agda/issues/4172#issue-517690102 record Erased (A : Set) : Set where constructor [_] field @0 erased : A open Erased data W (A : Set) (B : A → Set) : Set where sup : (x : A) → (B x → W A B) → W A B lemma : {A : Set} {B : A → Set} → Erased (W A B) → W (Erased A) (λ x → Erased (B (erased x))) lemma [ sup x f ] = sup [ x ] λ ([ y ]) → lemma [ f y ] -- https://github.com/agda/agda/issues/4172#issuecomment-549768270 data ⊥ : Set where data E : Set where c : E → E magic : @0 E → ⊥ magic (c e) = magic e
{ "alphanum_fraction": 0.6163682864, "avg_line_length": 23.696969697, "ext": "agda", "hexsha": "47e8a014900085f51305dd91ea6403a07f484d99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "strake/agda", "max_forks_repo_path": "test/Succeed/Issue4172.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_issues_repo_issues_event_max_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_issues_event_min_datetime": "2020-01-26T18:22:08.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "strake/agda", "max_issues_repo_path": "test/Succeed/Issue4172.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8a3cfa002e77acc5ae1993bae413fde42d4f93b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "strake/agda", "max_stars_repo_path": "test/Succeed/Issue4172.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 271, "size": 782 }
S : Set; S = S
{ "alphanum_fraction": 0.4, "avg_line_length": 7.5, "ext": "agda", "hexsha": "055e5cc99e910754c936568cce651d4419355ece", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue5268.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue5268.agda", "max_line_length": 14, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue5268.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 8, "size": 15 }
------------------------------------------------------------------------ -- A formalization of the polymorphic lambda calculus extended with -- iso-recursive types ------------------------------------------------------------------------ -- Author: Sandro Stucki -- Copyright (c) 2015 EPFL -- The code in this directory contains an Agda formalization of the -- Girard-Reynolds polymorphic lambda calculus (System F) extended -- with iso-recursive types. -- -- The code makes heavy use of the Agda standard library, which is -- freely available from -- -- https://github.com/agda/agda-stdlib/ -- -- The code has been tested using Agda 2.6.0.1 and version 1.0.1 of the -- Agda standard library. module README where ------------------------------------------------------------------------ -- Module overview -- The formalization is organized in the following modules. -- Syntax for terms and types along with support for term/type -- substitutions. These modules also contain church/CPS encodings for -- some other forms, such as existential types or tuples. open import SystemF.Term open import SystemF.Type -- Typing derivations along with substitution/weakening lemmas. open import SystemF.WtTerm -- A (functional) call-by-value small-step semantics. This module -- also contains a type soundness proof with respect to to said -- semantics as well as a proof of its equivalence (strong -- bisimilarity) to the big-step semantics mentioned below. The type -- soundness proof uses the common progress & preservation -- (i.e. subject reduction) structure. open import SystemF.Reduction -- Two equivalent versions of a (functional) call-by-value big-step -- semantics along with corresponding type soundness proofs. The -- second version is formulated without the use of productivity -- checker workarounds. The latter module also contains an -- equivalence proof of the two semantics. open import SystemF.Eval open import SystemF.Eval.NoWorkarounds -- Decision procedures for type checking and a uniqueness proof for -- typing derivations. open import SystemF.TypeCheck -- Danielsson's partiality-and-failure monad. This monad provides the -- domain in which functional operational semantics are formulated. open import PartialityAndFailure
{ "alphanum_fraction": 0.7018165707, "avg_line_length": 37, "ext": "agda", "hexsha": "8ca169541028064cdab6edec75c69721c65fed51", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z", "max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sstucki/system-f-agda", "max_forks_repo_path": "src/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z", "max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sstucki/system-f-agda", "max_issues_repo_path": "src/README.agda", "max_line_length": 72, "max_stars_count": 68, "max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sstucki/system-f-agda", "max_stars_repo_path": "src/README.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z", "num_tokens": 473, "size": 2257 }
-- Andreas, 2016-09-28 -- Level constraints X <= a and a <= X should solve X = a. -- {-# OPTIONS -v tc.constr.add:40 #-} open import Common.Level module _ (a : Level) where mutual X : Level X = _ data C : Set (lsuc X) where c : Set a → C -- constrains X by a <= X data D : Set (lsuc a) where c : Set X → D -- constrains X by X <= a -- should succeed
{ "alphanum_fraction": 0.576, "avg_line_length": 18.75, "ext": "agda", "hexsha": "4d3b7e8f78cbc5464053a30d33b5283c11cc343c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/LevelLeqGeq.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/LevelLeqGeq.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/LevelLeqGeq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 127, "size": 375 }
{-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --show-implicit #-} module HeapProperties where open import HeapPropertiesDefs public open import HeapLemmasForSplitting public
{ "alphanum_fraction": 0.7663043478, "avg_line_length": 26.2857142857, "ext": "agda", "hexsha": "2ad02190926d1f136ee37f2fefff10bb309548e3", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2021-06-09T18:40:19.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T08:20:52.000Z", "max_forks_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ivoysey/Obsidian", "max_forks_repo_path": "formalization/heapProperties.agda", "max_issues_count": 259, "max_issues_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_issues_repo_issues_event_max_datetime": "2022-03-29T18:20:05.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-18T19:50:41.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ivoysey/Obsidian", "max_issues_repo_path": "formalization/heapProperties.agda", "max_line_length": 43, "max_stars_count": 79, "max_stars_repo_head_hexsha": "bda0fac3aadfbce2eacdb89095d100125fa4fdd6", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ivoysey/Obsidian", "max_stars_repo_path": "formalization/heapProperties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T10:34:28.000Z", "max_stars_repo_stars_event_min_datetime": "2017-08-19T16:24:10.000Z", "num_tokens": 42, "size": 184 }
{-# OPTIONS --without-K #-} open import HoTT {- A proof that (A * B) * C ≃ (C * B) * A, which combined with commutativity - proves associativity. - - Agda has a hard time compiling this but sometimes it succeeds. - - Favonia (2016 May): I have consistent success in compiling this file. - -} open import homotopy.JoinComm module homotopy.JoinAssocCubical where {- Square and cube lemmas. Some of these are probably generally useful -} private app=cst-square : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} (p : ∀ a → f a == b) {a₁ a₂ : A} (q : a₁ == a₂) → Square (p a₁) (ap f q) idp (p a₂) app=cst-square p idp = hid-square app=cst-square= : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} {p₁ p₂ : ∀ a → f a == b} (α : ∀ a → p₁ a == p₂ a) {a₁ a₂ : A} (q : a₁ == a₂) → Cube (app=cst-square p₁ q) (app=cst-square p₂ q) (horiz-degen-square $ α a₁) hid-square hid-square (horiz-degen-square $ α a₂) app=cst-square= α idp = y-degen-cube idp app=cst-square-β : ∀ {i j} {A : Type i} {B : Type j} {b : B} {f : A → B} (g : (a : A) → f a == b) {x y : A} (p : x == y) {sq : Square (g x) (ap f p) idp (g y)} → apd g p == ↓-app=cst-from-square sq → app=cst-square g p == sq app=cst-square-β g idp α = ! horiz-degen-square-idp ∙ ap horiz-degen-square α ∙ horiz-degen-square-β _ ap-∘-app=cst-square : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} {b : B} {f : A → B} (h : B → C) (g : (a : A) → f a == b) {x y : A} (p : x == y) → Cube (app=cst-square (ap h ∘ g) p) (ap-square h (app=cst-square g p)) hid-square (horiz-degen-square $ ap-∘ h f p) ids hid-square ap-∘-app=cst-square h g idp = cube-shift-right (! ap-square-hid) $ cube-shift-top (! horiz-degen-square-idp) $ x-degen-cube idp cube-to-↓-rtriangle : ∀ {i j} {A : Type i} {B : Type j} {b₀ b₁ : A → B} {b : B} {p₀₁ : (a : A) → b₀ a == b₁ a} {p₀ : (a : A) → b₀ a == b} {p₁ : (a : A) → b₁ a == b} {x y : A} {q : x == y} {sqx : Square (p₀₁ x) (p₀ x) (p₁ x) idp} {sqy : Square (p₀₁ y) (p₀ y) (p₁ y) idp} → Cube sqx sqy (natural-square p₀₁ q) (app=cst-square p₀ q) (app=cst-square p₁ q) ids → sqx == sqy [ (λ z → Square (p₀₁ z) (p₀ z) (p₁ z) idp) ↓ q ] cube-to-↓-rtriangle {q = idp} cu = x-degen-cube-out cu {- approximately, [massage] describes the action of - [switch : (A * B) * C → (C * B) * A] on the level of squares -} private massage : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (! p₀₋) (p₋₁ ∙ ! p₁₋) idp (! p₋₀) massage ids = ids massage-massage : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₀₁} (sq : Square p₀₋ p₋₀ idp p₁₋) → Cube (massage (massage sq)) sq (horiz-degen-square (!-! p₀₋)) (horiz-degen-square (!-! p₋₀)) ids (horiz-degen-square (!-! p₁₋)) massage-massage = square-bot-J (λ sq → Cube (massage (massage sq)) sq (horiz-degen-square (!-! _)) (horiz-degen-square (!-! _)) ids (horiz-degen-square (!-! _))) idc ap-square-massage : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₁₋ : a₁₀ == a₀₁} (sq : Square p₀₋ p₋₀ idp p₁₋) → Cube (ap-square f (massage sq)) (massage (ap-square f sq)) (horiz-degen-square (ap-! f p₀₋)) (horiz-degen-square (ap-! f p₁₋)) ids (horiz-degen-square (ap-! f p₋₀)) ap-square-massage f = square-bot-J (λ sq → Cube (ap-square f (massage sq)) (massage (ap-square f sq)) (horiz-degen-square (ap-! f _)) (horiz-degen-square (ap-! f _)) ids (horiz-degen-square (ap-! f _))) idc massage-cube : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube (massage sq₋₋₀) (massage sq₋₋₁) (!□v sq₀₋₋) (sq₋₁₋ ⊡v !□v sq₁₋₋) vid-square (!□v sq₋₀₋) massage-cube idc = idc private module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where {- Define an involutive map [switch] -} module SwitchLeft = PushoutRec {d = *-span A B} {D = (C * B) * A} (λ a → right a) (λ b → left (right b)) (λ {(a , b) → ! (glue (right b , a))}) switch-coh-fill : (a : A) (b : B) (c : C) → Σ (Square (! (glue (left c , a))) (ap SwitchLeft.f (glue (a , b))) idp (! (ap left (glue (c , b))))) (λ sq → Cube sq (massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) hid-square (horiz-degen-square (SwitchLeft.glue-β (a , b))) ids hid-square) switch-coh-fill a b c = fill-cube-left _ _ _ _ _ module SwitchCoh (c : C) = PushoutElim {d = *-span A B} {P = λ k → SwitchLeft.f k == left (left c)} (λ a → ! (glue (left c , a))) (λ b → ! (ap left (glue (c , b)))) (↓-app=cst-from-square ∘ λ {(a , b) → fst (switch-coh-fill a b c)}) module Switch = PushoutRec {d = *-span (A * B) C} {D = (C * B) * A} SwitchLeft.f (λ c → left (left c)) (λ {(k , c) → SwitchCoh.f c k}) switch = Switch.f module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where {- Proof that [switch] is involutive. There are three squares involved: - one indexed by A × B, one indexed by A × C, and one by B × C. - These are related by a cube indexed by A × B × C. - We get the squares for free by defining the cube, as long as - we make sure the right faces are dependent on the right types. -} {- Three big square terms follow; unfortunately Agda can't figure out - what these have to be on its own. Don't worry about the defns. -} switch-inv-left-square : (a : A) (b : B) → Square idp (ap (switch {A = C} ∘ SwitchLeft.f) (glue (a , b))) (ap left (glue (a , b))) idp switch-inv-left-square a b = square-symmetry $ (horiz-degen-square (ap-∘ switch SwitchLeft.f (glue (a , b)))) ⊡h ap-square switch (horiz-degen-square (SwitchLeft.glue-β (a , b))) ⊡h horiz-degen-square (ap-! switch (glue (right b , a))) ⊡h !□v (!□h hid-square) ⊡h !□v (horiz-degen-square (Switch.glue-β (right b , a))) ⊡h !□v hid-square ⊡h horiz-degen-square (!-! _) switch-inv-coh-left : (c : C) (a : A) → Square idp (ap (switch {B = B}) (SwitchCoh.f c (left a))) (glue (left a , c)) idp switch-inv-coh-left c a = square-symmetry $ hid-square ⊡h ap-square switch hid-square ⊡h horiz-degen-square (ap-! switch (glue (left c , a))) ⊡h !□v (!□h hid-square) ⊡h !□v (horiz-degen-square (Switch.glue-β (left c , a))) ⊡h !□v hid-square ⊡h horiz-degen-square (!-! _) switch-inv-coh-right : (c : C) (b : B) → Square idp (ap (switch {C = A}) (SwitchCoh.f c (right b))) (glue (right b , c)) idp switch-inv-coh-right c b = square-symmetry $ hid-square ⊡h ap-square switch hid-square ⊡h horiz-degen-square (ap-! switch (ap left (glue (c , b)))) ⊡h !□v (!□h (horiz-degen-square (ap-∘ switch left (glue (c , b))))) ⊡h !□v hid-square ⊡h !□v (horiz-degen-square (SwitchLeft.glue-β (c , b))) ⊡h horiz-degen-square (!-! _) module SwitchInvLeft = PushoutElim {d = *-span A B} {P = λ k → switch {A = C} (switch (left k)) == left k} (λ a → idp) (λ b → idp) (↓-='-from-square ∘ uncurry switch-inv-left-square) {- In very small steps, build up the cube -} module Coh (a : A) (b : B) (c : C) where step₁ : Cube (app=cst-square (ap switch ∘ SwitchCoh.f c) (glue (a , b))) (ap-square switch (app=cst-square (SwitchCoh.f c) (glue (a , b)))) _ _ _ _ step₁ = ap-∘-app=cst-square switch (SwitchCoh.f c) (glue (a , b)) step₂ : Cube (ap-square switch (app=cst-square (SwitchCoh.f c) (glue (a , b)))) (ap-square switch $ massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) _ _ _ _ step₂ = cube-shift-left (! (ap (ap-square switch) (app=cst-square-β (SwitchCoh.f c) (glue (a , b)) (SwitchCoh.glue-β c (a , b))))) (ap-cube switch (snd (switch-coh-fill a b c))) step₃ : Cube (ap-square switch $ massage $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) (massage $ ap-square switch $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) _ _ _ _ step₃ = ap-square-massage switch (app=cst-square (λ j → glue (j , a)) (glue (c , b))) step₄ : Cube (massage $ ap-square switch $ app=cst-square (λ j → glue (j , a)) (glue (c , b))) (massage $ app=cst-square (λ j → ap switch (glue (j , a))) (glue (c , b))) _ _ _ _ step₄ = massage-cube $ cube-!-x $ ap-∘-app=cst-square switch (λ j → glue (j , a)) (glue (c , b)) step₅ : Cube (massage $ app=cst-square (λ j → ap switch (glue (j , a))) (glue (c , b))) (massage $ app=cst-square (SwitchCoh.f a) (glue (c , b))) _ _ _ _ step₅ = massage-cube $ app=cst-square= (λ j → Switch.glue-β (j , a)) (glue (c , b)) step₆ : Cube (massage $ app=cst-square (SwitchCoh.f a) (glue (c , b))) (massage $ massage $ app=cst-square (λ k → glue (k , c)) (glue (a , b))) _ _ _ _ step₆ = massage-cube $ cube-shift-left (! (app=cst-square-β (SwitchCoh.f a) (glue (c , b)) (SwitchCoh.glue-β a (c , b)))) (snd (switch-coh-fill c b a)) step₇ : Cube (massage $ massage $ app=cst-square (λ k → glue {d = *-span (A * B) C} (k , c)) (glue (a , b))) (app=cst-square (λ k → glue (k , c)) (glue (a , b))) _ _ _ _ step₇ = massage-massage _ switch-inv-cube : Cube (switch-inv-coh-left c a) (switch-inv-coh-right c b) (switch-inv-left-square a b) (app=cst-square (ap switch ∘ SwitchCoh.f c) (glue (a , b))) (app=cst-square (λ k → glue (k , c)) (glue (a , b))) ids switch-inv-cube = cube-rotate-x→z $ step₁ ∙³x step₂ ∙³x step₃ ∙³x step₄ ∙³x step₅ ∙³x step₆ ∙³x step₇ module SwitchInvCoh (c : C) = PushoutElim {d = *-span A B} {P = λ k → Square (SwitchInvLeft.f k) (ap switch (SwitchCoh.f c k)) (glue (k , c)) idp} (switch-inv-coh-left c) (switch-inv-coh-right c) (cube-to-↓-rtriangle ∘ λ {(a , b) → cube-shift-back (! (natural-square-β SwitchInvLeft.f (glue (a , b)) (SwitchInvLeft.glue-β (a , b)))) (Coh.switch-inv-cube a b c)}) abstract switch-inv : (l : (A * B) * C) → switch (switch l) == l switch-inv = Pushout-elim SwitchInvLeft.f (λ c → idp) (↓-∘=idf-from-square switch switch ∘ λ {(k , c) → ap (ap switch) (Switch.glue-β (k , c)) ∙v⊡ SwitchInvCoh.f c k}) module _ {i j k} {A : Type i} {B : Type j} {C : Type k} where join-rearrange-equiv : (A * B) * C ≃ (C * B) * A join-rearrange-equiv = equiv switch switch switch-inv switch-inv join-rearrange-path : (A * B) * C == (C * B) * A join-rearrange-path = ua join-rearrange-equiv join-assoc-path : (A * B) * C == A * (B * C) join-assoc-path = join-rearrange-path ∙ swap-path ∙ ap (A *_) swap-path *-assoc = join-assoc-path module _ {i j k} (X : Ptd i) (Y : Ptd j) (Z : Ptd k) where join-rearrange-⊙path : (X ⊙* Y) ⊙* Z == (Z ⊙* Y) ⊙* X join-rearrange-⊙path = ⊙ua (⊙≃-in join-rearrange-equiv (! (glue (left (snd Z), snd X))))
{ "alphanum_fraction": 0.506292815, "avg_line_length": 38.1580547112, "ext": "agda", "hexsha": "c8ca03dc25e822b5bff671b02e223f1162aad094", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/JoinAssocCubical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/JoinAssocCubical.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/JoinAssocCubical.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4897, "size": 12554 }
-- {-# OPTIONS -v tc.meta:25 #-} -- Andreas, 2013-05-23 module DontPruneBlocked where open import Common.Equality open import Common.Product data Bool : Set where true false : Bool if : {A : Set} → Bool → A → A → A if true a b = a if false a b = b test1 : let Fst : Bool → Bool → Bool Fst = _ I : Bool → Bool I = _ in (a b : Bool) → (if (Fst true false) (Fst a b) (Fst b a) ≡ I a) × -- don't prune b from Fst! (a ≡ I a) × (Fst a b ≡ a) test1 a b = refl , refl , refl test : (A : Set) → let X : Bool X = _ Fst : A → A → A Fst = _ Snd : A → A → A Snd = _ I : A → A I = _ in (a b : A) → (if X (Fst a b) (Snd a b) ≡ I a) × -- don't prune a from Fst and Snd! (if X (Snd a b) (Fst a b) ≡ I b) × -- don't prune b from Fst and Snd! (a ≡ I a) × (X ≡ true) test A a b = refl , refl , refl , refl -- Expected result: unsolved metas -- -- (unless someone implemented unification that produces definitions by case). -- -- The test case should prevent overzealous pruning: -- If the first equation pruned away the b, then the second -- would have an unbound rhs.
{ "alphanum_fraction": 0.5398305085, "avg_line_length": 24.0816326531, "ext": "agda", "hexsha": "b544e8c514e23399eae23257db2703925e6019a8", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/DontPruneBlocked.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/DontPruneBlocked.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/DontPruneBlocked.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 421, "size": 1180 }
-- The following file contains various examples of highlighting. -- It does not necessarily typecheck (but it should parse) a : A → Set a b : A → Set postulate a : A → Set abstract a b : A → Set abstracta : A → Set postulate abstract a : A → Set private a b : A → Set abstract a : A → Set pattern-a : A → Set abstractSet : Set x-rewrite : abstractSet
{ "alphanum_fraction": 0.6825842697, "avg_line_length": 22.25, "ext": "agda", "hexsha": "d94b4e76100290cdc65ff6dc6763ae723cc2be8e", "lang": "Agda", "max_forks_count": 11, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:10.000Z", "max_forks_repo_forks_event_min_datetime": "2022-02-20T00:51:47.000Z", "max_forks_repo_head_hexsha": "ba7aef428c0b900675696de17e1ee6bc9d7e684e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-GitHub/agda-github-syntax-highlighting", "max_forks_repo_path": "examples.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "ba7aef428c0b900675696de17e1ee6bc9d7e684e", "max_issues_repo_issues_event_max_datetime": "2021-03-15T07:30:04.000Z", "max_issues_repo_issues_event_min_datetime": "2020-04-11T06:15:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-GitHub/agda-github-syntax-highlighting", "max_issues_repo_path": "examples.agda", "max_line_length": 64, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ba7aef428c0b900675696de17e1ee6bc9d7e684e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-github-syntax-highlighting", "max_stars_repo_path": "examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-20T00:51:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T20:13:02.000Z", "num_tokens": 105, "size": 356 }
-- Andreas, 2014-02-11 issue raised by Niccolo Veltri -- {-# OPTIONS -v term.matrices:40 #-} open import Common.Equality data _=⟨_⟩⇒*_ {X : Set}(x : X)(f : X → X) : X → Set where done : x =⟨ f ⟩⇒* x next : ∀{y z} → f y ≡ z → x =⟨ f ⟩⇒* y → x =⟨ f ⟩⇒* z trans* : ∀{X}{x y z}{f : X → X} → x =⟨ f ⟩⇒* y → y =⟨ f ⟩⇒* z → x =⟨ f ⟩⇒* z trans* p done = p trans* p (next r q) = next r (trans* p q) const* : ∀{X}{x y}{f : X → X} → x =⟨ f ⟩⇒* y → f x ≡ x → x ≡ y const* done q = refl const* (next r p) q with const* p q const* (next r p) q | refl = trans (sym q) r bad : ∀{X}{x y z}{f : X → X} → x =⟨ f ⟩⇒* z → f z ≡ x → x =⟨ f ⟩⇒* y → y =⟨ f ⟩⇒* x bad done p q rewrite const* q p = done bad (next p q) r s = next r (bad (trans* (next r done) q) p (trans* (next r done) s)) {- PROBLEM WAS: Interesting part of original call matrix (argss 2-7 of 0-8) A ? ? = ? ? ? ? = ? ? ? ? ? ? ? ? < ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? < ? A2 = A*A ? ? ? ? < ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? Funny, A4 would be worse than A2 why is ist not continuing to iterate? ==> BUG IN 'notWorse' for call graphs. ====================================================================== ======================= Initial call matrices ======================== ====================================================================== Source: 0 Target: 0 Matrix: = ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? < ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? < ? ? ? ? ? ? ? ? ? ? ? ====================================================================== ========================= New call matrices ========================== ====================================================================== Source: 0 Target: 0 Matrix: = ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? < ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Idempotent call matrices (no dot patterns): Other call matrices (no dot patterns): [the two matrices above] -} data Top : Set where tt : Top id : Top → Top id x = x loop : tt =⟨ id ⟩⇒* tt loop = bad (next refl done) refl done
{ "alphanum_fraction": 0.315969257, "avg_line_length": 24.914893617, "ext": "agda", "hexsha": "8fd50ab4c3ab1c0e11ff8d266629e14dedef056f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue1052.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue1052.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/fail/Issue1052.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 837, "size": 2342 }
-- This file comes from the agda class taught by Peter Selinger at -- Dalhousie University. It contains a bonus question that -- propostional logic is complete. We will show this in -- Kalmar.agda. -- The course link: -- https://www.mathstat.dal.ca/~selinger/agda-lectures/ {-# OPTIONS --without-K --safe #-} module PropLogic where -- We replace the library (lib-3.0) used in class by the stdlib v2. -- open import Equality open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; inspect ; [_] ; trans ; sym) -- open import Nat open import Data.Nat using (ℕ) -- open import Bool -- renaming and defining new connectives. open import Data.Bool renaming(_∧_ to _and_ ; _∨_ to _or_) using (Bool ; not ; true ; false) _implies_ : Bool → Bool → Bool _implies_ a b = not a or b -- ---------------------------------------------------------------------- -- * Introduction -- In this project, we will formalize boolean (i.e., classical) -- propositional logic, define a notion of derivation for the logic, -- give a semantics for the logic in terms of truth tables (also known -- as boolean assignments), and prove the soundness of the derivation -- rules. -- ---------------------------------------------------------------------- -- * The set of boolean formulas -- We start by defining the set of boolean formulas. Informally, the -- formulas are given by the following grammar: -- -- Formula A, B ::= P n | A ∧ B | A ⇒ B | ⊥ | ⊤ -- -- Here, n is a natural number, and P n is the nth propositional -- symbol. A ∧ B is conjunction, A ⇒ B is implication, ⊥ is "false" -- (also known as a contradiction), and ⊤ is "true". You can type -- these symbols in Emacs Agda mode using \and, \=>, \bot, and \top. -- Note that the symbol "⊤" is not the same as the capital letter "T". -- The set of propositional formulas as an Agda datatype: data Formula : Set where P : ℕ -> Formula _∧_ : Formula -> Formula -> Formula _⇒_ : Formula -> Formula -> Formula ⊥ : Formula ⊤ : Formula ¬_ : Formula -> Formula _∨_ : Formula -> Formula -> Formula infixl 9 _∧_ infixr 8 _⇒_ infix 20 ¬_ -- ---------------------------------------------------------------------- -- * Derivations -- The most important concept in logic is that of derivability. -- "Derivation" is another word for "proof". If A₁, ..., Aₙ, B are -- formulas, we write -- -- A₁, ..., Aₙ ⊢ -- -- for the statement "the conclusion B can be derived from hypotheses -- A₁, ..., Aₙ". The symbol "⊢" is pronounced "entails", and we also -- say "A₁, ..., Aₙ entails B". You can type this symbol as \|- or -- \entails or \vdash. -- -- Although entailment "⊢" is somewhat similar to implication "⇒", -- there is an important difference: an implication A ⇒ B is a -- formula, so it could be used, for example, as a hypothesis or as a -- conclusion in a proof. Entailment is a statement about formulas, -- i.e., entailment means: there exists a proof of B from hypotheses -- A₁, ..., Aₙ. Entailment is not itself a formula; it is a statement -- about provability. Thus, entailment is a relation between a list of -- formulas (the hypotheses) and a formula (the conclusion). -- ---------------------------------------------------------------------- -- ** Contexts -- Before we can formalize entailment, we must formalize lists of -- formulas. A list of formulas is also called a "context". We -- write Γ for an arbitrary context. -- -- Because a context can also be empty (a list of zero formulas), it -- is convenient to use the empty context as the base case. Then we -- can give the following recursive definition of contexts: a context -- is either the empty context, or it is obtained from another context -- by adding one more formula on the right. In other words, we have -- the following grammar for contexts: -- -- Context Γ ::= Empty | Γ, A -- -- We formalize this as the following Agda datatype: {- data Context : Set where Empty : Context _,_ : Context -> Formula -> Context -} -- Modification: We use List Formula as Context instead of defining a -- new data type. This will ease the proof using list with distinct -- elements. open import Data.List using (List ; _∷_ ; []) Context = List Formula infixl 7 _,_ -- _,_ : Context -> Formula -> Context -- _,_ Γ F = F ∷ Γ pattern _,_ Γ F = F ∷ Γ pattern Empty = [] -- We also need the membership relation for contexts. We define the -- relation A ∈ Γ to mean "the formula A is in the context Γ". The -- symbol ∈ is typed as \in. The membership relation can be -- recursively defined as follows: the empty context has no members, -- and the members of the context Γ, A are A and the members of -- Γ. More formally, we have the following inference rules for -- membership: -- -- ───────────── (∈-base) -- A ∈ Γ, A -- -- -- A ∈ Γ -- ───────────── (∈-step) -- A ∈ Γ, B -- -- An inference rule, written with a horizontal line, has the -- following meaning: if the (zero or more) statements above the line -- are true, then the statement below the line is true. The statements -- above the line are called the hypotheses of the inference rule, and -- the statement below the line is called the conclusion. The name of -- each inference rule (e.g., ∈-base, ∈-step) is written next to the -- rule. We use inference rules to define a relation, in this case the -- relation "∈". By definition, "∈" is the smallest relation -- satisfying (∈-base) and (∈-step). -- -- We can directly translate these inference rules into Agda as -- follows: data _∈_ : Formula -> Context -> Set where ∈-base : ∀ {A : Formula} {Γ : Context} -> A ∈ (Γ , A) ∈-step : ∀ {A B : Formula} {Γ : Context} -> A ∈ Γ -> A ∈ (Γ , B) infixl 6 _∈_ -- ---------------------------------------------------------------------- -- ** Entailment -- We now define the entailment relation. Recall that the entailment -- relation Γ ⊢ A is supposed to mean "the conclusion A can be derived -- from the hypotheses Γ". Defining entailment therefore requires us -- to formalize what we mean by "derived". In other words, we have to -- give a set of proof rules for propositional logic. Let me first -- write these proof rules in the style of inference rules. These -- rules define the relation "⊢": -- -- A ∈ Γ -- ───────────── (assump) -- Γ ⊢ A -- -- -- Γ ⊢ A Γ ⊢ B -- ───────────────── (∧-intro) -- Γ ⊢ A ∧ B -- -- -- Γ ⊢ A ∧ B -- ───────────────── (∧-elim1) -- Γ ⊢ A -- -- -- Γ ⊢ A ∧ B -- ───────────────── (∧-elim2) -- Γ ⊢ B -- -- -- Γ, A ⊢ B -- ───────────────── (⇒-intro) -- Γ ⊢ A ⇒ B -- -- -- Γ ⊢ A ⇒ B Γ ⊢ A -- ────────────────────────── (⇒-elim) -- Γ ⊢ B -- -- -- Γ ⊢ (A ⇒ ⊥) ⇒ ⊥ -- ────────────────────── (double-negation) -- Γ ⊢ A -- -- -- ───────────────── (⊤-intro) -- Γ ⊢ ⊤ -- -- -- The rule (assump) states that if A is one of the hypotheses, then A -- can be derived from the hypothesis. Basically A is true "by assumption". -- -- Several of the connectives, such as ∧ and ⇒, have an "introduction" -- rule, which shows how to prove such a formula, and an "elimination" -- rule, which shows how such a formula can be used to prove other -- things. The rule (∧-intro) states that to prove A ∧ B from the -- given hypotheses Γ, we must separately derive A and B. Conversely, -- the rules (∧-elim1) and (∧-elim2) state that if we have already -- derived A ∧ B, then we may separately conclude A and B. The rule -- (⇒-intro) states that to prove an implication A ⇒ B, we must assume -- A and prove B. In other words, to derive A ⇒ B from some hypotheses -- Γ, we must prove B from the hypotheses Γ, A. The rule (⇒-elim) is -- also known by its Latin name "modus ponens". It states that if we -- can prove A ⇒ B and we can also prove A, then we may conclude -- B. The rule (double-negation) is required to make the logic -- classical. Informally, it states that we can prove A by assuming -- "not A" and deriving a contradiction. Remember that "not A" is an -- abbreviation for (A ⇒ ⊥). The rule (⊤-intro) states that ⊤ can be -- derived from any set of hypotheses. -- We can directly translate the above rules into Agda: data _⊢_ : Context -> Formula -> Set where assump : ∀ {Γ A} -> A ∈ Γ -> Γ ⊢ A ∧-intro : ∀ {Γ A B} -> Γ ⊢ A -> Γ ⊢ B -> Γ ⊢ A ∧ B ∧-elim1 : ∀ {Γ A B} -> Γ ⊢ A ∧ B -> Γ ⊢ A ∧-elim2 : ∀ {Γ A B} -> Γ ⊢ A ∧ B -> Γ ⊢ B ⇒-intro : ∀ {Γ A B} -> Γ , A ⊢ B -> Γ ⊢ A ⇒ B ⇒-elim : ∀ {Γ A B} -> Γ ⊢ A ⇒ B -> Γ ⊢ A -> Γ ⊢ B double-negation : ∀ {Γ A} -> Γ ⊢ (A ⇒ ⊥) ⇒ ⊥ -> Γ ⊢ A ⊤-intro : ∀ {Γ} -> Γ ⊢ ⊤ ¬-intro : ∀ {Γ A} -> Γ , A ⊢ ⊥ -> Γ ⊢ ¬ A ¬-elim : ∀ {Γ A} -> Γ ⊢ ¬ A -> Γ ⊢ A -> Γ ⊢ ⊥ ∨-intro1 : ∀ {Γ A B} -> Γ ⊢ A -> Γ ⊢ A ∨ B ∨-intro2 : ∀ {Γ A B} -> Γ ⊢ B -> Γ ⊢ A ∨ B ∨-elim : ∀ {Γ A B C} -> Γ ⊢ A ∨ B -> Γ , A ⊢ C -> Γ , B ⊢ C -> Γ ⊢ C infixl 4 _⊢_ -- ---------------------------------------------------------------------- -- ** Weakening -- "Weakening" is the property that if we add additional hypotheses to -- an entailment (or change their order), the entailment remains valid. -- More formally, weakening states that Γ ⊢ A and Γ ⊆ Γ' implies Γ' ⊢ A. -- -- To state weakening, we must first define ⊆. The symbol ⊆ can be -- typed as \subseteq or \seq. _⊆_ : Context -> Context -> Set Γ ⊆ Γ' = ∀ {A} -> A ∈ Γ -> A ∈ Γ' infix 4 _⊆_ -- We need a lemma about ⊆: lemma-⊆ : ∀ {Γ Γ' A} -> Γ ⊆ Γ' -> Γ , A ⊆ Γ' , A lemma-⊆ hyp ∈-base = ∈-base lemma-⊆ hyp (∈-step hyp2) = ∈-step (hyp hyp2) lemma-⊆-ext : ∀ {Γ Γ' A} -> Γ ⊆ Γ' -> Γ ⊆ Γ' , A lemma-⊆-ext hyp = \ x -> ∈-step (hyp x) lemma-⊆-ext' : ∀ {Γ A} -> Γ ⊆ Γ , A lemma-⊆-ext' = lemma-⊆-ext \ x -> x lemma-⊆-empty : ∀ {Γ} -> Empty ⊆ Γ lemma-⊆-empty {Γ} {A} () -- Prove the weakening lemma: weakening : ∀ {Γ Γ' A} -> Γ ⊢ A -> Γ ⊆ Γ' -> Γ' ⊢ A weakening (assump x) w = assump (w x) weakening (∧-intro d d₁) w = ∧-intro (weakening d w) (weakening d₁ w) weakening (∧-elim1 d) w = ∧-elim1 (weakening d w ) weakening (∧-elim2 d) w = ∧-elim2 (weakening d w) weakening (⇒-intro d) w = ⇒-intro (weakening d (lemma-⊆ w) ) weakening (⇒-elim d d₁) w = ⇒-elim (weakening d w ) (weakening d₁ w ) weakening (double-negation d) w = double-negation (weakening d w ) weakening ⊤-intro w = ⊤-intro weakening (¬-intro d) w = ¬-intro (weakening d (lemma-⊆ w ) ) weakening (¬-elim d e) w = ( ¬-elim (weakening d w) (weakening e w)) weakening (∨-intro1 d) w = ∨-intro1 (weakening d w) weakening (∨-intro2 d) w = ∨-intro2 (weakening d w) weakening (∨-elim d e f) w = ∨-elim (weakening d w) (weakening e (lemma-⊆ w)) (weakening f (lemma-⊆ w) ) -- ---------------------------------------------------------------------- -- ** A derived rule -- Classical logic also has the following rule, called "ex falsum -- quodlibet" or "⊥-elim". -- -- Γ ⊢ ⊥ -- ───────────────── (⊥-elim) -- Γ ⊢ A -- -- The reason we did not include it in the proof rules in the above -- definition of entailment it that it follows from the other rules. -- Prove it: ⊥-elim : ∀ {Γ A} -> Γ ⊢ ⊥ -> Γ ⊢ A ⊥-elim {Γ} {A} a = double-negation a-⊥-⊥ where a-⊥ : Γ ⊢ A ⇒ ⊥ a-⊥ = ⇒-intro (weakening a (lemma-⊆-ext \ x -> x ) ) a-⊥-⊥ : Γ ⊢ (A ⇒ ⊥) ⇒ ⊥ a-⊥-⊥ = ⇒-intro (weakening a (lemma-⊆-ext \ x -> x ) ) -- ---------------------------------------------------------------------- -- * Truth table semantics -- ---------------------------------------------------------------------- -- ** Truth assignments and interpretation -- Remember that the atomic formulas of our logic are P 0, P 1, P 2, -- and so on. The fundamental concept of truth tables is that of a -- "truth assignment", namely a map from atomic formulas to {T, F}. -- We usually denote a truth assignment by the letter ρ = \rho. -- -- We formalize truth assignments as maps from ℕ to Bool. Assign : Set Assign = ℕ -> Bool -- Given a truth assignment ρ, we can compute the truth value (true or -- false) of any given formula. This is called the "interpretation" of -- formulas. interp : Assign -> Formula -> Bool interp ρ (P x) = ρ x interp ρ (A ∧ B) = (interp ρ A) and (interp ρ B) interp ρ (A ⇒ B) = (interp ρ A) implies (interp ρ B) interp ρ ⊥ = false interp ρ ⊤ = true interp ρ (¬ A) = not (interp ρ A) interp ρ (A ∨ B) = (interp ρ A) or (interp ρ B) -- Lift the interp function to a list of formulas. We interpret a list -- of formulas basically as the conjunction of the formulas, i.e., the -- interpretation of Γ is true if and only if the interpretation of -- all A ∈ Γ is true. interps : Assign -> Context -> Bool interps ρ Empty = true interps ρ (c , x) = interps ρ c and interp ρ x -- ---------------------------------------------------------------------- -- ** Semantic entailment -- We write Γ ⊧ A if under all assignments ρ, if Γ is true, then A is true. -- A special case is when the context Γ is empty. In that case, ⊧ A means -- that A is true under all assignments, i.e., A is a tautology. -- -- The symbol ⊧ is pronounced "models", and you can type it as -- \models. Please note that this is a different symbol from ⊨ = \|=. -- We use the symbol "⊧" here. -- -- The relation ⊧ is also called "semantic entailment" or "truth table -- entailment", to distinguish it from ⊢, which is "syntactic -- entailment" or "derivability". -- We define semantic entailment. -- _⊧_ : Context -> Formula -> Set -- Γ ⊧ A = ∀ ρ -> interps ρ Γ ≡ true -> interp ρ A ≡ true _⊧_ : Context -> Formula -> Set Γ ⊧ f = (ρ : Assign) -> interps ρ Γ ≡ true -> interp ρ f ≡ true infix 4 _⊧_ -- ---------------------------------------------------------------------- -- * Soundness -- ---------------------------------------------------------------------- -- ** Lemmas about the boolean connectives -- The boolean functions 'and' and 'implies' are defined in Bool.agda. -- We need to know certain ones of their properties. boolCases : {p : Set} -> (a : Bool) -> (a ≡ true -> p) -> (a ≡ false -> p) -> p boolCases true t f = t refl boolCases false t f = f refl lemma-and-1 : {a b : Bool} -> a ≡ true -> b ≡ true -> a and b ≡ true lemma-and-1 refl refl = refl lemma-and-2 : {a b : Bool} -> a and b ≡ true -> a ≡ true lemma-and-2 {true} {true} abt = refl lemma-and-3 : {a b : Bool} -> a and b ≡ true -> b ≡ true lemma-and-3 {true} {true} abt = refl lemma-imp-1 : {a b : Bool} -> a implies b ≡ true -> a ≡ true -> b ≡ true lemma-imp-1 {true} {true} aibt at = refl lemma-imp-2 : {a b : Bool} -> a ≡ false -> a implies b ≡ true lemma-imp-2 {false} {true} af = refl lemma-imp-2 {false} {false} af = refl lemma-imp-3 : {a b : Bool} -> b ≡ true -> a implies b ≡ true lemma-imp-3 {true} {true} bt = refl lemma-imp-3 {false} {b} bt = refl lemma-doubleNeg : {a : Bool} -> (a implies false) implies false ≡ true -> a ≡ true lemma-doubleNeg {true} a-f-ft = refl lemma-not-true : {a : Bool} -> a ≡ true -> not a ≡ false lemma-not-true {.true} refl = refl lemma-not-false : {a : Bool} -> a ≡ false -> not a ≡ true lemma-not-false {.false} refl = refl lemma-or-1 : {a b : Bool} -> a ≡ true -> a or b ≡ true lemma-or-1 refl = refl lemma-or-2 : {a b : Bool} -> b ≡ true -> a or b ≡ true lemma-or-2 {true} {.true} refl = refl lemma-or-2 {false} {.true} refl = refl -- like boolCases lemma-or-3 : {C : Set} -> {a b : Bool} -> a or b ≡ true -> (a ≡ true -> C) -> (b ≡ true -> C) -> C lemma-or-3 {a = true} {true} aob ca cb = ca aob lemma-or-3 {a = false} {true} aob ca cb = cb aob lemma-or-3 {a = true} {false} aob ca cb = ca refl -- ---------------------------------------------------------------------- -- ** Lemmas about the soundness of individual rules -- Each of the proof rules of logic has a semantic counterpart. lemma-assump : ∀ Γ A -> A ∈ Γ -> Γ ⊧ A lemma-assump (._ , A) A ∈-base = \ ρ ct -> lemma-and-3 ct lemma-assump (Γ' , B) A (∈-step hyp) = \ ρ ct -> (lemma-assump Γ' A hyp) ρ (lemma-and-2 ct ) lemma-∧-intro : ∀ Γ A B -> Γ ⊧ A -> Γ ⊧ B -> Γ ⊧ A ∧ B lemma-∧-intro Γ A B as bs = \ ρ ct -> lemma-and-1 (as ρ ct ) (bs ρ ct ) lemma-∧-elim1 : ∀ Γ A B -> Γ ⊧ A ∧ B -> Γ ⊧ A lemma-∧-elim1 Γ A B abs = \ ρ ct -> lemma-and-2 (abs ρ ct) lemma-∧-elim2 : ∀ Γ A B -> Γ ⊧ A ∧ B -> Γ ⊧ B lemma-∧-elim2 Γ A B abs = \ ρ ct -> lemma-and-3 (abs ρ ct) lemma-⇒-intro' : ∀ Γ A B -> Γ , A ⊧ B -> Γ ⊧ A ⇒ B lemma-⇒-intro' Γ A B a-bs ρ ct = boolCases (interp ρ A) (\ x -> lemma-imp-3 (a-bs ρ (lemma-and-1 ct x ) ) ) \ x -> lemma-imp-2 x lemma-⇒-intro : ∀ Γ A B -> Γ , A ⊧ B -> Γ ⊧ A ⇒ B lemma-⇒-intro Γ A B a-bs ρ ct with (interp ρ) A | inspect (interp ρ) A lemma-⇒-intro Γ A B a-bs ρ ct | true | [ eq ] = lemma-imp-3 (a-bs ρ (lemma-and-1 ct eq ) ) lemma-⇒-intro Γ A B a-bs ρ ct | false | [ eq ] = refl lemma-⇒-elim : ∀ Γ A B -> Γ ⊧ A ⇒ B -> Γ ⊧ A -> Γ ⊧ B lemma-⇒-elim Γ A B a-bs as = \ ρ ct -> lemma-imp-1 (a-bs ρ ct ) (as ρ ct ) lemma-double-negation : ∀ Γ A -> Γ ⊧ (A ⇒ ⊥) ⇒ ⊥ -> Γ ⊧ A lemma-double-negation Γ A anns = \ ρ ct -> lemma-doubleNeg (anns ρ ct ) lemma-⊤-intro : ∀ Γ -> Γ ⊧ ⊤ lemma-⊤-intro Γ = \ ρ ct -> refl lemma-¬-intro : ∀ Γ A -> Γ , A ⊧ ⊥ -> Γ ⊧ ¬ A lemma-¬-intro Γ A a ρ ct with (interp ρ) A | inspect (interp ρ) A lemma-¬-intro Γ A a ρ ct | true | [ eq ] = a ρ (lemma-and-1 ct eq) lemma-¬-intro Γ A a ρ ct | false | [ eq ] = refl lemma-¬-intro' : ∀ Γ A -> Γ , A ⊧ ⊥ -> Γ ⊧ ¬ A lemma-¬-intro' Γ A a ρ ct = boolCases (interp ρ A) (\x -> trans (lemma-not-true x ) (a ρ (lemma-and-1 ct x ) ) ) \ x -> lemma-not-false x lemma-¬-elim : ∀ Γ A -> Γ ⊧ ¬ A -> Γ ⊧ A -> Γ ⊧ ⊥ lemma-¬-elim Γ A a b ρ ct = boolCases (interp ρ A) (\ x -> trans (sym (lemma-not-true x)) (a ρ ct ) ) \ x -> trans (sym x ) (b ρ ct) lemma-∨-intro1 : ∀ Γ A B -> Γ ⊧ A -> Γ ⊧ A ∨ B lemma-∨-intro1 Γ A B a ρ ct = lemma-or-1 (a ρ ct ) lemma-∨-intro2 : ∀ Γ A B -> Γ ⊧ B -> Γ ⊧ A ∨ B lemma-∨-intro2 Γ A B a ρ ct = lemma-or-2 (a ρ ct ) lemma-∨-elim : ∀ Γ A B C -> Γ ⊧ A ∨ B -> Γ , A ⊧ C -> Γ , B ⊧ C -> Γ ⊧ C lemma-∨-elim Γ A B C aob ac bc ρ ct = lemma-or-3 (aob ρ ct) (\ x -> ac ρ (lemma-and-1 ct x ) ) \ x -> bc ρ (lemma-and-1 ct x ) -- ---------------------------------------------------------------------- -- * The soundness theorem of boolean logic. -- Soundness states that Γ ⊢ A implies Γ ⊧ A, or equivalently: -- everything that is provable is valid. -- 4. Prove the soundness of boolean logic. sound : ∀ Γ A -> Γ ⊢ A -> Γ ⊧ A sound Γ A (assump x) = lemma-assump Γ A x sound Γ (A ∧ B) (∧-intro hyp hyp₁) = lemma-∧-intro Γ A B (sound Γ A hyp) (sound Γ B hyp₁) sound Γ A (∧-elim1 {B = B} hyp) = lemma-∧-elim1 Γ A B (sound Γ (A ∧ B) hyp ) sound Γ A (∧-elim2 {A = A₁} hyp) = lemma-∧-elim2 Γ A₁ A ((sound Γ (A₁ ∧ A) hyp ) ) sound Γ (A ⇒ B) (⇒-intro hyp) = lemma-⇒-intro Γ A B (sound (Γ , A) B hyp ) sound Γ A (⇒-elim {A = A₁} hyp hyp₁) = lemma-⇒-elim Γ A₁ A (sound Γ (A₁ ⇒ A) hyp ) (sound Γ A₁ hyp₁) sound Γ A (double-negation hyp) = lemma-double-negation Γ A (sound Γ ((A ⇒ ⊥) ⇒ ⊥) hyp) sound Γ .⊤ ⊤-intro = λ ρ _ → refl sound Γ (¬ A) (¬-intro x) = lemma-¬-intro' Γ A ((sound (Γ , A) ⊥ x ) ) sound Γ .⊥ (¬-elim {A = A} x y) = lemma-¬-elim Γ A (sound Γ (¬ A) x) (sound Γ A y) sound Γ (A ∨ B) (∨-intro1 x) = lemma-∨-intro1 Γ A B (sound Γ A x ) sound Γ (A ∨ B) (∨-intro2 x) = lemma-∨-intro2 Γ A B (sound Γ B x ) sound Γ C (∨-elim {A = A} {B} x y z) = lemma-∨-elim Γ A B C (sound Γ (A ∨ B) x ) (sound (Γ , A) C y ) (sound (Γ , B) C z) -- ---------------------------------------------------------------------- -- * Bonus questions and beyond -- If you feel adventurous, add more connectives, such as ¬A or A ∨ B, -- to the boolean logic. -- -- The proof rules are: -- -- Γ, A ⊢ ⊥ -- ────────────── (¬-intro) -- Γ ⊢ ¬A -- -- -- Γ ⊢ ¬A Γ ⊢ A -- ───────────────────── (¬-elim) -- Γ ⊢ ⊥ -- -- -- Γ ⊢ A -- ───────────── (∨-intro1) -- Γ ⊢ A ∨ B -- -- -- Γ ⊢ B -- ───────────── (∨-intro2) -- Γ ⊢ A ∨ B -- -- -- Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C -- ─────────────────────────────────────── (∨-elim) -- Γ ⊢ C -- If you feel extremely ambitious, try to prove completeness, the -- converse of soundness. Completeness is the statement that Γ ⊧ A -- implies Γ ⊢ A. -- -- Warning: this is extremely difficult and far more work than -- soundness. Neither Frank nor I have been able to finish a proof of -- completeness. -- Actually, Peter had finished the proof a couple of days later using -- conjunction normal form. completeness-property : Set completeness-property = ∀ Γ A -> Γ ⊧ A -> Γ ⊢ A -- Now, I (Bian) will prove this property in Kalmar.agda using -- Kalmar's lemma.
{ "alphanum_fraction": 0.5587645995, "avg_line_length": 35.587826087, "ext": "agda", "hexsha": "686c48d935057178c8bab54c46e5b63bc4a11864", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/Kalmar", "max_forks_repo_path": "PropLogic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/Kalmar", "max_issues_repo_path": "PropLogic.agda", "max_line_length": 141, "max_stars_count": null, "max_stars_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/Kalmar", "max_stars_repo_path": "PropLogic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6923, "size": 20463 }
{-# OPTIONS --safe #-} module Cubical.Data.Queue where open import Cubical.Data.Queue.Base public open import Cubical.Data.Queue.Finite public
{ "alphanum_fraction": 0.7671232877, "avg_line_length": 18.25, "ext": "agda", "hexsha": "4959fcbf3fdfa8571165d658dedb6933b439a8b3", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Queue.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Queue.agda", "max_line_length": 44, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Queue.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 32, "size": 146 }
-------------------------------------------------------------------------------- -- This is part of Agda Inference Systems {-# OPTIONS --sized-types #-} open import Agda.Builtin.Equality open import Data.Product open import Data.Sum open import Size open import Codata.Thunk open import Level open import Relation.Unary using (_⊆_) module is-lib.InfSys.FlexSCoinduction {𝓁} where private variable U : Set 𝓁 open import is-lib.InfSys.Base {𝓁} open import is-lib.InfSys.Induction {𝓁} open import is-lib.InfSys.SCoinduction {𝓁} open MetaRule open IS {- Generalized inference systems -} SFCoInd⟦_,_⟧ : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (C : IS {𝓁c} {𝓁p} {𝓁n'} U) → U → Size → Set _ SFCoInd⟦ I , C ⟧ = SCoInd⟦ I ⊓ Ind⟦ I ∪ C ⟧ ⟧ {- Bounded Coinduction Principle -} bdc-lem : ∀{𝓁c 𝓁p 𝓁n 𝓁' 𝓁''} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (S : U → Set 𝓁') → (Q : U → Set 𝓁'') → S ⊆ Q → S ⊆ ISF[ I ] S → S ⊆ ISF[ I ⊓ Q ] S bdc-lem _ _ _ bd cn Su with cn Su ... | rn , c , refl , pr = rn , (c , bd Su) , refl , pr bounded-scoind[_,_] : ∀{𝓁c 𝓁p 𝓁n 𝓁n' 𝓁'} → (I : IS {𝓁c} {𝓁p} {𝓁n} U) → (C : IS {𝓁c} {𝓁p} {𝓁n'} U) → (S : U → Set 𝓁') → S ⊆ Ind⟦ I ∪ C ⟧ -- S is bounded w.r.t. I ∪ C → S ⊆ ISF[ I ] S -- S is consistent w.r.t. I → S ⊆ (λ u → ∀{i} → SFCoInd⟦ I , C ⟧ u i) bounded-scoind[ I , C ] S bd cn Su = scoind[ I ⊓ Ind⟦ I ∪ C ⟧ ] S (bdc-lem I S Ind⟦ I ∪ C ⟧ bd cn) Su {- Get Ind from SFCoInd -} sfcoind-to-ind : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → (λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i) ⊆ Ind⟦ is ∪ cois ⟧ sfcoind-to-ind co with co sfcoind-to-ind co | sfold (_ , (_ , sd) , refl , _) = sd {- Apply Rule -} apply-sfcoind : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → (rn : is .Names) → RClosed (is .rules rn) (λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i) apply-sfcoind rn c pr = apply-scoind rn (c , apply-ind (inj₁ rn) c λ i → sfcoind-to-ind (pr i)) pr {- Postfix - Prefix -} sfcoind-postfix : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → (λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i) ⊆ ISF[ is ] (λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i) sfcoind-postfix SFCoInd with SFCoInd ... | sfold (rn , (c , _) , refl , pr) = rn , c , refl , λ i → (pr i) .force sfcoind-prefix : ∀{𝓁c 𝓁p 𝓁n 𝓁n'} {is : IS {𝓁c} {𝓁p} {𝓁n} U}{cois : IS {𝓁c} {𝓁p} {𝓁n'} U} → ISF[ is ] (λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i) ⊆ λ u → ∀{i} → SFCoInd⟦ is , cois ⟧ u i sfcoind-prefix (rn , c , refl , pr) = apply-sfcoind rn c pr
{ "alphanum_fraction": 0.4911504425, "avg_line_length": 34.7692307692, "ext": "agda", "hexsha": "d5512b48a076b65f0309229a2ae1ad057a59385b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/is-lib/InfSys/FlexSCoinduction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/is-lib/InfSys/FlexSCoinduction.agda", "max_line_length": 108, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/is-lib/InfSys/FlexSCoinduction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 1344, "size": 2712 }
module ShadowModule where module A where module B where data D : Set where open A module B where
{ "alphanum_fraction": 0.7196261682, "avg_line_length": 9.7272727273, "ext": "agda", "hexsha": "e931d945bf7f2cd9b0c0731119f3c0802e4f34e4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ShadowModule.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ShadowModule.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ShadowModule.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 107 }
module Metalogic.Classical.Propositional.ProofSystem {ℓₚ} (Proposition : Set(ℓₚ)) where import Lvl open import Data hiding (empty) import Data.List open Data.List using (List ; ∅ ; _⊰_ ; _++_ ; [_ ; _]) open Data.List.Notation import Data.List.Relation.Membership import Data.List.Relation.Membership.Proofs open import Metalogic.Classical.Propositional.Syntax(Proposition) open import Functional open Data.List.Relation.Membership{ℓₚ} {Formula} open Data.List.Relation.Membership.Proofs{ℓₚ} {Formula} module Meta where data _⊢_ : List(Formula) → Formula → Set(ℓₚ) where -- TODO: Reduce the number of rules [⊤]-intro : ∀{Γ} → (Γ ⊢ ⊤) [⊥]-intro : ∀{Γ}{φ} → (φ ∈ Γ) → ((¬ φ) ∈ Γ) → (Γ ⊢ ⊥) [⊥]-elim : ∀{Γ}{φ} → (⊥ ∈ Γ) → (Γ ⊢ φ) [¬]-intro : ∀{Γ}{φ} → ((φ ∈ Γ) → (Γ ⊢ ⊥)) → (Γ ⊢ (¬ φ)) [¬]-elim : ∀{Γ}{φ} → (((¬ φ) ∈ Γ) → (Γ ⊢ ⊥)) → (Γ ⊢ φ) [∧]-intro : ∀{Γ}{φ₁ φ₂} → (φ₁ ∈ Γ) → (φ₂ ∈ Γ) → (Γ ⊢ (φ₁ ∧ φ₂)) [∧]-elimₗ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∧ φ₂) ∈ Γ) → (Γ ⊢ φ₁) [∧]-elimᵣ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∧ φ₂) ∈ Γ) → (Γ ⊢ φ₂) [∨]-introₗ : ∀{Γ}{φ₁ φ₂} → (φ₁ ∈ Γ) → (Γ ⊢ (φ₁ ∨ φ₂)) [∨]-introᵣ : ∀{Γ}{φ₁ φ₂} → (φ₂ ∈ Γ) → (Γ ⊢ (φ₁ ∨ φ₂)) [∨]-elim : ∀{Γ}{φ₁ φ₂ φ₃} → ((φ₁ ∈ Γ) → (Γ ⊢ φ₃)) → ((φ₂ ∈ Γ) → (Γ ⊢ φ₃)) → ((φ₁ ∨ φ₂) ∈ Γ) → (Γ ⊢ φ₃) [⇒]-intro : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∈ Γ) → (Γ ⊢ φ₂)) → (Γ ⊢ (φ₁ ⇒ φ₂)) [⇒]-elim : ∀{Γ}{φ₁ φ₂} → ((φ₁ ⇒ φ₂) ∈ Γ) → (φ₁ ∈ Γ) → (Γ ⊢ φ₂) [¬¬]-elim : ∀{Γ}{φ} → ((¬ ¬ φ) ∈ Γ) → (Γ ⊢ φ) [¬¬]-elim{Γ}{φ} ([¬¬φ]-in) = ([¬]-elim{Γ}{φ} ([¬φ]-in ↦ ([⊥]-intro{Γ}{¬ φ} ([¬φ]-in) ([¬¬φ]-in) ) )) _⊬_ : List(Formula) → Formula → Set(ℓₚ) _⊬_ Γ φ = (_⊢_ Γ φ) → Empty{ℓₚ} -- Consistency Inconsistent : List(Formula) → Set(ℓₚ) Inconsistent Γ = (Γ ⊢ ⊥) Consistent : List(Formula) → Set(ℓₚ) Consistent Γ = (Γ ⊬ ⊥) module TruthTables where open Meta -- Natural deduction proof trees. -- This is a proof system that should reflect the semantic truth of formulas. module NaturalDeduction where -- A `Tree` is associated with a formula. -- [Proposition without assumptions (Axiom)] -- Represented by the type `Tree(φ)`. -- It means that a tree with the formula φ at the bottom exists (is constructable). -- This represents that the formula φ is provable in the natural deduction proof system. -- [Proposition with an assumption] -- Represented by the type `Tree(φ₁) → Tree(φ₂)`. -- It means that a tree with φ₁ as a leaf and φ₂ at the bottom exists (is constructable). -- This represents that the formula φ₂ is provable if one can assume the formula φ₁. -- The constructors of `Tree` are all the possible ways to construct a natural deduction proof tree. -- If a tree with a certain formula cannot be constructed, then it means that the formula is not provable. {-# NO_POSITIVITY_CHECK #-} -- TODO: Could this be a problem? Maybe not? Classical logic is supposed to be consistent, but maybe that does not have anything to do with this? data Tree : Formula → Set(ℓₚ) where [⊤]-intro : Tree(⊤) [⊥]-intro : ∀{φ} → Tree(φ) → Tree(¬ φ) → Tree(⊥) [¬]-intro : ∀{φ} → (Tree(φ) → Tree(⊥)) → Tree(¬ φ) [¬]-elim : ∀{φ} → (Tree(¬ φ) → Tree(⊥)) → Tree(φ) [∧]-intro : ∀{φ₁ φ₂} → Tree(φ₁) → Tree(φ₂) → Tree(φ₁ ∧ φ₂) [∧]-elimₗ : ∀{φ₁ φ₂} → Tree(φ₁ ∧ φ₂) → Tree(φ₁) [∧]-elimᵣ : ∀{φ₁ φ₂} → Tree(φ₁ ∧ φ₂) → Tree(φ₂) [∨]-introₗ : ∀{φ₁ φ₂} → Tree(φ₁) → Tree(φ₁ ∨ φ₂) [∨]-introᵣ : ∀{φ₁ φ₂} → Tree(φ₂) → Tree(φ₁ ∨ φ₂) [∨]-elim : ∀{φ₁ φ₂ φ₃} → (Tree(φ₁) → Tree(φ₃)) → (Tree(φ₂) → Tree(φ₃)) → Tree(φ₁ ∨ φ₂) → Tree(φ₃) [⇒]-intro : ∀{φ₁ φ₂} → (Tree(φ₁) → Tree(φ₂)) → Tree(φ₁ ⇒ φ₂) [⇒]-elim : ∀{φ₁ φ₂} → Tree(φ₁ ⇒ φ₂) → Tree(φ₁) → Tree(φ₂) -- Double negated proposition is positive. [¬¬]-elim : ∀{φ} → Tree(¬ (¬ φ)) → Tree(φ) [¬¬]-elim nna = [¬]-elim(na ↦ [⊥]-intro na nna) -- A contradiction can derive every formula. [⊥]-elim : ∀{φ} → Tree(⊥) → Tree(φ) [⊥]-elim bottom = [¬]-elim(_ ↦ bottom) -- List of natural deduction proof trees. -- A `Trees` is associated with a list of formulas. -- If all formulas in the list can be constructed, then all the formulas in the list are provable. -- This is used to express (⊢) using the usual conventions in formal logic. -- Trees(Γ) is the statement that all formulas in Γ have proof trees. Trees : List(Formula) → Set(ℓₚ) Trees(Γ) = (∀{γ} → (γ ∈ Γ) → Tree(γ)) module Trees where tree : ∀{Γ}{φ} → Trees(Γ) → (φ ∈ Γ) → Tree(φ) tree f(x) = f(x) empty : Trees(∅) empty () singleton : ∀{φ} → Tree(φ) → Trees([ φ ]) singleton (φ-tree) (use) = φ-tree singleton (φ-tree) (skip ()) -- TODO: This could possibly be generalized to: ∀{Γ₁ Γ₂}{F : T → Set} → (∀{a} → (a ∈ Γ₁) → (a ∈ Γ₂)) → ((∀{γ} → (γ ∈ Γ₂) → F(γ)) → (∀{γ} → (γ ∈ Γ₁) → F(γ))) from-[∈] : ∀{Γ₁ Γ₂} → (∀{a} → (a ∈ Γ₁) → (a ∈ Γ₂)) → (Trees(Γ₂) → Trees(Γ₁)) from-[∈] (f) (Γ₂-trees) {γ} = liftᵣ (f{γ}) (Γ₂-trees) push : ∀{Γ}{φ} → Tree(φ) → Trees(Γ) → Trees(φ ⊰ Γ) push (φ-tree) (Γ-tree) (use) = φ-tree push (φ-tree) (Γ-tree) (skip membership) = Γ-tree (membership) pop : ∀{Γ}{φ} → Trees(φ ⊰ Γ) → Trees(Γ) pop = from-[∈] (skip) first : ∀{Γ}{φ} → Trees(φ ⊰ Γ) → Tree(φ) first(f) = f(use) -- TODO: Could be removed because liftᵣ is easier to use. ALthough a note/tip should be written for these purposes. -- formula-weaken : ∀{ℓ}{T : Set(ℓ)}{Γ₁ Γ₂} → (Trees(Γ₁) → Trees(Γ₂)) → (Trees(Γ₂) → T) → (Trees(Γ₁) → T) -- formula-weaken = liftᵣ [++]-commute : ∀{Γ₁ Γ₂} → Trees(Γ₁ ++ Γ₂) → Trees(Γ₂ ++ Γ₁) [++]-commute {Γ₁}{Γ₂} (trees) = trees ∘ ([∈][++]-commute{_}{Γ₂}{Γ₁}) [++]-left : ∀{Γ₁ Γ₂} → Trees(Γ₁ ++ Γ₂) → Trees(Γ₁) [++]-left {Γ₁}{Γ₂} (trees) ([∈]-[Γ₁]) = trees ([∈][++]-expandᵣ {_}{Γ₁}{Γ₂} [∈]-[Γ₁]) [++]-right : ∀{Γ₁ Γ₂} → Trees(Γ₁ ++ Γ₂) → Trees(Γ₂) [++]-right {Γ₁}{Γ₂} (trees) ([∈]-[Γ₂]) = trees ([∈][++]-expandₗ {_}{Γ₁}{Γ₂} [∈]-[Γ₂]) [++]-deduplicate : ∀{Γ} → Trees(Γ ++ Γ) → Trees(Γ) [++]-deduplicate {Γ} (trees) {γ} = liftᵣ([∈][++]-expandₗ {γ}{Γ}{Γ})(trees{γ}) [⊰]-reorderₗ : ∀{Γ₁ Γ₂}{φ} → Trees(Γ₁ ++ (φ ⊰ Γ₂)) → Trees(φ ⊰ (Γ₁ ++ Γ₂)) [⊰]-reorderₗ {Γ₁}{Γ₂}{φ} (Γ₁φΓ₂-trees) = push (φ-tree) ([++]-commute{Γ₂}{Γ₁} Γ₂Γ₁-trees) where φΓ₂Γ₁-trees : Trees(φ ⊰ (Γ₂ ++ Γ₁)) φΓ₂Γ₁-trees = [++]-commute{Γ₁}{φ ⊰ Γ₂} (Γ₁φΓ₂-trees) φ-tree : Tree(φ) φ-tree = first{Γ₂ ++ Γ₁}{φ} (φΓ₂Γ₁-trees) Γ₂Γ₁-trees : Trees(Γ₂ ++ Γ₁) Γ₂Γ₁-trees = pop{Γ₂ ++ Γ₁}{φ} (φΓ₂Γ₁-trees) -- Γ₁ ++ (φ ⊰ Γ₂) //assumption -- (φ ⊰ Γ₂) ++ Γ₁ //Trees.[++]-commute -- φ ⊰ (Γ₂ ++ Γ₁) //Definition: (++) -- φ ⊰ (Γ₁ ++ Γ₂) //Trees.[++]-commute push-many : ∀{Γ₁ Γ₂} → Trees(Γ₁) → Trees(Γ₂) → Trees(Γ₁ ++ Γ₂) push-many{∅} {Γ₂} ([∅]-trees) ([Γ₂]-trees) = [Γ₂]-trees push-many{φ ⊰ Γ₁}{Γ₂} ([φ⊰Γ₁]-trees) ([Γ₂]-trees) = [⊰]-reorderₗ{Γ₁}{Γ₂}{φ} (push-many{Γ₁}{φ ⊰ Γ₂} (pop [φ⊰Γ₁]-trees) (push (first [φ⊰Γ₁]-trees) [Γ₂]-trees)) -- Derivability -- Proof of: If there exists a tree for every formula in Γ, then there exists a tree for the formula φ. data _⊢_ (Γ : List(Formula)) (φ : Formula) : Set(ℓₚ) where [⊢]-construct : (Trees(Γ) → Tree(φ)) → (Γ ⊢ φ) module Theorems where [⊢]-from-trees : ∀{Γ₁ Γ₂}{φ} → (Trees(Γ₂) → Trees(Γ₁)) → (Γ₁ ⊢ φ) → (Γ₂ ⊢ φ) [⊢]-from-trees (trees-fn) ([⊢]-construct (Γ₁⊢φ)) = [⊢]-construct ((Γ₁⊢φ) ∘ (trees-fn)) [⊢]-formula-weaken : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → ((φ₂ ⊰ Γ) ⊢ φ₁) [⊢]-formula-weaken {_}{_}{φ₂} = [⊢]-from-trees (Trees.pop {_}{φ₂}) [⊢]-weakenₗ : ∀{Γ₂}{φ} → (Γ₂ ⊢ φ) → ∀{Γ₁} → ((Γ₁ ++ Γ₂) ⊢ φ) [⊢]-weakenₗ {_} {_} (Γ₂⊢φ) {∅} = (Γ₂⊢φ) [⊢]-weakenₗ {Γ₂}{φ} (Γ₂⊢φ) {φ₂ ⊰ Γ₁} = [⊢]-formula-weaken {Γ₁ ++ Γ₂} ([⊢]-weakenₗ (Γ₂⊢φ) {Γ₁}) [⊢]-reorder-[++] : ∀{Γ₁ Γ₂}{φ} → ((Γ₁ ++ Γ₂) ⊢ φ) → ((Γ₂ ++ Γ₁) ⊢ φ) [⊢]-reorder-[++] {Γ₁}{Γ₂} = [⊢]-from-trees (Trees.[++]-commute {Γ₂}{Γ₁}) [⊢]-apply : ∀{Γ}{φ} → (Γ ⊢ φ) → Trees(Γ) → Tree(φ) [⊢]-apply ([⊢]-construct [Γ]⊢[φ]) (Γ-trees) = ([Γ]⊢[φ]) (Γ-trees) [⊢]-apply-first : ∀{Γ}{φ₁ φ₂} → Tree(φ₁) → ((φ₁ ⊰ Γ) ⊢ φ₂) → (Γ ⊢ φ₂) [⊢]-apply-first ([φ₁]-tree) ([⊢]-construct ([φ₁⊰Γ]⊢[φ₂])) = [⊢]-construct([Γ]⊢[φ₂] ↦ ([φ₁⊰Γ]⊢[φ₂]) (Trees.push ([φ₁]-tree) (\{γ} → [Γ]⊢[φ₂] {γ})) ) [⊢]-apply-many : ∀{Γ₁ Γ₂}{φ} → Trees(Γ₁) → ((Γ₁ ++ Γ₂) ⊢ φ) → (Γ₂ ⊢ φ) [⊢]-apply-many ([Γ₁]-trees) ([⊢]-construct ([Γ₁++Γ₂]⊢[φ])) = [⊢]-construct([Γ₂]⊢[φ] ↦ ([Γ₁++Γ₂]⊢[φ]) (Trees.push-many ([Γ₁]-trees) (\{γ} → [Γ₂]⊢[φ] {γ})) ) [⊢]-reorderᵣ-[⊰] : ∀{Γ₁ Γ₂}{φ₁ φ₂} → ((Γ₁ ++ (φ₁ ⊰ Γ₂)) ⊢ φ₂) ← ((φ₁ ⊰ (Γ₁ ++ Γ₂)) ⊢ φ₂) [⊢]-reorderᵣ-[⊰] {Γ₁}{Γ₂}{φ₁} = [⊢]-from-trees (Trees.[⊰]-reorderₗ {Γ₁}{Γ₂}{φ₁}) [⊢]-id : ∀{Γ}{φ} → (φ ∈ Γ) → (Γ ⊢ φ) [⊢]-id (φ-in) = [⊢]-construct ([∈]-proof ↦ [∈]-proof (φ-in)) -- ((A → B) → B) → C -- f(g ↦ g(x)) -- Almost like that cut rule. [⊢]-compose : ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → ((φ₁ ⊰ Γ) ⊢ φ₂) → (Γ ⊢ φ₂) [⊢]-compose ([Γ]⊢[φ₁]) ([φ₁Γ]⊢[φ₂]) = [⊢]-construct ([Γ]-trees ↦ let [φ₁]-tree = [⊢]-apply ([Γ]⊢[φ₁]) (\{γ} → [Γ]-trees {γ}) [Γ]⊢[φ₂] = [⊢]-apply-first ([φ₁]-tree) ([φ₁Γ]⊢[φ₂]) in [⊢]-apply ([Γ]⊢[φ₂]) (\{γ} → [Γ]-trees {γ}) ) -- TODO: ∀{Γ}{φ₁ φ₂} → (Γ ⊢ φ₁) → ((φ₁ ∈ Γ) → (Γ ⊢ φ₂)) → (Γ ⊢ φ₂) Provable? [⊢]-membership-precedingₗ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∈ Γ) → (Γ ⊢ φ₂)) ← ((φ₁ ⊰ Γ) ⊢ φ₂) [⊢]-membership-precedingₗ{Γ}{φ₁}{φ₂} ([φ₁Γ]⊢[φ₂]) ([φ₁]-in) = [⊢]-construct([Γ]-trees ↦ [⊢]-apply ([φ₁Γ]⊢[φ₂]) (Trees.push ([Γ]-trees [φ₁]-in) (\{γ} → [Γ]-trees {γ})) ) {- TODO: Maybe this is unprovable? And also false? postulate a : ∀{b : Set(ℓₚ)} → b [⊢]-membership-precedingᵣ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∈ Γ) → (Γ ⊢ φ₂)) → ((φ₁ ⊰ Γ) ⊢ φ₂) [⊢]-membership-precedingᵣ{Γ}{φ₁}{φ₂} (incl) = [⊢]-construct ([φ₁Γ]-trees ↦ let [Γ]-trees = Trees.pop (\{γ} → [φ₁Γ]-trees {γ}) [φ₁]-in = a [Γ]⊢[φ₂] = incl([φ₁]-in) in [⊢]-apply ([Γ]⊢[φ₂]) ([Γ]-trees) ) -} [⊢][⊤]-intro : ∀{Γ} → (Γ ⊢ ⊤) [⊢][⊤]-intro = [⊢]-construct(const [⊤]-intro) [⊢][⊥]-intro : ∀{Γ}{φ} → (φ ∈ Γ) → ((¬ φ) ∈ Γ) → (Γ ⊢ ⊥) [⊢][⊥]-intro ([φ]-in) ([¬φ]-in) = [⊢]-construct(assumption-trees ↦ ([⊥]-intro (assumption-trees ([φ]-in)) (assumption-trees ([¬φ]-in)) ) ) [⊢][⊥]-elim : ∀{Γ}{φ} → (⊥ ∈ Γ) → (Γ ⊢ φ) [⊢][⊥]-elim ([⊥]-in) = [⊢]-construct(assumption-trees ↦ ([⊥]-elim (assumption-trees ([⊥]-in)) ) ) [⊢][¬]-intro : ∀{Γ}{φ} → ((φ ⊰ Γ) ⊢ ⊥) → (Γ ⊢ (¬ φ)) [⊢][¬]-intro ([⊢]-construct φΓ⊢⊥) = [⊢]-construct(assumption-trees ↦ ([¬]-intro (φ-tree ↦ (φΓ⊢⊥) (Trees.push (φ-tree) (\{γ} → assumption-trees {γ})) )) ) [⊢][¬]-elim : ∀{Γ}{φ} → (((¬ φ) ⊰ Γ) ⊢ ⊥) → (Γ ⊢ φ) [⊢][¬]-elim ([⊢]-construct ¬φΓ⊢⊥) = [⊢]-construct(assumption-trees ↦ ([¬]-elim (φ-tree ↦ (¬φΓ⊢⊥) (Trees.push (φ-tree) (\{γ} → assumption-trees {γ})) )) ) [⊢][∧]-intro : ∀{Γ}{φ₁ φ₂} → (φ₁ ∈ Γ) → (φ₂ ∈ Γ) → (Γ ⊢ (φ₁ ∧ φ₂)) [⊢][∧]-intro ([φ₁]-in) ([φ₂]-in) = [⊢]-construct(assumption-trees ↦ ([∧]-intro (assumption-trees ([φ₁]-in)) (assumption-trees ([φ₂]-in)) ) ) [⊢][∧]-elimₗ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∧ φ₂) ∈ Γ) → (Γ ⊢ φ₁) [⊢][∧]-elimₗ ([φ₁∧φ₂]-in) = [⊢]-construct(assumption-trees ↦ [∧]-elimₗ (assumption-trees ([φ₁∧φ₂]-in)) ) [⊢][∧]-elimᵣ : ∀{Γ}{φ₁ φ₂} → ((φ₁ ∧ φ₂) ∈ Γ) → (Γ ⊢ φ₂) [⊢][∧]-elimᵣ ([φ₁∧φ₂]-in) = [⊢]-construct(assumption-trees ↦ [∧]-elimᵣ (assumption-trees ([φ₁∧φ₂]-in)) ) [⊢][∨]-introₗ : ∀{Γ}{φ₁ φ₂} → (φ₁ ∈ Γ) → (Γ ⊢ (φ₁ ∨ φ₂)) [⊢][∨]-introₗ ([φ₁]-in) = [⊢]-construct(assumption-trees ↦ [∨]-introₗ (assumption-trees ([φ₁]-in)) ) [⊢][∨]-introᵣ : ∀{Γ}{φ₁ φ₂} → (φ₂ ∈ Γ) → (Γ ⊢ (φ₁ ∨ φ₂)) [⊢][∨]-introᵣ ([φ₂]-in) = [⊢]-construct(assumption-trees ↦ [∨]-introᵣ (assumption-trees ([φ₂]-in)) ) [⊢][∨]-elim : ∀{Γ₁ Γ₂}{φ₁ φ₂ φ₃} → ((φ₁ ⊰ Γ₁) ⊢ φ₃) → ((φ₂ ⊰ Γ₂) ⊢ φ₃) → (((φ₁ ∨ φ₂) ⊰ (Γ₁ ++ Γ₂)) ⊢ φ₃) [⊢][∨]-elim {Γ₁}{Γ₂} ([⊢]-construct φ₁Γ⊢φ₃) ([⊢]-construct φ₂Γ⊢φ₃) = [⊢]-construct (assumption-trees ↦ [∨]-elim (φ₁-tree ↦ (φ₁Γ⊢φ₃) (Trees.push (φ₁-tree) (Trees.[++]-left {Γ₁}{Γ₂} (Trees.pop (\{γ} → assumption-trees {γ}))))) (φ₂-tree ↦ (φ₂Γ⊢φ₃) (Trees.push (φ₂-tree) (Trees.[++]-right {Γ₁}{Γ₂} (Trees.pop (\{γ} → assumption-trees {γ}))))) (assumption-trees (use)) ) [⊢][⇒]-intro : ∀{Γ}{φ₁ φ₂} → ((φ₁ ⊰ Γ) ⊢ φ₂) → (Γ ⊢ (φ₁ ⇒ φ₂)) [⊢][⇒]-intro ([⊢]-construct φ₁Γ⊢φ₂) = [⊢]-construct (assumption-trees ↦ [⇒]-intro (φ-tree ↦ (φ₁Γ⊢φ₂) (Trees.push (φ-tree) (\{γ} → assumption-trees {γ}))) ) [⊢][⇒]-elim : ∀{Γ}{φ₁ φ₂} → ((φ₁ ⇒ φ₂) ∈ Γ) → (φ₁ ∈ Γ) → (Γ ⊢ φ₂) [⊢][⇒]-elim ([φ₁⇒φ₂]-in) ([φ₁]-in) = [⊢]-construct(assumption-trees ↦ [⇒]-elim (assumption-trees ([φ₁⇒φ₂]-in)) (assumption-trees ([φ₁]-in)) ) -- [⊢]-metaᵣ : ∀{a}{b} → _⊢_ a b → Meta._⊢_ a b -- [⊢]-metaₗ : ∀{a}{b} → _⊢_ a b ← Meta._⊢_ a b {-[⊢]-rules : Meta.[⊢]-rules (_⊢_) [⊢]-rules = record{ [⊤]-intro = \{Γ} → [⊢][⊤]-intro {Γ} ; [⊥]-intro = \{Γ}{φ} → [⊢][⊥]-intro {Γ}{φ} ; [⊥]-elim = \{Γ}{φ} → [⊢][⊥]-elim {Γ}{φ} ; [¬]-intro = \{Γ}{φ} → [⊢][¬]-intro {Γ}{φ} ; [¬]-elim = \{Γ}{φ} → [⊢][¬]-elim {Γ}{φ} ; [∧]-intro = \{Γ}{φ₁}{φ₂} → [⊢][∧]-intro {Γ}{φ₁}{φ₂} ; [∧]-elimₗ = \{Γ}{φ₁}{φ₂} → [⊢][∧]-elimₗ {Γ}{φ₁}{φ₂} ; [∧]-elimᵣ = \{Γ}{φ₁}{φ₂} → [⊢][∧]-elimᵣ {Γ}{φ₁}{φ₂} ; [∨]-introₗ = \{Γ}{φ₁}{φ₂} → [⊢][∨]-introₗ {Γ}{φ₁}{φ₂} ; [∨]-introᵣ = \{Γ}{φ₁}{φ₂} → [⊢][∨]-introᵣ {Γ}{φ₁}{φ₂} ; [∨]-elim = \{Γ₁}{Γ₂}{φ₁ φ₂ φ₃} → [⊢][∨]-elim {Γ₁}{Γ₂}{φ₁}{φ₂}{φ₃} ; [⇒]-intro = \{Γ}{φ₁}{φ₂} → [⊢][⇒]-intro {Γ}{φ₁}{φ₂} ; [⇒]-elim = \{Γ}{φ₁}{φ₂} → [⊢][⇒]-elim {Γ}{φ₁}{φ₂} } -}
{ "alphanum_fraction": 0.4609954112, "avg_line_length": 40.2414772727, "ext": "agda", "hexsha": "a967a3bc6649efa7fddd0b4b666e0ec8fc09c1e0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/ProofSystem.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/ProofSystem.agda", "max_line_length": 175, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Metalogic/Metalogic/Classical/Propositional/ProofSystem.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 7193, "size": 14165 }
module nodcap.NF.Axiom where open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ open import Data.List as L using (List; []; _∷_; _++_) open import Function using (_$_) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Data.Environment open import nodcap.Base open import nodcap.NF.Typing {-# TERMINATING #-} -- Theorem: -- Identity expansion. -- -- Problematic calls: -- * in the recursive calls under ⅋n and ⊗n, it is the -- size of the resource index which is decreasing, not -- the size of the type itself. ax : {A : Type} → ⊢ⁿᶠ A ∷ A ^ ∷ [] ax { 𝟏 } = exch (bbl []) $ wait halt ax { ⊥ } = wait halt ax { 𝟎 } = exch (bbl []) $ loop ax { ⊤ } = loop ax { A ⊗ B } = exch (bbl []) $ recv $ exch (bwd [] (_ ∷ _ ∷ [])) $ send ax ax ax { A ⅋ B } = recv $ exch (bwd [] (_ ∷ _ ∷ [])) $ send ( exch (bbl []) ax ) ( exch (bbl []) ax ) ax { A ⊕ B } = exch (bbl []) $ case ( exch (bbl []) $ sel₁ ax ) ( exch (bbl []) $ sel₂ ax ) ax { A & B } = case ( exch (bbl []) $ sel₁ $ exch (bbl []) ax ) ( exch (bbl []) $ sel₂ $ exch (bbl []) ax ) ax { ![ suc zero ] A } = mk!₁ $ exch (bbl []) $ mk?₁ $ exch (bbl []) ax ax { ![ suc (suc n) ] A } = exch (bbl []) $ cont {m = 1} {n = suc n} $ exch (bwd [] (_ ∷ _ ∷ [])) $ pool {m = 1} {n = suc n} ( ax ) ( ax ) ax { ?[ suc zero ] A } = mk?₁ $ exch (bbl []) $ mk!₁ $ exch (bbl []) ax ax { ?[ suc (suc n) ] A } = cont {m = 1} {n = suc n} $ exch (bwd [] (_ ∷ _ ∷ [])) $ pool {m = 1} {n = suc n} ( exch (bbl []) ax ) ( exch (bbl []) ax )
{ "alphanum_fraction": 0.493880049, "avg_line_length": 19.4523809524, "ext": "agda", "hexsha": "954fe8f3ebc4c5743d1f1176160ad098c26c5bac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/NF/Axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/NF/Axiom.agda", "max_line_length": 71, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/NF/Axiom.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 677, "size": 1634 }
module Levitation where open import Data.Product record ⊤ : Set1 where constructor tt data Desc : Set2 where `1 : Desc `Σ : (S : Set1)(D : S → Desc) → Desc `ind× : (D : Desc) → Desc `hind× : (H : Set)(D : Desc) → Desc ⟦_⟧ : Desc → Set1 → Set1 ⟦ `1 ⟧ X = ⊤ ⟦ `Σ S D ⟧ X = Σ S (\s → ⟦ D s ⟧ X) ⟦ `ind× D ⟧ X = X × ⟦ D ⟧ X ⟦ `hind× H D ⟧ X = (H → X) × ⟦ D ⟧ X data Mu (D : Desc) : Set1 where con : ⟦ D ⟧ (Mu D) → Mu D data DescDConst : Set1 where ``1 : DescDConst ``Σ : DescDConst ``ind× : DescDConst ``hind× : DescDConst DescDChoice : DescDConst → Desc DescDChoice ``1 = `1 DescDChoice ``Σ = `Σ Set (\S → `hind× S `1) DescDChoice ``ind× = `ind× `1 DescDChoice ``hind× = `Σ Set (\_ → `ind× `1) DescD : Desc DescD = `Σ DescDConst DescDChoice Desc' : Set1 Desc' = Mu DescD `1' : Desc' `1' = con (``1 , tt) `Σ' : (S : Set)(D : S → Desc') → Desc' `Σ' S D = con (``Σ , (S , (D , tt))) `ind×' : (D : Desc') → Desc' `ind×' D = con (``ind× , (D , tt)) `hind×' : (H : Set)(D : Desc') → Desc' `hind×' H D = con (``hind× , (H , (D , tt)))
{ "alphanum_fraction": 0.4990723562, "avg_line_length": 20.7307692308, "ext": "agda", "hexsha": "a52cff80d715ec229c772018df2d630e446401ae", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "papers/icfp-2010-talk/Levitation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "papers/icfp-2010-talk/Levitation.agda", "max_line_length": 44, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "papers/icfp-2010-talk/Levitation.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 484, "size": 1078 }
-- -- Created by Dependently-Typed Lambda Calculus on 2020-10-08 -- Connective -- Author: dplaindoux -- {-# OPTIONS --without-K #-} module Connective where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) open import Isomorphism using (_≃_; _≲_; extensionality) open Isomorphism.≃-Reasoning data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B ----- → A × B proj₁ : ∀ {A B : Set} → A × B ----- → A proj₁ ⟨ x , y ⟩ = x proj₂ : ∀ {A B : Set} → A × B ----- → B proj₂ ⟨ x , y ⟩ = y
{ "alphanum_fraction": 0.5888888889, "avg_line_length": 16.1538461538, "ext": "agda", "hexsha": "7b20fc3a7c019c85ee867b8a0b29a938a3b1b9f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "d-plaindoux/colca", "max_forks_repo_path": "src/exercices/Connective.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "d-plaindoux/colca", "max_issues_repo_path": "src/exercices/Connective.agda", "max_line_length": 61, "max_stars_count": 2, "max_stars_repo_head_hexsha": "a81447af3ab2ba898bb7d57be71369abbba12d81", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "d-plaindoux/colca", "max_stars_repo_path": "src/exercices/Connective.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-04T09:35:36.000Z", "max_stars_repo_stars_event_min_datetime": "2021-03-12T18:31:14.000Z", "num_tokens": 219, "size": 630 }
module Generic.Test.Elim where open import Generic.Core open import Generic.Function.Elim open import Generic.Test.Data.Vec -- Is it possible to get rid of these `lift`s? elimVec′ : ∀ {n α π} {A : Set α} -> (P : ∀ {n} -> Vec A n -> Set π) -> (∀ {n} {xs : Vec A n} x -> P xs -> P (x ∷ᵥ xs)) -> P []ᵥ -> (xs : Vec A n) -> P xs elimVec′ P f z = elim P (lift z , λ x r -> lift (f x r))
{ "alphanum_fraction": 0.5151515152, "avg_line_length": 28.6, "ext": "agda", "hexsha": "e8c70d76f196d5fe743976513c0f1be3306d7182", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Elim.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Elim.agda", "max_line_length": 59, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Elim.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 147, "size": 429 }
------------------------------------------------------------------------ -- Some corollaries ------------------------------------------------------------------------ module TotalParserCombinators.Derivative.Corollaries where open import Data.List open import Function.Base open import Function.Inverse using (_↔_) import Function.Related as Related import Relation.Binary.PropositionalEquality as P open Related using (SK-sym) open import TotalParserCombinators.Derivative.Definition open import TotalParserCombinators.Derivative.LeftInverse open import TotalParserCombinators.Derivative.RightInverse open import TotalParserCombinators.Derivative.SoundComplete open import TotalParserCombinators.Parser open import TotalParserCombinators.Semantics -- D is correct. correct : ∀ {Tok R xs x s} {t} {p : Parser Tok R xs} → x ∈ D t p · s ↔ x ∈ p · t ∷ s correct {p = p} = record { to = P.→-to-⟶ $ sound p ; from = P.→-to-⟶ complete ; inverse-of = record { left-inverse-of = complete∘sound p ; right-inverse-of = sound∘complete } } -- D is monotone. mono : ∀ {Tok R xs₁ xs₂ t} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ≲ p₂ → D t p₁ ≲ D t p₂ mono p₁≲p₂ = complete ∘ p₁≲p₂ ∘ sound _ -- D preserves parser and language equivalence. cong : ∀ {k Tok R xs₁ xs₂} {p₁ : Parser Tok R xs₁} {p₂ : Parser Tok R xs₂} → p₁ ∼[ k ] p₂ → ∀ {t} → D t p₁ ∼[ k ] D t p₂ cong {p₁ = p₁} {p₂} p₁≈p₂ {t} {x} {s} = x ∈ D t p₁ · s ↔⟨ correct ⟩ x ∈ p₁ · t ∷ s ∼⟨ p₁≈p₂ ⟩ x ∈ p₂ · t ∷ s ↔⟨ SK-sym correct ⟩ x ∈ D t p₂ · s ∎ where open Related.EquationalReasoning
{ "alphanum_fraction": 0.5940353013, "avg_line_length": 31, "ext": "agda", "hexsha": "051a4880be26001ce045374a6ce5b6b93d0002d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Derivative/Corollaries.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Derivative/Corollaries.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Derivative/Corollaries.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 532, "size": 1643 }
{-# OPTIONS --safe --sized-types #-} module STLC.Operational where open import STLC.Operational.Base
{ "alphanum_fraction": 0.7450980392, "avg_line_length": 20.4, "ext": "agda", "hexsha": "99fce9465cc41c5429afedd022b885a6ac1acddb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TrulyNonstrict/STLC", "max_forks_repo_path": "STLC/Operational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TrulyNonstrict/STLC", "max_issues_repo_path": "STLC/Operational.agda", "max_line_length": 36, "max_stars_count": 1, "max_stars_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TypesLogicsCats/STLC", "max_stars_repo_path": "STLC/Operational.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-16T23:53:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-16T23:53:48.000Z", "num_tokens": 26, "size": 102 }
{-# OPTIONS --cubical-compatible #-} module WithoutK-PatternSynonyms2 where -- Equality defined with two indices. data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x pattern r x = refl x -- The --cubical-compatible option works with pattern synonyms. K : (A : Set) (x : A) (P : x ≡ x → Set) → P (refl x) → (p : x ≡ x ) → P p K A .x P pr (r x) = pr
{ "alphanum_fraction": 0.5900277008, "avg_line_length": 25.7857142857, "ext": "agda", "hexsha": "7e2ef48383a88e6d1f9267c30e8a7ab1d1693db6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/WithoutK-PatternSynonyms2.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/WithoutK-PatternSynonyms2.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/WithoutK-PatternSynonyms2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 130, "size": 361 }
open import Relation.Binary.Core module BBHeap.Insert {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Properties _≤_ open import BBHeap.Subtyping.Properties _≤_ trans≤ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Bound.Lower.Order.Properties _≤_ trans≤ open import Data.Sum renaming (_⊎_ to _∨_) open import Order.Total _≤_ tot≤ mutual insert : {b : Bound}{x : A} → LeB b (val x) → BBHeap b → BBHeap b insert b≤x leaf = left b≤x lf⋘ insert {x = x} b≤x (left {x = y} b≤y l⋘r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r = left b≤x (subtyping⋘ (lexy x≤y) (lexy x≤y) lᵢ⋘r) ... | inj₂ lᵢ⋗r = right b≤x (subtyping⋙ (lexy x≤y) (lexy x≤y) (lemma⋗ lᵢ⋗r)) insert {x = x} b≤x (left {x = y} b≤y l⋘r) | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = left b≤y lᵢ⋘r ... | inj₂ lᵢ⋗r = right b≤y (lemma⋗ lᵢ⋗r) insert {x = x} b≤x (right {x = y} b≤y l⋙r) with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ = right b≤x (subtyping⋙ (lexy x≤y) (lexy x≤y) l⋙rᵢ) ... | inj₂ l≃rᵢ = left b≤x (subtyping⋘ (lexy x≤y) (lexy x≤y) (lemma≃ l≃rᵢ)) insert {x = x} b≤x (right {x = y} b≤y l⋙r) | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = right b≤y l⋙rᵢ ... | inj₂ l≃rᵢ = left b≤y (lemma≃ l≃rᵢ) lemma-insert⋘ : {b b' : Bound}{x : A}{h : BBHeap b}{h' : BBHeap b'} → (b≤x : LeB b (val x)) → h ⋘ h' → insert b≤x h ⋘ h' ∨ insert b≤x h ⋗ h' lemma-insert⋘ b≤x lf⋘ = inj₂ (⋗lf b≤x) lemma-insert⋘ {x = x} b≤x (ll⋘ {x = y} b≤y b'≤y' l⋘r l'⋘r' l'≃r' r≃l') with tot≤ x y ... | inj₁ x≤y with lemma-insert⋘ (lexy refl≤) l⋘r ... | inj₁ lᵢ⋘r = inj₁ (ll⋘ b≤x b'≤y' (subtyping⋘ (lexy x≤y) (lexy x≤y) lᵢ⋘r) l'⋘r' l'≃r' (subtyping≃l (lexy x≤y) r≃l')) ... | inj₂ lᵢ⋗r = inj₁ (lr⋘ b≤x b'≤y' (subtyping⋙ (lexy x≤y) (lexy x≤y) (lemma⋗ lᵢ⋗r)) l'⋘r' l'≃r' (subtyping⋗l (lexy x≤y) (lemma⋗≃ lᵢ⋗r r≃l'))) lemma-insert⋘ {x = x} b≤x (ll⋘ {x = y} b≤y b'≤y' l⋘r l'⋘r' l'≃r' r≃l') | inj₂ y≤x with lemma-insert⋘ (lexy y≤x) l⋘r ... | inj₁ lᵢ⋘r = inj₁ (ll⋘ b≤y b'≤y' lᵢ⋘r l'⋘r' l'≃r' r≃l') ... | inj₂ lᵢ⋗r = inj₁ (lr⋘ b≤y b'≤y' (lemma⋗ lᵢ⋗r) l'⋘r' l'≃r' (lemma⋗≃ lᵢ⋗r r≃l')) lemma-insert⋘ {x = x} b≤x (lr⋘ {x = y} b≤y b'≤y' l⋙r l'⋘r' l'≃r' l⋗l') with tot≤ x y ... | inj₁ x≤y with lemma-insert⋙ (lexy refl≤) l⋙r ... | inj₁ l⋙rᵢ = inj₁ (lr⋘ b≤x b'≤y' (subtyping⋙ (lexy x≤y) (lexy x≤y) l⋙rᵢ) l'⋘r' l'≃r' (subtyping⋗l (lexy x≤y) l⋗l')) ... | inj₂ l≃rᵢ = inj₂ (⋗nd b≤x b'≤y' (subtyping⋘ (lexy x≤y) (lexy x≤y) (lemma≃ l≃rᵢ)) l'⋘r' (subtyping≃ (lexy x≤y) (lexy x≤y) l≃rᵢ) l'≃r' (subtyping⋗l (lexy x≤y) l⋗l')) lemma-insert⋘ {x = x} b≤x (lr⋘ {x = y} b≤y b'≤y' l⋙r l'⋘r' l'≃r' l⋗l') | inj₂ y≤x with lemma-insert⋙ (lexy y≤x) l⋙r ... | inj₁ l⋙rᵢ = inj₁ (lr⋘ b≤y b'≤y' l⋙rᵢ l'⋘r' l'≃r' l⋗l') ... | inj₂ l≃rᵢ = inj₂ (⋗nd b≤y b'≤y' (lemma≃ l≃rᵢ) l'⋘r' l≃rᵢ l'≃r' l⋗l') lemma-insert⋙ : {b b' : Bound}{x : A}{h : BBHeap b}{h' : BBHeap b'} → (b'≤x : LeB b' (val x)) → h ⋙ h' → h ⋙ insert b'≤x h' ∨ h ≃ insert b'≤x h' lemma-insert⋙ {x = x} b'≤x (⋙lf {x = y} b≤y) = inj₂ (≃nd b≤y b'≤x lf⋘ lf⋘ ≃lf ≃lf ≃lf) lemma-insert⋙ {x = x} b'≤x (⋙rl {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋘r' l⋗r') with tot≤ x y' ... | inj₁ x≤y' with lemma-insert⋘ (lexy refl≤) l'⋘r' ... | inj₁ l'ᵢ⋘r' = inj₁ (⋙rl b≤y b'≤x l⋘r l≃r (subtyping⋘ (lexy x≤y') (lexy x≤y') l'ᵢ⋘r') (subtyping⋗r (lexy x≤y') l⋗r')) ... | inj₂ l'ᵢ⋗r' = inj₁ (⋙rr b≤y b'≤x l⋘r l≃r (subtyping⋙ (lexy x≤y') (lexy x≤y') (lemma⋗ l'ᵢ⋗r')) (subtyping≃r (lexy x≤y') (lemma⋗⋗ l⋗r' l'ᵢ⋗r'))) lemma-insert⋙ {x = x} b'≤x (⋙rl {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋘r' l⋗r') | inj₂ y'≤x with lemma-insert⋘ (lexy y'≤x) l'⋘r' ... | inj₁ l'ᵢ⋘r' = inj₁ (⋙rl b≤y b'≤y' l⋘r l≃r l'ᵢ⋘r' l⋗r') ... | inj₂ l'ᵢ⋗r' = inj₁ (⋙rr b≤y b'≤y' l⋘r l≃r (lemma⋗ l'ᵢ⋗r') (lemma⋗⋗ l⋗r' l'ᵢ⋗r')) lemma-insert⋙ {x = x} b'≤x (⋙rr {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋙r' l≃l') with tot≤ x y' ... | inj₁ x≤y' with lemma-insert⋙ (lexy refl≤) l'⋙r' ... | inj₁ l'⋙r'ᵢ = inj₁ (⋙rr b≤y b'≤x l⋘r l≃r (subtyping⋙ (lexy x≤y') (lexy x≤y') l'⋙r'ᵢ) (subtyping≃r (lexy x≤y') l≃l')) ... | inj₂ l'≃r'ᵢ = inj₂ (≃nd b≤y b'≤x l⋘r (subtyping⋘ (lexy x≤y') (lexy x≤y') (lemma≃ l'≃r'ᵢ)) l≃r (subtyping≃ (lexy x≤y') (lexy x≤y') l'≃r'ᵢ) (subtyping≃r (lexy x≤y') l≃l')) lemma-insert⋙ {x = x} b'≤x (⋙rr {x' = y'} b≤y b'≤y' l⋘r l≃r l'⋙r' l≃l') | inj₂ y'≤x with lemma-insert⋙ (lexy y'≤x) l'⋙r' ... | inj₁ l'⋙r'ᵢ = inj₁ (⋙rr b≤y b'≤y' l⋘r l≃r l'⋙r'ᵢ l≃l') ... | inj₂ l'≃r'ᵢ = inj₂ (≃nd b≤y b'≤y' l⋘r (lemma≃ l'≃r'ᵢ) l≃r l'≃r'ᵢ l≃l')
{ "alphanum_fraction": 0.5014607679, "avg_line_length": 55.7209302326, "ext": "agda", "hexsha": "1027768d379b3561dbba2677335e95106e5f7b27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Insert.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Insert.agda", "max_line_length": 177, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Insert.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 3159, "size": 4792 }
------------------------------------------------------------------------ -- Some definitions related to the binary sum type former ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Sum {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Prelude private variable a : Level A B : Type a x : A f₁ f₂ g₁ g₂ : A → B -- Functor laws. ⊎-map-id : ⊎-map id id x ≡ x ⊎-map-id {x = inj₁ _} = refl _ ⊎-map-id {x = inj₂ _} = refl _ ⊎-map-∘ : ∀ x → ⊎-map (f₁ ∘ g₁) (f₂ ∘ g₂) x ≡ ⊎-map f₁ f₂ (⊎-map g₁ g₂ x) ⊎-map-∘ = [ (λ _ → refl _) , (λ _ → refl _) ] -- If A can be decided, then ¬ A can be decided. dec-¬ : Dec A → Dec (¬ A) dec-¬ (yes p) = no (_$ p) dec-¬ (no p) = yes p
{ "alphanum_fraction": 0.4425087108, "avg_line_length": 23.2702702703, "ext": "agda", "hexsha": "ef8c85316d8f7b20d318325b15281d1cf8d8122a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Sum.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Sum.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Sum.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 291, "size": 861 }
module StdLibStuff where {- -- Data.Empty data ⊥ : Set where -- Relation.Nullary.Core infix 3 ¬_ ¬_ : Set → Set ¬ P = P → ⊥ data Dec (P : Set) : Set where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P -} -- Relation.Binary.Core infix 4 _≡_ -- _≢_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x {- _≢_ : ∀ {A : Set} → A → A → Set x ≢ y = ¬ x ≡ y Decidable : {A : Set} → Set Decidable {A} = (x y : A) → Dec (x ≡ y) -} -- equality properties sym : {A : Set} → {x y : A} → x ≡ y → y ≡ x sym refl = refl subst : {A : Set} → {x y : A} → (p : A → Set) → x ≡ y → p x → p y subst p refl h = h cong : {A B : Set} → {x y : A} → (f : A → B) → x ≡ y → f x ≡ f y cong f refl = refl trans : {A : Set} → {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl h = h {- -- Data.List infixr 5 _∷_ data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : List A) → List A data List₁ (A : Set₁) : Set₁ where [] : List₁ A _∷_ : (x : A) (xs : List₁ A) → List₁ A -} -- Data.Bool infixr 5 _∨_ data Bool : Set where true : Bool false : Bool not : Bool → Bool not true = false not false = true _∨_ : Bool → Bool → Bool true ∨ b = true false ∨ b = b {- -- Data.Product infixr 4 _,_ _,′_ infixr 2 _×_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ record Σ₁ (A : Set₁) (B : A → Set) : Set₁ where constructor _,_ field proj₁ : A proj₂ : B proj₁ -- nondep product record _×_ (A B : Set) : Set where constructor _,_ field proj₁ : A proj₂ : B open _×_ public _,′_ : {A B : Set} → A → B → A × B _,′_ = _,_ ∃ : ∀ {A : Set} → (A → Set) → Set ∃ = Σ _ ∃₁ : ∀ {A : Set₁} → (A → Set) → Set₁ ∃₁ = Σ₁ _ -} -- Data.Nat data ℕ : Set where zero : ℕ suc : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN SUC suc #-} -- Data.Fin data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} (i : Fin n) → Fin (suc n) {- -- Data.Vec data Vec (A : Set) : ℕ → Set where [] : Vec A zero _∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n) data Vec₁ (A : Set₁) : ℕ → Set₁ where [] : Vec₁ A zero _∷_ : ∀ {n} (x : A) (xs : Vec₁ A n) → Vec₁ A (suc n) lookup : ∀ {n} {A : Set} → Fin n → Vec A n → A lookup zero (x ∷ xs) = x lookup (suc i) (x ∷ xs) = lookup i xs lookup₁ : ∀ {n} {A : Set₁} → Fin n → Vec₁ A n → A lookup₁ zero (x ∷ xs) = x lookup₁ (suc i) (x ∷ xs) = lookup₁ i xs -- Data.Sum infixr 1 _⊎_ data _⊎_ (A : Set) (B : Set) : Set where inj₁ : (x : A) → A ⊎ B inj₂ : (y : B) → A ⊎ B [_,_]′ : ∀ {A : Set} {B : Set} {C : Set} → (A → C) → (B → C) → (A ⊎ B → C) [_,_]′ h₁ h₂ (inj₁ x) = h₁ x [_,_]′ h₁ h₂ (inj₂ y) = h₂ y -- _↔_ : Set → Set → Set X ↔ Y = (X → Y) × (Y → X) -- Misc record ⊤ : Set where -}
{ "alphanum_fraction": 0.4800569801, "avg_line_length": 15.687150838, "ext": "agda", "hexsha": "65df98cdf67317e2408f450ef5e0858dae3975af", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-15T11:51:19.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-17T20:28:10.000Z", "max_forks_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "frelindb/agsyHOL", "max_forks_repo_path": "soundness/StdLibStuff.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "frelindb/agsyHOL", "max_issues_repo_path": "soundness/StdLibStuff.agda", "max_line_length": 65, "max_stars_count": 17, "max_stars_repo_head_hexsha": "032efd5f42e4b56d436ac8e0c3c0f5127b8dc1f7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "frelindb/agsyHOL", "max_stars_repo_path": "soundness/StdLibStuff.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-19T20:53:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-04T14:38:28.000Z", "num_tokens": 1267, "size": 2808 }
-- Andreas, 2021-04-14, #1154 -- Andreas, 2021-04-12, BNFC/bnfc#354 -- Make sure we confirm tentative layout columns on first newline. private private private A : Set B : Set -- all three blocks (8,16,24) should be confirmed here private -- the column for this block needs to be > 16 Bad : Set -- bad indentation, needs to be 0,8,16 or greater -- Expected: Parse error after Bad
{ "alphanum_fraction": 0.6035242291, "avg_line_length": 41.2727272727, "ext": "agda", "hexsha": "17b0320b11841040af33fd957abac005b0c59d28", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1145.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1145.agda", "max_line_length": 87, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1145.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 119, "size": 454 }
module LC.Base where open import Data.Nat -------------------------------------------------------------------------------- -- de Bruijn indexed lambda calculus infix 5 ƛ_ infixl 7 _∙_ infix 9 var_ data Term : Set where var_ : (x : ℕ) → Term ƛ_ : (M : Term) → Term _∙_ : (M : Term) → (N : Term) → Term
{ "alphanum_fraction": 0.446875, "avg_line_length": 20, "ext": "agda", "hexsha": "c7fdd710454f970c2a86f1ddb361aff68a8f3f43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/Base.agda", "max_line_length": 80, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 102, "size": 320 }
module posts.agda.typed-protocols where open import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Relation.Nullary using (¬_) open import Data.Empty using (⊥; ⊥-elim) open import Data.List open import Data.Nat open import Data.Unit using (⊤; tt) open import Function.Base using (_$_; _|>_) -- Client / server roles -- data PeerRole : Set where ClientRole : PeerRole ServerRole : PeerRole dual-role : PeerRole → PeerRole dual-role ClientRole = ServerRole dual-role ServerRole = ClientRole -- Objective agency: who is responsible for sending next message. -- data Agency : Set where ClientAgency : Agency ServerAgency : Agency NobodyAgency : Agency -- Relative agency to the current 'PeerRole'. It answer the question: are we -- responsible for sending next message? -- data RelativeAgency : Set where WeHaveAgency : RelativeAgency TheyHaveAgency : RelativeAgency NobodyHasAgency : RelativeAgency relative : PeerRole → Agency → RelativeAgency relative ClientRole ClientAgency = WeHaveAgency relative ClientRole ServerAgency = TheyHaveAgency relative ClientRole NobodyAgency = NobodyHasAgency relative ServerRole ClientAgency = TheyHaveAgency relative ServerRole ServerAgency = WeHaveAgency relative ServerRole NobodyAgency = NobodyHasAgency -- 'relative' function obeys the following three exclusion lemmas: -- -- * it is an absurd if client and server have agency -- * it is an absurd if 'WeHaveAgency' and the dual role terminated -- ('NobodyHasAgency') -- * it is an absurd if 'TheyHaveAgency' and the dual role terminated -- ('NobodyHasAgency') -- -- Note that these lemmas are provided regardless of the protocol, unlike the -- Haskell implementation which requires to prove them for each protocol. exclusion-lemma-client-and-server-have-agency₁ : ∀ {agency : Agency} {pr : PeerRole} → WeHaveAgency ≡ relative pr agency → WeHaveAgency ≡ relative (dual-role pr) agency → ⊥ exclusion-lemma-client-and-server-have-agency₁ {ClientAgency} {ClientRole} refl () exclusion-lemma-client-and-server-have-agency₁ {ServerAgency} {ServerRole} refl () exclusion-lemma-client-and-server-have-agency₂ : ∀ {agency : Agency} {pr : PeerRole} → TheyHaveAgency ≡ relative pr agency → TheyHaveAgency ≡ relative (dual-role pr) agency → ⊥ exclusion-lemma-client-and-server-have-agency₂ {ServerAgency} {ClientRole} refl () exclusion-lemma-client-and-server-have-agency₂ {ClientAgency} {ServerRole} refl () exclusion-lemma-we-have-agency-and-nobody-has-agency : ∀ {agency : Agency} {pr : PeerRole} {pr' : PeerRole} → WeHaveAgency ≡ relative pr agency → NobodyHasAgency ≡ relative pr' agency → ⊥ exclusion-lemma-we-have-agency-and-nobody-has-agency {ClientAgency} {ClientRole} {ServerRole} refl () exclusion-lemma-we-have-agency-and-nobody-has-agency {ServerAgency} {ServerRole} {ClientRole} refl () exclusion-lemma-they-have-agency-and-nobody-has-agency : ∀ {agency : Agency} {pr : PeerRole} {pr' : PeerRole} → TheyHaveAgency ≡ relative pr agency → NobodyHasAgency ≡ relative pr' agency → ⊥ exclusion-lemma-they-have-agency-and-nobody-has-agency {ServerAgency} {ClientRole} {ServerRole} refl () exclusion-lemma-they-have-agency-and-nobody-has-agency {ClientAgency} {ServerRole} {ClientRole} refl () ----------- -- Peer API -- -- We index each primitive with 'IsPipelined' -- data IsPipelined : Set where Pipelined : IsPipelined NonPipelined : IsPipelined -- Promised protocol transition -- data Trans (ps : Set) : Set where Tr : ps → ps → Trans ps -- 'Peer' explicitly indexed by: -- * message type -- * objective protocol agency -- * peer role -- * return type -- * 'IsPipelined' -- * queue of unrealised transitions, due to pipelining -- * current state -- data Peer {ps : Set} (msg : ps → ps → Set) (agency : ps → Agency) (pr : PeerRole) (a : Set) : IsPipelined → List (Trans ps) → ps → Set where -- -- non-pipelined primitives -- -- non-pipelined send a message Yield : ∀ {st st' : ps} {pl : IsPipelined} → WeHaveAgency ≡ relative pr (agency st) → msg st st' → Peer msg agency pr a pl [] st' → Peer msg agency pr a pl [] st -- non-pipelined receive a message Await : ∀ {st : ps} {pl : IsPipelined} → TheyHaveAgency ≡ relative pr (agency st) → (∀ {st' : ps} → msg st st' → Peer msg agency pr a pl [] st' ) → Peer msg agency pr a pl [] st -- protocol termination Done : ∀ {st : ps} {pl : IsPipelined} → NobodyHasAgency ≡ relative pr (agency st) → a → Peer msg agency pr a pl [] st -- -- pipelining primitives -- -- pipeline a single message YieldPipelined : ∀ {st st' st'' : ps} {q : List (Trans ps)} → WeHaveAgency ≡ relative pr (agency st) → msg st st' → Peer msg agency pr a Pipelined (q ∷ʳ Tr st' st'') st'' → Peer msg agency pr a Pipelined q st -- partially collect a promissed transition Collect : ∀ {st st' st'' : ps} {q : List (Trans ps)} → TheyHaveAgency ≡ relative pr (agency st') → (∀ {stNext : ps} → msg st' stNext → Peer msg agency pr a Pipelined (Tr stNext st'' ∷ q) st ) → Peer msg agency pr a Pipelined (Tr st' st'' ∷ q) st -- collect the identity transition CollectDone : ∀ {st : ps} {q : List (Trans ps)} → Peer msg agency pr a Pipelined q st → Peer msg agency pr a Pipelined (Tr st st ∷ q) st -------------- -- PingPong v1 -- -- Protocol states -- data PingPong : Set where StIdle : PingPong StBusy : PingPong StDone : PingPong -- Agency of PingPong states -- pingPongAgency : PingPong → Agency pingPongAgency StIdle = ClientAgency pingPongAgency StBusy = ServerAgency pingPongAgency StDone = NobodyAgency -- Protocol messages -- data PingPongMsg : ∀ (st st' : PingPong) → Set where MsgPing : PingPongMsg StIdle StBusy MsgPong : PingPongMsg StBusy StIdle MsgDone : PingPongMsg StIdle StDone -- -- PingPong v1, examples -- -- ping client which computes unit (tt : ⊤) -- ping : Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StIdle ping = Yield refl MsgPing $ await $ Yield refl MsgPing $ await $ Yield refl MsgDone $ Done refl tt where await : Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StIdle → Peer PingPongMsg pingPongAgency ClientRole ⊤ NonPipelined [] StBusy await k = Await refl λ {MsgPong → k} -- pipelined client which computes unit (tt : ⊤) -- pipelinedPing : Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined [] StIdle pipelinedPing = YieldPipelined refl MsgPing $ YieldPipelined refl MsgPing $ YieldPipelined refl MsgPing $ collect $ collect $ collect $ Yield refl MsgDone $ Done refl tt where collect : ∀ {q : List (Trans PingPong)} → Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined q StIdle → Peer PingPongMsg pingPongAgency ClientRole ⊤ Pipelined (Tr StBusy StIdle ∷ q) StIdle collect k = Collect refl λ {MsgPong → CollectDone k} -------------- -- PingPong v2 -- -- The same states and agency as PingPong v1, but with additional 'MsgBusy' -- transition. data PingPongMsg2 : ∀ (st st' : PingPong) → Set where MsgPingPong : ∀ {st st' : PingPong} → PingPongMsg st st' → PingPongMsg2 st st' MsgBusy : PingPongMsg2 StBusy StBusy -- we use unbounded recursion in 'pipelinedPing2' {-# NON_TERMINATING #-} -- pipelined ping client which computes the number of busy messages -- pipelinedPing2 : Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined [] StIdle pipelinedPing2 = YieldPipelined refl (MsgPingPong MsgPing) $ YieldPipelined refl (MsgPingPong MsgPing) $ YieldPipelined refl (MsgPingPong MsgPing) $ collect 0 $ λ { n1 → collect n1 λ { n2 → collect n2 λ { n3 → Yield refl (MsgPingPong MsgDone) $ Done refl n3 }}} where collect : ∀ {q : List (Trans PingPong)} → ℕ → (ℕ → Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined q StIdle) → Peer PingPongMsg2 pingPongAgency ClientRole ℕ Pipelined (Tr StBusy StIdle ∷ q) StIdle collect n k = Collect refl λ { MsgBusy → collect (n + 1) k ; (MsgPingPong MsgPong) → CollectDone (k n) } ------------------------ -- Non-pipelined Duality -- -- Termination witness data Termination (ps : Set) (agency : ps → Agency) (a : Set) (b : Set) : Set where Terminated : ∀ {st : ps} {pr : PeerRole} → a → b → NobodyHasAgency ≡ relative pr (agency st) → NobodyHasAgency ≡ relative (dual-role pr) (agency st) → Termination ps agency a b theorem-non-pipelined-duality : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {a : Set} {b : Set} {st : ps} → Peer msg agency pr a NonPipelined [] st → Peer msg agency (dual-role pr) b NonPipelined [] st → Termination ps agency a b theorem-non-pipelined-duality (Yield _ msg k) (Await _ k') = theorem-non-pipelined-duality k (k' msg) theorem-non-pipelined-duality (Await _ k) (Yield _ msg k') = theorem-non-pipelined-duality (k msg) k' theorem-non-pipelined-duality (Done termA a) (Done termB b) = Terminated a b termA termB -- excluded cases theorem-non-pipelined-duality (Yield weHaveAgency _ _) (Yield theyHaveAgency _ _) = ⊥-elim (exclusion-lemma-client-and-server-have-agency₁ weHaveAgency theyHaveAgency) theorem-non-pipelined-duality (Await theyHaveAgency _) (Await weHaveAgency _) = ⊥-elim (exclusion-lemma-client-and-server-have-agency₂ theyHaveAgency weHaveAgency) theorem-non-pipelined-duality (Yield weHaveAgency _ _) (Done nobodyHasAgency _) = ⊥-elim (exclusion-lemma-we-have-agency-and-nobody-has-agency weHaveAgency nobodyHasAgency) theorem-non-pipelined-duality (Done nobodyHasAgency _) (Yield weHaveAgency _ _) = ⊥-elim (exclusion-lemma-we-have-agency-and-nobody-has-agency weHaveAgency nobodyHasAgency) theorem-non-pipelined-duality (Await theyHaveAgency _) (Done nobodyHasAgency _) = ⊥-elim (exclusion-lemma-they-have-agency-and-nobody-has-agency theyHaveAgency nobodyHasAgency) theorem-non-pipelined-duality (Done nobodyHasAgency _) (Await theyHaveAgency _) = ⊥-elim (exclusion-lemma-they-have-agency-and-nobody-has-agency theyHaveAgency nobodyHasAgency) -------------- -- Un-pipeline -- -- Transition queue which allows to transform pipelined 'Peer' into -- non-pipelined one. Pipelined messages are pushed to the end together with -- promised transitions to be collected. -- data PrQueue {ps : Set} (msg : ps → ps → Set) (agency : ps -> Agency) (pr : PeerRole) : ps → List (Trans ps) → ps → Set where ConsMsgQ : ∀ {st st' st'' : ps} {q : List (Trans ps)} → WeHaveAgency ≡ relative pr (agency st) → msg st st' → PrQueue msg agency pr st' q st'' → PrQueue msg agency pr st q st'' ConsTrQ : ∀ {st st' st'' : ps} {q : List (Trans ps)} → PrQueue msg agency pr st' q st'' → PrQueue msg agency pr st (Tr st st' ∷ q) st'' EmptyQ : ∀ {st : ps} → PrQueue msg agency pr st [] st snockMsgQ : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {st st' st'' : ps} {q : List (Trans ps)} → WeHaveAgency ≡ relative pr (agency st') → msg st' st'' → PrQueue msg agency pr st q st' → PrQueue msg agency pr st q st'' snockMsgQ tok msg (ConsMsgQ tok' msg' q) = ConsMsgQ tok' msg' (snockMsgQ tok msg q) snockMsgQ tok msg (ConsTrQ q) = ConsTrQ (snockMsgQ tok msg q) snockMsgQ tok msg EmptyQ = ConsMsgQ tok msg EmptyQ snockTrQ : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {st st' st'' : ps} {q : List (Trans ps)} → PrQueue msg agency pr st q st' → PrQueue msg agency pr st (q ∷ʳ Tr st' st'') st'' snockTrQ (ConsMsgQ tok msg q) = ConsMsgQ tok msg (snockTrQ q) snockTrQ (ConsTrQ q) = ConsTrQ (snockTrQ q) snockTrQ EmptyQ = ConsTrQ EmptyQ -- Every pipelined peer can be transformed into non-pipelined one, by -- preserving the order of all transition. -- theorem-unpipeline : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {pl : IsPipelined} {a : Set} {stInit : ps} → Peer msg agency pr a pl [] stInit → Peer msg agency pr a NonPipelined [] stInit theorem-unpipeline = go EmptyQ where go : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {pl : IsPipelined} {a : Set} {q : List (Trans ps)} {st st' : ps} → PrQueue msg agency pr st q st' → Peer msg agency pr a pl q st' → Peer msg agency pr a NonPipelined [] st -- non-piplined primitives go EmptyQ (Done tok a) = Done tok a go EmptyQ (Yield tok msg k) = Yield tok msg (go EmptyQ k) go EmptyQ (Await tok k) = Await tok λ {msg → go EmptyQ (k msg)} -- push msg and promised transition to back of the 'PrQueue' go q (YieldPipelined tok msg k) = go ( q |> snockMsgQ tok msg |> snockTrQ ) k go (ConsMsgQ tok msg q) k = Yield tok msg (go q k) go (ConsTrQ q) (Collect tok k) = Await tok λ {msg → go (ConsTrQ q) (k msg)} go (ConsTrQ q) (CollectDone k) = go q k ---------- -- Duality -- theorem-pipelined-duality : ∀ {ps : Set} {msg : ps → ps → Set} {agency : ps → Agency} {pr : PeerRole} {pl : IsPipelined} {a : Set} {b : Set} {st : ps} → Peer msg agency pr a pl [] st → Peer msg agency (dual-role pr) b pl [] st → Termination ps agency a b theorem-pipelined-duality a b = theorem-non-pipelined-duality (theorem-unpipeline a) (theorem-unpipeline b)
{ "alphanum_fraction": 0.5842030666, "avg_line_length": 28.5330882353, "ext": "agda", "hexsha": "d025b34cc1a24f1b0e7b868a8422d0d8fcba44e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6773b88e8bbd1cfab98ed615855d9ae9c8859e0c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "coot/homepage", "max_forks_repo_path": "posts/agda/typed-protocols.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "6773b88e8bbd1cfab98ed615855d9ae9c8859e0c", "max_issues_repo_issues_event_max_datetime": "2020-02-18T21:05:51.000Z", "max_issues_repo_issues_event_min_datetime": "2020-02-18T21:05:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "coot/homepage", "max_issues_repo_path": "posts/agda/typed-protocols.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "6773b88e8bbd1cfab98ed615855d9ae9c8859e0c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "coot/homepage", "max_stars_repo_path": "posts/agda/typed-protocols.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4369, "size": 15522 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.Vec.Relation.Binary.Pointwise.Extensional directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Relation.Pointwise.Extensional where open import Data.Vec.Relation.Binary.Pointwise.Extensional public {-# WARNING_ON_IMPORT "Data.Vec.Relation.Pointwise.Extensional was deprecated in v1.0. Use Data.Vec.Relation.Binary.Pointwise.Extensional instead." #-}
{ "alphanum_fraction": 0.5857385399, "avg_line_length": 32.7222222222, "ext": "agda", "hexsha": "b969bd855b8fc12c1d7ba361b60b2a0a91a09df5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Extensional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Extensional.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Vec/Relation/Pointwise/Extensional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 108, "size": 589 }
open import MJ.Types import MJ.Classtable.Core as Core module MJ.Classtable.Code {c}(Ct : Core.Classtable c) where open import Prelude open import Data.Maybe as Maybe using (Maybe; just; nothing) open import Data.Star as Star open import Data.List open import Data.List.Relation.Unary.All hiding (construct) open import Data.List.Properties.Extra as List+ open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Data.String import Data.Vec.Relation.Unary.All as Vec∀ open Core c open Classtable Ct open import MJ.Classtable.Membership Ct open import MJ.LexicalScope c open import MJ.Syntax Ct data Body (I : Ctx) : Ty c → Set where body : ∀ {r}{O : Ctx} → Stmts I r O → Expr O r → Body I r {- A helper to generate the shape of the context for method bodies -} methodctx : Cid c → List (Ty c) → Ctx methodctx cid as = (ref cid ∷ as) {- A helper to generate the shape of the context for constructors -} constrctx : Cid c → Ctx constrctx cid = let cl = Σ cid in (ref cid ∷ Class.constr cl) -- A method is either just a body, or a body prefixed by a super call. data Method (cid : Cid c)(m : String) : Sig c → Set where super_⟨_⟩then_ : ∀ {as b} → let pid = Class.parent (Σ cid) Γ = methodctx cid as in -- must have a super to call, with the same signature AccMember pid METHOD m (as , b) → -- super call arguments All (Expr Γ) as → -- body Body (Γ +local b) b → Method cid m (as , b) body : ∀ {as b} → Body (methodctx cid as) b → Method cid m (as , b) -- Constructors are similar data Constructor (cid : Cid c) : Set where super_then_ : let pid = Class.parent (Σ cid) pclass = Σ pid Γ = constrctx cid in -- super call arguments All (Expr Γ) (Class.constr pclass) → -- body Body Γ void → Constructor cid body : Body (constrctx cid) void → Constructor cid {- A class implementation consists of a constructor and a body for every METHOD declaration. -} record Implementation (cid : Cid c) : Set where constructor implementation open Class (Σ cid) public field construct : Constructor cid mbodies : All (λ{ (name , sig) → Method cid name sig }) (decls METHOD) -- Code is a lookup table for class implementations for every class identifier Code = ∀ cid → Implementation cid -- Mirroring `IsMember METHOD` we define the notion of an inherited method body. InheritedMethod : ∀ (cid : Cid c)(m : String) → Sig c → Set InheritedMethod cid m s = ∃ λ pid → Σ ⊢ cid <: pid × Method pid m s
{ "alphanum_fraction": 0.622688478, "avg_line_length": 33.0823529412, "ext": "agda", "hexsha": "c6d04e2fb0189d42c5aae81963f9188d229c7bda", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/MJ/Classtable/Code.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/MJ/Classtable/Code.agda", "max_line_length": 80, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/MJ/Classtable/Code.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 740, "size": 2812 }
-- Andreas, Jesper, 2017-05-13, issue #2578 reported by nad -- Jesper, 2017-07-06, absurd clauses are no longer highlighted as catchall, -- so the test case had to be changed to reproduce the intended behaviour. data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B record ⊤ : Set where constructor tt data ⊥ : Set where Maybe : Set → Set Maybe A = ⊤ ⊎ A pattern nothing = inj₁ tt pattern just x = inj₂ x Bool : Set Bool = ⊤ ⊎ ⊤ pattern true = inj₁ tt pattern false = inj₂ tt x : Maybe ⊥ x = nothing _∋_ : ∀ {ℓ} → (A : Set ℓ) (a : A) → A A ∋ a = a A : Set₁ A with Bool ∋ false A | true = Set A | false with x | x ... | nothing | nothing = Set ... | just x | _ = {!!} ... | _ | just y = {!!}
{ "alphanum_fraction": 0.5941828255, "avg_line_length": 18.5128205128, "ext": "agda", "hexsha": "8641276269e6c0c9512ca406adb385624f40d081", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2578.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2578.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2578.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 269, "size": 722 }
-- Check that errors from tactics are displayed properly. module _ where open import Common.Prelude hiding (_>>=_) open import Common.Equality open import Common.Reflection failTactic : Term → TC ⊤ failTactic hole = inferType hole >>= λ goal → typeError (strErr "Surprisingly the" ∷ nameErr (quote failTactic) ∷ strErr "failed to prove" ∷ termErr goal ∷ []) macro proveIt = failTactic postulate ComplexityClass : Set P NP : ComplexityClass thm : P ≡ NP → ⊥ thm = proveIt
{ "alphanum_fraction": 0.7054108216, "avg_line_length": 21.6956521739, "ext": "agda", "hexsha": "9b5c511356e110a91329b7f4e024d70fe637b293", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/TacticFail.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/TacticFail.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/TacticFail.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 142, "size": 499 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Maybe type ------------------------------------------------------------------------ -- The definitions in this file are reexported by Data.Maybe. module Data.Maybe.Core where open import Level data Maybe {a} (A : Set a) : Set a where just : (x : A) → Maybe A nothing : Maybe A {-# IMPORT Data.FFI #-} {-# COMPILED_DATA Maybe Data.FFI.AgdaMaybe Just Nothing #-}
{ "alphanum_fraction": 0.4701030928, "avg_line_length": 25.5263157895, "ext": "agda", "hexsha": "61101097c0b86f2a7a45deba58dc4e353ad6537f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Maybe/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Maybe/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Maybe/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 97, "size": 485 }
module Type.Identity.Proofs where import Lvl open import Structure.Function open import Structure.Relator.Properties open import Structure.Relator open import Structure.Type.Identity open import Type.Identity open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₚ : Lvl.Level private variable T A B : Type{ℓ} private variable P : T → Type{ℓ} private variable _▫_ : A → B → Type{ℓ} instance Id-reflexivity : Reflexivity(Id{T = T}) Reflexivity.proof Id-reflexivity = intro instance Id-identityEliminator : IdentityEliminator{ℓₚ = ℓₚ}(Id{T = T}) IdentityEliminator.elim Id-identityEliminator = elim instance Id-identityEliminationOfIntro : IdentityEliminationOfIntro{ℓₘ = ℓ}(Id{T = T})(Id) IdentityEliminationOfIntro.proof Id-identityEliminationOfIntro P p = intro instance Id-identityType : IdentityType(Id) Id-identityType = intro {- open import Logic.Propositional open import Logic.Propositional.Equiv open import Relator.Equals.Proofs open import Structure.Setoid te : ⦃ equiv-A : Equiv{ℓₑ}(A)⦄ → ∀{f : A → Type{ℓ}} → Function ⦃ equiv-A ⦄ ⦃ [↔]-equiv ⦄ (f) test : ⦃ equiv-A : Equiv{ℓₑ}(A)⦄ → ∀{P : A → Type{ℓ}} → UnaryRelator ⦃ equiv-A ⦄ (P) UnaryRelator.substitution test eq p = [↔]-to-[→] (Function.congruence te eq) p -}
{ "alphanum_fraction": 0.7326968974, "avg_line_length": 29.2325581395, "ext": "agda", "hexsha": "99b594fab5f1fd6459489b1400ef433a4a74a8d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Identity/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Identity/Proofs.agda", "max_line_length": 92, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Identity/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 424, "size": 1257 }
-- Abstract constructors module Issue476c where module M where data D : Set abstract data D where c : D x : M.D x = M.c
{ "alphanum_fraction": 0.6323529412, "avg_line_length": 11.3333333333, "ext": "agda", "hexsha": "e4bba07bf43628b2ccb831405b89106208e9a28a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue476c.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue476c.agda", "max_line_length": 24, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue476c.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 42, "size": 136 }
module Array.APL where open import Array.Base open import Array.Properties open import Data.Nat open import Data.Nat.DivMod hiding (_/_) open import Data.Nat.Properties open import Data.Fin using (Fin; zero; suc; raise; toℕ; fromℕ≤) open import Data.Fin.Properties using (toℕ<n) open import Data.Vec open import Data.Vec.Properties open import Data.Product open import Agda.Builtin.Float open import Function open import Relation.Binary.PropositionalEquality hiding (Extensionality) open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation --open import Relation.Binary -- Now we start to introduce APL operators trying -- to maintain syntactic rules and semantics. -- We won't be able to mimic explicit concatenations -- like 2 3 4 is a vector [2, 3, 4], as we would have -- to overload the " " somehow. -- This relation describes promotion of the scalar element in -- dyadic operations. data dy-args : ∀ n m k → (Vec ℕ n) → (Vec ℕ m) → (Vec ℕ k) → Set where instance n-n : ∀ {n}{s} → dy-args n n n s s s n-0 : ∀ {n}{s}{s₁} → dy-args n 0 n s s₁ s 0-n : ∀ {n}{s}{s₁} → dy-args 0 n n s s₁ s₁ dyadic-type : ∀ a → Set a → Set a dyadic-type a X = ∀ {n m k}{s s₁ s₂}{{c : dy-args n m k s s₁ s₂}} → Ar X n s → Ar X m s₁ → Ar X k s₂ lift-binary-op : ∀ {a}{X : Set a} → ∀ (op : X → X → X) → dyadic-type a X lift-binary-op op ⦃ c = n-n ⦄ (imap f) (imap g) = imap λ iv → op (f iv) (g iv) lift-binary-op op {s₁ = []} ⦃ c = n-0 ⦄ (imap f) (imap g) = imap λ iv → op (f iv) (g []) lift-binary-op op {s = [] } ⦃ c = 0-n ⦄ (imap f) (imap g) = imap λ iv → op (f []) (g iv) lift-unary-op : ∀ {a}{X : Set a} → ∀ (op : X → X) → ∀ {n s} → Ar X n s → Ar X n s lift-unary-op f (imap g) = imap (λ iv → f (g iv)) dyadic-type-c : ∀ a → Set a → Set a dyadic-type-c a X = ∀ {n m k}{s s₁ s₂} → Ar X n s → dy-args n m k s s₁ s₂ → Ar X m s₁ → Ar X k s₂ -- Nat operations infixr 20 _+ₙ_ infixr 20 _×ₙ_ _+ₙ_ = lift-binary-op _+_ _×ₙ_ = lift-binary-op _*_ _-safe-_ : (a : ℕ) → (b : ℕ) .{≥ : a ≥ b} → ℕ a -safe- b = a ∸ b -- FIXME As _-ₙ_ requires a proof, we won't consider yet -- full dyadic types for _-ₙ_, as it would require us -- to define dyadic types for ≥a. infixr 20 _-ₙ_ _-ₙ_ : ∀ {n}{s} → (a : Ar ℕ n s) → (b : Ar ℕ n s) → .{≥ : a ≥a b} → Ar ℕ n s (imap f -ₙ imap g) {≥} = imap λ iv → (f iv -safe- g iv) {≥ = ≥ iv} --≢-sym : ∀ {X : Set}{a b : X} → a ≢ b → b ≢ a --≢-sym pf = pf ∘ sym infixr 20 _÷ₙ_ _÷ₙ_ : ∀ {n}{s} → (a : Ar ℕ n s) → (b : Ar ℕ n s) → {≥0 : cst 0 <a b} → Ar ℕ n s _÷ₙ_ (imap f) (imap g) {≥0} = imap λ iv → (f iv div g iv) {≢0 = fromWitnessFalse (≢-sym $ <⇒≢ $ ≥0 iv) } infixr 20 _+⟨_⟩ₙ_ infixr 20 _×⟨_⟩ₙ_ _+⟨_⟩ₙ_ : dyadic-type-c _ _ a +⟨ c ⟩ₙ b = _+ₙ_ {{c = c}} a b _×⟨_⟩ₙ_ : dyadic-type-c _ _ a ×⟨ c ⟩ₙ b = _×ₙ_ {{c = c}} a b -- Float operations infixr 20 _+ᵣ_ _+ᵣ_ = lift-binary-op primFloatPlus infixr 20 _-ᵣ_ _-ᵣ_ = lift-binary-op primFloatMinus infixr 20 _×ᵣ_ _×ᵣ_ = lift-binary-op primFloatTimes -- XXX we can request the proof that the right argument is not zero. -- However, the current primFloatDiv has the type Float → Float → Float, so... infixr 20 _÷ᵣ_ _÷ᵣ_ = lift-binary-op primFloatDiv infixr 20 _×⟨_⟩ᵣ_ _×⟨_⟩ᵣ_ : dyadic-type-c _ _ a ×⟨ c ⟩ᵣ b = _×ᵣ_ {{c = c}} a b infixr 20 _+⟨_⟩ᵣ_ _+⟨_⟩ᵣ_ : dyadic-type-c _ _ a +⟨ c ⟩ᵣ b = _+ᵣ_ {{c = c}} a b infixr 20 _-⟨_⟩ᵣ_ _-⟨_⟩ᵣ_ : dyadic-type-c _ _ a -⟨ c ⟩ᵣ b = _-ᵣ_ {{c = c}} a b infixr 20 _÷⟨_⟩ᵣ_ _÷⟨_⟩ᵣ_ : dyadic-type-c _ _ a ÷⟨ c ⟩ᵣ b = _÷ᵣ_ {{c = c}} a b infixr 20 *ᵣ_ *ᵣ_ = lift-unary-op primFloatExp module xx where a : Ar ℕ 2 (3 ∷ 3 ∷ []) a = cst 1 s : Ar ℕ 0 [] s = cst 2 test₁ = a +ₙ a test₂ = a +ₙ s test₃ = s +ₙ a --test = (s +ₙ s) test₄ = s +⟨ n-n ⟩ₙ s test₅ : ∀ {n s} → Ar ℕ n s → Ar ℕ 0 [] → Ar ℕ n s test₅ = _+ₙ_ infixr 20 ρ_ ρ_ : ∀ {ℓ}{X : Set ℓ}{d s} → Ar X d s → Ar ℕ 1 (d ∷ []) ρ_ {s = s} _ = s→a s infixr 20 ,_ ,_ : ∀ {a}{X : Set a}{n s} → Ar X n s → Ar X 1 (prod s ∷ []) ,_ {s = s} (p) = imap λ iv → unimap p (off→idx s iv) -- Reshape infixr 20 _ρ_ _ρ_ : ∀ {a}{X : Set a}{n}{sa} → (s : Ar ℕ 1 (n ∷ [])) → (a : Ar X n sa) -- if the `sh` is non-empty, `s` must be non-empty as well. → {s≢0⇒ρa≢0 : prod (a→s s) ≢ 0 → prod sa ≢ 0} → Ar X n (a→s s) _ρ_ {sa = sa} s a {s≢0⇒ρa≢0} with prod sa ≟ 0 | prod (a→s s) ≟ 0 _ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | _ | yes s≡0 = mkempty (a→s s) s≡0 _ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | yes ρa≡0 | no s≢0 = contradiction ρa≡0 (s≢0⇒ρa≢0 s≢0) _ρ_ {sa = sa} s a {s≢0⇒ρa≢0} | no ρa≢0 | _ = imap from-flat where from-flat : _ from-flat iv = let off = idx→off (a→s s) iv --{!!} -- (ix-lookup iv zero) flat = unimap $ , a ix = (toℕ (ix-lookup off zero) mod prod sa) {≢0 = fromWitnessFalse ρa≢0} in flat (ix ∷ []) reduce-1d : ∀ {a}{X : Set a}{n} → Ar X 1 (n ∷ []) → (X → X → X) → X → X reduce-1d {n = zero} (imap p) op neut = neut reduce-1d {n = suc n} (imap p) op neut = op (p $ zero ∷ []) (reduce-1d (imap (λ iv → p (suc (ix-lookup iv zero) ∷ []))) op neut) {- This goes right to left if we want to reduce-1d (imap λ iv → p ((raise 1 $ ix-lookup iv zero) ∷ [])) op (op neut (p $ zero ∷ [])) -} Scal : ∀ {a} → Set a → Set a Scal X = Ar X 0 [] scal : ∀ {a}{X : Set a} → X → Scal X scal = cst unscal : ∀ {a}{X : Set a} → Scal X → X unscal (imap f) = f [] module true-reduction where thm : ∀ {a}{X : Set a}{n m} → (s : Vec X (n + m)) → s ≡ take n s ++ drop n s thm {n = n} s with splitAt n s thm {n = n} .(xs ++ ys) | xs , ys , refl = refl thm2 : ∀ {a}{X : Set a} → (v : Vec X 1) → v ≡ head v ∷ [] thm2 (x ∷ []) = refl -- This is a variant with take _/⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ (n + 1)} → (X → X → X) → X → Ar X (n + 1) s → Ar X n (take n s) _/⟨_⟩_ {n = n} {s} f neut a = let x = nest {s = take n s} {s₁ = drop n s} $ subst (λ x → Ar _ _ x) (thm {n = n} s) a in imap λ iv → reduce-1d (subst (λ x → Ar _ _ x) (thm2 (drop n s)) $ unimap x iv) f neut _/₁⟨_⟩_ : ∀ {a}{X : Set a}{n}{s : Vec ℕ n}{m} → (X → X → X) → X → Ar X (n + 1) (s ++ (m ∷ [])) → Ar X n s _/₁⟨_⟩_ {n = n} {s} f neut a = let x = nest {s = s} a in imap λ iv → reduce-1d (unimap x iv) f neut module test-reduce where a : Ar ℕ 2 (4 ∷ 4 ∷ []) a = cst 1 b : Ar ℕ 1 (5 ∷ []) b = cst 2 test₁ = _/⟨_⟩_ {n = 0} _+_ 0 (, a) test₂ = _/⟨_⟩_ {n = 0} _+_ 0 b -- FIXME! This reduction does not implement semantics of APL, -- as it assumes that we always reduce to scalars! -- Instead, in APL / reduce on the last axis only, -- i.e. ⍴ +/3 4 5 ⍴ ⍳1 = 3 4 -- This is mimicing APL's f/ syntax, but with extra neutral -- element. We can later introduce the variant where certain -- operations come with pre-defined neutral elements. _/⟨_⟩_ : ∀ {a}{X : Set a}{n s} → (Scal X → Scal X → Scal X) → Scal X → Ar X n s → Scal X f /⟨ neut ⟩ a = let op x y = unscal $ f (scal x) (scal y) a-1d = , a neut = unscal neut in scal $ reduce-1d a-1d op neut -- XXX I somehow don't understand how to make X to be an arbitrary Set a... data reduce-neut : {X : Set} → (Scal X → Scal X → Scal X) → Scal X → Set where instance plus-nat : reduce-neut _+⟨ n-n ⟩ₙ_ (cst 0) mult-nat : reduce-neut _×⟨ n-n ⟩ₙ_ (cst 1) plus-flo : reduce-neut (_+ᵣ_ {{c = n-n}}) (cst 0.0) mult-flo : reduce-neut (_×ᵣ_ {{c = n-n}}) (cst 1.0) infixr 20 _/_ _/_ : ∀ {X : Set}{n s neut} → (op : Scal X → Scal X → Scal X) → {{c : reduce-neut op neut}} → Ar X n s → Scal X _/_ {neut = neut} f a = f /⟨ neut ⟩ a module test-reduce where a = s→a $ 1 ∷ 2 ∷ 3 ∷ 4 ∷ [] test₁ : reduce-1d a _+_ 0 ≡ 10 test₁ = refl test₂ : _+⟨ n-n ⟩ₙ_ /⟨ scal 0 ⟩ a ≡ scal 10 test₂ = refl test₃ : _+ₙ_ / a ≡ scal 10 test₃ = refl -- This is somewhat semi-useful dot-product expressed -- pretty close to what you'd write in APL. dotp : ∀ {n s} → Ar ℕ n s → Ar ℕ n s → Scal ℕ dotp a b = _+ₙ_ / a ×ₙ b test₄ : dotp a a ≡ scal (1 + 4 + 9 + 16) test₄ = refl -- The size of the leading axis. infixr 20 ≢_ ≢_ : ∀ {a}{X : Set a}{n s} → Ar X n s → Scal ℕ ≢_ {n = zero} a = scal 1 ≢_ {n = suc n} {s} a = scal $ head s data iota-type : (d : ℕ) → (n : ℕ) → (Vec ℕ d) → Set where instance iota-scal : iota-type 0 1 [] iota-vec : ∀ {n} → iota-type 1 n (n ∷ []) iota-res-t : ∀ {d n s} → iota-type d n s → (sh : Ar ℕ d s) → Set iota-res-t {n = n} iota-scal sh = Ar (Σ ℕ λ x → x < unscal sh) 1 (unscal sh ∷ []) iota-res-t {n = n} iota-vec sh = Ar (Σ (Ar ℕ 1 (n ∷ [])) λ v → v <a sh) n (a→s sh) a<b⇒b≡c⇒a<c : ∀ {a b c} → a < b → b ≡ c → a < c a<b⇒b≡c⇒a<c a<b refl = a<b infixr 20 ι_ ι_ : ∀ {d n s}{{c : iota-type d n s}} → (sh : Ar ℕ d s) → iota-res-t c sh ι_ ⦃ c = iota-scal ⦄ s = (imap λ iv → (toℕ $ ix-lookup iv zero) , toℕ<n (ix-lookup iv zero)) ι_ {n = n} {s = s ∷ []} ⦃ c = iota-vec ⦄ (imap sh) = imap cast-ix→a where cast-ix→a : _ cast-ix→a iv = let ix , pf = ix→a iv in ix , λ jv → a<b⇒b≡c⇒a<c (pf jv) (s→a∘a→s (imap sh) jv) -- Zilde and comma ⍬ : ∀ {a}{X : Set a} → Ar X 1 (0 ∷ []) ⍬ = imap λ iv → magic-fin $ ix-lookup iv zero -- XXX We are going to use _·_ instead of _,_ as the -- latter is a constructor of dependent sum. Renaming -- all the occurrences to something else would take -- a bit of work which we should do later. infixr 30 _·_ _·_ : ∀ {a}{X : Set a}{n} → X → Ar X 1 (n ∷ []) → Ar X 1 (suc n ∷ []) x · (imap p) = imap λ iv → case ix-lookup iv zero of λ where zero → x (suc j) → p (j ∷ []) -- Note that two dots in an upper register combined with -- the underscore form the _̈ symbol. When the symbol is -- used on its own, it looks like ̈ which is the correct -- "spelling". infixr 20 _̈_ _̈_ : ∀ {a}{X Y : Set a}{n s} → (X → Y) → Ar X n s → Ar Y n s f ̈ imap p = imap λ iv → f $ p iv -- Take and Drop ax+sh<s : ∀ {n} → (ax sh s : Ar ℕ 1 (n ∷ [])) → (s≥sh : s ≥a sh) → (ax <a (s -ₙ sh) {≥ = s≥sh}) → (ax +ₙ sh) <a s ax+sh<s (imap ax) (imap sh) (imap s) s≥sh ax<s-sh iv = let ax+sh<s-sh+sh = +-monoˡ-< (sh iv) (ax<s-sh iv) s-sh+sh≡s = m∸n+n≡m (s≥sh iv) in a<b⇒b≡c⇒a<c ax+sh<s-sh+sh s-sh+sh≡s _↑_ : ∀ {a}{X : Set a}{n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar X n s) → {pf : s→a s ≥a sh} → Ar X n $ a→s sh _↑_ {s = s} sh (imap f) {pf} with (prod $ a→s sh) ≟ 0 _↑_ {s = s} sh (imap f) {pf} | yes Πsh≡0 = mkempty _ Πsh≡0 _↑_ {s = s} (imap q) (imap f) {pf} | no Πsh≢0 = imap mtake where mtake : _ mtake iv = let ai , ai< = ix→a iv ix<q jv = a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s (imap q) jv) ix = a→ix ai (s→a s) λ jv → ≤-trans (ix<q jv) (pf jv) in f (subst-ix (a→s∘s→a s) ix) _↓_ : ∀ {a}{X : Set a}{n s} → (sh : Ar ℕ 1 (n ∷ [])) → (a : Ar X n s) → {pf : (s→a s) ≥a sh} → Ar X n $ a→s $ (s→a s -ₙ sh) {≥ = pf} _↓_ {s = s} sh (imap x) {pf} with let p = prod $ a→s $ (s→a s -ₙ sh) {≥ = pf} in p ≟ 0 _↓_ {s = s} sh (imap f) {pf} | yes Π≡0 = mkempty _ Π≡0 _↓_ {s = s} (imap q) (imap f) {pf} | no Π≢0 = imap mkdrop where mkdrop : _ mkdrop iv = let ai , ai< = ix→a iv ax = ai +ₙ (imap q) thmx = ax+sh<s ai (imap q) (s→a s) pf λ jv → a<b⇒b≡c⇒a<c (ai< jv) (s→a∘a→s ((s→a s -ₙ (imap q)) {≥ = pf}) jv) ix = a→ix ax (s→a s) thmx in f (subst-ix (a→s∘s→a s) ix) _̈⟨_⟩_ : ∀ {a}{X Y Z : Set a}{n s} → Ar X n s → (X → Y → Z) → Ar Y n s → Ar Z n s --(imap p) ̈⟨ f ⟩ (imap p₁) = imap λ iv → f (p iv) (p₁ iv) p ̈⟨ f ⟩ p₁ = imap λ iv → f (unimap p iv) (unimap p₁ iv)
{ "alphanum_fraction": 0.4847927005, "avg_line_length": 29.9616306954, "ext": "agda", "hexsha": "a5c600364f638ce71be5c1ea39f401130664aebb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-array", "max_forks_repo_path": "Array/APL.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-array", "max_issues_repo_path": "Array/APL.agda", "max_line_length": 112, "max_stars_count": 6, "max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-array", "max_stars_repo_path": "Array/APL.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z", "num_tokens": 5425, "size": 12494 }
module Numeral.Natural.Coprime.Proofs where open import Functional open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Propositional.Theorems import Lvl open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Coprime open import Numeral.Natural.Decidable open import Numeral.Natural.Function.GreatestCommonDivisor open import Numeral.Natural.Relation.Divisibility.Proofs open import Numeral.Natural.Oper open import Numeral.Natural.Prime open import Numeral.Natural.Prime.Proofs open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Structure.Relator.Properties open import Type.Properties.Decidable.Proofs open import Type private variable n x y d p : ℕ -- 1 is the only number coprime to itself because it does not have any divisors except for itself. Coprime-reflexivity-condition : Coprime(n)(n) ↔ (n ≡ 1) Coprime-reflexivity-condition {n} = [↔]-intro l (r{n}) where l : Coprime(n)(n) ← (n ≡ 1) Coprime.proof(l [≡]-intro) {a} a1 _ = [1]-only-divides-[1] (a1) r : ∀{n} → Coprime(n)(n) → (n ≡ 1) r {𝟎} (intro z1) = z1 Div𝟎 Div𝟎 r {𝐒(𝟎)} _ = [≡]-intro r {𝐒(𝐒(n))} (intro ssn1) = ssn1 {𝐒(𝐒(n))} divides-reflexivity divides-reflexivity instance Coprime-symmetry : Symmetry(Coprime) Coprime.proof(Symmetry.proof Coprime-symmetry (intro proof)) {n} nx ny = proof {n} ny nx -- The only number coprime to 0 is 1 because while all numbers divide 0, only 1 divides 1. Coprime-of-0-condition : ∀{x} → Coprime(0)(x) → (x ≡ 1) Coprime-of-0-condition {0} (intro n1) = n1 Div𝟎 Div𝟎 Coprime-of-0-condition {1} (intro n1) = [≡]-intro Coprime-of-0-condition {𝐒(𝐒(x))} (intro n1) = n1 Div𝟎 divides-reflexivity -- 1 is coprime to all numbers because only 1 divides 1. Coprime-of-1 : Coprime(1)(x) Coprime.proof (Coprime-of-1 {x}) {n} n1 nx = [1]-only-divides-[1] n1 Coprime-of-[+] : Coprime(x)(y) → Coprime(x)(x + y) Coprime.proof (Coprime-of-[+] {x}{y} (intro proof)) {n} nx nxy = proof {n} nx ([↔]-to-[→] (divides-without-[+] nxy) nx) -- Coprimality is obviously equivalent to the greatest common divisor being 1 by definition. Coprime-gcd : Coprime(x)(y) ↔ (gcd(x)(y) ≡ 1) Coprime-gcd = [↔]-transitivity ([↔]-intro l r) Gcd-gcd-value where l : Coprime(x)(y) ← Gcd(x)(y) 1 Coprime.proof (l p) nx ny = [1]-only-divides-[1] (Gcd.maximum₂ p nx ny) r : Coprime(x)(y) → Gcd(x)(y) 1 Gcd.divisor(r (intro coprim)) 𝟎 = [1]-divides Gcd.divisor(r (intro coprim)) (𝐒 𝟎) = [1]-divides Gcd.maximum(r (intro coprim)) dv with [≡]-intro ← coprim (dv 𝟎) (dv(𝐒 𝟎)) = [1]-divides -- A smaller number and a greater prime number is coprime. -- If the greater number is prime, then no smaller number will divide it except for 1, and greater numbers never divide smaller ones. -- Examples (y = 7): -- The prime factors of 7 is only itself (because it is prime). -- Then the only alternatives for x are: -- x ∈ {1,2,3,4,5,6} -- None of them is able to have 7 as a prime factor because it is greater: -- 1=1, 2=2, 3=3, 4=2⋅2, 5=5, 6=2⋅3 Coprime-of-Prime : (𝐒(x) < y) → Prime(y) → Coprime(𝐒(x))(y) Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny with prime-only-divisors prim ny Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introₗ n1 = n1 Coprime.proof (Coprime-of-Prime (succ(succ lt)) prim) nx ny | [∨]-introᵣ [≡]-intro with () ← [≤]-to-[≯] lt ([≤]-without-[𝐒] (divides-upper-limit nx)) -- A prime number either divides a number or forms a coprime pair. -- If a prime number does not divide a number, then it cannot share any divisors because by definition, a prime only has 1 as a divisor. Prime-to-div-or-coprime : Prime(x) → ((x ∣ y) ∨ Coprime(x)(y)) Prime-to-div-or-coprime {y = y} (intro {x} prim) = [¬→]-disjunctive-formᵣ ⦃ decider-to-classical ⦄ (intro ∘ coprim) where coprim : (𝐒(𝐒(x)) ∤ y) → ∀{n} → (n ∣ 𝐒(𝐒(x))) → (n ∣ y) → (n ≡ 1) coprim nxy {𝟎} nx ny with () ← [0]-divides-not nx coprim nxy {𝐒 n} nx ny with prim nx ... | [∨]-introₗ [≡]-intro = [≡]-intro ... | [∨]-introᵣ [≡]-intro with () ← nxy ny divides-to-converse-coprime : ∀{x y z} → (x ∣ y) → Coprime(y)(z) → Coprime(x)(z) divides-to-converse-coprime xy (intro yz) = intro(nx ↦ nz ↦ yz (transitivity(_∣_) nx xy) nz)
{ "alphanum_fraction": 0.6731951719, "avg_line_length": 47.7282608696, "ext": "agda", "hexsha": "413ff184849b348eb82f57f9e41d58bf8017ec31", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Coprime/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Coprime/Proofs.agda", "max_line_length": 149, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Coprime/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1672, "size": 4391 }
{-# OPTIONS --universe-polymorphism #-} -- {-# OPTIONS --verbose tc.records.ifs:15 #-} -- {-# OPTIONS --verbose tc.constr.findInScope:15 #-} -- {-# OPTIONS --verbose tc.term.args.ifs:15 #-} -- {-# OPTIONS --verbose cta.record.ifs:15 #-} -- {-# OPTIONS --verbose tc.section.apply:25 #-} -- {-# OPTIONS --verbose tc.mod.apply:100 #-} -- {-# OPTIONS --verbose scope.rec:15 #-} -- {-# OPTIONS --verbose tc.rec.def:15 #-} module 04-equality where record ⊤ : Set where constructor tt data Bool : Set where true : Bool false : Bool or : Bool → Bool → Bool or true _ = true or _ true = true or false false = false and : Bool → Bool → Bool and false _ = false and _ false = false and true true = false not : Bool → Bool not true = false not false = true id : {A : Set} → A → A id v = v primEqBool : Bool → Bool → Bool primEqBool true = id primEqBool false = not record Eq (A : Set) : Set where field eq : A → A → Bool eqBool : Eq Bool eqBool = record { eq = primEqBool } open Eq {{...}} neq : {t : Set} → {{eqT : Eq t}} → t → t → Bool neq a b = not (eq a b) test = eq false false -- Instance arguments will also resolve to candidate instances which -- still require hidden arguments. This allows us to define a -- reasonable instance for Fin types data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} data Fin : ℕ → Set where zero : {n : ℕ} → Fin (suc n) suc : {n : ℕ} → Fin n → Fin (suc n) primEqFin : {n : ℕ} → Fin n → Fin n → Bool primEqFin zero zero = true primEqFin zero (suc y) = false primEqFin (suc y) zero = false primEqFin (suc x) (suc y) = primEqFin x y eqFin : {n : ℕ} → Eq (Fin n) eqFin = record { eq = primEqFin } -- eqFin′ : Eq (Fin 3) -- eqFin′ = record { eq = primEqFin } -- eqFinSpecial : {n : ℕ} → Prime n → Eq (Fin n) -- eqFinSpecial fin1 : Fin 3 fin1 = zero fin2 : Fin 3 fin2 = suc (suc zero) testFin : Bool testFin = eq fin1 fin2
{ "alphanum_fraction": 0.6177707676, "avg_line_length": 20.2340425532, "ext": "agda", "hexsha": "8c4a3b4f7249620cee4f11bf54b82eb0620754ff", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "examples/instance-arguments/04-equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "examples/instance-arguments/04-equality.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "examples/instance-arguments/04-equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 621, "size": 1902 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Stream type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Stream where open import Size open import Codata.Thunk as Thunk using (Thunk; force) open import Data.Nat.Base open import Data.List.Base using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) open import Data.Vec using (Vec; []; _∷_) open import Data.Product as P hiding (map) open import Function ------------------------------------------------------------------------ -- Definition data Stream {ℓ} (A : Set ℓ) (i : Size) : Set ℓ where _∷_ : A → Thunk (Stream A) i → Stream A i module _ {ℓ} {A : Set ℓ} where repeat : ∀ {i} → A → Stream A i repeat a = a ∷ λ where .force → repeat a head : ∀ {i} → Stream A i → A head (x ∷ xs) = x tail : Stream A ∞ → Stream A ∞ tail (x ∷ xs) = xs .force lookup : ℕ → Stream A ∞ → A lookup zero xs = head xs lookup (suc k) xs = lookup k (tail xs) splitAt : (n : ℕ) → Stream A ∞ → Vec A n × Stream A ∞ splitAt zero xs = [] , xs splitAt (suc n) (x ∷ xs) = P.map₁ (x ∷_) (splitAt n (xs .force)) take : (n : ℕ) → Stream A ∞ → Vec A n take n xs = proj₁ (splitAt n xs) drop : ℕ → Stream A ∞ → Stream A ∞ drop n xs = proj₂ (splitAt n xs) infixr 5 _++_ _⁺++_ _++_ : ∀ {i} → List A → Stream A i → Stream A i [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ λ where .force → xs ++ ys _⁺++_ : ∀ {i} → List⁺ A → Thunk (Stream A) i → Stream A i (x ∷ xs) ⁺++ ys = x ∷ λ where .force → xs ++ ys .force cycle : ∀ {i} → List⁺ A → Stream A i cycle xs = xs ⁺++ λ where .force → cycle xs concat : ∀ {i} → Stream (List⁺ A) i → Stream A i concat (xs ∷ xss) = xs ⁺++ λ where .force → concat (xss .force) interleave : ∀ {i} → Stream A i → Thunk (Stream A) i → Stream A i interleave (x ∷ xs) ys = x ∷ λ where .force → interleave (ys .force) xs chunksOf : (n : ℕ) → Stream A ∞ → Stream (Vec A n) ∞ chunksOf n = chunksOfAcc n id module ChunksOf where chunksOfAcc : ∀ {i} k (acc : Vec A k → Vec A n) → Stream A ∞ → Stream (Vec A n) i chunksOfAcc zero acc xs = acc [] ∷ λ where .force → chunksOfAcc n id xs chunksOfAcc (suc k) acc (x ∷ xs) = chunksOfAcc k (acc ∘ (x ∷_)) (xs .force) module _ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} where map : ∀ {i} → (A → B) → Stream A i → Stream B i map f (x ∷ xs) = f x ∷ λ where .force → map f (xs .force) ap : ∀ {i} → Stream (A → B) i → Stream A i → Stream B i ap (f ∷ fs) (x ∷ xs) = f x ∷ λ where .force → ap (fs .force) (xs .force) unfold : ∀ {i} → (A → A × B) → A → Stream B i unfold next seed = let (seed′ , b) = next seed in b ∷ λ where .force → unfold next seed′ scanl : ∀ {i} → (B → A → B) → B → Stream A i → Stream B i scanl c n (x ∷ xs) = n ∷ λ where .force → scanl c (c n x) (xs .force) module _ {ℓ ℓ₁ ℓ₂} {A : Set ℓ} {B : Set ℓ₁} {C : Set ℓ₂} where zipWith : ∀ {i} → (A → B → C) → Stream A i → Stream B i → Stream C i zipWith f (a ∷ as) (b ∷ bs) = f a b ∷ λ where .force → zipWith f (as .force) (bs .force) module _ {a} {A : Set a} where iterate : (A → A) → A → Stream A ∞ iterate f = unfold < f , id >
{ "alphanum_fraction": 0.5206485164, "avg_line_length": 32.0490196078, "ext": "agda", "hexsha": "6f1991dec5440695db800954d6fd70920ea0325b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Stream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1172, "size": 3269 }
------------------------------------------------------------------------------ -- ABP auxiliary lemma ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.ABP.StrongerInductionPrinciple.LemmaATP where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Base.List open import FOTC.Base.List.PropertiesATP open import FOTC.Base.Loop open import FOTC.Data.Bool open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.List open import FOTC.Data.List.PropertiesATP open import FOTC.Program.ABP.ABP open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Fair.PropertiesATP open import FOTC.Program.ABP.PropertiesI open import FOTC.Program.ABP.Terms ------------------------------------------------------------------------------ -- Helper function for the auxiliary lemma module Helper where -- 30 November 2013. If we don't have the following definitions -- outside the where clause, the ATPs cannot prove the theorems. as^ : ∀ b i' is' ds → D as^ b i' is' ds = await b i' is' ds {-# ATP definition as^ #-} bs^ : D → D → D → D → D → D bs^ b i' is' ds os₁^ = corrupt os₁^ · (as^ b i' is' ds) {-# ATP definition bs^ #-} cs^ : D → D → D → D → D → D cs^ b i' is' ds os₁^ = ack b · (bs^ b i' is' ds os₁^) {-# ATP definition cs^ #-} ds^ : D → D → D → D → D → D → D ds^ b i' is' ds os₁^ os₂^ = corrupt os₂^ · cs^ b i' is' ds os₁^ {-# ATP definition ds^ #-} os₁^ : D → D → D os₁^ os₁' ft₁^ = ft₁^ ++ os₁' {-# ATP definition os₁^ #-} os₂^ : D → D os₂^ os₂ = tail₁ os₂ {-# ATP definition os₂^ #-} helper : ∀ {b i' is' os₁ os₂ as bs cs ds js} → Bit b → Fair os₂ → S b (i' ∷ is') os₁ os₂ as bs cs ds js → ∀ ft₁ os₁' → F*T ft₁ → Fair os₁' → os₁ ≡ ft₁ ++ os₁' → ∃[ js' ] js ≡ i' ∷ js' helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js} Bb Fos₂ (asS , bsS , csS , dsS , jsS) .(T ∷ []) os₁' f*tnil Fos₁' os₁-eq = prf where postulate prf : ∃[ js' ] js ≡ i' ∷ js' {-# ATP prove prf #-} helper {b} {i'} {is'} {os₁} {os₂} {as} {bs} {cs} {ds} {js} Bb Fos₂ (asS , bsS , csS , dsS , jsS) .(F ∷ ft₁^) os₁' (f*tcons {ft₁^} FTft₁^) Fos₁' os₁-eq = helper Bb (tail-Fair Fos₂) ihS ft₁^ os₁' FTft₁^ Fos₁' refl where postulate os₁-eq-helper : os₁ ≡ F ∷ os₁^ os₁' ft₁^ {-# ATP prove os₁-eq-helper #-} postulate as-eq : as ≡ < i' , b > ∷ (as^ b i' is' ds) {-# ATP prove as-eq #-} postulate bs-eq : bs ≡ error ∷ (bs^ b i' is' ds (os₁^ os₁' ft₁^)) {-# ATP prove bs-eq os₁-eq-helper as-eq #-} postulate cs-eq : cs ≡ not b ∷ cs^ b i' is' ds (os₁^ os₁' ft₁^) {-# ATP prove cs-eq bs-eq #-} postulate ds-eq-helper₁ : os₂ ≡ T ∷ tail₁ os₂ → ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove ds-eq-helper₁ cs-eq #-} postulate ds-eq-helper₂ : os₂ ≡ F ∷ tail₁ os₂ → ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove ds-eq-helper₂ cs-eq #-} ds-eq : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) ∨ ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) ds-eq = case (λ h → inj₁ (ds-eq-helper₁ h)) (λ h → inj₂ (ds-eq-helper₂ h)) (head-tail-Fair Fos₂) postulate as^-eq-helper₁ : ds ≡ ok (not b) ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) → as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove as^-eq-helper₁ x≢not-x #-} postulate as^-eq-helper₂ : ds ≡ error ∷ ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) → as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) {-# ATP prove as^-eq-helper₂ #-} as^-eq : as^ b i' is' ds ≡ send b · (i' ∷ is') · ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂) as^-eq = case as^-eq-helper₁ as^-eq-helper₂ ds-eq postulate js-eq : js ≡ out b · bs^ b i' is' ds (os₁^ os₁' ft₁^) {-# ATP prove js-eq bs-eq #-} ihS : S b (i' ∷ is') (os₁^ os₁' ft₁^) (os₂^ os₂) (as^ b i' is' ds) (bs^ b i' is' ds (os₁^ os₁' ft₁^)) (cs^ b i' is' ds (os₁^ os₁' ft₁^)) (ds^ b i' is' ds (os₁^ os₁' ft₁^) (os₂^ os₂)) js ihS = as^-eq , refl , refl , refl , js-eq ------------------------------------------------------------------------------ -- From Dybjer and Sander's paper: From the assumption that os₁ ∈ Fair -- and hence by unfolding Fair, we conclude that there are ft₁ :  F*T -- and os₁' : Fair, such that os₁ = ft₁ ++ os₁'. -- -- We proceed by induction on ft₁ : F*T using helper. open Helper lemma : ∀ {b i' is' os₁ os₂ as bs cs ds js} → Bit b → Fair os₁ → Fair os₂ → S b (i' ∷ is') os₁ os₂ as bs cs ds js → ∃[ js' ] js ≡ i' ∷ js' lemma Bb Fos₁ Fos₂ s with Fair-out Fos₁ ... | ft , os₁' , FTft , prf , Fos₁' = helper Bb Fos₂ s ft os₁' FTft Fos₁' prf
{ "alphanum_fraction": 0.4923564504, "avg_line_length": 34.6064516129, "ext": "agda", "hexsha": "cedb91a2b509b6889335c654152bbab7e37ef273", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaATP.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/LemmaATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2017, "size": 5364 }
-- Andreas, 2019-02-24, issue #3457 -- Error messages for illegal as-clause import Agda.Builtin.Nat Fresh-name as _ -- Previously, this complained about a duplicate module definition -- with unspeakable name. -- Expected error: -- Not in scope: Fresh-name
{ "alphanum_fraction": 0.7451737452, "avg_line_length": 23.5454545455, "ext": "agda", "hexsha": "ae4ce2f8fe4252a6e321016a0a67038f319090d7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3457.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3457.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3457.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 259 }
module Classes where open import Agda.Primitive open import Agda.Builtin.Equality open import Relation.Binary.PropositionalEquality.Core open ≡-Reasoning id : ∀ {ℓ} {A : Set ℓ} → A → A id x = x _$_ : ∀ {ℓ} {A B : Set ℓ} → (A → B) → A → B _$_ = id _∘_ : ∀ {ℓ} {A B C : Set ℓ} → (B → C) → (A → B) → A → C f ∘ g = λ x → f (g x) record Functor {ℓ} (F : Set ℓ → Set ℓ) : Set (lsuc ℓ) where field fmap : ∀ {A B} → (A → B) → F A → F B F-id : ∀ {A} → (a : F A) → fmap id a ≡ a F-∘ : ∀ {A B C} → (g : B → C) (f : A → B) (a : F A) → fmap (g ∘ f) a ≡ (fmap g ∘ fmap f) a _<$>_ : ∀ {A B} → (A → B) → F A → F B _<$>_ = fmap infixl 20 _<$>_ open Functor {{...}} public record Applicative (F : Set → Set) : Set₁ where field {{funF}} : Functor F pure : {A : Set} → A → F A _<*>_ : {A B : Set} → F (A → B) → F A → F B A-id : ∀ {A} → (v : F A) → pure id <*> v ≡ v A-∘ : ∀ {A B C} → (u : F (B → C)) (v : F (A → B)) (w : F A) → pure _∘_ <*> u <*> v <*> w ≡ u <*> (v <*> w) A-hom : ∀ {A B} → (f : A → B) (x : A) → pure f <*> pure x ≡ pure (f x) A-ic : ∀ {A B} → (u : F (A → B)) (y : A) → u <*> pure y ≡ pure (_$ y) <*> u infixl 20 _<*>_ open Applicative {{...}} public postulate -- this is from parametricity: fmap is universal w.r.t. the functor laws appFun : ∀ {A B F} {{aF : Applicative F}} → (f : A → B) (x : F A) → pure f <*> x ≡ fmap f x record Monad (F : Set → Set) : Set₁ where field {{appF}} : Applicative F _>>=_ : ∀ {A B} → F A → (A → F B) → F B return : ∀ {A} → A → F A return = pure _>=>_ : {A B C : Set} → (A → F B) → (B → F C) → A → F C f >=> g = λ a → f a >>= g infixl 10 _>>=_ infixr 10 _>=>_ field left-1 : ∀ {A B} → (a : A) (k : A → F B) → return a >>= k ≡ k a right-1 : ∀ {A} → (m : F A) → m >>= return ≡ m assoc : ∀ {A B C D} → (f : A → F B) (g : B → F C) (h : C → F D) (a : A) → (f >=> (g >=> h)) a ≡ ((f >=> g) >=> h) a open Monad {{...}} public
{ "alphanum_fraction": 0.4264853978, "avg_line_length": 25.1392405063, "ext": "agda", "hexsha": "f32936682a378b9415385a7b071518eb03186425", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "samuelhklumpers/strong-vector", "max_forks_repo_path": "proofs/Classes.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_issues_repo_issues_event_max_datetime": "2022-03-10T10:24:40.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-09T10:24:33.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "samuelhklumpers/strong-vector", "max_issues_repo_path": "proofs/Classes.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b019ce3d7b978c369fcc82c97ccafdde8f7fd02", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "samuelhklumpers/strong-vector", "max_stars_repo_path": "proofs/Classes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 898, "size": 1986 }
data Bool : Set where true false : Bool record Top : Set where foo : Top foo with true ... | true = _ ... | false = top where top = record{ } -- the only purpose of this was to force -- evaluation of the with function clauses -- which were in an __IMPOSSIBLE__ state
{ "alphanum_fraction": 0.5776397516, "avg_line_length": 21.4666666667, "ext": "agda", "hexsha": "6ecc96880e9b431dc9b0935a4b9040489db4ff9f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1031.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1031.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1031.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 322 }
open import Prelude open import Nat open import dynamics-core open import contexts module lemmas-disjointness where -- disjointness is commutative ##-comm : {A : Set} {Δ1 Δ2 : A ctx} → Δ1 ## Δ2 → Δ2 ## Δ1 ##-comm (π1 , π2) = π2 , π1 -- the empty context is disjoint from any context empty-disj : {A : Set} (Γ : A ctx) → ∅ ## Γ empty-disj Γ = ed1 , ed2 where ed1 : {A : Set} (n : Nat) → dom {A} ∅ n → n # Γ ed1 n (π1 , ()) ed2 : {A : Set} (n : Nat) → dom Γ n → _#_ {A} n ∅ ed2 _ _ = refl -- two singleton contexts with different indices are disjoint disjoint-singles : {A : Set} {x y : A} {u1 u2 : Nat} → u1 ≠ u2 → (■ (u1 , x)) ## (■ (u2 , y)) disjoint-singles {_} {x} {y} {u1} {u2} neq = ds1 , ds2 where ds1 : (n : Nat) → dom (■ (u1 , x)) n → n # (■ (u2 , y)) ds1 n d with lem-dom-eq d ds1 .u1 d | refl with natEQ u2 u1 ds1 .u1 d | refl | Inl xx = abort (neq (! xx)) ds1 .u1 d | refl | Inr x₁ = refl ds2 : (n : Nat) → dom (■ (u2 , y)) n → n # (■ (u1 , x)) ds2 n d with lem-dom-eq d ds2 .u2 d | refl with natEQ u1 u2 ds2 .u2 d | refl | Inl x₁ = abort (neq x₁) ds2 .u2 d | refl | Inr x₁ = refl apart-noteq : {A : Set} (p r : Nat) (q : A) → p # (■ (r , q)) → p ≠ r apart-noteq p r q apt with natEQ r p apart-noteq p .p q apt | Inl refl = abort (somenotnone apt) apart-noteq p r q apt | Inr x₁ = flip x₁ -- if singleton contexts are disjoint, their indices must be disequal singles-notequal : {A : Set} {x y : A} {u1 u2 : Nat} → (■ (u1 , x)) ## (■ (u2 , y)) → u1 ≠ u2 singles-notequal {A} {x} {y} {u1} {u2} (d1 , d2) = apart-noteq u1 u2 y (d1 u1 (lem-domsingle u1 x)) -- dual of lem2 above; if two indices are disequal, then either is apart -- from the singleton formed with the other apart-singleton : {A : Set} → ∀{x y} → {τ : A} → x ≠ y → x # (■ (y , τ)) apart-singleton {A} {x} {y} {τ} neq with natEQ y x apart-singleton neq | Inl x₁ = abort ((flip neq) x₁) apart-singleton neq | Inr x₁ = refl -- if an index is apart from two contexts, it's apart from their union as -- well. used below and in other files, so it's outside the local scope. apart-parts : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # Γ1 → n # Γ2 → n # (Γ1 ∪ Γ2) apart-parts Γ1 Γ2 n apt1 apt2 with Γ1 n apart-parts _ _ n refl apt2 | .None = apt2 -- this is just for convenience; it shows up a lot. apart-extend1 : {A : Set} → ∀{x y τ} → (Γ : A ctx) → x ≠ y → x # Γ → x # (Γ ,, (y , τ)) apart-extend1 {A} {x} {y} {τ} Γ neq apt with natEQ y x ... | Inl refl = abort (neq refl) ... | Inr y≠x = apt -- if an index is in the domain of a union, it's in the domain of one or -- the other unand dom-split : {A : Set} → (Γ1 Γ2 : A ctx) (n : Nat) → dom (Γ1 ∪ Γ2) n → dom Γ1 n + dom Γ2 n dom-split Γ4 Γ5 n (π1 , π2) with Γ4 n dom-split Γ4 Γ5 n (π1 , π2) | Some x = Inl (x , refl) dom-split Γ4 Γ5 n (π1 , π2) | None = Inr (π1 , π2) -- if both parts of a union are disjoint with a target, so is the union disjoint-parts : {A : Set} {Γ1 Γ2 Γ3 : A ctx} → Γ1 ## Γ3 → Γ2 ## Γ3 → (Γ1 ∪ Γ2) ## Γ3 disjoint-parts {_} {Γ1} {Γ2} {Γ3} D13 D23 = d31 , d32 where d31 : (n : Nat) → dom (Γ1 ∪ Γ2) n → n # Γ3 d31 n D with dom-split Γ1 Γ2 n D d31 n D | Inl x = π1 D13 n x d31 n D | Inr x = π1 D23 n x d32 : (n : Nat) → dom Γ3 n → n # (Γ1 ∪ Γ2) d32 n D = apart-parts Γ1 Γ2 n (π2 D13 n D) (π2 D23 n D) apart-union1 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # (Γ1 ∪ Γ2) → n # Γ1 apart-union1 Γ1 Γ2 n aprt with Γ1 n apart-union1 Γ1 Γ2 n () | Some x apart-union1 Γ1 Γ2 n aprt | None = refl apart-union2 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → n # (Γ1 ∪ Γ2) → n # Γ2 apart-union2 Γ1 Γ2 n aprt with Γ1 n apart-union2 Γ3 Γ4 n () | Some x apart-union2 Γ3 Γ4 n aprt | None = aprt -- if a union is disjoint with a target, so is the left unand disjoint-union1 : {A : Set} {Γ1 Γ2 Δ : A ctx} → (Γ1 ∪ Γ2) ## Δ → Γ1 ## Δ disjoint-union1 {Γ1 = Γ1} {Γ2 = Γ2} {Δ = Δ} (ud1 , ud2) = du11 , du12 where dom-union1 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → dom Γ1 n → dom (Γ1 ∪ Γ2) n dom-union1 Γ1 Γ2 n (π1 , π2) with Γ1 n dom-union1 Γ1 Γ2 n (π1 , π2) | Some x = x , refl dom-union1 Γ1 Γ2 n (π1 , ()) | None du11 : (n : Nat) → dom Γ1 n → n # Δ du11 n dom = ud1 n (dom-union1 Γ1 Γ2 n dom) du12 : (n : Nat) → dom Δ n → n # Γ1 du12 n dom = apart-union1 Γ1 Γ2 n (ud2 n dom) -- if a union is disjoint with a target, so is the right unand disjoint-union2 : {A : Set} {Γ1 Γ2 Δ : A ctx} → (Γ1 ∪ Γ2) ## Δ → Γ2 ## Δ disjoint-union2 {Γ1 = Γ1} {Γ2 = Γ2} {Δ = Δ} (ud1 , ud2) = du21 , du22 where dom-union2 : {A : Set} (Γ1 Γ2 : A ctx) (n : Nat) → dom Γ2 n → dom (Γ1 ∪ Γ2) n dom-union2 Γ1 Γ2 n (π1 , π2) with Γ1 n dom-union2 Γ3 Γ4 n (π1 , π2) | Some x = x , refl dom-union2 Γ3 Γ4 n (π1 , π2) | None = π1 , π2 du21 : (n : Nat) → dom Γ2 n → n # Δ du21 n dom = ud1 n (dom-union2 Γ1 Γ2 n dom) du22 : (n : Nat) → dom Δ n → n # Γ2 du22 n dom = apart-union2 Γ1 Γ2 n (ud2 n dom) -- if x isn't in a context and y is then they can't be equal lem-dom-apt : {A : Set} {G : A ctx} {x y : Nat} → x # G → dom G y → x ≠ y lem-dom-apt {x = x} {y = y} apt dom with natEQ x y lem-dom-apt apt dom | Inl refl = abort (somenotnone (! (π2 dom) · apt)) lem-dom-apt apt dom | Inr x₁ = x₁
{ "alphanum_fraction": 0.5275787966, "avg_line_length": 41.362962963, "ext": "agda", "hexsha": "f7408472e80f85bfa8ac49b2592c69ba285666cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "lemmas-disjointness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "lemmas-disjointness.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "lemmas-disjointness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2349, "size": 5584 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Foundations.GroupoidLaws hiding (assoc) open import Cubical.Data.Sigma open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid.Base open import Cubical.Algebra.Group.Base private variable ℓ : Level G : Type ℓ isPropIsGroup : (1g : G) (_·_ : G → G → G) (inv : G → G) → isProp (IsGroup 1g _·_ inv) isPropIsGroup 1g _·_ inv = isOfHLevelRetractFromIso 1 IsGroupIsoΣ (isPropΣ (isPropIsMonoid 1g _·_) λ mono → isProp× (isPropΠ λ _ → mono .is-set _ _) (isPropΠ λ _ → mono .is-set _ _)) where open IsMonoid module GroupTheory (G : Group ℓ) where open GroupStr (snd G) abstract ·CancelL : (a : ⟨ G ⟩) {b c : ⟨ G ⟩} → a · b ≡ a · c → b ≡ c ·CancelL a {b} {c} p = b ≡⟨ sym (·IdL b) ∙ cong (_· b) (sym (·InvL a)) ∙ sym (·Assoc _ _ _) ⟩ inv a · (a · b) ≡⟨ cong (inv a ·_) p ⟩ inv a · (a · c) ≡⟨ ·Assoc _ _ _ ∙ cong (_· c) (·InvL a) ∙ ·IdL c ⟩ c ∎ ·CancelR : {a b : ⟨ G ⟩} (c : ⟨ G ⟩) → a · c ≡ b · c → a ≡ b ·CancelR {a} {b} c p = a ≡⟨ sym (·IdR a) ∙ cong (a ·_) (sym (·InvR c)) ∙ ·Assoc _ _ _ ⟩ (a · c) · inv c ≡⟨ cong (_· inv c) p ⟩ (b · c) · inv c ≡⟨ sym (·Assoc _ _ _) ∙ cong (b ·_) (·InvR c) ∙ ·IdR b ⟩ b ∎ invInv : (a : ⟨ G ⟩) → inv (inv a) ≡ a invInv a = ·CancelL (inv a) (·InvR (inv a) ∙ sym (·InvL a)) inv1g : inv 1g ≡ 1g inv1g = ·CancelL 1g (·InvR 1g ∙ sym (·IdL 1g)) 1gUniqueL : {e : ⟨ G ⟩} (x : ⟨ G ⟩) → e · x ≡ x → e ≡ 1g 1gUniqueL {e} x p = ·CancelR x (p ∙ sym (·IdL _)) 1gUniqueR : (x : ⟨ G ⟩) {e : ⟨ G ⟩} → x · e ≡ x → e ≡ 1g 1gUniqueR x {e} p = ·CancelL x (p ∙ sym (·IdR _)) invUniqueL : {g h : ⟨ G ⟩} → g · h ≡ 1g → g ≡ inv h invUniqueL {g} {h} p = ·CancelR h (p ∙ sym (·InvL h)) invUniqueR : {g h : ⟨ G ⟩} → g · h ≡ 1g → h ≡ inv g invUniqueR {g} {h} p = ·CancelL g (p ∙ sym (·InvR g)) invDistr : (a b : ⟨ G ⟩) → inv (a · b) ≡ inv b · inv a invDistr a b = sym (invUniqueR γ) where γ : (a · b) · (inv b · inv a) ≡ 1g γ = (a · b) · (inv b · inv a) ≡⟨ sym (·Assoc _ _ _) ⟩ a · b · (inv b) · (inv a) ≡⟨ cong (a ·_) (·Assoc _ _ _ ∙ cong (_· (inv a)) (·InvR b)) ⟩ a · (1g · inv a) ≡⟨ cong (a ·_) (·IdL (inv a)) ∙ ·InvR a ⟩ 1g ∎ congIdLeft≡congIdRight : (_·G_ : G → G → G) (-G_ : G → G) (0G : G) (rUnitG : (x : G) → x ·G 0G ≡ x) (lUnitG : (x : G) → 0G ·G x ≡ x) → (r≡l : rUnitG 0G ≡ lUnitG 0G) → (p : 0G ≡ 0G) → cong (0G ·G_) p ≡ cong (_·G 0G) p congIdLeft≡congIdRight _·G_ -G_ 0G rUnitG lUnitG r≡l p = rUnit (cong (0G ·G_) p) ∙∙ ((λ i → (λ j → lUnitG 0G (i ∧ j)) ∙∙ cong (λ x → lUnitG x i) p ∙∙ λ j → lUnitG 0G (i ∧ ~ j)) ∙∙ cong₂ (λ x y → x ∙∙ p ∙∙ y) (sym r≡l) (cong sym (sym r≡l)) ∙∙ λ i → (λ j → rUnitG 0G (~ i ∧ j)) ∙∙ cong (λ x → rUnitG x (~ i)) p ∙∙ λ j → rUnitG 0G (~ i ∧ ~ j)) ∙∙ sym (rUnit (cong (_·G 0G) p))
{ "alphanum_fraction": 0.473603906, "avg_line_length": 36.8202247191, "ext": "agda", "hexsha": "6a9f4e7fc3aa383d210b391d1da0df717b7667ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Properties.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1494, "size": 3277 }
{-# OPTIONS --safe #-} module Cubical.HITs.Cost where open import Cubical.HITs.Cost.Base
{ "alphanum_fraction": 0.7333333333, "avg_line_length": 18, "ext": "agda", "hexsha": "6e9e6dc9658d64934da675dc9d67feeed5f9de20", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/HITs/Cost.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/HITs/Cost.agda", "max_line_length": 34, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/HITs/Cost.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 26, "size": 90 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Level using (0ℓ) open import Util.Prelude -- This module incldes various Agda lemmas that are independent of the project's domain module Util.Lemmas where cong₃ : ∀{a b c d}{A : Set a}{B : Set b}{C : Set c}{D : Set d} → (f : A → B → C → D) → ∀{x y u v m n} → x ≡ y → u ≡ v → m ≡ n → f x u m ≡ f y v n cong₃ f refl refl refl = refl ≡-pi : ∀{a}{A : Set a}{x y : A}(p q : x ≡ y) → p ≡ q ≡-pi refl refl = refl Unit-pi : {u1 u2 : Unit} → u1 ≡ u2 Unit-pi {unit} {unit} = refl ++-inj : ∀{a}{A : Set a}{m n o p : List A} → length m ≡ length n → m ++ o ≡ n ++ p → m ≡ n × o ≡ p ++-inj {m = []} {x ∷ n} () hip ++-inj {m = x ∷ m} {[]} () hip ++-inj {m = []} {[]} lhip hip = refl , hip ++-inj {m = m ∷ ms} {n ∷ ns} lhip hip with ++-inj {m = ms} {ns} (suc-injective lhip) (proj₂ (∷-injective hip)) ...| (mn , op) rewrite proj₁ (∷-injective hip) = cong (n ∷_) mn , op ++-abs : ∀{a}{A : Set a}{n : List A}(m : List A) → 1 ≤ length m → [] ≡ m ++ n → ⊥ ++-abs [] () ++-abs (x ∷ m) imp () filter-++-[] : ∀ {a p} {A : Set a} {P : (a : A) → Set p} → ∀ xs ys (p : (a : A) → Dec (P a)) → List-filter p xs ≡ [] → List-filter p ys ≡ [] → List-filter p (xs ++ ys) ≡ [] filter-++-[] xs ys p pf₁ pf₂ rewrite List-filter-++ p xs ys | pf₁ | pf₂ = refl filter-∪?-[]₁ : ∀ {a p} {A : Set a} {P Q : (a : A) → Set p} → ∀ xs (p : (a : A) → Dec (P a)) (q : (a : A) → Dec (Q a)) → List-filter (p ∪? q) xs ≡ [] → List-filter p xs ≡ [] filter-∪?-[]₁ [] p q pf = refl filter-∪?-[]₁ (x ∷ xs) p q pf with p x ...| no proof₁ with q x ...| no proof₂ = filter-∪?-[]₁ xs p q pf filter-∪?-[]₁ (x ∷ xs) p q () | no proof₁ | yes proof₂ filter-∪?-[]₁ (x ∷ xs) p q () | yes proof filter-∪?-[]₂ : ∀ {a p} {A : Set a} {P Q : (a : A) → Set p} → ∀ xs (p : (a : A) → Dec (P a)) (q : (a : A) → Dec (Q a)) → List-filter (p ∪? q) xs ≡ [] → List-filter q xs ≡ [] filter-∪?-[]₂ [] p q pf = refl filter-∪?-[]₂ (x ∷ xs) p q pf with p x ...| no proof₁ with q x ...| no proof₂ = filter-∪?-[]₂ xs p q pf filter-∪?-[]₂ (x ∷ xs) p q () | no proof₁ | yes proof₂ filter-∪?-[]₂ (x ∷ xs) p q () | yes proof noneOfKind⇒¬Any : ∀ {a p} {A : Set a} {P : A → Set p} xs (p : (a : A) → Dec (P a)) → NoneOfKind xs p → ¬ Any P xs noneOfKind⇒¬Any (x ∷ xs) p none ∈xs with p x noneOfKind⇒¬Any (x ∷ xs) p none (here px) | no ¬px = ¬px px noneOfKind⇒¬Any (x ∷ xs) p none (there ∈xs) | no ¬px = noneOfKind⇒¬Any xs p none ∈xs noneOfKind⇒All¬ : ∀ {a p} {A : Set a} {P : A → Set p} xs (p : (a : A) → Dec (P a)) → NoneOfKind xs p → All (¬_ ∘ P) xs noneOfKind⇒All¬ xs p none = ¬Any⇒All¬ xs (noneOfKind⇒¬Any xs p none) ++-NoneOfKind : ∀ {ℓA} {A : Set ℓA} {ℓ} {P : A → Set ℓ} xs ys (p : (a : A) → Dec (P a)) → NoneOfKind xs p → NoneOfKind ys p → NoneOfKind (xs ++ ys) p ++-NoneOfKind xs ys p nok₁ nok₂ = filter-++-[] xs ys p nok₁ nok₂ data All-vec {ℓ} {A : Set ℓ} (P : A → Set ℓ) : ∀ {n} → Vec {ℓ} A n → Set (Level.suc ℓ) where [] : All-vec P [] _∷_ : ∀ {x n} {xs : Vec A n} (px : P x) (pxs : All-vec P xs) → All-vec P (x ∷ xs) ≤-unstep : ∀{m n} → suc m ≤ n → m ≤ n ≤-unstep (s≤s ss) = ≤-step ss ≡⇒≤ : ∀{m n} → m ≡ n → m ≤ n ≡⇒≤ refl = ≤-refl ∈-cong : ∀{a b}{A : Set a}{B : Set b}{x : A}{l : List A} → (f : A → B) → x ∈ l → f x ∈ List-map f l ∈-cong f (here px) = here (cong f px) ∈-cong f (there hyp) = there (∈-cong f hyp) All-self : ∀{a}{A : Set a}{xs : List A} → All (_∈ xs) xs All-self = All-tabulate (λ x → x) All-reduce⁺ : ∀{a b}{A : Set a}{B : Set b}{Q : A → Set}{P : B → Set} → { xs : List A } → (f : ∀{x} → Q x → B) → (∀{x} → (prf : Q x) → P (f prf)) → (all : All Q xs) → All P (All-reduce f all) All-reduce⁺ f hyp [] = [] All-reduce⁺ f hyp (ax ∷ axs) = (hyp ax) ∷ All-reduce⁺ f hyp axs All-reduce⁻ : ∀{a b}{A : Set a}{B : Set b} {Q : A → Set} → { xs : List A } → ∀ {vdq} → (f : ∀{x} → Q x → B) → (all : All Q xs) → vdq ∈ All-reduce f all → ∃[ v ] ∃[ v∈xs ] (vdq ≡ f {v} v∈xs) All-reduce⁻ {Q = Q} {(h ∷ _)} {vdq} f (px ∷ pxs) (here refl) = h , px , refl All-reduce⁻ {Q = Q} {(_ ∷ t)} {vdq} f (px ∷ pxs) (there vdq∈) = All-reduce⁻ {xs = t} f pxs vdq∈ List-index : ∀ {A : Set} → (_≟A_ : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)) → A → (l : List A) → Maybe (Fin (length l)) List-index _≟A_ x l with break (_≟A x) l ...| not≡ , _ with length not≡ <? length l ...| no _ = nothing ...| yes found = just ( fromℕ< {length not≡} {length l} found) nats : ℕ → List ℕ nats 0 = [] nats (suc n) = (nats n) ++ (n ∷ []) _ : nats 4 ≡ 0 ∷ 1 ∷ 2 ∷ 3 ∷ [] _ = refl _ : Maybe-map toℕ (List-index _≟_ 2 (nats 4)) ≡ just 2 _ = refl _ : Maybe-map toℕ (List-index _≟_ 4 (nats 4)) ≡ nothing _ = refl allDistinct : ∀ {A : Set} → List A → Set allDistinct l = ∀ (i j : Fin (length l)) → i ≡ j ⊎ List-lookup l i ≢ List-lookup l j postulate -- TODO-1: currently unused; prove it, if needed allDistinct? : ∀ {A : Set} → {≟A : (a₁ a₂ : A) → Dec (a₁ ≡ a₂)} → (l : List A) → Dec (allDistinct l) -- Extends an arbitrary relation to work on the head of -- the supplied list, if any. data OnHead {A : Set}(P : A → A → Set) (x : A) : List A → Set where [] : OnHead P x [] on-∷ : ∀{y ys} → P x y → OnHead P x (y ∷ ys) -- Establishes that a list is sorted according to the supplied -- relation. data IsSorted {A : Set}(_<_ : A → A → Set) : List A → Set where [] : IsSorted _<_ [] _∷_ : ∀{x xs} → OnHead _<_ x xs → IsSorted _<_ xs → IsSorted _<_ (x ∷ xs) OnHead-prop : ∀{A}(P : A → A → Set)(x : A)(l : List A) → Irrelevant P → isPropositional (OnHead P x l) OnHead-prop P x [] hyp [] [] = refl OnHead-prop P x (x₁ ∷ l) hyp (on-∷ x₂) (on-∷ x₃) = cong on-∷ (hyp x₂ x₃) IsSorted-prop : ∀{A}(_<_ : A → A → Set)(l : List A) → Irrelevant _<_ → isPropositional (IsSorted _<_ l) IsSorted-prop _<_ [] hyp [] [] = refl IsSorted-prop _<_ (x ∷ l) hyp (x₁ ∷ a) (x₂ ∷ b) = cong₂ _∷_ (OnHead-prop _<_ x l hyp x₁ x₂) (IsSorted-prop _<_ l hyp a b) IsSorted-map⁻ : {A : Set}{_≤_ : A → A → Set} → {B : Set}(f : B → A)(l : List B) → IsSorted (λ x y → f x ≤ f y) l → IsSorted _≤_ (List-map f l) IsSorted-map⁻ f .[] [] = [] IsSorted-map⁻ f .(_ ∷ []) (x ∷ []) = [] ∷ [] IsSorted-map⁻ f .(_ ∷ _ ∷ _) (on-∷ x ∷ (x₁ ∷ is)) = (on-∷ x) ∷ IsSorted-map⁻ f _ (x₁ ∷ is) transOnHead : ∀ {A} {l : List A} {y x : A} {_<_ : A → A → Set} → Transitive _<_ → OnHead _<_ y l → x < y → OnHead _<_ x l transOnHead _ [] _ = [] transOnHead trans (on-∷ y<f) x<y = on-∷ (trans x<y y<f) ++-OnHead : ∀ {A} {xs ys : List A} {y : A} {_<_ : A → A → Set} → OnHead _<_ y xs → OnHead _<_ y ys → OnHead _<_ y (xs ++ ys) ++-OnHead [] y<y₁ = y<y₁ ++-OnHead (on-∷ y<x) _ = on-∷ y<x h∉t : ∀ {A} {t : List A} {h : A} {_<_ : A → A → Set} → Irreflexive _<_ _≡_ → Transitive _<_ → IsSorted _<_ (h ∷ t) → h ∉ t h∉t irfl trans (on-∷ h< ∷ sxs) (here refl) = ⊥-elim (irfl h< refl) h∉t irfl trans (on-∷ h< ∷ (x₁< ∷ sxs)) (there h∈t) = h∉t irfl trans ((transOnHead trans x₁< h<) ∷ sxs) h∈t ≤-head : ∀ {A} {l : List A} {x y : A} {_<_ : A → A → Set} {_≤_ : A → A → Set} → Reflexive _≤_ → Trans _<_ _≤_ _≤_ → y ∈ (x ∷ l) → IsSorted _<_ (x ∷ l) → _≤_ x y ≤-head ref≤ trans (here refl) _ = ref≤ ≤-head ref≤ trans (there y∈) (on-∷ x<x₁ ∷ sl) = trans x<x₁ (≤-head ref≤ trans y∈ sl) -- TODO-1 : Better name and/or replace with library property Any-sym : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → Any (λ x → tgt ≡ f x) l → Any (λ x → f x ≡ tgt) l Any-sym (here x) = here (sym x) Any-sym (there x) = there (Any-sym x) Any-lookup-correct : ∀ {a b}{A : Set a}{B : Set b}{tgt : B}{l : List A}{f : A → B} → (p : Any (λ x → f x ≡ tgt) l) → Any-lookup p ∈ l Any-lookup-correct (here px) = here refl Any-lookup-correct (there p) = there (Any-lookup-correct p) Any-lookup-correctP : ∀ {a}{A : Set a}{l : List A}{P : A → Set} → (p : Any P l) → Any-lookup p ∈ l Any-lookup-correctP (here px) = here refl Any-lookup-correctP (there p) = there (Any-lookup-correctP p) Any-witness : ∀ {a b} {A : Set a} {l : List A} {P : A → Set b} → (p : Any P l) → P (Any-lookup p) Any-witness (here px) = px Any-witness (there x) = Any-witness x -- TODO-1: there is probably a library property for this. ∈⇒Any : ∀ {A : Set}{x : A} → {xs : List A} → x ∈ xs → Any (_≡ x) xs ∈⇒Any {x = x} (here refl) = here refl ∈⇒Any {x = x} {h ∷ t} (there xxxx) = there (∈⇒Any {xs = t} xxxx) false≢true : false ≢ true false≢true () witness : {A : Set}{P : A → Set}{x : A}{xs : List A} → x ∈ xs → All P xs → P x witness x y = All-lookup y x maybe-⊥ : ∀{a}{A : Set a}{x : A}{y : Maybe A} → y ≡ just x → y ≡ nothing → ⊥ maybe-⊥ () refl Maybe-map-cool : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → x ≢ nothing Maybe-map-cool {x = nothing} () Maybe-map-cool {x = just y} prf = λ x → ⊥-elim (maybe-⊥ (sym x) refl) Maybe-map-cool-1 : ∀ {S S₁ : Set} {f : S → S₁} {x : Maybe S} {z} → Maybe-map f x ≡ just z → Σ S (λ x' → f x' ≡ z) Maybe-map-cool-1 {x = nothing} () Maybe-map-cool-1 {x = just y} {z = z} refl = y , refl Maybe-map-cool-2 : ∀ {S S₁ : Set} {f : S → S₁} {x : S} {z} → f x ≡ z → Maybe-map f (just x) ≡ just z Maybe-map-cool-2 {S}{S₁}{f}{x}{z} prf rewrite prf = refl T⇒true : ∀ {a : Bool} → T a → a ≡ true T⇒true {true} _ = refl isJust : ∀ {A : Set}{aMB : Maybe A}{a : A} → aMB ≡ just a → Is-just aMB isJust refl = just tt to-witness-isJust-≡ : ∀ {A : Set}{aMB : Maybe A}{a prf} → to-witness (isJust {aMB = aMB} {a} prf) ≡ a to-witness-isJust-≡ {aMB = just a'} {a} {prf} with to-witness-lemma (isJust {aMB = just a'} {a} prf) refl ...| xxx = just-injective (trans (sym xxx) prf) deMorgan : ∀ {A B : Set} → (¬ A) ⊎ (¬ B) → ¬ (A × B) deMorgan (inj₁ ¬a) = λ a×b → ¬a (proj₁ a×b) deMorgan (inj₂ ¬b) = λ a×b → ¬b (proj₂ a×b) ¬subst : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {P : A → Set ℓ₂} → {x y : A} → ¬ (P x) → y ≡ x → ¬ (P y) ¬subst px refl = px ∸-suc-≤ : ∀ (x w : ℕ) → suc x ∸ w ≤ suc (x ∸ w) ∸-suc-≤ x zero = ≤-refl ∸-suc-≤ zero (suc w) rewrite 0∸n≡0 w = z≤n ∸-suc-≤ (suc x) (suc w) = ∸-suc-≤ x w m∸n≤o⇒m∸o≤n : ∀ (x z w : ℕ) → x ∸ z ≤ w → x ∸ w ≤ z m∸n≤o⇒m∸o≤n x zero w p≤ rewrite m≤n⇒m∸n≡0 p≤ = z≤n m∸n≤o⇒m∸o≤n zero (suc z) w p≤ rewrite 0∸n≡0 w = z≤n m∸n≤o⇒m∸o≤n (suc x) (suc z) w p≤ = ≤-trans (∸-suc-≤ x w) (s≤s (m∸n≤o⇒m∸o≤n x z w p≤)) tail-⊆ : ∀ {A : Set} {x} {xs ys : List A} → (x ∷ xs) ⊆List ys → xs ⊆List ys tail-⊆ xxs⊆ys x∈xs = xxs⊆ys (there x∈xs) allDistinctTail : ∀ {A : Set} {x} {xs : List A} → allDistinct (x ∷ xs) → allDistinct xs allDistinctTail allDist i j with allDist (suc i) (suc j) ...| inj₁ refl = inj₁ refl ...| inj₂ lookup≢ = inj₂ lookup≢ ∈-Any-Index-elim : ∀ {A : Set} {x y} {ys : List A} (x∈ys : x ∈ ys) → x ≢ y → y ∈ ys → y ∈ ys ─ Any-index x∈ys ∈-Any-Index-elim (here refl) x≢y (here refl) = ⊥-elim (x≢y refl) ∈-Any-Index-elim (here refl) _ (there y∈ys) = y∈ys ∈-Any-Index-elim (there _) _ (here refl) = here refl ∈-Any-Index-elim (there x∈ys) x≢y (there y∈ys) = there (∈-Any-Index-elim x∈ys x≢y y∈ys) ∉∧⊆List⇒∉ : ∀ {A : Set} {x} {xs ys : List A} → x ∉ xs → ys ⊆List xs → x ∉ ys ∉∧⊆List⇒∉ x∉xs ys∈xs x∈ys = ⊥-elim (x∉xs (ys∈xs x∈ys)) allDistinctʳʳ : ∀ {A : Set} {x x₁ : A} {xs : List A} → allDistinct (x ∷ x₁ ∷ xs) → allDistinct (x ∷ xs) allDistinctʳʳ _ zero zero = inj₁ refl allDistinctʳʳ allDist zero (suc j) with allDist zero (suc (suc j)) ...| inj₂ x≢lookup = inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs) allDistinctʳʳ allDist (suc i) zero with allDist (suc (suc i)) zero ...| inj₂ x≢lookup = inj₂ λ x≡lkpxs → ⊥-elim (x≢lookup x≡lkpxs) allDistinctʳʳ allDist (suc i) (suc j) with allDist (suc (suc i)) (suc (suc j)) ...| inj₁ refl = inj₁ refl ...| inj₂ lookup≡ = inj₂ lookup≡ allDistinct⇒∉ : ∀ {A : Set} {x} {xs : List A} → allDistinct (x ∷ xs) → x ∉ xs allDistinct⇒∉ allDist (here x≡x₁) with allDist zero (suc zero) ... | inj₂ x≢x₁ = ⊥-elim (x≢x₁ x≡x₁) allDistinct⇒∉ allDist (there x∈xs) = allDistinct⇒∉ (allDistinctʳʳ allDist) x∈xs sumListMap : ∀ {A : Set} {x} {xs : List A} (f : A → ℕ) → (x∈xs : x ∈ xs) → f-sum f xs ≡ f x + f-sum f (xs ─ Any-index x∈xs) sumListMap _ (here refl) = refl sumListMap {_} {x} {x₁ ∷ xs} f (there x∈xs) rewrite sumListMap f x∈xs | sym (+-assoc (f x) (f x₁) (f-sum f (xs ─ Any-index x∈xs))) | +-comm (f x) (f x₁) | +-assoc (f x₁) (f x) (f-sum f (xs ─ Any-index x∈xs)) = refl lookup⇒Any : ∀ {A : Set} {xs : List A} {P : A → Set} (i : Fin (length xs)) → P (List-lookup xs i) → Any P xs lookup⇒Any {_} {_ ∷ _} zero px = here px lookup⇒Any {_} {_ ∷ _} (suc i) px = there (lookup⇒Any i px) x∉→AllDistinct : ∀ {A : Set} {x} {xs : List A} → allDistinct xs → x ∉ xs → allDistinct (x ∷ xs) x∉→AllDistinct _ _ zero zero = inj₁ refl x∉→AllDistinct _ x∉xs zero (suc j) = inj₂ λ x≡lkp → x∉xs (lookup⇒Any j x≡lkp) x∉→AllDistinct _ x∉xs (suc i) (zero) = inj₂ λ x≡lkp → x∉xs (lookup⇒Any i (sym x≡lkp)) x∉→AllDistinct allDist x∉xs (suc i) (suc j) with allDist i j ...| inj₁ refl = inj₁ refl ...| inj₂ lkup≢ = inj₂ lkup≢ cast-injective : ∀ {n m} {i j : Fin n} {eq : n ≡ m} → cast eq i ≡ cast eq j → i ≡ j cast-injective {_} {_} {zero} {zero} {refl} _ = refl cast-injective {_} {_} {suc i} {suc j} {refl} ci≡cj = cong suc (cast-injective {eq = refl} (Fin-suc-injective ci≡cj)) List-lookup-map : ∀ {A B : Set} (xs : List A) (f : A → B) (α : Fin (length xs)) → let cα = cast (sym (List-length-map f xs)) α in f (List-lookup xs α) ≡ List-lookup (List-map f xs) cα List-lookup-map (x ∷ xs) f zero = refl List-lookup-map (x ∷ xs) f (suc α) = List-lookup-map xs f α allDistinct-Map : ∀ {A B : Set} {xs : List A} {α₁ α₂ : Fin (length xs)} (f : A → B) → allDistinct (List-map f xs) → α₁ ≢ α₂ → f (List-lookup xs α₁) ≢ f (List-lookup xs α₂) allDistinct-Map {_} {_} {xs} {α₁} {α₂} f all≢ α₁≢α₂ flkp≡ with all≢ (cast (sym (List-length-map f xs)) α₁) (cast (sym (List-length-map f xs)) α₂) ...| inj₁ cα₁≡cα₂ = ⊥-elim (α₁≢α₂ (cast-injective {eq = sym (List-length-map f xs)} cα₁≡cα₂)) ...| inj₂ lkpα₁α₂≢ = ⊥-elim (lkpα₁α₂≢ (trans (sym (List-lookup-map xs f α₁)) (trans flkp≡ (List-lookup-map xs f α₂)))) filter⊆ : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs : List A} → List-filter P? xs ⊆List xs filter⊆ {P? = P?} x∈fxs = Any-filter⁻ P? x∈fxs ⊆⇒filter⊆ : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs ys : List A} → xs ⊆List ys → List-filter P? xs ⊆List List-filter P? ys ⊆⇒filter⊆ {P? = P?} {xs = xs} {ys = ys} xs∈ys x∈fxs with List-∈-filter⁻ P? {xs = xs} x∈fxs ...| x∈xs , px = List-∈-filter⁺ P? (xs∈ys x∈xs) px map∘filter : ∀ {A B : Set} (xs : List A) (ys : List B) (f : A → B) {P : B → Set} (P? : (b : B) → Dec (P b)) → List-map f xs ≡ ys → List-map f (List-filter (P? ∘ f) xs) ≡ List-filter P? ys map∘filter [] [] _ _ _ = refl map∘filter (x ∷ xs) (.(f x) ∷ .(List-map f xs)) f P? refl with P? (f x) ...| yes prf = cong (f x ∷_) (map∘filter xs (List-map f xs) f P? refl) ...| no imp = map∘filter xs (List-map f xs) f P? refl allDistinct-Filter : ∀ {A : Set} {P : A → Set} {P? : (a : A) → Dec (P a)} {xs : List A} → allDistinct xs → allDistinct (List-filter P? xs) allDistinct-Filter {P? = P?} {xs = x ∷ xs} all≢ i j with P? x ...| no imp = allDistinct-Filter {P? = P?} {xs = xs} (allDistinctTail all≢) i j ...| yes prf = let all≢Tail = allDistinct-Filter {P? = P?} {xs = xs} (allDistinctTail all≢) x∉Tail = allDistinct⇒∉ all≢ in x∉→AllDistinct all≢Tail (∉∧⊆List⇒∉ x∉Tail filter⊆) i j sum-f∘g : ∀ {A B : Set} (xs : List A) (g : B → ℕ) (f : A → B) → f-sum (g ∘ f) xs ≡ f-sum g (List-map f xs) sum-f∘g xs g f = cong sum (List-map-compose xs) map-lookup-allFin : ∀ {A : Set} (xs : List A) → List-map (List-lookup xs) (allFin (length xs)) ≡ xs map-lookup-allFin xs = trans (map-tabulate id (List-lookup xs)) (tabulate-lookup xs) list-index : ∀ {A B : Set} {P : A → B → Set} (_∼_ : Decidable P) (xs : List A) → B → Maybe (Fin (length xs)) list-index _∼_ [] x = nothing list-index _∼_ (x ∷ xs) y with x ∼ y ...| yes x≡y = just zero ...| no x≢y with list-index _∼_ xs y ...| nothing = nothing ...| just i = just (suc i) module DecLemmas {A : Set} (_≟D_ : Decidable {A = A} (_≡_)) where _∈?_ : ∀ (x : A) → (xs : List A) → Dec (Any (x ≡_) xs) x ∈? xs = Any-any (x ≟D_) xs y∉xs⇒Allxs≢y : ∀ {xs : List A} {x y} → y ∉ (x ∷ xs) → x ≢ y × y ∉ xs y∉xs⇒Allxs≢y {xs} {x} {y} y∉ with y ∈? xs ...| yes y∈xs = ⊥-elim (y∉ (there y∈xs)) ...| no y∉xs with x ≟D y ...| yes x≡y = ⊥-elim (y∉ (here (sym x≡y))) ...| no x≢y = x≢y , y∉xs ⊆List-Elim : ∀ {x} {xs ys : List A} (x∈ys : x ∈ ys) → x ∉ xs → xs ⊆List ys → xs ⊆List ys ─ Any-index x∈ys ⊆List-Elim (here refl) x∉xs xs∈ys x₂∈xs with xs∈ys x₂∈xs ...| here refl = ⊥-elim (x∉xs x₂∈xs) ...| there x∈xs = x∈xs ⊆List-Elim (there x∈ys) x∉xs xs∈ys x₂∈xxs with x₂∈xxs ...| there x₂∈xs = ⊆List-Elim (there x∈ys) (proj₂ (y∉xs⇒Allxs≢y x∉xs)) (tail-⊆ xs∈ys) x₂∈xs ...| here refl with xs∈ys x₂∈xxs ...| here refl = here refl ...| there x₂∈ys = there (∈-Any-Index-elim x∈ys (≢-sym (proj₁ (y∉xs⇒Allxs≢y x∉xs))) x₂∈ys) sum-⊆-≤ : ∀ {ys} (xs : List A) (f : A → ℕ) → allDistinct xs → xs ⊆List ys → f-sum f xs ≤ f-sum f ys sum-⊆-≤ [] _ _ _ = z≤n sum-⊆-≤ (x ∷ xs) f dxs xs⊆ys rewrite sumListMap f (xs⊆ys (here refl)) = let x∉xs = allDistinct⇒∉ dxs xs⊆ysT = tail-⊆ xs⊆ys xs⊆ys-x = ⊆List-Elim (xs⊆ys (here refl)) x∉xs xs⊆ysT disTail = allDistinctTail dxs in +-monoʳ-≤ (f x) (sum-⊆-≤ xs f disTail xs⊆ys-x) ⊆-allFin : ∀ {n} {xs : List (Fin n)} → xs ⊆List allFin n ⊆-allFin {x = x} _ = Any-tabulate⁺ x refl intersect : List A → List A → List A intersect xs [] = [] intersect xs (y ∷ ys) with y ∈? xs ...| yes _ = y ∷ intersect xs ys ...| no _ = intersect xs ys union : List A → List A → List A union xs [] = xs union xs (y ∷ ys) with y ∈? xs ...| yes _ = union xs ys ...| no _ = y ∷ union xs ys ∈-intersect : ∀ (xs ys : List A) {α} → α ∈ intersect xs ys → α ∈ xs × α ∈ ys ∈-intersect xs (y ∷ ys) α∈int with y ∈? xs | α∈int ...| no y∉xs | α∈ = ×-map₂ there (∈-intersect xs ys α∈) ...| yes y∈xs | here refl = y∈xs , here refl ...| yes y∈xs | there α∈ = ×-map₂ there (∈-intersect xs ys α∈) x∉⇒x∉intersect : ∀ {x} {xs ys : List A} → x ∉ xs ⊎ x ∉ ys → x ∉ intersect xs ys x∉⇒x∉intersect {x} {xs} {ys} x∉ x∈int = contraposition (∈-intersect xs ys) (deMorgan x∉) x∈int intersectDistinct : ∀ (xs ys : List A) → allDistinct xs → allDistinct ys → allDistinct (intersect xs ys) intersectDistinct xs (y ∷ ys) dxs dys with y ∈? xs ...| yes y∈xs = let distTail = allDistinctTail dys intDTail = intersectDistinct xs ys dxs distTail y∉intTail = x∉⇒x∉intersect (inj₂ (allDistinct⇒∉ dys)) in x∉→AllDistinct intDTail y∉intTail ...| no y∉xs = intersectDistinct xs ys dxs (allDistinctTail dys) x∉⇒x∉union : ∀ {x} {xs ys : List A} → x ∉ xs × x ∉ ys → x ∉ union xs ys x∉⇒x∉union {_} {_} {[]} (x∉xs , _) x∈∪ = ⊥-elim (x∉xs x∈∪) x∉⇒x∉union {x} {xs} {y ∷ ys} (x∉xs , x∉ys) x∈union with y ∈? xs | x∈union ...| yes y∈xs | x∈∪ = ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪) ...| no y∉xs | here refl = ⊥-elim (proj₁ (y∉xs⇒Allxs≢y x∉ys) refl) ...| no y∉xs | there x∈∪ = ⊥-elim (x∉⇒x∉union (x∉xs , (proj₂ (y∉xs⇒Allxs≢y x∉ys))) x∈∪) unionDistinct : ∀ (xs ys : List A) → allDistinct xs → allDistinct ys → allDistinct (union xs ys) unionDistinct xs [] dxs dys = dxs unionDistinct xs (y ∷ ys) dxs dys with y ∈? xs ...| yes y∈xs = unionDistinct xs ys dxs (allDistinctTail dys) ...| no y∉xs = let distTail = allDistinctTail dys uniDTail = unionDistinct xs ys dxs distTail y∉intTail = x∉⇒x∉union (y∉xs , allDistinct⇒∉ dys) in x∉→AllDistinct uniDTail y∉intTail sumIntersect≤ : ∀ (xs ys : List A) (f : A → ℕ) → f-sum f (intersect xs ys) ≤ f-sum f (xs ++ ys) sumIntersect≤ _ [] _ = z≤n sumIntersect≤ xs (y ∷ ys) f with y ∈? xs ...| yes y∈xs rewrite map-++-commute f xs (y ∷ ys) | sum-++-commute (List-map f xs) (List-map f (y ∷ ys)) | sym (+-assoc (f-sum f xs) (f y) (f-sum f ys)) | +-comm (f-sum f xs) (f y) | +-assoc (f y) (f-sum f xs) (f-sum f ys) | sym (sum-++-commute (List-map f xs) (List-map f ys)) | sym (map-++-commute f xs ys) = +-monoʳ-≤ (f y) (sumIntersect≤ xs ys f) ...| no y∉xs rewrite map-++-commute f xs (y ∷ ys) | sum-++-commute (List-map f xs) (List-map f (y ∷ ys)) | +-comm (f y) (f-sum f ys) | sym (+-assoc (f-sum f xs) (f-sum f ys) (f y)) | sym (sum-++-commute (List-map f xs) (List-map f ys)) | sym (map-++-commute f xs ys) = ≤-stepsʳ (f y) (sumIntersect≤ xs ys f) index∘lookup-id : ∀ {B : Set} (xs : List B) (f : B → A) → allDistinct (List-map f xs) → {α : Fin (length xs)} → list-index (_≟D_ ∘ f) xs ((f ∘ List-lookup xs) α) ≡ just α index∘lookup-id (x ∷ xs) f all≢ {zero} with f x ≟D f x ...| yes fx≡fx = refl ...| no fx≢fx = ⊥-elim (fx≢fx refl) index∘lookup-id (x ∷ xs) f all≢ {suc α} with f x ≟D f (List-lookup xs α) ...| yes fx≡lkp = ⊥-elim (allDistinct⇒∉ all≢ (Any-map⁺ (lookup⇒Any α fx≡lkp))) ...| no fx≢lkp with list-index (_≟D_ ∘ f) xs (f (List-lookup xs α)) | index∘lookup-id xs f (allDistinctTail all≢) {α} ...| just .α | refl = refl lookup∘index-id : ∀ {B : Set} (xs : List B) (f : B → A) → allDistinct (List-map f xs) → {α : Fin (length xs)} {x : A} → list-index (_≟D_ ∘ f) xs x ≡ just α → (f ∘ List-lookup xs) α ≡ x lookup∘index-id (x₁ ∷ xs) f all≢ {α} {x} lkp≡α with f x₁ ≟D x ...| yes fx≡nId rewrite sym (just-injective lkp≡α) = fx≡nId ...| no fx≢nId with list-index (_≟D_ ∘ f) xs x | inspect (list-index (_≟D_ ∘ f) xs) x ...| just _ | [ eq ] rewrite sym (just-injective lkp≡α) = lookup∘index-id xs f (allDistinctTail all≢) eq
{ "alphanum_fraction": 0.4793307087, "avg_line_length": 37.4562211982, "ext": "agda", "hexsha": "190f73a32f235fa878903d90a17fb2c68eab7645", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Util/Lemmas.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Util/Lemmas.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Util/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10357, "size": 24384 }
module Cats.Category.Setoids.Facts where open import Cats.Category open import Cats.Category.Setoids using (Setoids) open import Cats.Category.Setoids.Facts.Exponentials using (hasExponentials) open import Cats.Category.Setoids.Facts.Initial using (hasInitial) open import Cats.Category.Setoids.Facts.Products using (hasProducts ; hasBinaryProducts) open import Cats.Category.Setoids.Facts.Terminal using (hasTerminal) instance isCCC : ∀ l → IsCCC (Setoids l l) isCCC l = record { hasFiniteProducts = record {} } -- [1] -- [1] For no discernible reason, `record {}` doesn't work.
{ "alphanum_fraction": 0.7715736041, "avg_line_length": 32.8333333333, "ext": "agda", "hexsha": "5f50f7ff9c4c72350f595d5d449d111a30332837", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Setoids/Facts.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Setoids/Facts.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Setoids/Facts.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 145, "size": 591 }
module AML where open import Level open import Data.Product data satisfied (a : Set) (m : Set → Set) : Set where s : m a → satisfied a m data reachability (m₀ : Set → Set) (m : Set → Set) : Set where tt : reachability m₀ m data necessarity (m₀ : Set → Set) (a : Set) : Set₁ where n : ∀ m → (reachability m₀ m) → satisfied a m → necessarity m₀ a □_ : Set → Set₁ □_ = necessarity {!!} data posibility (m₀ : Set → Set) (a : Set) : Set₁ where p : ∃[ m ](reachability m₀ m → satisfied a m) → posibility m₀ a ◇_ : Set → Set₁ ◇_ = posibility {!!}
{ "alphanum_fraction": 0.6216216216, "avg_line_length": 24.1304347826, "ext": "agda", "hexsha": "4369bd472794f97584559c9cf0ed26c6b4c2ea3c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/AML.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/AML.agda", "max_line_length": 66, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/AML.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 199, "size": 555 }
module Array.Properties where open import Array.Base open import Data.Fin using (Fin; zero; suc; raise; fromℕ≤; fromℕ<; fromℕ) open import Data.Nat open import Data.Nat.Properties open import Data.Vec open import Data.Vec.Properties open import Relation.Binary.PropositionalEquality open import Function using (_$_; _∘_; case_of_) open import Data.Product open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Negation open import Relation.Binary using (Decidable; Rel) open import Data.Maybe open import Data.Sum sel-ext : ∀ {a}{X : Set a}{d s} → (f : Ix d s → X) → (iv jv : Ix d s) → iv =ix jv → f iv ≡ f jv sel-ext {d = zero} f [] [] pf = refl sel-ext {d = suc d} f (i ∷ iv) (j ∷ jv) pf rewrite (pf zero) = sel-ext (f ∘ (j ∷_)) iv jv (pf ∘ suc) s→a∘a→s : ∀ {n} → (a : Ar ℕ 1 (n ∷ [])) → s→a (a→s a) =a a s→a∘a→s (imap x) (i ∷ []) = lookup∘tabulate _ i a→s∘s→a : ∀ {n} → (v : Vec ℕ n) → a→s (s→a v) =s v a→s∘s→a v i = lookup∘tabulate _ i refl-=a : ∀ {a}{X : Set a}{d s}{x : Ar X d s} → x =a x refl-=a {x = imap x} iv = refl sym-=a : ∀ {a}{X : Set a}{d s}{l r : Ar X d s} → l =a r → r =a l sym-=a {l = imap f} {imap g} l=r = sym ∘ l=r trans-=a : ∀ {a}{X : Set a}{d s}{x y z : Ar X d s} → x =a y → y =a z → x =a z trans-=a {x = imap x} {imap y} {imap z} x=y y=z iv = trans (x=y iv) (y=z iv) _<v?_ : ∀ {n} → Decidable (_<s_ {n = n}) [] <v? [] = yes λ () (x ∷ xs) <v? (y ∷ ys) = case _,_ {B = λ x₂ → Dec (xs <s ys) }(x <? y) (xs <v? ys) of λ where (yes pf-xy , yes pf-xsys) → yes λ where zero → pf-xy (suc i) → pf-xsys i (no pf-xy , _) → no (not-head pf-xy) (_ , no pf-xsys) → no (not-tail pf-xsys) where p1 : ∀ {n}{x y}{xs ys : Vec ℕ n} → (x ∷ xs) <s (y ∷ ys) → x < y p1 pf = pf zero p2 : ∀ {n}{x y}{xs ys : Vec ℕ n} → (x ∷ xs) <s (y ∷ ys) → xs <s ys p2 pf = pf ∘ (raise 1) not-head : ∀ {n}{x y}{xs ys : Vec ℕ n} → ¬ (x < y) → ¬ ((x ∷ xs) <s (y ∷ ys)) not-head pf-xy pf-xxs-yys = contradiction (p1 pf-xxs-yys) pf-xy not-tail : ∀ {n}{x y}{xs ys : Vec ℕ n} → ¬ (xs <s ys) → ¬ ((x ∷ xs) <s (y ∷ ys)) not-tail pf-xsys pf-xxs-yys = contradiction (p2 pf-xxs-yys) pf-xsys -- Index curry makes it possible to fix the first position of -- the index vector and select a sub-array. ix-curry : ∀ {a}{X : Set a}{d s ss} → (f : Ix (suc d) (s ∷ ss) → X) → (Fin s) → (Ix d ss → X) ix-curry f x xs = f (x ∷ xs) ARel : ∀ {a}{A : Set a} → (P : Rel A a) -- → Decidable P → ∀ {d s} → Ar A d s → Ar A d s → Set a ARel p (imap x) (imap y) = ∀ iv → p (x iv) (y iv) --test = ARel _≥_ -- If a < b, then sub-arays a[i] < b[i], where a[i] and b[i] -- is non-scalar selection where the head of index-vector is -- fixed to i. all-subarrays : ∀ {d s ss}{a}{X : Set a}{_~_ : Rel X a} → let _~a_ = ARel _~_ in (a b : Ix (suc d) (suc s ∷ ss) → X) → imap a ~a imap b → ∀ i → (imap (ix-curry a i) ~a imap (ix-curry b i)) all-subarrays a b pf i iv = pf (i ∷ iv) -- If all a[i] < b[i], then a < b. from-subarrays : ∀ {d s ss}{a}{X : Set a}{_~_ : Rel X a} → let _~a_ = ARel _~_ in (a b : Ix (suc d) (suc s ∷ ss) → X) → (∀ i → (imap (ix-curry a i) ~a imap (ix-curry b i))) → imap a ~a imap b from-subarrays a b pf (x ∷ iv) = pf x iv -- If there exists i such that ¬ a[i] < b[i], then ¬ a < b. not-subarrays : ∀ {d s ss}{a}{X : Set a}{_~_ : Rel X a} → let _~a_ = ARel _~_ in (a b : Ix (suc d) (suc s ∷ ss) → X) → (i : Fin (suc s)) → ¬ imap (ix-curry a i) ~a imap (ix-curry b i) → ¬ imap a ~a imap b not-subarrays a b i ¬p pp = contradiction pp λ z → ¬p (λ iv → z (i ∷ iv)) module not-needed where unmaybe : ∀ {a}{X : Set a}{n} → (x : Vec (Maybe X) n) → (∀ i → lookup x i ≢ nothing) → Vec X n unmaybe {n = zero} x pf = [] unmaybe {n = suc n} (just x ∷ xs) pf = x ∷ unmaybe xs (pf ∘ suc) unmaybe {n = suc n} (nothing ∷ x₁) pf = contradiction refl $ pf zero check-all-nothing : ∀ {a}{X : Set a}{n} → (x : Vec (Maybe X) n) → Maybe ((i : Fin n) → lookup x i ≢ nothing) check-all-nothing {n = zero} x = nothing check-all-nothing {n = suc n} (just x ∷ xs) with check-all-nothing xs check-all-nothing {n = suc n} (just x ∷ xs) | just f = just λ { zero → λ () ; (suc k) → f k } check-all-nothing {n = suc n} (just x ∷ xs) | nothing = nothing check-all-nothing {n = suc n} _ = nothing check-all-subarrays : ∀ {d s ss}{a}{X : Set a}{_~_ : Rel X a} → let _~a_ = ARel _~_ in (a b : Ix (suc d) (suc s ∷ ss) → X) → (∀ i → Dec (imap (ix-curry a i) ~a imap (ix-curry b i))) → (Σ (Fin (suc s)) λ i → ¬ (imap (ix-curry a i) ~a imap (ix-curry b i))) ⊎ (∀ i → (imap (ix-curry a i) ~a imap (ix-curry b i))) check-all-subarrays {s = zero} a b pf with (pf zero) check-all-subarrays {_} {zero} a b pf | yes p = inj₂ λ { zero → p } check-all-subarrays {_} {zero} a b pf | no ¬p = inj₁ (zero , ¬p) check-all-subarrays {s = suc s} {_~_ = _~_} a b pf with check-all-subarrays {_~_ = _~_} (λ { (i ∷ iv) → a (suc i ∷ iv)}) (λ { (i ∷ iv) → b (suc i ∷ iv)}) (pf ∘ suc) -- If we have a subarray that is not < -- simply propagate it further, updating the index check-all-subarrays {_} {suc s} a b pf | inj₁ (i , a≁b) = inj₁ (suc i , a≁b) check-all-subarrays {_} {suc s} a b pf | inj₂ y with (pf zero) check-all-subarrays {_} {suc s} a b pf | inj₂ y | yes p = inj₂ λ { zero → p ; (suc k) → y k } check-all-subarrays {_} {suc s} a b pf | inj₂ y | no ¬p = inj₁ (zero , ¬p) {- -- For arrays a and b, if f : ∀ i → Dec (a[i] < b[i]), -- check whether: -- 1. There exists i, for which ¬ a[i] < b[i] -- 2. Otherwise construct a function of type ∀ i → a[i] < b[i] check-all-subarrays : ∀ {d s ss} → (a b : Ix (suc d) (suc s ∷ ss) → ℕ) → (∀ i → Dec (imap (ix-curry a i) <a imap (ix-curry b i))) → (Σ (Fin (suc s)) λ i → ¬ (imap (ix-curry a i) <a imap (ix-curry b i))) ⊎ (∀ i → (imap (ix-curry a i) <a imap (ix-curry b i))) check-all-subarrays {s = zero} a b pf with (pf zero) check-all-subarrays {_} {zero} a b pf | yes p = inj₂ λ { zero → p } check-all-subarrays {_} {zero} a b pf | no ¬p = inj₁ (zero , ¬p) check-all-subarrays {s = suc s} a b pf with check-all-subarrays (λ { (i ∷ iv) → a (suc i ∷ iv)}) (λ { (i ∷ iv) → b (suc i ∷ iv)}) (pf ∘ suc) -- If we have a subarray that is not < -- simply propagate it further, updating the index check-all-subarrays {_} {suc s} a b pf | inj₁ (i , a≮b) = inj₁ (suc i , a≮b) check-all-subarrays {_} {suc s} a b pf | inj₂ y with (pf zero) check-all-subarrays {_} {suc s} a b pf | inj₂ y | yes p = inj₂ λ { zero → p ; (suc k) → y k } check-all-subarrays {_} {suc s} a b pf | inj₂ y | no ¬p = inj₁ (zero , ¬p) -} mk-dec-arel : ∀ {a}{X : Set a} → (p : Rel X a) → Decidable p → ∀ {d s} → Decidable (ARel p {d = d} {s = s}) mk-dec-arel _~_ _~?_ {zero} {[]} (imap x) (imap x₁) with x [] ~? x₁ [] mk-dec-arel _~_ _~?_ {zero} {[]} (imap x) (imap x₁) | yes p = yes λ { [] → p } mk-dec-arel _~_ _~?_ {zero} {[]} (imap x) (imap x₁) | no ¬p = no λ p → contradiction (p []) ¬p mk-dec-arel _~_ _~?_ {suc d} {zero ∷ ss} (imap x) (imap x₁) = yes λ iv → magic-fin $ ix-lookup iv zero mk-dec-arel _~_ _~?_ {suc d} {suc s ∷ ss} (imap x) (imap x₁) = case-analysis where case-analysis : _ -- Dec ((i : Ix (suc d) (suc s ∷ ss)) → suc (x i) ≤ x₁ i) case-analysis = let _~a?_ = mk-dec-arel _~_ _~?_ in case check-all-subarrays {_~_ = _~_} x x₁ (λ i → imap (ix-curry x i) ~a? imap (ix-curry x₁ i)) of λ where -- In this case we have an index and a proof that -- subarray at this index is not < (inj₁ (i , x≁x₁)) → no $ not-subarrays {_~_ = _~_} x x₁ i x≁x₁ -- In this case we have a function that for every index -- returns a proof that sub-arrays are < (inj₂ f) → yes (from-subarrays {_~_ = _~_} x x₁ f) _<a?_ = mk-dec-arel _<_ _<?_ _≥a?_ = mk-dec-arel _≥_ _≥?_ {- _<a?_ : ∀ {d s} → Decidable (_<a_ {d = d} {s = s}) _<a?_ {zero} {[]} (imap x) (imap x₁) with x [] <? x₁ [] _<a?_ {zero} {[]} (imap x) (imap x₁) | yes p = yes λ { [] → p } _<a?_ {zero} {[]} (imap x) (imap x₁) | no ¬p = no λ p → contradiction (p []) ¬p _<a?_ {suc d} {0 ∷ ss} (imap x) (imap x₁) = yes λ iv → magic-fin $ ix-lookup iv zero _<a?_ {suc d} {(suc s) ∷ ss} (imap x) (imap x₁) = case-analysis where case-analysis : _ -- Dec ((i : Ix (suc d) (suc s ∷ ss)) → suc (x i) ≤ x₁ i) case-analysis = case check-all-subarrays {_~_ = _<_} x x₁ (λ i → imap (ix-curry x i) <a? imap (ix-curry x₁ i)) of λ where -- In this case we have an index and a proof that -- subarray at this index is not < (inj₁ (i , x≮x₁)) → no $ not-subarrays {_~_ = _<_} x x₁ i x≮x₁ -- In this case we have a function that for every index -- returns a proof that sub-arrays are < (inj₂ f) → yes (from-subarrays {_~_ = _<_} x x₁ f) _≥a?_ : ∀ {d s} → Decidable (_≥a_ {d = d} {s = s}) _≥a?_ {zero} {[]} (imap x) (imap x₁) with x [] ≥? x₁ [] _≥a?_ {zero} {[]} (imap x) (imap x₁) | yes p = yes λ { [] → p } _≥a?_ {zero} {[]} (imap x) (imap x₁) | no ¬p = no λ p → contradiction (p []) ¬p _≥a?_ {suc d} {s} (imap x) (imap x₁) = {!!} -} private thm : ∀ { i s } → i < s → s ∸ i ∸ 1 + suc i ≡ s thm {i} {s} pf = begin s ∸ i ∸ 1 + suc i ≡⟨ cong (_+ (suc i)) (∸-+-assoc s i 1) ⟩ s ∸ (i + 1) + suc i ≡⟨ cong (_+ (suc i)) (cong (s ∸_) (+-comm i 1)) ⟩ s ∸ suc i + suc i ≡⟨ m∸n+n≡m pf ⟩ s ∎ where open ≡-Reasoning -- XXX can we do this simpler? ≮a⇒∃ : ∀ {d s}{a b : Ar _ d s} → ¬ a <a b → Σ (Ix d s) λ iv → ¬ (unimap a iv < unimap b iv) ≮a⇒∃ {zero} {[]} {imap f} {imap g} ¬a<b with f [] <? g [] ≮a⇒∃ {zero} {[]} {imap f} {imap g} ¬a<b | yes p = contradiction (λ { [] → p}) ¬a<b ≮a⇒∃ {zero} {[]} {imap f} {imap g} ¬a<b | no ¬p = [] , ¬p ≮a⇒∃ {suc d} {zero ∷ ss} {imap f} {imap g} ¬a<b = contradiction (λ iv → magic-fin $ ix-lookup iv zero) ¬a<b ≮a⇒∃ {suc d} {suc s ∷ ss} {imap f} {imap g} ¬a<b = case-analysis where case-analysis : _ case-analysis = case check-all-subarrays {_~_ = _<_} f g (λ i → imap (ix-curry f i) <a? imap (ix-curry g i)) of λ where (inj₁ (i , f≮g)) → let iv , pf = ≮a⇒∃ f≮g in (i ∷ iv) , λ pp → contradiction pp pf (inj₂ pf) → contradiction (from-subarrays {_~_ = _<_} f g pf) ¬a<b module try-irrelevant where -- XXX this shouldn't be here, this is for now to avoid -- dependencies in the modules. -- Inverse of the above a→ix : ∀ {d} --{s : Fin d → ℕ} → (ax sh : Ar ℕ 1 (d ∷ [])) -- XXX we can make this inequality irrelevant -- and recompute it when it is needed, as <a -- is decideable. → .(ax <a sh) → Ix d (a→s sh) a→ix {d} (imap axf) (imap shf) ax<sh = ix-tabulate from-pf where pf : _ pf = recompute (imap axf <a? imap shf) ax<sh from-pf : _ from-pf i rewrite (lookup∘tabulate (shf ∘ (_∷ [])) i) = let ix : Ix 1 (d ∷ []) ix = i ∷ [] r = raise (shf ix ∸ axf ix ∸ 1) $ fromℕ (axf ix) in subst Fin (thm (pf ix)) r --fromℕ≤ (ax<sh (i ∷ [])) a→ix : ∀ {d} --{s : Fin d → ℕ} → (ax sh : Ar ℕ 1 (d ∷ [])) → (ax <a sh) → Ix d (a→s sh) a→ix {d} (imap axf) (imap shf) ax<sh = ix-tabulate from-pf where from-pf : _ from-pf i rewrite (lookup∘tabulate (shf ∘ (_∷ [])) i) = fromℕ< (ax<sh (i ∷ []))
{ "alphanum_fraction": 0.4587155963, "avg_line_length": 43.5268456376, "ext": "agda", "hexsha": "a94b383f3a4feb5a4be6b4ecfae351ccec00c064", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-array", "max_forks_repo_path": "Array/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-array", "max_issues_repo_path": "Array/Properties.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-array", "max_stars_repo_path": "Array/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z", "num_tokens": 4788, "size": 12971 }
module Oscar.Class.Symmetry where open import Oscar.Class.Extensionality open import Oscar.Function open import Oscar.Level record Symmetry {a} {A : Set a} {ℓ} (_≤_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field ⦃ ′extensionality ⦄ : Extensionality _≤_ (λ ⋆ → flip _≤_ ⋆) id id symmetry : ∀ {x y} → x ≤ y → y ≤ x symmetry = extension (λ ⋆ → flip _≤_ ⋆) open Symmetry ⦃ … ⦄ public hiding (′extensionality) instance Symmetry⋆ : ∀ {a} {A : Set a} {ℓ} {_≤_ : A → A → Set ℓ} ⦃ _ : Extensionality _≤_ (λ ⋆ → flip _≤_ ⋆) id id ⦄ → Symmetry _≤_ Symmetry.′extensionality Symmetry⋆ = it
{ "alphanum_fraction": 0.6072607261, "avg_line_length": 25.25, "ext": "agda", "hexsha": "19652ee6937dec5b44356358f243a4a52b180b84", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Symmetry.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Symmetry.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Symmetry.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 252, "size": 606 }
import cedille-options module elaboration (options : cedille-options.options) where open import lib options' = record options {during-elaboration = tt; erase-types = ff; show-qualified-vars = ff} open import general-util open import monad-instances open import cedille-types open import classify options' {id} open import ctxt open import constants open import conversion open import is-free open import meta-vars options' {id} open import spans options {IO} open import subst open import syntax-util open import toplevel-state options {IO} open import to-string options' open import rename open import rewriting open import elaboration-helpers options open import templates import spans options' {id} as id-spans {- Datatypes -} mendler-encoding : datatype-encoding mendler-encoding = let functorₓ = "Functor" castₓ = "cast" fixpoint-typeₓ = "CVFixIndM" fixpoint-inₓ = "cvInFixIndM" fixpoint-indₓ = "cvIndFixIndM" in record { template = MendlerTemplate; functor = functorₓ; cast = castₓ; fixpoint-type = fixpoint-typeₓ; fixpoint-in = fixpoint-inₓ; fixpoint-ind = fixpoint-indₓ; elab-mu = λ { (Data x ps is cs) (mk-encoded-datatype-names data-functorₓ data-fmapₓ data-functor-indₓ castₓ fixpoint-typeₓ fixpoint-inₓ fixpoint-indₓ) Γ t oT ms → record { elab-check-mu = λ ihₓ T → nothing; elab-synth-mu = case oT of λ { NoType ihₓ → nothing; (SomeType Tₘ) ihₓ → nothing }; elab-check-mu' = λ T → nothing; elab-synth-mu' = case oT of λ { NoType → nothing; (SomeType Tₘ) → nothing } } } } mendler-simple-encoding : datatype-encoding mendler-simple-encoding = let functorₓ = "RecFunctor" castₓ = "cast" fixpoint-typeₓ = "FixM" fixpoint-inₓ = "inFix" fixpoint-indₓ = "IndFixM" in record { template = MendlerSimpleTemplate; functor = functorₓ; cast = castₓ; fixpoint-type = fixpoint-typeₓ; fixpoint-in = fixpoint-inₓ; fixpoint-ind = fixpoint-indₓ; elab-mu = λ { (Data x ps is cs) (mk-encoded-datatype-names data-functorₓ data-fmapₓ data-functor-indₓ castₓ fixpoint-typeₓ fixpoint-inₓ fixpoint-indₓ) Γ t oT ms → record { elab-check-mu = λ ihₓ T → -- let Tₘ = case oT of λ {(SomeType Tₘ) → Tₘ; NoType → indices-to-tplams is $ TpLambda posinfo-gen posinfo-gen ignored-var (Tkt {!!}) T} in nothing; elab-synth-mu = case oT of λ { NoType ihₓ → nothing; (SomeType Tₘ) ihₓ → nothing }; elab-check-mu' = λ T → nothing; elab-synth-mu' = case oT of λ { NoType → nothing; (SomeType Tₘ) → nothing } } } } selected-encoding = mendler-simple-encoding -- TODO: ^ Add option so user can choose encoding ^ {-# TERMINATING #-} elab-check-term : ctxt → term → type → maybe term elab-synth-term : ctxt → term → maybe (term × type) elab-pure-term : ctxt → term → maybe term elab-type : ctxt → type → maybe (type × kind) elab-pure-type : ctxt → type → maybe type elab-kind : ctxt → kind → maybe kind elab-pure-kind : ctxt → kind → maybe kind elab-tk : ctxt → tk → maybe tk elab-pure-tk : ctxt → tk → maybe tk elab-typeh : ctxt → type → 𝔹 → maybe (type × kind) elab-kindh : ctxt → kind → 𝔹 → maybe kind elab-tkh : ctxt → tk → 𝔹 → maybe tk elab-type-arrow : type → type elab-kind-arrow : kind → kind elab-tk-arrow : tk → tk elab-hnf-type : ctxt → type → 𝔹 → maybe type elab-hnf-kind : ctxt → kind → 𝔹 → maybe kind elab-hnf-tk : ctxt → tk → 𝔹 → maybe tk elab-app-term : ctxt → term → prototype → 𝔹 → maybe ((meta-vars → maybe term) × spine-data) elab-type Γ T = elab-typeh Γ T tt elab-kind Γ k = elab-kindh Γ k tt elab-tk Γ atk = elab-tkh Γ atk tt elab-pure-type Γ T = maybe-map fst (elab-typeh Γ T ff) elab-pure-kind Γ k = elab-kindh Γ k ff elab-pure-tk Γ atk = elab-tkh Γ atk ff elab-type-arrow (Abs pi b pi' x atk T) = Abs pi b pi' x (elab-tk-arrow atk) (elab-type-arrow T) elab-type-arrow (Iota pi pi' x T T') = Iota pi pi' x (elab-type-arrow T) (elab-type-arrow T') elab-type-arrow (Lft pi pi' x t lT) = Lft pi pi' x t lT elab-type-arrow (NoSpans T pi) = elab-type-arrow T elab-type-arrow (TpLet pi (DefTerm pi' x NoType t) T') = TpLet pi (DefTerm pi x NoType t) (elab-type-arrow T') elab-type-arrow (TpLet pi (DefTerm pi' x (SomeType T) t) T') = TpLet pi (DefTerm pi x (SomeType (elab-type-arrow T)) t) T' elab-type-arrow (TpLet pi (DefType pi' x k T) T') = TpLet pi (DefType pi' x (elab-kind-arrow k) (elab-type-arrow T)) (elab-type-arrow T') elab-type-arrow (TpApp T T') = TpApp (elab-type-arrow T) (elab-type-arrow T') elab-type-arrow (TpAppt T t) = TpAppt (elab-type-arrow T) t elab-type-arrow (TpArrow T a T') = Abs posinfo-gen a posinfo-gen "_" (Tkt (elab-type-arrow T)) (elab-type-arrow T') elab-type-arrow (TpEq pi t t' pi') = TpEq pi (erase-term t) (erase-term t') pi' elab-type-arrow (TpHole pi) = TpHole pi elab-type-arrow (TpLambda pi pi' x atk T) = TpLambda pi pi' x (elab-tk-arrow atk) (elab-type-arrow T) elab-type-arrow (TpParens pi T pi') = elab-type-arrow T elab-type-arrow (TpVar pi x) = TpVar pi x elab-kind-arrow (KndArrow k k') = KndPi posinfo-gen posinfo-gen "_" (Tkk (elab-kind-arrow k)) (elab-kind-arrow k') elab-kind-arrow (KndParens pi k pi') = elab-kind-arrow k elab-kind-arrow (KndPi pi pi' x atk k) = KndPi pi pi' x (elab-tk-arrow atk) (elab-kind-arrow k) elab-kind-arrow (KndTpArrow T k) = KndPi posinfo-gen posinfo-gen "_" (Tkt (elab-type-arrow T)) (elab-kind-arrow k) elab-kind-arrow k = k elab-tk-arrow (Tkt T) = Tkt (elab-type-arrow T) elab-tk-arrow (Tkk k) = Tkk (elab-kind-arrow k) elab-hnf-type Γ T b = just (elab-type-arrow (substh-type {TYPE} Γ empty-renamectxt empty-trie (hnf Γ (unfolding-set-erased unfold-head (~ b)) T tt))) elab-hnf-kind Γ k b = just (elab-kind-arrow (substh-kind {KIND} Γ empty-renamectxt empty-trie (hnf Γ (unfolding-set-erased unfold-head (~ b)) k tt))) elab-hnf-tk Γ (Tkt T) b = elab-hnf-type Γ T b ≫=maybe (just ∘ Tkt) elab-hnf-tk Γ (Tkk k) b = elab-hnf-kind Γ k b ≫=maybe (just ∘ Tkk) elab-check-term Γ (App t me t') T = elab-app-term Γ (App t me t') (proto-maybe (just T)) tt ≫=maybe uncurry λ where tf (mk-spine-data Xs T' _) → tf Xs elab-check-term Γ (AppTp t T) T' = elab-synth-term Γ t ≫=maybe uncurry λ t T'' → elab-type Γ T ≫=maybe uncurry λ T k → just (AppTp t T) elab-check-term Γ (Beta pi ot ot') T = let ot'' = case ot' of λ where NoTerm → just (fresh-id-term Γ); (SomeTerm t _) → elab-pure-term Γ (erase-term t) in case ot of λ where NoTerm → elab-hnf-type Γ T tt ≫=maybe λ where (TpEq _ t₁ t₂ _) → ot'' ≫=maybe (just ∘ mbeta t₁) _ → nothing (SomeTerm t _) → elab-pure-term Γ (erase-term t) ≫=maybe λ t → ot'' ≫=maybe (just ∘ mbeta t) elab-check-term Γ (Chi pi mT t) T = case mT of λ where NoType → maybe-map fst (elab-synth-term Γ t) (SomeType T') → elab-pure-type Γ (erase-type T') ≫=maybe λ T' → let id = fresh-id-term Γ in elab-check-term Γ t T' ≫=maybe (just ∘ mrho (mbeta id id) "_" T') elab-check-term Γ (Delta pi mT t) T = elab-pure-type Γ (erase-type T) ≫=maybe λ T → elab-synth-term Γ t ≫=maybe uncurry λ where t (TpEq _ t1 t2 _) → rename "x" from Γ for λ x → rename "y" from Γ for λ y → rename "z" from Γ for λ z → let ρ = renamectxt-insert (renamectxt-insert (renamectxt-insert empty-renamectxt x x) y y) z z tt-term = mlam x (mlam y (mvar x)) ff-term = mlam x (mlam y (mvar y)) in if conv-term Γ t1 tt-term && conv-term Γ t2 ff-term then just (Delta posinfo-gen (SomeType T) t) else delta-contra (hnf Γ unfold-head t1 tt) (hnf Γ unfold-head t2 tt) ≫=maybe λ f → let f = substh-term {TERM} Γ ρ empty-trie f in elab-pure-term Γ (erase-term t) ≫=maybe λ pt → just (Delta posinfo-gen (SomeType T) (mrho t z (mtpeq (mapp f t1) (mapp f (mvar z))) (mbeta tt-term pt))) t T → nothing elab-check-term Γ (Epsilon pi lr mm t) T = elab-hnf-type Γ T tt ≫=maybe λ where (TpEq _ t₁ t₂ _) → elab-check-term Γ (Chi posinfo-gen (SomeType (check-term-update-eq Γ lr mm posinfo-gen t₁ t₂ posinfo-gen)) t) T _ → nothing elab-check-term Γ (Hole pi) T = nothing elab-check-term Γ (IotaPair pi t t' og pi') T = elab-hnf-type Γ T tt ≫=maybe λ where (Iota _ pi x T' T'') → elab-check-term Γ t T' ≫=maybe λ t → elab-check-term Γ t' (subst Γ t x T'') ≫=maybe λ t' → rename x from Γ for λ x' → just (IotaPair posinfo-gen t t' (Guide posinfo-gen x' T'') posinfo-gen) _ → nothing elab-check-term Γ (IotaProj t n pi) T = elab-synth-term Γ t ≫=maybe uncurry λ t T' → just (IotaProj t n posinfo-gen) elab-check-term Γ (Lam pi l pi' x oc t) T = (elab-hnf-type Γ T tt ≫=maybe to-abs) ≫=maybe λ where (mk-abs b x' atk free T') → rename (if x =string "_" && free then x' else x) from Γ for λ x'' → elab-tk Γ atk ≫=maybe λ tk → elab-check-term (ctxt-tk-decl' pi' x'' atk Γ) (rename-var Γ x x'' t) (rename-var Γ x' x'' T') ≫=maybe λ t → just (Lam posinfo-gen l posinfo-gen x'' (SomeClass atk) t) elab-check-term Γ (Let pi d t) T = case d of λ where (DefTerm pi' x NoType t') → rename x from Γ for λ x' → elab-synth-term Γ t' ≫=maybe uncurry λ t' T' → elab-check-term (ctxt-let-term-def pi' x' t' T' Γ) (rename-var Γ x x' t) T ≫=maybe λ t → just (Let posinfo-gen (DefTerm posinfo-gen x' NoType t') t) (DefTerm pi' x (SomeType T') t') → rename x from Γ for λ x' → elab-type Γ T' ≫=maybe uncurry λ T' k → elab-check-term Γ t' T' ≫=maybe λ t' → elab-check-term (ctxt-let-term-def pi' x' t' T' Γ) (rename-var Γ x x' t) T ≫=maybe λ t → just (Let posinfo-gen (DefTerm posinfo-gen x' NoType t') t) (DefType pi' x k T') → rename x from Γ for λ x' → elab-type Γ T' ≫=maybe uncurry λ T' k' → elab-check-term (ctxt-let-type-def pi' x' T' k' Γ) (rename-var Γ x x' t) T ≫=maybe λ t → just (Let posinfo-gen (DefType posinfo-gen x' k' T') t) elab-check-term Γ (Open pi x t) T = ctxt-clarify-def Γ x ≫=maybe uncurry λ _ Γ → elab-check-term Γ t T elab-check-term Γ (Parens pi t pi') T = elab-check-term Γ t T elab-check-term Γ (Phi pi t t₁ t₂ pi') T = elab-pure-term Γ (erase-term t₁) ≫=maybe λ t₁' → elab-pure-term Γ (erase-term t₂) ≫=maybe λ t₂ → elab-check-term Γ t₁ T ≫=maybe λ t₁ → elab-check-term Γ t (mtpeq t₁' t₂) ≫=maybe λ t → just (Phi posinfo-gen t t₁ t₂ posinfo-gen) elab-check-term Γ (Rho pi op on t og t') T = elab-synth-term Γ t ≫=maybe uncurry λ t T' → elab-hnf-type Γ (erase-type T') ff ≫=maybe λ where (TpEq _ t₁ t₂ _) → case og of λ where NoGuide → elab-hnf-type Γ T tt ≫=maybe λ T → rename "x" from Γ for λ x → let ns = fst (optNums-to-stringset on) Γ' = ctxt-var-decl x Γ rT = fst (rewrite-type T Γ' (is-rho-plus op) ns t t₁ x 0) rT' = post-rewrite Γ x t t₂ rT in elab-hnf-type Γ rT' tt ≫=maybe λ rT' → elab-check-term Γ t' rT' ≫=maybe (just ∘ mrho (Sigma posinfo-gen t) x (erase-type rT)) (Guide pi' x T') → let Γ' = ctxt-var-decl x Γ in elab-pure-type Γ' (erase-type T') ≫=maybe λ T' → elab-check-term Γ t' (post-rewrite Γ' x t t₂ (rewrite-at Γ' x t tt T T')) ≫=maybe (just ∘ mrho t x T') _ → nothing elab-check-term Γ (Sigma pi t) T = elab-hnf-type Γ T tt ≫=maybe λ where (TpEq _ t₁ t₂ _) → elab-check-term Γ t (mtpeq t₂ t₁) ≫=maybe λ t → just (Sigma posinfo-gen t) _ → nothing elab-check-term Γ (Theta pi θ t ts) T = elab-synth-term Γ t ≫=maybe uncurry λ t T' → let x = case hnf Γ unfold-head t tt of λ {(Var _ x) → x; _ → "_"} in rename x from Γ for λ x' → motive x x' T T' θ ≫=maybe λ mtv → elab-check-term Γ (lterms-to-term θ (AppTp t mtv) ts) T where wrap-var : var → type → maybe type wrap-var x T = rename x from Γ for λ x' → env-lookup Γ x ≫=maybe λ where (term-decl T' , loc) → just (mtplam x' (Tkt T') (rename-var Γ x x' T)) (type-decl k , loc) → just (mtplam x' (Tkk k) (rename-var Γ x x' T)) (term-def ps _ _ T' , loc) → just (mtplam x' (Tkt T') (rename-var Γ x x' T)) (type-def ps _ _ k , loc) → just (mtplam x' (Tkk k) (rename-var Γ x x' T)) _ → nothing wrap-vars : vars → type → maybe type wrap-vars (VarsStart x) T = wrap-var x T wrap-vars (VarsNext x xs) T = wrap-vars xs T ≫=maybe wrap-var x motive : var → var → type → type → theta → maybe type motive x x' T T' Abstract = just (mtplam x' (Tkt T') (rename-var Γ x x' T)) motive x x' T T' AbstractEq = just (mtplam x' (Tkt T') (TpArrow (mtpeq t (mvar x')) Erased (rename-var Γ x x' T))) motive x x' T T' (AbstractVars vs) = wrap-vars vs T elab-check-term Γ (Var pi x) T = just (mvar x) elab-check-term Γ (Mu pi x t ot pi' cs pi'') T = nothing elab-check-term Γ (Mu' pi t ot pi' cs pi'') T = nothing elab-synth-term Γ (App t me t') = elab-app-term Γ (App t me t') (proto-maybe nothing) tt ≫=maybe uncurry λ where tf (mk-spine-data Xs T _) → tf Xs ≫=maybe λ t'' → elab-hnf-type Γ (meta-vars-subst-type' ff Γ Xs (decortype-to-type T)) tt ≫=maybe λ T → just (t'' , T) elab-synth-term Γ (AppTp t T) = elab-synth-term Γ t ≫=maybe uncurry λ t T' → elab-hnf-type Γ T' tt ≫=maybe λ where (Abs _ _ _ x (Tkk k) T'') → elab-type Γ T ≫=maybe uncurry λ T k' → just (AppTp t T , subst Γ T x T'') _ → nothing elab-synth-term Γ (Beta pi ot ot') = let ot'' = case ot' of λ where NoTerm → just (fresh-id-term Γ); (SomeTerm t _) → elab-pure-term Γ (erase-term t) in case ot of λ where (SomeTerm t _) → elab-pure-term Γ (erase-term t) ≫=maybe λ t → ot'' ≫=maybe λ t' → just (mbeta t t' , mtpeq t t) NoTerm → nothing elab-synth-term Γ (Chi pi mT t) = case mT of λ where NoType → elab-synth-term Γ t (SomeType T') → let id = fresh-id-term Γ in elab-pure-type Γ (erase-type T') ≫=maybe λ T' → elab-check-term Γ t T' ≫=maybe λ t → just (mrho (mbeta id id) "_" T' t , T') elab-synth-term Γ (Delta pi mT t) = (case mT of λ where NoType → just compileFailType (SomeType T) → elab-pure-type Γ (erase-type T)) ≫=maybe λ T → elab-synth-term Γ t ≫=maybe uncurry λ where t (TpEq _ t1 t2 _) → elab-pure-term Γ (erase-term t) ≫=maybe λ pt → rename "x" from Γ for λ x → rename "y" from Γ for λ y → rename "z" from Γ for λ z → let ρ = renamectxt-insert (renamectxt-insert (renamectxt-insert empty-renamectxt x x) y y) z z tt-term = mlam x (mlam y (mvar x)) ff-term = mlam x (mlam y (mvar y)) in if conv-term Γ t1 tt-term && conv-term Γ t2 ff-term then just (Delta posinfo-gen (SomeType T) t , T) else delta-contra (hnf Γ unfold-head t1 tt) (hnf Γ unfold-head t2 tt) ≫=maybe λ f → let f = substh-term {TERM} Γ ρ empty-trie f in just (Delta posinfo-gen (SomeType T) (mrho t z (mtpeq (mapp f t1) (mapp f (mvar z))) (mbeta tt-term pt)) , T) t T → nothing elab-synth-term Γ (Epsilon pi lr mm t) = elab-synth-term Γ t ≫=maybe uncurry λ where t (TpEq _ t₁ t₂ _) → let id = fresh-id-term Γ T = check-term-update-eq Γ lr mm posinfo-gen t₁ t₂ posinfo-gen in elab-pure-type Γ T ≫=maybe λ T → just (mrho (mbeta id id) "_" T t , T) _ _ → nothing elab-synth-term Γ (Hole pi) = nothing elab-synth-term Γ (IotaPair pi t₁ t₂ og pi') = case og of λ where NoGuide → nothing (Guide pi'' x T₂) → rename x from Γ for λ x' → elab-type (ctxt-var-decl x' Γ) (rename-var Γ x x' T₂) ≫=maybe uncurry λ T₂ k₂ → elab-synth-term Γ t₁ ≫=maybe uncurry λ t₁ T₁ → elab-check-term Γ t₂ (subst Γ t₁ x' T₂) ≫=maybe λ t₂ → just (IotaPair posinfo-gen t₁ t₂ (Guide posinfo-gen x' T₂) posinfo-gen , Iota posinfo-gen posinfo-gen x' T₁ T₂) elab-synth-term Γ (IotaProj t n pi) = elab-synth-term Γ t ≫=maybe uncurry λ where t (Iota _ pi' x T₁ T₂) → case n of λ where "1" → elab-hnf-type Γ T₁ tt ≫=maybe λ T₁ → just (IotaProj t n posinfo-gen , T₁) "2" → elab-hnf-type Γ (subst Γ (IotaProj t "1" posinfo-gen) x T₂) tt ≫=maybe λ T₂ → just (IotaProj t n posinfo-gen , subst Γ (IotaProj t "1" posinfo-gen) x T₂) -- , T₂) _ → nothing _ _ → nothing elab-synth-term Γ (Lam pi l pi' x oc t) = (case (l , oc) of λ where (Erased , SomeClass atk) → elab-tk Γ atk (NotErased , SomeClass (Tkt T)) → elab-tk Γ (Tkt T) _ → nothing) ≫=maybe λ atk → rename x from Γ for λ x' → elab-synth-term (ctxt-tk-decl' pi' x' atk Γ) (rename-var Γ x x' t) ≫=maybe uncurry λ t T → just (Lam posinfo-gen l posinfo-gen x' (SomeClass atk) t , Abs posinfo-gen l posinfo-gen x' atk T) elab-synth-term Γ (Let pi d t) = case d of λ where (DefTerm pi' x NoType t') → rename x from Γ for λ x' → elab-synth-term Γ t' ≫=maybe uncurry λ t' T' → elab-synth-term (ctxt-let-term-def pi' x' t' T' Γ) (rename-var Γ x x' t) ≫=maybe uncurry λ t T → just (Let posinfo-gen (DefTerm posinfo-gen x' NoType t') t , subst Γ t' x' T) (DefTerm pi' x (SomeType T') t') → rename x from Γ for λ x' → elab-type Γ T' ≫=maybe uncurry λ T' k → elab-check-term Γ t' T' ≫=maybe λ t' → elab-synth-term (ctxt-let-term-def pi' x' t' T' Γ) (rename-var Γ x x' t) ≫=maybe uncurry λ t T → just (Let posinfo-gen (DefTerm posinfo-gen x' NoType t') t , subst Γ t' x' T) (DefType pi' x k T') → rename x from Γ for λ x' → elab-type Γ T' ≫=maybe uncurry λ T' k' → elab-synth-term (ctxt-let-type-def pi' x' T' k' Γ) (rename-var Γ x x' t) ≫=maybe uncurry λ t T → just (Let posinfo-gen (DefType pi' x' k' T') t , subst Γ T' x' T) elab-synth-term Γ (Open pi x t) = ctxt-clarify-def Γ x ≫=maybe uncurry λ _ Γ → elab-synth-term Γ t elab-synth-term Γ (Parens pi t pi') = elab-synth-term Γ t elab-synth-term Γ (Phi pi t t₁ t₂ pi') = elab-pure-term Γ (erase-term t₁) ≫=maybe λ t₁' → elab-pure-term Γ (erase-term t₂) ≫=maybe λ t₂ → elab-synth-term Γ t₁ ≫=maybe uncurry λ t₁ T → elab-check-term Γ t (mtpeq t₁' t₂) ≫=maybe λ t → just (Phi posinfo-gen t t₁ t₂ posinfo-gen , T) elab-synth-term Γ (Rho pi op on t og t') = elab-synth-term Γ t ≫=maybe uncurry λ t T → elab-synth-term Γ t' ≫=maybe uncurry λ t' T' → elab-hnf-type Γ (erase-type T) ff ≫=maybe λ where (TpEq _ t₁ t₂ _) → case og of λ where NoGuide → rename "x" from Γ for λ x → let ns = fst (optNums-to-stringset on) Γ' = ctxt-var-decl x Γ rT = fst (rewrite-type T' Γ' (is-rho-plus op) ns t t₁ x 0) rT' = post-rewrite Γ' x t t₂ rT in -- elab-hnf-type Γ rT' tt ≫=maybe λ rT' → just (mrho t x (erase-type rT) t' , rT') (Guide pi' x T'') → let Γ' = ctxt-var-decl x Γ in elab-pure-type Γ' (erase-type T'') ≫=maybe λ T'' → just (mrho t x T'' t' , post-rewrite Γ' x t t₂ (rewrite-at Γ' x t tt T' T'')) _ → nothing elab-synth-term Γ (Sigma pi t) = elab-synth-term Γ t ≫=maybe uncurry λ where t (TpEq _ t₁ t₂ _) → just (Sigma posinfo-gen t , mtpeq t₂ t₁) _ _ → nothing elab-synth-term Γ (Theta pi θ t ts) = nothing elab-synth-term Γ (Var pi x) = ctxt-lookup-term-var' Γ x ≫=maybe λ T → elab-hnf-type Γ T tt ≫=maybe λ T → just (mvar x , T) elab-synth-term Γ (Mu pi x t ot pi' cs pi'') = nothing elab-synth-term Γ (Mu' pi t ot pi' cs pi'') = nothing elab-typeh Γ (Abs pi b pi' x atk T) b' = elab-tkh Γ atk b' ≫=maybe λ atk → rename x from Γ for λ x' → elab-typeh (ctxt-tk-decl' pi' x' atk Γ) (rename-var Γ x x' T) b' ≫=maybe uncurry λ T k → just (Abs posinfo-gen b posinfo-gen x' atk T , star) elab-typeh Γ (Iota pi pi' x T T') b = elab-typeh Γ T b ≫=maybe uncurry λ T k → rename x from Γ for λ x' → elab-typeh (ctxt-term-decl' pi' x' T Γ) (rename-var Γ x x' T') b ≫=maybe uncurry λ T' k' → just (Iota posinfo-gen posinfo-gen x' T T' , star) elab-typeh Γ (Lft pi pi' x t lT) b = nothing elab-typeh Γ (NoSpans T pi) b = nothing elab-typeh Γ (TpApp T T') b = elab-typeh Γ T b ≫=maybe uncurry λ T k → elab-typeh Γ T' b ≫=maybe uncurry λ T' k' → case k of λ where (KndPi _ pi x (Tkk _) k'') → just (TpApp T T' , subst Γ T' x k'') _ → nothing elab-typeh Γ (TpAppt T t) b = elab-typeh Γ T b ≫=maybe uncurry λ where T (KndPi _ pi x (Tkt T') k) → (if b then elab-check-term Γ t T' else elab-pure-term Γ (erase-term t)) ≫=maybe λ t → just (TpAppt T t , subst Γ t x k) _ _ → nothing elab-typeh Γ (TpArrow T a T') b = elab-typeh Γ T b ≫=maybe uncurry λ T k → elab-typeh Γ T' b ≫=maybe uncurry λ T' k' → just (Abs posinfo-gen a posinfo-gen "_" (Tkt T) T' , star) elab-typeh Γ (TpEq pi t t' pi') b = elab-pure-term Γ (erase-term t) ≫=maybe λ t → elab-pure-term Γ (erase-term t') ≫=maybe λ t' → just (mtpeq t t' , star) elab-typeh Γ (TpHole pi) b = nothing elab-typeh Γ (TpLambda pi pi' x atk T) b = elab-tkh Γ atk b ≫=maybe λ atk → rename x from Γ for λ x' → elab-typeh (ctxt-tk-decl' pi' x' atk Γ) (rename-var Γ x x' T) b ≫=maybe uncurry λ T k → just (mtplam x' atk T , KndPi posinfo-gen posinfo-gen x' atk k) elab-typeh Γ (TpParens pi T pi') b = elab-typeh Γ T b elab-typeh Γ (TpVar pi x) b = ctxt-lookup-type-var' Γ x ≫=maybe λ k → elab-kindh Γ k b ≫=maybe λ k → just (mtpvar x , k) elab-typeh Γ (TpLet pi (DefTerm pi' x ot t) T) = elab-typeh Γ (subst Γ (Chi posinfo-gen ot t) x T) elab-typeh Γ (TpLet pi (DefType pi' x k T') T) = elab-typeh Γ (subst Γ T' x T) elab-kindh Γ (KndArrow k k') b = elab-kindh Γ k b ≫=maybe λ k → elab-kindh Γ k' b ≫=maybe λ k' → just (KndPi posinfo-gen posinfo-gen "_" (Tkk k) k') elab-kindh Γ (KndParens pi k pi') b = elab-kindh Γ k b elab-kindh Γ (KndPi pi pi' x atk k) b = elab-tkh Γ atk b ≫=maybe λ atk → rename x from Γ for λ x' → elab-kindh (ctxt-tk-decl' pi' x' atk Γ) (rename-var Γ x x' k) b ≫=maybe λ k → just (KndPi posinfo-gen posinfo-gen x' atk k) elab-kindh Γ (KndTpArrow T k) b = elab-typeh Γ T b ≫=maybe uncurry λ T _ → elab-kindh Γ k b ≫=maybe λ k → just (KndPi posinfo-gen posinfo-gen "_" (Tkt T) k) elab-kindh Γ (KndVar pi x as) b = ctxt-lookup-kind-var-def Γ x ≫=maybe uncurry (do-subst as) where do-subst : args → params → kind → maybe kind do-subst (ArgsCons (TermArg _ t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = do-subst ys ps (subst Γ t x k) do-subst (ArgsCons (TypeArg t) ys) (ParamsCons (Decl _ _ _ x _ _) ps) k = do-subst ys ps (subst Γ t x k) do-subst ArgsNil ParamsNil k = elab-kindh Γ k b do-subst _ _ _ = nothing elab-kindh Γ (Star pi) b = just star elab-tkh Γ (Tkt T) b = elab-typeh Γ T b ≫=maybe uncurry λ T _ → just (Tkt T) elab-tkh Γ (Tkk k) b = elab-kindh Γ k b ≫=maybe λ k → just (Tkk k) elab-pure-term Γ (Var pi x) = just (mvar x) elab-pure-term Γ (App t NotErased t') = elab-pure-term Γ t ≫=maybe λ t → elab-pure-term Γ t' ≫=maybe λ t' → just (App t NotErased t') elab-pure-term Γ (Lam pi NotErased pi' x NoClass t) = rename x from Γ for λ x' → elab-pure-term (ctxt-var-decl x' Γ) (rename-var Γ x x' t) ≫=maybe λ t → just (mlam x' t) elab-pure-term Γ (Let pi (DefTerm pi' x NoType t) t') = elab-pure-term Γ t ≫=maybe λ t → elab-pure-term Γ (subst Γ t x t') elab-pure-term _ _ = nothing -- should be erased elab-app-term Γ (App t me t') pt max = elab-app-term Γ t (proto-arrow me pt) ff ≫=maybe uncurry λ where tf (mk-spine-data Xs dt locl) → case fst (meta-vars-unfold-tmapp' Γ ("" , "" , "") Xs dt Γ id-spans.empty-spans) of uncurry λ where Ys (not-tpabsd _) → nothing Ys (inj₂ arr) → elab-app-term' Xs Ys t t' arr (islocl locl) ≫=maybe uncurry λ where t' (check-term-app-return Xs' Tᵣ arg-mode _) → fst (check-spine-locality Γ Xs' (decortype-to-type Tᵣ) max (pred locl) Γ id-spans.empty-spans) ≫=maybe uncurry' λ Xs'' locl' is-loc → just ((λ Xs → tf (if is-loc then Xs' else Xs) ≫=maybe λ t → fill-meta-vars t (if is-loc then Xs' else Xs) Ys ≫=maybe λ t → just (App t me t')) , mk-spine-data Xs'' Tᵣ locl') where islocl = (max ||_) ∘ (iszero ∘ pred) fill-meta-vars : term → meta-vars → 𝕃 meta-var → maybe term fill-meta-vars t Xs = flip foldl (just t) λ where (meta-var-mk x _ _) tₘ → tₘ ≫=maybe λ t → meta-vars-lookup Xs x ≫=maybe λ where (meta-var-mk _ (meta-var-tp k Tₘ) _) → Tₘ ≫=maybe λ T → just (AppTp t (meta-var-sol.sol T)) (meta-var-mk _ (meta-var-tm T tₘ) _) → nothing elab-app-term' : (Xs : meta-vars) → (Ys : 𝕃 meta-var) → (t₁ t₂ : term) → is-tmabsd → 𝔹 → maybe (term × check-term-app-ret) elab-app-term' Xs Zs t₁ t₂ (mk-tmabsd dt me x dom occurs cod) is-locl = let Xs' = meta-vars-add* Xs Zs T = decortype-to-type dt in if ~ meta-vars-are-free-in-type Xs' dom then (elab-check-term Γ t₂ dom ≫=maybe λ t₂ → let rdt = fst $ subst-decortype Γ t₂ x cod Γ id-spans.empty-spans in just (t₂ , check-term-app-return Xs' (if occurs then rdt else cod) checking [])) else (elab-synth-term Γ t₂ ≫=maybe uncurry λ t₂ T₂ → case fst (match-types Xs' empty-trie match-unfolding-both dom T₂ Γ id-spans.empty-spans) of λ where (match-error _) → nothing (match-ok Xs) → let rdt = fst $ subst-decortype Γ t₂ x cod Γ id-spans.empty-spans rdt' = fst $ meta-vars-subst-decortype Γ Xs (if occurs then rdt else cod) Γ id-spans.empty-spans in just (t₂ , check-term-app-return Xs rdt' synthesizing [])) elab-app-term Γ (AppTp t T) pt max = elab-app-term Γ t pt max ≫=maybe uncurry λ where tf (mk-spine-data Xs dt locl) → let Tₕ = decortype-to-type dt in case fst (meta-vars-unfold-tpapp' Γ Xs dt Γ id-spans.empty-spans) of λ where (not-tpabsd _) → nothing (yes-tpabsd dt me x k sol rdt) → elab-type Γ T ≫=maybe uncurry λ T k' → just ((λ Xs → tf Xs ≫=maybe λ t → just (AppTp t T)) , mk-spine-data Xs (fst $ subst-decortype Γ T x rdt Γ id-spans.empty-spans) locl) elab-app-term Γ (Parens _ t _) pt max = elab-app-term Γ t pt max elab-app-term Γ t pt max = elab-synth-term Γ t ≫=maybe uncurry λ t T → let locl = num-arrows-in-type Γ T ret = fst $ match-prototype meta-vars-empty ff T pt Γ id-spans.empty-spans dt = match-prototype-data.match-proto-dectp ret in just ((λ Xs → just t) , mk-spine-data meta-vars-empty dt locl) {- ################################ IO ###################################### -} private ie-set-span-ast : include-elt → ctxt → start → include-elt ie-set-span-ast ie Γ ast = record ie {ss = inj₁ (regular-spans nothing [ mk-span "" "" "" [ "" , strRun Γ (file-to-string ast) , [] ] nothing ])} ie-get-span-ast : include-elt → maybe rope ie-get-span-ast ie with include-elt.ss ie ...| inj₁ (regular-spans nothing (mk-span "" "" "" (("" , r , []) :: []) nothing :: [])) = just r ...| _ = nothing elab-t : Set → Set elab-t X = toplevel-state → (var-mapping file-mapping : renamectxt) → trie encoded-datatype → X → maybe (X × toplevel-state × renamectxt × renamectxt × trie encoded-datatype) {-# TERMINATING #-} elab-file' : elab-t string elab-cmds : elab-t cmds elab-params : elab-t params elab-args : elab-t (args × params) elab-imports : elab-t imports elab-params ts ρ φ μ ParamsNil = just (ParamsNil , ts , ρ , φ , μ) elab-params ts ρ φ μ (ParamsCons (Decl _ pi me x atk _) ps) = let Γ = toplevel-state.Γ ts in elab-tk Γ (subst-qualif Γ ρ atk) ≫=maybe λ atk → rename x - x from ρ for λ x' ρ → elab-params (record ts {Γ = ctxt-param-decl x x' atk Γ}) ρ φ μ ps ≫=maybe uncurry λ ps ω → just (ParamsCons (Decl posinfo-gen posinfo-gen me x' atk posinfo-gen) ps , ω) elab-args ts ρ φ μ (ArgsNil , ParamsNil) = just ((ArgsNil , ParamsNil) , ts , ρ , φ , μ) elab-args ts ρ φ μ (_ , ParamsNil) = nothing -- Too many arguments elab-args ts ρ φ μ (ArgsNil , ParamsCons p ps) = just ((ArgsNil , ParamsCons p ps) , ts , ρ , φ , μ) elab-args ts ρ φ μ (ArgsCons a as , ParamsCons (Decl _ _ me x atk _) ps) = let Γ = toplevel-state.Γ ts in case (a , atk) of λ where (TermArg me' t , Tkt T) → elab-type Γ (subst-qualif Γ ρ T) ≫=maybe uncurry λ T k → elab-check-term Γ (subst-qualif Γ ρ t) T ≫=maybe λ t → rename qualif-new-var Γ x - x lookup ρ for λ x' ρ → let ts = record ts {Γ = ctxt-term-def' x x' t T OpacTrans Γ} in elab-args ts ρ φ μ (as , ps) ≫=maybe (uncurry ∘ uncurry) λ as ps ω → just ((ArgsCons (TermArg me' t) as , ParamsCons (Decl posinfo-gen posinfo-gen me x' (Tkt T) posinfo-gen) ps) , ω) (TypeArg T , Tkk _) → elab-type Γ (subst-qualif Γ ρ T) ≫=maybe uncurry λ T k → rename qualif-new-var Γ x - x lookup ρ for λ x' ρ → let ts = record ts {Γ = ctxt-type-def' x x' T k OpacTrans Γ} in elab-args ts ρ φ μ (as , ps) ≫=maybe (uncurry ∘ uncurry) λ as ps ω → just ((ArgsCons (TypeArg T) as , ParamsCons (Decl posinfo-gen posinfo-gen me x' (Tkk k) posinfo-gen) ps) , ω) _ → nothing elab-imports ts ρ φ μ ImportsStart = just (ImportsStart , ts , ρ , φ , μ) elab-imports ts ρ φ μ (ImportsNext (Import _ op _ ifn oa as _) is) = let Γ = toplevel-state.Γ ts fn = ctxt-get-current-filename Γ mod = ctxt-get-current-mod Γ in get-include-elt-if ts fn ≫=maybe λ ie → trie-lookup (include-elt.import-to-dep ie) ifn ≫=maybe λ ifn' → elab-file' ts ρ φ μ ifn' ≫=maybe uncurry''' λ fn ts ρ φ μ → lookup-mod-params (toplevel-state.Γ ts) ifn' ≫=maybe λ ps → elab-args ts ρ φ μ (as , ps) ≫=maybe (uncurry''' ∘ uncurry) λ as ps ts ρ φ μ → elim-pair (scope-file (record ts {Γ = ctxt-set-current-mod (toplevel-state.Γ ts) mod}) fn ifn' oa as) λ ts _ → elab-imports ts ρ φ μ is ≫=maybe uncurry''' λ is ts ρ φ μ → add-imports ts φ (stringset-strings $ get-all-deps ifn' empty-stringset) (just is) ≫=maybe λ is → let i = Import posinfo-gen NotPublic posinfo-gen fn NoOptAs ArgsNil posinfo-gen in just (ImportsNext i is , ts , ρ , φ , μ) where get-all-deps : filepath → stringset → stringset get-all-deps fp fs = maybe-else fs (foldr get-all-deps $ stringset-insert fs fp) ((maybe-not $ trie-lookup fs fp) ≫=maybe λ _ → get-include-elt-if ts fp ≫=maybe (just ∘ include-elt.deps)) add-imports : toplevel-state → renamectxt → 𝕃 string → maybe imports → maybe imports add-imports ts φ = flip $ foldl λ fn isₘ → renamectxt-lookup φ fn ≫=maybe λ ifn → isₘ ≫=maybe (just ∘ ImportsNext (Import posinfo-gen NotPublic posinfo-gen ifn NoOptAs ArgsNil posinfo-gen)) elab-cmds ts ρ φ μ CmdsStart = just (CmdsStart , ts , ρ , φ , μ) elab-cmds ts ρ φ μ (CmdsNext (DefTermOrType op (DefTerm _ x NoType t) _) cs) = let Γ = toplevel-state.Γ ts in elab-synth-term Γ (subst-qualif Γ ρ t) ≫=maybe uncurry λ t T → rename qualif-new-var Γ x - x from ρ for λ x' ρ → let ts = record ts {Γ = ctxt-term-def' x x' t T op Γ} in elab-cmds ts ρ φ μ cs ≫=maybe uncurry λ cs ω → just (CmdsNext (DefTermOrType OpacTrans (DefTerm posinfo-gen x' NoType t) posinfo-gen) cs , ω) elab-cmds ts ρ φ μ (CmdsNext (DefTermOrType op (DefTerm _ x (SomeType T) t) _) cs) = let Γ = toplevel-state.Γ ts in elab-type Γ (subst-qualif Γ ρ T) ≫=maybe uncurry λ T k → elab-check-term Γ (subst-qualif Γ ρ t) T ≫=maybe λ t → rename qualif-new-var Γ x - x from ρ for λ x' ρ → let ts = record ts {Γ = ctxt-term-def' x x' t T op Γ} in elab-cmds ts ρ φ μ cs ≫=maybe uncurry λ cs ω → just (CmdsNext (DefTermOrType OpacTrans (DefTerm posinfo-gen x' NoType t) posinfo-gen) cs , ω) elab-cmds ts ρ φ μ (CmdsNext (DefTermOrType op (DefType _ x _ T) _) cs) = let Γ = toplevel-state.Γ ts in elab-type Γ (subst-qualif Γ ρ T) ≫=maybe uncurry λ T k → rename qualif-new-var Γ x - x from ρ for λ x' ρ → let ts = record ts {Γ = ctxt-type-def' x x' T k op Γ} in elab-cmds ts ρ φ μ cs ≫=maybe uncurry λ cs ω → just (CmdsNext (DefTermOrType OpacTrans (DefType posinfo-gen x' k T) posinfo-gen) cs , ω) elab-cmds ts ρ φ μ (CmdsNext (DefKind _ x ps k _) cs) = let Γ = toplevel-state.Γ ts x' = fresh-var (qualif-new-var Γ x) (λ _ → ff) ρ ρ = renamectxt-insert ρ x x' ts = record ts {Γ = ctxt-kind-def' x x' ps k Γ} in elab-cmds ts ρ φ μ cs elab-cmds ts ρ φ μ (CmdsNext (ImportCmd i) cs) = elab-imports ts ρ φ μ (ImportsNext i ImportsStart) ≫=maybe uncurry''' λ is ts ρ φ μ → elab-cmds ts ρ φ μ cs ≫=maybe uncurry λ cs ω → just (append-cmds (imps-to-cmds is) cs , ω) elab-cmds ts ρ φ μ (CmdsNext (DefDatatype (Datatype pi pi' x ps k dcs pi'') _) cs) = let Γ = toplevel-state.Γ ts x' = rename qualif-new-var Γ x - x from ρ for λ x' ρ' → x' -- Still need to use x (not x') so constructors work, -- but we need to know what it will be renamed to later for μ d = defDatatype-to-datatype Γ (Datatype pi pi' x ps k dcs pi'') in elim-pair (datatype-encoding.mk-defs selected-encoding Γ d) λ cs' d → elab-cmds ts ρ φ (trie-insert μ x' d) (append-cmds cs' cs) elab-file' ts ρ φ μ fn = get-include-elt-if ts fn ≫=maybe λ ie → case include-elt.need-to-add-symbols-to-context ie of λ where ff → rename fn - base-filename (takeFileName fn) lookup φ for λ fn' φ → just (fn' , ts , ρ , φ , μ) tt → include-elt.ast ie ≫=maybe λ where (File _ is _ _ mn ps cs _) → rename fn - base-filename (takeFileName fn) from φ for λ fn' φ → let ie = record ie {need-to-add-symbols-to-context = ff; do-type-check = ff; inv = refl} in elab-imports (record (set-include-elt ts fn ie) {Γ = ctxt-set-current-file (toplevel-state.Γ ts) fn mn}) ρ φ μ is ≫=maybe uncurry''' λ is ts ρ φ μ → elab-params ts ρ φ μ ps ≫=maybe uncurry''' λ ps' ts ρ φ μ → let Γ = toplevel-state.Γ ts Γ = ctxt-add-current-params (ctxt-set-current-mod Γ (fn , mn , ps' , ctxt-get-qualif Γ)) in elab-cmds (record ts {Γ = Γ}) ρ φ μ cs ≫=maybe uncurry' λ cs ts ω → let ast = File posinfo-gen ImportsStart posinfo-gen posinfo-gen mn ParamsNil (remove-dup-imports empty-stringset (append-cmds (imps-to-cmds is) cs)) posinfo-gen in just (fn' , set-include-elt ts fn (ie-set-span-ast ie (toplevel-state.Γ ts) ast) , ω) where remove-dup-imports : stringset → cmds → cmds remove-dup-imports is CmdsStart = CmdsStart remove-dup-imports is (CmdsNext c @ (ImportCmd (Import _ _ _ fp _ _ _)) cs) = if stringset-contains is fp then remove-dup-imports is cs else CmdsNext c (remove-dup-imports (stringset-insert is fp) cs) remove-dup-imports is (CmdsNext c cs) = CmdsNext c $ remove-dup-imports is cs {-# TERMINATING #-} elab-all : toplevel-state → (from-fp to-fp : string) → IO ⊤ elab-all ts fm to = elab-file' prep-ts empty-renamectxt empty-renamectxt empty-trie fm err-code 1 else h where _err-code_else_ : ∀ {X : Set} → maybe X → ℕ → (X → IO ⊤) → IO ⊤ nothing err-code n else f = putStrLn (ℕ-to-string n) just x err-code n else f = f x prep-ts : toplevel-state prep-ts = record ts {Γ = new-ctxt fm "[unknown]"; is = trie-map (λ ie → record ie {need-to-add-symbols-to-context = tt; do-type-check = ff; inv = refl}) (toplevel-state.is ts)} get-file-imports : toplevel-state → (filename : string) → stringset → maybe stringset get-file-imports ts fn is = get-include-elt-if ts fn ≫=maybe λ ie → foldr (λ fn' is → if fn =string fn' then is else (is ≫=maybe λ is → get-file-imports ts fn' is ≫=maybe λ is → just (stringset-insert is fn'))) (just is) (include-elt.deps ie) h : (string × toplevel-state × renamectxt × renamectxt × trie encoded-datatype) → IO ⊤ h' : toplevel-state → renamectxt → stringset → IO ⊤ h (_ , ts , _ , φ , μ) = get-file-imports ts fm (trie-single fm triv) err-code 3 else h' ts φ h' ts φ is = foldr (λ fn x → x >>= λ e → maybe-else (return ff) (uncurry λ fn ie → writeRopeToFile (combineFileNames to fn ^ ".ced") (maybe-else [[ "Error lookup up elaborated data" ]] id (ie-get-span-ast ie)) >> return e) (renamectxt-lookup φ fn ≫=maybe λ fn' → get-include-elt-if ts fn ≫=maybe λ ie → include-elt.ast ie ≫=maybe λ ast → just (fn' , ie))) (createDirectoryIfMissing tt to >> return tt) (stringset-strings is) >>= λ e → putStrLn (if e then "0" else "2") elab-file : toplevel-state → (filename : string) → maybe rope elab-file ts fn = elab-file' ts empty-renamectxt empty-renamectxt empty-trie fn ≫=maybe uncurry'' λ fn' ts ρ φ → get-include-elt-if ts fn ≫=maybe ie-get-span-ast
{ "alphanum_fraction": 0.6140322229, "avg_line_length": 45.531598513, "ext": "agda", "hexsha": "0141fa4384318cf8482cdbaa9411608c3b45f3bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/elaboration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/elaboration.agda", "max_line_length": 158, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/elaboration.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 13635, "size": 36744 }