Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED, please use `Data.Record` directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_) module Record {ℓ} (Label : Set ℓ) (_≟_ : Decidable {A = Label} _≡_) where {-# WARNING_ON_IMPORT "Record was deprecated in v1.1. Use Data.Record instead." #-} open import Data.Record Label _≟_ public
{ "alphanum_fraction": 0.5423728814, "avg_line_length": 29.5, "ext": "agda", "hexsha": "54715ab98e5ecca94bada6afe114a535e0bad027", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Record.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Record.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Record.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 123, "size": 590 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite record Box (A : Set) : Set where constructor box field unbox : A open Box postulate A : Set a b : A f : (X : Set) → X → A g : (X : Set) → X rewf₁ : f (Box A) (box a) ≡ a rewf₂ : (X : Set) → f X (g X) ≡ b rewg : g (Box A) .unbox ≡ a test = f (Box A) (g (Box A)) {-# REWRITE rewf₁ rewg #-} rewg-contracted : g (Box A) ≡ box a rewg-contracted = refl foo : test ≡ a foo = refl {-# REWRITE rewf₂ #-} bar : test ≡ b bar = refl fails : a ≡ b fails = refl
{ "alphanum_fraction": 0.5792079208, "avg_line_length": 14.7804878049, "ext": "agda", "hexsha": "6f0b0f8b448b68c1e967388f1ca9d63574cf6aba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3810c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3810c.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3810c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 235, "size": 606 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor.Construction.Diagonal where -- A variety of Diagonal functors open import Level open import Data.Product using (_,_) open import Categories.Category open import Categories.Functor open import Categories.Category.Product open import Categories.Category.Construction.Functors open import Categories.Functor.Construction.Constant open import Categories.NaturalTransformation using (ntHelper) import Categories.Functor.Power as Power private variable o ℓ e o′ ℓ′ e′ : Level Δ : (C : Category o ℓ e) → Functor C (Product C C) Δ C = record { F₀ = λ x → x , x ; F₁ = λ f → f , f ; identity = refl , refl ; homomorphism = refl , refl ; F-resp-≈ = λ x → x , x } where open Category C open Equiv Δ′ : (I : Set) → (C : Category o ℓ e) → Functor C (Power.Exp C I) Δ′ I C = record { F₀ = λ x _ → x ; F₁ = λ f _ → f ; identity = λ _ → refl ; homomorphism = λ _ → refl ; F-resp-≈ = λ x _ → x } where open Category.Equiv C ΔF : {C : Category o ℓ e} (I : Category o′ ℓ′ e′) → Functor C (Functors I C) ΔF {C = C} I = record { F₀ = const ; F₁ = λ f → ntHelper record { η = λ _ → f; commute = λ _ → C.identityʳ ○ ⟺ C.identityˡ } ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ x → x } where module C = Category C open C.Equiv open C.HomReasoning using (_○_; ⟺)
{ "alphanum_fraction": 0.6020477816, "avg_line_length": 26.1607142857, "ext": "agda", "hexsha": "b0a02cc9d1a5ebeb3175fc7a7f4c93c65c4dfcc2", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Construction/Diagonal.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Construction/Diagonal.agda", "max_line_length": 101, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Construction/Diagonal.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 483, "size": 1465 }
{-# OPTIONS --cubical --no-exact-split --safe #-} module Cubical.Data.NatMinusOne.Base where open import Cubical.Core.Primitives open import Cubical.Data.Nat data ℕ₋₁ : Set where neg1 : ℕ₋₁ suc : (n : ℕ₋₁) → ℕ₋₁ _+₋₁_ : ℕ → ℕ₋₁ → ℕ₋₁ 0 +₋₁ n = n suc m +₋₁ n = suc (m +₋₁ n) ℕ→ℕ₋₁ : ℕ → ℕ₋₁ ℕ→ℕ₋₁ n = suc (n +₋₁ neg1) 1+_ : ℕ₋₁ → ℕ 1+ neg1 = zero 1+ suc n = suc (1+ n) -1+_ : ℕ → ℕ₋₁ -1+ zero = neg1 -1+ suc n = suc (-1+ n)
{ "alphanum_fraction": 0.5552995392, "avg_line_length": 17.36, "ext": "agda", "hexsha": "ebc9b9778ec0c2ee25b4872f7158a06a72439fbf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/NatMinusOne/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 218, "size": 434 }
module fib1 where data ℕ : Set where Z : ℕ S : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ n + Z = n n + S m = S (n + m) one : ℕ one = S Z fib : ℕ -> ℕ fib Z = one fib (S Z) = one fib (S (S n)) = fib n + fib (S n)
{ "alphanum_fraction": 0.4099099099, "avg_line_length": 11.6842105263, "ext": "agda", "hexsha": "b86b813c518a2bf0b9c9d0de5cfdbf57fe957f61", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/fib1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/fib1.agda", "max_line_length": 33, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/fib1.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 97, "size": 222 }
import Lvl open import Structure.Operator.Vector open import Structure.Setoid open import Type module Structure.Operator.Vector.Eigen {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ (_+ᵥ_ : V → V → V) (_⋅ₛᵥ_ : S → V → V) (_+ₛ_ _⋅ₛ_ : S → S → S) ⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄ where open VectorSpace(vectorSpace) open import Logic open import Logic.Predicate open import Logic.Propositional open import Syntax.Function -- v is a eigenvector for the eigenvalue 𝜆 of the linear transformation f. -- Multiplication by an eigenvalue can replace a linear transformation for certain vectors. Eigenpair : (V → V) → S → V → Stmt Eigenpair(f)(𝜆)(v) = ((v ≢ 𝟎ᵥ) ∧ (f(v) ≡ 𝜆 ⋅ₛᵥ v)) Eigenvector : (V → V) → V → Stmt Eigenvector(f)(v) = ∃(𝜆 ↦ Eigenpair(f)(𝜆)(v)) Eigenvalue : (V → V) → S → Stmt Eigenvalue(f)(𝜆) = ∃(v ↦ Eigenpair(f)(𝜆)(v))
{ "alphanum_fraction": 0.6502145923, "avg_line_length": 28.2424242424, "ext": "agda", "hexsha": "97eef677ec3db47dea6f0e2ff89ce3e2fdbe49e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/Eigen.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/Eigen.agda", "max_line_length": 91, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/Eigen.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 418, "size": 932 }
{-# OPTIONS --without-K #-} open import Base open import Homotopy.Truncation open import Homotopy.Connected open import Spaces.Suspension open import Homotopy.PushoutDef import Homotopy.PushoutUP as PushoutUP -- In this file I prove that if [A] is n-connected and its (n+1)-truncation is -- inhabited, then [suspension A] is (n+1)-connected. -- -- The hypothesis that [τ (S n) A] is inhabited is not necessary, it can be -- removed but it’s simpler to assume it module Homotopy.ConnectedSuspension {i} (A : Set i) {n : ℕ₋₂} (p : is-connected n A) (x₀ : τ (S n) A) where -- The (n+1)-truncation of the suspension is a pushout of the following diagram τ-susp-diag : pushout-diag i τ-susp-diag = diag τ (S n) unit , τ (S n) unit , τ (S n) A , τ-extend-nondep (λ _ → proj tt) , τ-extend-nondep (λ _ → proj tt) module τ-susp-H = PushoutUP τ-susp-diag (is-truncated (S n)) import Homotopy.TruncationRightExact (S n) (suspension-diag A) as Exact abstract trunc-cocone : τ-susp-H.cocone (τ (S n) (suspension A)) trunc-cocone = Exact.cocone-τpushout trunc-is-pushout : τ-susp-H.is-pushout (τ (S n) (suspension A)) trunc-cocone trunc-is-pushout = Exact.τpushout-is-pushout -- The previous diagram is equivalent to the following susp-diag : pushout-diag i susp-diag = suspension-diag (τ (S n) A) module susp-H = PushoutUP susp-diag (is-truncated (S n)) -- To be moved τ-unit-to-unit : τ (S n) (unit {i}) → unit {i} τ-unit-to-unit _ = tt abstract τ-unit-to-unit-is-equiv : is-equiv τ-unit-to-unit τ-unit-to-unit-is-equiv = iso-is-eq _ (λ _ → proj tt) (λ _ → refl) (τ-extend ⦃ λ _ → ≡-is-truncated (S n) (τ-is-truncated (S n) _) ⦄ (λ _ → refl)) τ-unit-equiv-unit : τ (S n) unit ≃ unit τ-unit-equiv-unit = (τ-unit-to-unit , τ-unit-to-unit-is-equiv) -- / To be moved abstract τ-susp-equal-susp : τ-susp-diag ≡ susp-diag τ-susp-equal-susp = pushout-diag-eq τ-unit-equiv-unit τ-unit-equiv-unit (id-equiv _) (λ _ → refl) (λ _ → refl) -- But we prove by hand that the point is also a pushout of this diagram unit-cocone : susp-H.cocone unit unit-cocone = (id _ susp-H., id _ , cst refl) private factor-pushout : (E : Set i) → (susp-H.cocone E → (unit {i} → E)) factor-pushout E c = susp-H.A→top c x : {E : Set i} → (susp-H.cocone E → E) x c = susp-H.A→top c tt y : {E : Set i} → (susp-H.cocone E → E) y c = susp-H.B→top c tt x≡y : {E : Set i} (c : susp-H.cocone E) → x c ≡ y c x≡y c = susp-H.h c x₀ ττA-is-contr : is-contr (τ n (τ (S n) A)) ττA-is-contr = equiv-types-truncated _ (τ-equiv-ττ n A) p susp-H-unit-is-pushout : susp-H.is-pushout unit unit-cocone susp-H-unit-is-pushout E ⦃ P-E ⦄ = iso-is-eq _ (factor-pushout E) (λ c → susp-H.cocone-eq-raw _ refl (funext (λ _ → x≡y c)) (app-is-inj x₀ ττA-is-contr (P-E _ _) (trans-Π2 _ (λ v _ → susp-H.A→top c tt ≡ v tt) (funext (λ r → susp-H.h c x₀)) _ _ ∘ (trans-cst≡app _ (λ u → u tt) (funext (λ r → susp-H.h c x₀)) _ ∘ happly (happly-funext (λ _ → susp-H.h c x₀)) tt)))) (λ _ → refl) -- Type of (S n)-truncated pushout-diagrams (this should probably be defined -- more generally in Homotopy.PushoutDef or something) truncated-diag : Set _ truncated-diag = Σ (pushout-diag i) (λ d → (is-truncated (S n) (pushout-diag.A d)) × ((is-truncated (S n) (pushout-diag.B d)) × (is-truncated (S n) (pushout-diag.C d)))) τ-susp-trunc-diag : truncated-diag τ-susp-trunc-diag = (τ-susp-diag , (τ-is-truncated (S n) _ , (τ-is-truncated (S n) _ , τ-is-truncated (S n) _))) susp-trunc-diag : truncated-diag susp-trunc-diag = (susp-diag , (unit-is-truncated-S#instance , (unit-is-truncated-S#instance , τ-is-truncated (S n) _))) -- The two diagrams are equal as truncated diagrams abstract τ-susp-trunc-equal-susp-trunc : τ-susp-trunc-diag ≡ susp-trunc-diag τ-susp-trunc-equal-susp-trunc = Σ-eq τ-susp-equal-susp (Σ-eq (π₁ (is-truncated-is-prop (S n) _ _)) (Σ-eq (π₁ (is-truncated-is-prop (S n) _ _)) (π₁ (is-truncated-is-prop (S n) _ _)))) new-cocone : (d : truncated-diag) → (Set i → Set i) new-cocone (d , (_ , (_ , _))) = PushoutUP.cocone d (is-truncated (S n)) new-is-pushout : (d : truncated-diag) → ((D : Set i) ⦃ PD : is-truncated (S n) D ⦄ (Dcocone : new-cocone d D) → Set _) new-is-pushout (d , (_ , (_ , _))) = PushoutUP.is-pushout d (is-truncated (S n)) unit-new-cocone : (d : truncated-diag) → new-cocone d unit unit-new-cocone d = ((λ _ → tt) PushoutUP., (λ _ → tt) , (λ _ → refl)) unit-is-pushout : (d : truncated-diag) → Set _ unit-is-pushout d = new-is-pushout d unit (unit-new-cocone d) abstract unit-τ-is-pushout : τ-susp-H.is-pushout unit (unit-new-cocone τ-susp-trunc-diag) unit-τ-is-pushout = transport unit-is-pushout (! τ-susp-trunc-equal-susp-trunc) susp-H-unit-is-pushout private unit-equiv-τSnΣA : unit {i} ≃ τ (S n) (suspension A) unit-equiv-τSnΣA = τ-susp-H.pushout-equiv-pushout unit (unit-new-cocone τ-susp-trunc-diag) unit-τ-is-pushout (τ (S n) (suspension A)) trunc-cocone trunc-is-pushout abstract suspension-is-connected-S : is-connected (S n) (suspension A) suspension-is-connected-S = equiv-types-truncated _ unit-equiv-τSnΣA unit-is-contr
{ "alphanum_fraction": 0.5995357972, "avg_line_length": 35.2264150943, "ext": "agda", "hexsha": "0633216785983a7f3a56ffc2c52b6270e30bff1e", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Homotopy/ConnectedSuspension.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Homotopy/ConnectedSuspension.agda", "max_line_length": 79, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "old/Homotopy/ConnectedSuspension.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1897, "size": 5601 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Bool open import lib.types.FunctionSeq open import lib.types.Paths open import lib.types.Pointed open import lib.types.Suspension.Core open import lib.types.Suspension.Trunc open import lib.types.Truncation module lib.types.Suspension.Flip where module SuspFlip {i} {A : Type i} = SuspRec (south' A) north (! ∘ merid) Susp-flip : ∀ {i} {A : Type i} → Susp A → Susp A Susp-flip = SuspFlip.f Susp-flip-σloop-seq : ∀ {i} (X : Ptd i) (x : de⊙ X) → ap Susp-flip (σloop X x) =-= ! (merid x) ∙ merid (pt X) Susp-flip-σloop-seq X x = ap Susp-flip (merid x ∙ ! (merid (pt X))) =⟪ ap-∙ Susp-flip (merid x) (! (merid (pt X))) ⟫ ap Susp-flip (merid x) ∙ ap Susp-flip (! (merid (pt X))) =⟪ ap2 _∙_ (! (!-! (ap Susp-flip (merid x))) ∙ ap ! (r x)) (ap-! Susp-flip (merid (pt X)) ∙ r (pt X)) ⟫ ! (merid x) ∙ merid (pt X) ∎∎ where r : (x : de⊙ X) → ! (ap Susp-flip (merid x)) == merid x r x = ap ! (SuspFlip.merid-β x) ∙ !-! (merid x) Susp-flip-σloop : ∀ {i} (X : Ptd i) (x : de⊙ X) → ap Susp-flip (σloop X x) == ! (merid x) ∙ merid (pt X) Susp-flip-σloop X x = ↯ (Susp-flip-σloop-seq X x) Susp-flip-σloop-pt : ∀ {i} (X : Ptd i) → Susp-flip-σloop X (pt X) ◃∎ =ₛ ap (ap Susp-flip) (!-inv-r (merid (pt X))) ◃∙ ! (!-inv-l (merid (pt X))) ◃∎ Susp-flip-σloop-pt X = Susp-flip-σloop X (pt X) ◃∎ =ₛ⟨ expand (Susp-flip-σloop-seq X (pt X)) ⟩ Susp-flip-σloop-seq X (pt X) =ₛ⟨ coh Susp-flip (merid (pt X)) (merid (pt X)) (ap ! (SuspFlip.merid-β (pt X)) ∙ !-! (merid (pt X))) ⟩ ap (ap Susp-flip) (!-inv-r (merid (pt X))) ◃∙ ! (!-inv-l (merid (pt X))) ◃∎ ∎ₛ where coh : ∀ {j k} {A : Type j} {B : Type k} (f : A → B) {a₀ a₁ : A} (p : a₀ == a₁) (q : f a₁ == f a₀) (r : ! (ap f p) == q) → ap-∙ f p (! p) ◃∙ ap2 _∙_ (! (!-! (ap f p)) ∙ ap ! r) (ap-! f p ∙ r) ◃∎ =ₛ ap (ap f) (!-inv-r p) ◃∙ ! (!-inv-l q) ◃∎ coh f p@idp q@.idp r@idp = =ₛ-in idp maybe-Susp-flip : ∀ {i} {A : Type i} → Bool → Susp A → Susp A maybe-Susp-flip true = Susp-flip maybe-Susp-flip false = idf _ ⊙Susp-flip : ∀ {i} (X : Ptd i) → ⊙Susp (de⊙ X) ⊙→ ⊙Susp (de⊙ X) ⊙Susp-flip X = (Susp-flip , ! (merid (pt X))) ⊙maybe-Susp-flip : ∀ {i} (X : Ptd i) → Bool → ⊙Susp (de⊙ X) ⊙→ ⊙Susp (de⊙ X) ⊙maybe-Susp-flip X true = ⊙Susp-flip X ⊙maybe-Susp-flip X false = ⊙idf (⊙Susp (de⊙ X)) de⊙-⊙maybe-Susp-flip : ∀ {i} (X : Ptd i) (b : Bool) → fst (⊙maybe-Susp-flip X b) == maybe-Susp-flip b de⊙-⊙maybe-Susp-flip X true = idp de⊙-⊙maybe-Susp-flip X false = idp Susp-flip-flip : ∀ {i} {A : Type i} (sa : Susp A) → Susp-flip (Susp-flip sa) == sa Susp-flip-flip = Susp-elim idp idp $ λ a → ↓-='-in' $ ap (λ z → z) (merid a) =⟨ ap-idf (merid a) ⟩ merid a =⟨ ! (!-! (merid a)) ⟩ ! (! (merid a)) =⟨ ap ! (! (SuspFlip.merid-β a)) ⟩ ! (ap Susp-flip (merid a)) =⟨ !-ap Susp-flip (merid a) ⟩ ap Susp-flip (! (merid a)) =⟨ ap (ap Susp-flip) (! (SuspFlip.merid-β a)) ⟩ ap Susp-flip (ap Susp-flip (merid a)) =⟨ ∘-ap Susp-flip Susp-flip (merid a) ⟩ ap (Susp-flip ∘ Susp-flip) (merid a) =∎ ⊙Susp-flip-flip : ∀ {i} {X : Ptd i} → ⊙Susp-flip X ◃⊙∘ ⊙Susp-flip X ◃⊙idf =⊙∘ ⊙idf-seq ⊙Susp-flip-flip {_} {X} = ⊙seq-λ= Susp-flip-flip $ ap Susp-flip (! (merid (pt X))) ◃∙ ! (merid (pt X)) ◃∎ =ₛ₁⟨ 0 & 1 & ap-! Susp-flip (merid (pt X)) ⟩ ! (ap Susp-flip (merid (pt X))) ◃∙ ! (merid (pt X)) ◃∎ =ₛ₁⟨ 0 & 1 & ap ! (SuspFlip.merid-β (pt X)) ⟩ ! (! (merid (pt X))) ◃∙ ! (merid (pt X)) ◃∎ =ₛ₁⟨ !-inv-l (! (merid (pt X))) ⟩ idp ◃∎ ∎ₛ ⊙maybe-Susp-flip-flip : ∀ {i} (X : Ptd i) (b c : Bool) → ⊙maybe-Susp-flip X b ◃⊙∘ ⊙maybe-Susp-flip X c ◃⊙idf =⊙∘ ⊙maybe-Susp-flip X (xor b c) ◃⊙idf ⊙maybe-Susp-flip-flip X true true = ⊙Susp-flip X ◃⊙∘ ⊙Susp-flip X ◃⊙idf =⊙∘⟨ ⊙Susp-flip-flip ⟩ ⊙idf-seq =⊙∘⟨ ⊙contract ⟩ ⊙idf _ ◃⊙idf ∎⊙∘ ⊙maybe-Susp-flip-flip X true false = =⊙∘-in idp ⊙maybe-Susp-flip-flip X false true = =⊙∘-in (⊙λ= (⊙∘-unit-l (⊙Susp-flip X))) ⊙maybe-Susp-flip-flip X false false = =⊙∘-in idp Susp-flip-equiv : ∀ {i} {A : Type i} → Susp A ≃ Susp A Susp-flip-equiv {A = A} = equiv Susp-flip Susp-flip Susp-flip-flip Susp-flip-flip Susp-flip-natural : ∀ {i} {j} {A : Type i} {B : Type j} (f : A → B) → ∀ σ → Susp-flip (Susp-fmap f σ) == Susp-fmap f (Susp-flip σ) Susp-flip-natural f = Susp-elim idp idp $ λ y → ↓-='-in' $ ap (Susp-fmap f ∘ Susp-flip) (merid y) =⟨ ap-∘ (Susp-fmap f) Susp-flip (merid y) ⟩ ap (Susp-fmap f) (ap Susp-flip (merid y)) =⟨ ap (ap (Susp-fmap f)) (SuspFlip.merid-β y) ⟩ ap (Susp-fmap f) (! (merid y)) =⟨ ap-! (Susp-fmap f) (merid y) ⟩ ! (ap (Susp-fmap f) (merid y)) =⟨ ap ! (SuspFmap.merid-β f y) ⟩ ! (merid (f y)) =⟨ ! (SuspFlip.merid-β (f y)) ⟩ ap Susp-flip (merid (f y)) =⟨ ! (ap (ap Susp-flip) (SuspFmap.merid-β f y)) ⟩ ap Susp-flip (ap (Susp-fmap f) (merid y)) =⟨ ∘-ap Susp-flip (Susp-fmap f) (merid y) ⟩ ap (Susp-flip ∘ Susp-fmap f) (merid y) =∎ ⊙Susp-flip-natural : ∀ {i} {j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) → ⊙Susp-flip Y ⊙∘ ⊙Susp-fmap (fst f) == ⊙Susp-fmap (fst f) ⊙∘ ⊙Susp-flip X ⊙Susp-flip-natural {_} {_} {X} {Y} f = pair= (λ= (Susp-flip-natural (fst f))) $ ↓-app=cst-in $ ! $ =ₛ-out {t = ! (merid (pt Y)) ◃∎} $ app= (λ= (Susp-flip-natural (fst f))) north ◃∙ ap (Susp-fmap (fst f)) (! (merid (pt X))) ◃∙ idp ◃∎ =ₛ⟨ 2 & 1 & expand [] ⟩ app= (λ= (Susp-flip-natural (fst f))) north ◃∙ ap (Susp-fmap (fst f)) (! (merid (pt X))) ◃∎ =ₛ₁⟨ 0 & 1 & app=-β (Susp-flip-natural (fst f)) north ⟩ idp ◃∙ ap (Susp-fmap (fst f)) (! (merid (pt X))) ◃∎ =ₛ⟨ 0 & 1 & expand [] ⟩ ap (Susp-fmap (fst f)) (! (merid (pt X))) ◃∎ =ₛ₁⟨ ap-! (Susp-fmap (fst f)) (merid (pt X)) ⟩ ! (ap (Susp-fmap (fst f)) (merid (pt X))) ◃∎ =ₛ₁⟨ ap ! (SuspFmap.merid-β (fst f) (pt X)) ⟩ ! (merid (fst f (pt X))) ◃∎ =ₛ₁⟨ ap (! ∘ merid) (snd f) ⟩ ! (merid (pt Y)) ◃∎ ∎ₛ module _ {i} {A : Type i} where Susp-fmap-flip : (x : Susp (Susp A)) → Susp-fmap Susp-flip x == Susp-flip x Susp-fmap-flip = Susp-elim {P = λ x → Susp-fmap Susp-flip x == Susp-flip x} (merid north) (! (merid south)) $ λ y → ↓-='-in-=ₛ $ merid north ◃∙ ap Susp-flip (merid y) ◃∎ =ₛ₁⟨ 1 & 1 & SuspFlip.merid-β y ⟩ merid north ◃∙ ! (merid y) ◃∎ =ₛ⟨ =ₛ-in {t = merid (Susp-flip y) ◃∙ ! (merid south) ◃∎} $ Susp-elim {P = λ y → merid north ∙ ! (merid y) == merid (Susp-flip y) ∙ ! (merid south)} (!-inv-r (merid north) ∙ ! (!-inv-r (merid south))) idp (λ a → ↓-='-in-=ₛ $ (!-inv-r (merid north) ∙ ! (!-inv-r (merid south))) ◃∙ ap (λ z → merid (Susp-flip z) ∙ ! (merid south)) (merid a) ◃∎ =ₛ⟨ 0 & 1 & expand (!-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∎) ⟩ !-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∙ ap (λ z → merid (Susp-flip z) ∙ ! (merid south)) (merid a) ◃∎ =ₛ₁⟨ 2 & 1 & ap-∘ (λ z' → merid z' ∙ ! (merid south)) Susp-flip (merid a) ⟩ !-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∙ ap (λ z' → merid z' ∙ ! (merid south)) (ap Susp-flip (merid a)) ◃∎ =ₛ₁⟨ 2 & 1 & ap (ap (λ z' → merid z' ∙ ! (merid south))) (SuspFlip.merid-β a) ⟩ !-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∙ ap (λ z' → merid z' ∙ ! (merid south)) (! (merid a)) ◃∎ =ₛ₁⟨ 2 & 1 & ap-∘ (_∙ ! (merid south)) merid (! (merid a)) ⟩ !-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∙ ap (_∙ ! (merid south)) (ap merid (! (merid a))) ◃∎ =ₛ₁⟨ 2 & 1 & ap (ap (_∙ ! (merid south))) (ap-! merid (merid a)) ⟩ !-inv-r (merid north) ◃∙ ! (!-inv-r (merid south)) ◃∙ ap (_∙ ! (merid south)) (! (ap merid (merid a))) ◃∎ =ₛ⟨ coh-helper (ap merid (merid a)) ⟩ ap (λ q → merid north ∙ ! q) (ap merid (merid a)) ◃∎ =ₛ₁⟨ ∘-ap (λ q → merid north ∙ ! q) merid (merid a) ⟩ ap (λ z → merid north ∙ ! (merid z)) (merid a) ◃∎ =ₛ⟨ 1 & 0 & contract ⟩ ap (λ z → merid north ∙ ! (merid z)) (merid a) ◃∙ idp ◃∎ ∎ₛ) y ⟩ merid (Susp-flip y) ◃∙ ! (merid south) ◃∎ =ₛ₁⟨ 0 & 1 & ! (SuspFmap.merid-β Susp-flip y) ⟩ ap (Susp-fmap Susp-flip) (merid y) ◃∙ ! (merid south) ◃∎ ∎ₛ where coh-helper : ∀ {j} {B : Type j} {b-north b-south : B} {merid₁ merid₂ : b-north == b-south} (p : merid₁ == merid₂) → !-inv-r merid₁ ◃∙ ! (!-inv-r merid₂) ◃∙ ap (_∙ ! merid₂) (! p) ◃∎ =ₛ ap (λ q → merid₁ ∙ ! q) p ◃∎ coh-helper {merid₁ = idp} {merid₂ = .idp} idp = =ₛ-in idp ⊙Susp-fmap-Susp-flip : ⊙Susp-fmap Susp-flip == ⊙Susp-flip (⊙Susp A) ⊙Susp-fmap-Susp-flip = ⊙λ=' Susp-fmap-flip (↓-idf=cst-in (! (!-inv-r (merid north)))) ⊙Susp-fmap-maybe-Susp-flip : ∀ (b : Bool) → ⊙Susp-fmap (maybe-Susp-flip b) == ⊙maybe-Susp-flip (⊙Susp A) b ⊙Susp-fmap-maybe-Susp-flip true = ⊙Susp-fmap-Susp-flip ⊙Susp-fmap-maybe-Susp-flip false = =⊙∘-out (⊙Susp-fmap-idf _) ⊙maybe-Susp-flip-natural : ∀ {i} {j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) (b : Bool) → ⊙Susp-fmap (fst f) ⊙∘ ⊙maybe-Susp-flip X b == ⊙maybe-Susp-flip Y b ⊙∘ ⊙Susp-fmap (fst f) ⊙maybe-Susp-flip-natural f true = ! (⊙Susp-flip-natural f) ⊙maybe-Susp-flip-natural f false = ⊙λ= (⊙∘-unit-l (⊙Susp-fmap (fst f))) module _ {i} (A : Type i) (m : ℕ₋₂) where Susp-Trunc-swap-Susp-flip : Susp-Trunc-swap A m ∘ Susp-flip ∼ Trunc-fmap Susp-flip ∘ Susp-Trunc-swap A m Susp-Trunc-swap-Susp-flip = Susp-elim idp idp $ Trunc-elim {{λ t → ↓-level (=-preserves-level Trunc-level)}} $ λ a → ↓-='-in' $ ap (Trunc-fmap Susp-flip ∘ Susp-Trunc-swap A m) (merid [ a ]) =⟨ ap-∘ (Trunc-fmap Susp-flip) (Susp-Trunc-swap A m) (merid [ a ]) ⟩ ap (Trunc-fmap Susp-flip) (ap (Susp-Trunc-swap A m) (merid [ a ])) =⟨ ap (ap (Trunc-fmap Susp-flip)) (SuspTruncSwap.merid-β A m [ a ]) ⟩ ap (Trunc-fmap Susp-flip) (ap [_] (merid a)) =⟨ ∘-ap (Trunc-fmap Susp-flip) [_] (merid a) ⟩ ap ([_] ∘ Susp-flip) (merid a) =⟨ ap-∘ [_] Susp-flip (merid a) ⟩ ap [_] (ap Susp-flip (merid a)) =⟨ ap (ap [_]) (SuspFlip.merid-β a) ⟩ ap [_] (! (merid a)) =⟨ ap-! [_] (merid a) ⟩ ! (ap [_] (merid a)) =⟨ ap ! (! (SuspTruncSwap.merid-β A m [ a ])) ⟩ ! (ap (Susp-Trunc-swap A m) (merid [ a ])) =⟨ !-ap (Susp-Trunc-swap A m) (merid [ a ]) ⟩ ap (Susp-Trunc-swap A m) (! (merid [ a ])) =⟨ ap (ap (Susp-Trunc-swap A m)) (! (SuspFlip.merid-β [ a ])) ⟩ ap (Susp-Trunc-swap A m) (ap Susp-flip (merid [ a ])) =⟨ ∘-ap (Susp-Trunc-swap A m) Susp-flip (merid [ a ]) ⟩ ap (Susp-Trunc-swap A m ∘ Susp-flip) (merid [ a ]) =∎ abstract ⊙Susp-Trunc-swap-⊙Susp-flip : ∀ {i} {X : Ptd i} (m : ℕ₋₂) → ⊙Susp-Trunc-swap (de⊙ X) m ◃⊙∘ ⊙Susp-flip (⊙Trunc m X) ◃⊙idf =⊙∘ ⊙Trunc-fmap (⊙Susp-flip X) ◃⊙∘ ⊙Susp-Trunc-swap (de⊙ X) m ◃⊙idf ⊙Susp-Trunc-swap-⊙Susp-flip {X = X} m = ⊙seq-λ= (Susp-Trunc-swap-Susp-flip (de⊙ X) m) $ !ₛ $ idp ◃∙ idp ◃∙ ap [_] (! (merid (pt X))) ◃∎ =ₛ⟨ 0 & 1 & expand [] ⟩ idp ◃∙ ap [_] (! (merid (pt X))) ◃∎ =ₛ⟨ 0 & 1 & expand [] ⟩ ap [_] (! (merid (pt X))) ◃∎ =ₛ₁⟨ ap-! [_] (merid (pt X)) ⟩ ! (ap [_] (merid (pt X))) ◃∎ =ₛ₁⟨ ! $ ap ! $ SuspTruncSwap.merid-β (de⊙ X) m [ pt X ] ⟩ ! (ap (Susp-Trunc-swap (de⊙ X) m) (merid [ pt X ])) ◃∎ =ₛ₁⟨ !-ap (Susp-Trunc-swap (de⊙ X) m) (merid [ pt X ]) ⟩ ap (Susp-Trunc-swap (de⊙ X) m) (! (merid [ pt X ])) ◃∎ =ₛ⟨ 1 & 0 & contract ⟩ ap (Susp-Trunc-swap (de⊙ X) m) (! (merid [ pt X ])) ◃∙ idp ◃∎ ∎ₛ
{ "alphanum_fraction": 0.4881473528, "avg_line_length": 38.072327044, "ext": "agda", "hexsha": "917b29cbb8aa22b6b7d14ffb7068f70362b4e757", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Suspension/Flip.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Suspension/Flip.agda", "max_line_length": 93, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Suspension/Flip.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 5732, "size": 12107 }
module Oscar.Class.Congruity where open import Oscar.Class.Extensionality open import Oscar.Level record Congruity {a} {A : Set a} {ℓ₁} (_≋₁_ : A → A → Set ℓ₁) {b} {B : Set b} {ℓ₂} (_≋₂_ : B → B → Set ℓ₂) : Set (a ⊔ ℓ₁ ⊔ b ⊔ ℓ₂) where field congruity : ∀ (μ : A → B) {x y} → x ≋₁ y → μ x ≋₂ μ y instance ′extensionality : ∀ (μ : A → B) → Extensionality _≋₁_ (λ ⋆ → _≋₂_ ⋆) μ μ Extensionality.extensionality (′extensionality μ) = congruity μ open Congruity ⦃ … ⦄ public -- hiding (′extensionality)
{ "alphanum_fraction": 0.5895522388, "avg_line_length": 31.5294117647, "ext": "agda", "hexsha": "c45805cd0ff2f1dfe87b8f59ea2a5d9aba9c90e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Congruity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Congruity.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Congruity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 216, "size": 536 }
-- 2014-07-27 Andreas, issue reported by phadei module _ where -- trait A { type T <: A } record A (self : Set) (T : Set) : Set₁ where inductive field T⊂A : T → A T self -- trait C extends A with B { type T <: C } record C (self : Set) (T : Set) : Set₁ where inductive field a : A T self T⊂C : T → C T self -- A with B { type T <: A with B { type T <: ... } } record AB (self : Set) (T : Set) : Set₁ where field c : C T self postulate Nat Bool : Set -- Let's give Nat a A∧B trait, with T = Bool Nat-AB : AB Nat Bool Nat-AB = {!!} -- WAS: Non-termination of type-checker (eta-expansion). -- SHOULD BE: an unsolved meta.
{ "alphanum_fraction": 0.586259542, "avg_line_length": 19.8484848485, "ext": "agda", "hexsha": "27909593f9b5c4be498ea1af025ce8cefd54c965", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1239.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1239.agda", "max_line_length": 56, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1239.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 233, "size": 655 }
∙_ : Set₁ → Set₁ ∙ X = X Foo : Set Foo = ∙ Set
{ "alphanum_fraction": 0.4791666667, "avg_line_length": 8, "ext": "agda", "hexsha": "d285ce5342f9527cacf9cd9e864fad467043ae81", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Sections-14.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Sections-14.agda", "max_line_length": 16, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Sections-14.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 48 }
open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection pattern vArg x = arg (arg-info visible (modality relevant quantity-ω)) x macro macaroo : Term → TC ⊤ macaroo hole = unify hole (con (quote suc) (vArg unknown ∷ [])) test : Nat test = macaroo
{ "alphanum_fraction": 0.7368421053, "avg_line_length": 23.0714285714, "ext": "agda", "hexsha": "12dfae697ed40200283864f7df443ce14b65e156", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/interaction/Issue5700.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/interaction/Issue5700.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "sseefried/agda", "max_stars_repo_path": "test/interaction/Issue5700.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 323 }
{-# OPTIONS --safe #-} module Cubical.Categories.Instances.RingAlgebras where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Algebra.Ring open import Cubical.Algebra.Algebra open import Cubical.Categories.Category open Category open AlgebraHoms private variable ℓ ℓ' : Level module _ (R : Ring ℓ) where AlgebrasCategory : Category (ℓ-suc (ℓ-max ℓ ℓ')) (ℓ-max ℓ ℓ') ob AlgebrasCategory = Algebra R _ Hom[_,_] AlgebrasCategory = AlgebraHom id AlgebrasCategory {A} = idAlgebraHom A _⋆_ AlgebrasCategory = compAlgebraHom ⋆IdL AlgebrasCategory = compIdAlgebraHom ⋆IdR AlgebrasCategory = idCompAlgebraHom ⋆Assoc AlgebrasCategory = compAssocAlgebraHom isSetHom AlgebrasCategory = isSetAlgebraHom _ _
{ "alphanum_fraction": 0.7590966123, "avg_line_length": 27.4827586207, "ext": "agda", "hexsha": "3d84499ce129672577d60e93ffc5685cc5ef34dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Categories/Instances/RingAlgebras.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Categories/Instances/RingAlgebras.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Categories/Instances/RingAlgebras.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 251, "size": 797 }
open import Signature module Program (Σ : Sig) (V : Set) where open import Function open import Data.Empty open import Data.Unit open import Data.Product as Prod renaming (Σ to ⨿) open import Data.Nat open import Data.Fin open import Data.List open import Terms Σ FinFam : Set → Set FinFam X = ⨿ ℕ λ n → (Fin n → X) dom : ∀{X} → FinFam X → Set dom (n , _) = Fin n get : ∀{X} (F : FinFam X) → dom F → X get (_ , f) k = f k domEmpty : ∀{X} → FinFam X → Set domEmpty (zero , _) = ⊤ domEmpty (suc _ , _) = ⊥ record Clause : Set where constructor _⊢_ field body : FinFam (T V) head : T V open Clause public -- | A program consists of two finite sets of inductive and coinductive clauses. Program : Set Program = FinFam Clause × FinFam Clause dom-μ : Program → Set dom-μ = dom ∘ proj₁ dom-ν : Program → Set dom-ν = dom ∘ proj₂ geth-μ : (P : Program) → dom-μ P → T V geth-μ P = head ∘ get (proj₁ P) getb-μ : (P : Program) → dom-μ P → FinFam (T V) getb-μ P = body ∘ get (proj₁ P) geth-ν : (P : Program) → dom-ν P → T V geth-ν P = head ∘ get (proj₂ P) getb-ν : (P : Program) → dom-ν P → FinFam (T V) getb-ν P = body ∘ get (proj₂ P)
{ "alphanum_fraction": 0.627826087, "avg_line_length": 20.9090909091, "ext": "agda", "hexsha": "eec07889d6b27d394d1b08b8b22d5d8cb1adf683", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "LP/Program.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "LP/Program.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "LP/Program.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 438, "size": 1150 }
-- Andreas, 2017-04-24, issue #2552 -- Let bindings in top-level module telescope -- make top-level interactive commands crash. -- {-# OPTIONS -v interaction.top:20 #-} open import Agda.Primitive module _ (let foo = lzero) (A : Set) where -- C-c C-n A -- WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Interaction/BasicOps.hs:882 -- Should work now -- Still problematic: -- C-c C-n foo -- Panic: unbound variable foo -- when inferring the type of foo
{ "alphanum_fraction": 0.6967370441, "avg_line_length": 21.7083333333, "ext": "agda", "hexsha": "69b14ebd050abbe765d9d8a3f7ece2e289e66267", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2552.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2552.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2552.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 144, "size": 521 }
{-# OPTIONS --safe #-} module Cubical.Algebra.RingSolver.RawAlgebra where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat using (ℕ) open import Cubical.Data.Int renaming (_+_ to _+ℤ_ ; _·_ to _·ℤ_ ; -_ to -ℤ_ ; _-_ to _-ℤ_ ; +Assoc to +ℤAssoc ; +Comm to +ℤComm ; -DistL· to -ℤDistL·ℤ) open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ) open import Cubical.Algebra.RingSolver.IntAsRawRing open import Cubical.Algebra.CommRing open import Cubical.Algebra.Ring private variable ℓ ℓ′ : Level record RawAlgebra (R : RawRing ℓ) (ℓ′ : Level) : Type (ℓ-suc (ℓ-max ℓ ℓ′)) where constructor rawalgebra field Carrier : Type ℓ′ scalar : ⟨ R ⟩ᵣ → Carrier 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : {R : RawRing ℓ} → RawAlgebra R ℓ′ → Type ℓ′ ⟨_⟩ = RawAlgebra.Carrier {- Mapping to integer scalars and its (homorphism) properties. -} module _ (R : CommRing ℓ) where open CommRingStr (snd R) open Cubical.Algebra.Ring.RingTheory (CommRing→Ring R) scalarℕ : ℕ → (fst R) scalarℕ ℕ.zero = 0r scalarℕ (ℕ.suc ℕ.zero) = 1r scalarℕ (ℕ.suc (ℕ.suc n)) = 1r + scalarℕ (ℕ.suc n) scalar : ℤ → (fst R) scalar (pos k) = scalarℕ k scalar (negsuc k) = - scalarℕ (ℕ.suc k) -DistScalar : (k : ℤ) → scalar (-ℤ k) ≡ - (scalar k) -DistScalar (pos ℕ.zero) = sym 0Selfinverse -DistScalar (pos (ℕ.suc n)) = refl -DistScalar (negsuc n) = sym (-Idempotent _) lemmaSuc : (k : ℤ) → scalar (sucℤ k) ≡ 1r + scalar k lemmaSuc (pos ℕ.zero) = sym (+Rid _) lemmaSuc (pos (ℕ.suc ℕ.zero)) = refl lemmaSuc (pos (ℕ.suc (ℕ.suc n))) = refl lemmaSuc (negsuc ℕ.zero) = sym (+Rinv _) lemmaSuc (negsuc (ℕ.suc n)) = scalar (negsuc n) ≡⟨ sym (+Lid (scalar (negsuc n))) ⟩ 0r + scalar (negsuc n) ≡[ i ]⟨ +Rinv 1r (~ i) + scalar (negsuc n) ⟩ (1r - 1r) + scalar (negsuc n) ≡⟨ sym (+Assoc _ _ _) ⟩ 1r + (- 1r + - scalar (pos (ℕ.suc n))) ≡[ i ]⟨ 1r + -Dist 1r (scalar (pos (ℕ.suc n))) i ⟩ 1r + -(1r + scalar (pos (ℕ.suc n))) ≡⟨ refl ⟩ 1r + -(scalar (pos (ℕ.suc (ℕ.suc n)))) ≡⟨ refl ⟩ 1r + scalar (negsuc (ℕ.suc n)) ∎ lemmaPred : (k : ℤ) → scalar (predℤ k) ≡ - 1r + scalar k lemmaPred k = sym( - 1r + scalar k ≡[ i ]⟨ - 1r + scalar (sucPred k (~ i)) ⟩ - 1r + scalar (sucℤ (predℤ k)) ≡[ i ]⟨ - 1r + lemmaSuc (predℤ k) i ⟩ - 1r + (1r + scalar (predℤ k)) ≡⟨ +Assoc _ _ _ ⟩ (- 1r + 1r) + scalar (predℤ k) ≡[ i ]⟨ +Linv 1r i + scalar (predℤ k) ⟩ 0r + scalar (predℤ k) ≡⟨ +Lid _ ⟩ scalar (predℤ k) ∎) +HomScalar : (k l : ℤ) → scalar (k +ℤ l) ≡ (scalar k) + (scalar l) +HomScalar (pos ℕ.zero) l = scalar (0 +ℤ l) ≡[ i ]⟨ scalar (sym (pos0+ l) i) ⟩ scalar l ≡⟨ sym (+Lid _) ⟩ 0r + scalar l ≡⟨ refl ⟩ scalar 0 + scalar l ∎ +HomScalar (pos (ℕ.suc ℕ.zero)) l = scalar (1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm 1 l i) ⟩ scalar (l +ℤ 1) ≡⟨ refl ⟩ scalar (sucℤ l) ≡⟨ lemmaSuc l ⟩ 1r + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc ℕ.zero)) + scalar l ∎ +HomScalar (pos (ℕ.suc (ℕ.suc n))) l = scalar (pos (ℕ.suc (ℕ.suc n)) +ℤ l) ≡⟨ refl ⟩ scalar ((pos (ℕ.suc n) +ℤ 1) +ℤ l) ≡[ i ]⟨ scalar ((+ℤComm (pos (ℕ.suc n)) 1 i) +ℤ l) ⟩ scalar ((1 +ℤ (pos (ℕ.suc n))) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc 1 (pos (ℕ.suc n)) l (~ i)) ⟩ scalar (1 +ℤ (pos (ℕ.suc n) +ℤ l)) ≡⟨ +HomScalar (pos (ℕ.suc ℕ.zero)) (pos (ℕ.suc n) +ℤ l) ⟩ scalar 1 + scalar (pos (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ 1r + (scalar (pos (ℕ.suc n) +ℤ l)) ≡[ i ]⟨ 1r + +HomScalar (pos (ℕ.suc n)) l i ⟩ 1r + (scalar (pos (ℕ.suc n)) + scalar l) ≡⟨ +Assoc _ _ _ ⟩ (1r + scalar (pos (ℕ.suc n))) + scalar l ≡⟨ refl ⟩ scalar (pos (ℕ.suc (ℕ.suc n))) + scalar l ∎ +HomScalar (negsuc ℕ.zero) l = scalar (-1 +ℤ l) ≡[ i ]⟨ scalar (+ℤComm -1 l i) ⟩ scalar (l +ℤ -1) ≡⟨ refl ⟩ scalar (predℤ l) ≡⟨ lemmaPred l ⟩ - 1r + scalar l ≡⟨ refl ⟩ scalar -1 + scalar l ∎ +HomScalar (negsuc (ℕ.suc n)) l = scalar (negsuc (ℕ.suc n) +ℤ l) ≡⟨ refl ⟩ scalar ((negsuc n +ℤ -1) +ℤ l) ≡[ i ]⟨ scalar (+ℤComm (negsuc n) -1 i +ℤ l) ⟩ scalar ((-1 +ℤ negsuc n) +ℤ l) ≡[ i ]⟨ scalar (+ℤAssoc -1 (negsuc n) l (~ i)) ⟩ scalar (-1 +ℤ (negsuc n +ℤ l)) ≡⟨ +HomScalar -1 (negsuc n +ℤ l) ⟩ - 1r + scalar (negsuc n +ℤ l) ≡[ i ]⟨ - 1r + +HomScalar (negsuc n) l i ⟩ - 1r + (scalar (negsuc n) + scalar l) ≡⟨ +Assoc (- 1r) _ _ ⟩ (- 1r + (scalar (negsuc n))) + scalar l ≡⟨ refl ⟩ (- 1r + - scalar (pos (ℕ.suc n))) + scalar l ≡[ i ]⟨ -Dist 1r (scalar (pos (ℕ.suc n))) i + scalar l ⟩ (- (1r + scalar (pos (ℕ.suc n)))) + scalar l ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc n)) + scalar l ∎ lemma1 : (n : ℕ) → 1r + scalar (pos n) ≡ scalar (pos (ℕ.suc n)) lemma1 ℕ.zero = +Rid _ lemma1 (ℕ.suc k) = refl lemma-1 : (n : ℕ) → - 1r + scalar (negsuc n) ≡ scalar (negsuc (ℕ.suc n)) lemma-1 ℕ.zero = -Dist _ _ lemma-1 (ℕ.suc k) = - 1r + scalar (negsuc (ℕ.suc k)) ≡⟨ refl ⟩ - 1r + - scalar (pos (ℕ.suc (ℕ.suc k))) ≡⟨ -Dist _ _ ⟩ - (1r + scalar (pos (ℕ.suc (ℕ.suc k)))) ≡⟨ refl ⟩ scalar (negsuc (ℕ.suc (ℕ.suc k))) ∎ ·HomScalar : (k l : ℤ) → scalar (k ·ℤ l) ≡ scalar k · scalar l ·HomScalar (pos ℕ.zero) l = 0r ≡⟨ sym (0LeftAnnihilates (scalar l)) ⟩ 0r · scalar l ∎ ·HomScalar (pos (ℕ.suc n)) l = scalar (l +ℤ (pos n ·ℤ l)) ≡⟨ +HomScalar l (pos n ·ℤ l) ⟩ scalar l + scalar (pos n ·ℤ l) ≡[ i ]⟨ scalar l + ·HomScalar (pos n) l i ⟩ scalar l + (scalar (pos n) · scalar l) ≡[ i ]⟨ ·Lid (scalar l) (~ i) + (scalar (pos n) · scalar l) ⟩ 1r · scalar l + (scalar (pos n) · scalar l) ≡⟨ sym (·Ldist+ 1r _ _) ⟩ (1r + scalar (pos n)) · scalar l ≡[ i ]⟨ lemma1 n i · scalar l ⟩ scalar (pos (ℕ.suc n)) · scalar l ∎ ·HomScalar (negsuc ℕ.zero) l = scalar (-ℤ l) ≡⟨ -DistScalar l ⟩ - scalar l ≡[ i ]⟨ - (·Lid (scalar l) (~ i)) ⟩ - (1r · scalar l) ≡⟨ sym (-DistL· _ _) ⟩ - 1r · scalar l ≡⟨ refl ⟩ scalar (negsuc ℕ.zero) · scalar l ∎ ·HomScalar (negsuc (ℕ.suc n)) l = scalar ((-ℤ l) +ℤ (negsuc n ·ℤ l)) ≡⟨ +HomScalar (-ℤ l) (negsuc n ·ℤ l) ⟩ scalar (-ℤ l) + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ -DistScalar l i + scalar (negsuc n ·ℤ l) ⟩ - scalar l + scalar (negsuc n ·ℤ l) ≡[ i ]⟨ - scalar l + ·HomScalar (negsuc n) l i ⟩ - scalar l + scalar (negsuc n) · scalar l ≡[ i ]⟨ (- ·Lid (scalar l) (~ i)) + scalar (negsuc n) · scalar l ⟩ - (1r · scalar l) + scalar (negsuc n) · scalar l ≡[ i ]⟨ -DistL· 1r (scalar l) (~ i) + scalar (negsuc n) · scalar l ⟩ - 1r · scalar l + scalar (negsuc n) · scalar l ≡⟨ sym (·Ldist+ _ _ _) ⟩ (- 1r + scalar (negsuc n)) · scalar l ≡[ i ]⟨ lemma-1 n i · scalar l ⟩ scalar (negsuc (ℕ.suc n)) · scalar l ∎ CommRing→RawℤAlgebra : CommRing ℓ → RawAlgebra ℤAsRawRing ℓ CommRing→RawℤAlgebra (R , commringstr 0r 1r _+_ _·_ -_ isCommRing) = rawalgebra R (scalar ((R , commringstr 0r 1r _+_ _·_ -_ isCommRing))) 0r 1r _+_ _·_ -_
{ "alphanum_fraction": 0.4869143368, "avg_line_length": 44.2542372881, "ext": "agda", "hexsha": "a0ba97aa6fb59304f4ef6ca45b36b8d28542ff47", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/RawAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/RawAlgebra.agda", "max_line_length": 152, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/RawAlgebra.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3348, "size": 7833 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Simply-typed changes (Fig. 3 and Fig. 4d) ------------------------------------------------------------------------ import Parametric.Syntax.Type as Type module Parametric.Change.Type (Base : Type.Structure) where open Type.Structure Base -- Extension point: Simply-typed changes of base types. Structure : Set Structure = Base → Type module Structure (ΔBase : Structure) where -- We provide: Simply-typed changes on simple types. ΔType : Type → Type ΔType (base ι) = ΔBase ι ΔType (σ ⇒ τ) = σ ⇒ ΔType σ ⇒ ΔType τ -- And we also provide context merging. open import Base.Change.Context ΔType public
{ "alphanum_fraction": 0.5710344828, "avg_line_length": 26.8518518519, "ext": "agda", "hexsha": "295d1d912ae496a39acf28cc2e455e08d7e7f71b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Parametric/Change/Type.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Parametric/Change/Type.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Parametric/Change/Type.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 170, "size": 725 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.ModalWedgeExtension {i} (M : Modality i) {A : Type i} {a₀ : A} {B : Type i} {b₀ : B} where open Modality M private X = ⊙[ A , a₀ ] Y = ⊙[ B , b₀ ] open import homotopy.FiberOfWedgeToProduct X Y record args : Type (lsucc i) where field join-conn : (a : A) (b : B) → is-◯-connected ((a₀ == a) * (b₀ == b)) R : A → B → ◯-Type f : (a : A) → fst (R a b₀) g : (b : B) → fst (R a₀ b) p : f a₀ == g b₀ module _ (r : args) where open args r abstract ∨-to-×-is-◯-equiv : is-◯-equiv (∨-to-× {X = X} {Y = Y}) ∨-to-×-is-◯-equiv (a , b) = equiv-preserves-◯-conn (fiber-thm a b ⁻¹) (join-conn a b) module A∨BToR = WedgeElim f g (↓-ap-out= (fst ∘ uncurry R) ∨-to-× wglue (∨-to-×-glue-β {X = X} {Y = Y}) p) A∨B-to-R : ∀ w → fst (uncurry R (∨-to-× w)) A∨B-to-R = A∨BToR.f ext : (a : A) → (b : B) → fst (R a b) ext = curry $ ◯-extend ∨-to-×-is-◯-equiv (uncurry R) A∨B-to-R module _ {r : args} where open args r abstract β-l : (a : A) → ext r a b₀ == f a β-l a = ◯-extend-β (∨-to-×-is-◯-equiv r) (uncurry R) (A∨B-to-R r) (winl a) β-r : (b : B) → ext r a₀ b == g b β-r b = ◯-extend-β (∨-to-×-is-◯-equiv r) (uncurry R) (A∨B-to-R r) (winr b) coh : ! (β-l a₀) ∙ β-r b₀ == p coh = ap (! (β-l a₀) ∙_) (! (∙'-unit-l (β-r b₀)) ∙ ! lemma₁) ∙ ! (∙-assoc (! (β-l a₀)) (β-l a₀) p) ∙ ap (_∙ p) (!-inv-l (β-l a₀)) where -- maybe this has been proved somewhere? lemma₀ : ∀ {i j k} {A : Type i} {B : Type j} (C : (b : B) → Type k) (f : A → B) {x y} (p : x == y) {q : f x == f y} (r : ap f p == q) {cx cx' : C (f x)} {cy cy' : C (f y)} (s : cx' == cy' [ C ↓ q ]) (t : cx == cy [ C ↓ q ]) (u : cx == cx') (v : cy == cy') → u ◃ ↓-ap-out= C f p r s == ↓-ap-out= C f p r t ▹ v → u ◃ s == t ▹ v lemma₀ C f idp idp idp idp u v u=v = u=v lemma₁ : β-l a₀ ∙ p == idp ∙' β-r b₀ lemma₁ = lemma₀ (fst ∘ uncurry R) ∨-to-× wglue ∨-to-×-glue-β p idp (β-l a₀) (β-r b₀) ( ap (β-l a₀ ◃_) (! (A∨BToR.glue-β r)) ∙ ↓-=-out (apd (◯-extend-β (∨-to-×-is-◯-equiv r) (uncurry R) (A∨B-to-R r)) wglue) ∙ ap (_▹ β-r b₀) (apd-∘'' (◯-extend (∨-to-×-is-◯-equiv r) (uncurry R) (A∨B-to-R r)) ∨-to-× wglue ∨-to-×-glue-β))
{ "alphanum_fraction": 0.4236883943, "avg_line_length": 35.4366197183, "ext": "agda", "hexsha": "0a570d4de5118202b994b7d218b0d709655fb896", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/ModalWedgeExtension.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/ModalWedgeExtension.agda", "max_line_length": 93, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/ModalWedgeExtension.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1141, "size": 2516 }
{-# OPTIONS --without-K --safe #-} open import Level -- This is really a degenerate version of Categories.Category.Instance.Zero -- Here EmptySet is not given an explicit name, it is an alias for Lift o ⊥ module Categories.Category.Instance.EmptySet where open import Data.Unit open import Data.Empty using (⊥; ⊥-elim) open import Function.Equality using (Π) open Π using (_⟨$⟩_) open import Relation.Binary using (Setoid) open import Relation.Binary.PropositionalEquality using (refl) open import Categories.Category.Instance.Sets open import Categories.Category.Instance.Setoids import Categories.Object.Initial as Init module _ {o : Level} where open Init (Sets o) EmptySet-⊥ : Initial EmptySet-⊥ = record { ⊥ = Lift o ⊥ ; ⊥-is-initial = record { ! = λ { {A} (lift x) → ⊥-elim x } ; !-unique = λ { f {()} } } } module _ {c ℓ : Level} where open Init (Setoids c ℓ) EmptySetoid : Setoid c ℓ EmptySetoid = record { Carrier = Lift c ⊥ ; _≈_ = λ _ _ → Lift ℓ ⊤ } EmptySetoid-⊥ : Initial EmptySetoid-⊥ = record { ⊥ = EmptySetoid ; ⊥-is-initial = record { ! = record { _⟨$⟩_ = λ { () } ; cong = λ { {()} } } ; !-unique = λ { _ {()} } } }
{ "alphanum_fraction": 0.6164931946, "avg_line_length": 26.5744680851, "ext": "agda", "hexsha": "021f0ae6f38af81cfac77115dd1a70ea6cf3d6f9", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/EmptySet.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/EmptySet.agda", "max_line_length": 126, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/EmptySet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 382, "size": 1249 }
open import Data.Nat using ( ℕ ) module README ( n : ℕ ) where ------------------------------------------------------------------------------ -- Agda-Prop Library. -- Deep Embedding for Propositional Logic. ------------------------------------------------------------------------------ open import Data.PropFormula n public
{ "alphanum_fraction": 0.3773006135, "avg_line_length": 32.6, "ext": "agda", "hexsha": "d0c0673d7807830d72daa03b51cea3fc559f057b", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z", "max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z", "max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jonaprieto/agda-prop", "max_forks_repo_path": "README.agda", "max_issues_count": 18, "max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jonaprieto/agda-prop", "max_issues_repo_path": "README.agda", "max_line_length": 78, "max_stars_count": 13, "max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jonaprieto/agda-prop", "max_stars_repo_path": "README.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z", "num_tokens": 45, "size": 326 }
{- Technical results about elementary transformations -} {-# OPTIONS --safe #-} module Cubical.Algebra.Matrix.Elementaries where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Nat hiding (_+_ ; _·_) open import Cubical.Data.Nat.Order open import Cubical.Data.Empty as Empty open import Cubical.Data.Bool open import Cubical.Data.FinData renaming (znots to znotsFin ; snotz to snotzFin) open import Cubical.Relation.Nullary open import Cubical.Algebra.RingSolver.Reflection open import Cubical.Algebra.Ring.BigOps open import Cubical.Algebra.CommRing open import Cubical.Algebra.Matrix open import Cubical.Algebra.Matrix.CommRingCoefficient open import Cubical.Algebra.Matrix.RowTransformation private variable ℓ : Level A : Type ℓ m n k l : ℕ module ElemTransformation (𝓡 : CommRing ℓ) where private R = 𝓡 .fst open CommRingStr (𝓡 .snd) renaming ( is-set to isSetR ) open KroneckerDelta (CommRing→Ring 𝓡) open Sum (CommRing→Ring 𝓡) open Coefficient 𝓡 open LinearTransformation 𝓡 open SimRel open Sim open isLinear open isLinear2×2 -- Swapping the first row with another swapMat : Mat 2 2 swapMat zero zero = 0r swapMat zero one = 1r swapMat one zero = 1r swapMat one one = 0r uniSwapMat : swapMat ⋆ swapMat ≡ 𝟙 uniSwapMat t zero zero = (mul2 swapMat swapMat zero zero ∙ helper) t where helper : 0r · 0r + 1r · 1r ≡ 1r helper = solve 𝓡 uniSwapMat t zero one = (mul2 swapMat swapMat zero one ∙ helper) t where helper : 0r · 1r + 1r · 0r ≡ 0r helper = solve 𝓡 uniSwapMat t one zero = (mul2 swapMat swapMat one zero ∙ helper) t where helper : 1r · 0r + 0r · 1r ≡ 0r helper = solve 𝓡 uniSwapMat t one one = (mul2 swapMat swapMat one one ∙ helper) t where helper : 1r · 1r + 0r · 0r ≡ 1r helper = solve 𝓡 isInvSwapMat2 : isInv swapMat isInvSwapMat2 .fst = swapMat isInvSwapMat2 .snd .fst = uniSwapMat isInvSwapMat2 .snd .snd = uniSwapMat swapRow2 : Mat 2 n → Mat 2 n swapRow2 M zero = M one swapRow2 M one = M zero isLinear2×2SwapRow2 : isLinear2×2 {n = n} swapRow2 isLinear2×2SwapRow2 .transMat _ = swapMat isLinear2×2SwapRow2 .transEq M t zero j = ((mul2 swapMat M zero j) ∙ helper _ _) (~ t) where helper : (a b : R) → 0r · a + 1r · b ≡ b helper = solve 𝓡 isLinear2×2SwapRow2 .transEq M t one j = ((mul2 swapMat M one j) ∙ helper _ _) (~ t) where helper : (a b : R) → 1r · a + 0r · b ≡ a helper = solve 𝓡 swapRow : (i₀ : Fin m)(M : Mat (suc m) n) → Mat (suc m) n swapRow i M zero = M (suc i) swapRow zero M one = M zero swapRow zero M (suc (suc i)) = M (suc (suc i)) swapRow (suc i₀) M one = M one swapRow (suc i₀) M (suc (suc i)) = swapRow i₀ (takeRowsᶜ M) (suc i) swapRowMat : (i₀ : Fin m) → Mat (suc m) (suc m) swapRowMat = trans2RowsMat swapMat swapRowEq : (i₀ : Fin m)(M : Mat (suc m) n) → swapRow i₀ M ≡ swapRowMat i₀ ⋆ M swapRowEq {m = suc m} zero M t zero j = (helper1 _ _ ∙ (λ t → 0r · M zero j + ∑Mulr1 _ (λ i → M (suc i) j) zero (~ t)) ∙ (λ t → 0r · M zero j + ∑ (λ i → helper2 (δ i zero) (M (suc i) j) t))) t where helper1 : (a b : R) → b ≡ 0r · a + b helper1 = solve 𝓡 helper2 : (a b : R) → b · a ≡ (1r · a) · b helper2 = solve 𝓡 swapRowEq {m = suc m} zero M t one j = (helper _ ∙ (λ t → (1r · 1r) · M zero j + ∑Mul0r (λ i → M (suc i) j) (~ t))) t where helper : (a : R) → a ≡ (1r · 1r) · a + 0r helper = solve 𝓡 swapRowEq {m = suc m} zero M t (suc (suc i)) j = (helper _ _ ∙ (λ t → (1r · 0r) · M zero j + ∑Mul1r _ (λ l → M (suc l) j) (suc i) (~ t))) t where helper : (a b : R) → b ≡ (1r · 0r) · a + b helper = solve 𝓡 swapRowEq {m = suc m} (suc i₀) M t zero j = (helper1 _ _ ∙ (λ t → 0r · M zero j + ∑Mul1r _ (λ i → M (suc i) j) (suc i₀) (~ t)) ∙ (λ t → 0r · M zero j + ∑ (λ l → helper2 (δ (suc i₀) l) (M (suc l) j) t))) t where helper1 : (a b : R) → b ≡ 0r · a + b helper1 = solve 𝓡 helper2 : (a b : R) → a · b ≡ (1r · a) · b helper2 = solve 𝓡 swapRowEq {m = suc m} (suc i₀) M t one j = (helper _ _ --helper1 _ _ ∙ (λ t → (1r · 0r) · M zero j + ∑Mul1r _ (λ i → M (suc i) j) zero (~ t))) t where helper : (a b : R) → b ≡ (1r · 0r) · a + b helper = solve 𝓡 swapRowEq {m = suc m} (suc i₀) M t (suc (suc i)) j = ((λ t → swapRowEq i₀ (takeRowsᶜ M) t (suc i) j) ∙ helper _ (M one j) _) t where helper : (a b c : R) → a + c ≡ a + (0r · b + c) helper = solve 𝓡 isLinearSwapRow : (i : Fin m) → isLinear (swapRow {n = n} i) isLinearSwapRow i .transMat _ = swapRowMat i isLinearSwapRow i .transEq = swapRowEq i isInvSwapMat : (i : Fin m)(M : Mat (suc m) (suc n)) → isInv (isLinearSwapRow i .transMat M) isInvSwapMat i _ = isInvTrans2RowsMat _ i isInvSwapMat2 -- Similarity defined by swapping record SwapFirstRow (i : Fin m)(M : Mat (suc m) (suc n)) : Type ℓ where field sim : Sim M swapEq : (j : Fin (suc n)) → M (suc i) j ≡ sim .result zero j record SwapFirstCol (j : Fin n)(M : Mat (suc m) (suc n)) : Type ℓ where field sim : Sim M swapEq : (i : Fin (suc m)) → M i (suc j) ≡ sim .result i zero record SwapPivot (i : Fin (suc m))(j : Fin (suc n))(M : Mat (suc m) (suc n)) : Type ℓ where field sim : Sim M swapEq : M i j ≡ sim .result zero zero open SwapFirstRow open SwapFirstCol open SwapPivot swapFirstRow : (i : Fin m)(M : Mat (suc m) (suc n)) → SwapFirstRow i M swapFirstRow i M .sim .result = swapRow i M swapFirstRow i M .sim .simrel .transMatL = isLinearSwapRow i .transMat M swapFirstRow i M .sim .simrel .transMatR = 𝟙 swapFirstRow i M .sim .simrel .transEq = isLinearSwapRow i .transEq _ ∙ sym (⋆rUnit _) swapFirstRow i M .sim .simrel .isInvTransL = isInvSwapMat i M swapFirstRow i M .sim .simrel .isInvTransR = isInv𝟙 swapFirstRow i M .swapEq j = refl swapFirstCol : (j : Fin n)(M : Mat (suc m) (suc n)) → SwapFirstCol j M swapFirstCol j M .sim .result = (swapRow j (M ᵗ))ᵗ swapFirstCol j M .sim .simrel .transMatL = 𝟙 swapFirstCol j M .sim .simrel .transMatR = (isLinearSwapRow j .transMat (M ᵗ))ᵗ swapFirstCol j M .sim .simrel .transEq = let P = isLinearSwapRow j .transMat (M ᵗ) in (λ t → (isLinearSwapRow j .transEq (M ᵗ) t)ᵗ) ∙ compᵗ P (M ᵗ) ∙ (λ t → idemᵗ M t ⋆ P ᵗ) ∙ (λ t → ⋆lUnit M (~ t) ⋆ P ᵗ) swapFirstCol j M .sim .simrel .isInvTransL = isInv𝟙 swapFirstCol j M .sim .simrel .isInvTransR = isInvᵗ {M = isLinearSwapRow j .transMat (M ᵗ)} (isInvSwapMat j (M ᵗ)) swapFirstCol j M .swapEq i t = M i (suc j) swapPivot : (i : Fin (suc m))(j : Fin (suc n))(M : Mat (suc m) (suc n)) → SwapPivot i j M swapPivot zero zero M .sim = idSim M swapPivot zero zero M .swapEq = refl swapPivot (suc i) zero M .sim = swapFirstRow i M .sim swapPivot (suc i) zero M .swapEq = refl swapPivot zero (suc j) M .sim = swapFirstCol j M .sim swapPivot zero (suc j) M .swapEq = refl swapPivot (suc i) (suc j) M .sim = compSim (swapFirstRow i M .sim) (swapFirstCol j _ .sim) swapPivot (suc i) (suc j) M .swapEq = refl -- Add the first row to another addMat : Mat 2 2 addMat zero zero = 1r addMat zero one = 0r addMat one zero = 1r addMat one one = 1r subMat : Mat 2 2 subMat zero zero = 1r subMat zero one = 0r subMat one zero = - 1r subMat one one = 1r add⋆subMat : addMat ⋆ subMat ≡ 𝟙 add⋆subMat t zero zero = (mul2 addMat subMat zero zero ∙ helper) t where helper : 1r · 1r + 0r · - 1r ≡ 1r helper = solve 𝓡 add⋆subMat t zero one = (mul2 addMat subMat zero one ∙ helper) t where helper : 1r · 0r + 0r · 1r ≡ 0r helper = solve 𝓡 add⋆subMat t one zero = (mul2 addMat subMat one zero ∙ helper) t where helper : 1r · 1r + 1r · - 1r ≡ 0r helper = solve 𝓡 add⋆subMat t one one = (mul2 addMat subMat one one ∙ helper) t where helper : 1r · 0r + 1r · 1r ≡ 1r helper = solve 𝓡 sub⋆addMat : subMat ⋆ addMat ≡ 𝟙 sub⋆addMat t zero zero = (mul2 subMat addMat zero zero ∙ helper) t where helper : 1r · 1r + 0r · 1r ≡ 1r helper = solve 𝓡 sub⋆addMat t zero one = (mul2 subMat addMat zero one ∙ helper) t where helper : 1r · 0r + 0r · 1r ≡ 0r helper = solve 𝓡 sub⋆addMat t one zero = (mul2 subMat addMat one zero ∙ helper) t where helper : - 1r · 1r + 1r · 1r ≡ 0r helper = solve 𝓡 sub⋆addMat t one one = (mul2 subMat addMat one one ∙ helper) t where helper : - 1r · 0r + 1r · 1r ≡ 1r helper = solve 𝓡 isInvAddMat2 : isInv addMat isInvAddMat2 .fst = subMat isInvAddMat2 .snd .fst = add⋆subMat isInvAddMat2 .snd .snd = sub⋆addMat addRow2 : Mat 2 n → Mat 2 n addRow2 M zero = M zero addRow2 M one j = M zero j + M one j isLinear2AddRow2 : isLinear2×2 {n = n} addRow2 isLinear2AddRow2 .transMat _ = addMat isLinear2AddRow2 .transEq M t zero j = ((mul2 addMat M zero j) ∙ helper _ _) (~ t) where helper : (a b : R) → 1r · a + 0r · b ≡ a helper = solve 𝓡 isLinear2AddRow2 .transEq M t one j = ((mul2 addMat M one j) ∙ helper _ _) (~ t) where helper : (a b : R) → 1r · a + 1r · b ≡ a + b helper = solve 𝓡 -- Add the first row to all other rows addRows : Mat (suc m) n → Mat (suc m) n addRows M zero = M zero addRows M (suc i) j = M zero j + M (suc i) j private firstRowStayInvariant : (M : Mat (suc m) n) → M zero ≡ transRows addRow2 M zero firstRowStayInvariant = invRow₀ _ (λ _ → refl) addRowsEq : (M : Mat (suc m) n) → transRows addRow2 M ≡ addRows M addRowsEq M t zero = firstRowStayInvariant M (~ t) addRowsEq M t one j = M zero j + M one j addRowsEq M t (suc (suc i)) j = takeCombShufRows addRow2 (λ N → addRowsEq N t) M (suc (suc i)) j isLinearAddRows : isLinear (addRows {m = m} {n = suc n}) isLinearAddRows = let isLinear = isLinearTransRows _ isLinear2AddRow2 _ in record { transMat = isLinear .transMat ; transEq = (λ M → sym (addRowsEq M) ∙ isLinear .transEq M) } isInvAddRows : (M : Mat (suc m) (suc n)) → isInv (isLinearAddRows .transMat M) isInvAddRows = isInvTransRows _ _ (λ _ → isInvAddMat2) -- Similarity defined by adding rows record AddFirstRow (M : Mat (suc m) (suc n)) : Type ℓ where field sim : Sim M inv₀ : M zero ≡ sim .result zero addEq : (i : Fin m)(j : Fin (suc n)) → M zero j + M (suc i) j ≡ sim .result (suc i) j open AddFirstRow addFirstRow : (M : Mat (suc m) (suc n)) → AddFirstRow M addFirstRow M .sim .result = addRows M addFirstRow M .sim .simrel .transMatL = isLinearAddRows .transMat M addFirstRow M .sim .simrel .transMatR = 𝟙 addFirstRow M .sim .simrel .transEq = isLinearAddRows .transEq _ ∙ sym (⋆rUnit _) addFirstRow M .sim .simrel .isInvTransL = isInvAddRows M addFirstRow M .sim .simrel .isInvTransR = isInv𝟙 addFirstRow M .inv₀ = refl addFirstRow M .addEq i j = refl
{ "alphanum_fraction": 0.603205699, "avg_line_length": 34.7678018576, "ext": "agda", "hexsha": "c8c07c7e18c403df4d945c4ec5a6667994b2a12f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/Matrix/Elementaries.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/Matrix/Elementaries.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/Matrix/Elementaries.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4560, "size": 11230 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.types.Coproduct open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.PushoutFlattening open import lib.types.Span open import lib.types.Unit -- Wedge of two pointed types is defined as a particular case of pushout module lib.types.Wedge where module _ {i j} (X : Ptd i) (Y : Ptd j) where wedge-span : Span wedge-span = span (fst X) (fst Y) Unit (λ _ → snd X) (λ _ → snd Y) Wedge : Type (lmax i j) Wedge = Pushout wedge-span infix 80 _∨_ _∨_ = Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where winl : fst X → X ∨ Y winl x = left x winr : fst Y → X ∨ Y winr y = right y wglue : winl (snd X) == winr (snd Y) wglue = glue tt module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙Wedge : Ptd (lmax i j) ⊙Wedge = ⊙[ Wedge X Y , winl (snd X) ] infix 80 _⊙∨_ _⊙∨_ = ⊙Wedge module _ {i j} {X : Ptd i} {Y : Ptd j} where ⊙winl : fst (X ⊙→ X ⊙∨ Y) ⊙winl = (winl , idp) ⊙winr : fst (Y ⊙→ X ⊙∨ Y) ⊙winr = (winr , ! wglue) module _ {i j} {X : Ptd i} {Y : Ptd j} where module WedgeElim {k} {P : X ∨ Y → Type k} (winl* : (x : fst X) → P (winl x)) (winr* : (y : fst Y) → P (winr y)) (wglue* : winl* (snd X) == winr* (snd Y) [ P ↓ wglue ]) where private module M = PushoutElim winl* winr* (λ _ → wglue*) f = M.f glue-β = M.glue-β unit open WedgeElim public using () renaming (f to Wedge-elim) module WedgeRec {k} {C : Type k} (winl* : fst X → C) (winr* : fst Y → C) (wglue* : winl* (snd X) == winr* (snd Y)) where private module M = PushoutRec {d = wedge-span X Y} winl* winr* (λ _ → wglue*) f = M.f glue-β = M.glue-β unit add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙⊔ Y) → X ∨ Y add-wglue (inl x) = winl x add-wglue (inr y) = winr y ⊙add-wglue : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙⊔ Y ⊙→ X ⊙∨ Y) ⊙add-wglue = (add-wglue , idp) module ⊙WedgeRec {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : fst (X ⊙→ Z)) (h : fst (Y ⊙→ Z)) where open WedgeRec (fst g) (fst h) (snd g ∙ ! (snd h)) public ⊙f : fst (X ⊙∨ Y ⊙→ Z) ⊙f = (f , snd g) ⊙winl-β : ⊙f ⊙∘ ⊙winl == g ⊙winl-β = idp ⊙winr-β : ⊙f ⊙∘ ⊙winr == h ⊙winr-β = ⊙λ= (λ _ → idp) $ ap (λ w → w ∙ snd g) (ap-! f wglue ∙ ap ! glue-β ∙ !-∙ (snd g) (! (snd h))) ∙ ∙-assoc (! (! (snd h))) (! (snd g)) (snd g) ∙ ap (λ w → ! (! (snd h)) ∙ w) (!-inv-l (snd g)) ∙ ∙-unit-r (! (! (snd h))) ∙ !-! (snd h) ⊙wedge-rec = ⊙WedgeRec.⊙f ⊙wedge-rec-post∘ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l} (k : fst (Z ⊙→ W)) (g : fst (X ⊙→ Z)) (h : fst (Y ⊙→ Z)) → k ⊙∘ ⊙wedge-rec g h == ⊙wedge-rec (k ⊙∘ g) (k ⊙∘ h) ⊙wedge-rec-post∘ k g h = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in $ ⊙WedgeRec.glue-β (k ⊙∘ g) (k ⊙∘ h) ∙ lemma (fst k) (snd g) (snd h) (snd k) ∙ ! (ap (ap (fst k)) (⊙WedgeRec.glue-β g h)) ∙ ∘-ap (fst k) (fst (⊙wedge-rec g h)) wglue)) idp where lemma : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {x y z : A} {w : B} (p : x == z) (q : y == z) (r : f z == w) → (ap f p ∙ r) ∙ ! (ap f q ∙ r) == ap f (p ∙ ! q) lemma f idp idp idp = idp ⊙wedge-rec-η : ∀ {i j} {X : Ptd i} {Y : Ptd j} → ⊙wedge-rec ⊙winl ⊙winr == ⊙idf (X ⊙∨ Y) ⊙wedge-rec-η = ⊙λ= (Wedge-elim (λ _ → idp) (λ _ → idp) (↓-='-in $ ap-idf wglue ∙ ! (!-! wglue) ∙ ! (⊙WedgeRec.glue-β ⊙winl ⊙winr))) idp module Fold {i} {X : Ptd i} = ⊙WedgeRec (⊙idf X) (⊙idf X) fold = Fold.f ⊙fold = Fold.⊙f module _ {i j} (X : Ptd i) (Y : Ptd j) where module Projl = ⊙WedgeRec (⊙idf X) (⊙cst {X = Y}) module Projr = ⊙WedgeRec (⊙cst {X = X}) (⊙idf Y) projl = Projl.f projr = Projr.f ⊙projl = Projl.⊙f ⊙projr = Projr.⊙f
{ "alphanum_fraction": 0.497005988, "avg_line_length": 25.9527027027, "ext": "agda", "hexsha": "a1ccb9059f0c41de457aadd344d110c378062d53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Wedge.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Wedge.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1849, "size": 3841 }
open import Categories open import Monads module Monads.Kleisli.Adjunction {a b}{C : Cat {a}{b}}(M : Monad C) where open Cat C open Monad M open import Library open import Functors open import Monads.Kleisli M open import Adjunctions open import Monads.Kleisli.Functors M open Fun KlAdj : Adj C Kl KlAdj = record { L = KlL; R = KlR; left = id; right = id; lawa = λ _ → refl; lawb = λ _ → refl; natleft = lem; natright = lem} where lem = λ {X}{X'}{Y}{Y'} (f : Hom X' X)(g : Hom Y (T Y')) h → proof comp (bind g) (comp h f) ≅⟨ cong (λ h → comp (bind g) (comp h f)) (sym law2) ⟩ comp (bind g) (comp (comp (bind h) η) f) ≅⟨ cong (comp (bind g)) ass ⟩ comp (bind g) (comp (bind h) (comp η f)) ∎
{ "alphanum_fraction": 0.5719794344, "avg_line_length": 22.2285714286, "ext": "agda", "hexsha": "1b4e9d072b017a146fff5503097e06fae56c9bf3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Monads/Kleisli/Adjunction.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Monads/Kleisli/Adjunction.agda", "max_line_length": 73, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Monads/Kleisli/Adjunction.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 298, "size": 778 }
------------------------------------------------------------------------------ -- Conversion rules for the Collatz function ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Program.Collatz.ConversionRulesATP where open import FOT.FOTC.Program.Collatz.CollatzConditionals open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.UnaryNumbers open import FOTC.Program.Collatz.Data.Nat ------------------------------------------------------------------------------ -- Conversion rules for the Collatz function. postulate collatz-0 : collatz 0' ≡ 1' collatz-1 : collatz 1' ≡ 1' collatz-even : ∀ {n} → Even (succ₁ (succ₁ n)) → collatz (succ₁ (succ₁ n)) ≡ collatz (div (succ₁ (succ₁ n)) 2') collatz-noteven : ∀ {n} → NotEven (succ₁ (succ₁ n)) → collatz (succ₁ (succ₁ n)) ≡ collatz (3' * (succ₁ (succ₁ n)) + 1') {-# ATP prove collatz-0 #-} {-# ATP prove collatz-1 #-} {-# ATP prove collatz-even #-} {-# ATP prove collatz-noteven #-}
{ "alphanum_fraction": 0.4830575256, "avg_line_length": 37.3235294118, "ext": "agda", "hexsha": "b8984c4bcb64bce5455c42072ed5b5fc846c417e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/Collatz/ConversionRulesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 307, "size": 1269 }
module Untyped.Main where open import Function open import Data.Nat open import Data.Unit open import Data.Product open import Data.List open import Data.Sum open import Category.Monad open import Strict open import Untyped.Monads open import Untyped.Abstract open M -- the monad in which we interpret expressions into command trees M : Set → Set M = ReaderT Env (Free Cmd ⟦_⟧) record ServerState : Set where constructor server field threads : ThreadPool nextChan : ℕ links : List ℕ queues : List (List Val) empty : ServerState empty = record { threads = []; links = []; queues = []; nextChan = 0 } SchedM : Set → Set SchedM = StateT ServerState id SchedM? : Set → Set SchedM? = ExceptT Blocked (StateT ServerState id) instance free-monad' = free-monad {- The monad that interprets expressions into threads -} m-monad : RawMonad M m-monad = reader-monad Env (Free Cmd ⟦_⟧) ⦃ free-monad ⦄ m-reader : MonadReader M Env m-reader = record { ask = Free.pure ; local = λ f c E → c (f E) } m-comm : MonadComm M Chan Val m-comm = record { recv = λ c E → impure (inj₁ (Comm.recv c)) Free.pure ; send = λ c v E → impure (inj₁ (Comm.send c v)) Free.pure ; close = λ c E → impure (inj₁ (Comm.clos c)) Free.pure } m-res : MonadResumption M Closure Chan m-res = record { yield = λ _ → impure (inj₂ Threading.yield) Free.pure ; fork = λ clos _ → impure (inj₂ (Threading.fork clos)) Free.pure } {- The monad that executes threads -} s-monad : RawMonad SchedM s-monad = state-monad ServerState id ⦃ id-monad ⦄ s-state : MonadState SchedM ServerState s-state = state-monad-state ServerState id ⦃ id-monad ⦄ s-thread-state : MonadState SchedM ThreadPool s-thread-state = focus-monad-state ServerState.threads (λ thr s → record s { threads = thr }) s-state s-writer : MonadWriter SchedM ThreadPool s-writer = record { write = λ pool → do modify λ st → record st { threads = ServerState.threads st ++ pool } return tt } s?-monad : RawMonad SchedM? s?-monad = except-monad s?-monad-except : MonadExcept SchedM? Blocked s?-monad-except = except-monad-except newChan : SchedM (Chan × Chan) newChan = do c ← gets ServerState.nextChan let left = c let right = c + 1 modify (λ st → record st { nextChan = c + 2 ; links = ServerState.links st ++ (right ∷ left ∷ []) ; queues = ServerState.queues st ++ ([] ∷ [] ∷ []) }) return (left , right) instance s-comm : MonadComm SchedM? ℕ Val s-comm = record { recv = λ ch → do queue ← gets (unsafeLookup ch ∘ ServerState.queues) case queue of λ where [] → throw blocked (x ∷ xs) → do modify λ st → (record st { queues = unsafeUpdate ch (ServerState.queues st) xs}) return x ; send = λ ch v → do ch⁻¹ ← gets (unsafeLookup ch ∘ ServerState.links) queue ← gets (unsafeLookup ch⁻¹ ∘ ServerState.queues) modify λ st → record st { queues = unsafeUpdate ch⁻¹ (ServerState.queues st) (queue ∷ʳ v) } return tt ; close = λ ch → do return tt } s-res : MonadResumption SchedM? Closure Chan s-res = record { yield = return tt ; fork = λ where ⟨ env ⊢ e ⟩ → do (l , r) ← newChan schedule [ thread $ eval ⦃ m-monad ⦄ e (extend (chan l) env) ] return r } handler : (c : Cmd) → Cont Cmd ⟦_⟧ c Val → SchedM ⊤ handler c k s = let (s' , r) = handle {SchedM?} c s in case r of λ where (exc e) → schedule [ thread (impure c k) ] s' -- reschedule (✓ v) → schedule [ thread (k v) ] s' atomic : Thread → SchedM ⊤ atomic (thread (Free.pure x)) = return tt atomic (thread (impure cmd x)) = handler cmd x run : Exp → ℕ run e = let main = thread $ eval e [] (s , v) = robin ⦃ s-monad ⦄ atomic (record empty { threads = [ main ]}) in case (ServerState.threads s) of λ where [] → 0 _ → 1 example : Exp example = let slave = ƛ (Exp.send (var 0) (nat 3)) master = Exp.receive (Exp.fork slave) in master import IO main = do let val = run example case val of λ where 0 → IO.run (IO.putStrLn "done!") _ → IO.run (IO.putStrLn "?!")
{ "alphanum_fraction": 0.5923408112, "avg_line_length": 26.1124260355, "ext": "agda", "hexsha": "f14f21e6378189bd8b649f3e6b15f63e9f357c46", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Untyped/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Untyped/Main.agda", "max_line_length": 95, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Untyped/Main.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1377, "size": 4413 }
module _ where data Sigma (A : Set)(B : A → Set) : Set where _,_ : (x : A) → B x → Sigma A B record Top : Set where _o_ : {A B : Set}{C : Set1} → (f : B → C) → (g : A → B) → (A → C) f o g = \ x → f (g x) mutual data U : Set where top : U sig : (X : U) → (T X → U) → U T : U → Set T top = Top T (sig a b) = Sigma (T a) (T o b)
{ "alphanum_fraction": 0.4369747899, "avg_line_length": 17, "ext": "agda", "hexsha": "3906b24d5e03224d32031bd172ad0479b609748a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue695.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Succeed/Issue695.agda", "max_line_length": 45, "max_stars_count": 2, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Succeed/Issue695.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 160, "size": 357 }
open import Agda.Builtin.IO open import Agda.Builtin.Unit record Box (A : Set) : Set where field unbox : A open Box public record R : Set where coinductive field force : Box R open R public r : R unbox (force r) = r postulate seq : {A B : Set} → A → B → B return : {A : Set} → A → IO A {-# COMPILE GHC return = \_ -> return #-} {-# COMPILE GHC seq = \_ _ -> seq #-} main : IO ⊤ main = seq r (return tt)
{ "alphanum_fraction": 0.5795454545, "avg_line_length": 15.1724137931, "ext": "agda", "hexsha": "00507814696ccde5dc48283d1f1872245f6f79a7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2909-1.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2909-1.agda", "max_line_length": 43, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2909-1.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 151, "size": 440 }
module Selective.Examples.ChatAO where open import Selective.ActorMonad open import Selective.Libraries.Channel open import Selective.Libraries.Call2 open import Selective.Libraries.ActiveObjects open import Prelude hiding (Maybe) open import Data.Maybe as Maybe hiding (map) open import Data.List.Properties open import Category.Monad open import Debug open import Data.Nat.Show using (show) RoomName = ℕ ClientName = ℕ Room-to-Client : InboxShape record Client : Set where field name : ClientName channel : UniqueTag ClientList : Set ClientList = List Client record RoomState : Set₁ where field clients : ClientList cl-to-context : ClientList → TypingContext cl-to-context = map λ _ → Room-to-Client rs-to-context : RoomState → TypingContext rs-to-context rs = let open RoomState in cl-to-context (rs .clients) record ChatMessageContent : Set where constructor chat-from_message:_ field sender : ClientName message : String SendChatMessage : MessageType SendChatMessage = [ ValueType ChatMessageContent ]ˡ ReceiveChatMessage : MessageType ReceiveChatMessage = ValueType UniqueTag ∷ [ ValueType ChatMessageContent ]ˡ chat-message-header : ActiveMethod chat-message-header = VoidMethod [ SendChatMessage ]ˡ Room-to-Client = [ ReceiveChatMessage ]ˡ AddToRoom : MessageType AddToRoom = ValueType UniqueTag ∷ ValueType ClientName ∷ [ ReferenceType Room-to-Client ]ˡ add-to-room-header : ActiveMethod add-to-room-header = VoidMethod [ AddToRoom ]ˡ LeaveRoom : MessageType LeaveRoom = [ ValueType ClientName ]ˡ leave-room-header : ActiveMethod leave-room-header = VoidMethod [ LeaveRoom ]ˡ room-methods : List ActiveMethod room-methods = chat-message-header ∷ leave-room-header ∷ [ add-to-room-header ]ˡ room-inbox = methods-shape room-methods add-to-room : (active-method room-inbox RoomState rs-to-context add-to-room-header) add-to-room _ (Msg Z (tag ∷ client-name ∷ _ ∷ [])) state = do let open RoomState state' = record { clients = record { name = client-name ; channel = tag } ∷ state .clients } strengthen (Z ∷ ⊆-refl) return₁ state' add-to-room _ (Msg (S ()) _) record RoomLeave (rs : ClientList) (name : ClientName) : Set₁ where field filtered : ClientList subs : (cl-to-context filtered) ⊆ (cl-to-context rs) leave-room : (active-method room-inbox RoomState rs-to-context leave-room-header) leave-room _ (Msg Z (client-name ∷ [])) state = do let open RoomState open RoomLeave rl = remove-first-client (state .clients) client-name state' = record { clients = rl .filtered } debug ("client#" || show client-name || " left the room") (strengthen (rl .subs)) return₁ state' where remove-first-client : (cl : ClientList) → (name : ClientName) → RoomLeave cl name remove-first-client [] name = record { filtered = [] ; subs = [] } remove-first-client (x ∷ cl) name with ((Client.name x) ≟ name) ... | (yes _) = record { filtered = cl ; subs = ⊆-suc ⊆-refl } ... | (no _) = let rec = remove-first-client cl name open RoomLeave in record { filtered = x ∷ rec .filtered ; subs = Z ∷ ⊆-suc (rec .subs) } leave-room _ (Msg (S ()) _) _ chat-message : (active-method room-inbox RoomState rs-to-context chat-message-header) chat-message _ (Msg Z ((chat-from sender message: message) ∷ [])) state = do let open RoomState debug-msg = ("room sending " || show (pred (length (state .clients))) || " messages from " || show sender || ": " || message) debug debug-msg (send-to-others (state .clients) sender message) return₁ state where ++-temp-fix : (l r : ClientList) → (x : Client) → (l ++ (x ∷ r)) ≡ ((l ∷ʳ x) ++ r) ++-temp-fix [] r x = refl ++-temp-fix (x₁ ∷ l) r x = cong (_∷_ x₁) (++-temp-fix l r x) send-to-others : ∀ {i} → (cl : ClientList) → ClientName → String → ∞ActorM i room-inbox ⊤₁ (cl-to-context cl) (λ _ → cl-to-context cl) send-to-others [] _ _ = return _ send-to-others cl@(_ ∷ _) name message = send-loop [] cl where build-pointer : (l r : ClientList) → cl-to-context r ⊢ Room-to-Client → (cl-to-context (l ++ r)) ⊢ Room-to-Client build-pointer [] r p = p build-pointer (x ∷ l) r p = S (build-pointer l r p) recurse : ∀ {i} → (l r : ClientList) → (x : Client) → ∞ActorM i room-inbox ⊤₁ (cl-to-context (l ++ (x ∷ r))) (λ _ → (cl-to-context (l ++ (x ∷ r)))) send-loop : ∀ {i} → (l r : ClientList) → ∞ActorM i room-inbox ⊤₁ (cl-to-context (l ++ r)) (λ _ → cl-to-context (l ++ r)) send-loop l [] = return _ send-loop l (x ∷ r) with ((Client.name x) ≟ name) ... | (yes _) = recurse l r x ... | (no _) = let p = build-pointer l (x ∷ r) Z in debug ("Sending to " || show (Client.name x) || ": " || message) (p ![t: Z ] (lift (Client.channel x) ∷ [ lift (chat-from name message: message) ]ᵃ) ) >> recurse l r x recurse l r x rewrite ++-temp-fix l r x = send-loop (l ∷ʳ x) r chat-message _ (Msg (S ()) _) _ room : ActiveObject room = record { state-type = RoomState ; vars = rs-to-context ; methods = room-methods ; extra-messages = [] ; handlers = chat-message ∷ leave-room ∷ [ add-to-room ]ᵃ } Client-to-Room : InboxShape Client-to-Room = SendChatMessage ∷ [ LeaveRoom ]ˡ -- ============= -- JOIN ROOM -- ============= data JoinRoomSuccess : Set where JR-SUCCESS : RoomName → JoinRoomSuccess data JoinRoomFail : Set where JR-FAIL : RoomName → JoinRoomFail data JoinRoomStatus : Set where JRS-SUCCESS JRS-FAIL : RoomName → JoinRoomStatus JoinRoomSuccessReply : MessageType JoinRoomSuccessReply = ValueType UniqueTag ∷ ValueType JoinRoomSuccess ∷ [ ReferenceType Client-to-Room ]ˡ JoinRoomFailReply : MessageType JoinRoomFailReply = ValueType UniqueTag ∷ [ ValueType JoinRoomFail ]ˡ JoinRoomReplyInterface : InboxShape JoinRoomReplyInterface = JoinRoomSuccessReply ∷ JoinRoomFailReply ∷ Room-to-Client JoinRoom : MessageType JoinRoom = ValueType UniqueTag ∷ ReferenceType JoinRoomReplyInterface ∷ ValueType RoomName ∷ [ ValueType ClientName ]ˡ -- ============= -- CREATE ROOM -- ============= data CreateRoomResult : Set where CR-SUCCESS CR-EXISTS : RoomName → CreateRoomResult CreateRoomReply : MessageType CreateRoomReply = ValueType UniqueTag ∷ [ ValueType CreateRoomResult ]ˡ CreateRoom : MessageType CreateRoom = ValueType UniqueTag ∷ ReferenceType [ CreateRoomReply ]ˡ ∷ [ ValueType RoomName ]ˡ -- ============ -- LIST ROOMS -- ============ RoomList : Set RoomList = List RoomName ListRoomsReply : MessageType ListRoomsReply = ValueType UniqueTag ∷ [ ValueType RoomList ]ˡ ListRooms : MessageType ListRooms = ValueType UniqueTag ∷ [ ReferenceType [ ListRoomsReply ]ˡ ]ˡ -- === -- -- === Client-to-RoomManager : InboxShape Client-to-RoomManager = JoinRoom ∷ CreateRoom ∷ [ ListRooms ]ˡ RoomManagerInterface : InboxShape RoomManagerInterface = Client-to-RoomManager GetRoomManagerReply : MessageType GetRoomManagerReply = ValueType UniqueTag ∷ [ ReferenceType RoomManagerInterface ]ˡ GetRoomManager : MessageType GetRoomManager = ValueType UniqueTag ∷ [ ReferenceType [ GetRoomManagerReply ]ˡ ]ˡ get-room-manager-ci : ChannelInitiation get-room-manager-ci = record { request = [ GetRoomManager ]ˡ ; response = record { channel-shape = [ GetRoomManagerReply ]ˡ ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = (HasTag+Ref _) ∷ [] } get-room-manager-header : ActiveMethod get-room-manager-header = ResponseMethod get-room-manager-ci RoomSupervisorInterface : InboxShape RoomSupervisorInterface = [ GetRoomManager ]ˡ ClientSupervisorInterface : InboxShape ClientSupervisorInterface = [ ReferenceType RoomSupervisorInterface ]ˡ ∷ [ GetRoomManagerReply ]ˡ -- -- -- -- ====================== -- ROOM MANAGER METHODS -- ====================== join-room-header : ActiveMethod join-room-header = VoidMethod [ JoinRoom ]ˡ create-room-ci : ChannelInitiation create-room-ci = record { request = [ CreateRoom ]ˡ ; response = record { channel-shape = [ CreateRoomReply ]ˡ ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = (HasTag+Ref _) ∷ [] } create-room-header : ActiveMethod create-room-header = ResponseMethod create-room-ci list-rooms-header : ActiveMethod list-rooms-header = ResponseMethod (record { request = [ ListRooms ]ˡ ; response = record { channel-shape = [ ListRoomsReply ]ˡ ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = (HasTag+Ref _) ∷ [] }) record RoomManagerState : Set₁ where field rooms : RoomList rms-to-context : RoomManagerState → TypingContext rms-to-context rms = let open RoomManagerState rl-to-context : RoomList → TypingContext rl-to-context = map λ _ → room-inbox in rl-to-context (rms .rooms) room-manager-methods : List ActiveMethod room-manager-methods = join-room-header ∷ create-room-header ∷ [ list-rooms-header ]ˡ room-manager-inbox = methods-shape room-manager-methods list-rooms : active-method room-manager-inbox RoomManagerState rms-to-context list-rooms-header list-rooms _ msg state = let open RoomManagerState in return₁ (record { new-state = state ; reply = SendM Z ((lift (state .rooms)) ∷ []) }) lookup-room : ∀ {i} → {Γ : TypingContext} → (rms : RoomManagerState) → RoomName → ∞ActorM i room-manager-inbox (Maybe ((Γ ++ (rms-to-context rms)) ⊢ room-inbox)) (Γ ++ (rms-to-context rms)) (λ _ → Γ ++ (rms-to-context rms)) lookup-room rms name = let open RoomManagerState in return₁ (loop _ (rms .rooms)) where rl-to-context : RoomList → TypingContext rl-to-context = map λ _ → room-inbox loop : (Γ : TypingContext) → (rl : RoomList) → Maybe ((Γ ++ rl-to-context rl) ⊢ room-inbox) loop [] [] = nothing loop [] (x ∷ xs) with (x ≟ name) ... | (yes p) = just Z ... | (no _) = RawMonad._>>=_ Maybe.monad (loop [] xs) λ p → just (S p) loop (x ∷ Γ) rl = RawMonad._>>=_ Maybe.monad (loop Γ rl) (λ p → just (S p)) create-room : active-method room-manager-inbox RoomManagerState rms-to-context create-room-header create-room _ input@(_ sent Msg Z (room-name ∷ [])) state = do p ← lookup-room state room-name handle-create-room p where open ResponseInput return-type = ActiveReply create-room-ci RoomManagerState rms-to-context input precondition = reply-state-vars rms-to-context input state postcondition = reply-vars rms-to-context input handle-create-room : ∀ {i} → Maybe (precondition ⊢ room-inbox) → ∞ActorM i room-manager-inbox return-type precondition postcondition handle-create-room (just x) = return₁ (record { new-state = state ; reply = SendM Z ((lift (CR-EXISTS room-name)) ∷ []) }) handle-create-room nothing = do spawn∞ (run-active-object room (record { clients = [] })) let open RoomManagerState state' : RoomManagerState state' = record { rooms = room-name ∷ state .rooms} strengthen ((S Z) ∷ (Z ∷ (⊆-suc (⊆-suc ⊆-refl)))) return₁ (record { new-state = state' ; reply = SendM Z ((lift (CR-SUCCESS room-name)) ∷ []) }) create-room _ (_ sent Msg (S ()) _) _ join-room : active-method room-manager-inbox RoomManagerState rms-to-context join-room-header join-room _ (Msg Z (tag ∷ _ ∷ room-name ∷ client-name ∷ [])) state = do p ← lookup-room state room-name handle-join-room p Z return₁ state where handle-join-room : ∀ {i Γ} → Maybe (Γ ⊢ room-inbox) → Γ ⊢ JoinRoomReplyInterface → ∞ActorM i room-manager-inbox ⊤₁ Γ (λ _ → Γ) handle-join-room (just rp) cp = do (rp ![t: S (S Z) ] ((lift tag) ∷ ((lift client-name) ∷ (([ cp ]>: [ S (S Z) ]ᵐ) ∷ [])))) (cp ![t: Z ] ((lift tag) ∷ ((lift (JR-SUCCESS room-name)) ∷ (([ rp ]>: (Z ∷ [ S Z ]ᵐ)) ∷ [])))) handle-join-room nothing cp = cp ![t: S Z ] ((lift tag) ∷ ((lift (JR-FAIL room-name)) ∷ [])) join-room _ (Msg (S ()) _) _ room-manager : ActiveObject room-manager = record { state-type = RoomManagerState ; vars = rms-to-context ; methods = room-manager-methods ; extra-messages = [] ; handlers = join-room ∷ (create-room ∷ (list-rooms ∷ [])) } -- ================= -- ROOM SUPERVISOR -- ================= rs-context : TypingContext rs-context = [ room-manager-inbox ]ˡ rs-vars : ⊤₁ → TypingContext rs-vars _ = rs-context room-supervisor-methods : List ActiveMethod room-supervisor-methods = [ get-room-manager-header ]ˡ rs-inbox = methods-shape room-supervisor-methods get-room-manager-handler : active-method rs-inbox ⊤₁ rs-vars get-room-manager-header get-room-manager-handler _ (_ sent Msg Z received-fields) _ = return₁ (record { new-state = _ ; reply = SendM Z [ [ (S Z) ]>: ⊆-refl ]ᵃ }) get-room-manager-handler _ (_ sent Msg (S ()) _) _ room-supervisor-ao : ActiveObject room-supervisor-ao = record { state-type = ⊤₁ ; vars = λ _ → rs-context ; methods = room-supervisor-methods ; extra-messages = [] ; handlers = [ get-room-manager-handler ]ᵃ } -- room-supervisor spawns the room-manager -- and provides an interface for getting a reference to the current room-manager -- we don't ever change that instance, but we could if we want room-supervisor : ∀ {i} → ActorM i RoomSupervisorInterface ⊤₁ [] (λ _ → rs-context) room-supervisor = begin do spawn∞ (run-active-object room-manager (record { rooms = [] })) run-active-object room-supervisor-ao _ -- ================ -- CLIENT GENERAL -- ================ ClientInterface : InboxShape ClientInterface = [ ReferenceType RoomManagerInterface ]ˡ ∷ CreateRoomReply ∷ ListRoomsReply ∷ JoinRoomReplyInterface busy-wait : ∀ {i IS Γ} → ℕ → ∞ActorM i IS ⊤₁ Γ (λ _ → Γ) busy-wait zero = return _ busy-wait (suc n) = return tt >> busy-wait n client-get-room-manager : ∀ {i} → ∞ActorM i ClientInterface ⊤₁ [] (λ _ → [ RoomManagerInterface ]ˡ) client-get-room-manager = do record { msg = Msg Z _} ← (selective-receive (λ { (Msg Z x₁) → true ; (Msg (S _) _) → false })) where record { msg = (Msg (S _) _) ; msg-ok = ()} return _ client-create-room : ∀ {i } → {Γ : TypingContext} → Γ ⊢ RoomManagerInterface → UniqueTag → RoomName → ∞ActorM i ClientInterface (Lift (lsuc lzero) CreateRoomResult) Γ (λ _ → Γ) client-create-room p tag name = do Msg Z (_ ∷ cr ∷ []) ← (call create-room-ci (record { var = p ; chosen-field = Z ; fields = (lift name) ∷ [] ; session = record { can-request = (S Z) ∷ [] ; response-session = record { can-receive = (S Z) ∷ [] ; tag = tag } } })) where Msg (S ()) _ return cr add-if-join-success : TypingContext → Lift (lsuc lzero) JoinRoomStatus → TypingContext add-if-join-success Γ (lift (JRS-SUCCESS x)) = Client-to-Room ∷ Γ add-if-join-success Γ (lift (JRS-FAIL x)) = Γ client-join-room : ∀ {i Γ} → Γ ⊢ RoomManagerInterface → UniqueTag → RoomName → ClientName → ∞ActorM i ClientInterface (Lift (lsuc lzero) JoinRoomStatus) Γ (add-if-join-success Γ) client-join-room p tag room-name client-name = do self S p ![t: Z ] (lift tag ∷ (([ Z ]>: ⊆-suc (⊆-suc (⊆-suc ⊆-refl))) ∷ (lift room-name) ∷ [ lift client-name ]ᵃ)) (strengthen (⊆-suc ⊆-refl)) m ← (selective-receive (select-join-reply tag)) handle-message m where select-join-reply : UniqueTag → MessageFilter ClientInterface select-join-reply tag (Msg Z _) = false select-join-reply tag (Msg (S Z) _) = false select-join-reply tag (Msg (S (S Z)) _) = false select-join-reply tag (Msg (S (S (S Z))) (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ select-join-reply tag (Msg (S (S (S (S Z)))) (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ select-join-reply tag (Msg (S (S (S (S (S Z))))) x₁) = false select-join-reply tag (Msg (S (S (S (S (S (S ())))))) _) handle-message : ∀ {tag i Γ} → (m : SelectedMessage (select-join-reply tag)) → ∞ActorM i ClientInterface (Lift (lsuc lzero) JoinRoomStatus) (add-selected-references Γ m) (add-if-join-success Γ) handle-message record { msg = (Msg Z _) ; msg-ok = () } handle-message record { msg = (Msg (S Z) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S Z)) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S Z))) (_ ∷ JR-SUCCESS room-name ∷ _ ∷ [])) } = return (JRS-SUCCESS room-name) handle-message record { msg = (Msg (S (S (S (S Z)))) (_ ∷ JR-FAIL room-name ∷ [])) } = return (JRS-FAIL room-name) handle-message record { msg = (Msg (S (S (S (S (S Z))))) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S (S (S ())))))) _) } client-send-message : ∀ {i Γ} → Γ ⊢ Client-to-Room → ClientName → String → ∞ActorM i ClientInterface ⊤₁ Γ (λ _ → Γ) client-send-message p client-name message = p ![t: Z ] ([ lift (chat-from client-name message: message) ]ᵃ) client-receive-message : ∀ {i Γ} → ∞ActorM i ClientInterface (Lift (lsuc lzero) ChatMessageContent) Γ (λ _ → Γ) client-receive-message = do m ← (selective-receive select-message) handle-message m where select-message : MessageFilter ClientInterface select-message (Msg (S (S (S (S (S Z))))) _) = true select-message (Msg _ _) = false handle-message : ∀ {i Γ} → (m : SelectedMessage select-message) → ∞ActorM i ClientInterface (Lift (lsuc lzero) ChatMessageContent) (add-selected-references Γ m) (λ _ → Γ) handle-message record { msg = (Msg Z _) ; msg-ok = () } handle-message record { msg = (Msg (S Z) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S Z)) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S Z))) x₁) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S Z)))) _) ; msg-ok = () } handle-message record { msg = (Msg (S (S (S (S (S Z))))) (_ ∷ m ∷ f)) ; msg-ok = _ } = return m handle-message record { msg = (Msg (S (S (S (S (S (S ())))))) _) } client-leave-room : ∀ {i Γ} → Γ ⊢ Client-to-Room → ClientName → ∞ActorM i ClientInterface ⊤₁ Γ (λ _ → Γ) client-leave-room p name = p ![t: S Z ] [ lift name ]ᵃ debug-chat : {a : Level} {A : Set a} → ClientName → ChatMessageContent → A → A debug-chat client-name content = let open ChatMessageContent in debug ("client#" || show client-name || " received \"" || content .message || "\" from client#" || show (content .sender)) -- ========== -- CLIENT 1 -- ========== room1-2 = 1 room2-3 = 2 room3-1 = 3 room1-2-3 = 4 name1 = 1 client1 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client1 = begin do client-get-room-manager _ ← (client-create-room Z 0 room1-2) _ ← (client-create-room Z 1 room3-1) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room3-1 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room1-2 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name1) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 (client-send-message (S Z) name1 "hi from 1 to 2") (client-send-message Z name1 "hi from 1 to 2-3") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name1 m1 client-receive-message lift m3 ← debug-chat name1 m2 client-receive-message debug-chat name1 m3 (client-send-message Z name1 "hi1 from 1 to 2-3") (client-send-message Z name1 "hi2 from 1 to 2-3") (client-send-message Z name1 "hi3 from 1 to 2-3") client-leave-room (S Z) name1 client-leave-room (Z) name1 (strengthen []) -- ========== -- CLIENT 2 -- ========== name2 = 2 client2 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client2 = begin do client-get-room-manager _ ← (client-create-room Z 0 room1-2) _ ← (client-create-room Z 1 room2-3) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room1-2 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room2-3 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name2) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 debug "client2 send message" (client-send-message (S Z) name2 "hi from 2 to 3") debug "client2 send message" (client-send-message Z name2 "hi from 2 to 1-3") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name2 m1 client-receive-message lift m3 ← debug-chat name2 m2 client-receive-message client-leave-room (S Z) name2 client-leave-room (Z) name2 debug-chat name2 m3 (strengthen []) -- ========== -- CLIENT 3 -- ========== name3 = 3 client3 : ∀ {i} → ActorM i ClientInterface ⊤₁ [] (λ _ → []) client3 = begin do client-get-room-manager _ ← (client-create-room Z 0 room2-3) _ ← (client-create-room Z 1 room3-1) _ ← (client-create-room Z 2 room1-2-3) lift (JRS-SUCCESS joined-room) ← (client-join-room Z 3 room2-3 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S Z) 4 room3-1 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] lift (JRS-SUCCESS joined-room) ← (client-join-room (S (S Z)) 5 room1-2-3 name3) where (lift (JRS-FAIL failed-room)) → strengthen [] busy-wait 100 debug "client3 send message" (client-send-message (S Z) name3 "hi from 3 to 1") debug "client3 send message" (client-send-message Z name3 "hi from 3 to 1-2") let open ChatMessageContent lift m1 ← client-receive-message lift m2 ← debug-chat name3 m1 client-receive-message lift m3 ← debug-chat name3 m2 client-receive-message debug-chat name3 m3 (client-leave-room Z name3) client-leave-room (S Z) name3 client-leave-room Z name3 (strengthen []) -- =================== -- CLIENT SUPERVISOR -- =================== cs-context : TypingContext cs-context = RoomManagerInterface ∷ RoomSupervisorInterface ∷ [] client-supervisor : ∀ {i} → ActorM i ClientSupervisorInterface ⊤₁ [] (λ _ → cs-context) client-supervisor = begin do wait-for-room-supervisor (get-room-manager Z 0) spawn-clients where wait-for-room-supervisor : ∀ {i Γ} → ∞ActorM i ClientSupervisorInterface ⊤₁ Γ (λ _ → RoomSupervisorInterface ∷ Γ) wait-for-room-supervisor = do record { msg = Msg Z f } ← (selective-receive (λ { (Msg Z _) → true ; (Msg (S _) _) → false })) where record { msg = (Msg (S _) _) ; msg-ok = () } return _ get-room-manager : ∀ {i Γ} → Γ ⊢ RoomSupervisorInterface → UniqueTag → ∞ActorM i ClientSupervisorInterface ⊤₁ Γ (λ _ → RoomManagerInterface ∷ Γ) get-room-manager p tag = do Msg Z f ← (call get-room-manager-ci (record { var = p ; chosen-field = Z ; fields = [] ; session = record { can-request = ⊆-refl ; response-session = record { can-receive = (S Z) ∷ [] ; tag = tag } } })) where Msg (S ()) _ return _ spawn-clients : ∀ {i} → ∞ActorM i ClientSupervisorInterface ⊤₁ cs-context (λ _ → cs-context) spawn-clients = do spawn client1 Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) (spawn client2) Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) (spawn client3) Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ (strengthen (⊆-suc ⊆-refl)) -- chat-supervisor is the top-most actor -- it spawns and connects the ClientRegistry to the RoomRegistry chat-supervisor : ∀ {i} → ∞ActorM i [] ⊤₁ [] (λ _ → []) chat-supervisor = do spawn room-supervisor spawn client-supervisor Z ![t: Z ] [ [ S Z ]>: ⊆-refl ]ᵃ strengthen []
{ "alphanum_fraction": 0.5961787947, "avg_line_length": 36.9187227866, "ext": "agda", "hexsha": "fe1a883a099585718b6f87c061c8879269e0af81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/ChatAO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/ChatAO.agda", "max_line_length": 181, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Examples/ChatAO.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 7360, "size": 25437 }
------------------------------------------------------------------------ -- Laws related to _∣_ and fail ------------------------------------------------------------------------ module TotalParserCombinators.Laws.AdditiveMonoid where open import Algebra open import Codata.Musical.Notation import Data.List.Relation.Binary.BagAndSetEquality as Eq open import Data.Product using (proj₁; proj₂) open import Function private module BagMonoid {k} {A : Set} = CommutativeMonoid (Eq.commutativeMonoid k A) open import TotalParserCombinators.Derivative open import TotalParserCombinators.Congruence open import TotalParserCombinators.Parser ------------------------------------------------------------------------ -- _∣_ and fail form a commutative monoid -- This monoid is idempotent if language equivalence is used. commutative : ∀ {Tok R xs₁ xs₂} (p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) → p₁ ∣ p₂ ≅P p₂ ∣ p₁ commutative {xs₁ = xs₁} {xs₂} p₁ p₂ = BagMonoid.comm xs₁ xs₂ ∷ λ t → ♯ commutative (D t p₁) (D t p₂) left-identity : ∀ {Tok R xs} (p : Parser Tok R xs) → fail ∣ p ≅P p left-identity {xs = xs} p = proj₁ BagMonoid.identity xs ∷ λ t → ♯ left-identity (D t p) right-identity : ∀ {Tok R xs} (p : Parser Tok R xs) → p ∣ fail ≅P p right-identity {xs = xs} p = proj₂ BagMonoid.identity xs ∷ λ t → ♯ right-identity (D t p) associative : ∀ {Tok R xs₁ xs₂ xs₃} (p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) (p₃ : Parser Tok R xs₃) → (p₁ ∣ p₂) ∣ p₃ ≅P p₁ ∣ (p₂ ∣ p₃) associative {xs₁ = xs₁} p₁ p₂ p₃ = BagMonoid.assoc xs₁ _ _ ∷ λ t → ♯ associative (D t p₁) (D t p₂) (D t p₃) -- Note that this law uses language equivalence, not parser -- equivalence. idempotent : ∀ {Tok R xs} (p : Parser Tok R xs) → p ∣ p ≈P p idempotent {xs = xs} p = Eq.++-idempotent xs ∷ λ t → ♯ idempotent (D t p) ------------------------------------------------------------------------ -- A lemma which can be convenient when proving distributivity laws swap : ∀ {Tok R xs₁ xs₂ xs₃ xs₄} (p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) (p₃ : Parser Tok R xs₃) (p₄ : Parser Tok R xs₄) → (p₁ ∣ p₂) ∣ (p₃ ∣ p₄) ≅P (p₁ ∣ p₃) ∣ (p₂ ∣ p₄) swap p₁ p₂ p₃ p₄ = (p₁ ∣ p₂) ∣ (p₃ ∣ p₄) ≅⟨ associative p₁ p₂ (p₃ ∣ p₄) ⟩ p₁ ∣ (p₂ ∣ (p₃ ∣ p₄)) ≅⟨ (p₁ ∎) ∣ ( p₂ ∣ (p₃ ∣ p₄) ≅⟨ sym $ associative p₂ p₃ p₄ ⟩ (p₂ ∣ p₃) ∣ p₄ ≅⟨ commutative p₂ p₃ ∣ (p₄ ∎) ⟩ (p₃ ∣ p₂) ∣ p₄ ≅⟨ associative p₃ p₂ p₄ ⟩ p₃ ∣ (p₂ ∣ p₄) ∎) ⟩ p₁ ∣ (p₃ ∣ (p₂ ∣ p₄)) ≅⟨ sym $ associative p₁ p₃ (p₂ ∣ p₄) ⟩ (p₁ ∣ p₃) ∣ (p₂ ∣ p₄) ∎
{ "alphanum_fraction": 0.5320512821, "avg_line_length": 37.3521126761, "ext": "agda", "hexsha": "64fb203ddbe0cd335ca4ed18fe51a4f04b9b7153", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "TotalParserCombinators/Laws/AdditiveMonoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "TotalParserCombinators/Laws/AdditiveMonoid.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "TotalParserCombinators/Laws/AdditiveMonoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 1020, "size": 2652 }
module Web.URI.Scheme where open import Web.URI.Scheme.Primitive public using ( Scheme? ; http: ; https: ; ε )
{ "alphanum_fraction": 0.7232142857, "avg_line_length": 28, "ext": "agda", "hexsha": "af54f7e9539304c30e0033415c97ffecdb6bd381", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:37:59.000Z", "max_forks_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-uri", "max_forks_repo_path": "src/Web/URI/Scheme.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-uri", "max_issues_repo_path": "src/Web/URI/Scheme.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "8ced22124dbe12fa820699bb362247a96d592c03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-uri", "max_stars_repo_path": "src/Web/URI/Scheme.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-23T04:56:25.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-23T04:56:25.000Z", "num_tokens": 27, "size": 112 }
module PreludeBool where import AlonzoPrelude open AlonzoPrelude -- import Logic.Base infixr 20 _||_ infixr 30 _&&_ data Bool : Set where false : Bool true : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} _&&_ : Bool -> Bool -> Bool true && x = x false && _ = false _||_ : Bool -> Bool -> Bool true || _ = true false || x = x not : Bool -> Bool not true = false not false = true -- open Logic.Base IsTrue : Bool -> Set IsTrue true = True IsTrue false = False IsFalse : Bool -> Set IsFalse x = IsTrue (not x) if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y if'_then_else_ : {A : Set} -> (x : Bool) -> (IsTrue x -> A) -> (IsFalse x -> A) -> A if' true then f else g = f tt if' false then f else g = g tt
{ "alphanum_fraction": 0.6007281553, "avg_line_length": 16.8163265306, "ext": "agda", "hexsha": "e5ae1e874d27d6523b38896c6c5f4db3c84ee246", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeBool.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeBool.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PreludeBool.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 282, "size": 824 }
module Examples where open import LF open import IIRD open import IIRDr -- Some helper functions infixl 50 _+OP_ _+OP_ : {I : Set}{D : I -> Set1}{E : Set1} -> OP I D E -> OP I D E -> OP I D E γ₀ +OP γ₁ = σ Two (\x -> case₂ x γ₀ γ₁) -- First something simple. bool : OPr One (\_ -> One') bool _ = ι★r +OP ι★r Bool : Set Bool = Ur bool ★ false : Bool false = intror < ★₀ | ★ > true : Bool true = intror < ★₁ | ★ > -- We don't have universe subtyping, and we only setup large elimination rules. if_then_else_ : {A : Set1} -> Bool -> A -> A -> A if_then_else_ {A} b x y = Rr bool (\_ _ -> A) (\_ a _ -> case₂ (π₀ a) y x) ★ b -- Something recursive nat : OPr One (\_ -> One') nat _ = ι★r +OP δ One (\_ -> ★) (\_ -> ι★r) Nat : Set Nat = Ur nat ★ zero : Nat zero = intror < ★₀ | ★ > suc : Nat -> Nat suc n = intror < ★₁ | < (\_ -> n) | ★ > >
{ "alphanum_fraction": 0.558685446, "avg_line_length": 18.1276595745, "ext": "agda", "hexsha": "e6c5f903c4b0f94ad9cd71819c781cd51715ea89", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/Examples.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/Examples.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 323, "size": 852 }
{- This second-order signature was created from the following second-order syntax description: syntax Prod | P type _⊗_ : 2-ary | l40 term pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β theory (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p -} module Prod.Signature where open import SOAS.Context -- Type declaration data PT : Set where _⊗_ : PT → PT → PT infixl 40 _⊗_ open import SOAS.Syntax.Signature PT public open import SOAS.Syntax.Build PT public -- Operator symbols data Pₒ : Set where pairₒ fstₒ sndₒ : {α β : PT} → Pₒ -- Term signature P:Sig : Signature Pₒ P:Sig = sig λ { (pairₒ {α}{β}) → (⊢₀ α) , (⊢₀ β) ⟼₂ α ⊗ β ; (fstₒ {α}{β}) → (⊢₀ α ⊗ β) ⟼₁ α ; (sndₒ {α}{β}) → (⊢₀ α ⊗ β) ⟼₁ β } open Signature P:Sig public
{ "alphanum_fraction": 0.5550510783, "avg_line_length": 19.152173913, "ext": "agda", "hexsha": "7552e7d313d57a4e47c4e72c0092a3de6cff060d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Prod/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Prod/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Prod/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 380, "size": 881 }
open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.List open import Agda.Builtin.Sigma open import Agda.Builtin.Equality open import Agda.Primitive record X {a} (A : Set a) : Set a where field fld : A d : X Nat d = record { fld = 5 } -- Here we test that suppressing reduction of lzero has no effect on the reconstruction -- of parameters. Essentially, we ignore ReduceDefs annotations when reconstructing -- hidden parameters. macro x : Term → TC ⊤ x hole = do (function (clause tel ps t ∷ [])) ← withReconstructed (getDefinition (quote d)) where _ → quoteTC "ERROR" >>= unify hole a ← withReconstructed (dontReduceDefs (quote lzero ∷ []) (normalise t)) quoteTC a >>= unify hole -- If we were to consider suppressed reduction of lzero, we end up with -- Set ≠ Set lzero. test₁ : Term test₁ = x map : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs reverse : ∀ {a}{A : Set a} → List A → List A reverse {A = A} xs = reverseAcc xs [] where reverseAcc : List A → List A → List A reverseAcc [] a = a reverseAcc (x ∷ xs) a = reverseAcc xs (x ∷ a) foo : Nat → Nat foo x = 1 + x bar : Nat → Nat bar x = foo (foo (x)) -- Here we test that normalisation respects ReduceDefs -- when parameter reconstruction is on. macro y : Term → TC ⊤ y hole = do (function (clause tel ps t ∷ [])) ← withReconstructed (dontReduceDefs (quote foo ∷ []) (getDefinition (quote bar))) where _ → quoteTC "ERROR" >>= unify hole t ← inContext (reverse tel) (withReconstructed (dontReduceDefs (quote foo ∷ []) (normalise t))) quoteTC t >>= unify hole test₂ : y ≡ def (quote foo) (arg _ (def (quote foo) _) ∷ []) test₂ = refl
{ "alphanum_fraction": 0.6427795874, "avg_line_length": 29.2380952381, "ext": "agda", "hexsha": "65cb10110f70ae3b6bff2d2d97cb63ceb456c5c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Succeed/recons-with-reducedefs.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Succeed/recons-with-reducedefs.agda", "max_line_length": 121, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/recons-with-reducedefs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 558, "size": 1842 }
{- Category of reactive types -} module CategoryTheory.Instances.Reactive where open import CategoryTheory.Categories open import CategoryTheory.BCCCs open import Data.Nat using (ℕ ; zero ; suc ; _+_) public open import Data.Unit using () renaming (⊤ to top) public open import Data.Product open import Data.Empty using (⊥-elim) renaming (⊥ to bot) public open import Data.Sum renaming ([_,_] to ⟦_,_⟧) import Function as F using (_∘_) -- || Reactive types -- Time-indexed types. τ : Set₁ τ = ℕ -> Set -- Time-indexed functions. _⇴_ : τ -> τ -> Set A ⇴ B = ∀(n : ℕ) -> A n -> B n infixr 10 _⇴_ -- Category of reactive types ℝeactive : Category lzero ℝeactive = record { obj = τ ; _~>_ = _⇴_ ; id = λ n a -> a ; _∘_ = λ g f -> λ n a -> g n (f n a) ; _≈_ = λ f g -> ∀ {n : ℕ} {a} -> f n a ≡ g n a ; id-left = refl ; id-right = refl ; ∘-assoc = refl ; ≈-equiv = record { refl = refl ; sym = λ x → sym x ; trans = λ p q → trans p q } ; ≈-cong = ≈-cong-ℝ } where ≈-cong-ℝ : ∀{A B C : τ} {f f′ : A ⇴ B} {g g′ : B ⇴ C} -> (∀ {n a} -> f n a ≡ f′ n a) -> (∀ {n b} -> g n b ≡ g′ n b) -> (∀ {n a} -> g n (f n a) ≡ g′ n (f′ n a)) ≈-cong-ℝ {f′ = f′} fe ge {n} {a′} rewrite fe {n} {a′} | ge {n} {f′ n a′} = refl -- Bicartesian closed structure for reactive types ℝeactive-BCCC : BicartesianClosed ℝeactive ℝeactive-BCCC = record { cart = record { term = record { ⊤ = λ n → top ; ! = λ n _ → top.tt ; !-unique = λ m → refl } ; prod = λ A B → record { A⊗B = λ n → A n × B n ; π₁ = λ n → proj₁ ; π₂ = λ n → proj₂ ; ⟨_,_⟩ = λ f g n a → (f n a , g n a) ; π₁-comm = λ {P} {p₁} {p₂} {n} {a} → refl ; π₂-comm = λ {P} {p₁} {p₂} {n} {a} → refl ; ⊗-unique = λ pr1 pr2 → unique-cart (ext λ a → ext λ n → pr1 {a} {n}) (ext λ a → ext λ n → pr2 {a} {n}) } } ; cocart = record { init = record { ⊥ = λ n → bot ; ¡ = λ {A} n → λ () ; ¡-unique = λ {A} m {n} → λ {} } ; sum = λ A B → record { A⊕B = λ n → A n ⊎ B n ; ι₁ = λ n → inj₁ ; ι₂ = λ n → inj₂ ; [_⁏_] = sum ; ι₁-comm = λ {S} {i₁} {i₂} {n} {a} → refl ; ι₂-comm = λ {S} {i₁} {i₂} {n} {a} → refl ; ⊕-unique = λ {S} {i₁} {i₂} {m} pr1 pr2 → unique-cocart {m = m} (ext λ a → ext λ n → pr1 {a} {n}) (ext λ a → ext λ n → pr2 {a} {n}) } } ; closed = record { exp = λ A B → record { A⇒B = λ n → A n -> B n ; eval = λ n z → proj₁ z (proj₂ z) ; Λ = λ f n a b → f n (a , b) ; Λ-comm = refl ; Λ-unique = λ pr → unique-closed (ext λ n → ext λ a → pr {n} {a}) ; Λ-cong = λ pr → ext λ _ → pr } } } where open Category ℝeactive unique-cart : ∀{A B P : τ} -> {p₁ : P ⇴ A} {p₂ : P ⇴ B} {m : P ⇴ (λ n -> A n × B n)} -> (λ _ → proj₁) ∘ m ≡ p₁ -> (λ _ → proj₂) ∘ m ≡ p₂ -> ∀{n : ℕ}{a : P n} -> (p₁ n a , p₂ n a) ≡ m n a unique-cart refl refl = refl sum : {A B S : obj} → A ⇴ S → B ⇴ S → (λ n → A n ⊎ B n) ⇴ S sum f g n (inj₁ x) = f n x sum f g n (inj₂ y) = g n y unique-cocart : ∀{A B S : τ} -> {i₁ : A ⇴ S} {i₂ : B ⇴ S} {m : (λ n -> A n ⊎ B n) ⇴ S} -> m ∘ (λ _ -> inj₁) ≡ i₁ -> m ∘ (λ _ -> inj₂) ≡ i₂ -> ∀{n : ℕ}{a : A n ⊎ B n} -> sum i₁ i₂ n a ≡ m n a unique-cocart refl refl {n} {inj₁ x} = refl unique-cocart refl refl {n} {inj₂ y} = refl unique-closed : ∀{A B E : τ} -> {e : (λ n -> E n × A n) ⇴ B} {m : E ⇴ (λ n -> A n -> B n)} -> (λ n fa → proj₁ fa (proj₂ fa)) ∘ ((λ n (a : E n × A n) -> ( (m n F.∘ proj₁) a , proj₂ a ))) ≡ e -> ∀{n}{a : E n} -> (λ b → e n (a , b)) ≡ m n a unique-closed refl = refl -- | Top-level shorthands for distinguished BCCC objects and morphisms open BicartesianClosed ℝeactive-BCCC public open Category ℝeactive hiding (begin_ ; _∎) public ℝeactive-cart : Cartesian ℝeactive ℝeactive-cart = cart -- Non-canonical distribution morphism dist : ∀{A B C : τ} -> A ⊗ (B ⊕ C) ⇴ (A ⊗ B) ⊕ (A ⊗ C) dist n (a , inj₁ b) = inj₁ (a , b) dist n (a , inj₂ c) = inj₂ (a , c) dist2 : ∀{A B C D : τ} -> A ⊗ (B ⊕ C ⊕ D) ⇴ (A ⊗ B) ⊕ (A ⊗ C) ⊕ (A ⊗ D) dist2 n (a , inj₁ (inj₁ b)) = inj₁ (inj₁ (a , b)) dist2 n (a , inj₁ (inj₂ c)) = inj₁ (inj₂ (a , c)) dist2 n (a , inj₂ d) = inj₂ (a , d) -- ℝeactive is distributive dist-ℝ : ∀{A B C : τ} -> (A ⊗ B) ⊕ (A ⊗ C) <~> A ⊗ (B ⊕ C) dist-ℝ = record { iso~> = [ id * ι₁ ⁏ id * ι₂ ] ; iso<~ = dist ; iso-id₁ = dist-iso-id₁ ; iso-id₂ = dist-iso-id₂ } where dist-iso-id₁ : ∀{A B C : τ} -> dist {A}{B}{C} ∘ [ id * ι₁ ⁏ id * ι₂ ] ≈ id dist-iso-id₁ {n = n} {inj₁ (a , b)} = refl dist-iso-id₁ {n = n} {inj₂ (a , c)} = refl dist-iso-id₂ : ∀{A B C : τ} -> [ id * ι₁ ⁏ id * ι₂ ] ∘ dist {A}{B}{C} ≈ id dist-iso-id₂ {n = n} {a , inj₁ b} = refl dist-iso-id₂ {n = n} {a , inj₂ c} = refl
{ "alphanum_fraction": 0.4098716326, "avg_line_length": 35.4551282051, "ext": "agda", "hexsha": "f8e2ad4eb5d9d6399203dbb336f9026265692710", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Instances/Reactive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Instances/Reactive.agda", "max_line_length": 112, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Instances/Reactive.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 2204, "size": 5531 }
------------------------------------------------------------------------------ -- Testing the translation of definitions ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Definition01d where infixl 6 _+_ infix 4 _≡_ postulate D : Set zero : D succ : D → D _≡_ : D → D → Set data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) N-ind : (A : D → Set) → A zero → (∀ {n} → A n → A (succ n)) → ∀ {n} → N n → A n N-ind A A0 h zN = A0 N-ind A A0 h (sN Nn) = h (N-ind A A0 h Nn) postulate _+_ : D → D → D +-0x : ∀ n → zero + n ≡ n +-Sx : ∀ m n → succ m + n ≡ succ (m + n) {-# ATP axioms +-0x +-Sx #-} -- We test the translation of the definition of a unary predicate. A : D → Set A i = zero + i ≡ i {-# ATP definition A #-} postulate A0 : A zero {-# ATP prove A0 #-} postulate is : ∀ {i} → A i → A (succ i) {-# ATP prove is #-} +-leftIdentity : ∀ {n} → N n → zero + n ≡ n +-leftIdentity = N-ind A A0 is
{ "alphanum_fraction": 0.4318374259, "avg_line_length": 22.7115384615, "ext": "agda", "hexsha": "f74ced03d402f12eae69ca081c34a2a19548f959", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Definition01d.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Definition01d.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Definition01d.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 377, "size": 1181 }
{- This second-order equational theory was created from the following second-order syntax description: syntax Prod | P type _⊗_ : 2-ary | l40 term pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β theory (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p -} module Prod.Equality where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Families.Build open import SOAS.ContextMaps.Inductive open import Prod.Signature open import Prod.Syntax open import SOAS.Metatheory.SecondOrder.Metasubstitution P:Syn open import SOAS.Metatheory.SecondOrder.Equality P:Syn private variable α β γ τ : PT Γ Δ Π : Ctx infix 1 _▹_⊢_≋ₐ_ -- Axioms of equality data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ P) α Γ → (𝔐 ▷ P) α Γ → Set where fβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ fst ⟨ 𝔞 , 𝔟 ⟩ ≋ₐ 𝔞 sβ : ⁅ α ⁆ ⁅ β ⁆̣ ▹ ∅ ⊢ snd ⟨ 𝔞 , 𝔟 ⟩ ≋ₐ 𝔟 pη : ⁅ α ⊗ β ⁆̣ ▹ ∅ ⊢ ⟨ fst 𝔞 , snd 𝔞 ⟩ ≋ₐ 𝔞 open EqLogic _▹_⊢_≋ₐ_ open ≋-Reasoning
{ "alphanum_fraction": 0.5904590459, "avg_line_length": 22.22, "ext": "agda", "hexsha": "e2289d09ff28bb952824e6f75fde77a6ca0bfa28", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Prod/Equality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Prod/Equality.agda", "max_line_length": 99, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Prod/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 501, "size": 1111 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.All.Properties where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.All.Def open import Algebra.Construct.Free.Semilattice.Relation.Unary.Membership open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic private variable p : Level P∈◇ : ∀ {p} {P : A → Type p} → ∀ x xs → x ∈ xs → ◻ P xs → ∥ P x ∥ P∈◇ {A = A} {P = P} = λ x → ∥ P∈◇′ x ∥⇓ where P∈◇′ : (x : A) → xs ∈𝒦 A ⇒∥ (x ∈ xs → ◻ P xs → ∥ P x ∥) ∥ ∥ P∈◇′ x ∥-prop p q i x∈xs ◻Pxs = squash (p x∈xs ◻Pxs) (q x∈xs ◻Pxs) i ∥ P∈◇′ x ∥[] () ∥ P∈◇′ x ∥ y ∷ ys ⟨ Pys ⟩ x∈xs ◻Pxs = x∈xs >>= either′ (λ y≡x → subst (∥_∥ ∘ P) y≡x (◻Pxs .fst)) (λ x∈ys → Pys x∈ys (◻Pxs .snd))
{ "alphanum_fraction": 0.6824534161, "avg_line_length": 36.8, "ext": "agda", "hexsha": "2f9afd2d15da51cba9474f1fc15745fb23eb1163", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda", "max_line_length": 77, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/All/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 483, "size": 1288 }
module Example where loop : Set loop = loop _∞_ : Set -> Set -> Set x ∞ y = x ∞ y data Nat : Set where zero : Nat succ : Nat -> Nat id : Nat -> Nat id zero = zero id (succ n) = succ (id n) bad : Nat -> Nat bad n = bad n _+_ : Nat -> Nat -> Nat zero + n = n (succ m) + n = succ (m + n) bad2 : Nat -> Nat bad2 (succ x) = bad2 x + bad2 (succ x) bad2 x = bad2 x data Bool : Set where true : Bool false : Bool _&&_ : Bool -> Bool -> Bool true && a = a false && a = false mutual even : Nat -> Bool even zero = true even (succ n) = odd n odd : Nat -> Bool odd zero = false odd (succ n) = even n data Ty : {_ : Nat} -> Set where Base : forall {n} -> Ty {succ n} Arr : forall {n} -> Ty {n} -> Ty {n} -> Ty {succ n} eqty : forall {n} -> Ty {n} -> Ty {n} -> Bool eqty Base Base = true eqty (Arr a b) (Arr a' b') = (eqty a a') && (eqty b b') eqty _ _ = false subty : forall {n} -> Ty {n} -> Ty {n} -> Bool subty Base Base = true subty (Arr a b) (Arr a' b') = (subty a' a) && (subty b b') subty _ _ = false -- the following is enough for making it termination check subty' : forall {n} -> Ty {n} -> Ty {n} -> Bool subty' Base Base = true subty' {succ n} (Arr a b) (Arr a' b') = (subty' a' a) && (subty' b b') subty' _ _ = false subty'' : forall {n} -> Ty {n} -> Ty {n} -> Bool subty'' Base Base = true subty'' {succ n} (Arr {.n} a b) (Arr .{n} a'' b'') = (subty'' {n} a'' a) && (subty'' {n} b b'') subty'' _ _ = false data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B add : Nat × Nat -> Nat add (zero , m) = m add (succ n , m) = succ (add (n , m)) eq : Nat × Nat -> Bool eq (zero , zero ) = true eq (succ n , succ m) = eq (n , m) eq _ = false -- the following should not termination check mutual f : Nat -> Nat -> Nat f zero y = zero f (succ x) zero = zero f (succ x) (succ y) = (g x (succ y)) + (f (succ (succ x)) y) g : Nat -> Nat -> Nat g zero y = zero g (succ x) zero = zero g (succ x) (succ y) = (f (succ x) (succ y)) + (g x (succ (succ y))) mutual badf : Nat × Nat -> Nat badf (zero , y) = zero badf (succ x , zero) = zero badf (succ x , succ y) = badg (x , succ y) + badf (succ (succ x) , y) badg : Nat × Nat -> Nat badg (zero , y) = zero badg (succ x , zero) = zero badg (succ x , succ y) = badf (succ x , succ y) + badg (x , succ (succ y)) -- these are ok, however mutual f' : Nat -> Nat -> Nat f' zero y = zero f' (succ x) zero = zero f' (succ x) (succ y) = (g' x (succ y)) + (f' (succ (succ x)) y) g' : Nat -> Nat -> Nat g' zero y = zero g' (succ x) zero = zero g' (succ x) (succ y) = (f' (succ x) (succ y)) + (g' x (succ y)) -- these are ok, however bla : Nat bla = succ (succ zero) mutual f'' : Nat -> Nat -> Nat f'' zero y = zero f'' (succ x) zero = zero f'' (succ x) (succ y) = (g'' x (succ y)) + (f'' bla y) g'' : Nat -> Nat -> Nat g'' zero y = zero g'' (succ x) zero = zero g'' (succ x) (succ y) = (f'' (succ x) (succ y)) + (g'' x (succ y)) -- Ackermann ack : Nat -> Nat -> Nat ack zero y = succ y ack (succ x) zero = ack x (succ zero) ack (succ x) (succ y) = ack x (ack (succ x) y) ack' : Nat × Nat -> Nat ack' (zero , y) = succ y ack' (succ x , zero) = ack' (x , succ zero) ack' (succ x , succ y) = ack' (x , ack' (succ x , y)) -- Maximum of 3 numbers max3 : Nat -> Nat -> Nat -> Nat max3 zero zero z = z max3 zero y zero = y max3 x zero zero = x max3 (succ x) (succ y) zero = succ (max3 x y zero) max3 (succ x) zero (succ z) = succ (max3 x zero z) max3 zero (succ y) (succ z) = succ (max3 zero y z) max3 (succ x) (succ y) (succ z) = succ (max3 x y z) -- addition of Ordinals data Ord : Set where ozero : Ord olim : (Nat -> Ord) -> Ord addord : Ord -> Ord -> Ord addord x ozero = x addord x (olim f) = olim (\ n -> addord x (f n)) -- Higher-order example which should not pass the termination checker. -- (Not the current one, anyway.) foo : Ord -> (Nat -> Ord) -> Ord foo ozero g = ozero foo (olim f) g = olim (\n -> foo (g n) f) -- Examples checking that a function can be used with several -- different numbers of arguments on the right-hand side. const : {a b : Set1} -> a -> b -> a const x _ = x ok : Nat -> Nat -> Set ok zero y = Nat ok (succ x) y = const Nat (const (ok x y) (ok x)) notOK : Set -> Set notOK x = const (notOK Ord) notOK -- An example which should fail (37 is an arbitrary number): data ⊤ : Set where tt : ⊤ mutual foo37 : ⊤ -> ⊤ foo37 x = bar37 x bar37 : ⊤ -> ⊤ bar37 tt = foo37 tt -- Some examples involving with. -- Not OK: withNo : Nat -> Nat withNo n with n withNo n | m = withNo m -- OK: withYes : Nat -> Nat withYes n with n withYes n | zero = zero withYes n | succ m = withYes m -- Some rather convoluted examples. -- OK: number : Nat number = zero where data Foo12 : Nat -> Set where foo12 : Foo12 number -- Should the occurrence of number' in the type signature of foo12 -- really be highlighted here? number' : Nat number' with zero number' | x = g12 foo12 where data Foo12 : Nat -> Set where foo12 : Foo12 number' abstract g12 : {i : Nat} -> Foo12 i -> Nat g12 foo12 = zero -- Tests highlighting (but does not type check yet): -- number'' : Nat -- number'' with zero -- number'' | x = g12 (foo12 x) -- where -- data Foo12 : Nat -> Set where -- foo12 : (n : Nat) -> Foo12 (number'' | n) -- abstract -- g12 : {i : Nat} -> Foo12 i -> Nat -- g12 (foo12 n) = n data List (A : Set) : Set where [] : List A _::_ : A -> List A -> List A infixr 50 _::_ -- butlast function good1 : {A : Set} -> List A -> A good1 (a :: []) = a good1 (a :: b :: bs) = good1 (b :: bs) infixl 10 _⊕_ postulate _⊕_ : {A : Set} -> A -> A -> A -- non-deterministic choice -- a funny formulation of insert -- insert (a :: l) inserts a into l insert : {A : Set} -> List A -> List A insert [] = [] insert (a :: []) = a :: [] insert (a :: b :: bs) = a :: b :: bs ⊕ -- case a <= b b :: insert (a :: bs) -- case a > b -- list flattening flat : {A : Set} -> List (List A) -> List A flat [] = [] flat ([] :: ll) = flat ll flat ((x :: l) :: ll) = x :: flat (l :: ll) -- leaf-labelled trees data Tree (A : Set) : Set where leaf : A -> Tree A node : Tree A -> Tree A -> Tree A -- flattening (does not termination check) tflat : {A : Set} -> Tree A -> List A tflat (leaf a) = a :: [] tflat (node (leaf a) r) = a :: tflat r tflat (node (node l1 l2) r) = tflat (node l1 (node l2 r)) -- Maximum of 3 numbers -- mixing tupling and swapping: does not work with structured orders max3' : Nat × Nat -> Nat -> Nat max3' (zero , zero) z = z max3' (zero , y) zero = y max3' (x , zero) zero = x max3' (succ x , succ y) zero = succ (max3' (x , y) zero) max3' (succ x , zero) (succ z) = succ (max3' (x , z) zero) max3' (zero , succ y) (succ z) = succ (max3' (y , z) zero) max3' (succ x , succ y) (succ z) = succ (max3' (z , x) y)
{ "alphanum_fraction": 0.5452456191, "avg_line_length": 21.6884735202, "ext": "agda", "hexsha": "64283e91cbe5f58f93131714d02b09f5bdf0955c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/Termination/Example.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/Termination/Example.agda", "max_line_length": 77, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/Termination/Example.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 2588, "size": 6962 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Adjunction.Composition where open import Level open import Categories.Category open import Categories.Functor hiding (equiv; assoc; identityˡ; identityʳ; ∘-resp-≡) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_) open import Categories.NaturalTransformation hiding (equiv; setoid) renaming (id to idT; _≡_ to _≡T_) open import Categories.Adjunction infixr 9 _∘_ _∘_ : ∀ {o ℓ e} {o₁ ℓ₁ e₁} {o₂ ℓ₂ e₂} {C : Category o ℓ e} {D : Category o₁ ℓ₁ e₁} {E : Category o₂ ℓ₂ e₂} {F : Functor D C} {G : Functor C D} {H : Functor E D} {I : Functor D E} → Adjunction F G → Adjunction H I → Adjunction (F ∘F H) (I ∘F G) _∘_ {C = C} {D} {E} {F} {G} {H} {I} X Y = record { unit = (I ∘ˡ (Xη′ ∘ʳ H)) ∘₁ Yη′ ; counit = Xε′ ∘₁ (F ∘ˡ (Yε′ ∘ʳ G)) ; zig = λ {x} → zig′ {x} ; zag = λ {x} → zag′ {x} } where module C = Category C module D = Category D module E = Category E module F = Functor F module G = Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡) module H = Functor H renaming (F₀ to H₀; F₁ to H₁; F-resp-≡ to H-resp-≡) module I = Functor I renaming (F₀ to I₀; F₁ to I₁; F-resp-≡ to I-resp-≡) module X′ = Adjunction X renaming (unit to Xη′; counit to Xε′) module Y′ = Adjunction Y renaming (unit to Yη′; counit to Yε′) module Xη = NaturalTransformation (Adjunction.unit X) renaming (η to ηX) module Yη = NaturalTransformation (Adjunction.unit Y) renaming (η to ηY) module Xε = NaturalTransformation (Adjunction.counit X) renaming (η to εX) module Yε = NaturalTransformation (Adjunction.counit Y) renaming (η to εY) open C open D open E open F open G open H open I open X′ open Y′ open Xη open Yη open Xε open Yε .zig′ : {x : E.Obj} → C.id C.≡ (εX (F₀ (H₀ x)) C.∘ F₁ (εY (G₀ (F₀ (H₀ x))))) C.∘ F₁ (H₁ (I₁ (ηX (H₀ x)) E.∘ ηY x)) zig′ {x} = begin C.id ↑⟨ F.identity ⟩ F₁ D.id ↓⟨ F-resp-≡ Y′.zig ⟩ F₁ (D [ εY (H₀ x) ∘ H₁ (ηY x) ]) ↓⟨ F.homomorphism ⟩ F₁ (εY (H₀ x)) C.∘ F₁ (H₁ (ηY x)) ↑⟨ C.∘-resp-≡ˡ C.identityˡ ⟩ (C.id C.∘ F₁ (εY (H₀ x))) C.∘ F₁ (H₁ (ηY x)) ↓⟨ C.∘-resp-≡ˡ (C.∘-resp-≡ˡ X′.zig) ⟩ ((εX (F₀ (H₀ x)) C.∘ F₁ (ηX (H₀ x))) C.∘ F₁ (εY (H₀ x))) C.∘ F₁ (H₁ (ηY x)) ↓⟨ C.∘-resp-≡ˡ C.assoc ⟩ (εX (F₀ (H₀ x)) C.∘ F₁ (ηX (H₀ x)) C.∘ F₁ (εY (H₀ x))) C.∘ F₁ (H₁ (ηY x)) ↓⟨ C.assoc ⟩ εX (F₀ (H₀ x)) C.∘ (F₁ (ηX (H₀ x)) C.∘ F₁ (εY (H₀ x))) C.∘ F₁ (H₁ (ηY x)) ↑⟨ C.∘-resp-≡ʳ (C.∘-resp-≡ˡ F.homomorphism) ⟩ εX (F₀ (H₀ x)) C.∘ F₁ (ηX (H₀ x) D.∘ εY (H₀ x)) C.∘ F₁ (H₁ (ηY x)) ↑⟨ C.∘-resp-≡ʳ F.homomorphism ⟩ εX (F₀ (H₀ x)) C.∘ F₁ ((ηX (H₀ x) D.∘ εY (H₀ x)) D.∘ H₁ (ηY x)) ↑⟨ C.∘-resp-≡ʳ (F-resp-≡ (D.∘-resp-≡ˡ (Yε.commute (ηX (H₀ x))))) ⟩ εX (F₀ (H₀ x)) C.∘ F₁ ((εY (G₀ (F₀ (H₀ x))) D.∘ H₁ (I₁ (ηX (H₀ x)))) D.∘ H₁ (ηY x)) ↓⟨ C.∘-resp-≡ʳ (F-resp-≡ D.assoc) ⟩ εX (F₀ (H₀ x)) C.∘ F₁ (εY (G₀ (F₀ (H₀ x))) D.∘ D [ H₁ (I₁ (ηX (H₀ x))) ∘ H₁ (ηY x) ]) ↑⟨ C.∘-resp-≡ʳ (F-resp-≡ (D.∘-resp-≡ʳ H.homomorphism)) ⟩ εX (F₀ (H₀ x)) C.∘ F₁ (D [ εY (G₀ (F₀ (H₀ x))) ∘ H₁ (I₁ (ηX (H₀ x)) E.∘ ηY x) ]) ↓⟨ C.∘-resp-≡ʳ F.homomorphism ⟩ εX (F₀ (H₀ x)) C.∘ F₁ (εY (G₀ (F₀ (H₀ x)))) C.∘ F₁ (H₁ (I₁ (ηX (H₀ x)) E.∘ ηY x)) ↑⟨ C.assoc ⟩ (εX (F₀ (H₀ x)) C.∘ F₁ (εY (G₀ (F₀ (H₀ x))))) C.∘ F₁ (H₁ (I₁ (ηX (H₀ x)) E.∘ ηY x)) ∎ where open C.HomReasoning .zag′ : {x : C.Obj} → E.id E.≡ I₁ (G₁ (εX x C.∘ F₁ (εY (G₀ x)))) E.∘ I₁ (ηX (H₀ (I₀ (G₀ x)))) E.∘ ηY (I₀ (G₀ x)) zag′ {x} = begin E.id ↓⟨ Y′.zag ⟩ (I₁ (εY (G₀ x))) E.∘ (ηY (I₀ (G₀ x))) ↑⟨ E.∘-resp-≡ˡ (I-resp-≡ D.identityˡ) ⟩ (I₁ (D.id D.∘ (εY (G₀ x)))) E.∘ (ηY (I₀ (G₀ x))) ↓⟨ E.∘-resp-≡ˡ (I-resp-≡ (D.∘-resp-≡ˡ X′.zag)) ⟩ (I₁ ((G₁ (εX x) D.∘ (ηX (G₀ x))) D.∘ (εY (G₀ x)))) E.∘ (ηY (I₀ (G₀ x))) ↓⟨ E.∘-resp-≡ˡ (I-resp-≡ D.assoc) ⟩ I₁ (G₁ (εX x) D.∘ ηX (G₀ x) D.∘ εY (G₀ x)) E.∘ ηY (I₀ (G₀ x)) ↓⟨ E.∘-resp-≡ˡ (I-resp-≡ (D.∘-resp-≡ʳ (Xη.commute (εY (G₀ x))))) ⟩ I₁ (G₁ (εX x) D.∘ G₁ (F₁ (εY (G₀ x))) D.∘ ηX (H₀ (I₀ (G₀ x)))) E.∘ ηY (I₀ (G₀ x)) ↑⟨ E.∘-resp-≡ˡ (I-resp-≡ D.assoc) ⟩ I₁ (D [ G₁ (εX x) ∘ G₁ (F₁ (εY (G₀ x))) ] D.∘ ηX (H₀ (I₀ (G₀ x)))) E.∘ ηY (I₀ (G₀ x)) ↑⟨ E.∘-resp-≡ˡ (I-resp-≡ (D.∘-resp-≡ˡ G.homomorphism)) ⟩ I₁ (D [ G₁ (εX x C.∘ F₁ (εY (G₀ x))) ∘ ηX (H₀ (I₀ (G₀ x))) ]) E.∘ ηY (I₀ (G₀ x)) ↓⟨ E.∘-resp-≡ˡ I.homomorphism ⟩ (I₁ (G₁ (εX x C.∘ F₁ (εY (G₀ x)))) E.∘ I₁ (ηX (H₀ (I₀ (G₀ x))))) E.∘ ηY (I₀ (G₀ x)) ↓⟨ E.assoc ⟩ I₁ (G₁ (εX x C.∘ F₁ (εY (G₀ x)))) E.∘ I₁ (ηX (H₀ (I₀ (G₀ x)))) E.∘ ηY (I₀ (G₀ x)) ∎ where open E.HomReasoning
{ "alphanum_fraction": 0.4468659595, "avg_line_length": 40.5078125, "ext": "agda", "hexsha": "4f1262fb46f1239f1127db4e408697cc242ebc2a", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Adjunction/Composition.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Adjunction/Composition.agda", "max_line_length": 131, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Adjunction/Composition.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2641, "size": 5185 }
module Lec7 where open import Lec1Done data List (X : Set) : Set where [] : List X _,-_ : X -> List X -> List X foldrL : {X T : Set} -> (X -> T -> T) -> T -> List X -> T foldrL c n [] = n foldrL c n (x ,- xs) = c x (foldrL c n xs) data Bwd (X : Set) : Set where [] : Bwd X _-,_ : Bwd X -> X -> Bwd X infixl 3 _-,_ data _<=_ {X : Set} : (xz yz : Bwd X) -> Set where oz : [] <= [] os : {xz yz : Bwd X}{y : X} -> xz <= yz -> (xz -, y) <= (yz -, y) o' : {xz yz : Bwd X}{y : X} -> xz <= yz -> xz <= (yz -, y) oe : {X : Set}{xz : Bwd X} -> [] <= xz oe {_} {[]} = oz oe {_} {xz -, _} = o' oe oi : {X : Set}{xz : Bwd X} -> xz <= xz oi {_} {[]} = oz oi {_} {xz -, _} = os oi -- look here... _<o<_ : {X : Set}{xz yz zz : Bwd X} -> xz <= yz -> yz <= zz -> xz <= zz th <o< o' ph = o' (th <o< ph) oz <o< oz = oz os th <o< os ph = os (th <o< ph) -- ...and here o' th <o< os ph = o' (th <o< ph) Elem : {X : Set} -> X -> Bwd X -> Set Elem x yz = ([] -, x) <= yz data Ty : Set where one : Ty list : Ty -> Ty _=>_ : Ty -> Ty -> Ty infixr 4 _=>_ Val : Ty -> Set Val one = One Val (list T) = List (Val T) Val (S => T) = Val S -> Val T data Tm (Tz : Bwd Ty) : Ty -> Set where var : {T : Ty} -> Elem T Tz -> Tm Tz T <> : Tm Tz one [] : {T : Ty} -> Tm Tz (list T) _,-_ : {T : Ty} -> Tm Tz T -> Tm Tz (list T) -> Tm Tz (list T) foldr : {S T : Ty} -> Tm Tz (S => T => T) -> Tm Tz T -> Tm Tz (list S) -> Tm Tz T lam : {S T : Ty} -> Tm (Tz -, S) T -> Tm Tz (S => T) _$$_ : {S T : Ty} -> Tm Tz (S => T) -> Tm Tz S -> Tm Tz T infixl 3 _$$_ All : {X : Set} -> (X -> Set) -> Bwd X -> Set All P [] = One All P (xz -, x) = All P xz * P x all : {X : Set}{P Q : X -> Set}(f : (x : X) -> P x -> Q x) -> (xz : Bwd X) -> All P xz -> All Q xz all f [] <> = <> all f (xz -, x) (pz , p) = all f xz pz , f x p Env : Bwd Ty -> Set Env = All Val select : {X : Set}{P : X -> Set}{Sz Tz : Bwd X} -> Sz <= Tz -> All P Tz -> All P Sz select oz <> = <> select (os x) (vz , v) = select x vz , v select (o' x) (vz , v) = select x vz eval : {Tz : Bwd Ty}{T : Ty} -> Env Tz -> Tm Tz T -> Val T eval vz (var x) with select x vz eval vz (var x) | <> , v = v eval vz <> = <> eval vz [] = [] eval vz (t ,- ts) = eval vz t ,- eval vz ts eval vz (foldr c n ts) = foldrL (eval vz c) (eval vz n) (eval vz ts) eval vz (lam t) = \ s -> eval (vz , s) t eval vz (f $$ s) = eval vz f (eval vz s) append : {Tz : Bwd Ty}{T : Ty} -> Tm Tz (list T => list T => list T) append = lam (lam (foldr (lam (lam (var (o' (os oe)) ,- var (os oe)))) (var (os oe)) (var (o' (os oe))))) test : Val (list one) test = eval {[]} <> (append $$ (<> ,- []) $$ (<> ,- [])) thin : {Sz Tz : Bwd Ty} -> Sz <= Tz -> {S : Ty} -> Tm Sz S -> Tm Tz S thin th (var x) = var (x <o< th) thin th <> = <> thin th [] = [] thin th (t ,- ts) = thin th t ,- thin th ts thin th (foldr c n ts) = foldr (thin th c) (thin th n) (thin th ts) thin th (lam t) = lam (thin (os th) t) thin th (f $$ s) = thin th f $$ thin th s Subst : Bwd Ty -> Bwd Ty -> Set Subst Sz Tz = All (Tm Tz) Sz subst : {Sz Tz : Bwd Ty} -> Subst Sz Tz -> {S : Ty} -> Tm Sz S -> Tm Tz S subst tz (var x) with select x tz subst tz (var x) | <> , t = t subst tz <> = <> subst tz [] = [] subst tz (t ,- ts) = subst tz t ,- subst tz ts subst tz (foldr c n ts) = foldr (subst tz c) (subst tz n) (subst tz ts) subst tz (lam t) = lam (subst (all (\ T -> thin (o' oi)) _ tz , (var (os oe))) t) subst tz (f $$ s) = subst tz f $$ subst tz s record Action (M : Bwd Ty -> Bwd Ty -> Set) : Set where field varA : forall {S Sz Tz} -> M Sz Tz -> Elem S Sz -> Tm Tz S lamA : forall {S Sz Tz} -> M Sz Tz -> M (Sz -, S) (Tz -, S) act : {Sz Tz : Bwd Ty} -> M Sz Tz -> {S : Ty} -> Tm Sz S -> Tm Tz S act m (var x) = varA m x act m <> = <> act m [] = [] act m (t ,- ts) = act m t ,- act m ts act m (foldr c n ts) = foldr (act m c) (act m n) (act m ts) act m (lam t) = lam (act (lamA m) t) act m (f $$ s) = act m f $$ act m s THIN : Action _<=_ Action.varA THIN th x = var (x <o< th) Action.lamA THIN = os SUBST : Action Subst Action.varA SUBST tz x with select x tz ... | <> , t = t Action.lamA SUBST tz = all (\ T -> Action.act THIN (o' oi)) _ tz , (var (os oe)) -- substitution -- thinning -- abstr-action
{ "alphanum_fraction": 0.4587837838, "avg_line_length": 28.2802547771, "ext": "agda", "hexsha": "fe2674d07d9dc9216c345357978f19eadb884821", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec7.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec7.agda", "max_line_length": 98, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/course/2017-conor_mcbride_cs410/CS410-17-master/lectures/Lec7.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 1851, "size": 4440 }
module lambda.vec where open import Data.Nat open import Data.Fin hiding (_+_) infixr 40 _▸_ data vec (T : Set) : ℕ → Set where ε : vec T 0 _▸_ : ∀ {n} → vec T n → T → vec T (suc n) lookup : ∀ {n} → {T : Set} → Fin n → vec T n → T lookup zero (Γ ▸ x) = x lookup (suc i) (Γ ▸ x) = lookup i Γ
{ "alphanum_fraction": 0.5652173913, "avg_line_length": 19.9333333333, "ext": "agda", "hexsha": "4d43d3caf85031b156ab1e156935a3b8106cd268", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "Lapin0t/lambda", "max_forks_repo_path": "lambda/vec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "Lapin0t/lambda", "max_issues_repo_path": "lambda/vec.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "09a231d9b3057d57b864070188ed9fe14a07eda2", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "Lapin0t/lambda", "max_stars_repo_path": "lambda/vec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 126, "size": 299 }
{-# OPTIONS --without-K #-} module PiIter where open import Level using (_⊔_) renaming (zero to l0; suc to lsuc) open import Universe using (Universe) open import Categories.Category using (Category) open import Categories.Groupoid using (Groupoid) open import Categories.Functor using (Functor) open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Data.Sum hiding ([_,_]) open import Data.Product open import Relation.Binary.PropositionalEquality as P open import Function using (flip) open import Data.Nat using (ℕ; zero; suc) open import Data.Nat.Properties.Simple using (+-right-identity) open import Data.Integer using (ℤ;+_;-[1+_]) renaming (suc to ℤsuc; -_ to ℤ-; _+_ to _ℤ+_) open import PiU using (U; ZERO; ONE; PLUS; TIMES; toℕ) open import PiLevel0 open import PiLevel1 open import PiEquiv renaming (eval to ap; evalB to apB) open import Equiv infix 40 _^_ _^_ : {τ : U} → (p : τ ⟷ τ) → (k : ℤ) → (τ ⟷ τ) p ^ (+ 0) = id⟷ p ^ (+ (suc k)) = p ◎ (p ^ (+ k)) p ^ -[1+ 0 ] = ! p p ^ (-[1+ (suc k) ]) = (! p) ◎ (p ^ -[1+ k ]) -- useful properties of ^ -- because ^ is iterated composition of the same thing, -- then by associativity, we can hive off compositions -- from left or right assoc1 : {τ : U} → {p : τ ⟷ τ} → (m : ℕ) → (p ◎ (p ^ (+ m))) ⇔ ((p ^ (+ m)) ◎ p) assoc1 ℕ.zero = trans⇔ idr◎l idl◎r assoc1 (suc m) = trans⇔ (id⇔ ⊡ assoc1 m) assoc◎l assoc1- : {τ : U} → {p : τ ⟷ τ} → (m : ℕ) → ((! p) ◎ (p ^ -[1+ m ])) ⇔ ((p ^ -[1+ m ]) ◎ (! p)) assoc1- ℕ.zero = id⇔ assoc1- (suc m) = trans⇔ (id⇔ ⊡ assoc1- m) assoc◎l -- more generally assoc1g : {τ : U} → {p : τ ⟷ τ} → (i : ℤ) → (p ◎ (p ^ i)) ⇔ ((p ^ i) ◎ p) assoc1g (+_ n) = assoc1 n assoc1g (-[1+_] zero) = trans⇔ linv◎l rinv◎r assoc1g (-[1+_] (suc n)) = trans⇔ assoc◎l (trans⇔ (linv◎l ⊡ id⇔) ( trans⇔ idl◎l (2! (trans⇔ (assoc1- n ⊡ id⇔) (trans⇔ assoc◎r (trans⇔ (id⇔ ⊡ rinv◎l) idr◎l)))))) -- Property of ^: negating exponent is same as -- composing in the other direction, then reversing. ^⇔! : {τ : U} → {p : τ ⟷ τ} → (k : ℤ) → (p ^ (ℤ- k)) ⇔ ! (p ^ k) ^⇔! (+_ ℕ.zero) = id⇔ -- need to dig deeper, as we end up negating ^⇔! (+_ (suc ℕ.zero)) = idl◎r ^⇔! (+_ (suc (suc n))) = trans⇔ (assoc1- n) (^⇔! (+ suc n) ⊡ id⇔) ^⇔! {p = p} (-[1+_] ℕ.zero) = trans⇔ idr◎l (2! !!⇔id) -- (!!⇔id {c = p}) ^⇔! {p = p} (-[1+_] (suc n)) = trans⇔ (assoc1 (suc n)) ((^⇔! -[1+ n ]) ⊡ 2! !!⇔id) -- (!!⇔id p)) -- first match on m, n, then proof is purely PiLevel1 lower : {τ : U} {p : τ ⟷ τ} (m n : ℤ) → p ^ (m ℤ+ n) ⇔ ((p ^ m) ◎ (p ^ n)) lower (+_ ℕ.zero) (+_ n) = idl◎r lower (+_ ℕ.zero) (-[1+_] n) = idl◎r lower (+_ (suc m)) (+_ n) = trans⇔ (id⇔ ⊡ lower (+ m) (+ n)) assoc◎l lower {p = p} (+_ (suc m)) (-[1+_] ℕ.zero) = trans⇔ idr◎r (trans⇔ (id⇔ ⊡ linv◎r) ( trans⇔ assoc◎l (2! (assoc1 m) ⊡ id⇔))) -- p ^ ((m + 1) -1) lower (+_ (suc m)) (-[1+_] (suc n)) = -- p ^ ((m + 1) -(1+1+n) trans⇔ (lower (+ m) (-[1+ n ])) ( trans⇔ ((trans⇔ idr◎r (id⇔ ⊡ linv◎r)) ⊡ id⇔) ( trans⇔ assoc◎r (trans⇔ (id⇔ ⊡ assoc◎r) ( trans⇔ assoc◎l (2! (assoc1 m) ⊡ id⇔))))) lower (-[1+_] m) (+_ ℕ.zero) = idr◎r lower (-[1+_] ℕ.zero) (+_ (suc n)) = 2! (trans⇔ assoc◎l ( trans⇔ (rinv◎l ⊡ id⇔) idl◎l)) lower (-[1+_] (suc m)) (+_ (suc n)) = -- p ^ (-(1+m) + (n+1)) trans⇔ (lower (-[1+ m ]) (+ n)) ( trans⇔ ((trans⇔ idr◎r (id⇔ ⊡ rinv◎r)) ⊡ id⇔) ( trans⇔ assoc◎r (trans⇔ (id⇔ ⊡ assoc◎r) ( trans⇔ assoc◎l ((2! (assoc1- m)) ⊡ id⇔))))) lower (-[1+_] ℕ.zero) (-[1+_] n) = id⇔ lower (-[1+_] (suc m)) (-[1+_] n) = -- p ^ (-(1+1+m) - (1+n)) trans⇔ (id⇔ ⊡ lower (-[1+ m ]) (-[1+ n ])) assoc◎l -- i.e. Iter is: for all i, any p' such that -- p' ⇔ p ^ i record Iter {τ : U} (p : τ ⟷ τ) : Set where constructor iter field i : ℤ p' : τ ⟷ τ p'⇔p^i : p' ⇔ (p ^ i) -- Equality of Iter. record _≡c_ {τ : U} {p : τ ⟷ τ} (q r : Iter p) : Set where constructor eqc field iter≡ : Iter.i q ≡ Iter.i r p⇔ : Iter.p' q ⇔ Iter.p' r -- Iterates of id⟷ id^i≡id : {t : U} (i : ℤ) → (id⟷ ^ i) ⇔ (id⟷ {t}) id^i≡id (+_ zero) = id⇔ id^i≡id (+_ (suc n)) = trans⇔ idl◎l (id^i≡id (+ n)) id^i≡id (-[1+_] zero) = id⇔ id^i≡id (-[1+_] (suc n)) = trans⇔ idl◎l (id^i≡id -[1+ n ])
{ "alphanum_fraction": 0.5178871549, "avg_line_length": 33.5887096774, "ext": "agda", "hexsha": "d750edc561521259331819733002822d0d567473", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiIter.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiIter.agda", "max_line_length": 90, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiIter.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2033, "size": 4165 }
-- An ATP conjecture must be used with postulates. -- This error is detected by TypeChecking.Rules.Decl. module ATPBadConjecture2 where data Bool : Set where false true : Bool {-# ATP prove Bool #-}
{ "alphanum_fraction": 0.7317073171, "avg_line_length": 18.6363636364, "ext": "agda", "hexsha": "2e8dbffc63d97204273bc14515d7c5f011256cef", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/ATPBadConjecture2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/ATPBadConjecture2.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/ATPBadConjecture2.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 51, "size": 205 }
{-# OPTIONS --sized-types #-} module Automaton.Deterministic.FormalLanguage where open import Automaton.Deterministic.Finite open import Automaton.Deterministic open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.List renaming (∅ to []) open import Functional import Lvl open import Type open import Type.Size.Finite private variable ℓ ℓ₁ ℓ₂ ℓₚ : Lvl.Level private variable Q Q₁ Q₂ State : Type{ℓ} private variable Σ Σ₁ Σ₂ Alphabet : Type{ℓ} module Language where open import Logic.Propositional open import Logic.Predicate open import FormalLanguage open import FormalLanguage.Equals open import Relator.Equals open import Relator.Equals.Proofs import Type.Dependent as Type -- The language accepted by a DFA. -- This is a linguistic interpretation of an automaton, that it is a grammar of the language. -- A language accepts the empty word when the start state is a final state. -- The language of a suffix is the transition function applied to the start state. 𝔏 : ∀{s} → DFA{ℓₚ = ℓₚ}(Q)(Σ) → Language(Σ){s} Language.accepts-ε (𝔏(d)) = DFA.isFinal d (DFA.start d) Language.suffix-lang (𝔏(d)) c = 𝔏(DFA.transitionedAutomaton d c) RegularLanguage : ∀{s}{ℓₚ ℓₑ₁} → Language(Σ) → Type RegularLanguage{Σ = Σ}{s = s}{ℓₚ = ℓₚ}{ℓₑ₁ = ℓₑ₁} L = ∃{Obj = Type.Σ(Type{ℓₑ₁})(Q ↦ DFA{ℓₚ = ℓₚ}(Q)(Σ))}(\(Type.intro _ auto) → (𝔏(auto) ≅[ s ]≅ L)) module Proofs where open Language open import Logic.Propositional open import Relator.Equals open import Relator.Equals.Proofs open import FormalLanguage open FormalLanguage.Oper hiding (∁_) open import Syntax.Transitivity -- TODO: Is this wrong? -- step-isWordAccepted : ∀{Q}{Σ} → (auto : DFA(Q)(Σ)) → ∀{c}{w} → DFA.isWordAccepted(auto)(c ⊰ w) ≡ DFA.isWordAccepted(Dfa (DFA.δ auto) (DFA.δ(auto)(DFA.q₀(auto))(c)) (DFA.F auto))(w) -- step-isWordAccepted auto {c}{[]} = [≡]-intro -- step-isWordAccepted auto {c}{w} = congruence₁(DFA.F(auto)) [≡]-intro Language-isWordAccepted : ∀{Q}{Σ} → (auto : DFA(Q)(Σ)) → ∀{w} → ({!DFA.isWordAccepted auto w!} ≡ (w ∈? 𝔏(auto))) {- Language-isWordAccepted : ∀{Q}{Σ} → (auto : DFA(Q)(Σ)) → ∀{w} → (DFA.isWordAccepted(auto)(w) ≡ w ∈? 𝔏(auto)) Language-isWordAccepted auto {[]} = [≡]-intro Language-isWordAccepted auto {x ⊰ w} = DFA.isWordAccepted(auto)(x ⊰ w) 🝖[ _≡_ ]-[] δ̂(q₀)(x ⊰ w) ∈ F 🝖[ _≡_ ]-[] δ̂(δ(q₀) x) w ∈ F 🝖[ _≡_ ]-[ {!Language-isWordAccepted (transitionedAutomaton auto x) {w}!} ] DFA.isWordAccepted(transitionedAutomaton auto x) w 🝖[ _≡_ ]-[ Language-isWordAccepted (transitionedAutomaton auto x) {w} ] w ∈? Language.suffix-lang(𝔏(auto))(x) 🝖[ _≡_ ]-[] (x ⊰ w) ∈? 𝔏(auto) 🝖-end where open DFA(auto) open LetterNotation -- [≡]-with {!DFA.F(auto)!} (Language-isWordAccepted {Σ = Σ} auto {w}) -} -- Language-isWordAccepted (_) {[]} = [≡]-intro -- Language-isWordAccepted (Dfa δ q₀ F) {c ⊰ w} = test(Dfa δ q₀ F){c ⊰ w} -- Language-isWordAccepted (Dfa δ (δ(q₀)(c)) F) {w} -- DFA.isWordAccepted(auto)(c ⊰ w) -- DFA.isWordAccepted(Dfa δ q₀ F)(c ⊰ w) -- F(δ̂(q₀)(c ⊰ w)) -- F(δ̂(δ(q₀)(c))(w)) -- (c ⊰ w) ∈? (𝔏(auto)) -- (c ⊰ w) ∈? (𝔏(Dfa δ q₀ F)) -- w ∈? (Language.suffix-lang(𝔏(Dfa δ q₀ F))(c)) -- w ∈? (𝔏(Dfa δ (δ(q₀)(c)) F)) {- module _ (auto : Deterministic(Q)(Σ)) where δ̂-with-[++] : ∀{q : Q}{w₁ w₂ : Word(Σ)} → Deterministic.δ̂(auto)(q)(w₁ ++ w₂) ≡ DFA.δ̂(auto)(DFA.δ̂(auto)(q)(w₁))(w₂) δ̂-with-[++] {_}{[]} = [≡]-intro δ̂-with-[++] {q}{a ⊰ w₁}{w₂} = δ̂-with-[++] {Deterministic.δ(auto)(q)(a)}{w₁}{w₂} [∁]-δ̂ : ∀{q : Q}{w : Word(Σ)} → DFA.δ̂(∁ auto)(q)(w) ≡ DFA.δ̂(auto)(q)(w) [∁]-δ̂ {_}{[]} = [≡]-intro [∁]-δ̂ {q}{a ⊰ w} = [∁]-δ̂ {DFA.δ(∁ auto)(q)(a)}{w} [∁]-isWordAccepted : ∀{w} → DFA.isWordAccepted(∁ auto)(w) ≡ !(DFA.isWordAccepted(auto)(w)) [∁]-isWordAccepted {w} = [≡]-with(x ↦ !(DFA.F(auto)(x))) ([∁]-δ̂{DFA.q₀(auto)}{w}) -- TODO: Prove ∁ postulates regarding languages before accepting them, because the definition of ∁ for languages might be wrong. -- [∁]-language : 𝔏(∁ auto) ≡ Oper.∁(𝔏(auto)) -- [∁]-language = proof(auto) where -- proof : (auto : DFA(Q)(Σ)) → 𝔏(∁ auto) ≡ Oper.∁(𝔏(auto)) -- proof(Dfa δ q₀ F) = [≡]-substitutionₗ {Lvl.𝟎}{Lvl.𝐒(Lvl.𝟎)} [∁]-language {expr ↦ Lang (! F(q₀)) (c ↦ expr(c))} ([≡]-intro {Lvl.𝟎}{Lvl.𝐒(Lvl.𝟎)}) -- [≡]-substitution-fnₗ : ∀{T₁ T₂}{x y : T₁ → T₂} → ((c : T₁) → (x(c) ≡ y(c))) → ∀{f : (T₁ → T₂) → TypeN{ℓ₃}} → f(x) ← f(y) -- [≡]-substitution-fnₗ [≡]-intro = id? -- 𝔏(∁(Dfa δ q₀ F)) -- = 𝔏(Dfa δ q₀ ((!_) ∘ F)) -- = Lang ((!_) ∘ F)(q₀)) (c ↦ 𝔏(Dfa δ (δ(q₀)(c)) ((!_) ∘ F))) -- Oper.∁(𝔏(Dfa δ q₀ F)) -- = Lang (! F(q₀)) (c ↦ ∁(𝔏(Dfa δ (δ(q₀)(c)) F))) -- = ? -- testtt : ∀{auto} → Language.accepts-ε(𝔏{Q}{Σ}(∁ auto)) ≡ ! Language.accepts-ε(𝔏(auto)) -- testtt : ∀{auto} → Language.accepts-ε(𝔏{Q}{Σ}(∁ auto)) ≡ Language.accepts-ε(Oper.∁ 𝔏(auto)) -- testtt {_} = [≡]-intro -- testtt2 : ∀{auto}{c} → Language.suffix-lang(𝔏(∁ auto))(c) ≡ Oper.∁(Language.suffix-lang(𝔏(auto))(c)) -- testtt2 : ∀{auto}{c} → Language.suffix-lang(𝔏(∁ auto))(c) ≡ Language.suffix-lang(Oper.∁(𝔏(auto)))(c) -- testtt2 : ∀{auto}{c} → Language.suffix-lang(Oper.∁(𝔏{Q}{Σ}(auto)))(c) ≡ Oper.∁(Language.suffix-lang(𝔏(auto))(c)) -- testtt2 {Dfa δ q₀ F}{_} = [≡]-intro module _ (auto : DFA(Q₁)(Σ)) (auto₂ : DFA(Q₂)(Σ)) where [⨯]-δ̂ : ∀{q₁ : Q₁}{q₂ : Q₂}{w : Word(Σ)} → DFA.δ̂(auto ⨯ auto₂)(q₁ , q₂)(w) ≡ (DFA.δ̂(auto)(q₁)(w) , DFA.δ̂(auto₂)(q₂)(w)) [⨯]-δ̂ {_}{_}{[]} = [≡]-intro [⨯]-δ̂ {q₁}{q₂}{a ⊰ w} = [⨯]-δ̂ {DFA.δ(auto)(q₁)(a)}{DFA.δ(auto₂)(q₂)(a)}{w} [+]-δ̂ : ∀{q₁ : Q₁}{q₂ : Q₂}{w : Word(Σ)} → DFA.δ̂(auto + auto₂)(q₁ , q₂)(w) ≡ (DFA.δ̂(auto)(q₁)(w) , DFA.δ̂(auto₂)(q₂)(w)) [+]-δ̂ {_}{_}{[]} = [≡]-intro [+]-δ̂ {q₁}{q₂}{a ⊰ w} = [+]-δ̂ {DFA.δ(auto)(q₁)(a)}{DFA.δ(auto₂)(q₂)(a)}{w} -- TODO: δ̂-on-[𝁼] [⨯]-isWordAccepted : ∀{w} → DFA.isWordAccepted(auto ⨯ auto₂)(w) ≡ DFA.isWordAccepted(auto)(w) && DFA.isWordAccepted(auto₂)(w) [⨯]-isWordAccepted {w} = [≡]-with(DFA.F(auto ⨯ auto₂)) ([⨯]-δ̂{DFA.q₀(auto)}{DFA.q₀(auto₂)}{w}) [+]-isWordAccepted : ∀{w} → DFA.isWordAccepted(auto + auto₂)(w) ≡ DFA.isWordAccepted(auto)(w) || DFA.isWordAccepted(auto₂)(w) [+]-isWordAccepted {w} = [≡]-with(DFA.F(auto + auto₂)) ([+]-δ̂{DFA.q₀(auto)}{DFA.q₀(auto₂)}{w}) -- TODO: Prove postulates postulate [⨯]-language : 𝔏(auto ⨯ auto₂) ≡ 𝔏(auto) ∩ 𝔏(auto₂) postulate [+]-language : 𝔏(auto + auto₂) ≡ 𝔏(auto) ∪ 𝔏(auto₂) -}
{ "alphanum_fraction": 0.5520726527, "avg_line_length": 47.7412587413, "ext": "agda", "hexsha": "e4a07c715f03feacf5b4ea6d524d985c8659ec57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Automaton/Deterministic/FormalLanguage.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Automaton/Deterministic/FormalLanguage.agda", "max_line_length": 185, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Automaton/Deterministic/FormalLanguage.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2896, "size": 6827 }
module Array.Repr where open import Array.Base open import Data.Nat open import Data.Vec as V open import Data.Fin using (Fin; zero; suc; raise) open import Relation.Binary.PropositionalEquality open import Function -- This is a function that inductively generates a Vec-based type -- for the given arguments of Ar. repr-t : ∀ {a} → (X : Set a) → (n : ℕ) → (s : Vec ℕ n) → Set a repr-t X zero s = X repr-t X (suc n) (x ∷ s) = Vec (repr-t X n s) x a→rt : ∀ {a}{X : Set a}{n s} → Ar X n s → repr-t X n s a→rt {n = zero} {s = []} (imap f) = f [] a→rt {n = suc n} {x ∷ s} (imap f) = tabulate λ i → a→rt (imap (λ iv → f (i ∷ iv))) rt→a : ∀ {a}{X : Set a}{n s} → repr-t X n s → Ar X n s rt→a {n = zero} {s} x = imap (λ _ → x) rt→a {n = suc n} {s ∷ _} x = imap λ where (i ∷ iv) → case rt→a (lookup x i) of λ where (imap f) → f iv -- This is an inductive type for tensors data Tensor {a} (X : Set a) : (n : ℕ) → (s : Vec ℕ n) → Set a where zz : (x : X) → Tensor X 0 [] ss : ∀ {n m}{s : Vec ℕ n} → (v : Vec (Tensor X n s) m) → Tensor X (1 + n) (m ∷ s) -- Ugh, well... This is big because we have to formulate point-wise equality. data EqTen {a} (X : Set a) : (n : ℕ) → ∀ {s s₁} → Tensor X n s → Tensor X n s₁ → Set a where zeq : ∀ {x} → EqTen X 0 (zz x) (zz x) s[] : ∀ {n}{s s₁ : Vec ℕ n} → (∀ i → lookup s i ≡ lookup s₁ i) → EqTen X (1 + n) (ss {s = s} []) (ss {s = s₁} []) s∷ : ∀ {n}{s s₁ : Vec ℕ n}{m} → (∀ i → lookup s i ≡ lookup s₁ i) → ∀ {x y xs ys} → EqTen X n {s = s} {s₁ = s₁} x y → EqTen X (1 + n) (ss {m = m} xs) (ss {m = m} ys) → EqTen X (1 + n) (ss (x ∷ xs)) (ss (y ∷ ys)) a→tensor : ∀ {a}{X : Set a}{n s} → Ar X n s → Tensor X n s a→tensor {n = zero} {s = []} (imap f) = zz (f []) a→tensor {n = suc n}{s = s ∷ _} (imap f) = ss $ tabulate λ i → a→tensor (imap (λ iv → f (i ∷ iv))) tensor→a : ∀ {a}{X : Set a}{n s} → Tensor X n s → Ar X n s --(lookup s) tensor→a {s = []} (zz x) = imap (λ _ → x) tensor→a {s = a ∷ s} (ss v) = imap λ where (i ∷ iv) → case tensor→a (lookup v i) of λ where (imap f) → f iv t→rt : ∀ {a}{X : Set a}{n s} → Tensor X n s → repr-t X n s t→rt {s = []} (zz x) = x t→rt {s = x₁ ∷ s} (ss v) = V.map t→rt v rt→t : ∀ {a}{X : Set a}{n s} → repr-t X n s → Tensor X n s rt→t {s = []} x = zz x rt→t {s = _ ∷ _} x = ss (V.map rt→t x) module test-repr where a : Ar ℕ 2 (3 ∷ 3 ∷ []) a = cst 42 at = (a→tensor a) aₜ = tensor→a at rt = a→rt a a₁ = rt→a {n = 2} {s = 3 ∷ 3 ∷ []} rt test₁ : t→rt at ≡ rt test₁ = refl -- This one is quite tricky to show --test₂ : ∀ iv → sel a₁ iv ≡ sel aₜ iv --test₂ iv = {!!}
{ "alphanum_fraction": 0.4680624556, "avg_line_length": 33.1529411765, "ext": "agda", "hexsha": "07ddfc6d29122d49b828558930615c3f604986d6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-12T07:19:48.000Z", "max_forks_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-array", "max_forks_repo_path": "Array/Repr.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-array", "max_issues_repo_path": "Array/Repr.agda", "max_line_length": 98, "max_stars_count": 6, "max_stars_repo_head_hexsha": "584fedb30552f820c0668cedae53ec3d926860b5", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-array", "max_stars_repo_path": "Array/Repr.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-15T14:21:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-09T13:53:46.000Z", "num_tokens": 1151, "size": 2818 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Cost.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.HITs.PropositionalTruncation open import Cubical.Data.Nat open import Cubical.Data.Sigma private variable ℓ : Level A B C : Type ℓ Cost : (A : Type ℓ) → Type ℓ Cost A = A × ∥ ℕ ∥ -- To compare two elements of Cost A we only need to look at the first parts Cost≡ : (x y : Cost A) → x .fst ≡ y .fst → x ≡ y Cost≡ _ _ = Σ≡Prop λ _ → squash -- To make it easier to program with Cost A we prove that it forms a -- monad which counts the number of calls to >>=. We could also turn -- it into a proper state monad which tracks the cost, but for the -- programs we write later this simple version suffices _>>=_ : Cost A → (A → Cost B) → Cost B (x , m) >>= g with g x ... | (y , n) = (y , map suc (map2 _+_ m n)) return : A → Cost A return x = (x , ∣ 0 ∣) -- The monad laws all hold by Cost≡ >>=-return : (f : Cost A) → f >>= return ≡ f >>=-return f = Cost≡ _ _ refl return->>= : (a : A) (f : A → Cost B) → return a >>= f ≡ f a return->>= a f = Cost≡ _ _ refl >>=-assoc : (f : Cost A) (g : A → Cost B) (h : B → Cost C) → (f >>= g) >>= h ≡ f >>= (λ x → g x >>= h) >>=-assoc f g h = Cost≡ _ _ refl -- An inefficient version of addition which recurses on both arguments addBad : ℕ → ℕ → Cost ℕ addBad 0 0 = return 0 addBad 0 (suc y) = do x ← addBad 0 y return (suc x) addBad (suc x) y = do z ← addBad x y return (suc z) -- More efficient addition which only recurse on the first argument add : ℕ → ℕ → Cost ℕ add 0 y = return y add (suc x) y = do z ← add x y return (suc z) private -- addBad x y will do x + y calls _ : addBad 3 5 ≡ (8 , ∣ 8 ∣) _ = refl -- add x y will only do x recursive calls _ : add 3 5 ≡ (8 , ∣ 3 ∣) _ = refl -- Despite addBad and add having different cost we can still prove -- that they are equal functions add≡addBad : add ≡ addBad add≡addBad i x y = Cost≡ (add x y) (addBad x y) (rem x y) i where rem : (x y : ℕ) → add x y .fst ≡ addBad x y .fst rem 0 0 = refl rem 0 (suc y) = cong suc (rem 0 y) rem (suc x) y = cong suc (rem x y) -- Another example: computing Fibonacci numbers fib : ℕ → Cost ℕ fib 0 = return 0 fib 1 = return 1 fib (suc (suc x)) = do y ← fib (suc x) z ← fib x return (y + z) fibTail : ℕ → Cost ℕ fibTail 0 = return 0 fibTail (suc x) = fibAux x 1 0 where fibAux : ℕ → ℕ → ℕ → Cost ℕ fibAux 0 res _ = return res fibAux (suc x) res prev = do r ← fibAux x (res + prev) res return r private _ : fib 10 ≡ (55 , ∣ 176 ∣) _ = refl _ : fibTail 10 ≡ (55 , ∣ 9 ∣) _ = refl _ : fib 20 ≡ (6765 , ∣ 21890 ∣) _ = refl _ : fibTail 20 ≡ (6765 , ∣ 19 ∣) _ = refl -- Exercise left to the reader: prove that fib and fibTail are equal functions -- fib≡fibTail : fib ≡ fibTail -- fib≡fibTail i x = Cost≡ (fib x) (fibTail x) (rem x) i -- where -- rem : (x : ℕ) → fib x .fst ≡ fibTail x .fst -- rem zero = refl -- rem (suc zero) = refl -- rem (suc (suc x)) = {!!}
{ "alphanum_fraction": 0.5878962536, "avg_line_length": 24.984, "ext": "agda", "hexsha": "53c4c3c9581fe2d917e918f18e9d7fd7b16cc55d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Cost/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Cost/Base.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Cost/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1179, "size": 3123 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.MultiSet where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Structures.Auto open import Cubical.Data.Nat open import Cubical.Data.Sigma private variable ℓ : Level module _ (A : Type ℓ) (Aset : isSet A) where CountStructure : Type ℓ → Type ℓ CountStructure X = A → X → ℕ CountEquivStr = AutoEquivStr CountStructure countUnivalentStr : UnivalentStr _ CountEquivStr countUnivalentStr = autoUnivalentStr CountStructure Count : Type (ℓ-suc ℓ) Count = TypeWithStr ℓ CountStructure MultiSetStructure : Type ℓ → Type ℓ MultiSetStructure X = X × (A → X → X) × (A → X → ℕ) MultiSetEquivStr = AutoEquivStr MultiSetStructure multiSetUnivalentStr : UnivalentStr _ MultiSetEquivStr multiSetUnivalentStr = autoUnivalentStr MultiSetStructure MultiSet : Type (ℓ-suc ℓ) MultiSet = TypeWithStr ℓ MultiSetStructure
{ "alphanum_fraction": 0.7804232804, "avg_line_length": 26.3720930233, "ext": "agda", "hexsha": "422f470d343f78847195d3e277f64515a62662e9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/MultiSet.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/MultiSet.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/MultiSet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 325, "size": 1134 }
{-# OPTIONS --without-K --exact-split --rewriting #-} open import lib.Basics open import lib.PathOver open import lib.PathGroupoid open import lib.types.Pushout open import lib.types.Span open import lib.types.Coproduct open import lib.types.Sigma open import Graphs.Definition hiding (π₀ ; π₁) open import Util.Misc module Coequalizers.Definition where Coeq : ∀ {i j} {E : Type i} {V : Type j} → (Graph E V) → Type (lmax i j) Coeq {E = E} {V = V} (graph π₀ π₁) = Pushout (span V V (V ⊔ E) (⊔-rec (idf V) π₀) (⊔-rec (idf V) π₁)) {- It's often clearer to write coequalizers as V / E, where V and E are the vertex and egde types, ommiting the endpoint maps. We implement this idea in agda using instance arguments. -} module _ {i j : ULevel} where _/_ : (V : Type j) (E : Type i) ⦃ gph : Graph E V ⦄ → Type (lmax i j) _/_ V E ⦃ gph ⦄ = Coeq gph infix 80 _/_ module _ {i j : ULevel} {V : Type i} {E : Type j} {gph : Graph E V} where open Graph gph cspan : Span cspan = span V V (V ⊔ E) (⊔-rec (idf V) π₀) (⊔-rec (idf V) π₁) c[_] : V → Coeq gph c[ v ] = left v quot : (e : E) → c[ π₀ e ] == c[ π₁ e ] quot e = glue (inr e) ∙ ! (glue (inl (π₁ e))) private lemma : {j : ULevel} {X : Coeq gph → Type j} {a b c : Coeq gph} (p : a == b) (q : c == b) {x : X a} {y : X b} {z : X c} → (x == z [ X ↓ (p ∙ ! q) ]) → (z == y [ X ↓ q ]) → (x == y [ X ↓ p ]) lemma idp idp r s = r ∙ s module _ {j : ULevel} (X : Coeq gph → Type j) (x : (v : V) → X c[ v ]) (p : (e : E) → x (π₀ e) == x (π₁ e) [ X ↓ quot e ]) where Coeq-elim : (z : Coeq gph) → X z Coeq-elim = Pushout-elim x (λ v → transport X (glue (inl v)) (x v)) λ {(inl v) → transp-↓' _ _ _ ; (inr e) → lemma _ _ (p e) (transp-↓' _ _ _)} Coeq-β= : (e : E) → apd Coeq-elim (quot e) == p e Coeq-β= e = apd Coeq-elim (quot e) =⟨ apd-∙ Coeq-elim (glue (inr e)) (! (glue (inl (π₁ e)))) ⟩ apd Coeq-elim (glue (inr e)) ∙ᵈ apd Coeq-elim (! (glue (inl (π₁ e)))) =⟨ PushoutElim.glue-β _ _ _ _ ∙ᵈᵣ apd Coeq-elim (! (glue (inl (π₁ e)))) ⟩ lemma _ _ (p e) (transp-↓' _ _ _) ∙ᵈ apd Coeq-elim (! (glue (inl (π₁ e)))) =⟨ lemma _ _ (p e) (transp-↓' _ _ _) ∙ᵈₗ apd-! Coeq-elim (glue (inl (π₁ e))) ⟩ lemma _ _ (p e) (transp-↓' _ _ _) ∙ᵈ !ᵈ (apd Coeq-elim (glue (inl (π₁ e)))) =⟨ lemma _ _ (p e) (transp-↓' _ _ _) ∙ᵈₗ ap !ᵈ (PushoutElim.glue-β x ((λ v → transport X (glue (inl v)) (x v))) _ (inl (π₁ e))) ⟩ lemma _ _ (p e) (transp-↓' _ _ _) ∙ᵈ !ᵈ (transp-↓' X (glue (inl (π₁ e))) _) =⟨ lemma2 _ _ (p e) (transp-↓' X (glue (inl (π₁ e))) _) ⟩ p e =∎ where lemma2 : {a b c : Coeq gph} (p : a == b) (q : c == b) {x : X a} {y : X b} {z : X c} → (r : x == z [ X ↓ (p ∙ ! q) ]) → (s : z == y [ X ↓ q ]) → lemma p q r s ∙ᵈ !ᵈ s == r lemma2 idp idp idp idp = idp Coeq-rec : ∀ {j} {X : Type j} (x : V → X) (p : (e : E) → x (π₀ e) == x (π₁ e)) → Coeq gph → X Coeq-rec {X = X} x p = Coeq-elim (λ _ → X) x λ e → ↓-cst-in (p e) Coeq-rec-β= : ∀ {j} {X : Type j} (x : V → X) (p : (e : E) → x (π₀ e) == x (π₁ e)) (e : E) → ap (Coeq-rec x p) (quot e) == p e Coeq-rec-β= {X = X} x p e = apd=cst-in (Coeq-β= _ _ _ _) private E' : V → V → Type (lmax i j) E' u v = Σ E (λ e → (u == π₀ e) × (π₁ e == v))
{ "alphanum_fraction": 0.4926974665, "avg_line_length": 37.6966292135, "ext": "agda", "hexsha": "716c6a0734af4a879510ee7d33e6095918253e5a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "awswan/nielsenschreier-hott", "max_forks_repo_path": "main/Coequalizers/Definition.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "awswan/nielsenschreier-hott", "max_issues_repo_path": "main/Coequalizers/Definition.agda", "max_line_length": 154, "max_stars_count": null, "max_stars_repo_head_hexsha": "84be713b8a8e41ea6f01f8ccf7251ebbbd73ad5d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "awswan/nielsenschreier-hott", "max_stars_repo_path": "main/Coequalizers/Definition.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1534, "size": 3355 }
{-# OPTIONS --sized-types #-} module SNat.Properties where open import Size open import SNat open import SNat.Order open import SNat.Order.Properties open import SNat.Sum lemma-≅subtyping : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → m ≅ subtyping n lemma-≅subtyping z≅z = z≅z lemma-≅subtyping (s≅s m≅n) = s≅s (lemma-≅subtyping m≅n) lemma-subtyping≅ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → subtyping m ≅ n lemma-subtyping≅ z≅z = z≅z lemma-subtyping≅ (s≅s m≅n) = s≅s (lemma-subtyping≅ m≅n) lemma-subtyping≅subtyping : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → subtyping m ≅ subtyping n lemma-subtyping≅subtyping z≅z = z≅z lemma-subtyping≅subtyping (s≅s m≅n) = s≅s (lemma-subtyping≅subtyping m≅n) lemma-≤′subtyping : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → m ≤′ subtyping n lemma-≤′subtyping (≤′-eq m≅n) = ≤′-eq (lemma-≅subtyping m≅n) lemma-≤′subtyping (≤′-step m≤′n) = ≤′-step (lemma-≤′subtyping m≤′n) lemma-subtyping≤′ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → subtyping m ≤′ n lemma-subtyping≤′ (≤′-eq m≅n) = ≤′-eq (lemma-subtyping≅ m≅n) lemma-subtyping≤′ (≤′-step m≤′n) = ≤′-step (lemma-subtyping≤′ m≤′n) lemma-subtyping≤subtyping : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤ n → subtyping m ≤ subtyping n lemma-subtyping≤subtyping (z≤n n) = z≤n (subtyping n) lemma-subtyping≤subtyping (s≤s m≤n) = s≤s (lemma-subtyping≤subtyping m≤n) lemma-subtyping≤′subtyping : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → subtyping m ≤′ subtyping n lemma-subtyping≤′subtyping m≤′n = lemma-≤-≤′ (lemma-subtyping≤subtyping (lemma-≤′-≤ m≤′n)) -- lemma-≅-/2 : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → m /2 ≅ n /2 lemma-≅-/2 z≅z = z≅z lemma-≅-/2 (s≅s z≅z) = z≅z lemma-≅-/2 (s≅s (s≅s m≅n)) = s≅s (lemma-subtyping≅subtyping (lemma-≅-/2 m≅n)) lemma-n/2≤′sn/2 : {ι : Size}(n : SNat {ι}) → n /2 ≤′ (succ n) /2 lemma-n/2≤′sn/2 zero = lemma-z≤′n zero lemma-n/2≤′sn/2 (succ zero) = lemma-z≤′n (succ zero) lemma-n/2≤′sn/2 (succ (succ n)) = lemma-s≤′s (lemma-subtyping≤′subtyping (lemma-n/2≤′sn/2 n)) -- lemma-m≤′m+n : (m n : SNat) → m ≤′ (m + n) lemma-m≤′m+n zero n = lemma-z≤′n n lemma-m≤′m+n (succ m) n = lemma-s≤′s (lemma-m≤′m+n m n) lemma-2m≤′m+n+m+n : (m n : SNat) → (m + m) ≤′ ((m + n) + (m + n)) lemma-2m≤′m+n+m+n m n rewrite +-assoc-left (m + n) m n | +-comm (m + n) m | +-assoc-left m m n | +-assoc-right (m + m) n n = lemma-m≤′m+n (m + m) (n + n) lemma-2m≅2n : {m n : SNat} → m ≅ n → (m + m) ≅ (n + n) lemma-2m≅2n z≅z = z≅z lemma-2m≅2n (s≅s {m = m} {n = n} m≅n) rewrite +-assoc-succ m m | +-assoc-succ n n = s≅s (s≅s (lemma-2m≅2n m≅n)) lemma-2m≤′2n : {m n : SNat} → m ≤′ n → (m + m) ≤′ (n + n) lemma-2m≤′2n (≤′-eq m≅n) = ≤′-eq (lemma-2m≅2n m≅n) lemma-2m≤′2n (≤′-step {n = n} m≤′n) rewrite +-assoc-succ n n = ≤′-step (≤′-step (lemma-2m≤′2n m≤′n)) lemma-n≤′2n : (n : SNat) → n ≤′ (n + n) lemma-n≤′2n n = lemma-m≤′m+n n n +-right-monotony-≅ : {m n : SNat}(k : SNat) → m ≅ n → (m + k) ≅ (n + k) +-right-monotony-≅ k z≅z = refl≅ +-right-monotony-≅ k (s≅s m≅n) = s≅s (+-right-monotony-≅ k m≅n) +-right-monotony-≤′ : {m n : SNat}(k : SNat) → m ≤′ n → (m + k) ≤′ (n + k) +-right-monotony-≤′ k (≤′-eq m≅n) = ≤′-eq (+-right-monotony-≅ k m≅n) +-right-monotony-≤′ k (≤′-step m≤′n) = ≤′-step (+-right-monotony-≤′ k m≤′n) +-left-monotony-≤′ : {m n : SNat}(k : SNat) → m ≤′ n → (k + m) ≤′ (k + n) +-left-monotony-≤′ {m} {n} k m≤′n rewrite +-comm k m | +-comm k n = +-right-monotony-≤′ k m≤′n lemma-4m≤′n+m+n+m : {m n : SNat} → m ≤′ n → ((m + m) + (m + m)) ≤′ ((n + m) + (n + m)) lemma-4m≤′n+m+n+m {m} {n} m≤′n rewrite +-comm n m = lemma-2m≤′2n (+-left-monotony-≤′ m m≤′n) lemma-n≤′2n/2 : (n : SNat) → n ≤′ (n + n) /2 lemma-n≤′2n/2 zero = ≤′-eq z≅z lemma-n≤′2n/2 (succ n) rewrite +-assoc-succ (succ n) n = lemma-s≤′s (lemma-≤′subtyping (lemma-n≤′2n/2 n)) lemma-2n/2≤′n : (n : SNat) → (n + n) /2 ≤′ n lemma-2n/2≤′n zero = refl≤′ lemma-2n/2≤′n (succ n) rewrite +-assoc-succ (succ n) n = lemma-s≤′s (lemma-subtyping≤′ (lemma-2n/2≤′n n)) lemma-n+1≤′2n+2/2 : (n : SNat) → succ n ≤′ (succ (succ (n + n))) /2 lemma-n+1≤′2n+2/2 zero = refl≤′ lemma-n+1≤′2n+2/2 (succ n) rewrite +-assoc-succ (succ n) n = lemma-s≤′s (lemma-≤′subtyping (lemma-s≤′s (lemma-≤′subtyping (lemma-n≤′2n/2 n))))
{ "alphanum_fraction": 0.5486746423, "avg_line_length": 45.3510638298, "ext": "agda", "hexsha": "7cc1e1a14372ced8fd4060957c44d5a04235eebe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SNat/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SNat/Properties.agda", "max_line_length": 153, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SNat/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 2210, "size": 4263 }
module FreeTheorems where open import Level using () renaming (zero to ℓ₀) open import Data.Nat using (ℕ) open import Data.List using (List ; map) open import Data.Vec using (Vec) renaming (map to mapV) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality using (_≗_) import GetTypes module ListList where get-type : Set₁ get-type = {A : Set} → List A → List A open GetTypes.ListList public postulate free-theorem : (get : get-type) → {α β : Set} → (f : α → β) → get ∘ map f ≗ map f ∘ get assume-get : get-type → Get assume-get get = record { get = get; free-theorem = free-theorem get } module VecVec where get-type : (ℕ → ℕ) → Set₁ get-type getlen = {A : Set} {n : ℕ} → Vec A n → Vec A (getlen n) open GetTypes.VecVec public postulate free-theorem : {getlen : ℕ → ℕ} → (get : get-type getlen) → {α β : Set} → (f : α → β) → {n : ℕ} → get {_} {n} ∘ mapV f ≗ mapV f ∘ get assume-get : {getlen : ℕ → ℕ} → (get : get-type getlen) → Get assume-get {getlen} get = record { getlen = getlen; get = get; free-theorem = free-theorem get } module PartialVecVec where get-type : {I : Set} → (I → ℕ) → (I → ℕ) → Set₁ get-type {I} gl₁ gl₂ = {A : Set} {i : I} → Vec A (gl₁ i) → Vec A (gl₂ i) open GetTypes.PartialVecVec public postulate free-theorem : {I : Set} → (gl₁ : I → ℕ) → (gl₂ : I → ℕ) (get : get-type gl₁ gl₂) → {α β : Set} → (f : α → β) → {i : I} → get {_} {i} ∘ mapV f ≗ mapV f ∘ get assume-get : {I : Set} → (gl₁ : I → ℕ) → (gl₂ : I → ℕ) (get : get-type gl₁ gl₂) → Get assume-get {I} gl₁ gl₂ get = record { I = I; gl₁ = gl₁; gl₂ = gl₂; get = get; free-theorem = free-theorem gl₁ gl₂ get }
{ "alphanum_fraction": 0.6023809524, "avg_line_length": 35.7446808511, "ext": "agda", "hexsha": "25759e08a3b76967047b1f38880d566612bae22a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "FreeTheorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "FreeTheorems.agda", "max_line_length": 162, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "FreeTheorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 619, "size": 1680 }
module SyntaxForOperators where postulate _+_ : Set → Set → Set syntax _+_ A B = A ⊎ B
{ "alphanum_fraction": 0.6853932584, "avg_line_length": 14.8333333333, "ext": "agda", "hexsha": "6c50d921888bc855511174ed4990851bfa930039", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/SyntaxForOperators.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/SyntaxForOperators.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/SyntaxForOperators.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 89 }
module Formalization.LambdaCalculus.Terms.Combinators where import Lvl open import Data open import Formalization.LambdaCalculus open import Numeral.Natural open import Numeral.Finite open import Syntax.Number open import Type module _ where open ExplicitLambdaSyntax I = 𝜆 0 0 -- Identity K = 𝜆 0 (𝜆 1 0) -- Constant / Left of pair 𝈲 = 𝜆 0 (𝜆 1 1) -- Right of pair S = 𝜆 0 (𝜆 1 (𝜆 2 ((0 ← 2) ← (1 ← 2)))) -- General composition B = 𝜆 0 (𝜆 1 (𝜆 2 (0 ← (1 ← 2)))) -- Composition C = 𝜆 0 (𝜆 1 (𝜆 2 ((0 ← 2) ← 1))) W = 𝜆 0 (𝜆 1 ((0 ← 1) ← 1)) U = 𝜆 0 (0 ← 0) -- Self application ω = U Ω = ω ← ω Y = 𝜆 0 ((𝜆 1 (0 ← (1 ← 1))) ← (𝜆 1 (0 ← (1 ← 1)))) -- TODO: Move everything below open import Formalization.LambdaCalculus.SyntaxTransformation module Boolean where open ExplicitLambdaSyntax 𝑇 = K 𝐹 = 𝈲 If = 𝜆 0 (𝜆 1 (𝜆 2 (0 ← 1 ← 2))) module Tuple where open Boolean open ExplicitLambdaSyntax Pair = 𝜆 0 (𝜆 1 (𝜆 2 (2 ← 0 ← 1))) Projₗ = 𝜆 0 (0 ← var-𝐒 K) Projᵣ = 𝜆 0 (0 ← var-𝐒 𝈲) -- Natural numbers (Church numerals). module Natural where open ExplicitLambdaSyntax λ𝟎 = 𝈲 λ𝐒 = 𝜆 0 (𝜆 1 (𝜆 2 (1 ← (0 ← 1 ← 2)))) ℕrepr₂ : ℕ → Term(2) ℕrepr₂ 𝟎 = 1 ℕrepr₂ (𝐒(n)) = 0 ← ℕrepr₂ n ℕrepr = \n → 𝜆 0 (𝜆 1 (ℕrepr₂ n)) -- TODO: Prove (λ𝐒 ←ⁿ λ𝟎) β-reduces to (ℕrepr n) module β-proofs where open import Formalization.LambdaCalculus.Semantics.Reduction open import Logic.Propositional hiding (_←_) open import Logic.Predicate open import ReductionSystem open import Relator.ReflexiveTransitiveClosure renaming (trans to _🝖_) open import Structure.Relator open import Structure.Relator.Properties open import Type.Dependent open ExplicitLambdaSyntax private variable n : ℕ private variable f g h x y z : Term(n) Ω-self-reduces : Ω β⇴ Ω Ω-self-reduces = β Ω-no-normal-form : ¬ NormalForm(_β⇴_)(Ω) Ω-no-normal-form (intro p) = p(Ω-self-reduces) -- Also called: Church-Rosser's theorem. -- TODO: Seems like the proof can be a bit complicated? postulate β-star-confluence : ∀{d} → Confluence(_β⇴*_ {d}) I-reduction : ((I ← x) β⇴ x) I-reduction = β K-reduction : ((K ← x ← y) β⇴* x) K-reduction {x}{y} = super(cong-applyₗ β) 🝖 super β -- 🝖 substitute₂ₗ(_β⇴*_) (symmetry(_≡_) (substitute-var-𝐒 {0}{x}{y})) refl 𝈲-reduction : ((𝈲 ← x ← y) β⇴* y) 𝈲-reduction {x}{y} = super(cong-applyₗ β) 🝖 super β B-reduction : ((B ← f ← g ← x) β⇴* (f ← (g ← x))) B-reduction = super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β C-reduction : ((C ← f ← g ← x) β⇴* ((f ← x) ← g)) C-reduction = super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β S-reduction : ((S ← f ← g ← x) β⇴* ((f ← x) ← (g ← x))) S-reduction = super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β Y-reduction : ∀{f} → ((Y ← f) β⥈* (f ← (Y ← f))) Y-reduction = super([∨]-introᵣ β) 🝖 super([∨]-introᵣ β) 🝖 super([∨]-introₗ(cong-applyᵣ β)) module _ where open Boolean If-𝑇-reduction : ((If ← 𝑇 ← x ← y) β⇴* x) If-𝑇-reduction = super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β 🝖 K-reduction If-𝐹-reduction : ((If ← 𝐹 ← x ← y) β⇴* y) If-𝐹-reduction = super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β 🝖 𝈲-reduction module _ where open Tuple Pair-projₗ-reduction : (Projₗ ← (Pair ← x ← y)) β⇴* x Pair-projₗ-reduction = super β 🝖 super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β 🝖 super(cong-applyₗ β) 🝖 super β Pair-projᵣ-reduction : (Projᵣ ← (Pair ← x ← y)) β⇴* y Pair-projᵣ-reduction = super β 🝖 super(cong-applyₗ(cong-applyₗ β)) 🝖 super(cong-applyₗ β) 🝖 super β 🝖 super(cong-applyₗ β) 🝖 super β module _ where open import Function.Iteration open Natural {- -- λ𝟎 β⇴* ℕrepr 𝟎 λ𝐒-of-ℕrepr : (λ𝐒 ← ℕrepr(n)) β⇴* ℕrepr(𝐒(n)) λ𝐒-of-ℕrepr = super {!cong-applyₗ ?!} ℕrepr-correctness : (((λ𝐒 ←_) ^ n) λ𝟎) β⇴* (ℕrepr n) ℕrepr-correctness {𝟎} = refl ℕrepr-correctness {𝐒 n} = super {!!} 🝖 super {!ℕrepr-correctness {n}!} -}
{ "alphanum_fraction": 0.5931920971, "avg_line_length": 30.4420289855, "ext": "agda", "hexsha": "e4829da638f718f2e3639e3e63fe1881be656c97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/LambdaCalculus/Terms/Combinators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/LambdaCalculus/Terms/Combinators.agda", "max_line_length": 136, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/LambdaCalculus/Terms/Combinators.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1845, "size": 4201 }
open import Common.Prelude postulate foo_bar_ : (b : Bool) → if b then Nat else Bool → Set Test : Set Test = foo_bar 5
{ "alphanum_fraction": 0.6910569106, "avg_line_length": 15.375, "ext": "agda", "hexsha": "4f3dd68010c20b6f9cfd12876444bb151e07e2c2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Sections-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Sections-2.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Sections-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 40, "size": 123 }
module AbstractModuleMacro where import Common.Issue481Parametrized as P abstract module M = P Set
{ "alphanum_fraction": 0.8155339806, "avg_line_length": 14.7142857143, "ext": "agda", "hexsha": "d9841db8ce9993b7743611bfc77a1284ea312ba1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/AbstractModuleMacro.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/AbstractModuleMacro.agda", "max_line_length": 39, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/AbstractModuleMacro.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 26, "size": 103 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.Properties where open import Cubical.ZCohomology.Base open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Univalence open import Cubical.Data.Empty open import Cubical.Data.Sigma hiding (_×_) open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.Nullification open import Cubical.Data.Int hiding (_+_) open import Cubical.Data.Nat open import Cubical.Data.Prod open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Freudenthal open import Cubical.HITs.SmashProduct.Base open import Cubical.Structures.Group open import Cubical.HITs.Pushout open import Cubical.Data.Sum.Base open import Cubical.Data.HomotopyGroup open import Cubical.Data.Bool hiding (_⊕_) open import Cubical.ZCohomology.KcompPrelims private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' A' : Pointed ℓ {- Equivalence between cohomology of A and reduced cohomology of (A + 1) -} coHomRed+1Equiv : (n : ℕ) → (A : Type ℓ) → (coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt)))) coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂ module coHomRed+1 where helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 (λ b → linvPf b) (λ _ → refl)) where map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A ⊎ Unit → fst C map1' (inl x) = f x map1' (inr x) = pt C map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j) where helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x helper (inl x) = refl helper (inr tt) = sym snd coHomRed+1Equiv (suc n) A i = ∥ coHomRed+1.helpLemma A i {C = ((coHomK (suc n)) , ∣ north ∣)} i ∥₂ ----------- Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso2-Kn-ΩKn+1 n) ΩKn+1→Kn : {n : ℕ} → typ (Ω (coHomK-ptd (suc n))) → coHomK n ΩKn+1→Kn {n = n} = Iso.inv (Iso2-Kn-ΩKn+1 n) Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) ---------- Algebra/Group stuff -------- 0ₖ : {n : ℕ} → coHomK n 0ₖ {n = zero} = pt (coHomK-ptd 0) 0ₖ {n = suc n} = pt (coHomK-ptd (suc n)) infixr 35 _+ₖ_ _+ₖ_ : {n : ℕ} → coHomK n → coHomK n → coHomK n _+ₖ_ {n = n} x y = ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) -ₖ_ : {n : ℕ} → coHomK n → coHomK n -ₖ_ {n = n} x = ΩKn+1→Kn (sym (Kn→ΩKn+1 n x)) Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n 0ₖ ≡ refl Kn→ΩKn+10ₖ zero = refl Kn→ΩKn+10ₖ (suc n) = (λ i → cong ∣_∣ (rCancel (merid north) i)) rUnitₖ : {n : ℕ} (x : coHomK n) → x +ₖ 0ₖ ≡ x rUnitₖ {n = zero} x = cong ΩKn+1→Kn (sym (rUnit (Kn→ΩKn+1 zero x))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 zero) x rUnitₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (suc n) x ∙ Kn→ΩKn+10ₖ (suc n) i)) ∙ (λ i → ΩKn+1→Kn (rUnit (Kn→ΩKn+1 (suc n) x) (~ i))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 (suc n)) x lUnitₖ : {n : ℕ} (x : coHomK n) → 0ₖ +ₖ x ≡ x lUnitₖ {n = zero} x = cong ΩKn+1→Kn (sym (lUnit (Kn→ΩKn+1 zero x))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 zero) x lUnitₖ {n = suc n} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc n) i ∙ Kn→ΩKn+1 (suc n) x)) ∙ (λ i → ΩKn+1→Kn (lUnit (Kn→ΩKn+1 (suc n) x) (~ i))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 (suc n)) x rCancelₖ : {n : ℕ} (x : coHomK n) → x +ₖ (-ₖ x) ≡ 0ₖ rCancelₖ {n = zero} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 zero x ∙ Iso.rightInv (Iso2-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i)) ∙ cong ΩKn+1→Kn (rCancel (Kn→ΩKn+1 zero x)) rCancelₖ {n = suc zero} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 1 x ∙ Iso.rightInv (Iso2-Kn-ΩKn+1 1) (sym (Kn→ΩKn+1 1 x)) i)) ∙ cong ΩKn+1→Kn (rCancel (Kn→ΩKn+1 1 x)) rCancelₖ {n = suc (suc n)} x = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 (2 + n) x ∙ Iso.rightInv (Iso2-Kn-ΩKn+1 (2 + n)) (sym (Kn→ΩKn+1 (2 + n) x)) i)) ∙ cong ΩKn+1→Kn (rCancel (Kn→ΩKn+1 (2 + n) x)) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc (suc n)) (~ i))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 (suc (suc n))) 0ₖ lCancelₖ : {n : ℕ} (x : coHomK n) → (-ₖ x) +ₖ x ≡ 0ₖ lCancelₖ {n = zero} x = (λ i → ΩKn+1→Kn (Iso.rightInv (Iso2-Kn-ΩKn+1 zero) (sym (Kn→ΩKn+1 zero x)) i ∙ Kn→ΩKn+1 zero x)) ∙ cong ΩKn+1→Kn (lCancel (Kn→ΩKn+1 zero x)) lCancelₖ {n = suc zero} x = ((λ i → ΩKn+1→Kn (Iso.rightInv (Iso2-Kn-ΩKn+1 1) (sym (Kn→ΩKn+1 1 x)) i ∙ Kn→ΩKn+1 1 x))) ∙ cong ΩKn+1→Kn (lCancel (Kn→ΩKn+1 1 x)) lCancelₖ {n = suc (suc n)} x = (λ i → ΩKn+1→Kn (Iso.rightInv (Iso2-Kn-ΩKn+1 (2 + n)) (sym (Kn→ΩKn+1 (2 + n) x)) i ∙ Kn→ΩKn+1 (2 + n) x)) ∙ cong ΩKn+1→Kn (lCancel (Kn→ΩKn+1 (2 + n) x)) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc (suc n)) (~ i))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 (suc (suc n))) 0ₖ assocₖ : {n : ℕ} (x y z : coHomK n) → ((x +ₖ y) +ₖ z) ≡ (x +ₖ (y +ₖ z)) assocₖ {n = n} x y z = (λ i → ΩKn+1→Kn (Kn→ΩKn+1 n (ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y)) ∙ Kn→ΩKn+1 n z)) ∙ (λ i → ΩKn+1→Kn (Iso.rightInv (Iso2-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i ∙ Kn→ΩKn+1 n z)) ∙ (λ i → ΩKn+1→Kn (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) (Kn→ΩKn+1 n z) (~ i))) ∙ (λ i → ΩKn+1→Kn ((Kn→ΩKn+1 n x) ∙ Iso.rightInv (Iso2-Kn-ΩKn+1 n) ((Kn→ΩKn+1 n y ∙ Kn→ΩKn+1 n z)) (~ i))) commₖ : {n : ℕ} (x y : coHomK n) → (x +ₖ y) ≡ (y +ₖ x) commₖ {n = n} x y i = ΩKn+1→Kn (EH-instance (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i) where EH-instance : (p q : typ (Ω ((∥ S₊ (suc n) ∥ (2 + (suc n))) , ∣ north ∣))) → p ∙ q ≡ q ∙ p EH-instance = transport (λ i → (p q : K-Id n (~ i)) → p ∙ q ≡ q ∙ p) λ p q → Eckmann-Hilton 0 p q where K-Id : (n : HLevel) → typ (Ω (hLevelTrunc (3 + n) (S₊ (1 + n)) , ∣ north ∣)) ≡ typ ((Ω^ 2) (hLevelTrunc (4 + n) (S₊ (2 + n)) , ∣ north ∣ )) K-Id n = (λ i → typ (Ω (isoToPath (Iso2-Kn-ΩKn+1 (suc n)) i , hcomp (λ k → λ { (i = i0) → ∣ north ∣ ; (i = i1) → transportRefl (λ j → ∣ rCancel (merid north) k j ∣) k}) (transp (λ j → isoToPath (Iso2-Kn-ΩKn+1 (suc n)) (i ∧ j)) (~ i) ∣ north ∣)))) -distrₖ : {n : ℕ} → (x y : coHomK n) → -ₖ (x +ₖ y) ≡ (-ₖ x) +ₖ (-ₖ y) -distrₖ {n = n} x y = (λ i → ΩKn+1→Kn (sym (Kn→ΩKn+1 n (ΩKn+1→Kn (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y))))) ∙ (λ i → ΩKn+1→Kn (sym (Iso.rightInv (Iso2-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) i))) ∙ (λ i → ΩKn+1→Kn (symDistr (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) i)) ∙ (λ i → ΩKn+1→Kn (Iso.rightInv (Iso2-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n y)) (~ i) ∙ (Iso.rightInv (Iso2-Kn-ΩKn+1 n) (sym (Kn→ΩKn+1 n x)) (~ i)))) ∙ commₖ (-ₖ y) (-ₖ x) ---- Group structure of cohomology groups --- private § : isSet ∥ A ∥₂ § = setTruncIsSet _+ₕ_ : {n : ℕ} → coHom n A → coHom n A → coHom n A _+ₕ_ = sElim2 (λ _ _ → §) λ a b → ∣ (λ x → a x +ₖ b x) ∣₂ -ₕ : {n : ℕ} → coHom n A → coHom n A -ₕ = sRec § λ a → ∣ (λ x → -ₖ a x) ∣₂ 0ₕ : {n : ℕ} → coHom n A 0ₕ = ∣ (λ _ → 0ₖ) ∣₂ rUnitₕ : {n : ℕ} (x : coHom n A) → x +ₕ 0ₕ ≡ x rUnitₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rUnitₖ (a x)) i ∣₂ lUnitₕ : {n : ℕ} (x : coHom n A) → 0ₕ +ₕ x ≡ x lUnitₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lUnitₖ (a x)) i ∣₂ rCancelₕ : {n : ℕ} (x : coHom n A) → x +ₕ (-ₕ x) ≡ 0ₕ rCancelₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → rCancelₖ (a x)) i ∣₂ lCancelₕ : {n : ℕ} (x : coHom n A) → (-ₕ x) +ₕ x ≡ 0ₕ lCancelₕ = sElim (λ _ → isOfHLevelPath 1 (§ _ _)) λ a i → ∣ funExt (λ x → lCancelₖ (a x)) i ∣₂ assocₕ : {n : ℕ} (x y z : coHom n A) → ((x +ₕ y) +ₕ z) ≡ (x +ₕ (y +ₕ z)) assocₕ = elim3 (λ _ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b c i → ∣ funExt (λ x → assocₖ (a x) (b x) (c x)) i ∣₂ commₕ : {n : ℕ} (x y : coHom n A) → (x +ₕ y) ≡ (y +ₕ x) commₕ {n = n} = sElim2 (λ _ _ → isOfHLevelPath 1 (§ _ _)) λ a b i → ∣ funExt (λ x → commₖ (a x) (b x)) i ∣₂ ---- Group structure of reduced cohomology groups (in progress - might need K to compute properly first) --- +ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A → coHomRed n A +ₕ∙ zero = sElim2 (λ _ _ → §) λ { (a , pa) (b , pb) → ∣ (λ x → a x +ₖ b x) , (λ i → (pa i +ₖ pb i)) ∣₂ } +ₕ∙ (suc n) = sElim2 (λ _ _ → §) λ { (a , pa) (b , pb) → ∣ (λ x → a x +ₖ b x) , (λ i → pa i +ₖ pb i) ∙ lUnitₖ 0ₖ ∣₂ } -ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A → coHomRed n A -ₕ∙ zero = sRec § λ {(a , pt) → ∣ (λ x → -ₖ a x ) , (λ i → -ₖ (pt i)) ∣₂} -ₕ∙ (suc zero) = sRec § λ {(a , pt) → ∣ (λ x → -ₖ a x ) , (λ i → -ₖ (pt i)) ∙ (λ i → ΩKn+1→Kn (sym (Kn→ΩKn+10ₖ (suc zero) i))) ∣₂} -ₕ∙ (suc (suc n)) = sRec § λ {(a , pt) → ∣ (λ x → -ₖ a x ) , (λ i → -ₖ (pt i)) ∙ (λ i → ΩKn+1→Kn (sym (Kn→ΩKn+10ₖ (suc (suc n)) i))) ∙ (λ i → ΩKn+1→Kn (Kn→ΩKn+10ₖ (suc (suc n)) (~ i))) ∙ Iso.leftInv (Iso2-Kn-ΩKn+1 (suc (suc n))) ∣ north ∣ ∣₂} 0ₕ∙ : {A : Pointed ℓ} (n : ℕ) → coHomRed n A 0ₕ∙ zero = ∣ (λ _ → 0ₖ) , refl ∣₂ 0ₕ∙ (suc n) = ∣ (λ _ → 0ₖ) , refl ∣₂
{ "alphanum_fraction": 0.4911734164, "avg_line_length": 46.6651982379, "ext": "agda", "hexsha": "ac57dd851fec3d86e4f0df80c2bd26208a93c1e5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/ZCohomology/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/ZCohomology/Properties.agda", "max_line_length": 162, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/ZCohomology/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4917, "size": 10593 }
------------------------------------------------------------------------ -- Some partiality algebra properties ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} open import Prelude hiding (T) open import Partiality-algebra as PA hiding (id; _∘_) module Partiality-algebra.Properties {a p q} {A : Type a} (P : Partiality-algebra p q A) where open import Equality.Propositional.Cubical open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths open import Nat equality-with-J as Nat open Partiality-algebra P ------------------------------------------------------------------------ -- Some predicates -- A termination predicate: x ⇓ y means that x terminates with the -- value y. infix 4 _⇓_ _⇑ _⇓_ : T → A → Type p x ⇓ y = x ≡ now y -- A non-termination predicate. _⇑ : T → Type p x ⇑ = x ≡ never ------------------------------------------------------------------------ -- Preorder reasoning combinators infix -1 finally-⊑ infix -1 _■ infixr -2 _⊑⟨_⟩_ _⊑⟨⟩_ _≡⟨_⟩⊑_ _⊑⟨_⟩_ : (x {y z} : T) → x ⊑ y → y ⊑ z → x ⊑ z _ ⊑⟨ x⊑y ⟩ y⊑z = ⊑-trans x⊑y y⊑z _⊑⟨⟩_ : (x {y} : T) → x ⊑ y → x ⊑ y _ ⊑⟨⟩ x⊑y = x⊑y _≡⟨_⟩⊑_ : (x {y z} : T) → x ≡ y → y ⊑ z → x ⊑ z _ ≡⟨ refl ⟩⊑ y⊑z = y⊑z _■ : (x : T) → x ⊑ x x ■ = ⊑-refl x finally-⊑ : (x y : T) → x ⊑ y → x ⊑ y finally-⊑ _ _ x⊑y = x⊑y syntax finally-⊑ x y x⊑y = x ⊑⟨ x⊑y ⟩■ y ■ ------------------------------------------------------------------------ -- Some simple lemmas -- If every element in one increasing sequence is bounded by some -- element in another, then the least upper bound of the first -- sequence is bounded by the least upper bound of the second one. ⊑→⨆⊑⨆ : ∀ {s₁ s₂} {f : ℕ → ℕ} → (∀ n → s₁ [ n ] ⊑ s₂ [ f n ]) → ⨆ s₁ ⊑ ⨆ s₂ ⊑→⨆⊑⨆ {s₁} {s₂} {f} s₁⊑s₂ = least-upper-bound _ _ λ n → s₁ [ n ] ⊑⟨ s₁⊑s₂ n ⟩ s₂ [ f n ] ⊑⟨ upper-bound _ _ ⟩■ ⨆ s₂ ■ -- A variant of the previous lemma. ∃⊑→⨆⊑⨆ : ∀ {s₁ s₂} → (∀ m → ∃ λ n → s₁ [ m ] ⊑ s₂ [ n ]) → ⨆ s₁ ⊑ ⨆ s₂ ∃⊑→⨆⊑⨆ s₁⊑s₂ = ⊑→⨆⊑⨆ (proj₂ ∘ s₁⊑s₂) -- ⨆ is monotone. ⨆-mono : {s₁ s₂ : Increasing-sequence} → (∀ n → s₁ [ n ] ⊑ s₂ [ n ]) → ⨆ s₁ ⊑ ⨆ s₂ ⨆-mono = ⊑→⨆⊑⨆ -- Later elements in an increasing sequence are larger. later-larger : (s : Increasing-sequence) → ∀ {m n} → m ≤ n → s [ m ] ⊑ s [ n ] later-larger s {m} (≤-refl′ refl) = s [ m ] ■ later-larger s {m} (≤-step′ {k = n} p refl) = s [ m ] ⊑⟨ later-larger s p ⟩ s [ n ] ⊑⟨ increasing s n ⟩■ s [ suc n ] ■ -- If the final elements of an increasing sequence have an upper -- bound, then all elements have this upper bound. upper-bound-≤→upper-bound : ∀ (s : Increasing-sequence) {m x} → (∀ n → m ≤ n → s [ n ] ⊑ x) → ∀ n → s [ n ] ⊑ x upper-bound-≤→upper-bound s {m} {x} is-ub n with Nat.total m n ... | inj₁ m≤n = is-ub n m≤n ... | inj₂ n≤m = s [ n ] ⊑⟨ later-larger s n≤m ⟩ s [ m ] ⊑⟨ is-ub m ≤-refl ⟩■ x ■ -- Only never is smaller than or equal to never. only-never-⊑-never : {x : T} → x ⊑ never → x ≡ never only-never-⊑-never x⊑never = antisymmetry x⊑never (never⊑ _) ------------------------------------------------------------------------ -- Tails -- The tail of an increasing sequence. tailˢ : Increasing-sequence → Increasing-sequence tailˢ = Σ-map (_∘ suc) (_∘ suc) -- The tail has the same least upper bound as the full sequence. ⨆tail≡⨆ : ∀ s → ⨆ (tailˢ s) ≡ ⨆ s ⨆tail≡⨆ s = antisymmetry (⊑→⨆⊑⨆ λ n → s [ suc n ] ⊑⟨⟩ s [ suc n ] ■) (⨆-mono λ n → s [ n ] ⊑⟨ increasing s n ⟩■ s [ suc n ] ■) ------------------------------------------------------------------------ -- Constant sequences -- One way to form a constant sequence. constˢ : T → Increasing-sequence constˢ x = const x , const (⊑-refl x) -- The least upper bound of a constant sequence is equal to the -- value in the sequence. ⨆-const : ∀ {x : T} {inc} → ⨆ (const x , inc) ≡ x ⨆-const {x} = antisymmetry (least-upper-bound _ _ (λ _ → ⊑-refl x)) (upper-bound _ 0) ------------------------------------------------------------------------ -- Box and diamond -- Box. □ : ∀ {ℓ} → (A → Type ℓ) → T → Type (a ⊔ p ⊔ ℓ) □ P x = ∀ y → x ⇓ y → P y -- Diamond. ◇ : ∀ {ℓ} → (A → Type ℓ) → T → Type (a ⊔ p ⊔ ℓ) ◇ P x = ∥ (∃ λ y → x ⇓ y × P y) ∥ -- All h-levels are closed under box. □-closure : ∀ {ℓ} {P : A → Type ℓ} {x} n → (∀ x → H-level n (P x)) → H-level n (□ P x) □-closure n h = Π-closure ext n λ y → Π-closure ext n λ _ → h y -- A "constructor" for ◇. For more "constructors" for □ and ◇, see -- Partiality-monad.Inductive.Alternative-order. ◇-now : ∀ {ℓ} {P : A → Type ℓ} → ∀ {x} → P x → ◇ P (now x) ◇-now p = ∣ _ , refl , p ∣ ------------------------------------------------------------------------ -- An alternative characterisation of _⊑_ -- A relation which, /for the partiality monad/, is pointwise -- equivalent to _⊑_. See -- Partiality-monad.Inductive.Alternative-order.≼≃⊑ for the proof. _≼_ : T → T → Type (a ⊔ p) x ≼ y = ∀ z → x ⇓ z → y ⇓ z -- _≼_ is propositional. ≼-propositional : ∀ {x y} → Is-proposition (x ≼ y) ≼-propositional = Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → T-is-set -- _≼_ is transitive. ≼-trans : ∀ {x y z} → x ≼ y → y ≼ z → x ≼ z ≼-trans {x} {y} {z} x≼y y≼z u = x ⇓ u ↝⟨ x≼y u ⟩ y ⇓ u ↝⟨ y≼z u ⟩□ z ⇓ u □ ------------------------------------------------------------------------ -- Combinators that can be used to prove that two least upper bounds -- are equal -- For an example of how these combinators can be used, see -- Lambda.Partiality-monad.Inductive.Compiler-correctness. -- A relation between sequences. infix 4 _≳[_]_ record _≳[_]_ (s₁ : ℕ → T) (n : ℕ) (s₂ : ℕ → T) : Type p where constructor wrap field run : ∃ λ k → s₁ (k + n) ≡ s₂ n open _≳[_]_ public steps-≳ : ∀ {s₁ n s₂} → s₁ ≳[ n ] s₂ → ℕ steps-≳ = proj₁ ∘ run -- If two increasing sequences are related in a certain way, then -- their least upper bounds are equal. ≳→⨆≡⨆ : ∀ {s₁ s₂} k → (∀ {n} → proj₁ s₁ ≳[ n ] proj₁ s₂ ∘ (k +_)) → ⨆ s₁ ≡ ⨆ s₂ ≳→⨆≡⨆ {s₁} {s₂} k s₁≳s₂ = antisymmetry (⊑→⨆⊑⨆ λ n → let m , s₁[m+n]≡s₂[k+n] = run s₁≳s₂ in s₁ [ n ] ⊑⟨ later-larger s₁ (m≤n+m _ m) ⟩ s₁ [ m + n ] ≡⟨ s₁[m+n]≡s₂[k+n] ⟩⊑ s₂ [ k + n ] ■) (⊑→⨆⊑⨆ λ n → let m , s₁[m+n]≡s₂[k+n] = run s₁≳s₂ in s₂ [ n ] ⊑⟨ later-larger s₂ (m≤n+m _ k) ⟩ s₂ [ k + n ] ≡⟨ sym s₁[m+n]≡s₂[k+n] ⟩⊑ s₁ [ m + n ] ■) -- Preorder-like reasoning combinators. infix -1 _∎≳ infixr -2 _≳⟨⟩_ trans-≳ trans-≡≳ trans-∀≡≳ _∎≳ : ∀ s {n} → s ≳[ n ] s run (_ ∎≳) = 0 , refl _≳⟨⟩_ : ∀ {n} s₁ {s₂} → s₁ ≳[ n ] s₂ → s₁ ≳[ n ] s₂ _ ≳⟨⟩ s₁≳s₂ = s₁≳s₂ trans-≳ : ∀ {n} s₁ {s₂ s₃} (s₂≳s₃ : s₂ ≳[ n ] s₃) → s₁ ≳[ steps-≳ s₂≳s₃ + n ] s₂ → s₁ ≳[ n ] s₃ run (trans-≳ {n} s₁ {s₂} {s₃} s₂≳s₃ s₁≳s₂) = let k₁ , eq₁ = run s₂≳s₃ k₂ , eq₂ = run s₁≳s₂ in k₂ + k₁ , (s₁ ((k₂ + k₁) + n) ≡⟨ cong s₁ (sym $ +-assoc k₂) ⟩ s₁ (k₂ + (k₁ + n)) ≡⟨ eq₂ ⟩ s₂ (k₁ + n) ≡⟨ eq₁ ⟩∎ s₃ n ∎) trans-≡≳ : ∀ {n} s₁ {s₂ s₃} (s₂≳s₃ : s₂ ≳[ n ] s₃) → s₁ (steps-≳ s₂≳s₃ + n) ≡ s₂ (steps-≳ s₂≳s₃ + n) → s₁ ≳[ n ] s₃ trans-≡≳ _ s₂≳s₃ s₁≡s₂ = _ ≳⟨ wrap (0 , s₁≡s₂) ⟩ s₂≳s₃ trans-∀≡≳ : ∀ {n} s₁ {s₂ s₃} → s₂ ≳[ n ] s₃ → (∀ n → s₁ n ≡ s₂ n) → s₁ ≳[ n ] s₃ trans-∀≡≳ _ s₂≳s₃ s₁≡s₂ = trans-≡≳ _ s₂≳s₃ (s₁≡s₂ _) syntax trans-≳ s₁ s₂≳s₃ s₁≳s₂ = s₁ ≳⟨ s₁≳s₂ ⟩ s₂≳s₃ syntax trans-≡≳ s₁ s₂≳s₃ s₁≡s₂ = s₁ ≡⟨ s₁≡s₂ ⟩≳ s₂≳s₃ syntax trans-∀≡≳ s₁ s₂≳s₃ s₁≡s₂ = s₁ ∀≡⟨ s₁≡s₂ ⟩≳ s₂≳s₃ -- Some "stepping" combinators. later : ∀ {n s₁ s₂} → s₁ ∘ suc ≳[ n ] s₂ ∘ suc → s₁ ≳[ suc n ] s₂ run (later {n} {s₁} {s₂} s₁≳s₂) = let k , eq = run s₁≳s₂ in k , (s₁ (k + suc n) ≡⟨ cong s₁ (sym $ suc+≡+suc k) ⟩ s₁ (suc k + n) ≡⟨ eq ⟩∎ s₂ (suc n) ∎) earlier : ∀ {n s₁ s₂} → s₁ ≳[ suc n ] s₂ → s₁ ∘ suc ≳[ n ] s₂ ∘ suc run (earlier {n} {s₁} {s₂} s₁≳s₂) = let k , eq = run s₁≳s₂ in k , (s₁ (suc k + n) ≡⟨ cong s₁ (suc+≡+suc k) ⟩ s₁ (k + suc n) ≡⟨ eq ⟩∎ s₂ (suc n) ∎) laterˡ : ∀ {n s₁ s₂} → s₁ ∘ suc ≳[ n ] s₂ → s₁ ≳[ n ] s₂ run (laterˡ s₁≳s₂) = Σ-map suc id (run s₁≳s₂) step⇓ : ∀ {n s} → s ≳[ n ] s ∘ suc step⇓ = laterˡ (_ ∎≳)
{ "alphanum_fraction": 0.4639681797, "avg_line_length": 26.7962382445, "ext": "agda", "hexsha": "67fe42a287a267ba4458b8445283a7f0af5ed829", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra/Properties.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 3938, "size": 8548 }
-- You can use _ in a binding position in notation. module WildcardNotation where data Σ (A : Set) (B : A → Set) : Set where _,_ : ∀ x → B x → Σ A B syntax Σ A (λ _ → B) = A × B swap : ∀ {A B} → A × B → B × A swap (x , y) = y , x syntax compose (λ _ → x) (λ _ → y) = x instead-of y compose : {A B C : Set} → (B → C) → (A → B) → (A → C) compose f g = λ x → f (g x) open import Common.Prelude open import Common.Equality thm₁ : swap (1 , 2) ≡ (2 , 1) thm₁ = refl thm₂ : (a b : Nat) → (5 instead-of a) b ≡ 5 thm₂ a b = refl
{ "alphanum_fraction": 0.5433962264, "avg_line_length": 22.0833333333, "ext": "agda", "hexsha": "276290e146a1da3508a51a6fbef786f54567c026", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/WildcardNotation.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/WildcardNotation.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/WildcardNotation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 222, "size": 530 }
module Data.Either.Proofs where import Lvl open import Data open import Data.Either as Either open import Data.Either.Equiv open import Function.Equals open import Functional open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Function open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Function.Multi open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑ₄ ℓₑ₅ ℓₑ₆ : Lvl.Level private variable A B C A₁ A₂ A₃ B₁ B₂ B₃ : Type{ℓ} module _ ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ where map1-values : {f : A → C}{g : B → C}{e : A ‖ B} → (∃(x ↦ map1 f g e ≡ f(x)) ∨ ∃(x ↦ map1 f g e ≡ g(x))) map1-values {e = Either.Left a} = [∨]-introₗ ([∃]-intro a ⦃ reflexivity(_≡_) ⦄) map1-values {e = Either.Right b} = [∨]-introᵣ ([∃]-intro b ⦃ reflexivity(_≡_) ⦄) module _ where module _ ⦃ _ : Equiv{ℓₑ}(A ‖ B) ⦄ where mapLeft-preserves-id : Names.Preserving₀ ⦃ [⊜]-equiv ⦄ (mapLeft {A₁ = A}{B = B})(id)(id) _⊜_.proof (mapLeft-preserves-id) {Left x} = reflexivity(_≡_) _⊜_.proof (mapLeft-preserves-id) {Right x} = reflexivity(_≡_) mapRight-preserves-id : Names.Preserving₀ ⦃ [⊜]-equiv ⦄ (mapRight {A = A}{B₁ = B})(id)(id) _⊜_.proof (mapRight-preserves-id) {Left x} = reflexivity(_≡_) _⊜_.proof (mapRight-preserves-id) {Right x} = reflexivity(_≡_) swap-involution : (Either.swap ∘ Either.swap {A = A}{B = B} ⊜ id) _⊜_.proof swap-involution {Left _} = reflexivity(_≡_) _⊜_.proof swap-involution {Right _} = reflexivity(_≡_) module _ ⦃ _ : let _ = A₁ ; _ = A₂ ; _ = A₃ ; _ = B in Equiv{ℓₑ}(A₃ ‖ B) ⦄ {f : A₂ → A₃} {g : A₁ → A₂} where mapLeft-preserves-[∘] : (mapLeft(f ∘ g) ⊜ (mapLeft f) ∘ (mapLeft g)) _⊜_.proof mapLeft-preserves-[∘] {Left x} = reflexivity(_≡_) _⊜_.proof mapLeft-preserves-[∘] {Right x} = reflexivity(_≡_) module _ ⦃ _ : let _ = A ; _ = B₁ ; _ = B₂ ; _ = B₃ in Equiv{ℓₑ}(A ‖ B₃) ⦄ {f : B₂ → B₃} {g : B₁ → B₂} where mapRight-preserves-[∘] : (mapRight(f ∘ g) ⊜ (mapRight f) ∘ (mapRight g)) _⊜_.proof mapRight-preserves-[∘] {Left x} = reflexivity(_≡_) _⊜_.proof mapRight-preserves-[∘] {Right x} = reflexivity(_≡_) module _ ⦃ _ : Equiv{ℓₑ}(A ‖ B) ⦄ where map-preserves-id : (map id id ⊜ id) _⊜_.proof map-preserves-id {Left x} = reflexivity(_≡_) _⊜_.proof map-preserves-id {Right x} = reflexivity(_≡_) module _ ⦃ equiv-A₁ : Equiv{ℓₑ₁}(A₁) ⦄ ⦃ equiv-B₁ : Equiv{ℓₑ₂}(B₁) ⦄ ⦃ equiv-A₂ : Equiv{ℓₑ₃}(A₂) ⦄ ⦃ equiv-B₂ : Equiv{ℓₑ₄}(B₂) ⦄ ⦃ equiv-AB₁ : Equiv{ℓₑ₅}(A₁ ‖ B₁) ⦄ ⦃ ext-AB₁ : Extensionality(equiv-AB₁) ⦄ ⦃ equiv-AB₂ : Equiv{ℓₑ₆}(A₂ ‖ B₂) ⦄ ⦃ ext-AB₂ : Extensionality(equiv-AB₂) ⦄ {f : A₁ → A₂} {g : B₁ → B₂} where open Extensionality ⦃ … ⦄ instance map-function : BinaryOperator(Either.map {A₁ = A₁}{A₂ = A₂}{B₁ = B₁}{B₂ = B₂}) _⊜_.proof (BinaryOperator.congruence map-function (intro p₁) (intro p₂)) {Left _} = congruence₁(Left) p₁ _⊜_.proof (BinaryOperator.congruence map-function (intro p₁) (intro p₂)) {Right _} = congruence₁(Right) p₂ instance map-injective : ⦃ inj-f : Injective(f) ⦄ → ⦃ inj-g : Injective(g) ⦄ → Injective(Either.map f g) Injective.proof map-injective {Left x} {Left y} p = congruence₁(Either.Left) (injective(f) (injective(Either.Left) p)) Injective.proof map-injective {Left x} {Right y} p with () ← Left-Right-inequality p Injective.proof map-injective {Right x} {Left y} p with () ← Left-Right-inequality (symmetry(_≡_) p) Injective.proof map-injective {Right x} {Right y} p = congruence₁(Either.Right) (injective(g) (injective(Either.Right) p)) instance map-surjective : ⦃ surj-f : Surjective(f) ⦄ → ⦃ surj-g : Surjective(g) ⦄ → Surjective(Either.map f g) Surjective.proof map-surjective {Left y} with [∃]-intro x ⦃ p ⦄ ← surjective(f){y} = [∃]-intro (Left x) ⦃ congruence₁(Left) p ⦄ Surjective.proof map-surjective {Right y} with [∃]-intro x ⦃ p ⦄ ← surjective(g){y} = [∃]-intro (Right x) ⦃ congruence₁(Right) p ⦄ instance map-bijective : ⦃ bij-f : Bijective(f) ⦄ → ⦃ bij-g : Bijective(g) ⦄ → Bijective(Either.map f g) map-bijective = injective-surjective-to-bijective(Either.map f g) where instance inj-f : Injective(f) inj-f = bijective-to-injective(f) instance inj-g : Injective(g) inj-g = bijective-to-injective(g) instance surj-f : Surjective(f) surj-f = bijective-to-surjective(f) instance surj-g : Surjective(g) surj-g = bijective-to-surjective(g) module _ ⦃ equiv-A : Equiv{ℓₑ₁}(A) ⦄ ⦃ equiv-B : Equiv{ℓₑ₂}(B) ⦄ ⦃ equiv-AB : Equiv{ℓₑ}(A ‖ B) ⦄ ⦃ ext-AB : Extensionality(equiv-AB) ⦄ where map-mapLeft-mapRight : ∀{f : B → A}{g : C → B} → (map f g ≡ mapLeft f ∘ mapRight g) _⊜_.proof (map-mapLeft-mapRight) {[∨]-introₗ _} = reflexivity(_≡_) _⊜_.proof (map-mapLeft-mapRight) {[∨]-introᵣ _} = reflexivity(_≡_) instance map1-function : ⦃ equiv-C : Equiv{ℓₑ₃}(C) ⦄ → BinaryOperator{B = (A ‖ B) → C}(map1) _⊜_.proof (BinaryOperator.congruence map1-function (intro p₁) (intro p₂)) {Left _} = p₁ _⊜_.proof (BinaryOperator.congruence map1-function (intro p₁) (intro p₂)) {Right _} = p₂
{ "alphanum_fraction": 0.634529148, "avg_line_length": 45.3559322034, "ext": "agda", "hexsha": "3882c2189058953d92c486473d80301f3e3a01a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Either/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Either/Proofs.agda", "max_line_length": 134, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Either/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2198, "size": 5352 }
{-# OPTIONS --guardedness #-} open import Agda.Builtin.Equality open import Data.Empty -- base : Size -- next : Delay → Size -- later : Size → Delay record Delay : Set data Size : Set record Delay where coinductive constructor later field now : Size open Delay data Size where base : Size next : Delay → Size -- ω ≡ next ω' ≡ next (later (next ω')) ≡ ... -- ≡ next (later ω) ≡ ... ω : Size ω = next ω' -- next (later (next ω)) where ω' : Delay -- ω' = later (next ω') now ω' = next ω' next' : Size → Size next' s = next (later s) {-# ETA Delay #-} lim : ω ≡ next' ω lim = refl data FSize : Size → Set where fbase : FSize base fnext : {d : Delay} → FSize (now d) → FSize (next d) inf : FSize ω → ⊥ inf (fnext s) = inf s data Nat : Size → Set where zero : (s : Size) → Nat (next' s) succ : (s : Size) → Nat s → Nat (next' s) shift : ∀ s → Nat s → Nat (next' s) shift _ (zero s) = zero (next' s) shift _ (succ s n) = succ (next' s) (shift s n) postulate blocker : ∀ s → Nat s → Nat s -- The guard condition passes due to recursion on n, -- not due to recusion on the size, since it doesn't know that -- `now s` is in fact smaller than s without using Agda's sized types -- (or the old version of coinductive types with musical notation). zeroify : ∀ s → Nat s → Nat s zeroify base () zeroify (next s) (zero _) = zero _ zeroify (next s) (succ _ n) = shift (now s) (zeroify (now s) (blocker (now s) n))
{ "alphanum_fraction": 0.6143154969, "avg_line_length": 22.8412698413, "ext": "agda", "hexsha": "107a72458be8734ebfa4e893eda79078315b6ab0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "ionathanch/msc-thesis", "max_forks_repo_path": "code/InftyConat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "ionathanch/msc-thesis", "max_issues_repo_path": "code/InftyConat.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fe15af8f9b5021dc50bcf96665e0988abf28f3c", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "ionathanch/msc-thesis", "max_stars_repo_path": "code/InftyConat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 491, "size": 1439 }
{-# OPTIONS --without-K #-} open import BaseOver module Spaces.FlatteningTypes {i j k} (A : Set i) (B : Set j) (f g : B → A) (C : A → Set k) (D : (b : B) → C (f b) ≃ C (g b)) where ijk = max i (max j k) module BaseHIT where {- data W : Set where cc : A → W pp : (b : B) → cc (f b) ≡ cc (g b) -} private data #W : Set ijk where #cc : A → #W W : Set ijk W = #W cc : A → W cc = #cc postulate pp : (b : B) → cc (f b) ≡ cc (g b) W-rec : ∀ {ℓ} (P : W → Set ℓ) (cc* : (a : A) → P (cc a)) (pp* : (b : B) → cc* (f b) == cc* (g b) [ P ↓ pp b ]) → ((w : W) → P w) W-rec P cc* pp* (#cc a) = cc* a postulate W-rec-β : ∀ {ℓ} (P : W → Set ℓ) (cc* : (a : A) → P (cc a)) (pp* : (b : B) → cc* (f b) == cc* (g b) [ P ↓ pp b ]) → ((b : B) → apd (W-rec P cc* pp*) (pp b) ≡ pp* b) W-rec-nondep : ∀ {ℓ} (P : Set ℓ) (cc* : A → P) (pp* : (b : B) → cc* (f b) ≡ cc* (g b)) → (W → P) W-rec-nondep P cc* pp* (#cc a) = cc* a postulate W-rec-nondep-β : ∀ {ℓ} (P : Set ℓ) (cc* : A → P) (pp* : (b : B) → cc* (f b) ≡ cc* (g b)) → ((b : B) → ap (W-rec-nondep P cc* pp*) (pp b) ≡ pp* b) open BaseHIT public module FlattenedHIT where {- data Wt : Set where cct : (a : A) → C a → Wt pp : (b : B) (d : C (f b)) → cct (f b) d ≡ cct (g b) (π₁ (D b) d) -} private data #Wt : Set ijk where #cct : (a : A) (c : C a) → #Wt Wt : Set ijk Wt = #Wt cct : (a : A) → C a → Wt cct = #cct postulate ppt : (b : B) (d : C (f b)) → cct (f b) d ≡ cct (g b) (π₁ (D b) d) Wt-rec : ∀ {ℓ} (P : Wt → Set ℓ) (cct* : (a : A) (c : C a) → P (cct a c)) (ppt* : (b : B) (d : C (f b)) → cct* (f b) d == cct* (g b) (π₁ (D b) d) [ P ↓ ppt b d ]) → ((w : Wt) → P w) Wt-rec P cct* ppt* (#cct a c) = cct* a c postulate Wt-rec-β : ∀ {ℓ} (P : Wt → Set ℓ) (cct* : (a : A) (c : C a) → P (cct a c)) (ppt* : (b : B) (d : C (f b)) → cct* (f b) d == cct* (g b) (π₁ (D b) d) [ P ↓ ppt b d ]) → ((b : B) (d : C (f b)) → apd (Wt-rec P cct* ppt*) (ppt b d) ≡ ppt* b d) Wt-rec-nondep : ∀ {ℓ} (P : Set ℓ) (cct* : (a : A) → C a → P) (ppt* : (b : B) (d : C (f b)) → cct* (f b) d ≡ cct* (g b) (π₁ (D b) d)) → (Wt → P) Wt-rec-nondep P cct* ppt* (#cct a c) = cct* a c postulate Wt-rec-nondep-β : ∀ {ℓ} (P : Set ℓ) (cct* : (a : A) → C a → P) (ppt* : (b : B) (d : C (f b)) → cct* (f b) d ≡ cct* (g b) (π₁ (D b) d)) → ((b : B) (d : C (f b)) → ap (Wt-rec-nondep P cct* ppt*) (ppt b d) ≡ ppt* b d) open FlattenedHIT public -- Here is the fibration D-eq : (b : B) → C (f b) ≡ C (g b) D-eq b = ua-in (D b) P : W → Set k P = W-rec-nondep _ C D-eq pp-path : (b : B) (d : C (f b)) → π₁ (ua-out (ap P (pp b))) d ≡ π₁ (D b) d pp-path b d = π₁ (ua-out (ap P (pp b))) d ≡⟨ W-rec-nondep-β _ C D-eq _ |in-ctx (λ u → π₁ (ua-out u) d) ⟩ π₁ (ua-out (ua-in (D b))) d ≡⟨ ua-β (D b) |in-ctx (λ u → π₁ u d) ⟩ π₁ (D b) d ∎ lem : ∀ {i} {A : Set i} {x y z : A} (p : x ≡ y) (q : y ≡ z) → ! p ∘ (p ∘' q) ≡ q lem refl refl = refl -- Dependent path in [P] over [pp b] module _ {b : B} {d : C (f b)} {d' : C (g b)} where ↓-pp-in : (π₁ (D b) d ≡ d' → d == d' [ P ↓ pp b ]) ↓-pp-in p = to-transp-in P (pp b) (pp-path b d ∘' p) ↓-pp-out : (d == d' [ P ↓ pp b ] → π₁ (D b) d ≡ d') ↓-pp-out p = ! (pp-path b d) ∘ to-transp-out p ↓-pp-β : (q : π₁ (D b) d ≡ d') → ↓-pp-out (↓-pp-in q) ≡ q ↓-pp-β q = ↓-pp-out (↓-pp-in q) ≡⟨ refl ⟩ ! (pp-path b d) ∘ to-transp-out (to-transp-in P (pp b) (pp-path b d ∘' q)) ≡⟨ to-transp-β P (pp b) (pp-path b d ∘' q) |in-ctx (λ u → ! (pp-path b d) ∘ u) ⟩ ! (pp-path b d) ∘ (pp-path b d ∘' q) ≡⟨ lem (pp-path b d) q ⟩ q ∎
{ "alphanum_fraction": 0.401471361, "avg_line_length": 28.1925925926, "ext": "agda", "hexsha": "d1cb049d27fd95ad9df82051238a3da9be6d62be", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "old/Spaces/FlatteningTypes.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "old/Spaces/FlatteningTypes.agda", "max_line_length": 95, "max_stars_count": 294, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "old/Spaces/FlatteningTypes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1885, "size": 3806 }
{-# OPTIONS -v treeless.opt:20 #-} module _ where open import Agda.Builtin.Nat renaming (_<_ to _<?_) open import Common.Prelude open import Common.Equality data _<_ (a b : Nat) : Set where diff : (k : Nat) → b ≡ suc k + a → a < b data Comparison {a} {A : Set a} (_<_ : A → A → Set a) (x y : A) : Set a where less : x < y → Comparison _<_ x y equal : x ≡ y → Comparison _<_ x y greater : y < x → Comparison _<_ x y compare : (a b : Nat) → Comparison _<_ a b compare a b with a <? b ... | true = less (diff (b ∸ suc a) primTrustMe) ... | false with b <? a ... | true = greater (diff (a ∸ suc b) primTrustMe) ... | false = equal primTrustMe {-# INLINE compare #-} -- This should compile to two calls of _<?_ and only the possible cases. compare-lots : (a b : Nat) → String compare-lots a b with compare a b | compare (suc a) (suc b) compare-lots a b | less (diff k eq) | less (diff k₁ eq₁) = "less-less" compare-lots a .a | less (diff k eq) | equal refl = "less-equal" compare-lots a _ | less (diff k refl) | greater (diff j eq) = "less-greater" compare-lots a .a | equal refl | less (diff k eq₁) = "equal-less" compare-lots a b | equal eq | equal eq₁ = "equal-equal" compare-lots a .a | equal refl | greater (diff k eq₁) = "equal-greater" compare-lots _ b | greater (diff k refl) | less (diff j eq) = "greater-less" compare-lots _ b | greater (diff k refl) | equal eq = "greater-equal" compare-lots a b | greater (diff k eq) | greater (diff k₁ eq₁) = "greater-greater" main : IO Unit main = putStrLn (compare-lots 1500 2000) ,, putStrLn (compare-lots 2000 1500) ,, putStrLn (compare-lots 2000 2000)
{ "alphanum_fraction": 0.6336996337, "avg_line_length": 39, "ext": "agda", "hexsha": "7702bd8b26c578403cb1661abedb247c539d60f9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/CompareNat.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/CompareNat.agda", "max_line_length": 82, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/CompareNat.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 541, "size": 1638 }
{-# OPTIONS --without-K #-} module hott.equivalence.inverse where open import level open import sum open import function.core open import function.isomorphism.core open import function.isomorphism.utils open import function.isomorphism.properties open import function.extensionality open import function.overloading open import equality.core open import sets.unit open import sets.nat.core using (suc) open import hott.level open import hott.equivalence.core open import hott.equivalence.alternative open import hott.univalence module _ {i j}{A : Set i}{B : Set j} where record inverse (f : A → B) : Set (i ⊔ j) where constructor mk-inverse field g : B → A α : (x : A) → g (f x) ≡ x β : (y : B) → f (g y) ≡ y isom : A ≅ B isom = iso f g α β iso⇒inv : (f : A ≅ B) → inverse (apply f) iso⇒inv (iso f g α β) = mk-inverse g α β inverse-struct-iso : (f : A → B) → inverse f ≅ ( Σ (B → A) λ g → Σ ((x : A) → g (f x) ≡ x) λ α → ((y : B) → f (g y) ≡ y) ) inverse-struct-iso f = record { to = λ { (mk-inverse g α β) → (g , α , β) } ; from = λ { (g , α , β) → (mk-inverse g α β) } ; iso₁ = λ _ → refl ; iso₂ = λ _ → refl } ≅-inv-struct-iso : (A ≅ B) ≅ Σ (A → B) inverse ≅-inv-struct-iso = trans≅ ≅-struct-iso (Σ-ap-iso₂ (λ f → sym≅ (inverse-struct-iso f))) ind-≈ : (P : ∀ {i}{A B : Set i} → A ≈ B → Set i) → (∀ {i}{A : Set i} → P {A = A} (≡⇒≈ refl)) → ∀ {i}{A B : Set i}(eq : A ≈ B) → P eq ind-≈ P d {A = A} eq = subst P (_≅_.iso₂ uni-iso eq) (lem (≈⇒≡ eq)) where lem : ∀ {i}{A B : Set i} → (p : A ≡ B) → P (≡⇒≈ p) lem refl = d inverse-nonprop' : ∀ {i}{A : Set i} → inverse (λ (x : A) → x) ≅ ((x : A) → x ≡ x) inverse-nonprop' {i}{A} = begin inverse id' ≅⟨ inverse-struct-iso id' ⟩ ( Σ (A → A) λ g → Σ ((x : A) → g x ≡ x) λ α → ((y : A) → g y ≡ y) ) ≅⟨ ( Σ-ap-iso₂ λ g → Σ-ap-iso₁ strong-funext-iso ) ⟩ ( Σ (A → A) λ g → Σ (g ≡ id') λ α → ((y : A) → g y ≡ y) ) ≅⟨ sym≅ Σ-assoc-iso ⟩ ( Σ (singleton' id') λ { (g , α) → ((y : A) → g y ≡ y) } ) ≅⟨ trans≅ (Σ-ap-iso' (contr-⊤-iso (singl-contr' id')) (λ _ → refl≅)) ×-left-unit ⟩ ((x : A) → x ≡ x) ∎ where open ≅-Reasoning id' : A → A id' x = x inverse-nonprop : ∀ {i}{A B : Set i} → (f : A → B) → weak-equiv f → inverse f ≅ ((x : A) → x ≡ x) inverse-nonprop {i}{A} f we = ind-≈ P inverse-nonprop' (f , we) where P : ∀ {i}{A B : Set i} → A ≈ B → Set _ P {A = A} (f , we) = inverse f ≅ ((x : A) → x ≡ x)
{ "alphanum_fraction": 0.4625044851, "avg_line_length": 28.7319587629, "ext": "agda", "hexsha": "240624d5f14d2ccda715df8f1f4021882f14615c", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/equivalence/inverse.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/equivalence/inverse.agda", "max_line_length": 63, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/equivalence/inverse.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1095, "size": 2787 }
{-# OPTIONS --cubical --allow-unsolved-metas #-} open import Agda.Primitive.Cubical open import Agda.Builtin.Cubical.Path module _ where data D {ℓ} (A : Set ℓ) : Set ℓ where c : PathP _ _ _
{ "alphanum_fraction": 0.6923076923, "avg_line_length": 19.5, "ext": "agda", "hexsha": "ed04f7d7b603627c11cc4f16b428cff10ac1f9f7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue3659.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue3659.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue3659.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 66, "size": 195 }
{-# OPTIONS --without-K --safe #-} -- Pi combinators inspired by duals and traced monoidal categories module Trace where open import Data.Product using (Σ; _,_; proj₁; proj₂) open import Relation.Binary.PropositionalEquality using (_≡_; subst) open import PiFrac ------------------------------------------------------------------ dual : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) → (𝟙/● B [ eval f v ] ⟷ 𝟙/● A [ v ]) dual f v = uniti⋆l ⊚ (η v ⊗ id⟷) ⊚ ((lift f ⊗ id⟷) ⊗ id⟷) ⊚ assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ assocl⋆ ⊚ (ε (eval f v) ⊗ id⟷) ⊚ unite⋆l -- name, coname name : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) → 𝟙 ⟷ ● B [ eval f v ] ×ᵤ 𝟙/● A [ v ] name f v = η v ⊚ (lift f ⊗ id⟷) coname : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) → ● A [ v ] ×ᵤ 𝟙/● B [ eval f v ] ⟷ 𝟙 coname f v = (lift f ⊗ id⟷) ⊚ ε (eval f v) -- and 'trace' reveals something neat: we can't choose just any random 'a' and 'c' -- to start with, but we need that make a coherence choice of a and c !! trace : {A B C : 𝕌} (a : ⟦ A ⟧ ) → (f : A ×ᵤ C ⟷ B ×ᵤ C) → (coh : Σ ⟦ C ⟧ (λ c → proj₂ (eval f (a , c)) ≡ c)) → ● A [ a ] ⟷ ● B [ proj₁ (eval f (a , proj₁ coh)) ] trace {A} {B} {C} a f (c , choice) = uniti⋆r ⊚ -- A ×ᵤ 1 (id⟷ ⊗ η c) ⊚ -- A ×ᵤ (C ×ᵤ 1/C) assocl⋆ ⊚ -- (A ×ᵤ C) ×ᵤ 1/C (tensorr ⊗ id⟷) ⊚ -- bring in the ● (lift f ⊗ id⟷) ⊚ -- (B ×ᵤ C) ×ᵤ 1/C (tensorl ⊗ id⟷) ⊚ -- bring out the ● assocr⋆ ⊚ -- B ×ᵤ (C ×ᵤ 1/C) (id⟷ ⊗ (subst fixer choice id⟷ ⊚ ε c)) ⊚ -- B ×ᵤ 1 unite⋆r where fixer : ⟦ C ⟧ → Set fixer d = (● C [ proj₂ (eval f (a , c)) ] ×ᵤ 𝟙/● C [ d ]) ⟷ (● C [ d ] ×ᵤ 𝟙/● C [ d ])
{ "alphanum_fraction": 0.4489920586, "avg_line_length": 36.3777777778, "ext": "agda", "hexsha": "2bdc8c2351bf3bbb060e862031cc287bfc163dca", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "fracGC/Trace.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "fracGC/Trace.agda", "max_line_length": 90, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "fracGC/Trace.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 804, "size": 1637 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The unit type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Unit where import Relation.Binary.PropositionalEquality as PropEq ------------------------------------------------------------------------ -- Re-export contents of base module open import Data.Unit.Base public ------------------------------------------------------------------------ -- Re-export query operations open import Data.Unit.Properties public using (_≟_; _≤?_) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.1 setoid = Data.Unit.Properties.≡-setoid {-# WARNING_ON_USAGE setoid "Warning: setoid was deprecated in v1.1. Please use ≡-setoid from Data.Unit.Properties instead." #-} decSetoid = Data.Unit.Properties.≡-decSetoid {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.1. Please use ≡-decSetoid from Data.Unit.Properties instead." #-} total = Data.Unit.Properties.≡-total {-# WARNING_ON_USAGE total "Warning: total was deprecated in v1.1. Please use ≡-total from Data.Unit.Properties instead" #-} poset = Data.Unit.Properties.≡-poset {-# WARNING_ON_USAGE poset "Warning: poset was deprecated in v1.1. Please use ≡-poset from Data.Unit.Properties instead." #-} decTotalOrder = Data.Unit.Properties.≡-decTotalOrder {-# WARNING_ON_USAGE decTotalOrder "Warning: decTotalOrder was deprecated in v1.1. Please use ≡-decTotalOrder from Data.Unit.Properties instead." #-} preorder = PropEq.preorder ⊤ {-# WARNING_ON_USAGE decTotalOrder "Warning: preorder was deprecated in v1.1. Please use ≡-preorder from Data.Unit.Properties instead." #-}
{ "alphanum_fraction": 0.5859053498, "avg_line_length": 31.3548387097, "ext": "agda", "hexsha": "1490fdd99db01017b56b751dcbc9d5b6e0869d38", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Unit.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 416, "size": 1944 }
module Logic where data True : Set where tt : True data False : Set where
{ "alphanum_fraction": 0.6875, "avg_line_length": 8.8888888889, "ext": "agda", "hexsha": "205ea18fdfd958207cb931c194f56cebec56648d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/tactics/ac/Logic.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/tactics/ac/Logic.agda", "max_line_length": 22, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/tactics/ac/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 22, "size": 80 }
module Data.Option.Equiv where import Lvl open import Data.Option open import Structure.Function open import Structure.Function.Domain open import Structure.Setoid open import Type private variable ℓ ℓₑ ℓₑₐ : Lvl.Level private variable A : Type{ℓ} record Extensionality ⦃ equiv-A : Equiv{ℓₑₐ}(A) ⦄ (equiv : Equiv{ℓₑ}(Option(A))) : Type{Lvl.of(A) Lvl.⊔ ℓₑₐ Lvl.⊔ ℓₑ} where constructor intro private instance _ = equiv field ⦃ Some-function ⦄ : Function Some ⦃ Some-injective ⦄ : Injective Some cases-inequality : ∀{x : A} → (None ≢ Some(x))
{ "alphanum_fraction": 0.7102473498, "avg_line_length": 28.3, "ext": "agda", "hexsha": "657dbb105cd24ccc4b7df6f712dda4d104842062", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Option/Equiv.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Option/Equiv.agda", "max_line_length": 123, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Option/Equiv.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 199, "size": 566 }
{-# OPTIONS --copatterns --sized-types --experimental-irrelevance #-} -- {-# OPTIONS --show-implicit --show-irrelevant #-} -- {-# OPTIONS -v tc.polarity:10 -v tc.pos:15 -v tc.size.solve:100 #-} module SizedCoinductiveRecords where open import Common.Size {- THIS WOULD BE A BETTER TYPING FOR sizeSuc, but it requires builtin Size< sizeSuc : (i : Size) → Size< (↑ (↑ i)) sizeSuc i = ↑ i -} -- -- Subtyping for Size< -- Andreas, 2015-03-15: Functions returning sizes are now illegal: -- emb< : {i : Size} → Size< i → Size -- emb< {i} j = j -- Use Size< hypotheses data Empty : {i : Size} → Set where empty : {i : Size} → Empty {i} → Empty {↑ i} subEmpty : {i : Size}{j : Size< i} → Empty {j} → Empty {i} subEmpty x = x -- SHOULD FAIL: -- fail : {i : Size}{j : Size< i} → Empty {i} → Empty {j} -- fail x = x -- -- Covariance for Size< -- Andreas, 2015-03-15: Functions returning sizes are now illegal: -- co : {i : Size}{j : Size< i} → Size< j → Size< i -- co k = k -- Contravariance for bounded quantification Bounded : Size → Set Bounded i = (j : Size< i) → Empty {j} contra : {i : Size}{j : Size< i} → Bounded i → Bounded j contra k = k -- sized naturals data Nat {i : Size} : Set where zero : Nat suc : {j : Size< i} → Nat {j} → Nat -- polarity of successor data Bool : Set where true false : Bool -- a natural number one : Nat one = suc {i = ∞} zero mySuc : {i : Size} → Nat {i} → Nat {↑ i} mySuc x = suc x pred : {i : Size} → Nat {↑ i} → Nat {i} pred zero = zero pred (suc n) = n shift : {i : Size} → (Nat → Nat {↑ i}) → Nat → Nat {i} shift f n = pred (f (suc n)) {- Does not type check loop : {i : Size} → Nat {i} → (Nat → Nat {i}) → Set loop (suc n) f = loop n (shift f) loop zero = Nat -} data ⊥ : Set where record ⊤ : Set where mono : {i : Size}{j : Size< i} → Nat {j} → Nat {i} mono n = n id : {i : Size} → Nat {i} → Nat {i} id (zero) = zero id (suc n) = suc (id n) monus : {i : Size} → Nat {i} → Nat → Nat {i} monus x zero = x monus zero y = zero monus (suc x) (suc y) = monus x y div : {i : Size} → Nat {i} → Nat → Nat {i} div zero y = zero div (suc x) y = suc (div (monus x y) y) -- postulate _∪_ : {i : Size} → Size< i → Size< i → Size< i {- max : {i : Size} → Nat {i} → Nat {i} → Nat {i} max zero n = n max m zero = m max {i} (suc {j = j} m) (suc {j = k} n) = suc {j = j ∪ k} (max {j ∪ k} m n) -} -- omega inst {- DOES NOT MAKE SENSE: omegaBad' : (F : Size → Set) (i : Size) (j : Size< i) (f : (k : Size< (↑ j)) → F k) → F j omegaBad' F i j f = f j -} -- fix A : Size → Set A i = Nat {i} → Nat {-# TERMINATING #-} fix : (f : (i : Size) → ((j : Size< i) → A j) → A i) → (i : Size) → A i fix f i zero = zero fix f i (suc {j} n) = f i (λ j → fix f j) (suc n) -- forever : {i : Size} → ({j : Size< i} → Nat {i} → Nat {j}) → Nat {i} → ⊥ -- forever {i} f n = forever f (f {{!!}} n) -- sized streams module STREAM where record Stream (A : Set) {i : Size} : Set where coinductive constructor _∷_ field head : A tail : {j : Size< i} → Stream A {j} open Stream map : {A B : Set}(f : A → B){i : Size} → Stream A {i} → Stream B {i} head (map f s) = f (head s) tail (map f s) = map f (tail s) -- stream antitone anti : {A : Set}{i : Size}{j : Size< i} → Stream A {i} → Stream A {j} anti s = s anti' : {A : Set}{i : Size}{j : Size< i} → (Stream A {j} → A) → (Stream A {i} → A) anti' f = f -- Spanning tree data List (A : Set) {i : Size} : Set where [] : List A _∷_ : {j : Size< i}(x : A)(xs : List A {j}) → List A map : {A B : Set}(f : A → B){i : Size} → List A {i} → List B {i} map f [] = [] map f (x ∷ xs) = f x ∷ map f xs module Graph (I : Set)(adj : I → List I) where record Span {i : Size} : Set where coinductive constructor span field root : I nodes : {j : Size< i} → List (Span {j}) open Span tree : {i : Size} → I → Span {i} root (tree root) = root nodes (tree root) = map (tree) (adj root)
{ "alphanum_fraction": 0.533266129, "avg_line_length": 23.0697674419, "ext": "agda", "hexsha": "5254b9a589ecc9e898d7a376a66ed20a4ca73ab0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/SizedCoinductiveRecords.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/SizedCoinductiveRecords.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/SizedCoinductiveRecords.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1525, "size": 3968 }
module Validation where open import OscarPrelude open import 𝓐ssertion open import HasSatisfaction open import Interpretation module _ {A} ⦃ _ : HasSatisfaction A ⦄ where ⊨_ : A → Set ⊨ x = (I : Interpretation) → I ⊨ x ⊭_ : A → Set ⊭_ = ¬_ ∘ ⊨_
{ "alphanum_fraction": 0.6539923954, "avg_line_length": 15.4705882353, "ext": "agda", "hexsha": "6df84fafa9ce874c98bed93bc6ffba952e416600", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Validation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Validation.agda", "max_line_length": 38, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Validation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 98, "size": 263 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Homotopy.HopfInvariant.Base where open import Cubical.Homotopy.Connected open import Cubical.Homotopy.Group.Base open import Cubical.Homotopy.Group.SuspensionMap open import Cubical.Relation.Nullary open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Wedge open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.GradedCommutativity open import Cubical.ZCohomology.Gysin open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Transport open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.Instances.Unit open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Wedge open import Cubical.HITs.Truncation renaming (rec to trRec) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) -- The pushout of the hopf invariant HopfInvariantPush : (n : ℕ) → (f : S₊ (3 +ℕ n +ℕ n) → S₊ (2 +ℕ n)) → Type _ HopfInvariantPush n f = Pushout (λ _ → tt) f Hopfα : (n : ℕ) → (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → coHom (2 +ℕ n) (HopfInvariantPush n (fst f)) Hopfα n f = ∣ (λ { (inl x) → 0ₖ _ ; (inr x) → ∣ x ∣ ; (push a i) → help a (~ i)}) ∣₂ where help : (a : S₊ (3 +ℕ n +ℕ n)) → ∣ fst f a ∣ ≡ 0ₖ (2 +ℕ n) help = sphereElim _ (λ _ → isOfHLevelPlus' {n = n} (3 +ℕ n) (isOfHLevelPath' (3 +ℕ n) (isOfHLevelTrunc (4 +ℕ n)) _ _)) (cong ∣_∣ₕ (snd f)) Hopfβ : (n : ℕ) → (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → coHom (4 +ℕ (n +ℕ n)) (HopfInvariantPush n (fst f)) Hopfβ n f = fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) ∣ ∣_∣ ∣₂ -- To define the Hopf invariant, we need to establish the -- non-trivial isos of Hⁿ(HopfInvariant). module _ (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) where module M = MV _ _ _ (λ _ → tt) (fst f) ¬lemHopf : (n m : ℕ) → ¬ suc (suc (m +ℕ n)) ≡ suc n ¬lemHopf zero zero p = snotz (cong predℕ p) ¬lemHopf (suc n) zero p = ¬lemHopf n zero (cong predℕ p) ¬lemHopf zero (suc m) p = snotz (cong predℕ p) ¬lemHopf (suc n) (suc m) p = ¬lemHopf n (suc m) (cong (suc ∘ suc ) (sym (+-suc m n)) ∙ (cong predℕ p)) SphereHopfCohomIso : GroupEquiv (coHomGr (3 +ℕ n +ℕ n) (S₊ (3 +ℕ n +ℕ n))) ((coHomGr (suc (3 +ℕ n +ℕ n)) (HopfInvariantPush _ (fst f)))) fst (fst SphereHopfCohomIso) = fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) snd (fst SphereHopfCohomIso) = help where abstract help : isEquiv (fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n))) help = SES→isEquiv (isContr→≡UnitGroup (isContrΣ (GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Unit≅0 _))) λ _ → GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Sᵐ≅0 _ _ (¬lemHopf n n))))) (isContr→≡UnitGroup (isContrΣ (GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Unit≅0 _))) λ _ → GroupIsoUnitGroup→isContr (invGroupIso (Hⁿ-Sᵐ≅0 _ _ (¬lemHopf n (suc n)))))) (M.Δ (3 +ℕ n +ℕ n)) (M.d (3 +ℕ n +ℕ n)) (M.i (4 +ℕ n +ℕ n)) (M.Ker-d⊂Im-Δ _) (M.Ker-i⊂Im-d _) snd SphereHopfCohomIso = d-inv where -- Currently, type checking is very slow without the abstract flag. -- TODO : Remove abstract abstract d-inv : IsGroupHom (snd (coHomGr (3 +ℕ n +ℕ n) (S₊ (3 +ℕ n +ℕ n)))) (fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n))) (snd (coHomGr (suc (3 +ℕ n +ℕ n)) (Pushout (λ _ → tt) (fst f)))) d-inv = snd (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) Hopfβ-Iso : GroupIso (coHomGr (suc (3 +ℕ n +ℕ n)) (HopfInvariantPush _ (fst f))) ℤGroup fst Hopfβ-Iso = compIso (invIso (equivToIso (fst SphereHopfCohomIso))) (fst (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))) snd Hopfβ-Iso = grHom where abstract grHom : IsGroupHom (coHomGr (suc (3 +ℕ n +ℕ n)) (Pushout (λ _ → tt) (fst f)) .snd) (λ x → Iso.fun (fst ((Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (invEq (fst SphereHopfCohomIso) x)) (ℤGroup .snd) grHom = snd (compGroupIso (GroupEquiv→GroupIso (invGroupEquiv (SphereHopfCohomIso))) (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))) Hⁿ-Sⁿ≅ℤ-nice-generator : (n : ℕ) → Iso.inv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) 1 ≡ ∣ ∣_∣ ∣₂ Hⁿ-Sⁿ≅ℤ-nice-generator zero = Iso.leftInv (fst (Hⁿ-Sⁿ≅ℤ (suc zero))) _ Hⁿ-Sⁿ≅ℤ-nice-generator (suc n) = (λ i → Iso.inv (fst (suspensionAx-Sn (suc n) (suc n))) (Hⁿ-Sⁿ≅ℤ-nice-generator n i)) ∙ cong ∣_∣₂ (funExt λ { north → refl ; south → cong ∣_∣ₕ (merid north) ; (merid a i) j → ∣ compPath-filler (merid a) (sym (merid north)) (~ j) i ∣ₕ}) Hopfβ↦1 : (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) → Iso.fun (fst (Hopfβ-Iso n f)) (Hopfβ n f) ≡ 1 Hopfβ↦1 n f = sym (cong (Iso.fun (fst (Hopfβ-Iso n f))) lem) ∙ Iso.rightInv (fst (Hopfβ-Iso n f)) (pos 1) where lem : Iso.inv (fst (Hopfβ-Iso n f)) (pos 1) ≡ Hopfβ n f lem = (λ i → fst (MV.d _ _ _ (λ _ → tt) (fst f) (3 +ℕ n +ℕ n)) (Hⁿ-Sⁿ≅ℤ-nice-generator _ i)) ∙ cong ∣_∣₂ (funExt (λ { (inl x) → refl ; (inr x) → refl ; (push a i) → refl})) module _ (n : ℕ) (f : S₊∙ (3 +ℕ n +ℕ n) →∙ S₊∙ (2 +ℕ n)) where private 2+n = 2 +ℕ n H = HopfInvariantPush n (fst f) H→Sphere : coHom 2+n H → coHom 2+n (S₊ (suc (suc n))) H→Sphere = sMap (_∘ inr) grHom : IsGroupHom (snd (coHomGr 2+n H)) H→Sphere (snd (coHomGr 2+n (S₊ (suc (suc n))))) grHom = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → refl) preSphere→H : (g : (S₊ (suc (suc n)) → coHomK 2+n)) → H → coHomK (2 +ℕ n) preSphere→H g (inl x) = 0ₖ _ preSphere→H g (inr x) = g x -ₖ g north preSphere→H g (push a i) = lem a i where lem : (a : S₊ (suc (suc (suc (n +ℕ n))))) → 0ₖ (suc (suc n)) ≡ g (fst f a) -ₖ g north lem = sphereElim _ (λ x → isOfHLevelPlus' {n = n} (3 +ℕ n) (isOfHLevelTrunc (4 +ℕ n) _ _)) (sym (rCancelₖ _ (g north)) ∙ cong (λ x → g x -ₖ g north) (sym (snd f))) Sphere→H : coHom 2+n (S₊ (suc (suc n))) → coHom 2+n H Sphere→H = sMap preSphere→H conCohom2+n : (x : _) → ∥ x ≡ 0ₖ (suc (suc n)) ∥₁ conCohom2+n = coHomK-elim _ (λ _ → isProp→isOfHLevelSuc (suc n) squash₁) ∣ refl ∣₁ HIPSphereCohomIso : Iso (coHom (2 +ℕ n) (HopfInvariantPush n (fst f))) (coHom (2 +ℕ n) (S₊ (2 +ℕ n))) Iso.fun HIPSphereCohomIso = H→Sphere Iso.inv HIPSphereCohomIso = Sphere→H Iso.rightInv HIPSphereCohomIso = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → pRec (squash₂ _ _) (λ p → cong ∣_∣₂ (funExt λ x → cong (g x +ₖ_) (cong (-ₖ_) p) ∙ rUnitₖ _ (g x))) (conCohom2+n (g north)) Iso.leftInv HIPSphereCohomIso = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ g → pRec (squash₂ _ _) (pRec (isPropΠ (λ _ → squash₂ _ _)) (λ gn gtt → trRec (isProp→isOfHLevelSuc n (squash₂ _ _)) (λ r → cong ∣_∣₂ (funExt λ { (inl x) → sym gtt ; (inr x) → (λ i → g (inr x) -ₖ gn i) ∙ rUnitₖ _ (g (inr x)) ; (push a i) → sphereElim _ {A = λ a → PathP (λ i → preSphere→H (λ x → g (inr x)) (push a i) ≡ g (push a i)) (sym gtt) ((λ i → g (inr (fst f a)) -ₖ gn i) ∙ rUnitₖ _ (g (inr (fst f a))))} (λ _ → isOfHLevelPathP' (suc (suc (suc (n +ℕ n)))) (isOfHLevelPath (suc (suc (suc (suc (n +ℕ n))))) (isOfHLevelPlus' {n = n} (suc (suc (suc (suc n)))) (isOfHLevelTrunc (suc (suc (suc (suc n)))))) _ _) _ _) r a i})) (push-helper g gtt gn)) (conCohom2+n (g (inr north)))) (conCohom2+n (g (inl tt))) where push-helper : (g : HopfInvariantPush n (fst f) → coHomK (suc (suc n))) → (gtt : g (inl tt) ≡ 0ₖ (suc (suc n))) → (gn : g (inr north) ≡ 0ₖ (suc (suc n))) → hLevelTrunc (suc n) (PathP (λ i → preSphere→H (λ x → g (inr x)) (push north i) ≡ g (push north i)) (sym gtt) ((λ i → g (inr (fst f north)) -ₖ gn i) ∙ rUnitₖ _ (g (inr (fst f north))))) push-helper g gtt gn = isConnectedPathP _ (isConnectedPath _ (isConnectedKn _) _ _) _ _ .fst Hopfα-Iso : GroupIso (coHomGr (2 +ℕ n) (HopfInvariantPush n (fst f))) ℤGroup Hopfα-Iso = compGroupIso (HIPSphereCohomIso , grHom) (Hⁿ-Sⁿ≅ℤ (suc n)) Hopfα-Iso-α : (n : ℕ) (f : _) → Iso.fun (fst (Hopfα-Iso n f)) (Hopfα n f) ≡ 1 Hopfα-Iso-α n f = sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n)) ∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1) where hz : Iso.fun (HIPSphereCohomIso n f) (Hopfα n f) ≡ ∣ ∣_∣ ∣₂ hz = refl ⌣-α : (n : ℕ) → (f : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → _ ⌣-α n f = Hopfα n f ⌣ Hopfα n f HopfInvariant : (n : ℕ) → (f : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → ℤ HopfInvariant n f = Iso.fun (fst (Hopfβ-Iso n f)) (subst (λ x → coHom x (HopfInvariantPush n (fst f))) (λ i → suc (suc (suc (+-suc n n i)))) (⌣-α n f)) HopfInvariant-π' : (n : ℕ) → π' (3 +ℕ (n +ℕ n)) (S₊∙ (2 +ℕ n)) → ℤ HopfInvariant-π' n = sRec isSetℤ (HopfInvariant n) HopfInvariant-π : (n : ℕ) → π (3 +ℕ (n +ℕ n)) (S₊∙ (2 +ℕ n)) → ℤ HopfInvariant-π n = sRec isSetℤ λ x → HopfInvariant-π' n ∣ Ω→SphereMap _ x ∣₂ -- Elimination principle for the pushout defining the Hopf Invariant HopfInvariantPushElim : ∀ {ℓ} n → (f : _) → {P : HopfInvariantPush n f → Type ℓ} → (isOfHLevel (suc (suc (suc (suc (n +ℕ n))))) (P (inl tt))) → (e : P (inl tt)) (g : (x : _) → P (inr x)) (r : PathP (λ i → P (push north i)) e (g (f north))) → (x : _) → P x HopfInvariantPushElim n f {P = P} hlev e g r (inl x) = e HopfInvariantPushElim n f {P = P} hlev e g r (inr x) = g x HopfInvariantPushElim n f {P = P} hlev e g r (push a i₁) = help a i₁ where help : (a : Susp (Susp (S₊ (suc (n +ℕ n))))) → PathP (λ i → P (push a i)) e (g (f a)) help = sphereElim _ (sphereElim _ (λ _ → isProp→isOfHLevelSuc (suc (suc (n +ℕ n))) (isPropIsOfHLevel _)) (isOfHLevelPathP' (suc (suc (suc (n +ℕ n)))) (subst (isOfHLevel (suc (suc (suc (suc (n +ℕ n)))))) (cong P (push north)) hlev) _ _)) r
{ "alphanum_fraction": 0.5129133858, "avg_line_length": 40.0630914826, "ext": "agda", "hexsha": "3640040682ba360de18c265bf3c8befd7fbc98f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/HopfInvariant/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/HopfInvariant/Base.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/HopfInvariant/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 4883, "size": 12700 }
module Truncation where open import Cubical.Foundations.Prelude private variable ℓ ℓ₁ : Level data Susp (A : Type ℓ) : Type ℓ where north : Susp A south : Susp A merid : A → north ≡ south SuspF : {A : Type ℓ} {B : Type ℓ₁} → (A → B) → Susp A → Susp B SuspF f north = north SuspF f south = south SuspF f (merid a i) = merid (f a) i data ℕ : Type where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} data ⊥ : Type where S : ℕ → Type S 0 = ⊥ S (suc n) = Susp (S n) data ⊤ : Type where ⋆ : ⊤ D : ℕ → Type D 0 = ⊤ D (suc n) = Susp (D n) S→D : {n : ℕ} → S n → D n S→D {suc n} = SuspF S→D data ∥_∥_ (A : Type ℓ) (n : ℕ) : Type ℓ where ∣_∣ : A → ∥ A ∥ n hub : (f : S n → ∥ A ∥ n) (u : D n) → ∥ A ∥ n spoke : (f : S n → ∥ A ∥ n) (s : S n) → f s ≡ hub f (S→D s) isOfHLevel : ℕ → Type ℓ → Type ℓ isOfHLevel 0 A = A isOfHLevel (suc n) A = (x y : A) → isOfHLevel n (x ≡ y) sphereFill : (n : ℕ) (A : Type ℓ) (f : S n → A) → Type ℓ sphereFill n A f = Σ (D n → A) (λ f' → (s : S n) → f s ≡ f' (S→D s)) isSphereFilled : ℕ → Type ℓ → Type ℓ isSphereFilled n A = (f : S n → A) → sphereFill n A f isSphereFilled∥∥ : (n : ℕ) (A : Type ℓ) → isSphereFilled n (∥ A ∥ n) isSphereFilled∥∥ n A f = hub f , spoke f isSphereFilledDesc : (n : ℕ) (A : Type ℓ) → isSphereFilled (suc n) A → (x y : A) → isSphereFilled n (x ≡ y) isSphereFilledDesc n A h x y g = g' , r where f : S (suc n) → A f north = x f south = y f (merid u i) = g u i g' : D n → x ≡ y g' u i = hcomp (λ j → λ { (i = i0) → h f .snd north (~ j) ; (i = i1) → h f .snd south (~ j) }) (h f .fst (merid u i)) r : (s : S n) → g s ≡ g' (S→D s) r s i j = hcomp (λ k → λ { (i = i0) → g s j ; (j = i0) → h f .snd north (i ∧ ~ k) ; (j = i1) → h f .snd south (i ∧ ~ k) }) (h f .snd (merid s j) i) isSphereFilled→isOfHLevel : (n : ℕ) (A : Type ℓ) → isSphereFilled n A → isOfHLevel n A isSphereFilled→isOfHLevel zero A h = h (λ ()) .fst ⋆ isSphereFilled→isOfHLevel (suc n) A h x y = isSphereFilled→isOfHLevel n (x ≡ y) (isSphereFilledDesc n A h x y) isSphereFilledAsc : (n : ℕ) (A : Type ℓ) → ((x y : A) → isSphereFilled n (x ≡ y)) → isSphereFilled (suc n) A isSphereFilledAsc n A h f = f' , r where g : S n → f north ≡ f south g s i = f (merid s i) f' : D (suc n) → A f' north = f north f' south = f south f' (merid u i) = h (f north) (f south) g .fst u i r : (s : S (suc n)) → f s ≡ f' (S→D s) r north = refl r south = refl r (merid s i) j = h (f north) (f south) g .snd s j i isOfHLevel→isSphereFilled : (n : ℕ) (A : Type ℓ) → isOfHLevel n A → isSphereFilled n A isOfHLevel→isSphereFilled 0 A h f = (λ _ → h) , λ () isOfHLevel→isSphereFilled (suc n) A h f = isSphereFilledAsc n A (λ x y → isOfHLevel→isSphereFilled n (x ≡ y) (h x y)) f isOfHLevelTrunc : (n : ℕ) (A : Type ℓ) → isOfHLevel n (∥ A ∥ n) isOfHLevelTrunc n A = isSphereFilled→isOfHLevel n (∥ A ∥ n) (isSphereFilled∥∥ n A) rec : {n : ℕ} {A : Type ℓ} {B : Type ℓ₁} → isOfHLevel n B → (A → B) → ∥ A ∥ n → B rec {n = n} {A = A} {B = B} hB g = helper where h : isSphereFilled n B h = isOfHLevel→isSphereFilled n B hB helper : ∥ A ∥ n → B helper ∣ x ∣ = g x helper (hub f u) = h (λ s → helper (f s)) .fst u helper (spoke f s i) = h (λ s → helper (f s)) .snd s i sphereFillDep : (n : ℕ) (A : Type ℓ) (B : A → Type ℓ₁) (f₀' : D n → A) → ((s : S n) → B (f₀' (S→D s))) → Type _ sphereFillDep n A B f₀' f = Σ ((u : D n) → B (f₀' u)) (λ f' → (s : S n) → f s ≡ f' (S→D s)) isSphereFilledDep : ℕ → (A : Type ℓ) (B : A → Type ℓ₁) → Type _ isSphereFilledDep n A B = (f₀' : D n → A) (f : (s : S n) → B (f₀' (S→D s))) → sphereFillDep n A B f₀' f isSphereFilledDepAsc : (n : ℕ) {A : Type ℓ} (B : A → Type ℓ₁) → ((x₀ y₀ : A) (x₁ : B x₀) (y₁ : B y₀) → isSphereFilledDep n (x₀ ≡ y₀) (λ p → PathP (λ i → B (p i)) x₁ y₁)) → isSphereFilledDep (suc n) A B isSphereFilledDepAsc n {A = A} B hB f₀' f = f' , r where g₀' : (u : D n) → f₀' north ≡ f₀' south g₀' u i = f₀' (merid u i) g : (s : S n) → PathP (λ i → B (g₀' (S→D s) i)) (f north) (f south) g s i = f (merid s i) f' : (u : D (suc n)) → B (f₀' u) f' north = f north f' south = f south f' (merid u i) = hB (f₀' north) (f₀' south) (f north) (f south) g₀' g .fst u i r : (s : S (suc n)) → f s ≡ f' (S→D s) r north = refl r south = refl r (merid s i) j = hB (f₀' north) (f₀' south) (f north) (f south) g₀' g .snd s j i isOfHLevel→isSphereFilledDep : (n : ℕ) {A : Type ℓ} (B : A → Type ℓ₁) → ((a : A) → isOfHLevel n (B a)) → isSphereFilledDep n A B isOfHLevel→isSphereFilledDep 0 B hB f₀' f = (λ u → hB (f₀' u)) , λ () isOfHLevel→isSphereFilledDep (suc n) {A = A} B hB = isSphereFilledDepAsc n B (λ x₀ y₀ x₁ y₁ → isOfHLevel→isSphereFilledDep n {A = x₀ ≡ y₀} (λ p → PathP (λ i → B (p i)) x₁ y₁) (λ p → J (λ y₀ p → (y₁ : B y₀) → isOfHLevel n (PathP (λ i → B (p i)) x₁ y₁)) (hB x₀ x₁) p y₁)) elim : {n : ℕ} {A : Type ℓ} {B : ∥ A ∥ n → Type ℓ₁} (hB : (x : ∥ A ∥ n) → isOfHLevel n (B x)) (g : (a : A) → B (∣ a ∣)) (x : ∥ A ∥ n) → B x elim {n = n} {A = A} {B = B} hB g = helper where h : isSphereFilledDep n (∥ A ∥ n) B h = isOfHLevel→isSphereFilledDep n B hB helper : (x : ∥ A ∥ n) → B x helper ∣ a ∣ = g a helper (hub f u) = h (hub f) (λ s → subst B (spoke f s) (helper (f s))) .fst u helper (spoke f s i) = hcomp (λ j → λ { (i = i0) → helper (f s) ; (i = i1) → h (hub f) (λ s → subst B (spoke f s) (helper (f s))) .snd s j }) (subst-filler B (spoke f s) (helper (f s)) i)
{ "alphanum_fraction": 0.5159337725, "avg_line_length": 29.4083769634, "ext": "agda", "hexsha": "e8ca20eea09d309b512fbeec1746067175531fed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3aa0425c12e2edeb284ab8588a2b25ea46ae4394", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "howsiyu/hott-notes", "max_forks_repo_path": "Truncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3aa0425c12e2edeb284ab8588a2b25ea46ae4394", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "howsiyu/hott-notes", "max_issues_repo_path": "Truncation.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "3aa0425c12e2edeb284ab8588a2b25ea46ae4394", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "howsiyu/hott-notes", "max_stars_repo_path": "Truncation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2613, "size": 5617 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Haskell.Modules.Either where open import Data.Bool using (Bool; true; false; not) import Data.Sum as DS renaming ([_,_] to either) open import Function using (_∘_) open import Level renaming (_⊔_ to _ℓ⊔_) Either : ∀ {a b} → Set a → Set b → Set (a ℓ⊔ b) Either A B = A DS.⊎ B pattern Left x = DS.inj₁ x pattern Right x = DS.inj₂ x either = DS.either isLeft : ∀ {a b} {A : Set a} {B : Set b} → Either A B → Bool isLeft (Left _) = true isLeft (Right _) = false isRight : ∀ {a b} {A : Set a} {B : Set b} → Either A B → Bool isRight = not ∘ isLeft
{ "alphanum_fraction": 0.6606060606, "avg_line_length": 28.4482758621, "ext": "agda", "hexsha": "16f73c29b580475ecbf08f1e002d9e7ba103fced", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Haskell/Modules/Either.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Haskell/Modules/Either.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Haskell/Modules/Either.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 272, "size": 825 }
------------------------------------------------------------------------------ -- The Booleans properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Bool.PropertiesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Bool open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Congruence properties &&-leftCong : ∀ {a b c} → a ≡ b → a && c ≡ b && c &&-leftCong refl = refl &&-rightCong : ∀ {a b c} → b ≡ c → a && b ≡ a && c &&-rightCong refl = refl &&-cong : ∀ {a b c d } → a ≡ c → b ≡ d → a && b ≡ c && d &&-cong refl refl = refl notCong : ∀ {a b} → a ≡ b → not a ≡ not b notCong refl = refl ------------------------------------------------------------------------------ -- Basic properties t&&x≡x : ∀ b → true && b ≡ b t&&x≡x b = if-true b f&&x≡f : ∀ b → false && b ≡ false f&&x≡f b = if-false false not-t : not true ≡ false not-t = if-true false not-f : not false ≡ true not-f = if-false true &&-Bool : ∀ {a b} → Bool a → Bool b → Bool (a && b) &&-Bool {b = b} btrue Bb = subst Bool (sym (t&&x≡x b)) Bb &&-Bool {b = b} bfalse Bb = subst Bool (sym (f&&x≡f b)) bfalse not-Bool : ∀ {b} → Bool b → Bool (not b) not-Bool btrue = subst Bool (sym not-t) bfalse not-Bool bfalse = subst Bool (sym not-f) btrue &&-comm : ∀ {a b} → Bool a → Bool b → a && b ≡ b && a &&-comm btrue btrue = refl &&-comm btrue bfalse = trans (t&&x≡x false) (sym (f&&x≡f true)) &&-comm bfalse btrue = trans (f&&x≡f true) (sym (t&&x≡x false)) &&-comm bfalse bfalse = refl &&-assoc : ∀ {a b c} → Bool a → Bool b → Bool c → (a && b) && c ≡ a && b && c &&-assoc btrue btrue btrue = &&-cong (t&&x≡x true) (sym (t&&x≡x true)) &&-assoc btrue btrue bfalse = &&-cong (t&&x≡x true) (sym (t&&x≡x false)) &&-assoc btrue bfalse btrue = (true && false) && true ≡⟨ &&-comm (&&-Bool btrue bfalse) btrue ⟩ true && (true && false) ≡⟨ t&&x≡x (true && false) ⟩ true && false ≡⟨ &&-rightCong (sym (f&&x≡f true)) ⟩ true && false && true ∎ &&-assoc btrue bfalse bfalse = (true && false) && false ≡⟨ &&-comm (&&-Bool btrue bfalse) bfalse ⟩ false && (true && false) ≡⟨ f&&x≡f (true && false) ⟩ false ≡⟨ sym (f&&x≡f false) ⟩ false && false ≡⟨ sym (t&&x≡x (false && false)) ⟩ true && false && false ∎ &&-assoc bfalse btrue btrue = &&-cong (f&&x≡f true) (sym (t&&x≡x true)) &&-assoc bfalse btrue bfalse = &&-cong (f&&x≡f true) (sym (t&&x≡x false)) &&-assoc bfalse bfalse btrue = (false && false) && true ≡⟨ &&-comm (&&-Bool bfalse bfalse) btrue ⟩ true && (false && false) ≡⟨ t&&x≡x (false && false) ⟩ false && false ≡⟨ f&&x≡f false ⟩ false ≡⟨ sym (f&&x≡f (false && true)) ⟩ false && false && true ∎ &&-assoc bfalse bfalse bfalse = &&-cong (f&&x≡f false) (sym (f&&x≡f false)) &&-list₂-t : ∀ {a b} → Bool a → Bool b → a && b ≡ true → a ≡ true ∧ b ≡ true &&-list₂-t btrue btrue h = refl , refl &&-list₂-t btrue bfalse h = ⊥-elim (t≢f (trans (sym h) (t&&x≡x false))) &&-list₂-t bfalse btrue h = ⊥-elim (t≢f (trans (sym h) (f&&x≡f true))) &&-list₂-t bfalse bfalse h = ⊥-elim (t≢f (trans (sym h) (f&&x≡f false))) &&-list₂-t₁ : ∀ {a b} → Bool a → Bool b → a && b ≡ true → a ≡ true &&-list₂-t₁ Ba Bb h = ∧-proj₁ (&&-list₂-t Ba Bb h) &&-list₂-t₂ : ∀ {a b} → Bool a → Bool b → a && b ≡ true → b ≡ true &&-list₂-t₂ Ba Bb h = ∧-proj₂ (&&-list₂-t Ba Bb h) &&-list₂-all-t : ∀ {a b} → Bool a → Bool b → (a ≡ true ∧ b ≡ true) → a && b ≡ true &&-list₂-all-t btrue btrue h = t&&x≡x true &&-list₂-all-t btrue bfalse (h₁ , h₂) = ⊥-elim (t≢f (sym h₂)) &&-list₂-all-t bfalse Bb (h₁ , h₂) = ⊥-elim (t≢f (sym h₁)) &&-list₃-all-t : ∀ {a b c} → Bool a → Bool b → Bool c → a ≡ true ∧ b ≡ true ∧ c ≡ true → a && b && c ≡ true &&-list₃-all-t btrue btrue btrue h = trans (t&&x≡x (true && true)) (t&&x≡x true) &&-list₃-all-t btrue btrue bfalse (h₁ , h₂ , h₃) = ⊥-elim (t≢f (sym h₃)) &&-list₃-all-t btrue bfalse Bc (h₁ , h₂ , h₃) = ⊥-elim (t≢f (sym h₂)) &&-list₃-all-t bfalse Bb Bc (h₁ , h₂ , h₃) = ⊥-elim (t≢f (sym h₁)) &&-list₄-all-t : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a ≡ true ∧ b ≡ true ∧ c ≡ true ∧ d ≡ true → a && b && c && d ≡ true &&-list₄-all-t btrue btrue btrue btrue h = trans₂ (t&&x≡x (true && true && true)) (t&&x≡x (true && true)) (t&&x≡x true) &&-list₄-all-t btrue btrue btrue bfalse (h₁ , h₂ , h₃ , h₄) = ⊥-elim (t≢f (sym h₄)) &&-list₄-all-t btrue btrue bfalse Bd (h₁ , h₂ , h₃ , h₄) = ⊥-elim (t≢f (sym h₃)) &&-list₄-all-t btrue bfalse Bc Bd (h₁ , h₂ , h₃ , h₄) = ⊥-elim (t≢f (sym h₂)) &&-list₄-all-t bfalse Bb Bc Bd (h₁ , h₂ , h₃ , h₄) = ⊥-elim (t≢f (sym h₁)) &&-list₄-some-f : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a ≡ false ∨ b ≡ false ∨ c ≡ false ∨ d ≡ false → a && b && c && d ≡ false &&-list₄-some-f btrue Bb Bc Bd (inj₁ h) = ⊥-elim (t≢f h) &&-list₄-some-f btrue btrue Bc Bd (inj₂ (inj₁ h)) = ⊥-elim (t≢f h) &&-list₄-some-f btrue btrue btrue Bd (inj₂ (inj₂ (inj₁ h))) = ⊥-elim (t≢f h) &&-list₄-some-f btrue btrue btrue btrue (inj₂ (inj₂ (inj₂ h))) = ⊥-elim (t≢f h) &&-list₄-some-f btrue btrue btrue bfalse (inj₂ (inj₂ (inj₂ h))) = trans (t&&x≡x (true && true && false)) (trans (t&&x≡x (true && false)) (t&&x≡x false)) &&-list₄-some-f btrue btrue bfalse btrue (inj₂ (inj₂ (inj₁ h))) = trans (t&&x≡x (true && false && true)) (trans (t&&x≡x (false && true)) (f&&x≡f true)) &&-list₄-some-f btrue btrue bfalse btrue (inj₂ (inj₂ (inj₂ h))) = ⊥-elim (t≢f h) &&-list₄-some-f btrue btrue bfalse bfalse (inj₂ (inj₂ h)) = trans (t&&x≡x (true && false && false)) (trans (t&&x≡x (false && false)) (f&&x≡f false)) &&-list₄-some-f {c = c} {d} btrue bfalse Bc Bd (inj₂ h) = trans (t&&x≡x (false && c && d)) (f&&x≡f (c && d)) &&-list₄-some-f {b = b} {c} {d} bfalse Bb Bc Bd _ = f&&x≡f (b && c && d) &&-list₄-t : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a && b && c && d ≡ true → a ≡ true ∧ b ≡ true ∧ c ≡ true ∧ d ≡ true &&-list₄-t btrue btrue btrue btrue h = refl , refl , refl , refl &&-list₄-t btrue btrue btrue bfalse h = ⊥-elim (t≢f (trans (sym h) (&&-list₄-some-f btrue btrue btrue bfalse (inj₂ (inj₂ (inj₂ refl)))))) &&-list₄-t btrue btrue bfalse Bd h = ⊥-elim (t≢f (trans (sym h) (&&-list₄-some-f btrue btrue bfalse Bd (inj₂ (inj₂ (inj₁ refl)))))) &&-list₄-t btrue bfalse Bc Bd h = ⊥-elim (t≢f (trans (sym h) (&&-list₄-some-f btrue bfalse Bc Bd (inj₂ (inj₁ refl))))) &&-list₄-t bfalse Bb Bc Bd h = ⊥-elim (t≢f (trans (sym h) (&&-list₄-some-f bfalse Bb Bc Bd (inj₁ refl)))) &&-list₄-t₁ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a && b && c && d ≡ true → a ≡ true &&-list₄-t₁ Ba Bb Bc Bd h = ∧-proj₁ (&&-list₄-t Ba Bb Bc Bd h) &&-list₄-t₂ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a && b && c && d ≡ true → b ≡ true &&-list₄-t₂ Ba Bb Bc Bd h = ∧-proj₁ (∧-proj₂ (&&-list₄-t Ba Bb Bc Bd h)) &&-list₄-t₃ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a && b && c && d ≡ true → c ≡ true &&-list₄-t₃ Ba Bb Bc Bd h = ∧-proj₁ (∧-proj₂ (∧-proj₂ (&&-list₄-t Ba Bb Bc Bd h))) &&-list₄-t₄ : ∀ {a b c d} → Bool a → Bool b → Bool c → Bool d → a && b && c && d ≡ true → d ≡ true &&-list₄-t₄ Ba Bb Bc Bd h = ∧-proj₂ (∧-proj₂ (∧-proj₂ (&&-list₄-t Ba Bb Bc Bd h))) x≢not-x : ∀ {b} → Bool b → b ≢ not b x≢not-x btrue h = t≢f (trans h not-t) x≢not-x bfalse h = t≢f (sym (trans h not-f)) not-x≢x : ∀ {b} → Bool b → not b ≢ b not-x≢x Bb h = x≢not-x Bb (sym h) not-involutive : ∀ {b} → Bool b → not (not b) ≡ b not-involutive btrue = trans (notCong not-t) not-f not-involutive bfalse = trans (notCong not-f) not-t ------------------------------------------------------------------------------ -- Properties with inequalities lt-Bool : ∀ {m n} → N m → N n → Bool (lt m n) lt-Bool nzero nzero = subst Bool (sym lt-00) bfalse lt-Bool nzero (nsucc {n} Nn) = subst Bool (sym (lt-0S n)) btrue lt-Bool (nsucc {m} Nm) nzero = subst Bool (sym (lt-S0 m)) bfalse lt-Bool (nsucc {m} Nm) (nsucc {n} Nn) = subst Bool (sym (lt-SS m n)) (lt-Bool Nm Nn) le-Bool : ∀ {m n} → N m → N n → Bool (le m n) le-Bool {n = n} nzero Nn = subst Bool (sym (lt-0S n)) btrue le-Bool (nsucc Nm) nzero = subst Bool (sym (Sx≰0 Nm)) bfalse le-Bool (nsucc {m} Nm) (nsucc {n} Nn) = subst Bool (sym (lt-SS m (succ₁ n))) (le-Bool Nm Nn)
{ "alphanum_fraction": 0.5009474975, "avg_line_length": 43.3381642512, "ext": "agda", "hexsha": "d85ede5d61bd67b2cea493dcfd0b119da9a8cd8f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Bool/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Bool/PropertiesI.agda", "max_line_length": 88, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Bool/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 3739, "size": 8971 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Concepts from rewriting theory -- Definitions are based on "Term Rewriting Systems" by J.W. Klop ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Binary.Rewriting where open import Agda.Builtin.Equality using (_≡_ ; refl) open import Data.Product using (_×_ ; ∃ ; -,_; _,_ ; proj₁ ; proj₂) open import Data.Empty open import Data.Sum.Base as Sum using (_⊎_) open import Function using (flip) open import Induction.WellFounded open import Level open import Relation.Binary.Core open import Relation.Binary.Construct.Closure.Equivalence using (EqClosure) open import Relation.Binary.Construct.Closure.Equivalence.Properties open import Relation.Binary.Construct.Closure.Reflexive open import Relation.Binary.Construct.Closure.ReflexiveTransitive open import Relation.Binary.Construct.Closure.Symmetric open import Relation.Binary.Construct.Closure.Transitive open import Relation.Binary.PropositionalEquality open import Relation.Nullary -- The following definitions are taken from Klop [5] module _ {a ℓ} {A : Set a} (_⟶_ : Rel A ℓ) where private _⟵_ = flip _⟶_ _—↠_ = Star _⟶_ _↔_ = EqClosure _⟶_ IsNormalForm : A → Set _ IsNormalForm a = ¬ ∃ λ b → (a ⟶ b) HasNormalForm : A → Set _ HasNormalForm b = ∃ λ a → IsNormalForm a × (b —↠ a) NormalForm : Set _ NormalForm = ∀ {a b} → IsNormalForm a → b ↔ a → b —↠ a WeaklyNormalizing : Set _ WeaklyNormalizing = ∀ a → HasNormalForm a StronglyNormalizing : Set _ StronglyNormalizing = WellFounded _⟵_ UniqueNormalForm : Set _ UniqueNormalForm = ∀ {a b} → IsNormalForm a → IsNormalForm b → a ↔ b → a ≡ b Confluent : Set _ Confluent = ∀ {A B C} → A —↠ B → A —↠ C → ∃ λ D → (B —↠ D) × (C —↠ D) WeaklyConfluent : Set _ WeaklyConfluent = ∀ {A B C} → A ⟶ B → A ⟶ C → ∃ λ D → (B —↠ D) × (C —↠ D) Deterministic : ∀ {a b ℓ₁ ℓ₂} → {A : Set a} → {B : Set b} → Rel B ℓ₁ → REL A B ℓ₂ → Set _ Deterministic _≈_ _—→_ = ∀ {x y z} → x —→ y → x —→ z → y ≈ z module _ {a ℓ} {A : Set a} {_⟶_ : Rel A ℓ} where private _—↠_ = Star _⟶_ _↔_ = EqClosure _⟶_ _⟶₊_ = Plus _⟶_ det⇒conf : Deterministic _≡_ _⟶_ → Confluent _⟶_ det⇒conf det ε rs₂ = -, rs₂ , ε det⇒conf det rs₁ ε = -, ε , rs₁ det⇒conf det (r₁ ◅ rs₁) (r₂ ◅ rs₂) rewrite det r₁ r₂ = det⇒conf det rs₁ rs₂ conf⇒wcr : Confluent _⟶_ → WeaklyConfluent _⟶_ conf⇒wcr c fst snd = c (fst ◅ ε) (snd ◅ ε) conf⇒nf : Confluent _⟶_ → NormalForm _⟶_ conf⇒nf c aIsNF ε = ε conf⇒nf c aIsNF (fwd x ◅ rest) = x ◅ conf⇒nf c aIsNF rest conf⇒nf c aIsNF (bwd y ◅ rest) with c (y ◅ ε) (conf⇒nf c aIsNF rest) ... | _ , _ , x ◅ _ = ⊥-elim (aIsNF (_ , x)) ... | _ , left , ε = left conf⇒unf : Confluent _⟶_ → UniqueNormalForm _⟶_ conf⇒unf _ _ _ ε = refl conf⇒unf _ aIsNF _ (fwd x ◅ _) = ⊥-elim (aIsNF (_ , x)) conf⇒unf c aIsNF bIsNF (bwd y ◅ r) with c (y ◅ ε) (conf⇒nf c bIsNF r) ... | _ , ε , x ◅ _ = ⊥-elim (bIsNF (_ , x)) ... | _ , x ◅ _ , _ = ⊥-elim (aIsNF (_ , x)) ... | _ , ε , ε = refl un&wn⇒cr : UniqueNormalForm _⟶_ → WeaklyNormalizing _⟶_ → Confluent _⟶_ un&wn⇒cr un wn {a} {b} {c} aToB aToC with wn b | wn c ... | (d , (d-nf , bToD)) | (e , (e-nf , cToE)) with un d-nf e-nf (a—↠b&a—↠c⇒b↔c (aToB ◅◅ bToD) (aToC ◅◅ cToE)) ... | refl = d , bToD , cToE -- Newman's lemma sn&wcr⇒cr : StronglyNormalizing _⟶₊_ → WeaklyConfluent _⟶_ → Confluent _⟶_ sn&wcr⇒cr sn wcr = helper (sn _) where starToPlus : ∀ {a b c} → (a ⟶ b) → b —↠ c → a ⟶₊ c starToPlus aToB ε = [ aToB ] starToPlus {a} aToB (e ◅ bToC) = a ∼⁺⟨ [ aToB ] ⟩ (starToPlus e bToC) helper : ∀ {a b c} → (acc : Acc (flip _⟶₊_) a) → a —↠ b → a —↠ c → ∃ λ d → (b —↠ d) × (c —↠ d) helper _ ε snd = -, snd , ε helper _ fst ε = -, ε , fst helper (acc g) (toJ ◅ fst) (toK ◅ snd) = result where wcrProof = wcr toJ toK innerPoint = proj₁ wcrProof jToInner = proj₁ (proj₂ wcrProof) kToInner = proj₂ (proj₂ wcrProof) lhs = helper (g _ [ toJ ]) fst jToInner rhs = helper (g _ [ toK ]) snd kToInner fromAB = proj₁ (proj₂ lhs) fromInnerB = proj₂ (proj₂ lhs) fromAC = proj₁ (proj₂ rhs) fromInnerC = proj₂ (proj₂ rhs) aToInner : _ ⟶₊ innerPoint aToInner = starToPlus toJ jToInner finalRecursion = helper (g innerPoint aToInner) fromInnerB fromInnerC bMidToDest = proj₁ (proj₂ finalRecursion) cMidToDest = proj₂ (proj₂ finalRecursion) result : ∃ λ d → (_ —↠ d) × (_ —↠ d) result = _ , fromAB ◅◅ bMidToDest , fromAC ◅◅ cMidToDest
{ "alphanum_fraction": 0.5680789798, "avg_line_length": 34.7285714286, "ext": "agda", "hexsha": "2a3c59d0050bfa32921892c6a36cd6195e26ed0a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Rewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Rewriting.agda", "max_line_length": 89, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Rewriting.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1868, "size": 4862 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Semirings.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Integers.RingStructure.Ring open import Groups.Orders.Archimedean open import Rings.Orders.Partial.Definition open import Numbers.Integers.Order module Numbers.Integers.RingStructure.Archimedean where open import Groups.Cyclic.Definition ℤGroup open import Semirings.Solver ℕSemiring multiplicationNIsCommutative private lemma : (x y : ℕ) → positiveEltPower (nonneg x) y ≡ nonneg (x *N y) lemma x zero rewrite Semiring.productZeroRight ℕSemiring x = refl lemma x (succ y) rewrite lemma x y | multiplicationNIsCommutative x (succ y) | multiplicationNIsCommutative y x = equalityCommutative (+Zinherits x (x *N y)) ℤArchimedean : Archimedean (toGroup ℤRing ℤPOrderedRing) ℤArchimedean (nonneg (succ a)) (nonneg (succ b)) 0<a 0<b = succ (succ b) , t where v : b +N (a +N (a +N a *N b)) ≡ a +N (a +N (b +N a *N b)) v rewrite Semiring.+Associative ℕSemiring a a (a *N b) | Semiring.+Associative ℕSemiring b (a +N a) (a *N b) | Semiring.+Associative ℕSemiring a b (a *N b) | Semiring.+Associative ℕSemiring a (a +N b) (a *N b) | Semiring.commutative ℕSemiring b (a +N a) | Semiring.+Associative ℕSemiring a a b = refl u : succ ((a +N (a +N a *N b)) +N b) ≡ a +N succ (a +N (b +N a *N b)) u = from (succ (plus (plus (const a) (plus (const a) (times (const a) (const b)))) (const b))) to (plus (const a) (succ (plus (const a) (plus (const b) (times (const a) (const b)))))) by applyEquality succ v t : nonneg (succ b) <Z nonneg (succ a) +Z (nonneg (succ a) +Z positiveEltPower (nonneg (succ a)) b) t rewrite lemma (succ a) b = lessInherits (succPreservesInequality (le (a +N (a +N a *N b)) u))
{ "alphanum_fraction": 0.7007658643, "avg_line_length": 58.9677419355, "ext": "agda", "hexsha": "dd6ec5e4f34cf52ad8107e3fab63a17b43be0951", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Integers/RingStructure/Archimedean.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Integers/RingStructure/Archimedean.agda", "max_line_length": 304, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Integers/RingStructure/Archimedean.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 614, "size": 1828 }
------------------------------------------------------------------------ -- Subject reduction for typing in Fω with interval kinds ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} -- This module proves a variant of subject reduction (aka the -- "preservation" theorem) for term reduction in Fω with interval -- kinds. The subject reduction property proved here is weaker than -- the one typically found in the literature on other variants of Fω: -- subject reduction does not hold in arbitrary typing contexts in Fω -- with interval types because type variables of interval kind can be -- used to introduce arbitrary typing (in)equalities into the -- subtyping relation. In other words, subject reduction does not -- hold for full β-reduction as reductions under type abstractions are -- not safe in general. Note, however, that subject reduction does -- hold for arbitrary β-reductions in *types* (see `pres-Tp∈-→β*' in -- the Kinding.Declarative.Validity module for a proof). -- -- NOTE. Here we use the CBV evaluation strategy, but this is -- unnecessarily restrictive. Other evaluation strategies work so -- long as they do not allow reductions under type abstractions. -- -- Together with the "progress" theorem from Typing.Progress, subject -- reduction ensures type safety. For details, see e.g. -- -- * B. C. Pierce, TAPL (2002), pp. 95. -- -- * A. Wright and M. Felleisen, "A Syntactic Approach to Type -- Soundness" (1994). module FOmegaInt.Typing.Preservation where open import Data.Product using (_,_) open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε; _◅_) open import Relation.Binary.PropositionalEquality using (subst) open import Relation.Nullary.Negation using (contradiction) open import FOmegaInt.Syntax open import FOmegaInt.Typing open import FOmegaInt.Typing.Inversion open import FOmegaInt.Reduction.Cbv open import FOmegaInt.Reduction.Full open Syntax open TermCtx open Substitution using (_[_]; weaken-sub) open Typing open TypedSubstitution using (Tm∈-[]; <:-[]) -- Types of closed terms are preserved under single-step reduction. pres : ∀ {a b c} → [] ⊢Tm a ∈ c → a →v b → [] ⊢Tm b ∈ c pres (∈-var () _ _) pres (∈-∀-i k-kd a∈b) () pres (∈-→-i a∈* b∈c c∈*) () pres (∈-∀-e Λja∈Πkc b∈k) (cont-⊡ j a b) with Tm∈-gen Λja∈Πkc ... | ∈-∀-i j-kd a∈d Πjd<:Πkc = let k<∷j , d<:c = <:-∀-inv Πjd<:Πkc in ∈-⇑ (Tm∈-[] a∈d (∈-tp (∈-⇑ b∈k k<∷j))) (<:-[] d<:c (∈-tp b∈k)) pres (∈-∀-e a∈Πcd b∈c) (a→e ⊡ b) = ∈-∀-e (pres a∈Πcd a→e) b∈c pres (∈-→-e ƛea∈c⇒d v∈c) (cont-· e a v) with Tm∈-gen ƛea∈c⇒d ... | ∈-→-i e∈* a∈f e⇒f<:c⇒d = let c<:e , f<:d = <:-→-inv e⇒f<:c⇒d in ∈-⇑ (subst (_ ⊢Tm _ ∈_) (weaken-sub _) (Tm∈-[] a∈f (∈-tm (∈-⇑ v∈c c<:e)))) f<:d pres (∈-→-e a∈c⇒d b∈c) (a→e ·₁ b) = ∈-→-e (pres a∈c⇒d a→e) b∈c pres (∈-→-e a∈c⇒d b∈c) (v ·₂ b→e) = ∈-→-e a∈c⇒d (pres b∈c b→e) pres (∈-⇑ a∈c c<:d) a→b = ∈-⇑ (pres a∈c a→b) c<:d -- Weak preservation (aka subject reduction): types of closed terms -- are preserved under reduction. pres* : ∀ {a b c} → [] ⊢Tm a ∈ c → a →v* b → [] ⊢Tm b ∈ c pres* a∈c ε = a∈c pres* a∈d (a→b ◅ b→*c) = pres* (pres a∈d a→b) b→*c
{ "alphanum_fraction": 0.6186467103, "avg_line_length": 42.76, "ext": "agda", "hexsha": "1ee3b8b2ba48ca67657aff6c9e0a0d1e01bf8bf9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z", "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Typing/Preservation.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z", "max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Typing/Preservation.agda", "max_line_length": 80, "max_stars_count": 12, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Typing/Preservation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z", "max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z", "num_tokens": 1199, "size": 3207 }
module Unsolved-meta-in-module-telescope (A : _) where
{ "alphanum_fraction": 0.7636363636, "avg_line_length": 27.5, "ext": "agda", "hexsha": "6c21eda98555ca23a9df03c25a716c7f54fd87fe", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Unsolved-meta-in-module-telescope.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Unsolved-meta-in-module-telescope.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Unsolved-meta-in-module-telescope.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 14, "size": 55 }
module Categories.Category.Construction.CartesianClosedFunctors where open import Categories.Category open import Categories.Category.CartesianClosed.Bundle open import Categories.Functor.CartesianClosed open import Categories.NaturalTransformation using (NaturalTransformation; id; _∘ᵥ_) import Categories.NaturalTransformation.Equivalence as NTEq open import Categories.NaturalTransformation.NaturalIsomorphism import Categories.NaturalTransformation.NaturalIsomorphism.Equivalence as Eq open import Data.Product using (_,_) open import Level private variable o ℓ e o′ ℓ′ e′ : Level CCCat≅ : (C : CartesianClosedCategory o ℓ e) -> (D : CartesianClosedCategory o′ ℓ′ e′) -> Category (levelOfTerm C ⊔ levelOfTerm D) (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) (o ⊔ e′) CCCat≅ C D = record { Obj = CartesianClosedF C D ; _⇒_ = λ F G → NaturalIsomorphism (CartesianClosedF.F F) (CartesianClosedF.F G) ; _≈_ = Eq._≅_ ; id = refl ; _∘_ = _ⓘᵥ_ ; assoc = assoc , sym-assoc ; sym-assoc = sym-assoc , assoc ; identityˡ = identityˡ , identityʳ ; identityʳ = identityʳ , identityˡ ; identity² = identity² , identity² ; equiv = Eq.≅-isEquivalence ; ∘-resp-≈ = λ (f≅h , f≅h′) (g≅i , g≅i′) → ∘-resp-≈ f≅h g≅i , ∘-resp-≈ g≅i′ f≅h′ } where open Category (CartesianClosedCategory.U D)
{ "alphanum_fraction": 0.6357388316, "avg_line_length": 39.3243243243, "ext": "agda", "hexsha": "c6ac3b1254154180c17ea4775b8df4adbb8a78ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "elpinal/exsub-ccc", "max_forks_repo_path": "Categories/Category/Construction/CartesianClosedFunctors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "elpinal/exsub-ccc", "max_issues_repo_path": "Categories/Category/Construction/CartesianClosedFunctors.agda", "max_line_length": 95, "max_stars_count": 3, "max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "elpinal/exsub-ccc", "max_stars_repo_path": "Categories/Category/Construction/CartesianClosedFunctors.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z", "num_tokens": 440, "size": 1455 }
module #4 where open import Relation.Binary.PropositionalEquality open import Data.Product open import Data.Nat {- Exercise 2.4. Define, by induction on n, a general notion of n-dimensional path in a type A, simultaneously with the type of boundaries for such paths. -} -- We need pointed sets for this part Set• : ∀ i → Set _ Set• i = Σ (Set i) λ X → X Ω₁ : ∀ {i} → Set• i → Set• i Ω₁ (X , x) = ((x ≡ x) , refl) Ωⁿ : ∀ {i} → ℕ → Set• i → Set• _ Ωⁿ 0 x = x Ωⁿ (suc n) x = Ωⁿ n (Ω₁ x)
{ "alphanum_fraction": 0.6336032389, "avg_line_length": 22.4545454545, "ext": "agda", "hexsha": "5269c19790ef64c337477691ad2cfa2f59901444", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter2/#4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter2/#4.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter2/#4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 185, "size": 494 }
module Function.Iteration where open import Data open import Functional open import Numeral.Natural open import Type open import Syntax.Number module _ {ℓ} {T : Type{ℓ}} where -- Repeated function composition -- Example: -- f ^ 0 = id -- f ^ 1 = f -- f ^ 2 = f ∘ f -- f ^ 3 = f ∘ f ∘ f -- f ^ 4 = f ∘ f ∘ f ∘ f _^_ : (T → T) → ℕ → (T → T) _^_ f 𝟎 = id _^_ f (𝐒(n)) = f ∘ (f ^ n) _⁰ : (T → T) → (T → T) _⁰ = _^ 0 _¹ : (T → T) → (T → T) _¹ = _^ 1 _² : (T → T) → (T → T) _² = _^ 2 _³ : (T → T) → (T → T) _³ = _^ 3 _⁴ : (T → T) → (T → T) _⁴ = _^ 4 _⁵ : (T → T) → (T → T) _⁵ = _^ 5 _⁶ : (T → T) → (T → T) _⁶ = _^ 6 _⁷ : (T → T) → (T → T) _⁷ = _^ 7 _⁸ : (T → T) → (T → T) _⁸ = _^ 8 _⁹ : (T → T) → (T → T) _⁹ = _^ 9 module _ {ℓ₁}{ℓ₂} {X : Type{ℓ₁}} {Y : Type{ℓ₂}} where -- Repeat a binary operation n times for the same element and an initial element -- Example: repeatₗ 3 id (_∘_) f = ((id ∘ f) ∘ f) ∘ f -- Example in Haskell: (foldl (.) (id) (take 5 (repeat f))) -- Implementation in Haskell: (\n null op elem -> foldl op null (take n (repeat elem))) :: Int -> a -> (b -> a -> b) -> b -> b repeatₗ : ℕ → (Y → X → Y) → (Y → X → Y) repeatₗ n (_▫_) null elem = ((_▫ elem) ^ n) (null) -- Repeat a binary operation n times for the same element and an initial element -- Example: repeatᵣ 3 id (_∘_) f = f ∘ (f ∘ (f ∘ id)) -- Implementation in Haskell: (\n elem op null -> foldr op null (take n (repeat elem))) :: Int -> a -> (a -> b -> b) -> b -> b repeatᵣ : ℕ → (X → Y → Y) → (X → Y → Y) repeatᵣ n (_▫_) elem = (elem ▫_) ^ n module _ {ℓ} {X : Type{ℓ}} where -- Repeat a binary operation n times for the same element and using the default element on zero. -- Examples: -- repeatₗ 0 def (_∘_) f = def -- repeatₗ 1 def (_∘_) f = f -- repeatₗ 4 def (_∘_) f = ((f ∘ f) ∘ f) ∘ f repeatₗ-default : ℕ → (X → X → X) → X → (X → X) repeatₗ-default 𝟎 _ def _ = def repeatₗ-default (𝐒(n)) (_▫_) _ elem = repeatₗ(n) (_▫_) elem elem -- Repeat a binary operation n times for the same element and using the default element on zero. -- Examples: -- repeatᵣ 0 f (_∘_) def = def -- repeatᵣ 1 f (_∘_) def = f -- repeatᵣ 4 f (_∘_) def = f ∘ (f ∘ (f ∘ f)) repeatᵣ-default : ℕ → (X → X → X) → X → (X → X) repeatᵣ-default 𝟎 _ _ def = def repeatᵣ-default (𝐒(n)) (_▫_) elem _ = repeatᵣ(n) (_▫_) elem elem
{ "alphanum_fraction": 0.5018329939, "avg_line_length": 29.578313253, "ext": "agda", "hexsha": "851cfd054fb8bcbe96db1c338bd41835c36984e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Function/Iteration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Function/Iteration.agda", "max_line_length": 128, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Function/Iteration.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1086, "size": 2455 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Properties.Conversion {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Typed open import Definition.Typed.RedSteps open import Definition.Typed.Properties open import Definition.LogicalRelation open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Irrelevance open import Tools.Embedding open import Tools.Product import Tools.PropositionalEquality as PE -- Conversion of syntactic reduction closures. convRed:*: : ∀ {t u A B Γ} → Γ ⊢ t :⇒*: u ∷ A → Γ ⊢ A ≡ B → Γ ⊢ t :⇒*: u ∷ B convRed:*: [ ⊢t , ⊢u , d ] A≡B = [ conv ⊢t A≡B , conv ⊢u A≡B , conv* d A≡B ] mutual -- Helper function for conversion of terms converting from left to right. convTermT₁ : ∀ {l l′ Γ A B t} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] convTermT₁ (ℕᵥ D D′) A≡B (ιx (ℕₜ n d n≡n prop)) = ιx (ℕₜ n d n≡n prop) convTermT₁ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M)) (ιx (neₜ k d (neNfₜ neK₂ ⊢k k≡k))) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in ιx (neₜ k (convRed:*: d K≡K₁) (neNfₜ neK₂ (conv ⊢k K≡K₁) (~-conv k≡k K≡K₁))) convTermT₁ {Γ = Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , G₁≡G′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d ΠFG≡ΠF₁G₁) funcF (≅-conv f≡f ΠFG≡ΠF₁G₁) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₁ (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 ⊢Γ₁) A≡B t = t convTermT₁ (emb⁰¹ PE.refl x) (ιx A≡B) (ιx t) = convTermT₁ x A≡B t convTermT₁ (emb¹⁰ PE.refl x) A≡B t = ιx (convTermT₁ x A≡B t) -- Helper function for conversion of terms converting from right to left. convTermT₂ : ∀ {l l′ Γ A B t} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] convTermT₂ (ℕᵥ D D′) A≡B (ιx (ℕₜ n d n≡n prop)) = ιx (ℕₜ n d n≡n prop) convTermT₂ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M)) (ιx (neₜ k d (neNfₜ neK₂ ⊢k k≡k))) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in ιx (neₜ k (convRed:*: d K₁≡K) (neNfₜ neK₂ (conv ⊢k K₁≡K) (~-conv k≡k K₁≡K))) convTermT₂ {Γ = Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ f d funcF f≡f [f] [f]₁) = let ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) F₁≡F′ , G₁≡G′ = Π-PE-injectivity ΠF₁G₁≡ΠF′G′ ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ f (convRed:*: d (sym ΠFG≡ΠF₁G₁)) funcF (≅-conv f≡f (sym ΠFG≡ΠF₁G₁)) (λ {ρ} [ρ] ⊢Δ [a] [b] [a≡b] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [b]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [b] [a≡b]₁ = convEqTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a≡b] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f] [ρ] ⊢Δ [a]₁ [b]₁ [a≡b]₁)) (λ {ρ} [ρ] ⊢Δ [a] → let [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([f]₁ [ρ] ⊢Δ [a]₁)) convTermT₂ (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 ⊢Γ₁) A≡B t = t convTermT₂ (emb⁰¹ PE.refl x) (ιx A≡B) t = ιx (convTermT₂ x A≡B t) convTermT₂ (emb¹⁰ PE.refl x) A≡B (ιx t) = convTermT₂ x A≡B t -- Conversion of terms converting from left to right. convTerm₁ : ∀ {Γ A B t l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] convTerm₁ [A] [B] A≡B t = convTermT₁ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from right to left. convTerm₂ : ∀ {Γ A B t l l′} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] convTerm₂ [A] [B] A≡B t = convTermT₂ (goodCases [A] [B] A≡B) A≡B t -- Conversion of terms converting from right to left -- with some propsitionally equal types. convTerm₂′ : ∀ {Γ A B B′ t l l′} → B PE.≡ B′ → ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B′ / [A] → Γ ⊩⟨ l′ ⟩ t ∷ B / [B] → Γ ⊩⟨ l ⟩ t ∷ A / [A] convTerm₂′ PE.refl [A] [B] A≡B t = convTerm₂ [A] [B] A≡B t -- Helper function for conversion of term equality converting from left to right. convEqTermT₁ : ∀ {l l′ Γ A B t u} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] convEqTermT₁ (ℕᵥ D D′) A≡B (ιx (ℕₜ₌ k k′ d d′ k≡k′ prop)) = ιx (ℕₜ₌ k k′ d d′ k≡k′ prop) convEqTermT₁ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M)) (ιx (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m))) = let K≡K₁ = PE.subst (λ x → _ ⊢ _ ≡ x) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (≅-eq (~-to-≅ K≡M)) in ιx (neₜ₌ k m (convRed:*: d K≡K₁) (convRed:*: d′ K≡K₁) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K≡K₁))) convEqTermT₁ {Γ = Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Πᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d ΠFG≡ΠF₁G₁) (convRed:*: d′ ΠFG≡ΠF₁G₁) funcF funcG (≅-conv t≡u ΠFG≡ΠF₁G₁) (convTerm₁ [A] [B] [A≡B] [t]) (convTerm₁ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , G₁≡G′ = Π-PE-injectivity (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₂ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]₁) ([G≡G′] [ρ] ⊢Δ [a]₁) in convEqTerm₁ ([G] [ρ] ⊢Δ [a]₁) ([G]₁ [ρ] ⊢Δ [a]) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₁ (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 ⊢Γ₁) A≡B t≡u = t≡u convEqTermT₁ (emb⁰¹ PE.refl x) (ιx A≡B) (ιx t≡u) = convEqTermT₁ x A≡B t≡u convEqTermT₁ (emb¹⁰ PE.refl x) A≡B t≡u = ιx (convEqTermT₁ x A≡B t≡u) -- Helper function for conversion of term equality converting from right to left. convEqTermT₂ : ∀ {l l′ Γ A B t u} {[A] : Γ ⊩⟨ l ⟩ A} {[B] : Γ ⊩⟨ l′ ⟩ B} → ShapeView Γ l l′ A B [A] [B] → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] convEqTermT₂ (ℕᵥ D D′) A≡B (ιx (ℕₜ₌ k k′ d d′ k≡k′ prop)) = ιx (ℕₜ₌ k k′ d d′ k≡k′ prop) convEqTermT₂ (ne (ne K D neK K≡K) (ne K₁ D₁ neK₁ K≡K₁)) (ιx (ne₌ M D′ neM K≡M)) (ιx (neₜ₌ k m d d′ (neNfₜ₌ neK₂ neM₁ k≡m))) = let K₁≡K = PE.subst (λ x → _ ⊢ x ≡ _) (whrDet* (red D′ , ne neM) (red D₁ , ne neK₁)) (sym (≅-eq (~-to-≅ K≡M))) in ιx (neₜ₌ k m (convRed:*: d K₁≡K) (convRed:*: d′ K₁≡K) (neNfₜ₌ neK₂ neM₁ (~-conv k≡m K₁≡K))) convEqTermT₂ {Γ = Γ} (Πᵥ (Πᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πᵣ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁)) (Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) (Πₜ₌ f g d d′ funcF funcG t≡u [t] [u] [t≡u]) = let [A] = Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext [B] = Πᵣ′ F₁ G₁ D₁ ⊢F₁ ⊢G₁ A≡A₁ [F]₁ [G]₁ G-ext₁ [A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′] ΠF₁G₁≡ΠF′G′ = whrDet* (red D₁ , Πₙ) (D′ , Πₙ) ΠFG≡ΠF₁G₁ = PE.subst (λ x → Γ ⊢ Π F ▹ G ≡ x) (PE.sym ΠF₁G₁≡ΠF′G′) (≅-eq A≡B) in Πₜ₌ f g (convRed:*: d (sym ΠFG≡ΠF₁G₁)) (convRed:*: d′ (sym ΠFG≡ΠF₁G₁)) funcF funcG (≅-conv t≡u (sym ΠFG≡ΠF₁G₁)) (convTerm₂ [A] [B] [A≡B] [t]) (convTerm₂ [A] [B] [A≡B] [u]) (λ {ρ} [ρ] ⊢Δ [a] → let F₁≡F′ , G₁≡G′ = Π-PE-injectivity (whrDet* (red D₁ , Πₙ) (D′ , Πₙ)) [F≡F₁] = irrelevanceEqR′ (PE.cong (wk ρ) (PE.sym F₁≡F′)) ([F] [ρ] ⊢Δ) ([F≡F′] [ρ] ⊢Δ) [a]₁ = convTerm₁ ([F] [ρ] ⊢Δ) ([F]₁ [ρ] ⊢Δ) [F≡F₁] [a] [G≡G₁] = irrelevanceEqR′ (PE.cong (λ x → wk (lift ρ) x [ _ ]) (PE.sym G₁≡G′)) ([G] [ρ] ⊢Δ [a]) ([G≡G′] [ρ] ⊢Δ [a]) in convEqTerm₂ ([G] [ρ] ⊢Δ [a]) ([G]₁ [ρ] ⊢Δ [a]₁) [G≡G₁] ([t≡u] [ρ] ⊢Δ [a]₁)) convEqTermT₂ (Uᵥ .⁰ 0<1 ⊢Γ .⁰ 0<1 ⊢Γ₁) A≡B t≡u = t≡u convEqTermT₂ (emb⁰¹ PE.refl x) (ιx A≡B) t≡u = ιx (convEqTermT₂ x A≡B t≡u) convEqTermT₂ (emb¹⁰ PE.refl x) A≡B (ιx t≡u) = convEqTermT₂ x A≡B t≡u -- Conversion of term equality converting from left to right. convEqTerm₁ : ∀ {l l′ Γ A B t u} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] convEqTerm₁ [A] [B] A≡B t≡u = convEqTermT₁ (goodCases [A] [B] A≡B) A≡B t≡u -- Conversion of term equality converting from right to left. convEqTerm₂ : ∀ {l l′ Γ A B t u} ([A] : Γ ⊩⟨ l ⟩ A) ([B] : Γ ⊩⟨ l′ ⟩ B) → Γ ⊩⟨ l ⟩ A ≡ B / [A] → Γ ⊩⟨ l′ ⟩ t ≡ u ∷ B / [B] → Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] convEqTerm₂ [A] [B] A≡B t≡u = convEqTermT₂ (goodCases [A] [B] A≡B) A≡B t≡u
{ "alphanum_fraction": 0.3884751373, "avg_line_length": 54.2571428571, "ext": "agda", "hexsha": "33cea7a353a126816d7969cfe78fbc6d47cd8054", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Properties/Conversion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6648, "size": 13293 }
-- Reported by Andrea, 2014-05-xx -- We cannot prune from a meta if one of its arguments is a lambda. -- (In some cases we could, but it is hard to get this right, -- probably needs a flow analysis.) -- {-# OPTIONS -v tc.meta.assign:25 -v tc.meta.kill:40 #-} open import Common.Equality open import Common.Product postulate F : Set → Set A : Set test : let H : Set H = _ M : ((Set → Set) → Set) → Set M = _ in {Z : Set} → H ≡ F (M (\ G → A → G Z)) × F H ≡ F (F (A → A)) × M ≡ \ K → K (\ _ → A) test = refl , refl , refl #1 : {A : Set} → let H : Set H = _ M : (Set → Set) → Set → Set M = _ in {Z : Set} → H ≡ F (M (\ _ → A) Z) × M ≡ (\ F X → F X) #1 = refl , refl
{ "alphanum_fraction": 0.4449818622, "avg_line_length": 22.9722222222, "ext": "agda", "hexsha": "869b0618867c82c0d1f9a4ed0dd20c67663dde1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue1153.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue1153.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/Issue1153.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 269, "size": 827 }
module Type.Size where import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Structure.Function.Domain open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level _≍_ : (A : Type{ℓ₁}) → ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≍ B = ∃{Obj = A → B}(Bijective) _≼_ : (A : Type{ℓ₁}) → ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≼ B = ∃{Obj = A → B}(Injective) _≽_ : (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≽ B = ∃{Obj = A → B}(Surjective) _≭_ : (A : Type{ℓ₁}) → ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≭ B = ¬(A ≍ B) _≺_ : (A : Type{ℓ₁}) → ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≺ B = (A ≼ B) ∧ (A ≭ B) _≻_ : (A : Type{ℓ₁}) → ⦃ _ : Equiv{ℓₑ₁}(A) ⦄ → (B : Type{ℓ₂}) → ⦃ _ : Equiv{ℓₑ₂}(B) ⦄ → Stmt A ≻ B = (A ≽ B) ∧ (A ≭ B)
{ "alphanum_fraction": 0.5171339564, "avg_line_length": 32.1, "ext": "agda", "hexsha": "3a6bf593498e60345df36830584c69c935f2974c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Size.agda", "max_line_length": 92, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Size.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 552, "size": 963 }
------------------------------------------------------------------------ -- Definitional interpreters can model systems with unbounded space ------------------------------------------------------------------------ -- As a follow-up to the development in Bounded-space I asked Ancona, -- Dagnino and Zucca for further examples of properties for which it -- is not clear to them if definitional interpreters work well. They -- asked for a semantics that returns the largest heap size used by -- the program, or infinity if there is no bound on this size. They -- also asked how one can prove that a program transformation does not -- increase the maximum heap usage. -- It is impossible to write an Agda program that computes the maximum -- heap usage, but one can at least produce a potentially infinite -- list containing all heap sizes encountered in the execution of a -- program, and then reason about this list. This approach is taken -- below. module Unbounded-space where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Tactic.By.Propositional open import Prelude.Size open import Colist equality-with-J as Colist open import Conat equality-with-J as Conat hiding (pred) renaming (_+_ to _⊕_) open import Function-universe equality-with-J as F hiding (_∘_) open import Nat equality-with-J as Nat using (_≤_; _≤↑_; pred) open import Omniscience equality-with-J open import Only-allocation open import Upper-bounds ------------------------------------------------------------------------ -- Definitional interpreter -- Modifies the heap size according to the given instruction. modify : Stmt → ℕ → ℕ modify alloc = suc modify dealloc = pred -- A definitional interpreter. It returns a trace of all heap sizes -- encountered during the program's run. The input is the initial heap -- size. mutual ⟦_⟧ : ∀ {i} → Program i → ℕ → Colist ℕ i ⟦ p ⟧ h = h ∷ ⟦ p ⟧′ h ⟦_⟧′ : ∀ {i} → Program i → ℕ → Colist′ ℕ i ⟦ [] ⟧′ h .force = [] ⟦ s ∷ p ⟧′ h .force = ⟦ p .force ⟧ (modify s h) ------------------------------------------------------------------------ -- The maximum heap usage predicate -- The smallest heap size that is required to run the given program -- when the initial heap is empty. Heap-usage : Program ∞ → Conat ∞ → Type Heap-usage p n = LUB (⟦ p ⟧ 0) n -- The smallest extra heap size that is required to run the given -- program, for arbitrary initial heaps. Heap-usage′ : Program ∞ → Conat ∞ → Type Heap-usage′ p n = (∀ h → [ ∞ ] ⟦ p ⟧ h ⊑ n ⊕ ⌜ h ⌝) × (∀ n′ → (∀ h → [ ∞ ] ⟦ p ⟧ h ⊑ n′ ⊕ ⌜ h ⌝) → [ ∞ ] n ≤ n′) -- The number n is an upper bound of the heap size required for a -- program when it is started with an empty heap iff, for any initial -- heap h, n plus the size of h is an upper bound. -- -- Note that this kind of property might not hold for a more -- complicated programming language, in which a program's actions -- could depend on the contents of the initial heap. ∀⟦⟧⊑⇔⟦⟧⊑ : ∀ {p n i} → [ i ] ⟦ p ⟧ 0 ⊑ n ⇔ (∀ h → [ i ] ⟦ p ⟧ h ⊑ n ⊕ ⌜ h ⌝) ∀⟦⟧⊑⇔⟦⟧⊑ {p} {n} {i} = record { to = to p ; from = (∀ h → [ i ] ⟦ p ⟧ h ⊑ n ⊕ ⌜ h ⌝) ↝⟨ _$ 0 ⟩ [ i ] ⟦ p ⟧ 0 ⊑ n ⊕ ⌜ 0 ⌝ ↝⟨ flip transitive-⊑≤ (∼→≤ (+-right-identity _)) ⟩□ [ i ] ⟦ p ⟧ 0 ⊑ n □ } where +⊕-cong : ∀ {m₁ m₂ n i} → [ i ] ⌜ m₁ ⌝ ≤ m₂ → [ i ] ⌜ m₁ + n ⌝ ≤ m₂ ⊕ ⌜ n ⌝ +⊕-cong {m₁} {m₂} {n} {i} = [ i ] ⌜ m₁ ⌝ ≤ m₂ ↝⟨ _+-mono reflexive-≤ _ ⟩ [ i ] ⌜ m₁ ⌝ ⊕ ⌜ n ⌝ ≤ m₂ ⊕ ⌜ n ⌝ ↝⟨ transitive-≤ (∼→≤ (⌜⌝-+ m₁)) ⟩□ [ i ] ⌜ m₁ + n ⌝ ≤ m₂ ⊕ ⌜ n ⌝ □ to : ∀ {m i} p → [ i ] ⟦ p ⟧ m ⊑ n → ∀ h → [ i ] ⟦ p ⟧ (m + h) ⊑ n ⊕ ⌜ h ⌝ to [] (m≤n ∷ _) _ = +⊕-cong m≤n ∷ λ { .force → [] } to (s ∷ p) (m≤n ∷ p⊑) h = +⊕-cong m≤n ∷ λ { .force → to′ _ s (force p⊑) } where to′ : ∀ {i} m s → [ i ] ⟦ force p ⟧ (modify s m) ⊑ n → [ i ] ⟦ force p ⟧ (modify s (m + h)) ⊑ n ⊕ ⌜ h ⌝ to′ _ alloc p⊑ = to (force p) p⊑ h to′ (suc m) dealloc p⊑ = to (force p) p⊑ h to′ zero dealloc p⊑ = transitive-⊑≤ (to (force p) p⊑ (pred h)) (reflexive-≤ n +-mono ⌜⌝-mono (Nat.pred≤ _)) -- Heap-usage p n holds iff Heap-usage′ p n holds. For this reason the -- former, less complicated definition will be used below. Heap-usage⇔Heap-usage′ : ∀ p n → Heap-usage p n ⇔ Heap-usage′ p n Heap-usage⇔Heap-usage′ p n = ([ ∞ ] ⟦ p ⟧ 0 ⊑ n ↝⟨ ∀⟦⟧⊑⇔⟦⟧⊑ ⟩□ (∀ h → [ ∞ ] ⟦ p ⟧ h ⊑ n ⊕ ⌜ h ⌝) □) ×-cong ((∀ n′ → [ ∞ ] ⟦ p ⟧ 0 ⊑ n′ → [ ∞ ] n ≤ n′) ↝⟨ ∀-cong _ (λ _ → →-cong _ ∀⟦⟧⊑⇔⟦⟧⊑ F.id) ⟩□ (∀ n′ → (∀ h → [ ∞ ] ⟦ p ⟧ h ⊑ n′ ⊕ ⌜ h ⌝) → [ ∞ ] n ≤ n′) □) -- The maximum heap usage is unique (up to bisimilarity). max-unique : ∀ {p m n i} → Heap-usage p m → Heap-usage p n → Conat.[ i ] m ∼ n max-unique = lub-unique -- Heap-usage p respects bisimilarity. max-respects-∼ : ∀ {p q m n} → Colist.[ ∞ ] ⟦ p ⟧ 0 ∼ ⟦ q ⟧ 0 → Conat.[ ∞ ] m ∼ n → Heap-usage p m → Heap-usage q n max-respects-∼ {p} {q} {m} {n} p∼q m∼n = Σ-map ([ ∞ ] ⟦ p ⟧ 0 ⊑ m ↝⟨ (λ hyp → transitive-⊑≤ (□-∼ p∼q hyp) (∼→≤ m∼n)) ⟩□ [ ∞ ] ⟦ q ⟧ 0 ⊑ n □) ((∀ o → [ ∞ ] ⟦ p ⟧ 0 ⊑ o → [ ∞ ] m ≤ o) ↝⟨ (λ hyp₁ o hyp₂ → transitive-≤ (∼→≤ (Conat.symmetric-∼ m∼n)) (hyp₁ o (□-∼ (Colist.symmetric-∼ p∼q) hyp₂))) ⟩□ (∀ o → [ ∞ ] ⟦ q ⟧ 0 ⊑ o → [ ∞ ] n ≤ o) □) -- If the semantics of a program started in the empty heap does not -- have a finite upper bound, then the maximum heap usage of the -- program is infinity. no-finite-max→infinite-max : ∀ p → (∀ n → ¬ [ ∞ ] ⟦ p ⟧ 0 ⊑ ⌜ n ⌝) → Heap-usage p infinity no-finite-max→infinite-max p hyp = (⟦ p ⟧ 0 ⊑infinity) , λ n′ → [ ∞ ] ⟦ p ⟧ 0 ⊑ n′ ↝⟨ no-finite→infinite hyp ⟩ Conat.[ ∞ ] n′ ∼ infinity ↝⟨ ∼→≤ ∘ Conat.symmetric-∼ ⟩□ [ ∞ ] infinity ≤ n′ □ -- If the maximum heap usage could always be determined (in a certain -- sense), then WLPO (which is a constructive taboo) would hold. max→wlpo : (∀ p → ∃ λ n → Heap-usage p n) → WLPO max→wlpo find-max = λ f → case find-max (p f) of λ where (zero , max-0) → inj₁ (_⇔_.to 0⇔≡false max-0) (suc _ , max-+) → inj₂ (+→≢false max-+) where -- If f takes the value true, then p f contains exactly one -- occurrence of alloc, at the first index for which f takes the -- value true. Otherwise p f contains zero occurrences of alloc. p : ∀ {i} → (ℕ → Bool) → Program i p f = helper (f 0) module P where helper : ∀ {i} → Bool → Program i helper = if_then alloc ∷′ [] else dealloc ∷ λ { .force → p (λ n → f (1 + n)) } -- The maximum heap usage of p f is zero iff f always takes the -- value false. 0⇔≡false : ∀ {f} → Heap-usage (p f) ⌜ 0 ⌝ ⇔ (∀ n → f n ≡ false) 0⇔≡false = record { to = →≡false _ ∘ proj₁ ; from = λ ≡false → ≡false→ _ ≡false Nat.≤-refl , (λ _ _ → zero) } where →≡false : ∀ f → [ ∞ ] ⟦ p f ⟧ 0 ⊑ ⌜ 0 ⌝ → ∀ n → f n ≡ false →≡false f ⟦pf⟧0⊑0 _ = helper _ _ refl ⟦pf⟧0⊑0 where helper : ∀ b n → f 0 ≡ b → [ ∞ ] ⟦ P.helper f b ⟧ 0 ⊑ ⌜ 0 ⌝ → f n ≡ false helper false zero f0≡false = λ _ → f0≡false helper false (suc n) _ = [ ∞ ] ⟦ P.helper f false ⟧ 0 ⊑ ⌜ 0 ⌝ ↝⟨ □-tail ⟩ [ ∞ ] ⟦ p (f ∘ suc) ⟧ 0 ⊑ ⌜ 0 ⌝ ↝⟨ (λ hyp → →≡false (f ∘ suc) hyp n) ⟩□ (f ∘ suc) n ≡ false □ helper true n _ = [ ∞ ] ⟦ P.helper f true ⟧ 0 ⊑ ⌜ 0 ⌝ ↝⟨ □-head ∘ □-tail ⟩ ([ ∞ ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝) ↝⟨ ⌜⌝-mono⁻¹ ⟩ 1 ≤ 0 ↝⟨ Nat.+≮ 0 ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ f n ≡ false □ ≡false→ : ∀ {m n i} f → (∀ n → f n ≡ false) → m ≤ n → [ i ] ⟦ p f ⟧ m ⊑ ⌜ n ⌝ ≡false→ {m} {n} f ≡false m≤n with f 0 | ≡false 0 ... | true | () ... | false | _ = zero +-mono ⌜⌝-mono m≤n ∷ λ { .force → ≡false→ (f ∘ suc) (≡false ∘ suc) ( pred m Nat.≤⟨ Nat.pred≤ _ ⟩ m Nat.≤⟨ m≤n ⟩∎ n ∎≤) } -- If the maximum heap usage of p f is positive, then f does not -- always take the value false. +→≢false : ∀ {f n} → Heap-usage (p f) (suc n) → ¬ (∀ n → f n ≡ false) +→≢false {f} {n} = Heap-usage (p f) (suc n) ↝⟨ (λ max-+ → Heap-usage (p f) ⌜ 0 ⌝ ↝⟨ max-unique max-+ ⟩ Conat.[ ∞ ] suc n ∼ ⌜ 0 ⌝ ↝⟨ (λ ()) ⟩□ ⊥ □) ⟩ ¬ Heap-usage (p f) ⌜ 0 ⌝ ↝⟨ (λ hyp ≡false → hyp (_⇔_.from 0⇔≡false ≡false)) ⟩□ ¬ (∀ n → f n ≡ false) □ -- In fact, WLPO is logically equivalent to a certain formulation of -- "the maximum heap usage can always be determined". wlpo⇔max : WLPO ⇔ (∀ p → ∃ λ n → Heap-usage p n) wlpo⇔max = record { to = λ wlpo p → wlpo→lub wlpo (⟦ p ⟧ 0) ; from = max→wlpo } -- We also get that WLPO is logically equivalent to a certain -- formulation of "least upper bounds of colists of natural numbers -- can always be determined". wlpo⇔lub : WLPO ⇔ (∀ ms → ∃ λ n → LUB ms n) wlpo⇔lub = record { to = wlpo→lub ; from = λ find-lub → max→wlpo (λ p → find-lub (⟦ p ⟧ 0)) } ------------------------------------------------------------------------ -- Some examples -- When this semantics is used all three programs are non-terminating, -- in the sense that their traces are infinitely long. bounded-loops : ∀ {i n} → Conat.[ i ] length (⟦ bounded ⟧ n) ∼ infinity bounded-loops = suc λ { .force → suc λ { .force → bounded-loops }} bounded₂-loops : ∀ {i n} → Conat.[ i ] length (⟦ bounded₂ ⟧ n) ∼ infinity bounded₂-loops = suc λ { .force → suc λ { .force → suc λ { .force → suc λ { .force → bounded₂-loops }}}} unbounded-loops : ∀ {i n} → Conat.[ i ] length (⟦ unbounded ⟧ n) ∼ infinity unbounded-loops = suc λ { .force → unbounded-loops } -- Zero is not an upper bound of the semantics of bounded when it is -- started with an empty heap. ⟦bounded⟧⋢0 : ¬ [ ∞ ] ⟦ bounded ⟧ 0 ⊑ ⌜ 0 ⌝ ⟦bounded⟧⋢0 = [ ∞ ] ⟦ bounded ⟧ 0 ⊑ ⌜ 0 ⌝ ↝⟨ □-head ∘ □-tail ⟩ [ ∞ ] ⌜ 1 ⌝ ≤ ⌜ 0 ⌝ ↝⟨ ⌜⌝-mono⁻¹ ⟩ (1 ≤ 0) ↝⟨ Nat.+≮ 0 ⟩□ ⊥ □ -- However, one is. ⟦bounded⟧⊑1 : ∀ {i} → [ i ] ⟦ bounded ⟧ 0 ⊑ ⌜ 1 ⌝ ⟦bounded⟧⊑1 = ≤suc ∷ λ { .force → reflexive-≤ _ ∷ λ { .force → ⟦bounded⟧⊑1 }} -- The maximum heap usage of bounded is 1. max-bounded-1 : Heap-usage bounded ⌜ 1 ⌝ max-bounded-1 = ⟦bounded⟧⊑1 , λ n′ → [ ∞ ] ⟦ bounded ⟧ 0 ⊑ n′ ↝⟨ □-head ∘ □-tail ⟩□ [ ∞ ] ⌜ 1 ⌝ ≤ n′ □ -- Two is an upper bound of the semantics of bounded₂ when it is -- started in an empty heap. ⟦bounded₂⟧⊑2 : ∀ {i} → [ i ] ⟦ bounded₂ ⟧ 0 ⊑ ⌜ 2 ⌝ ⟦bounded₂⟧⊑2 = zero ∷ λ { .force → suc (λ { .force → zero }) ∷ λ { .force → reflexive-≤ _ ∷ λ { .force → suc (λ { .force → zero }) ∷ λ { .force → ⟦bounded₂⟧⊑2 }}}} -- The maximum heap usage of bounded₂ is 2. max-bounded₂-2 : Heap-usage bounded₂ ⌜ 2 ⌝ max-bounded₂-2 = ⟦bounded₂⟧⊑2 , λ n′ → [ ∞ ] ⟦ bounded₂ ⟧ 0 ⊑ n′ ↝⟨ □-head ∘ □-tail ∘ □-tail ⟩□ [ ∞ ] ⌜ 2 ⌝ ≤ n′ □ -- There is no finite upper bound of the semantics of unbounded. ⟦unbounded⟧⋢⌜⌝ : ∀ {n} → ¬ [ ∞ ] ⟦ unbounded ⟧ 0 ⊑ ⌜ n ⌝ ⟦unbounded⟧⋢⌜⌝ {n} = helper (Nat.≤→≤↑ (Nat.zero≤ _)) where helper : ∀ {h} → h ≤↑ 1 + n → ¬ [ ∞ ] ⟦ unbounded ⟧ h ⊑ ⌜ n ⌝ helper (Nat.≤↑-refl refl) = [ ∞ ] ⟦ unbounded ⟧ (1 + n) ⊑ ⌜ n ⌝ ↝⟨ □-head ⟩ [ ∞ ] ⌜ 1 + n ⌝ ≤ ⌜ n ⌝ ↝⟨ ⌜⌝-mono⁻¹ ⟩ (1 + n ≤ n) ↝⟨ Nat.+≮ 0 ⟩□ ⊥ □ helper {h} (Nat.≤↑-step 1+h≤1+n) = [ ∞ ] ⟦ unbounded ⟧ h ⊑ ⌜ n ⌝ ↝⟨ □-tail ⟩ [ ∞ ] ⟦ unbounded ⟧ (1 + h) ⊑ ⌜ n ⌝ ↝⟨ helper 1+h≤1+n ⟩□ ⊥ □ -- The maximum heap usage of unbounded is infinity. max-unbounded-∞ : Heap-usage unbounded infinity max-unbounded-∞ = no-finite-max→infinite-max unbounded λ _ → ⟦unbounded⟧⋢⌜⌝ ------------------------------------------------------------------------ -- A simple optimiser -- An optimiser that replaces subsequences of the form "alloc, alloc, -- dealloc" with "alloc". opt : ∀ {i} → Program ∞ → Program i opt [] = [] opt (dealloc ∷ p) = dealloc ∷ λ { .force → opt (p .force) } opt {i} (alloc ∷ p) = opt₁ (p .force) module Opt where default : Program i default = alloc ∷ λ { .force → opt (p .force) } opt₂ : Program ∞ → Program i opt₂ (dealloc ∷ p″) = alloc ∷ λ { .force → opt (p″ .force) } opt₂ _ = default opt₁ : Program ∞ → Program i opt₁ (alloc ∷ p′) = opt₂ (p′ .force) opt₁ _ = default -- The semantics of opt bounded₂ matches that of bounded. opt-bounded₂∼bounded : ∀ {i n} → Colist.[ i ] ⟦ opt bounded₂ ⟧ n ∼ ⟦ bounded ⟧ n opt-bounded₂∼bounded = refl ∷ λ { .force → refl ∷ λ { .force → opt-bounded₂∼bounded }} -- Sometimes the optimised program's maximum heap usage is less than -- that of the original program. opt-improves : ∃ λ p → Heap-usage p ⌜ 2 ⌝ × Heap-usage (opt p) ⌜ 1 ⌝ opt-improves = bounded₂ , max-bounded₂-2 , max-respects-∼ (Colist.symmetric-∼ opt-bounded₂∼bounded) (_ ∎∼) max-bounded-1 -- The optimised program's maximum heap usage is at most as large as -- that of the original program (assuming that these maximums exist). mutual opt-correct : ∀ {i m n} p → Heap-usage (opt p) m → Heap-usage p n → [ i ] m ≤ n opt-correct p max₁ max₂ = _⇔_.to (≲⇔least-upper-bounds-≤ max₁ max₂) (opt-correct-≲ p) opt-correct-≲ : ∀ {h i} p → [ i ] ⟦ opt p ⟧ h ≲ ⟦ p ⟧ h opt-correct-≲ {h} [] = ⟦ opt [] ⟧ h ∼⟨ ∷∼∷′ ⟩≲ h ∷′ [] ∼⟨ Colist.symmetric-∼ ∷∼∷′ ⟩□≲ ⟦ [] ⟧ h opt-correct-≲ {h} (dealloc ∷ p) = ⟦ opt (dealloc ∷ p) ⟧ h ∼⟨ ∷∼∷′ ⟩≲ h ∷′ ⟦ opt (p .force) ⟧ (pred h) ≲⟨ (cons′-≲ λ { hyp .force → opt-correct-≲ (p .force) hyp }) ⟩ h ∷′ ⟦ p .force ⟧ (pred h) ∼⟨ Colist.symmetric-∼ ∷∼∷′ ⟩□≲ ⟦ dealloc ∷ p ⟧ h opt-correct-≲ {h} (alloc ∷ p) = ⟦ opt (alloc ∷ p) ⟧ h ≡⟨⟩≲ ⟦ Opt.opt₁ p (p .force) ⟧ h ≲⟨ opt-correct₁ _ refl ⟩ h ∷′ ⟦ p .force ⟧ (1 + h) ∼⟨ Colist.symmetric-∼ ∷∼∷′ ⟩□≲ ⟦ alloc ∷ p ⟧ h where default-correct : ∀ {p′ i} → p′ ≡ p .force → [ i ] ⟦ Opt.default p ⟧ h ≲ h ∷′ ⟦ p′ ⟧ (1 + h) default-correct refl = ⟦ Opt.default p ⟧ h ∼⟨ ∷∼∷′ ⟩≲ h ∷′ ⟦ opt (p .force) ⟧ (1 + h) ≲⟨ (cons′-≲ λ { hyp .force → opt-correct-≲ (p .force) hyp }) ⟩□ h ∷′ ⟦ p .force ⟧ (1 + h) opt-correct₁ : ∀ {i} p′ → p′ ≡ p .force → [ i ] ⟦ Opt.opt₁ p p′ ⟧ h ≲ h ∷′ ⟦ p′ ⟧ (1 + h) opt-correct₁ [] []≡ = default-correct []≡ opt-correct₁ (dealloc ∷ p′) d∷≡ = default-correct d∷≡ opt-correct₁ (alloc ∷ p′) a∷≡ = ⟦ Opt.opt₂ p (p′ .force) ⟧ h ≲⟨ opt-correct₂ (p′ .force) refl ⟩ h ∷′ 1 + h ∷′ ⟦ p′ .force ⟧ (2 + h) ∼⟨ (refl ∷ λ { .force → Colist.symmetric-∼ ∷∼∷′ }) ⟩□≲ h ∷′ ⟦ alloc ∷ p′ ⟧ (1 + h) where default-correct′ : ∀ {i p″} → p″ ≡ p′ .force → [ i ] ⟦ Opt.default p ⟧ h ≲ h ∷′ 1 + h ∷′ ⟦ p″ ⟧ (2 + h) default-correct′ refl = ⟦ Opt.default p ⟧ h ≲⟨ default-correct refl ⟩ h ∷′ ⟦ p .force ⟧ (1 + h) ≡⟨ by a∷≡ ⟩≲ h ∷′ ⟦ alloc ∷ p′ ⟧ (1 + h) ∼⟨ (refl ∷ λ { .force → ∷∼∷′ }) ⟩□≲ h ∷′ 1 + h ∷′ ⟦ p′ .force ⟧ (2 + h) opt-correct₂ : ∀ {i} p″ → p″ ≡ p′ .force → [ i ] ⟦ Opt.opt₂ p p″ ⟧ h ≲ h ∷′ 1 + h ∷′ ⟦ p″ ⟧ (2 + h) opt-correct₂ [] []≡ = default-correct′ []≡ opt-correct₂ (alloc ∷ p″) a∷≡ = default-correct′ a∷≡ opt-correct₂ (dealloc ∷ p″) _ = ⟦ Opt.opt₂ p (dealloc ∷ p″) ⟧ h ∼⟨ ∷∼∷′ ⟩≲ h ∷′ ⟦ opt (p″ .force) ⟧ (1 + h) ≲⟨ (cons′-≲ λ { hyp .force → opt-correct-≲ (p″ .force) hyp }) ⟩ h ∷′ ⟦ p″ .force ⟧ (1 + h) ≲⟨ (cons′-≲ λ { hyp .force → consʳ-≲ (consʳ-≲ (_ □≲)) hyp }) ⟩ h ∷′ 1 + h ∷′ 2 + h ∷′ ⟦ p″ .force ⟧ (1 + h) ∼⟨ (refl ∷ λ { .force → refl ∷ λ { .force → Colist.symmetric-∼ ∷∼∷′ } }) ⟩□≲ h ∷′ 1 + h ∷′ ⟦ dealloc ∷ p″ ⟧ (2 + h)
{ "alphanum_fraction": 0.4684738835, "avg_line_length": 34.4451345756, "ext": "agda", "hexsha": "f5dfad036c2f27b670cc64d65c19ee24205243ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Unbounded-space.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Unbounded-space.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Unbounded-space.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6988, "size": 16637 }
{-# OPTIONS --without-K #-} open import HoTT open import homotopy.SuspSectionDecomp open import homotopy.CofiberComp module homotopy.SuspProduct where module SuspProduct {i} {j} (X : Ptd i) (Y : Ptd j) where private i₁ : fst (X ⊙→ X ⊙× Y) i₁ = ((λ x → (x , snd Y)) , idp) i₂ : fst (Y ⊙→ X ⊙× Y) i₂ = ((λ y → (snd X , y)) , idp) j₂ : fst (⊙Cof i₁) → fst Y j₂ = CofiberRec.f (snd Y) snd (λ x → idp) ⊙path : ⊙Susp (X ⊙× Y) == ⊙Susp X ⊙∨ (⊙Susp Y ⊙∨ ⊙Susp (X ⊙∧ Y)) ⊙path = ⊙ua (⊙≃-in (SuspSectionDecomp.eq i₁ fst (λ x → idp)) (! $ ap winl $ merid (snd X))) ∙ ap (λ Z → ⊙Susp X ⊙∨ Z) (⊙ua (⊙≃-in (SuspSectionDecomp.eq (⊙cfcod' i₁ ⊙∘ i₂) j₂ (λ y → idp)) (! $ ap winl $ merid (snd Y)))) ∙ ap (λ Z → ⊙Susp X ⊙∨ (⊙Susp Y ⊙∨ ⊙Susp Z)) (CofiberComp.⊙path i₁ i₂)
{ "alphanum_fraction": 0.4924330617, "avg_line_length": 28.6333333333, "ext": "agda", "hexsha": "dd2667b3131be2cef210244ee25bfc401ec0f5e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/SuspProduct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/SuspProduct.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/SuspProduct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 391, "size": 859 }
open import Data.Product using ( ∃ ; _×_ ; _,_ ) open import Data.Sum using ( inj₁ ; inj₂ ) open import Relation.Nullary using ( Dec ; yes ; no ) open import Relation.Unary using ( _∈_ ; _∉_ ; ∅ ; U ; _∪_ ; _∩_ ; ∁ ) open import Web.Semantic.DL.Concept using ( Concept ; ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 ; neg ) open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ ; ⟦⟧₂-resp-≈ ; ⟦⟧₂-resp-≲ ; ⟦⟧₂-galois ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; Δ ; _⊨_≈_ ; _⊨_≉_ ; con ; con-≈ ; ≈-refl ; ≈-sym ; ≈-trans ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( _≲_ ; _≃_ ; ≲-resp-con ; ≲-resp-≈ ; ≃-impl-≲ ; ≃-impl-≳ ; ≃-iso ; ≃-iso⁻¹ ; ≃-image ; ≃-image⁻¹ ; ≃-refl-≈ ; ≃-sym ) open import Web.Semantic.Util using ( Subset ; tt ; _∘_ ; ExclMiddle ; elim ) module Web.Semantic.DL.Concept.Model {Σ : Signature} where _⟦_⟧₁ : ∀ (I : Interp Σ) → Concept Σ → Subset (Δ I) I ⟦ ⟨ c ⟩ ⟧₁ = con I c I ⟦ ¬⟨ c ⟩ ⟧₁ = ∁ (con I c) I ⟦ ⊤ ⟧₁ = U I ⟦ ⊥ ⟧₁ = ∅ I ⟦ C ⊓ D ⟧₁ = I ⟦ C ⟧₁ ∩ I ⟦ D ⟧₁ I ⟦ C ⊔ D ⟧₁ = I ⟦ C ⟧₁ ∪ I ⟦ D ⟧₁ I ⟦ ∀[ R ] C ⟧₁ = λ x → ∀ y → ((x , y) ∈ I ⟦ R ⟧₂) → (y ∈ I ⟦ C ⟧₁) I ⟦ ∃⟨ R ⟩ C ⟧₁ = λ x → ∃ λ y → ((x , y) ∈ I ⟦ R ⟧₂) × (y ∈ I ⟦ C ⟧₁) I ⟦ ≤1 R ⟧₁ = λ x → ∀ y z → ((x , y) ∈ I ⟦ R ⟧₂) → ((x , z) ∈ I ⟦ R ⟧₂) → (I ⊨ y ≈ z) I ⟦ >1 R ⟧₁ = λ x → ∃ λ y → ∃ λ z → ((x , y) ∈ I ⟦ R ⟧₂) × ((x , z) ∈ I ⟦ R ⟧₂) × (I ⊨ y ≉ z) ⟦⟧₁-resp-≈ : ∀ I C {x y} → (x ∈ I ⟦ C ⟧₁) → (I ⊨ x ≈ y) → (y ∈ I ⟦ C ⟧₁) ⟦⟧₁-resp-≈ I ⟨ c ⟩ x∈⟦c⟧ x≈y = con-≈ I c x∈⟦c⟧ x≈y ⟦⟧₁-resp-≈ I ¬⟨ c ⟩ x∉⟦c⟧ x≈y = λ y∈⟦c⟧ → x∉⟦c⟧ (con-≈ I c y∈⟦c⟧ (≈-sym I x≈y)) ⟦⟧₁-resp-≈ I ⊤ x∈⊤ x≈y = tt ⟦⟧₁-resp-≈ I (C ⊓ D) (x∈⟦C⟧ , x∈⟦D⟧) x≈y = (⟦⟧₁-resp-≈ I C x∈⟦C⟧ x≈y , ⟦⟧₁-resp-≈ I D x∈⟦D⟧ x≈y) ⟦⟧₁-resp-≈ I (C ⊔ D) (inj₁ x∈⟦C⟧) x≈y = inj₁ (⟦⟧₁-resp-≈ I C x∈⟦C⟧ x≈y) ⟦⟧₁-resp-≈ I (C ⊔ D) (inj₂ x∈⟦D⟧) x≈y = inj₂ (⟦⟧₁-resp-≈ I D x∈⟦D⟧ x≈y) ⟦⟧₁-resp-≈ I (∀[ R ] C) x∈⟦∀RC⟧ x≈y = λ z yz∈⟦R⟧ → x∈⟦∀RC⟧ z (⟦⟧₂-resp-≈ I R x≈y yz∈⟦R⟧ (≈-refl I)) ⟦⟧₁-resp-≈ I (∃⟨ R ⟩ C) (z , xz∈⟦R⟧ , z∈⟦C⟧) x≈y = (z , ⟦⟧₂-resp-≈ I R (≈-sym I x≈y) xz∈⟦R⟧ (≈-refl I) , z∈⟦C⟧) ⟦⟧₁-resp-≈ I (≤1 R) x∈⟦≤1R⟧ x≈y = λ w z yw∈⟦R⟧ yz∈⟦R⟧ → x∈⟦≤1R⟧ w z (⟦⟧₂-resp-≈ I R x≈y yw∈⟦R⟧ (≈-refl I)) (⟦⟧₂-resp-≈ I R x≈y yz∈⟦R⟧ (≈-refl I)) ⟦⟧₁-resp-≈ I (>1 R) (w , z , xw∈⟦R⟧ , xz∈⟦R⟧ , w≉z) x≈y = ( w , z , ⟦⟧₂-resp-≈ I R (≈-sym I x≈y) xw∈⟦R⟧ (≈-refl I) , ⟦⟧₂-resp-≈ I R (≈-sym I x≈y) xz∈⟦R⟧ (≈-refl I) , w≉z) ⟦⟧₁-resp-≈ I ⊥ () x≈y mutual ⟦⟧₁-refl-≃ : ∀ {I J : Interp Σ} → (I≃J : I ≃ J) → ∀ {x} C → (≃-image⁻¹ I≃J x ∈ I ⟦ C ⟧₁) → (x ∈ J ⟦ C ⟧₁) ⟦⟧₁-refl-≃ {I} {J} I≃J {x} C x∈⟦C⟧ = ⟦⟧₁-resp-≈ J C (⟦⟧₁-resp-≃ I≃J C x∈⟦C⟧) (≃-iso⁻¹ I≃J x) ⟦⟧₁-resp-≃ : ∀ {I J : Interp Σ} → (I≃J : I ≃ J) → ∀ {x} C → (x ∈ I ⟦ C ⟧₁) → (≃-image I≃J x ∈ J ⟦ C ⟧₁) ⟦⟧₁-resp-≃ {I} {J} I≃J ⟨ c ⟩ x∈⟦c⟧ = ≲-resp-con (≃-impl-≲ I≃J) x∈⟦c⟧ ⟦⟧₁-resp-≃ {I} {J} I≃J {x} ¬⟨ c ⟩ x∉⟦c⟧ = λ x∈⟦c⟧ → x∉⟦c⟧ (con-≈ I c (≲-resp-con (≃-impl-≳ I≃J) x∈⟦c⟧) (≃-iso I≃J x)) ⟦⟧₁-resp-≃ {I} {J} I≃J ⊤ _ = tt ⟦⟧₁-resp-≃ {I} {J} I≃J ⊥ () ⟦⟧₁-resp-≃ {I} {J} I≃J (C ⊓ D) (x∈⟦C⟧ , x∈⟦D⟧) = (⟦⟧₁-resp-≃ I≃J C x∈⟦C⟧ , ⟦⟧₁-resp-≃ I≃J D x∈⟦D⟧) ⟦⟧₁-resp-≃ {I} {J} I≃J (C ⊔ D) (inj₁ x∈⟦C⟧) = inj₁ (⟦⟧₁-resp-≃ I≃J C x∈⟦C⟧) ⟦⟧₁-resp-≃ {I} {J} I≃J (C ⊔ D) (inj₂ x∈⟦D⟧) = inj₂ (⟦⟧₁-resp-≃ I≃J D x∈⟦D⟧) ⟦⟧₁-resp-≃ {I} {J} I≃J (∀[ R ] C) x∈⟦∀RC⟧ = λ y xy∈⟦R⟧ → ⟦⟧₁-refl-≃ I≃J C (x∈⟦∀RC⟧ (≃-image⁻¹ I≃J y) (⟦⟧₂-galois (≃-sym I≃J) R xy∈⟦R⟧)) ⟦⟧₁-resp-≃ {I} {J} I≃J (∃⟨ R ⟩ C) (y , xy∈⟦R⟧ , y∈⟦C⟧) = ( ≃-image I≃J y , ⟦⟧₂-resp-≲ (≃-impl-≲ I≃J) R xy∈⟦R⟧ , ⟦⟧₁-resp-≃ I≃J C y∈⟦C⟧ ) ⟦⟧₁-resp-≃ {I} {J} I≃J (≤1 R) x∈⟦≤1R⟧ = λ y z xy∈⟦R⟧ xz∈⟦R⟧ → ≃-refl-≈ I≃J (x∈⟦≤1R⟧ (≃-image⁻¹ I≃J y) (≃-image⁻¹ I≃J z) (⟦⟧₂-galois (≃-sym I≃J) R xy∈⟦R⟧) (⟦⟧₂-galois (≃-sym I≃J) R xz∈⟦R⟧)) ⟦⟧₁-resp-≃ {I} {J} I≃J (>1 R) (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z) = ( ≃-image I≃J y , ≃-image I≃J z , ⟦⟧₂-resp-≲ (≃-impl-≲ I≃J) R xy∈⟦R⟧ , ⟦⟧₂-resp-≲ (≃-impl-≲ I≃J) R xz∈⟦R⟧ , y≉z ∘ ≃-refl-≈ (≃-sym I≃J) ) neg-sound : ∀ I {x} C → (x ∈ I ⟦ neg C ⟧₁) → (x ∉ I ⟦ C ⟧₁) neg-sound I ⟨ c ⟩ x∉⟦c⟧ x∈⟦c⟧ = x∉⟦c⟧ x∈⟦c⟧ neg-sound I ¬⟨ c ⟩ x∈⟦c⟧ x∉⟦c⟧ = x∉⟦c⟧ x∈⟦c⟧ neg-sound I ⊤ () _ neg-sound I ⊥ _ () neg-sound I (C ⊓ D) (inj₁ x∈⟦¬C⟧) (x∈⟦C⟧ , x∈⟦D⟧) = neg-sound I C x∈⟦¬C⟧ x∈⟦C⟧ neg-sound I (C ⊓ D) (inj₂ x∈⟦¬D⟧) (x∈⟦C⟧ , x∈⟦D⟧) = neg-sound I D x∈⟦¬D⟧ x∈⟦D⟧ neg-sound I (C ⊔ D) (x∈⟦¬C⟧ , x∈⟦¬D⟧) (inj₁ x∈⟦C⟧) = neg-sound I C x∈⟦¬C⟧ x∈⟦C⟧ neg-sound I (C ⊔ D) (x∈⟦¬C⟧ , x∈⟦¬D⟧) (inj₂ x∈⟦D⟧) = neg-sound I D x∈⟦¬D⟧ x∈⟦D⟧ neg-sound I (∀[ R ] C) (y , xy∈⟦R⟧ , y∈⟦¬C⟧) x∈⟦∀RC⟧ = neg-sound I C y∈⟦¬C⟧ (x∈⟦∀RC⟧ y xy∈⟦R⟧) neg-sound I (∃⟨ R ⟩ C) x∈⟦∀R¬C⟧ (y , xy∈⟦R⟧ , y∈⟦C⟧) = neg-sound I C (x∈⟦∀R¬C⟧ y xy∈⟦R⟧) y∈⟦C⟧ neg-sound I (≤1 R) (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z) x∈⟦≤1R⟧ = y≉z (x∈⟦≤1R⟧ y z xy∈⟦R⟧ xz∈⟦R⟧) neg-sound I (>1 R) x∈⟦≤1R⟧ (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z) = y≉z (x∈⟦≤1R⟧ y z xy∈⟦R⟧ xz∈⟦R⟧) neg-complete : ExclMiddle → ∀ I {x} C → (x ∉ I ⟦ C ⟧₁) → (x ∈ I ⟦ neg C ⟧₁) neg-complete excl-middle I ⟨ c ⟩ x∉⟦c⟧ = x∉⟦c⟧ neg-complete excl-middle I {x} ¬⟨ c ⟩ ¬x∉⟦c⟧ with excl-middle (x ∈ con I c) neg-complete excl-middle I ¬⟨ c ⟩ ¬x∉⟦c⟧ | yes x∈⟦c⟧ = x∈⟦c⟧ neg-complete excl-middle I ¬⟨ c ⟩ ¬x∉⟦c⟧ | no x∉⟦c⟧ = elim (¬x∉⟦c⟧ x∉⟦c⟧) neg-complete excl-middle I ⊤ x∉⟦⊤⟧ = x∉⟦⊤⟧ tt neg-complete excl-middle I ⊥ x∉⟦⊥⟧ = tt neg-complete excl-middle I {x} (C ⊓ D) x∉⟦C⊓D⟧ with excl-middle (x ∈ I ⟦ C ⟧₁) neg-complete excl-middle I (C ⊓ D) x∉⟦C⊓D⟧ | yes x∈⟦C⟧ = inj₂ (neg-complete excl-middle I D (λ x∈⟦D⟧ → x∉⟦C⊓D⟧ (x∈⟦C⟧ , x∈⟦D⟧))) neg-complete excl-middle I (C ⊓ D) x∉⟦C⊓D⟧ | no x∉⟦C⟧ = inj₁ (neg-complete excl-middle I C x∉⟦C⟧) neg-complete excl-middle I (C ⊔ D) x∉⟦C⊔D⟧ = ( neg-complete excl-middle I C (x∉⟦C⊔D⟧ ∘ inj₁) , neg-complete excl-middle I D (x∉⟦C⊔D⟧ ∘ inj₂)) neg-complete excl-middle I {x} (∀[ R ] C) x∉⟦∀RC⟧ with excl-middle (∃ λ y → ((x , y) ∈ I ⟦ R ⟧₂) × (y ∉ I ⟦ C ⟧₁)) neg-complete excl-middle I {x} (∀[ R ] C) x∉⟦∀RC⟧ | yes (y , xy∈⟦R⟧ , y∉⟦C⟧) = (y , xy∈⟦R⟧ , neg-complete excl-middle I C y∉⟦C⟧) neg-complete excl-middle I {x} (∀[ R ] C) x∉⟦∀RC⟧ | no ∄xy∈⟦R⟧∙y∉⟦C⟧ = elim (x∉⟦∀RC⟧ lemma) where lemma : x ∈ I ⟦ ∀[ R ] C ⟧₁ lemma y xy∈⟦R⟧ with excl-middle (y ∈ I ⟦ C ⟧₁) lemma y xy∈⟦R⟧ | yes y∈⟦C⟧ = y∈⟦C⟧ lemma y xy∈⟦R⟧ | no y∉⟦C⟧ = elim (∄xy∈⟦R⟧∙y∉⟦C⟧ (y , xy∈⟦R⟧ , y∉⟦C⟧)) neg-complete excl-middle I (∃⟨ R ⟩ C) x∉⟦∃RC⟧ = λ y xy∈⟦R⟧ → neg-complete excl-middle I C (λ y∈⟦C⟧ → x∉⟦∃RC⟧ (y , xy∈⟦R⟧ , y∈⟦C⟧)) neg-complete excl-middle I {x} (≤1 R) x∉⟦≤1R⟧ = lemma where lemma : x ∈ I ⟦ >1 R ⟧₁ lemma with excl-middle (x ∈ I ⟦ >1 R ⟧₁) lemma | yes x∈⟦>1R⟧ = x∈⟦>1R⟧ lemma | no x∉⟦>1R⟧ = elim (x∉⟦≤1R⟧ lemma′) where lemma′ : x ∈ I ⟦ ≤1 R ⟧₁ lemma′ y z xy∈⟦R⟧ xz∈⟦R⟧ with excl-middle (I ⊨ y ≈ z) lemma′ y z xy∈⟦R⟧ xz∈⟦R⟧ | yes y≈z = y≈z lemma′ y z xy∈⟦R⟧ xz∈⟦R⟧ | no y≉z = elim (x∉⟦>1R⟧ (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z)) neg-complete excl-middle I {x} (>1 R) x∉⟦>1R⟧ = lemma where lemma : x ∈ I ⟦ ≤1 R ⟧₁ lemma y z xy∈⟦R⟧ xz∈⟦R⟧ with excl-middle (I ⊨ y ≈ z) lemma y z xy∈⟦R⟧ xz∈⟦R⟧ | yes y≈z = y≈z lemma y z xy∈⟦R⟧ xz∈⟦R⟧ | no y≉z = elim (x∉⟦>1R⟧ (y , z , xy∈⟦R⟧ , xz∈⟦R⟧ , y≉z))
{ "alphanum_fraction": 0.421436142, "avg_line_length": 50.6577181208, "ext": "agda", "hexsha": "d623d08b7490942095bec66a5dd1bc102e86f945", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Concept/Model.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Concept/Model.agda", "max_line_length": 173, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Concept/Model.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 5130, "size": 7548 }
{-# OPTIONS --universe-polymorphism --no-irrelevant-projections --without-K #-} module SafeFlagSafePragmas where
{ "alphanum_fraction": 0.7719298246, "avg_line_length": 28.5, "ext": "agda", "hexsha": "ae76f3ca006be8743883ea6ca83f81498f6e0aea", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/SafeFlagSafePragmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 114 }
module *-assoc where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; cong) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import *-distrib-+ using (*-distrib-+) -- 積の結合律 (associativity) *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) *-assoc zero n p = begin (zero * n) * p ≡⟨⟩ zero * p ≡⟨⟩ zero ≡⟨⟩ zero * (n * p) ∎ *-assoc (suc m) n p = begin ((suc m) * n) * p ≡⟨⟩ (n + m * n) * p ≡⟨ *-distrib-+ n (m * n) p ⟩ (n * p) + m * n * p ≡⟨ cong ((n * p) +_) (*-assoc m n p) ⟩ (n * p) + m * (n * p) ≡⟨⟩ (suc m) * (n * p) ∎
{ "alphanum_fraction": 0.466367713, "avg_line_length": 19.6764705882, "ext": "agda", "hexsha": "5600163ee3442b375da8314157fef2093ded19ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/induction/*-assoc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/induction/*-assoc.agda", "max_line_length": 53, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/induction/*-assoc.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 327, "size": 669 }
open import Agda.Primitive using (Level; lsuc) variable ℓ p : Level A B : Set ℓ x y z : A postulate easy : A record R a : Set (lsuc a) where field _≡_ : {A : Set a} → A → A → Set a module _ (r : ∀ ℓ → R ℓ) where open module R′ {ℓ} = R (r ℓ) postulate refl : (x : A) → x ≡ x cong : (f : A → B) → x ≡ y → f x ≡ f y subst : (P : A → Set p) → x ≡ y → P x → P y trans : x ≡ y → y ≡ z → x ≡ z elim : (P : {x y : A} → x ≡ y → Set p) → (∀ x → P (refl x)) → (x≡y : x ≡ y) → P x≡y elim-refl : (P : {x y : A} → x ≡ y → Set p) (r : ∀ x → P (refl x)) → elim P r (refl x) ≡ r x [subst≡]≡[trans≡trans] : {p : x ≡ y} {q : x ≡ x} {r : y ≡ y} → (subst (λ z → z ≡ z) p q ≡ r) ≡ (trans q p ≡ trans p r) [subst≡]≡[trans≡trans] {p = p} {q} {r} = elim (λ {x y} p → {q : x ≡ x} {r : y ≡ y} → (subst (λ z → z ≡ z) p q ≡ r) ≡ (trans q p ≡ trans p r)) (λ _ → easy) p [subst≡]≡[trans≡trans]-refl : {q r : x ≡ x} → [subst≡]≡[trans≡trans] {p = refl x} {q = q} {r = r} ≡ easy [subst≡]≡[trans≡trans]-refl {q = q} {r = r} = cong (λ f → f {q = q} {r = r}) (elim-refl (λ {x y} _ → {q : x ≡ x} {r : y ≡ y} → _) _)
{ "alphanum_fraction": 0.3701201201, "avg_line_length": 26.1176470588, "ext": "agda", "hexsha": "f13915f46d54fabf71ab6da84e876e9512118faf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3960a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3960a.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3960a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 622, "size": 1332 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-notationZ where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.CommRing.Instances.Int open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly renaming (PolyCommRing to A[X1,···,Xn] ; Poly to A[x1,···,xn]) open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-Quotient -- Notations for ℤ polynomial rings ℤ[X] : CommRing ℓ-zero ℤ[X] = A[X1,···,Xn] ℤCommRing 1 ℤ[x] : Type ℓ-zero ℤ[x] = fst ℤ[X] ℤ[X,Y] : CommRing ℓ-zero ℤ[X,Y] = A[X1,···,Xn] ℤCommRing 2 ℤ[x,y] : Type ℓ-zero ℤ[x,y] = fst ℤ[X,Y] ℤ[X,Y,Z] : CommRing ℓ-zero ℤ[X,Y,Z] = A[X1,···,Xn] ℤCommRing 3 ℤ[x,y,z] : Type ℓ-zero ℤ[x,y,z] = fst ℤ[X,Y,Z] ℤ[X1,···,Xn] : (n : ℕ) → CommRing ℓ-zero ℤ[X1,···,Xn] n = A[X1,···,Xn] ℤCommRing n ℤ[x1,···,xn] : (n : ℕ) → Type ℓ-zero ℤ[x1,···,xn] n = fst (ℤ[X1,···,Xn] n) -- Notation for quotiented ℤ polynomial ring <X> : FinVec ℤ[x] 1 <X> = <Xkʲ> ℤCommRing 1 0 1 <X²> : FinVec ℤ[x] 1 <X²> = <Xkʲ> ℤCommRing 1 0 2 <X³> : FinVec ℤ[x] 1 <X³> = <Xkʲ> ℤCommRing 1 0 3 <Xᵏ> : (k : ℕ) → FinVec ℤ[x] 1 <Xᵏ> k = <Xkʲ> ℤCommRing 1 0 k ℤ[X]/X : CommRing ℓ-zero ℤ[X]/X = A[X1,···,Xn]/<Xkʲ> ℤCommRing 1 0 1 ℤ[x]/x : Type ℓ-zero ℤ[x]/x = fst ℤ[X]/X ℤ[X]/X² : CommRing ℓ-zero ℤ[X]/X² = A[X1,···,Xn]/<Xkʲ> ℤCommRing 1 0 2 ℤ[x]/x² : Type ℓ-zero ℤ[x]/x² = fst ℤ[X]/X² ℤ[X]/X³ : CommRing ℓ-zero ℤ[X]/X³ = A[X1,···,Xn]/<Xkʲ> ℤCommRing 1 0 3 ℤ[x]/x³ : Type ℓ-zero ℤ[x]/x³ = fst ℤ[X]/X³ ℤ[X1,···,Xn]/<X1,···,Xn> : (n : ℕ) → CommRing ℓ-zero ℤ[X1,···,Xn]/<X1,···,Xn> n = A[X1,···,Xn]/<X1,···,Xn> ℤCommRing n ℤ[x1,···,xn]/<x1,···,xn> : (n : ℕ) → Type ℓ-zero ℤ[x1,···,xn]/<x1,···,xn> n = fst (ℤ[X1,···,Xn]/<X1,···,Xn> n) -- Warning there is two possible definitions of ℤ[X] -- they only holds up to a path ℤ'[X]/X : CommRing ℓ-zero ℤ'[X]/X = A[X1,···,Xn]/<X1,···,Xn> ℤCommRing 1 -- there is a unification problem that keep pop in up everytime I modify something -- equivℤ[X] : ℤ'[X]/X ≡ ℤ[X]/X -- equivℤ[X] = cong₂ _/_ refl (cong (λ X → genIdeal (A[X1,···,Xn] ℤCommRing {!!}) X) {!!})
{ "alphanum_fraction": 0.6259198692, "avg_line_length": 24.7070707071, "ext": "agda", "hexsha": "edeb3ebf1eefab1f23a3433937ff6c1b8e1ba6d2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-notationZ.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-notationZ.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/MultivariatePoly-notationZ.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1155, "size": 2446 }
{-# OPTIONS --without-K --safe #-} -- a categorical (i.e. non-skeletal) version of Lawvere Theory, -- as per https://ncatlab.org/nlab/show/Lawvere+theory module Categories.Theory.Lawvere where open import Data.Nat using (ℕ) open import Data.Product using (Σ; _,_) open import Level open import Categories.Category.Cartesian open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Instance.Setoids open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cartesian) open import Categories.Category.Product open import Categories.Functor using (Functor; _∘F_) renaming (id to idF) open import Categories.Functor.Cartesian open import Categories.Functor.Cartesian.Properties import Categories.Morphism as Mor open import Categories.NaturalTransformation using (NaturalTransformation) private variable o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level record FiniteProduct (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where field T : Category o ℓ e open Mor T field cart : Cartesian T generic : Category.Obj T open Cartesian cart using (power) field obj-iso-to-generic-power : (x : Category.Obj T) → Σ ℕ (λ n → x ≅ power generic n) record LT-Hom (T₁ : FiniteProduct o ℓ e) (T₂ : FiniteProduct o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where private module T₁ = FiniteProduct T₁ module T₂ = FiniteProduct T₂ field F : Functor T₁.T T₂.T cartF : CartesianF T₁.cart T₂.cart F LT-id : {A : FiniteProduct o ℓ e} → LT-Hom A A LT-id = record { F = idF ; cartF = idF-Cartesian } LT-∘ : {A : FiniteProduct o ℓ e} {B : FiniteProduct o′ ℓ′ e′} {C : FiniteProduct o″ ℓ″ e″} → LT-Hom B C → LT-Hom A B → LT-Hom A C LT-∘ G H = record { F = F G ∘F F H ; cartF = ∘-Cartesian (cartF G) (cartF H) } where open LT-Hom record T-Algebra (FP : FiniteProduct o ℓ e) : Set (o ⊔ ℓ ⊔ e ⊔ suc (ℓ′ ⊔ e′)) where private module FP = FiniteProduct FP field Mod : Functor FP.T (Setoids ℓ′ e′) Cart : CartesianF FP.cart Setoids-Cartesian Mod
{ "alphanum_fraction": 0.6875310482, "avg_line_length": 33, "ext": "agda", "hexsha": "664f6f133b0eeb7970fcd33a98e6b11dd17d14d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bond15/agda-categories", "max_forks_repo_path": "src/Categories/Theory/Lawvere.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bond15/agda-categories", "max_issues_repo_path": "src/Categories/Theory/Lawvere.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bond15/agda-categories", "max_stars_repo_path": "src/Categories/Theory/Lawvere.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 652, "size": 2013 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Impl.OBM.Rust.Duration as Duration open import LibraBFT.ImplShared.Consensus.Types.EpochIndep open import Util.Prelude module LibraBFT.Impl.OBM.Time where postulate -- TODO-1 : iPlus, timeT iPlus : Instant → Duration → Instant timeT : Instant
{ "alphanum_fraction": 0.77582846, "avg_line_length": 32.0625, "ext": "agda", "hexsha": "5db1857ca71d1b91af17e3c9c2fc0eb0af34433b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/OBM/Time.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/OBM/Time.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/OBM/Time.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 143, "size": 513 }
-- WARNING: This file was generated automatically by Vehicle -- and should not be modified manually! -- Metadata -- - Agda version: 2.6.2 -- - AISEC version: 0.1.0.1 -- - Time generated: ??? {-# OPTIONS --allow-exec #-} open import Vehicle open import Vehicle.Data.Tensor open import Data.Unit open import Data.Nat as ℕ using (ℕ) open import Data.Integer as ℤ using (ℤ) open import Data.Fin as Fin using (Fin; #_) open import Data.List open import Relation.Binary.PropositionalEquality module simple-quantifier-temp-output where abstract bool : ∀ (x : ℤ) → ⊤ bool = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract expandedExpr : ∀ (x : Tensor ℤ (2 ∷ [])) → x (# 0) ≡ x (# 1) expandedExpr = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" } abstract multiple : ∀ (x : ℕ) → ∀ (y : ℕ) → x ≡ y multiple = checkSpecification record { proofCache = "/home/matthew/Code/AISEC/vehicle/proofcache.vclp" }
{ "alphanum_fraction": 0.6829501916, "avg_line_length": 28.2162162162, "ext": "agda", "hexsha": "703952d5a10d6605005fb89cf690aa6952c5c265", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "vehicle-lang/vehicle", "max_forks_repo_path": "test/Test/Compile/Golden/simple-quantifier/simple-quantifier-output.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_issues_repo_issues_event_max_datetime": "2022-03-31T20:49:39.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-07T14:09:13.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "vehicle-lang/vehicle", "max_issues_repo_path": "test/Test/Compile/Golden/simple-quantifier/simple-quantifier-output.agda", "max_line_length": 71, "max_stars_count": 9, "max_stars_repo_head_hexsha": "25842faea65b4f7f0f7b1bb11ea6e4bf3f4a59b0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "vehicle-lang/vehicle", "max_stars_repo_path": "test/Test/Compile/Golden/simple-quantifier/simple-quantifier-output.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-17T18:51:05.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-10T12:56:42.000Z", "num_tokens": 314, "size": 1044 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Bool where open import Cubical.Data.Bool.Base public open import Cubical.Data.Bool.Properties public
{ "alphanum_fraction": 0.7643678161, "avg_line_length": 24.8571428571, "ext": "agda", "hexsha": "0fa75086fdf58e90a7acc4415a3656d4eec3ccdd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Bool.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Bool.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 39, "size": 174 }
{-# OPTIONS --safe #-} module Cubical.Categories.Limits.Limits where open import Cubical.Foundations.Prelude open import Cubical.Categories.Category open import Cubical.Categories.Functor open import Cubical.Categories.NaturalTransformation private variable ℓJ ℓJ' ℓC ℓC' : Level ℓ ℓ' ℓ'' : Level module _ {J : Category ℓJ ℓJ'} {C : Category ℓC ℓC'} where open Category open Functor open NatTrans -- functor which sends all objects to c and all -- morphisms to the identity constF : (c : C .ob) → Functor J C constF c .F-ob _ = c constF c .F-hom _ = C .id constF c .F-id = refl constF c .F-seq _ _ = sym (C .⋆IdL _) -- a cone is a natural transformation from the constant functor at x to K Cone : (K : Functor J C) → C .ob → Type _ Cone K x = NatTrans (constF x) K module _ {K : Functor J C} where -- precomposes a cone with a morphism _◼_ : ∀ {d c : C .ob} → (f : C [ d , c ]) → Cone K c → Cone K d (f ◼ μ) .N-ob x = f ⋆⟨ C ⟩ μ ⟦ x ⟧ (f ◼ μ) .N-hom {x = x} {y} k = C .id ⋆⟨ C ⟩ (f ⋆⟨ C ⟩ μ ⟦ y ⟧) ≡⟨ C .⋆IdL _ ⟩ f ⋆⟨ C ⟩ μ ⟦ y ⟧ ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) (sym (C .⋆IdL _)) ⟩ f ⋆⟨ C ⟩ (C .id ⋆⟨ C ⟩ μ ⟦ y ⟧) ≡⟨ cong (λ v → f ⋆⟨ C ⟩ v) (μ .N-hom k) ⟩ f ⋆⟨ C ⟩ (μ ⟦ x ⟧ ⋆⟨ C ⟩ K ⟪ k ⟫) ≡⟨ sym (C .⋆Assoc _ _ _) ⟩ f ⋆⟨ C ⟩ μ ⟦ x ⟧ ⋆⟨ C ⟩ K ⟪ k ⟫ ∎ -- μ factors ν if there's a morphism such that the natural transformation -- from precomposing it with ν gives you back μ _factors_ : {u v : C .ob} (μ : Cone K u) (ν : Cone K v) → Type _ _factors_ {u} {v} μ ν = Σ[ mor ∈ C [ v , u ] ] ν ≡ (mor ◼ μ) -- μ uniquely factors ν if the factor from above is contractible _uniquelyFactors_ : {u v : C .ob} (μ : Cone K u) (ν : Cone K v) → Type _ _uniquelyFactors_ {u} {v} μ ν = isContr (μ factors ν) module _ (K : Functor J C) where -- a Limit is a cone such that all cones are uniquely factored by it record isLimit (head : C .ob) : Type (ℓ-max (ℓ-max ℓJ ℓJ') (ℓ-max ℓC ℓC')) where constructor islimit field cone : Cone K head -- TODO: change this to terminal object in category of Cones? up : ∀ {v} (ν : Cone K v) → cone uniquelyFactors ν record Limit : Type (ℓ-max (ℓ-max ℓJ ℓJ') (ℓ-max ℓC ℓC')) where field head : C .ob islim : isLimit head -- a Category is complete if it has all limits complete' : {ℓJ ℓJ' : Level} (C : Category ℓC ℓC') → Type _ complete' {ℓJ = ℓJ} {ℓJ'} C = (J : Category ℓJ ℓJ') (K : Functor J C) → Limit K complete : (C : Category ℓC ℓC') → Typeω complete C = ∀ {ℓJ ℓJ'} → complete' {ℓJ = ℓJ} {ℓJ'} C
{ "alphanum_fraction": 0.5511342507, "avg_line_length": 31.6352941176, "ext": "agda", "hexsha": "b96f83d70b939a767c5197b269e7218003acb316", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_line_length": 85, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Categories/Limits/Limits.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1093, "size": 2689 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Map where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def open import Algebra.Construct.Free.Semilattice.Relation.Unary.Membership private variable p : Level variable P : A → Type p -- map-◇-fn : ∀ x → P x → ∀ y xs → (x ∈ xs → ◇ P xs) → (y ≡ x) ⊎ (x ∈ xs) → ◇ P (y ∷ xs) -- map-◇-fn {P = P} x Px y xs k (inl y≡x) = ∣ inl (subst P (sym y≡x) Px) ∣ -- map-◇-fn x Px y xs k (inr x∈xs) = ∣ inr (k x∈xs) ∣ -- map-◇-prop : ∀ (x : A) {xs} → isProp (x ∈ xs → ◇ P xs) -- map-◇-prop {P = P} x {xs} p q i x∈xs = ◇′ P xs .snd (p x∈xs) (q x∈xs) i -- map-◇ : ∀ (x : A) → P x → (xs : 𝒦 A) → x ∈ xs → ◇ P xs -- map-◇ {A = A} {P = P} x Px = -- 𝒦-elim-prop {A = A} {P = λ ys → x ∈ ys → ◇ P ys} -- (map-◇-prop {A = A} {P = P} x) -- (λ y xs Pxs → recPropTrunc squash (map-◇-fn x Px y xs Pxs)) -- (λ ())
{ "alphanum_fraction": 0.630044843, "avg_line_length": 39.3529411765, "ext": "agda", "hexsha": "b5069ca349f9578745213db38bc5b98657c2543d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Map.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Map.agda", "max_line_length": 88, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Map.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 526, "size": 1338 }
open import Prelude module Implicits.Substitutions.Lemmas.Type where open import Implicits.Syntax.Type open import Implicits.Substitutions open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Vec.Properties open import Extensions.Substitution open import Data.Star using (Star; ε; _◅_) open import Data.Product hiding (map) typeLemmas : TermLemmas Type typeLemmas = record { termSubst = TypeSubst.typeSubst; app-var = refl ; /✶-↑✶ = Lemma./✶-↑✶ } where open TypeSubst module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_) open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_) /✶-↑✶ : ∀ {m n} (σs₁ : Subs T₁ m n) (σs₂ : Subs T₂ m n) → (∀ k x → (simpl (tvar x)) /✶₁ σs₁ ↑✶₁ k ≡ (simpl (tvar x)) /✶₂ σs₂ ↑✶₂ k) → ∀ k t → t /✶₁ σs₁ ↑✶₁ k ≡ t /✶₂ σs₂ ↑✶₂ k /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = hyp k x /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin (simpl $ tc c) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.tc-/✶-↑✶ _ k ρs₁ ⟩ (simpl $ tc c) ≡⟨ sym $ TypeApp.tc-/✶-↑✶ _ k ρs₂ ⟩ (simpl $ tc c) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin (simpl $ a →' b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩ simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)) ≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)) ≡⟨ sym (TypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩ (simpl $ a →' b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin (a ⇒ b) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.⇒-/✶-↑✶ _ k ρs₁ ⟩ -- (a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k) ≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩ (a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k) ≡⟨ sym (TypeApp.⇒-/✶-↑✶ _ k ρs₂) ⟩ (a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎ /✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin (∀' a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩ ∀' (a /✶₁ ρs₁ ↑✶₁ (suc k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) a) ⟩ ∀' (a /✶₂ ρs₂ ↑✶₂ (suc k)) ≡⟨ sym (TypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩ (∀' a) /✶₂ ρs₂ ↑✶₂ k ∎ open TermLemmas typeLemmas public hiding (var; id) open AdditionalLemmas typeLemmas public open TypeSubst using (module Lifted) -- The above lemma /✶-↑✶ specialized to single substitutions /-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} → let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_) open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_) in ∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) → (∀ i x → (simpl (tvar x)) /₁ ρ₁ ↑⋆₁ i ≡ (simpl (tvar x)) /₂ ρ₂ ↑⋆₂ i) → ∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i /-↑⋆ ρ₁ ρ₂ hyp i a = /✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a -- weakening a simple type gives a simple type simpl-wk : ∀ {ν} k (τ : SimpleType (k + ν)) → ∃ λ τ' → (simpl τ) / wk ↑⋆ k ≡ simpl τ' simpl-wk k (tc x) = , refl simpl-wk k (tvar n) = , var-/-wk-↑⋆ k n simpl-wk k (x →' x₁) = , refl
{ "alphanum_fraction": 0.4809160305, "avg_line_length": 40.4320987654, "ext": "agda", "hexsha": "acafd68497036b1ce53c1185d5854984f6eb8160", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Substitutions/Lemmas/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Substitutions/Lemmas/Type.agda", "max_line_length": 101, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Substitutions/Lemmas/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1659, "size": 3275 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Coinductive lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --sized-types --guardedness #-} module Codata.Musical.Colist where open import Category.Monad open import Codata.Musical.Notation open import Codata.Musical.Conat using (Coℕ; zero; suc) open import Data.Bool.Base using (Bool; true; false) open import Data.BoundedVec.Inefficient as BVec using (BoundedVec; []; _∷_) open import Data.Empty using (⊥) open import Data.Maybe using (Maybe; nothing; just; Is-just) open import Data.Maybe.Relation.Unary.Any using (just) open import Data.Nat.Base using (ℕ; zero; suc; _≥′_; ≤′-refl; ≤′-step) open import Data.Nat.Properties using (s≤′s) open import Data.List.Base using (List; []; _∷_) open import Data.List.NonEmpty using (List⁺; _∷_) open import Data.Product as Prod using (∃; _×_; _,_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as Inv using (_↔_; _↔̇_; Inverse; inverse) open import Level using (_⊔_) open import Relation.Binary import Relation.Binary.Construct.FromRel as Ind import Relation.Binary.Reasoning.Preorder as PreR import Relation.Binary.Reasoning.PartialOrder as POR open import Relation.Binary.PropositionalEquality as P using (_≡_) open import Relation.Nullary open import Relation.Nullary.Negation module ¬¬Monad {p} where open RawMonad (¬¬-Monad {p}) public open ¬¬Monad -- we don't want the RawMonad content to be opened publicly ------------------------------------------------------------------------ -- The type infixr 5 _∷_ data Colist {a} (A : Set a) : Set a where [] : Colist A _∷_ : (x : A) (xs : ∞ (Colist A)) → Colist A {-# FOREIGN GHC data AgdaColist a = Nil | Cons a (MAlonzo.RTE.Inf (AgdaColist a)) type AgdaColist' l a = AgdaColist a #-} {-# COMPILE GHC Colist = data AgdaColist' (Nil | Cons) #-} {-# COMPILE UHC Colist = data __LIST__ (__NIL__ | __CONS__) #-} module Colist-injective {a} {A : Set a} where ∷-injectiveˡ : ∀ {x y : A} {xs ys} → (Colist A ∋ x ∷ xs) ≡ y ∷ ys → x ≡ y ∷-injectiveˡ P.refl = P.refl ∷-injectiveʳ : ∀ {x y : A} {xs ys} → (Colist A ∋ x ∷ xs) ≡ y ∷ ys → xs ≡ ys ∷-injectiveʳ P.refl = P.refl data Any {a p} {A : Set a} (P : A → Set p) : Colist A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P (♭ xs)) → Any P (x ∷ xs) module _ {a p} {A : Set a} {P : A → Set p} where here-injective : ∀ {x xs p q} → (Any P (x ∷ xs) ∋ here p) ≡ here q → p ≡ q here-injective P.refl = P.refl there-injective : ∀ {x xs p q} → (Any P (x ∷ xs) ∋ there p) ≡ there q → p ≡ q there-injective P.refl = P.refl data All {a p} {A : Set a} (P : A → Set p) : Colist A → Set (a ⊔ p) where [] : All P [] _∷_ : ∀ {x xs} (px : P x) (pxs : ∞ (All P (♭ xs))) → All P (x ∷ xs) module All-injective {a p} {A : Set a} {P : A → Set p} where ∷-injectiveˡ : ∀ {x xs} {px qx pxs qxs} → (All P (x ∷ xs) ∋ px ∷ pxs) ≡ qx ∷ qxs → px ≡ qx ∷-injectiveˡ P.refl = P.refl ∷-injectiveʳ : ∀ {x xs} {px qx pxs qxs} → (All P (x ∷ xs) ∋ px ∷ pxs) ≡ qx ∷ qxs → pxs ≡ qxs ∷-injectiveʳ P.refl = P.refl ------------------------------------------------------------------------ -- Some operations null : ∀ {a} {A : Set a} → Colist A → Bool null [] = true null (_ ∷ _) = false length : ∀ {a} {A : Set a} → Colist A → Coℕ length [] = zero length (x ∷ xs) = suc (♯ length (♭ xs)) map : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Colist A → Colist B map f [] = [] map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs) fromList : ∀ {a} {A : Set a} → List A → Colist A fromList [] = [] fromList (x ∷ xs) = x ∷ ♯ fromList xs take : ∀ {a} {A : Set a} (n : ℕ) → Colist A → BoundedVec A n take zero xs = [] take (suc n) [] = [] take (suc n) (x ∷ xs) = x ∷ take n (♭ xs) replicate : ∀ {a} {A : Set a} → Coℕ → A → Colist A replicate zero x = [] replicate (suc n) x = x ∷ ♯ replicate (♭ n) x lookup : ∀ {a} {A : Set a} → ℕ → Colist A → Maybe A lookup n [] = nothing lookup zero (x ∷ xs) = just x lookup (suc n) (x ∷ xs) = lookup n (♭ xs) infixr 5 _++_ _++_ : ∀ {a} {A : Set a} → Colist A → Colist A → Colist A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys) -- Interleaves the two colists (until the shorter one, if any, has -- been exhausted). infixr 5 _⋎_ _⋎_ : ∀ {a} {A : Set a} → Colist A → Colist A → Colist A [] ⋎ ys = ys (x ∷ xs) ⋎ ys = x ∷ ♯ (ys ⋎ ♭ xs) concat : ∀ {a} {A : Set a} → Colist (List⁺ A) → Colist A concat [] = [] concat ((x ∷ []) ∷ xss) = x ∷ ♯ concat (♭ xss) concat ((x ∷ (y ∷ xs)) ∷ xss) = x ∷ ♯ concat ((y ∷ xs) ∷ xss) [_] : ∀ {a} {A : Set a} → A → Colist A [ x ] = x ∷ ♯ [] ------------------------------------------------------------------------ -- Any lemmas -- Any lemma for map. Any-map : ∀ {a b p} {A : Set a} {B : Set b} {P : B → Set p} {f : A → B} {xs} → Any P (map f xs) ↔ Any (P ∘ f) xs Any-map {P = P} {f} {xs} = inverse to from from∘to to∘from where to : ∀ {xs} → Any P (map f xs) → Any (P ∘ f) xs to {[]} () to {x ∷ xs} (here px) = here px to {x ∷ xs} (there p) = there (to p) from : ∀ {xs} → Any (P ∘ f) xs → Any P (map f xs) from (here px) = here px from (there p) = there (from p) from∘to : ∀ {xs} (p : Any P (map f xs)) → from (to p) ≡ p from∘to {[]} () from∘to {x ∷ xs} (here px) = P.refl from∘to {x ∷ xs} (there p) = P.cong there (from∘to p) to∘from : ∀ {xs} (p : Any (P ∘ f) xs) → to (from p) ≡ p to∘from (here px) = P.refl to∘from (there p) = P.cong there (to∘from p) -- Any lemma for _⋎_. This lemma implies that every member of xs or ys -- is a member of xs ⋎ ys, and vice versa. Any-⋎ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} → Any P (xs ⋎ ys) ↔ (Any P xs ⊎ Any P ys) Any-⋎ {P = P} = λ xs → record { to = P.→-to-⟶ (to xs) ; from = P.→-to-⟶ (from xs) ; inverse-of = record { left-inverse-of = from∘to xs ; right-inverse-of = to∘from xs } } where to : ∀ xs {ys} → Any P (xs ⋎ ys) → Any P xs ⊎ Any P ys to [] p = inj₂ p to (x ∷ xs) (here px) = inj₁ (here px) to (x ∷ xs) (there p) = [ inj₂ , inj₁ ∘ there ]′ (to _ p) mutual from-left : ∀ {xs ys} → Any P xs → Any P (xs ⋎ ys) from-left (here px) = here px from-left {ys = ys} (there p) = there (from-right ys p) from-right : ∀ xs {ys} → Any P ys → Any P (xs ⋎ ys) from-right [] p = p from-right (x ∷ xs) p = there (from-left p) from : ∀ xs {ys} → Any P xs ⊎ Any P ys → Any P (xs ⋎ ys) from xs = Sum.[ from-left , from-right xs ] from∘to : ∀ xs {ys} (p : Any P (xs ⋎ ys)) → from xs (to xs p) ≡ p from∘to [] p = P.refl from∘to (x ∷ xs) (here px) = P.refl from∘to (x ∷ xs) {ys = ys} (there p) with to ys p | from∘to ys p from∘to (x ∷ xs) {ys = ys} (there .(from-left q)) | inj₁ q | P.refl = P.refl from∘to (x ∷ xs) {ys = ys} (there .(from-right ys q)) | inj₂ q | P.refl = P.refl mutual to∘from-left : ∀ {xs ys} (p : Any P xs) → to xs {ys = ys} (from-left p) ≡ inj₁ p to∘from-left (here px) = P.refl to∘from-left {ys = ys} (there p) rewrite to∘from-right ys p = P.refl to∘from-right : ∀ xs {ys} (p : Any P ys) → to xs (from-right xs p) ≡ inj₂ p to∘from-right [] p = P.refl to∘from-right (x ∷ xs) {ys = ys} p rewrite to∘from-left {xs = ys} {ys = ♭ xs} p = P.refl to∘from : ∀ xs {ys} (p : Any P xs ⊎ Any P ys) → to xs (from xs p) ≡ p to∘from xs = Sum.[ to∘from-left , to∘from-right xs ] ------------------------------------------------------------------------ -- Equality -- xs ≈ ys means that xs and ys are equal. infix 4 _≈_ data _≈_ {a} {A : Set a} : (xs ys : Colist A) → Set a where [] : [] ≈ [] _∷_ : ∀ x {xs ys} (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ x ∷ ys -- The equality relation forms a setoid. setoid : ∀ {ℓ} → Set ℓ → Setoid _ _ setoid A = record { Carrier = Colist A ; _≈_ = _≈_ ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where refl : Reflexive _≈_ refl {[]} = [] refl {x ∷ xs} = x ∷ ♯ refl sym : Symmetric _≈_ sym [] = [] sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈) trans : Transitive _≈_ trans [] [] = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) module ≈-Reasoning where import Relation.Binary.Reasoning.Setoid as EqR private open module R {a} {A : Set a} = EqR (setoid A) public -- map preserves equality. map-cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) → _≈_ =[ map f ]⇒ _≈_ map-cong f [] = [] map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈) -- Any respects pointwise implication (for the predicate) and equality -- (for the colist). Any-resp : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs ys} → (∀ {x} → P x → Q x) → xs ≈ ys → Any P xs → Any Q ys Any-resp f (x ∷ xs≈) (here px) = here (f px) Any-resp f (x ∷ xs≈) (there p) = there (Any-resp f (♭ xs≈) p) -- Any maps pointwise isomorphic predicates and equal colists to -- isomorphic types. Any-cong : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {xs ys} → P ↔̇ Q → xs ≈ ys → Any P xs ↔ Any Q ys Any-cong {A = A} {P} {Q} {xs} {ys} P↔Q = λ xs≈ys → record { to = P.→-to-⟶ (to xs≈ys) ; from = P.→-to-⟶ (from xs≈ys) ; inverse-of = record { left-inverse-of = from∘to _ ; right-inverse-of = to∘from _ } } where open Setoid (setoid _) using (sym) to : ∀ {xs ys} → xs ≈ ys → Any P xs → Any Q ys to xs≈ys = Any-resp (Inverse.to P↔Q ⟨$⟩_) xs≈ys from : ∀ {xs ys} → xs ≈ ys → Any Q ys → Any P xs from xs≈ys = Any-resp (Inverse.from P↔Q ⟨$⟩_) (sym xs≈ys) to∘from : ∀ {xs ys} (xs≈ys : xs ≈ ys) (q : Any Q ys) → to xs≈ys (from xs≈ys q) ≡ q to∘from (x ∷ xs≈) (there q) = P.cong there (to∘from (♭ xs≈) q) to∘from (x ∷ xs≈) (here qx) = P.cong here (Inverse.right-inverse-of P↔Q qx) from∘to : ∀ {xs ys} (xs≈ys : xs ≈ ys) (p : Any P xs) → from xs≈ys (to xs≈ys p) ≡ p from∘to (x ∷ xs≈) (there p) = P.cong there (from∘to (♭ xs≈) p) from∘to (x ∷ xs≈) (here px) = P.cong here (Inverse.left-inverse-of P↔Q px) ------------------------------------------------------------------------ -- Indices -- Converts Any proofs to indices into the colist. The index can also -- be seen as the size of the proof. index : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → Any P xs → ℕ index (here px) = zero index (there p) = suc (index p) -- The position returned by index is guaranteed to be within bounds. lookup-index : ∀ {a p} {A : Set a} {P : A → Set p} {xs} (p : Any P xs) → Is-just (lookup (index p) xs) lookup-index (here px) = just _ lookup-index (there p) = lookup-index p -- Any-resp preserves the index. index-Any-resp : ∀ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} {f : ∀ {x} → P x → Q x} {xs ys} (xs≈ys : xs ≈ ys) (p : Any P xs) → index (Any-resp f xs≈ys p) ≡ index p index-Any-resp (x ∷ xs≈) (here px) = P.refl index-Any-resp (x ∷ xs≈) (there p) = P.cong suc (index-Any-resp (♭ xs≈) p) -- The left-to-right direction of Any-⋎ returns a proof whose size is -- no larger than that of the input proof. index-Any-⋎ : ∀ {a p} {A : Set a} {P : A → Set p} xs {ys} (p : Any P (xs ⋎ ys)) → index p ≥′ [ index , index ]′ (Inverse.to (Any-⋎ xs) ⟨$⟩ p) index-Any-⋎ [] p = ≤′-refl index-Any-⋎ (x ∷ xs) (here px) = ≤′-refl index-Any-⋎ (x ∷ xs) {ys = ys} (there p) with Inverse.to (Any-⋎ ys) ⟨$⟩ p | index-Any-⋎ ys p ... | inj₁ q | q≤p = ≤′-step q≤p ... | inj₂ q | q≤p = s≤′s q≤p ------------------------------------------------------------------------ -- Memberships, subsets, prefixes -- x ∈ xs means that x is a member of xs. infix 4 _∈_ _∈_ : ∀ {a} → {A : Set a} → A → Colist A → Set a x ∈ xs = Any (_≡_ x) xs -- xs ⊆ ys means that xs is a subset of ys. infix 4 _⊆_ _⊆_ : ∀ {a} → {A : Set a} → Colist A → Colist A → Set a xs ⊆ ys = ∀ {x} → x ∈ xs → x ∈ ys -- xs ⊑ ys means that xs is a prefix of ys. infix 4 _⊑_ data _⊑_ {a} {A : Set a} : Colist A → Colist A → Set a where [] : ∀ {ys} → [] ⊑ ys _∷_ : ∀ x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) → x ∷ xs ⊑ x ∷ ys -- Any can be expressed using _∈_ (and vice versa). Any-∈ : ∀ {a p} {A : Set a} {P : A → Set p} {xs} → Any P xs ↔ ∃ λ x → x ∈ xs × P x Any-∈ {P = P} = record { to = P.→-to-⟶ to ; from = P.→-to-⟶ (λ { (x , x∈xs , p) → from x∈xs p }) ; inverse-of = record { left-inverse-of = from∘to ; right-inverse-of = λ { (x , x∈xs , p) → to∘from x∈xs p } } } where to : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x to (here p) = _ , here P.refl , p to (there p) = Prod.map id (Prod.map there id) (to p) from : ∀ {x xs} → x ∈ xs → P x → Any P xs from (here P.refl) p = here p from (there x∈xs) p = there (from x∈xs p) to∘from : ∀ {x xs} (x∈xs : x ∈ xs) (p : P x) → to (from x∈xs p) ≡ (x , x∈xs , p) to∘from (here P.refl) p = P.refl to∘from (there x∈xs) p = P.cong (Prod.map id (Prod.map there id)) (to∘from x∈xs p) from∘to : ∀ {xs} (p : Any P xs) → let (x , x∈xs , px) = to p in from x∈xs px ≡ p from∘to (here _) = P.refl from∘to (there p) = P.cong there (from∘to p) -- Prefixes are subsets. ⊑⇒⊆ : ∀ {a} → {A : Set a} → _⊑_ {A = A} ⇒ _⊆_ ⊑⇒⊆ [] () ⊑⇒⊆ (x ∷ xs⊑ys) (here ≡x) = here ≡x ⊑⇒⊆ (_ ∷ xs⊑ys) (there x∈xs) = there (⊑⇒⊆ (♭ xs⊑ys) x∈xs) -- The prefix relation forms a poset. ⊑-Poset : ∀ {ℓ} → Set ℓ → Poset _ _ _ ⊑-Poset A = record { Carrier = Colist A ; _≈_ = _≈_ ; _≤_ = _⊑_ ; isPartialOrder = record { isPreorder = record { isEquivalence = Setoid.isEquivalence (setoid A) ; reflexive = reflexive ; trans = trans } ; antisym = antisym } } where reflexive : _≈_ ⇒ _⊑_ reflexive [] = [] reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈) trans : Transitive _⊑_ trans [] _ = [] trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈) tail : ∀ {x xs y ys} → x ∷ xs ⊑ y ∷ ys → ♭ xs ⊑ ♭ ys tail (_ ∷ p) = ♭ p antisym : Antisymmetric _≈_ _⊑_ antisym [] [] = [] antisym (x ∷ p₁) p₂ = x ∷ ♯ antisym (♭ p₁) (tail p₂) module ⊑-Reasoning where private open module R {a} {A : Set a} = POR (⊑-Poset A) public renaming (_≤⟨_⟩_ to _⊑⟨_⟩_) -- The subset relation forms a preorder. ⊆-Preorder : ∀ {ℓ} → Set ℓ → Preorder _ _ _ ⊆-Preorder A = Ind.preorder (setoid A) _∈_ (λ xs≈ys → ⊑⇒⊆ (⊑P.reflexive xs≈ys)) where module ⊑P = Poset (⊑-Poset A) module ⊆-Reasoning where private open module R {a} {A : Set a} = PreR (⊆-Preorder A) public renaming (_∼⟨_⟩_ to _⊆⟨_⟩_) infix 1 _∈⟨_⟩_ _∈⟨_⟩_ : ∀ {a} {A : Set a} (x : A) {xs ys} → x ∈ xs → xs IsRelatedTo ys → x ∈ ys x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs -- take returns a prefix. take-⊑ : ∀ {a} {A : Set a} n (xs : Colist A) → let toColist = fromList {a} ∘ BVec.toList in toColist (take n xs) ⊑ xs take-⊑ zero xs = [] take-⊑ (suc n) [] = [] take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ n (♭ xs) ------------------------------------------------------------------------ -- Finiteness and infiniteness -- Finite xs means that xs has finite length. data Finite {a} {A : Set a} : Colist A → Set a where [] : Finite [] _∷_ : ∀ x {xs} (fin : Finite (♭ xs)) → Finite (x ∷ xs) module Finite-injective {a} {A : Set a} where ∷-injective : ∀ {x : A} {xs p q} → (Finite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q → p ≡ q ∷-injective P.refl = P.refl -- Infinite xs means that xs has infinite length. data Infinite {a} {A : Set a} : Colist A → Set a where _∷_ : ∀ x {xs} (inf : ∞ (Infinite (♭ xs))) → Infinite (x ∷ xs) module Infinite-injective {a} {A : Set a} where ∷-injective : ∀ {x : A} {xs p q} → (Infinite (x ∷ xs) ∋ x ∷ p) ≡ x ∷ q → p ≡ q ∷-injective P.refl = P.refl -- Colists which are not finite are infinite. not-finite-is-infinite : ∀ {a} {A : Set a} (xs : Colist A) → ¬ Finite xs → Infinite xs not-finite-is-infinite [] hyp with hyp [] ... | () not-finite-is-infinite (x ∷ xs) hyp = x ∷ ♯ not-finite-is-infinite (♭ xs) (hyp ∘ _∷_ x) -- Colists are either finite or infinite (classically). finite-or-infinite : ∀ {a} {A : Set a} (xs : Colist A) → ¬ ¬ (Finite xs ⊎ Infinite xs) finite-or-infinite xs = helper <$> excluded-middle where helper : Dec (Finite xs) → Finite xs ⊎ Infinite xs helper (yes fin) = inj₁ fin helper (no ¬fin) = inj₂ $ not-finite-is-infinite xs ¬fin -- Colists are not both finite and infinite. not-finite-and-infinite : ∀ {a} {A : Set a} {xs : Colist A} → Finite xs → Infinite xs → ⊥ not-finite-and-infinite [] () not-finite-and-infinite (x ∷ fin) (.x ∷ inf) = not-finite-and-infinite fin (♭ inf) ------------------------------------------------------------------------ -- Legacy import Codata.Colist as C open import Codata.Thunk import Size module _ {a} {A : Set a} where fromMusical : ∀ {i} → Colist A → C.Colist A i fromMusical [] = C.[] fromMusical (x ∷ xs) = x C.∷ λ where .force → fromMusical (♭ xs) toMusical : C.Colist A Size.∞ → Colist A toMusical C.[] = [] toMusical (x C.∷ xs) = x ∷ ♯ toMusical (xs .force)
{ "alphanum_fraction": 0.5011256191, "avg_line_length": 31.6720142602, "ext": "agda", "hexsha": "6102f519b4b68e0c3dbd7c4303900cb8e0abebb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Colist.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7053, "size": 17768 }
data ⊥ : Set where data Maybe : Set where just : ⊥ → Maybe nothing : Maybe test : Set → Set test x with nothing test x | just () test x | nothing = test x
{ "alphanum_fraction": 0.6335403727, "avg_line_length": 14.6363636364, "ext": "agda", "hexsha": "5e45ae12b939d0d04313f8a61154fe0098f26620", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2583.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2583.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2583.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 50, "size": 161 }