Search is not available for this dataset
text
string | meta
dict |
---|---|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.Impl.OBM.Logging.Logging
open import LibraBFT.ImplShared.Consensus.Types hiding (getEpoch)
open import Optics.All
import Util.KVMap as Map
open import Util.Prelude
------------------------------------------------------------------------------
open import Data.String using (String)
module LibraBFT.Impl.Storage.DiemDB.LedgerStore.LedgerStore where
record EpochEndingLedgerInfoIter : Set where
constructor EpochEndingLedgerInfoIter∙new
field
_eeliiObmLIWS : List LedgerInfoWithSignatures
open EpochEndingLedgerInfoIter public
new : LedgerStore
new = mkLedgerStore Map.empty Map.empty nothing
-- OBM-LBFT-DIFF : the entire Haskell impl file is VERY different from the Rust code.
-- The Agda below mirrors Haskell.
getEpoch : LedgerStore → Version → Either ErrLog Epoch
getEpoch self version =
maybeS (Map.lookup version (self ^∙ lsObmVersionToEpoch))
-- COMMENT FROM RUST CODE:
-- There should be a genesis LedgerInfo at version 0.
-- This normally doesn't happen.
-- This part of impl does not need to rely on this assumption.
(pure 0)
pure
getEpochEndingLedgerInfo : LedgerStore → Version → Either ErrLog LedgerInfoWithSignatures
getEpochEndingLedgerInfo self version = do
epoch ← getEpoch self version
case Map.lookup epoch (self ^∙ lsObmEpochToLIWS) of λ where
nothing → Left fakeErr -- ["DiemDbError::NotFound", "LedgerInfo for epoch", lsE epoch]
(just li) →
grd‖ li ^∙ liwsLedgerInfo ∙ liVersion /= version ≔
Left fakeErr --["epoch did not end at version", lsE epoch, lsVersion version]
‖ is-nothing (li ^∙ liwsLedgerInfo ∙ liNextEpochState) ≔
Left fakeErr -- ["not an epoch change at version", lsVersion version]
‖ otherwise≔
pure li
--where
-- here t = "LedgerStore":"getEpochEndingLedgerInfo":t
getEpochState : LedgerStore → Epoch → Either ErrLog EpochState
getEpochState self epoch = do
lcheck (epoch >? 0) (here' ("EpochState only queryable for epoch >= 1" {-∷ lsE epoch-} ∷ []))
case Map.lookup (epoch ∸ 1) (self ^∙ lsObmEpochToLIWS) of λ where
nothing → Left fakeErr --[ "DiemDbError::NotFound"
--, "last LedgerInfo of epoch", lsE (epoch - 1) ]))
(just ledgerInfoWithSigs) →
maybeS (ledgerInfoWithSigs ^∙ liwsNextEpochState)
(Left fakeErr) --[ "last LedgerInfo in epoch must carry nextEpochState"
--, lsE epoch, lsLI (ledgerInfoWithSigs^.liwsLedgerInfo) ]
pure
where
here' : List String → List String
here' t = "LedgerStore" ∷ "getEPochState" ∷ t
-- iterator that yields epoch ending ledger infos
-- starting from `start_epoch`
-- ends at the one before `end_epoch`
getEpochEndingLedgerInfoIter
: LedgerStore → Epoch → Epoch
→ Either ErrLog EpochEndingLedgerInfoIter
getEpochEndingLedgerInfoIter self startEpoch endEpoch =
-- TODO-2: prove endEpoch > 0
-- Use of monus in context where it is not clear that endEpoch > 0.
-- If not, Agda and Haskell code would behave differently.
-- TODO-2: IMPL-DIFF: Haskell uses a list comprehension; Agda uses homegrown 'fromToList'
-- The combination of monus and fromToList risks misunderstanding/misuse of fromToList later.
-- Ranges would differ in Haskell and Agda if, say, startEpoch were negative and endEpoch was 0.
-- It could be correct and verified in Agda, but wrong in Haskell
-- (e.g., if the Haskell code accidentally calculates a negative epoch).
EpochEndingLedgerInfoIter∙new <$> (foldM) go [] (fromToList startEpoch (endEpoch ∸ 1))
where
go : List LedgerInfoWithSignatures → Epoch → Either ErrLog (List LedgerInfoWithSignatures)
go acc e = maybeS (Map.lookup e (self ^∙ lsObmEpochToLIWS))
(Left fakeErr) --[ "LedgerStore", "getEpochEndingLedgerInfoIter"
--, "no LIWS for epoch", lsE e ]
(λ x → Right (acc ++ (x ∷ []))) -- TODO
putLedgerInfo : LedgerStore → LedgerInfoWithSignatures → Either ErrLog LedgerStore
putLedgerInfo self ledgerInfoWithSigs =
let ledgerInfo = ledgerInfoWithSigs ^∙ liwsLedgerInfo
in pure
$ mkLedgerStore
((if ledgerInfo ^∙ liEndsEpoch
then Map.insert (ledgerInfo ^∙ liVersion) (ledgerInfo ^∙ liEpoch)
else identity)
(self ^∙ lsObmVersionToEpoch))
(Map.insert (ledgerInfo ^∙ liEpoch) ledgerInfoWithSigs
(self ^∙ lsObmEpochToLIWS))
(self ^∙ lsLatestLedgerInfo)
obmEELIICollect : EpochEndingLedgerInfoIter → List LedgerInfoWithSignatures
obmEELIICollect = _eeliiObmLIWS
|
{
"alphanum_fraction": 0.6857200976,
"avg_line_length": 45.9439252336,
"ext": "agda",
"hexsha": "1e7a6ee7e0e427ccb1c197b3f761f3e1912f2eac",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Storage/DiemDB/LedgerStore/LedgerStore.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1340,
"size": 4916
}
|
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module SyntheticReals where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Structures.CommRing
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base -- Rel
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
-- open import Cubical.Structures.Poset
open import Cubical.Foundations.Function
open import Function.Base using (_∋_)
-- open import Function.Reasoning using (∋-syntax)
open import Function.Base using (it) -- instance search
open import Utils
open import MoreLogic
open MoreLogic.Reasoning
open MoreLogic.Properties
open import MoreAlgebra
open MoreAlgebra.Definitions
open MoreAlgebra.Consequences
open import Bundles
-- open MoreAlgebra.Properties.Group
-- https://www.cs.bham.ac.uk/~abb538/thesis.pdf
-- Booij 2020 - Analysis in Univalent Type Theory
-- Lemma 4.1.6.
import Properties.ConstructiveField
-- Lemma 4.1.11.
import Properties.AlmostOrderedField
-- Lemma 4.1.12. An ordered field (F, 0, 1, +, · , min, max, <) is a constructive field (F, 0, 1, +, · , #).
lemma-4-1-12 :
-- NOTE: we do a slightly different thing here
∀{ℓ ℓ'} (OF : OrderedField {ℓ} {ℓ'}) →
let open OrderedField OF
----------------------------------------------------
in (IsConstructiveField 0f 1f _+_ _·_ -_ _#_ _⁻¹ᶠ)
lemma-4-1-12 {ℓ} {ℓ'} OF = let -- NOTE: for mentioning the ℓ and ℓ' and not taking them as new "variables" we bring them into scope
open OrderedField OF
in record -- We need to show that + is #-extensional, and that # is tight.
{ OrderedField OF
; isApartnessRel = #'-isApartnessRel <-isStrictPartialOrder -- NOTE: We've proved this before
-- First, assume w + x # y + z. We need to show w # y ∨ x # z.
; +-#-extensional = λ where
-- Consider the case w + x < y + z, so that we can use (†) to obtain w < y ∨ x < z,
-- which gives w # y ∨ x # z in either case.
w x y z (inl w+x<y+z) → case +-<-extensional _ _ _ _ w+x<y+z of (
(_ → (w # y) ⊎ (x # z)) ∋ λ -- NOTE: here we had to add a (return-)type annotation to the λ
{ (inl w<y) → inl (inl w<y)
; (inr x<z) → inr (inl x<z)
})
-- The case w + x > y + z is similar.
w x y z (inr y+z<w+x) → case +-<-extensional _ _ _ _ y+z<w+x of (
(_ → (w # y) ⊎ (x # z)) ∋ λ
{ (inl y<w) → inl (inr y<w)
; (inr z<x) → inr (inr z<x)
})
-- Tightness follows from the fact that ≤ is antisymmetric, combined with the fact
-- that ¬(P ∨ Q) is equivalent to ¬P ∧ ¬Q.
; #-tight = λ x y ¬[x<y]⊎¬[y<x] → let (¬[x<y] , ¬[y<x]) = deMorgan₂' ¬[x<y]⊎¬[y<x]
in ≤-antisym _ _ ¬[y<x] ¬[x<y]
}
-- We will mainly be concerned with ordered fields, as opposed to the more general con-
-- structive fields. This is because the Archimedean property can be phrased straightforwardly
-- for ordered fields, as in Section 4.3, and because the ordering relation allows us to define loca-
-- tors, as in Chapter 6.
--
-- We have defined ordered fields, which capture the algebraic structure of the real numbers.
-- 4.2 Rationals
-- ...
-- NOTE: we have in cubical
-- import Cubical.HITs.Rationals.HITQ
-- ℚ as a higher inductive type
-- import Cubical.HITs.Rationals.QuoQ
-- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book)
-- import Cubical.HITs.Rationals.SigmaQ
-- ℚ as the set of coprime pairs in ℤ × ℕ₊₁
import Cubical.HITs.Rationals.QuoQ renaming (ℚ to ℚ-Carrier)
postulate
ℚℓ : Level
ℚOF : OrderedField {ℓ-zero} {ℚℓ}
{-
ℚ = λ where
.OrderedField.Carrier → ℚ-Carrier
.OrderedField.0f → 0
.OrderedField.1f → 1
.OrderedField._+_ → _+_
.OrderedField.-_ → -_
.OrderedField._·_ → _*_
.OrderedField.min → {!!}
.OrderedField.max → {!!}
.OrderedField._<_ → {!!}
.OrderedField.<-isProp → {!!}
.OrderedField._⁻¹ᶠ → {!!}
.OrderedField.isOrderedField → {!!}
-}
-- 4.3 Archimedean property
--
-- We now define the notion of Archimedean ordered fields. We phrase this in terms of a certain
-- interpolation property, that can be defined from the fact that there is a unique morphism of
-- ordered fields from the rationals to every ordered field.
-- Lemma 4.3.3. For every ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ), there is a unique morphism
-- i of ordered fields from the rationals to F . Additionally, i preserves < in the sense that for every q, r : Q
-- q < r ⇒ i (q) < F i (r ).
-- ∃! : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ')
-- ∃! A B = isContr (Σ A B)
-- isContr' A = Σ[ x ∈ A ] (∀ y → x ≡ y)
ℚ-IsInitialObject : ∀(OF : OrderedField {ℓ} {ℓ'}) → isContr (OrderedFieldMor ℚOF OF)
ℚ-IsInitialObject OF = {!!} , {!!}
-- Definition 4.3.5. Let (F, 0 F , 1 F , + F , · F , min F , max F , < F ) be an ordered field, so that we get a
-- canonical morphism i : Q → F of ordered fields, as in Lemma 4.3.3. We say the ordered field
-- (F, 0 F , 1 F , + F , · F , min F , max F , < F ) is Archimedean if
-- (∀x, y : F )(∃q : Q)x < i (q) < y.
IsArchimedian : OrderedField {ℓ} {ℓ'} → Type (ℓ-max ℓ ℓ')
IsArchimedian OF = let (orderedfieldmor i _) = fst (ℚ-IsInitialObject OF)
open OrderedField OF
ℚ = OrderedField.Carrier ℚOF
in ∀ x y → ∃[ q ∈ ℚ ] (x < i q) × (i q < y)
-- If the ordered field is clear from the context, we will identify rationals q : Q with their in-
-- clusion i (q) in the ordered field, so that we may also say that (F, 0 F , 1 F , + F , · F , min F , max F , < F )
-- is Archimedean if
-- (∀x, y : F )(∃q : Q)x < q < y.
-- Example 4.3.6. In an Archimedean ordered field, all numbers are bounded by rationals. That
-- is, for a given x : F , there exist q, r : Q with q < x < r .
Example-4-3-6 : (OF : OrderedField {ℓ} {ℓ'})
→ IsArchimedian OF
→ let open OrderedField OF renaming (Carrier to F)
(orderedfieldmor i _) = fst (ℚ-IsInitialObject OF)
ℚ = OrderedField.Carrier ℚOF
in ∀(x : F) → (∃[ q ∈ ℚ ] i q < x) × (∃[ r ∈ ℚ ] x < i r)
-- This follows from applying the Archimedean property to x − 1 < x and x < x + 1.
Example-4-3-6 OF isArchimedian = {!!}
-- 4.4 Cauchy completeness of real numbers
--
-- We focus on Cauchy completeness, rather than Dedekind or Dedekind-MacNeille completeness,
-- as we will focus on the computation of digit expansions, for which Cauchy completeness suffices.
-- In order to state that an ordered field is Cauchy complete, we need to define when sequences
-- are Cauchy, and when a sequence has a limit. We also take the opportunity to define
-- the set of Cauchy reals in Definition 4.4.9. Surprisingly, this ordered field cannot be shown to
-- be Cauchy complete.
-- NOTE: in the following we make use of ℚ⁺ a few times. Maybe this should be a primitive?
-- Fix an ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ).
module _ (OF : OrderedField {ℓ} {ℓ'}) where
open OrderedField OF renaming (Carrier to F)
-- module ℚ = OrderedField ℚ
open OrderedField ℚOF using () renaming (_<_ to _<ᵣ_; 0f to 0ᵣ)
ℚ = OrderedField.Carrier ℚOF
iᵣ = OrderedFieldMor.fun (fst (ℚ-IsInitialObject OF))
open import Data.Nat.Base using (ℕ) renaming (_≤_ to _≤ₙ_)
-- We get a notion of distance, given by the absolute value as
-- |x − y| := max F (x − y, −(x − y)).
distance : ∀(x y : F) → F
distance x y = max (x - y) (- (x - y))
-- Consider a sequence x : N → F of elements of F . Classically, we may state that x is Cauchy as
-- (∀ε : Q + )(∃N : N)(∀m, n : N)m, n ≥ N ⇒ |x m − x n | < ε,
IsCauchy : (x : ℕ → F) → Type (ℓ-max ℓ' ℚℓ)
IsCauchy x = ∀(ε : ℚ) → 0ᵣ <ᵣ ε → ∃[ N ∈ ℕ ] ∀(m n : ℕ) → N ≤ₙ m → N ≤ₙ n → distance (x m) (x n) < iᵣ ε
-- We can interpret the quantifiers as in Definition 2.4.5.
-- NOTE: this is the case, since `∃ A B = ∥ Σ A B ∥`
-- Following a propositions-as-types interpretation, we may also state that x is Cauchy as the
-- structure
-- (Πε : Q + )(ΣN : N)(Πm, n : N)m, n ≥ N → |x m − x n | < ε.
-- The dependent sum represents a choice of index N for every error ε, and so we have arrived at the following definition.
-- Definition 4.4.1.
-- For a sequence of reals x : N → F , a a modulus of Cauchy convergence is a map M : Q + → N such that
-- (∀ε : Q + )(∀m, n : N)m, n ≥ M (ε) ⇒ |x m − x n | < ε.
-- NOTE: do we already call these x "reals" ?
-- NOTE: we are using the Modulus-type `((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)` a few times and might abbreviate it
IsModulusOfCauchyConvergence : (x : ℕ → F) → (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ)) → Type (ℓ-max ℓ' ℚℓ)
IsModulusOfCauchyConvergence x M = ∀(ε : ℚ) → (p : 0ᵣ <ᵣ ε) → ∀(m n : ℕ)
→ let instance _ = p
in M ε ≤ₙ m → M ε ≤ₙ n → distance (x m) (x n) < iᵣ ε
-- In constructive mathematics, we typically use such sequences with modulus, for example,
-- because they can sometimes be used to compute limits of Cauchy sequences, avoiding choice axioms.
-- Definition 4.4.2.
-- A number l : F is the limit of a sequence x : N → F if the sequence
-- converges to l in the usual sense:
-- (∀ε : Q + )(∃N : N)(∀n : N)n ≥ N ⇒ |x n − l | < ε.
IsLimit : (x : ℕ → F) → (l : F) → Type (ℓ-max ℓ' ℚℓ)
IsLimit x l = ∀(ε : ℚ) → (0ᵣ <ᵣ ε) → ∃[ N ∈ ℕ ] ∀(n : ℕ) → N ≤ₙ n → distance (x n) l < iᵣ ε
-- Remark 4.4.3. We do not consider the statement of convergence in propositions-as-types
--
-- (Πε : Q + )(ΣN : N)(Πn : N)n ≥ N → |x n − l | < ε,
--
-- because if the sequence has a modulus of Cauchy convergence M, then λε.M (ε/2) is a
-- modulus of convergence to the limit l, so that we get an element of the above type.
-- Definition 4.4.4.
-- The ordered field (F, 0 F , 1 F , + F , · F , min F , max F , < F ) is said to be Cauchy complete
-- if for every sequence x with modulus of Cauchy convergence M, we have a limit of x.
-- In other words, an ordered field is Cauchy complete iff from a sequence–modulus pair (x, M), we can compute a limit of x.
IsCauchyComplete : Type (ℓ-max (ℓ-max ℓ ℓ') ℚℓ)
IsCauchyComplete = (x : ℕ → F)
→ (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ))
→ IsModulusOfCauchyConvergence x M
→ Σ[ l ∈ F ] IsLimit x l
-- For the remainder of this section, additionally assume that F is Archimedean.
module _ (isArchimedian : IsArchimedian OF) where
-- Lemma 4.4.5.
-- The type of limits of a fixed sequence x : N → F is a proposition.
Lemma-4-4-5 : ∀(x : ℕ → F) → isProp (Σ[ l ∈ F ] IsLimit x l)
-- Proof. This can be shown using the usual proof that limits are unique in Archimedean ordered fields, followed by an application of Lemma 2.6.20.
Lemma-4-4-5 x = {!!}
-- Corollary 4.4.6.
-- Fix a given sequence x : N → F . Suppose that we know that there exists a
-- limit of the sequence. Then we can compute a limit of the sequence.
Corollary-4-4-6 : ∀(x : ℕ → F) → (∃[ l ∈ F ] IsLimit x l) → Σ[ l ∈ F ] IsLimit x l
-- Proof. By applying the induction principle of propositional truncations of Definition 2.4.3.
Corollary-4-4-6 x p = {!!} , {!!}
-- Corollary 4.4.7.
-- Fix a given sequence x : N → F . Suppose that, from a modulus of Cauchy
-- convergence, we can compute a limit of the sequence. Then from the existence of the modulus of
-- Cauchy convergence we can compute a limit of the sequence.
Corollary-4-4-7 : (x : ℕ → F)
→ ( (M : ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ))
→ (isMCC : IsModulusOfCauchyConvergence x M)
→ Σ[ l ∈ F ] IsLimit x l
)
-----------------------------------------------------------------------
→ ∃[ M ∈ ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ) ] IsModulusOfCauchyConvergence x M
→ Σ[ l ∈ F ] IsLimit x l
-- Proof. By applying the induction principle of propositional truncations of Definition 2.4.3.
Corollary-4-4-7 x f p = {!!}
-- We can thus compute the limit of x : N → F as the number lim(x, p), where p is a proof
-- that the limit of x exists. We will rather use the more traditional notation lim n→∞ x n for this
-- number.
-- Example 4.4.8 (Exponential function).
-- In a Cauchy complete Archimedean ordered field, we can define an exponential function exp : F → F by
--
-- exp(x) = Σ_{k=0}^{∞} (xᵏ) / (k!)
--
-- For a given input x, we obtain the existence of a modulus of Cauchy convergence for the output from boundedness of
-- x, that is, from the fact that (∃q, r : Q) q < x < r .
exp : F → F
exp x = {!!}
Example-4-4-8 : ∀(x : F) → ∃[ M ∈ ((y : ℚ) → {{0ᵣ <ᵣ y}} → ℕ) ] IsModulusOfCauchyConvergence {!!} M
Example-4-4-8 x with Example-4-3-6 OF isArchimedian x
... | q' , r' = let q : ∃[ q ∈ ℚ ] iᵣ q < x
q = q'
r : ∃[ r ∈ ℚ ] x < iᵣ r
r = r'
in {!!}
-- The point of this work is that, because we have a single language for properties and struc-
-- ture, we can see more precisely what is needed for certain computations. In the above example,
-- we explicitly do not require that inputs come equipped with a modulus of Cauchy convergence,
-- but rather that there exists such a modulus. On the one hand, we do need a modulus to obtain
-- the limit, but as the limit value is independent of the chosen modulus, existence of such a
-- modulus suffices.
-- Definition 4.4.9. The Cauchy reals ℝC is the collection of rational sequences equipped with
-- a modulus of Cauchy convergence, quotiented (as in Section 2.7) by an equivalence relation
-- that relates two sequence–modulus pairs (x, M) and (y, N ) iff
-- (∀ε : Q + ) x M (ε/4) − y M (ε/4) < ε.
ℝC : {!!}
ℝC = {!!}
-- The Cauchy reals form an Archimedean ordered field in a natural way. The natural strategy
-- to prove that the Cauchy reals are Cauchy complete, perhaps surprisingly, does not work, and
-- in some constructive foundations the Cauchy completeness of the Cauchy reals is known to
-- be false [68].
--
-- ...
--
-- An alternative interpretation of the non-completeness of the Cauchy reals is that the sequential
-- definition of completeness ought to be amended [80].
-- NOTE: now we're back to https://github.com/agda/cubical/issues/286 ?
-- Auke would send an email to Ayberk Tosun and Martin Escardo
-- I could prepare a PR for the cubical standard library
-- the cubical standard library does not supersede the standard library
-- using setoids need not to be a shortcoming but can be a concious decision
-- Postulating the rationals as an ordered field for which there exists a unique morphism to every other ordered field should be sufficient
-- (we went a little bit into the coprime and quotient construction of the rational numbers)
-- I can prepare some statements that I would like to formalize (with just guessing) to have a more concrete guidance for the necessary detail of a real number formulation
-- the impredicative `--prop` is not equivalent to hProp
-- therefore, one should make props explicit arguments or at least be aware of them at all times
{-
in a world where we "just have" real numbers in Agda, I would do the following:
Adjoint theory
Vector space
normed space
Banach space
Inner Product space
unbounded Linear operator
adjoint linear operator
orthogonal decomposition of Banach spaces
inf-sup conditions
lax-milgram
Local Multilinear Algebra
euclidean space
linear representation of hodge star
locally euclidean
Global Multilinear Algebra
locally euclidean topological space
chart representation
-}
|
{
"alphanum_fraction": 0.6011825751,
"avg_line_length": 45.532967033,
"ext": "agda",
"hexsha": "dbe67365bd63bf2c16cd0a3e5761168575b9d2b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/SyntheticReals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/SyntheticReals.agda",
"max_line_length": 171,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/SyntheticReals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 5266,
"size": 16574
}
|
{-# OPTIONS --without-K --safe #-}
-- Enriched category over a Monoidal category V
open import Categories.Category
using (categoryHelper) renaming (Category to Setoid-Category)
open import Categories.Category.Monoidal using (Monoidal)
module Categories.Enriched.Category {o ℓ e} {V : Setoid-Category o ℓ e}
(M : Monoidal V) where
open import Level
open import Function using (_$_)
open import Categories.Category.Monoidal.Properties M using (module Kelly's)
open import Categories.Category.Monoidal.Reasoning M
open import Categories.Category.Monoidal.Utilities M using (module Shorthands)
open import Categories.Functor using (Functor)
open import Categories.Morphism.Reasoning V
import Categories.Morphism.IsoEquiv V as IsoEquiv
open Setoid-Category V renaming (Obj to ObjV; id to idV)
open Commutation
open Monoidal M
open Shorthands
open IsoEquiv._≃_
record Category v : Set (o ⊔ ℓ ⊔ e ⊔ suc v) where
field
Obj : Set v
hom : (A B : Obj) → ObjV
id : {A : Obj} → unit ⇒ hom A A
⊚ : {A B C : Obj} → hom B C ⊗₀ hom A B ⇒ hom A C
⊚-assoc : {A B C D : Obj} →
[ (hom C D ⊗₀ hom B C) ⊗₀ hom A B ⇒ hom A D ]⟨
⊚ ⊗₁ idV ⇒⟨ hom B D ⊗₀ hom A B ⟩
⊚
≈ associator.from ⇒⟨ hom C D ⊗₀ (hom B C ⊗₀ hom A B) ⟩
idV ⊗₁ ⊚ ⇒⟨ hom C D ⊗₀ hom A C ⟩
⊚
⟩
unitˡ : {A B : Obj} →
[ unit ⊗₀ hom A B ⇒ hom A B ]⟨
id ⊗₁ idV ⇒⟨ hom B B ⊗₀ hom A B ⟩
⊚
≈ unitorˡ.from
⟩
unitʳ : {A B : Obj} →
[ hom A B ⊗₀ unit ⇒ hom A B ]⟨
idV ⊗₁ id ⇒⟨ hom A B ⊗₀ hom A A ⟩
⊚
≈ unitorʳ.from
⟩
-- A version of ⊚-assoc using generalized hom-variables.
--
-- In this version of associativity, the generalized variables f, g
-- and h represent V-morphisms, or rather, morphism-valued maps,
-- such as V-natural transofrmations or V-functorial actions. This
-- version is therefore well-suited for proving derived equations,
-- such as functorial laws or commuting diagrams, that involve such
-- maps. For examples, see Underlying.assoc below, or the modules
-- Enriched.Functor and Enriched.NaturalTransformation.
⊚-assoc-var : {X Y Z : ObjV} {A B C D : Obj}
{f : X ⇒ hom C D} {g : Y ⇒ hom B C} {h : Z ⇒ hom A B} →
[ (X ⊗₀ Y) ⊗₀ Z ⇒ hom A D ]⟨
(⊚ ∘ f ⊗₁ g) ⊗₁ h ⇒⟨ hom B D ⊗₀ hom A B ⟩
⊚
≈ associator.from ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⟩
f ⊗₁ (⊚ ∘ g ⊗₁ h) ⇒⟨ hom C D ⊗₀ hom A C ⟩
⊚
⟩
⊚-assoc-var {f = f} {g} {h} = begin
⊚ ∘ (⊚ ∘ f ⊗₁ g) ⊗₁ h ≈⟨ refl⟩∘⟨ split₁ˡ ⟩
⊚ ∘ ⊚ ⊗₁ idV ∘ (f ⊗₁ g) ⊗₁ h ≈⟨ pullˡ ⊚-assoc ⟩
(⊚ ∘ idV ⊗₁ ⊚ ∘ α⇒) ∘ (f ⊗₁ g) ⊗₁ h ≈⟨ pullʳ (pullʳ assoc-commute-from) ⟩
⊚ ∘ idV ⊗₁ ⊚ ∘ f ⊗₁ (g ⊗₁ h) ∘ α⇒ ≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
⊚ ∘ f ⊗₁ (⊚ ∘ g ⊗₁ h) ∘ α⇒ ∎
-- The usual shorthand for hom-objects of an arbitrary category.
infix 15 _[_,_]
_[_,_] : ∀ {c} (C : Category c) (X Y : Category.Obj C) → ObjV
_[_,_] = Category.hom
-- A V-category C does not have morphisms of its own, but the
-- collection of V-morphisms from the monoidal unit into the
-- hom-objects of C forms a setoid. This induces the *underlying*
-- category of C.
Underlying : ∀ {c} (C : Category c) → Setoid-Category c ℓ e
Underlying C = categoryHelper (record
{ Obj = Obj
; _⇒_ = λ A B → unit ⇒ hom A B
; _≈_ = λ f g → f ≈ g
; id = id
; _∘_ = λ f g → ⊚ ∘ f ⊗₁ g ∘ λ⇐
; assoc = λ {_} {_} {_} {_} {f} {g} {h} →
begin
⊚ ∘ (⊚ ∘ h ⊗₁ g ∘ λ⇐) ⊗₁ f ∘ λ⇐
≈˘⟨ refl⟩∘⟨ assoc ⟩⊗⟨refl ⟩∘⟨refl ⟩
⊚ ∘ ((⊚ ∘ h ⊗₁ g) ∘ λ⇐) ⊗₁ f ∘ λ⇐
≈⟨ refl⟩∘⟨ pushˡ split₁ʳ ⟩
⊚ ∘ (⊚ ∘ h ⊗₁ g) ⊗₁ f ∘ (λ⇐ ⊗₁ idV) ∘ λ⇐
≈⟨ pullˡ ⊚-assoc-var ⟩
(⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ α⇒) ∘ (λ⇐ ⊗₁ idV) ∘ λ⇐
≈˘⟨ pushˡ (pushʳ (pushʳ
(switch-tofromˡ associator (to-≈ Kelly's.coherence-iso₁)))) ⟩
(⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ λ⇐) ∘ λ⇐
≈⟨ pullʳ (pullʳ unitorˡ-commute-to) ⟩
⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f) ∘ idV ⊗₁ λ⇐ ∘ λ⇐
≈˘⟨ refl⟩∘⟨ pushˡ split₂ʳ ⟩
⊚ ∘ h ⊗₁ ((⊚ ∘ g ⊗₁ f) ∘ λ⇐) ∘ λ⇐
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ assoc ⟩∘⟨refl ⟩
⊚ ∘ h ⊗₁ (⊚ ∘ g ⊗₁ f ∘ λ⇐) ∘ λ⇐
∎
; identityˡ = λ {_} {_} {f} → begin
⊚ ∘ id ⊗₁ f ∘ λ⇐ ≈⟨ refl⟩∘⟨ serialize₁₂ ⟩∘⟨refl ⟩
⊚ ∘ (id ⊗₁ idV ∘ idV ⊗₁ f) ∘ λ⇐ ≈˘⟨ refl⟩∘⟨ pushʳ unitorˡ-commute-to ⟩
⊚ ∘ id ⊗₁ idV ∘ λ⇐ ∘ f ≈⟨ pullˡ unitˡ ⟩
λ⇒ ∘ λ⇐ ∘ f ≈⟨ cancelˡ unitorˡ.isoʳ ⟩
f ∎
; identityʳ = λ {_} {_} {f} → begin
⊚ ∘ f ⊗₁ id ∘ λ⇐ ≈⟨ refl⟩∘⟨ serialize₂₁ ⟩∘⟨refl ⟩
⊚ ∘ (idV ⊗₁ id ∘ f ⊗₁ idV) ∘ λ⇐ ≈⟨ pullˡ (pullˡ unitʳ) ⟩
(unitorʳ.from ∘ f ⊗₁ idV) ∘ λ⇐ ≈⟨ unitorʳ-commute-from ⟩∘⟨refl ⟩
(f ∘ unitorʳ.from) ∘ λ⇐ ≈˘⟨ (refl⟩∘⟨ Kelly's.coherence₃) ⟩∘⟨refl ⟩
(f ∘ λ⇒) ∘ λ⇐ ≈⟨ cancelʳ unitorˡ.isoʳ ⟩
f ∎
; equiv = equiv
; ∘-resp-≈ = λ eq₁ eq₂ → ∘-resp-≈ʳ $ ∘-resp-≈ˡ $ ⊗-resp-≈ eq₁ eq₂
})
where open Category C
module Underlying {c} (C : Category c) = Setoid-Category (Underlying C)
|
{
"alphanum_fraction": 0.5057803468,
"avg_line_length": 37.3381294964,
"ext": "agda",
"hexsha": "be3815b5190a2a5126d4462d0e1c236cc0a6833f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Enriched/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Enriched/Category.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Enriched/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2374,
"size": 5190
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
{-
This file contains:
1. An iso πₙ'(Sⁿ) ≅ ℤ, where πₙ'(Sⁿ) = ∥ Sⁿ →∙ Sⁿ ∥₀
2. A proof that idfun∙ : Sⁿ →∙ Sⁿ is the generator of πₙ'(Sⁿ)
-}
module Cubical.Homotopy.Group.PinSn where
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Group.SuspensionMap
open import Cubical.Homotopy.Connected
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Foundations.Isomorphism
open import Cubical.HITs.SetTruncation
renaming (elim to sElim ; elim2 to sElim2
; map to sMap)
open import Cubical.HITs.Truncation renaming
(elim to trElim ; elim2 to trElim2)
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.Data.Sigma
open import Cubical.Data.Nat
open import Cubical.Data.Int renaming (_+_ to _+ℤ_)
open import Cubical.ZCohomology.Properties
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.ZAction
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open Iso
-- The goal is to prove that πₙSⁿ ≅ ℤ. This is of course trivial, given
-- that ΩⁿK(ℤ,n) ≅ ℤ is already proved. However, we would like to do
-- this for πₙSⁿ defined via (Sⁿ →∙ Sⁿ) and prove that the generator
-- of this group is idfun∙ : Sⁿ → Sⁿ.
private
suspMapS^ : (n : ℕ) → (S₊∙ (suc n) →∙ S₊∙ (suc n))
→ S₊∙ (2 + n) →∙ S₊∙ (2 + n)
suspMapS^ n = suspMap {A = S₊∙ (suc n)} n
is2ConnectedSuspMap : (n : ℕ) → isConnectedFun 2 (suspMapS^ (suc n))
is2ConnectedSuspMap n =
isConnectedFunSubtr 2 n _
(subst (λ x → isConnectedFun x (suspMapS^ (suc n)))
(subtrLem n (suc (suc n)) ∙ +-comm 2 n)
(isConnectedSuspMap (suc n) (suc n)))
where
subtrLem : (n m : ℕ) → (n + m ∸ n) ≡ m
subtrLem zero m = refl
subtrLem (suc n) m = subtrLem n m
-- From the connectedness of the suspension map,
-- we get an iso πₙSⁿ ≅ πₙ₊₁(Sⁿ⁺¹) for n ≥ 2.
SphereSuspIso : (n : ℕ)
→ Iso (π' (2 + n) (S₊∙ (2 + n))) (π' (3 + n) (S₊∙ (3 + n)))
SphereSuspIso n =
compIso setTruncTrunc2Iso
(compIso
(connectedTruncIso 2
(suspMap {A = S₊∙ (suc (suc n))} (suc n)) (is2ConnectedSuspMap n))
(invIso (setTruncTrunc2Iso)))
SphereSuspGrIso : (n : ℕ)
→ GroupIso (π'Gr (suc n) (S₊∙ (2 + n))) (π'Gr (2 + n) (S₊∙ (3 + n)))
fst (SphereSuspGrIso n) = SphereSuspIso n
snd (SphereSuspGrIso n) =
makeIsGroupHom (sElim2 (λ _ _ → isSetPathImplicit)
λ f g → IsGroupHom.pres· (suspMapπ'Hom (suc n) .snd) ∣ f ∣₂ ∣ g ∣₂)
private
stLoop₁ : π 2 (S₊∙ 2)
stLoop₁ = ∣ sym (rCancel (merid base))
∙∙ (λ i → merid (loop i) ∙ sym (merid base))
∙∙ rCancel (merid base) ∣₂
stLoop₁flip : π 2 (S₊∙ 2)
stLoop₁flip = sMap flipSquare stLoop₁
flipSquareIso : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ)
→ GroupIso (πGr (suc n) A) (πGr (suc n) A)
fun (fst (flipSquareIso n)) = sMap flipSquare
inv (fst (flipSquareIso n)) = sMap flipSquare
rightInv (fst (flipSquareIso n)) =
sElim (λ _ → isSetPathImplicit) λ _ → refl
leftInv (fst (flipSquareIso n)) =
sElim (λ _ → isSetPathImplicit) λ _ → refl
snd (flipSquareIso n) =
makeIsGroupHom
(sElim2 (λ _ _ → isSetPathImplicit)
λ f g → cong ∣_∣₂
((sym (sym≡flipSquare (f ∙ g))
∙∙ symDistr f g
∙∙ cong₂ _∙_ (sym≡flipSquare g) (sym≡flipSquare f)
∙ EH n (flipSquare g) (flipSquare f))))
-- We now want to prove π₁S¹≅π₂S². This will be done by passing through
-- The loop space defintion of the groups
π'₂S²≅π₂S² : GroupIso (π'Gr 1 (S₊∙ 2)) (πGr 1 (S₊∙ 2))
π'₂S²≅π₂S² = π'Gr≅πGr 1 (S₊∙ 2)
{- We now define the iso π₂S² ≅ π₁S¹ -}
π₂S²≅π₁S¹ : GroupIso (πGr 1 (S₊∙ 2)) (πGr 0 (S₊∙ 1))
fst π₂S²≅π₁S¹ =
compIso setTruncTrunc2Iso
(compIso
(compIso (invIso (PathIdTruncIso 2))
(compIso (congIso (invIso (PathIdTruncIso 3)))
(compIso
(congIso (invIso (Iso-Kn-ΩKn+1 1)))
(PathIdTruncIso 2))))
(invIso setTruncTrunc2Iso))
snd π₂S²≅π₁S¹ =
makeIsGroupHom
(sElim2 (λ _ _ → isSetPathImplicit)
λ f g →
cong (inv setTruncTrunc2Iso)
(cong (fun (PathIdTruncIso 2))
(cong (cong (ΩKn+1→Kn 1))
(cong (cong (inv (PathIdTruncIso 3)))
(cong (inv (PathIdTruncIso 2))
(refl {x = ∣ f ∙ g ∣})
∙ cong-∙ ∣_∣ₕ f g)
∙ cong-∙ (inv (PathIdTruncIso 3)) (cong ∣_∣ₕ f) (cong ∣_∣ₕ g))
∙ cong-∙ (ΩKn+1→Kn 1)
(cong (inv (PathIdTruncIso 3)) (cong ∣_∣ₕ f))
(cong (inv (PathIdTruncIso 3)) (cong ∣_∣ₕ g)))
∙ PathIdTruncIsoFunct 1
(cong (ΩKn+1→Kn 1) (λ i → inv (PathIdTruncIso 3) ∣ f i ∣ₕ))
(cong (ΩKn+1→Kn 1) (λ i → inv (PathIdTruncIso 3) ∣ g i ∣ₕ)))
∙ setTruncTrunc2IsoFunct
((fun (PathIdTruncIso 2))
(cong (ΩKn+1→Kn 1) (λ i → inv (PathIdTruncIso 3) ∣ f i ∣ₕ)))
((fun (PathIdTruncIso 2))
(cong (ΩKn+1→Kn 1) (λ i → inv (PathIdTruncIso 3) ∣ g i ∣ₕ))))
where
setTruncTrunc2IsoFunct : ∀ {ℓ} {A : Type ℓ} {x : A}
(p q : hLevelTrunc 2 (x ≡ x))
→ inv setTruncTrunc2Iso
(Cubical.HITs.Truncation.map2 _∙_ p q)
≡ ·π 0 (inv setTruncTrunc2Iso p) (inv setTruncTrunc2Iso q)
setTruncTrunc2IsoFunct =
trElim2 (λ _ _ → isSetPathImplicit) λ _ _ → refl
π₂'S²≅π₁'S¹ : GroupIso (π'Gr 1 (S₊∙ 2)) (π'Gr 0 (S₊∙ 1))
π₂'S²≅π₁'S¹ =
compGroupIso (π'Gr≅πGr 1 (S₊∙ 2))
(compGroupIso (flipSquareIso 0)
(compGroupIso π₂S²≅π₁S¹
(invGroupIso (π'Gr≅πGr 0 (S₊∙ 1)))))
-- We get our iso
πₙ'Sⁿ≅ℤ : (n : ℕ) → GroupIso (π'Gr n (S₊∙ (suc n))) ℤGroup
πₙ'Sⁿ≅ℤ zero =
compGroupIso (π'Gr≅πGr zero (S₊∙ 1))
((compIso (setTruncIdempotentIso (isGroupoidS¹ _ _)) ΩS¹Isoℤ)
, makeIsGroupHom (sElim2 (λ _ _ → isProp→isSet (isSetℤ _ _))
winding-hom))
πₙ'Sⁿ≅ℤ (suc zero) = compGroupIso π₂'S²≅π₁'S¹ (πₙ'Sⁿ≅ℤ zero)
πₙ'Sⁿ≅ℤ (suc (suc n)) =
compGroupIso (invGroupIso (SphereSuspGrIso n)) (πₙ'Sⁿ≅ℤ (suc n))
-- Same thing for the loop space definition
πₙSⁿ≅ℤ : (n : ℕ) → GroupIso (πGr n (S₊∙ (suc n))) ℤGroup
πₙSⁿ≅ℤ n =
compGroupIso (invGroupIso (π'Gr≅πGr n (S₊∙ (suc n)))) (πₙ'Sⁿ≅ℤ n)
-- The goal now is to show that πₙ'Sⁿ≅ℤ takes idfun∙ : Sⁿ → Sⁿ to 1.
-- For this, we need a bunch of identities:
private
Isoπ₁S¹ℤ = (compIso (setTruncIdempotentIso (isGroupoidS¹ _ _)) ΩS¹Isoℤ)
π'₂S²≅π₂S²⁻-stLoop' : inv (fst (π'₂S²≅π₂S²)) stLoop₁flip ≡ ∣ idfun∙ _ ∣₂
π'₂S²≅π₂S²⁻-stLoop' =
cong ∣_∣₂ (ΣPathP ((funExt
(λ { north → refl
; south → merid base
; (merid base i) j →
hcomp (λ k
→ λ {(i = i0) → north
; (i = i1) → merid base (j ∧ k)
; (j = i0) → rUnit (λ _ → north) k i
; (j = i1) → merid base (i ∧ k)})
north
; (merid (loop k) i) j
→ hcomp (λ r
→ λ {(i = i0) → north
; (i = i1) → merid base (j ∧ r)
; (j = i0) →
rUnit (funExt⁻ (cong fst (cong (Ω→SphereMap 1)
(flipSquare (sym (rCancel (merid base))
∙∙ (λ i₁ → merid (loop i₁)
∙ sym (merid base))
∙∙ rCancel (merid base))))) (loop k)) r i
; (j = i1) → lem₂ r i k})
(((sym (rCancel (merid base)) ∙∙
(λ i₁ → merid (loop i₁) ∙ sym (merid base)) ∙∙
rCancel (merid base))) k i)})) , refl))
where
genBot+side : ∀ {ℓ} {A : Type ℓ} {x y : A} (p : x ≡ y)
→ Cube {A = A} (λ j r → x) (λ j r → p (~ j ∨ r))
(λ i r → p i) (λ i r → p (i ∧ r))
(λ i j → p (i ∧ ~ j)) (λ i j → p i)
× Cube {A = A} (λ j r → p (~ j ∨ r)) (λ j r → p (r ∧ j))
(λ k r → p (~ k)) (λ k r → p r)
(λ k j → p (~ k ∧ ~ j)) λ k j → p (j ∨ ~ k)
genBot+side {A = A} {x = x} =
J (λ y p → Cube {A = A} (λ j r → x) (λ j r → p (~ j ∨ r))
(λ i r → p i) (λ i r → p (i ∧ r))
(λ i j → p (i ∧ ~ j)) (λ i j → p i)
× Cube {A = A} (λ j r → p (~ j ∨ r)) (λ j r → p (r ∧ j))
(λ k r → p (~ k)) (λ k r → p r)
(λ k j → p (~ k ∧ ~ j)) λ k j → p (j ∨ ~ k))
(refl , refl)
lem₁ : I → I → I → S₊ 2
lem₁ j i r =
hcomp (λ k → λ {(i = i0) → north
; (i = i1) → genBot+side (merid base) .snd k j r
; (j = i0) → compPath-filler
(merid base) (sym (merid base)) k i
; (j = i1) → merid base (i ∧ r)
; (r = i0) → rCancel-filler (merid base) k j i
; (r = i1) → compPath-filler
(merid base) (sym (merid base)) (~ j ∧ k) i})
(genBot+side (merid base) .fst i j r)
lem₂ : I → I → I → S₊ 2
lem₂ r i k =
hcomp (λ j → λ {(i = i0) → north
; (i = i1) → merid base (r ∧ j)
; (r = i0) → doubleCompPath-filler
(sym (rCancel (merid base)))
(λ i₁ → merid (loop i₁) ∙ sym (merid base))
(rCancel (merid base)) j k i
; (r = i1) → compPath-filler
(merid (loop k)) (sym (merid base)) (~ j) i
; (k = i0) → lem₁ j i r
; (k = i1) → lem₁ j i r})
((merid (loop k) ∙ sym (merid base)) i)
π₂S²≅π₁S¹-stLoop : fun (fst π₂S²≅π₁S¹) stLoop₁ ≡ ∣ loop ∣₂
π₂S²≅π₁S¹-stLoop =
sym (leftInv Isoπ₁S¹ℤ
(fun (fst π₂S²≅π₁S¹) stLoop₁))
∙∙ cong (inv Isoπ₁S¹ℤ) compute
∙∙ leftInv (compIso (setTruncIdempotentIso (isGroupoidS¹ _ _)) ΩS¹Isoℤ)
∣ loop ∣₂
where
compute : fun Isoπ₁S¹ℤ (fun (fst π₂S²≅π₁S¹) stLoop₁)
≡ fun Isoπ₁S¹ℤ ∣ loop ∣₂
compute = refl
π₂'S²≅π₁'S¹≡ : fun (fst π₂'S²≅π₁'S¹) ∣ idfun∙ _ ∣₂ ≡ ∣ idfun∙ _ ∣₂
π₂'S²≅π₁'S¹≡ =
lem₁ ∣ idfun∙ _ ∣₂ stLoop₁
(sym π'₂S²≅π₂S²⁻-stLoop')
(cong (inv (fst (π'Gr≅πGr zero (S₊∙ 1)))) π₂S²≅π₁S¹-stLoop
∙ lem₂)
where
lem₁ : (x : _) (y : π 2 (S₊∙ 2))
→ (x ≡ inv (fst π'₂S²≅π₂S²) (fun (fst (flipSquareIso 0)) y))
→ inv (fst (π'Gr≅πGr zero (S₊∙ 1))) (fun (fst π₂S²≅π₁S¹) y)
≡ ∣ idfun∙ _ ∣₂
→ fun (fst π₂'S²≅π₁'S¹) x ≡ ∣ idfun∙ _ ∣₂
lem₁ x y p q =
cong (fun (fst π₂'S²≅π₁'S¹)) p
∙∙ (λ i → inv (fst (π'Gr≅πGr zero (S₊∙ (suc zero)))) (fun (fst π₂S²≅π₁S¹)
(fun (fst (flipSquareIso zero))
(rightInv
(fst (π'Gr≅πGr (suc zero) (S₊∙ (suc (suc zero)))))
(inv (fst (flipSquareIso zero)) y) i)
)))
∙∙ cong (inv (fst (π'Gr≅πGr zero (S₊∙ (suc zero)))))
(cong (fun (fst π₂S²≅π₁S¹))
(rightInv (fst (flipSquareIso zero)) y))
∙ q
lem₂ : inv (fst (π'Gr≅πGr zero (S₊∙ 1))) ∣ loop ∣₂ ≡ ∣ idfun∙ _ ∣₂
lem₂ =
cong ∣_∣₂ (ΣPathP (funExt (λ { base → refl ; (loop i) → refl}) , refl))
suspPresIdfun : (n : ℕ) → suspMap n (idfun∙ (S₊∙ (suc n))) ≡ idfun∙ _
suspPresIdfun n =
ΣPathP ((funExt
(λ { north → refl
; south → merid (ptSn (suc n))
; (merid a i) j
→ compPath-filler (merid a) (sym (merid (ptSn (suc n)))) (~ j) i}))
, refl)
suspPresIdfun2 : (n : ℕ)
→ fun (fst (invGroupIso (SphereSuspGrIso n)))
∣ idfun∙ (S₊∙ (suc (suc (suc n)))) ∣₂
≡ ∣ idfun∙ _ ∣₂
suspPresIdfun2 n =
sym (cong (fun (fst (invGroupIso (SphereSuspGrIso n))))
(cong ∣_∣₂ (suspPresIdfun (suc n))))
∙ leftInv (SphereSuspIso n) ∣ idfun∙ _ ∣₂
-- We finally have our results
πₙ'Sⁿ≅ℤ-idfun∙ : (n : ℕ)
→ fun (fst (πₙ'Sⁿ≅ℤ n)) ∣ idfun∙ _ ∣₂ ≡ (pos (suc zero))
πₙ'Sⁿ≅ℤ-idfun∙ zero = refl
πₙ'Sⁿ≅ℤ-idfun∙ (suc zero) = speedUp ∣ idfun∙ _ ∣₂ π₂'S²≅π₁'S¹≡
where
speedUp : (x : _) -- stated like this for faster type checking
→ fun (fst π₂'S²≅π₁'S¹) x ≡ ∣ idfun∙ _ ∣₂
→ fun (fst (πₙ'Sⁿ≅ℤ (suc zero))) x ≡ pos (suc zero)
speedUp x p = cong (fun (fst (πₙ'Sⁿ≅ℤ zero))) p
πₙ'Sⁿ≅ℤ-idfun∙ (suc (suc n)) =
cong (fun (fst (πₙ'Sⁿ≅ℤ (suc n)))) (suspPresIdfun2 n)
∙ πₙ'Sⁿ≅ℤ-idfun∙ (suc n)
πₙ'Sⁿ-gen-by-idfun : (n : ℕ) → gen₁-by (π'Gr n (S₊∙ (suc n))) ∣ idfun∙ _ ∣₂
πₙ'Sⁿ-gen-by-idfun n =
subst (gen₁-by (π'Gr n (S₊∙ (suc n))))
(sym (cong (inv (fst (πₙ'Sⁿ≅ℤ n))) (πₙ'Sⁿ≅ℤ-idfun∙ n))
∙ leftInv (fst (πₙ'Sⁿ≅ℤ n)) ∣ idfun∙ _ ∣₂)
(Iso-pres-gen₁ ℤGroup (π'Gr n (S₊∙ (suc n)))
(pos (suc zero))
(λ h → h , (sym (·Comm h (pos 1)) ∙ ℤ·≡· h (pos 1)))
(invGroupIso (πₙ'Sⁿ≅ℤ n)))
|
{
"alphanum_fraction": 0.5172257136,
"avg_line_length": 39.1899109792,
"ext": "agda",
"hexsha": "90b346cf35f1c85495354658f3b67b1f611b80cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Group/PinSn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Group/PinSn.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Group/PinSn.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 5571,
"size": 13207
}
|
module IgnoreWarnings where
-- all of the following files have warnings, which should be ignored
-- because of the command-line flag
import Issue2243
import Issue708quote
import OldCompilerPragmas
import RewritingEmptyPragma
import Unreachable
-- this should also be ignored
{-# REWRITE #-}
|
{
"alphanum_fraction": 0.806122449,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "df90d73942af7797d1fc66d2d4786c8a5fcd1687",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/Succeed/IgnoreWarnings.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/Succeed/IgnoreWarnings.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/Succeed/IgnoreWarnings.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 65,
"size": 294
}
|
-- Andreas, 2012-01-12
module Common.Irrelevance where
open import Common.Level
record Squash {a}(A : Set a) : Set a where
constructor squash
field
.unsquash : A
open Squash public
|
{
"alphanum_fraction": 0.722513089,
"avg_line_length": 17.3636363636,
"ext": "agda",
"hexsha": "ecfedfa12f9ab94b18973d254712905293b7eada",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Common/Irrelevance.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Common/Irrelevance.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Common/Irrelevance.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 191
}
|
------------------------------------------------------------------------------
-- FOTC natural numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat where
open import FOTC.Base
open import FOTC.Data.Nat.Type public
infixl 7 _*_
infixl 6 _+_ _∸_
------------------------------------------------------------------------------
-- Arithmetic operations
postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ₁ m + n ≡ succ₁ (m + n)
{-# ATP axioms +-0x +-Sx #-}
postulate
_∸_ : D → D → D
∸-x0 : ∀ n → n ∸ zero ≡ n
∸-xS : ∀ m n → m ∸ succ₁ n ≡ pred₁ (m ∸ n)
{-# ATP axioms ∸-x0 ∸-xS #-}
postulate
_*_ : D → D → D
*-0x : ∀ n → zero * n ≡ zero
*-Sx : ∀ m n → succ₁ m * n ≡ n + m * n
{-# ATP axioms *-0x *-Sx #-}
|
{
"alphanum_fraction": 0.3737373737,
"avg_line_length": 26.0526315789,
"ext": "agda",
"hexsha": "9833a9c97e759aa8583d960e9e1a85f7690b611b",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 303,
"size": 990
}
|
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.CohomologyRings.Unit where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat renaming (_+_ to _+n_ ; _·_ to _·n_)
open import Cubical.Data.Int
open import Cubical.Data.Vec
open import Cubical.Data.FinData
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int renaming (ℤGroup to ℤG)
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR)
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.QuotientRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-Quotient
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly-notationZ
open import Cubical.Algebra.Polynomials.Multivariate.EquivCarac.A[X]X-A
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetQuotients as SQ renaming (_/_ to _/sq_)
open import Cubical.HITs.PropositionalTruncation as PT
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.CohomologyRing
open import Cubical.ZCohomology.Groups.Unit
open Iso
module Equiv-Unit-Properties where
open CommRingStr (snd ℤCR) using ()
renaming
( 0r to 0ℤ
; 1r to 1ℤ
; _+_ to _+ℤ_
; -_ to -ℤ_
; _·_ to _·ℤ_
; +Assoc to +ℤAssoc
; +IdL to +ℤIdL
; +IdR to +ℤIdR
; +Comm to +ℤComm
; ·Assoc to ·ℤAssoc
; ·IdL to ·ℤIdL
; ·IdR to ·ℤIdR
; ·DistR+ to ·ℤDistR+
; is-set to isSetℤ )
open RingStr (snd (H*R Unit)) using ()
renaming
( 0r to 0H*
; 1r to 1H*
; _+_ to _+H*_
; -_ to -H*_
; _·_ to _cup_
; +Assoc to +H*Assoc
; +IdL to +H*IdL
; +IdR to +H*IdR
; +Comm to +H*Comm
; ·Assoc to ·H*Assoc
; ·IdL to ·H*IdL
; ·IdR to ·H*IdR
; ·DistR+ to ·H*DistR+
; is-set to isSetH* )
open CommRingStr (snd ℤ[X]) using ()
renaming
( 0r to 0Pℤ
; 1r to 1Pℤ
; _+_ to _+Pℤ_
; -_ to -Pℤ_
; _·_ to _·Pℤ_
; +Assoc to +PℤAssoc
; +IdL to +PℤIdL
; +IdR to +PℤIdR
; +Comm to +PℤComm
; ·Assoc to ·PℤAssoc
; ·IdL to ·PℤIdL
; ·IdR to ·PℤIdR
; ·DistR+ to ·PℤDistR+
; is-set to isSetPℤ )
open CommRingStr (snd ℤ[X]/X) using ()
renaming
( 0r to 0PℤI
; 1r to 1PℤI
; _+_ to _+PℤI_
; -_ to -PℤI_
; _·_ to _·PℤI_
; +Assoc to +PℤIAssoc
; +IdL to +PℤIIdL
; +IdR to +PℤIIdR
; +Comm to +PℤIComm
; ·Assoc to ·PℤIAssoc
; ·IdL to ·PℤIIdL
; ·IdR to ·PℤIIdR
; ·DistR+ to ·PℤIDistR+
; is-set to isSetPℤI )
-----------------------------------------------------------------------------
-- Direct Sens on ℤ[x]
ℤ[x]→H*-Unit : ℤ[x] → H* Unit
ℤ[x]→H*-Unit = DS-Rec-Set.f _ _ _ _ isSetH*
0H*
base-trad
_+H*_
+H*Assoc
+H*IdR
+H*Comm
base-neutral-eq
base-add-eq
where
base-trad : _
base-trad (zero ∷ []) a = base zero (inv (fst H⁰-Unit≅ℤ) a)
base-trad (suc n ∷ []) a = 0H*
base-neutral-eq : _
base-neutral-eq (zero ∷ []) = base-neutral _
base-neutral-eq (suc n ∷ []) = refl
base-add-eq : _
base-add-eq (zero ∷ []) a b = base-add _ _ _
base-add-eq (suc n ∷ []) a b = +H*IdR _
ℤ[x]→H*-Unit-pres1Pℤ : ℤ[x]→H*-Unit (1Pℤ) ≡ 1H*
ℤ[x]→H*-Unit-pres1Pℤ = refl
ℤ[x]→H*-Unit-pres+ : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x +Pℤ y) ≡ ℤ[x]→H*-Unit x +H* ℤ[x]→H*-Unit y
ℤ[x]→H*-Unit-pres+ x y = refl
-- -- Proving the morphism on the cup product
T0 : (z : ℤ) → coHom 0 Unit
T0 = λ z → inv (fst H⁰-Unit≅ℤ) z
T0g : IsGroupHom (ℤG .snd) (fst (invGroupIso H⁰-Unit≅ℤ) .fun) (coHomGr 0 Unit .snd)
T0g = snd (invGroupIso H⁰-Unit≅ℤ)
-- idea : control of the unfolding + simplification of T0 on the left
pres·-base-case-00 : (a : ℤ) → (b : ℤ) →
T0 (a ·ℤ b) ≡ (T0 a) ⌣ (T0 b)
pres·-base-case-00 (pos zero) b = (IsGroupHom.pres1 T0g)
pres·-base-case-00 (pos (suc n)) b = ((IsGroupHom.pres· T0g b (pos n ·ℤ b)))
∙ (cong (λ X → (T0 b) +ₕ X) (pres·-base-case-00 (pos n) b))
pres·-base-case-00 (negsuc zero) b = IsGroupHom.presinv T0g b
pres·-base-case-00 (negsuc (suc n)) b = cong T0 (+ℤComm (-ℤ b) (negsuc n ·ℤ b)) -- ·ℤ and ·₀ are defined asymetrically !
∙ IsGroupHom.pres· T0g (negsuc n ·ℤ b) (-ℤ b)
∙ cong₂ _+ₕ_ (pres·-base-case-00 (negsuc n) b)
(IsGroupHom.presinv T0g b)
pres·-base-case-int : (n : ℕ) → (a : ℤ) → (m : ℕ) → (b : ℤ) →
ℤ[x]→H*-Unit (base (n ∷ []) a ·Pℤ base (m ∷ []) b)
≡ ℤ[x]→H*-Unit (base (n ∷ []) a) cup ℤ[x]→H*-Unit (base (m ∷ []) b)
pres·-base-case-int zero a zero b = cong (base 0) (pres·-base-case-00 a b)
pres·-base-case-int zero a (suc m) b = refl
pres·-base-case-int (suc n) a m b = refl
pres·-base-case-vec : (v : Vec ℕ 1) → (a : ℤ) → (v' : Vec ℕ 1) → (b : ℤ) →
ℤ[x]→H*-Unit (base v a ·Pℤ base v' b)
≡ ℤ[x]→H*-Unit (base v a) cup ℤ[x]→H*-Unit (base v' b)
pres·-base-case-vec (n ∷ []) a (m ∷ []) b = pres·-base-case-int n a m b
ℤ[x]→H*-Unit-pres· : (x y : ℤ[x]) → ℤ[x]→H*-Unit (x ·Pℤ y) ≡ ℤ[x]→H*-Unit x cup ℤ[x]→H*-Unit y
ℤ[x]→H*-Unit-pres· = DS-Ind-Prop.f _ _ _ _
(λ x p q i y j → isSetH* _ _ (p y) (q y) i j)
(λ y → refl)
base-case
λ {U V} ind-U ind-V y → cong₂ _+H*_ (ind-U y) (ind-V y)
where
base-case : _
base-case (n ∷ []) a = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
(sym (RingTheory.0RightAnnihilates (H*R Unit) _))
(λ v' b → pres·-base-case-vec (n ∷ []) a v' b)
λ {U V} ind-U ind-V → (cong₂ _+H*_ ind-U ind-V) ∙ sym (·H*DistR+ _ _ _)
-- raising to the product
ℤ[x]→H*-Unit-cancelX : (k : Fin 1) → ℤ[x]→H*-Unit (<X> k) ≡ 0H*
ℤ[x]→H*-Unit-cancelX zero = refl
ℤ[X]→H*-Unit : RingHom (CommRing→Ring ℤ[X]) (H*R Unit)
fst ℤ[X]→H*-Unit = ℤ[x]→H*-Unit
snd ℤ[X]→H*-Unit = makeIsRingHom ℤ[x]→H*-Unit-pres1Pℤ ℤ[x]→H*-Unit-pres+ ℤ[x]→H*-Unit-pres·
ℤ[X]/X→H*R-Unit : RingHom (CommRing→Ring ℤ[X]/X) (H*R Unit)
ℤ[X]/X→H*R-Unit = Quotient-FGideal-CommRing-Ring.inducedHom ℤ[X] (H*R Unit) ℤ[X]→H*-Unit <X> ℤ[x]→H*-Unit-cancelX
ℤ[x]/x→H*-Unit : ℤ[x]/x → H* Unit
ℤ[x]/x→H*-Unit = fst ℤ[X]/X→H*R-Unit
-----------------------------------------------------------------------------
-- Converse Sens on ℤ[X]
H*-Unit→ℤ[x] : H* Unit → ℤ[x]
H*-Unit→ℤ[x] = DS-Rec-Set.f _ _ _ _ isSetPℤ
0Pℤ
base-trad
_+Pℤ_
+PℤAssoc
+PℤIdR
+PℤComm
base-neutral-eq
base-add-eq
where
base-trad : (n : ℕ) → coHom n Unit → ℤ[x]
base-trad zero a = base (0 ∷ []) (fun (fst H⁰-Unit≅ℤ) a)
base-trad (suc n) a = 0Pℤ
base-neutral-eq : _
base-neutral-eq zero = base-neutral _
base-neutral-eq (suc n) = refl
base-add-eq : _
base-add-eq zero a b = base-add _ _ _
∙ cong (base (0 ∷ [])) (sym (IsGroupHom.pres· (snd H⁰-Unit≅ℤ) a b))
base-add-eq (suc n) a b = +PℤIdR _
H*-Unit→ℤ[x]-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x] ( x +H* y) ≡ H*-Unit→ℤ[x] x +Pℤ H*-Unit→ℤ[x] y
H*-Unit→ℤ[x]-pres+ x y = refl
H*-Unit→ℤ[x]/x : H* Unit → ℤ[x]/x
H*-Unit→ℤ[x]/x = [_] ∘ H*-Unit→ℤ[x]
H*-Unit→ℤ[x]/x-pres+ : (x y : H* Unit) → H*-Unit→ℤ[x]/x (x +H* y) ≡ (H*-Unit→ℤ[x]/x x) +PℤI (H*-Unit→ℤ[x]/x y)
H*-Unit→ℤ[x]/x-pres+ x y = cong [_] (H*-Unit→ℤ[x]-pres+ x y)
-----------------------------------------------------------------------------
-- Section
e-sect : (x : H* Unit) → ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x x) ≡ x
e-sect = DS-Ind-Prop.f _ _ _ _ (λ _ → isSetH* _ _)
refl
base-case
λ {U V} ind-U ind-V → cong ℤ[x]/x→H*-Unit (H*-Unit→ℤ[x]/x-pres+ U V)
∙ IsRingHom.pres+ (snd ℤ[X]/X→H*R-Unit) (H*-Unit→ℤ[x]/x U) (H*-Unit→ℤ[x]/x V)
∙ cong₂ _+H*_ ind-U ind-V
where
base-case : _
base-case zero a = cong (base 0) (leftInv (fst H⁰-Unit≅ℤ) a)
base-case (suc n) a = (sym (base-neutral (suc n)))
∙ (cong (base (suc n)) ((isContr→isProp (isContrHⁿ-Unit n) _ a)))
-----------------------------------------------------------------------------
-- Retraction
e-retr : (x : ℤ[x]/x) → H*-Unit→ℤ[x]/x (ℤ[x]/x→H*-Unit x) ≡ x
e-retr = SQ.elimProp (λ _ → isSetPℤI _ _)
(DS-Ind-Prop.f _ _ _ _ (λ _ → isSetPℤI _ _)
refl
base-case
λ {U V} ind-U ind-V → cong₂ _+PℤI_ ind-U ind-V)
where
base-case : _
base-case (zero ∷ []) a = refl
base-case (suc n ∷ []) a = eq/ 0Pℤ (base (suc n ∷ []) a) ∣ ((λ x → base (n ∷ []) (-ℤ a)) , foo) ∣₁
where
foo : (0Pℤ +Pℤ base (suc n ∷ []) (- a)) ≡ (base (n +n 1 ∷ []) (- a · pos 1) +Pℤ 0Pℤ)
foo = (0Pℤ +Pℤ base (suc n ∷ []) (- a)) ≡⟨ +PℤIdL _ ⟩
base (suc n ∷ []) (- a) ≡⟨ cong₂ base (cong (λ X → X ∷ []) (sym ((+-suc n 0)
∙ (cong suc (+-zero n))))) (sym (·ℤIdR _)) ⟩
base (n +n suc 0 ∷ []) (- a ·ℤ 1ℤ) ≡⟨ refl ⟩
base (n +n 1 ∷ []) (- a · pos 1) ≡⟨ sym (+PℤIdR _) ⟩
(base (n +n 1 ∷ []) (- a · pos 1) +Pℤ 0Pℤ) ∎
-----------------------------------------------------------------------------
-- Computation of the Cohomology Ring
module _ where
open Equiv-Unit-Properties
open RingEquivs
Unit-CohomologyRingP : RingEquiv (CommRing→Ring ℤ[X]/X) (H*R Unit)
fst Unit-CohomologyRingP = isoToEquiv is
where
is : Iso ℤ[x]/x (H* Unit)
fun is = ℤ[x]/x→H*-Unit
inv is = H*-Unit→ℤ[x]/x
rightInv is = e-sect
leftInv is = e-retr
snd Unit-CohomologyRingP = snd ℤ[X]/X→H*R-Unit
CohomologyRing-UnitP : RingEquiv (H*R Unit) (CommRing→Ring ℤ[X]/X)
CohomologyRing-UnitP = invRingEquiv Unit-CohomologyRingP
Unit-CohomologyRingℤ : RingEquiv (CommRing→Ring ℤCR) (H*R Unit)
Unit-CohomologyRingℤ = compRingEquiv (invRingEquiv Equiv-ℤ[X]/X-ℤ) Unit-CohomologyRingP
CohomologyRing-Unitℤ : RingEquiv (H*R Unit) (CommRing→Ring ℤCR)
CohomologyRing-Unitℤ = compRingEquiv CohomologyRing-UnitP Equiv-ℤ[X]/X-ℤ
|
{
"alphanum_fraction": 0.4927188624,
"avg_line_length": 37.0603174603,
"ext": "agda",
"hexsha": "a562100d4da2b694646b0bdc523295b12f07717d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda",
"max_line_length": 122,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/CohomologyRings/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4416,
"size": 11674
}
|
module Implicits.Resolution.Embedding where
open import Prelude
open import Data.Vec
open import Data.List as List hiding (map)
open import Implicits.Syntax
open import SystemF.Everything as F using ()
⟦_⟧tp← : ∀ {ν} → F.Type ν → Type ν
⟦ F.tc x ⟧tp← = simpl (tc x)
⟦ F.tvar n ⟧tp← = simpl (tvar n)
⟦ a F.→' b ⟧tp← = (⟦ a ⟧tp← ⇒ ⟦ b ⟧tp←)
⟦ a F.⟶ b ⟧tp← = simpl (⟦ a ⟧tp← →' ⟦ b ⟧tp←)
⟦ F.∀' x ⟧tp← = ∀' ⟦ x ⟧tp←
⟦_⟧tps← : ∀ {ν n} → Vec (F.Type ν) n → Vec (Type ν) n
⟦ v ⟧tps← = map (⟦_⟧tp←) v
⟦_⟧ctx← : ∀ {ν n} → Vec (F.Type ν) n → List (Type ν)
⟦ v ⟧ctx← = toList $ map ⟦_⟧tp← v
⟦_⟧tp→ : ∀ {ν} → Type ν → F.Type ν
⟦ simpl (tc x) ⟧tp→ = F.tc x
⟦ simpl (tvar n) ⟧tp→ = F.tvar n
⟦ simpl (a →' b) ⟧tp→ = ⟦ a ⟧tp→ F.⟶ ⟦ b ⟧tp→
⟦ a ⇒ b ⟧tp→ = ⟦ a ⟧tp→ F.→' ⟦ b ⟧tp→
⟦ ∀' x ⟧tp→ = F.∀' ⟦ x ⟧tp→
⟦_⟧tps→ : ∀ {ν n} → Vec (Type ν) n → Vec (F.Type ν) n
⟦ v ⟧tps→ = map (⟦_⟧tp→) v
⟦_⟧ctx→ : ∀ {ν} → (Δ : ICtx ν) → Vec (F.Type ν) (List.length (List.map ⟦_⟧tp→ Δ))
⟦ Δ ⟧ctx→ = fromList (List.map ⟦_⟧tp→ Δ)
|
{
"alphanum_fraction": 0.5044865404,
"avg_line_length": 27.8611111111,
"ext": "agda",
"hexsha": "ce2e639325c91892cd42e13e4065f2c2ba9d551e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Embedding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Embedding.agda",
"max_line_length": 81,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Embedding.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 535,
"size": 1003
}
|
------------------------------------------------------------------------
-- A parametrised specification of "natrec", along with a proof that
-- the specification is propositional (assuming extensionality)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
open import Prelude hiding (ℕ; zero; suc)
-- The module is parametrised by equality and some type that is closed
-- under "zero" and "suc".
module Nat.Eliminator
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive)
(ℕ : Type) (zero : ℕ) (suc : ℕ → ℕ)
where
open import Bijection eq using (_↔_)
open Derived-definitions-and-properties eq
import Equivalence eq as Eq
open import Function-universe eq hiding (_∘_)
open import H-level eq as H-level
open import H-level.Closure eq
open import Surjection eq using (_↠_)
-- Specification of natrec.
Natrec : (ℓ : Level) → Type (lsuc ℓ)
Natrec ℓ =
(P : ℕ → Type ℓ) (z : P zero) (s : ∀ n → P n → P (suc n)) →
∃ λ (natrec : ∀ n → P n) →
natrec zero ≡ z
×
∀ n → natrec (suc n) ≡ s n (natrec n)
-- This specification is propositional (assuming extensionality).
--
-- Note that the proof uses some lemmas that are defined by recursion
-- on natural numbers. I suspect that it would be easy (although
-- perhaps somewhat tedious) to avoid such recursion.
--
-- I got the idea for this result from Christian Sattler, who
-- mentioned the work of Awodey, Gambino and Sojakova: in "Inductive
-- types in homotopy type theory" they prove something similar for a
-- non-dependent eliminator.
Natrec-propositional :
∀ {ℓ} →
Extensionality (lsuc ℓ) ℓ →
Is-proposition (Natrec ℓ)
Natrec-propositional {ℓ} ext₊ =
[inhabited⇒+]⇒+ 0 λ natrec₀ →
Π-closure ext₊ 1 λ P →
Π-closure ext₌ 1 λ z →
Π-closure ext₌ 1 λ s →
H-level.respects-surjection (∃-cong (lemma natrec₀ P z s)) 1
(mono₁ 0 (singleton-contractible _))
where
ext₌ : Extensionality ℓ ℓ
ext₌ = lower-extensionality _ lzero ext₊
ext₀ : Extensionality lzero ℓ
ext₀ = lower-extensionality _ lzero ext₊
ext : Extensionality lzero ℓ
ext = Eq.good-ext ext₀
lemma :
(natrec₀ : Natrec ℓ)
(P : ℕ → Type ℓ) (z : P zero) (s : ∀ n → P n → P (suc n))
(natrec : ∀ n → P n) →
natrec ≡ proj₁ (natrec₀ P z s)
↠
(natrec zero ≡ z
×
∀ n → natrec (suc n) ≡ s n (natrec n))
lemma natrec₀ P z s natrec = record
{ logical-equivalence = record
{ to = λ eq →
(natrec zero ≡⟨ cong (_$ zero) eq ⟩
rec₀ P z s zero ≡⟨ nz₀ P z s ⟩∎
z ∎)
, λ n →
natrec (suc n) ≡⟨ cong (_$ suc n) eq ⟩
rec₀ P z s (suc n) ≡⟨ ns₀ P z s n ⟩
s n (rec₀ P z s n) ≡⟨ sym $ cong (s n) $ cong (_$ n) eq ⟩∎
s n (natrec n) ∎
; from = λ { (nz , ns) → apply-ext ext $
lower ∘
rec₀ (λ n → ↑ ℓ (natrec n ≡ rec₀ P z s n))
(lift (
natrec zero ≡⟨ nz ⟩
z ≡⟨ sym $ nz₀ P z s ⟩∎
rec₀ P z s zero ∎))
(λ n ih → lift (
natrec (suc n) ≡⟨ ns n ⟩
s n (natrec n) ≡⟨ cong (s n) (lower ih) ⟩
s n (rec₀ P z s n) ≡⟨ sym $ ns₀ P z s n ⟩∎
rec₀ P z s (suc n) ∎))
}
}
; right-inverse-of = λ { (nz , ns) →
let f = lower ∘
rec₀ _
(lift (trans nz (sym $ nz₀ P z s)))
(λ n ih →
lift (trans (ns n)
(trans (cong (s n) (lower ih))
(sym $ ns₀ P z s n)))) in
_↔_.to ≡×≡↔≡
( (trans (cong (_$ zero) (apply-ext ext f)) (nz₀ P z s) ≡⟨ cong (flip trans (nz₀ P z s)) $ Eq.cong-good-ext ext₀ f ⟩
trans (f zero) (nz₀ P z s) ≡⟨ cong (flip trans (nz₀ P z s) ∘ lower) $ nz₀ _ _ _ ⟩
trans (trans nz (sym $ nz₀ P z s)) (nz₀ P z s) ≡⟨ trans-[trans-sym]- _ (nz₀ P z s) ⟩∎
nz ∎)
, apply-ext ext λ n →
trans
(cong (_$ suc n) (apply-ext ext f))
(trans (ns₀ P z s n)
(sym $ cong (s n) $ cong (_$ n) (apply-ext ext f))) ≡⟨ cong₂ (λ p q → trans p (trans (ns₀ P z s n) (sym $ cong (s n) q)))
(Eq.cong-good-ext ext₀ f) (Eq.cong-good-ext ext₀ f) ⟩
trans
(f (suc n))
(trans (ns₀ P z s n) (sym $ cong (s n) (f n))) ≡⟨ cong (flip trans (trans _ (sym $ cong (s n) (f n))) ∘ lower) $
ns₀ _ _ _ _ ⟩
trans
(trans (ns n)
(trans (cong (s n) (f n))
(sym $ ns₀ P z s n)))
(trans (ns₀ P z s n) (sym $ cong (s n) (f n))) ≡⟨ cong (flip trans (trans _ (sym $ cong (s n) (f n)))) $
sym $ trans-assoc _ _ (sym $ ns₀ P z s n) ⟩
trans
(trans (trans (ns n) (cong (s n) (f n)))
(sym $ ns₀ P z s n))
(trans (ns₀ P z s n) (sym $ cong (s n) (f n))) ≡⟨ sym $ trans-assoc _ _ (sym $ cong (s n) (f n)) ⟩
trans
(trans (trans (trans (ns n) (cong (s n) (f n)))
(sym $ ns₀ P z s n))
(ns₀ P z s n))
(sym $ cong (s n) (f n)) ≡⟨ cong (flip trans (sym $ cong (s n) (f n))) $
trans-[trans-sym]- _ (ns₀ P z s n) ⟩
trans
(trans (ns n) (cong (s n) (f n)))
(sym $ cong (s n) (f n)) ≡⟨ trans-[trans]-sym _ (cong (s n) (f n)) ⟩∎
ns n ∎
)
}
}
where
rec₀ : (P : ℕ → Type ℓ) (z : P zero) (s : ∀ n → P n → P (suc n)) →
∀ n → P n
rec₀ P z s = proj₁ (natrec₀ P z s)
nz₀ : (P : ℕ → Type ℓ) (z : P zero) (s : ∀ n → P n → P (suc n)) →
rec₀ P z s zero ≡ z
nz₀ P z s = proj₁ (proj₂ (natrec₀ P z s))
ns₀ : (P : ℕ → Type ℓ) (z : P zero) (s : ∀ n → P n → P (suc n)) →
∀ n → rec₀ P z s (suc n) ≡ s n (rec₀ P z s n)
ns₀ P z s = proj₂ (proj₂ (natrec₀ P z s))
|
{
"alphanum_fraction": 0.4119515012,
"avg_line_length": 40.9940828402,
"ext": "agda",
"hexsha": "40e95b5648ad0850cd940eb8e372136506a7a426",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Nat/Eliminator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Nat/Eliminator.agda",
"max_line_length": 146,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Nat/Eliminator.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 2126,
"size": 6928
}
|
{-# OPTIONS --allow-unsolved-metas #-}
module turing where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat -- hiding ( erase )
open import Data.List
open import Data.Maybe hiding ( map )
-- open import Data.Bool using ( Bool ; true ; false ) renaming ( not to negate )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Product hiding ( map )
open import logic
data Write ( Σ : Set ) : Set where
write : Σ → Write Σ
wnone : Write Σ
-- erase write tnone
data Move : Set where
left : Move
right : Move
mnone : Move
-- at tδ both stack is poped
-- write S push S , push SR
-- erase push SL , push tone
-- none push SL , push SR
-- left push SR , pop
-- right pop , push SL
{-# TERMINATING #-}
move : {Q Σ : Set } → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move } → (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ )
move {Q} {Σ} {tnone} {tδ} q L [] = move {Q} {Σ} {tnone} {tδ} q L ( tnone ∷ [] )
move {Q} {Σ} {tnone} {tδ} q [] R = move {Q} {Σ} {tnone} {tδ} q ( tnone ∷ [] ) R
move {Q} {Σ} {tnone} {tδ} q ( LH ∷ LT ) ( RH ∷ RT ) with tδ q LH
... | nq , write x , left = ( nq , ( RH ∷ x ∷ LT ) , RT )
... | nq , write x , right = ( nq , LT , ( x ∷ RH ∷ RT ) )
... | nq , write x , mnone = ( nq , ( x ∷ LT ) , ( RH ∷ RT ) )
... | nq , wnone , left = ( nq , ( RH ∷ LH ∷ LT ) , RT )
... | nq , wnone , right = ( nq , LT , ( LH ∷ RH ∷ RT ) )
... | nq , wnone , mnone = ( nq , ( LH ∷ LT ) , ( RH ∷ RT ) )
{-# TERMINATING #-}
move-loop : {Q Σ : Set } → {tend : Q → Bool} → { tnone : Σ} → {tδ : Q → Σ → Q × ( Write Σ ) × Move }
→ (q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ )
move-loop {Q} {Σ} {tend} {tnone} {tδ} q L R with tend q
... | true = ( q , L , R )
... | flase = move-loop {Q} {Σ} {tend} {tnone} {tδ} ( proj₁ next ) ( proj₁ ( proj₂ next ) ) ( proj₂ ( proj₂ next ) )
where
next = move {Q} {Σ} {tnone} {tδ} q L R
{-# TERMINATING #-}
move0 : {Q Σ : Set } ( tend : Q → Bool ) (tnone : Σ ) (tδ : Q → Σ → Q × ( Write Σ ) × Move)
(q : Q ) ( L : List Σ ) ( L : List Σ ) → ( Q × List Σ × List Σ )
move0 tend tnone tδ q L R with tend q
... | true = ( q , L , R )
move0 tend tnone tδ q L [] | false = move0 tend tnone tδ q L ( tnone ∷ [] )
move0 tend tnone tδ q [] R | false = move0 tend tnone tδ q ( tnone ∷ [] ) R
move0 tend tnone tδ q ( LH ∷ LT ) ( RH ∷ RT ) | false with tδ q LH
... | nq , write x , left = move0 tend tnone tδ nq ( RH ∷ x ∷ LT ) RT
... | nq , write x , right = move0 tend tnone tδ nq LT ( x ∷ RH ∷ RT )
... | nq , write x , mnone = move0 tend tnone tδ nq ( x ∷ LT ) ( RH ∷ RT )
... | nq , wnone , left = move0 tend tnone tδ nq ( RH ∷ LH ∷ LT ) RT
... | nq , wnone , right = move0 tend tnone tδ nq LT ( LH ∷ RH ∷ RT )
... | nq , wnone , mnone = move0 tend tnone tδ nq ( LH ∷ LT ) ( RH ∷ RT )
record Turing ( Q : Set ) ( Σ : Set )
: Set where
field
tδ : Q → Σ → Q × ( Write Σ ) × Move
tstart : Q
tend : Q → Bool
tnone : Σ
taccept : List Σ → ( Q × List Σ × List Σ )
taccept L = move0 tend tnone tδ tstart L []
open import automaton
open Automaton
{-# TERMINATING #-}
move1 : {Q Σ : Set } ( tend : Q → Bool ) (tnone : Σ ) (δ : Q → Σ → Q ) (tδ : Q → Σ → Write Σ × Move)
(q : Q ) ( L : List Σ ) ( R : List Σ ) → Q × List Σ × List Σ
move1 tend tnone δ tδ q L R with tend q
... | true = ( q , L , R )
move1 tend tnone δ tδ q L [] | false = move1 tend tnone δ tδ q L ( tnone ∷ [] )
move1 tend tnone δ tδ q [] R | false = move1 tend tnone δ tδ q ( tnone ∷ [] ) R
move1 tend tnone δ tδ q ( LH ∷ LT ) ( RH ∷ RT ) | false with tδ (δ q LH) LH
... | write x , left = move1 tend tnone δ tδ (δ q LH) ( RH ∷ x ∷ LT ) RT
... | write x , right = move1 tend tnone δ tδ (δ q LH) LT ( x ∷ RH ∷ RT )
... | write x , mnone = move1 tend tnone δ tδ (δ q LH) ( x ∷ LT ) ( RH ∷ RT )
... | wnone , left = move1 tend tnone δ tδ (δ q LH) ( RH ∷ LH ∷ LT ) RT
... | wnone , right = move1 tend tnone δ tδ (δ q LH) LT ( LH ∷ RH ∷ RT )
... | wnone , mnone = move1 tend tnone δ tδ (δ q LH) ( LH ∷ LT ) ( RH ∷ RT )
record TM ( Q : Set ) ( Σ : Set )
: Set where
field
automaton : Automaton Q Σ
tδ : Q → Σ → Write Σ × Move
tnone : Σ
taccept : Q → List Σ → ( Q × List Σ × List Σ )
taccept q L = move1 (aend automaton) tnone (δ automaton) tδ q L []
data CopyStates : Set where
s1 : CopyStates
s2 : CopyStates
s3 : CopyStates
s4 : CopyStates
s5 : CopyStates
H : CopyStates
Copyδ : CopyStates → ℕ → CopyStates × ( Write ℕ ) × Move
Copyδ s1 0 = H , wnone , mnone
Copyδ s1 1 = s2 , write 0 , right
Copyδ s2 0 = s3 , write 0 , right
Copyδ s2 1 = s2 , write 1 , right
Copyδ s3 0 = s4 , write 1 , left
Copyδ s3 1 = s3 , write 1 , right
Copyδ s4 0 = s5 , write 0 , left
Copyδ s4 1 = s4 , write 1 , left
Copyδ s5 0 = s1 , write 1 , right
Copyδ s5 1 = s5 , write 1 , left
Copyδ H _ = H , wnone , mnone
Copyδ _ (suc (suc _)) = H , wnone , mnone
copyMachine : Turing CopyStates ℕ
copyMachine = record {
tδ = Copyδ
; tstart = s1
; tend = tend
; tnone = 0
} where
tend : CopyStates → Bool
tend H = true
tend _ = false
copyTM : TM CopyStates ℕ
copyTM = record {
automaton = record { δ = λ q i → proj₁ (Copyδ q i) ; aend = tend }
; tδ = λ q i → proj₂ (Copyδ q i )
; tnone = 0
} where
tend : CopyStates → Bool
tend H = true
tend _ = false
test1 : CopyStates × ( List ℕ ) × ( List ℕ )
test1 = Turing.taccept copyMachine ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] )
test2 : ℕ → CopyStates × ( List ℕ ) × ( List ℕ )
test2 n = loop n (Turing.tstart copyMachine) ( 1 ∷ 1 ∷ 0 ∷ 0 ∷ 0 ∷ [] ) []
where
loop : ℕ → CopyStates → ( List ℕ ) → ( List ℕ ) → CopyStates × ( List ℕ ) × ( List ℕ )
loop zero q L R = ( q , L , R )
loop (suc n) q L R = loop n ( proj₁ t1 ) ( proj₁ ( proj₂ t1 ) ) ( proj₂ ( proj₂ t1 ) )
where
t1 = move {CopyStates} {ℕ} {0} {Copyδ} q L R
-- testn = map (\ n -> test2 n) ( 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ 6 ∷ [] )
testn : ℕ → List ( CopyStates × ( List ℕ ) × ( List ℕ ) )
testn 0 = test2 0 ∷ []
testn (suc n) = test2 n ∷ testn n
|
{
"alphanum_fraction": 0.4959677419,
"avg_line_length": 39.8571428571,
"ext": "agda",
"hexsha": "82979c44c04d12355623b9a5a1e4df133b8b3c1f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/turing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/turing.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/turing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2753,
"size": 6696
}
|
open import Agda.Primitive using (_⊔_)
import Categories.Category as Category
import Categories.Category.Cartesian as Cartesian
open import SingleSorted.Context
module SingleSorted.Power
{o ℓ e}
(𝒞 : Category.Category o ℓ e) where
open Category.Category 𝒞
open HomReasoning
record Powered (A : Obj) : Set (o ⊔ ℓ ⊔ e) where
field
pow : Context → Obj
π : ∀ {Γ} → var Γ → pow Γ ⇒ A
tuple : ∀ Γ {B} → (var Γ → B ⇒ A) → B ⇒ pow Γ
project : ∀ {Γ} {B} {x : var Γ} {fs : var Γ → B ⇒ A} → π x ∘ tuple Γ fs ≈ fs x
unique : ∀ {Γ} {B} {fs : var Γ → B ⇒ A} {g : B ⇒ pow Γ} → (∀ i → π i ∘ g ≈ fs i) → tuple Γ fs ≈ g
η : ∀ {Γ} → tuple Γ π ≈ id
η = unique (λ i → identityʳ)
! : ∀ {B : Obj} → B ⇒ pow ctx-empty
! = tuple ctx-empty ctx-empty-absurd
!-unique : ∀ {B : Obj} {f : B ⇒ pow ctx-empty} → ! ≈ f
!-unique = unique λ i → ctx-empty-absurd i
!-unique₂ : ∀ {B : Obj} {f g : B ⇒ pow ctx-empty} → f ≈ g
!-unique₂ = (⟺ !-unique) ○ !-unique
tuple-cong : ∀ {B : Obj} {Γ} {fs gs : var Γ → B ⇒ A} → (∀ i → fs i ≈ gs i) →
tuple Γ fs ≈ tuple Γ gs
tuple-cong ξ = unique (λ i → project ○ ⟺ (ξ i))
∘-distribʳ-tuple : ∀ {B C} {Γ} {fs : var Γ → B ⇒ A} {g : C ⇒ B} →
tuple Γ (λ x → fs x ∘ g) ≈ tuple Γ fs ∘ g
∘-distribʳ-tuple = unique (λ i → ⟺ assoc ○ ∘-resp-≈ˡ project)
-- A cartesian category has a standard power structure (which we need not use)
module _ (cartesian-𝒞 : Cartesian.Cartesian 𝒞) (A : Obj) where
open Cartesian.Cartesian cartesian-𝒞
standard-pow : Context → Obj
standard-pow ctx-empty = ⊤
standard-pow ctx-slot = A
standard-pow (ctx-concat Γ Δ) = standard-pow Γ × standard-pow Δ
standard-π : ∀ {Γ} → var Γ → standard-pow Γ ⇒ A
standard-π var-var = id
standard-π (var-inl i) = standard-π i ∘ π₁
standard-π (var-inr i) = standard-π i ∘ π₂
standard-tuple : ∀ Γ {B} → (var Γ → B ⇒ A) → B ⇒ standard-pow Γ
standard-tuple ctx-empty fs = !
standard-tuple ctx-slot fs = fs var-var
standard-tuple (ctx-concat Γ Δ) fs = ⟨ standard-tuple Γ (λ i → fs (var-inl i)) , standard-tuple Δ (λ j → fs (var-inr j)) ⟩
standard-project : ∀ {Γ} {B} {x : var Γ} {fs : var Γ → B ⇒ A} →
standard-π x ∘ standard-tuple Γ fs ≈ fs x
standard-project {x = var-var} = identityˡ
standard-project {x = var-inl x} = assoc ○ ((∘-resp-≈ʳ project₁) ○ standard-project {x = x})
standard-project {x = var-inr x} = assoc ○ ((∘-resp-≈ʳ project₂) ○ standard-project {x = x})
standard-unique : ∀ {Γ} {B} {fs : var Γ → B ⇒ A} {g : B ⇒ standard-pow Γ} → (∀ i → standard-π i ∘ g ≈ fs i) →
standard-tuple Γ fs ≈ g
standard-unique {ctx-empty} ξ = !-unique _
standard-unique {ctx-slot} ξ = ⟺ (ξ var-var) ○ identityˡ
standard-unique {ctx-concat Γ Δ} {fs = fs} ξ =
unique
(⟺ (standard-unique (λ x → sym-assoc ○ (ξ (var-inl x)))))
(⟺ (standard-unique (λ y → sym-assoc ○ (ξ (var-inr y)))))
StandardPowered : Powered A
StandardPowered =
record
{ pow = standard-pow
; π = standard-π
; tuple = standard-tuple
; project = λ {Γ} → standard-project {Γ}
; unique = standard-unique }
|
{
"alphanum_fraction": 0.5453712191,
"avg_line_length": 38.0581395349,
"ext": "agda",
"hexsha": "856214e58e002c75c3c1b52951f9277ceedc90e8",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SingleSorted/Power.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SingleSorted/Power.agda",
"max_line_length": 126,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SingleSorted/Power.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 1193,
"size": 3273
}
|
-- {-# OPTIONS -v tc.conv.coerce:10 -v tc.conv.size:40 -v tc.size.solve:40 #-}
-- Andreas, 2014-06-16 Coercion for sizes
open import Common.Size
data Nat (i : Size) : Set where
zero : Nat i
suc : (j : Size< i) → Nat j → Nat i
three : (i : Size) → Nat (↑ ↑ ↑ i)
three i = suc _ (suc _ (suc i zero))
-- Should be ok, but we get the error:
-- ∞ !=< i of type Size
-- when checking that the expression _ has type Size< (↑ (↑ (↑ i)))
-- Works now.
|
{
"alphanum_fraction": 0.592920354,
"avg_line_length": 26.5882352941,
"ext": "agda",
"hexsha": "6dc3863f5be3255533377487767a2bee872201f9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1203.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1203.agda",
"max_line_length": 78,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1203.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 157,
"size": 452
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Light.Implementation.Standard.Data.Product where
open import Light.Library.Data.Product using (Library ; Dependencies)
open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality)
open import Light.Variable.Sets
instance dependencies : Dependencies
dependencies = record {}
instance library : Library dependencies
library = record { Implementation }
where
module Implementation where
open import Data.Product using (Σ) renaming (proj₁ to first ; proj₂ to second ; _,_ to both) public
equals :
∀ ⦃ a‐c‐equals : DecidableEquality 𝕒 𝕔 ⦄ ⦃ b‐d‐equals : DecidableEquality 𝕓 𝕕 ⦄
→ DecidableEquality (Σ 𝕒 (λ _ → 𝕓)) (Σ 𝕔 (λ _ → 𝕕))
equals = {!!}
|
{
"alphanum_fraction": 0.6704035874,
"avg_line_length": 38.7826086957,
"ext": "agda",
"hexsha": "2ad8cdecc15c9b133cb3d9281277ea4631e9253f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Product.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Product.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 217,
"size": 892
}
|
open import Level hiding ( suc ; zero )
open import Algebra
module sym2 where
open import Symmetric
open import Data.Unit
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function
open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
open import Relation.Nullary
open import Data.Empty
open import Data.Product
open import Gutil
open import Putil
open import FLutil
open import Solvable using (solvable)
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Fin
open import Data.Fin.Permutation
sym2solvable : solvable (Symmetric 2)
solvable.dervied-length sym2solvable = 1
solvable.end sym2solvable x d = solved x d where
open import Data.List using ( List ; [] ; _∷_ )
open Solvable (Symmetric 2)
-- open Group (Symmetric 2) using (_⁻¹)
p0 : FL→perm ((# 0) :: ((# 0 ) :: f0)) =p= pid
p0 = pleq _ _ refl
p0r : perm→FL pid ≡ ((# 0) :: ((# 0 ) :: f0))
p0r = refl
p1 : FL→perm ((# 1) :: ((# 0 ) :: f0)) =p= pswap pid
p1 = pleq _ _ refl
p1r : perm→FL (pswap pid) ≡ ((# 1) :: ((# 0 ) :: f0))
p1r = refl
-- FL→iso : (fl : FL 2 ) → perm→FL ( FL→perm fl ) ≡ fl
-- FL→iso (zero :: (zero :: f0)) = refl
-- FL→iso ((suc zero) :: (zero :: f0)) = refl
open _=p=_
open ≡-Reasoning
sym2lem0 : ( g h : Permutation 2 2 ) → (q : Fin 2) → ([ g , h ] ⟨$⟩ʳ q) ≡ (pid ⟨$⟩ʳ q)
sym2lem0 g h q with perm→FL g | perm→FL h | inspect perm→FL g | inspect perm→FL h
sym2lem0 g h q | zero :: (zero :: f0) | _ | record { eq = g=00} | record { eq = h=00} = begin
[ g , h ] ⟨$⟩ʳ q
≡⟨⟩
h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ cong (λ k → h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ k))) ((peqˡ sym2lem1 _ )) ⟩
h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( pid ⟨$⟩ˡ q )))
≡⟨ cong (λ k → h ⟨$⟩ʳ k ) (peq sym2lem1 _ ) ⟩
h ⟨$⟩ʳ (pid ⟨$⟩ʳ ( h ⟨$⟩ˡ ( pid ⟨$⟩ˡ q )))
≡⟨⟩
[ pid , h ] ⟨$⟩ʳ q
≡⟨ peq (idcomtl h) q ⟩
q
∎ where
sym2lem1 : g =p= pid
sym2lem1 = FL-inject g=00
sym2lem0 g h q | _ | zero :: (zero :: f0) | record { eq = g=00} | record { eq = h=00} = begin
[ g , h ] ⟨$⟩ʳ q
≡⟨⟩
h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ peq sym2lem2 _ ⟩
pid ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ cong (λ k → pid ⟨$⟩ʳ (g ⟨$⟩ʳ k)) (peqˡ sym2lem2 _ ) ⟩
pid ⟨$⟩ʳ (g ⟨$⟩ʳ ( pid ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨⟩
[ g , pid ] ⟨$⟩ʳ q
≡⟨ peq (idcomtr g) q ⟩
q
∎ where
sym2lem2 : h =p= pid
sym2lem2 = FL-inject h=00
sym2lem0 g h q | suc zero :: (zero :: f0) | suc zero :: (zero :: f0) | record { eq = g=00} | record { eq = h=00}= begin
[ g , h ] ⟨$⟩ʳ q
≡⟨⟩
h ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ peq (psym g=h ) _ ⟩
g ⟨$⟩ʳ (g ⟨$⟩ʳ ( h ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ cong (λ k → g ⟨$⟩ʳ (g ⟨$⟩ʳ k) ) (peqˡ (psym g=h) _) ⟩
g ⟨$⟩ʳ (g ⟨$⟩ʳ ( g ⟨$⟩ˡ ( g ⟨$⟩ˡ q )))
≡⟨ cong (λ k → g ⟨$⟩ʳ k) ( inverseʳ g ) ⟩
g ⟨$⟩ʳ ( g ⟨$⟩ˡ q )
≡⟨ inverseʳ g ⟩
q
∎ where
g=h : g =p= h
g=h = FL-inject (trans g=00 (sym h=00))
solved : (x : Permutation 2 2) → Commutator (λ x₁ → Lift (Level.suc Level.zero) ⊤) x → x =p= pid
solved x (comm {g} {h} _ _) = record { peq = sym2lem0 g h }
solved x (ccong {f} {g} (record {peq = f=g}) d) with solved f d
... | record { peq = f=e } = record { peq = λ q → cc q } where
cc : ( q : Fin 2 ) → x ⟨$⟩ʳ q ≡ q
cc q = begin
x ⟨$⟩ʳ q
≡⟨ sym (f=g q) ⟩
f ⟨$⟩ʳ q
≡⟨ f=e q ⟩
q
∎ where open ≡-Reasoning
|
{
"alphanum_fraction": 0.432934589,
"avg_line_length": 34.1652173913,
"ext": "agda",
"hexsha": "7ffee4fe73e8c328d467096582fe29baa5010afb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/sym2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/sym2.agda",
"max_line_length": 122,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/sym2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 1674,
"size": 3929
}
|
open import Nat
open import Prelude
open import List
open import core
open import contexts
open import typed-expansion
open import lemmas-freevars
module livelit-reasoning-principles where
record reasoning-principles (Φ : livelitctx)
(Γ : tctx)
(a : livelitname)
(dm : iexp)
(τsplice : typ)
(êsplice : uexp)
(eresult : eexp)
(τresult : typ) : Set where
field
π : livelitdef
domain : dom (Φ ₁) a
eexpanded : eexp
esplice : eexp
expanded-application-form : eresult == (eexpanded ·: τsplice ==> τresult) ∘ esplice
expansion-typing : (Γ ⊢ eresult => τresult) × (τresult == livelitdef.expansion-type π)
responsibility : Σ[ denc ∈ iexp ] (((livelitdef.expand π) ∘ dm) ⇓ denc × denc ↑ eexpanded)
splice-typing : Φ , Γ ⊢ êsplice ~~> esplice ⇐ τsplice × Γ ⊢ esplice <= τsplice
context-independence : free-vars (eexpanded ·: τsplice ==> τresult) == []
livelit-reasoning-principles : ∀{Φ Γ a dm τsplice psplice eresult τresult u} →
Φ , Γ ⊢ $ a ⟨ dm ⁏ (τsplice , psplice) :: [] ⟩[ u ] ~~> eresult ⇒ τresult →
reasoning-principles Φ Γ a dm τsplice psplice eresult τresult
livelit-reasoning-principles h@(SPEApLivelit {dm = dm} {π} {denc} {eexpanded} {esplice = esplice} x x₁ x₂ x₃ x₄ x₅ x₆ x₇) =
record
{ π = π
; domain = _ , x₂
; eexpanded = eexpanded
; esplice = esplice
; expanded-application-form = refl
; expansion-typing = typed-expansion-synth h , refl
; responsibility = denc , x₄ , x₅
; splice-typing = x₆ , typed-expansion-ana x₆
; context-independence = ∅∈l→l==[] (λ x → fv-lemma-ana refl x₇)
}
|
{
"alphanum_fraction": 0.5117762512,
"avg_line_length": 45.2888888889,
"ext": "agda",
"hexsha": "b2c5ce5cddbe2699daf46feae2784e8e4d1565fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-livelits-agda",
"max_forks_repo_path": "livelit-reasoning-principles.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_issues_repo_issues_event_max_datetime": "2020-10-20T20:44:13.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-30T20:27:56.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazel-palette-agda",
"max_issues_repo_path": "livelit-reasoning-principles.agda",
"max_line_length": 125,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c3225acc3c94c56376c6842b82b8b5d76912df2a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazel-palette-agda",
"max_stars_repo_path": "livelit-reasoning-principles.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T15:38:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-04T06:45:06.000Z",
"num_tokens": 592,
"size": 2038
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
-- This module defines functionality modeling an RWS monad, which we use to
-- define an implementation, and functionality for proving properties about
-- programs written using this RWS monad. The main definitions are:
-- 1. RWS, a datatype for the ASTs of stateful programs that read from an
-- environment and produce output.
-- This datatype includes constructors for branching code, to aid in the
-- verification effort (see below).
-- 2. RWS-weakestPre, a large elimination that, given an RWS program and a
-- post condition for the program, produces the weakest precondition needed
-- to satisfy that post condition. Branches in code using the constructors
-- `RWS-if` and friends are translated into products, with each component of
-- the product corresponding to a possible branch taken.
-- 3. RWS-Contract is the type of proofs that, given a stateful computation and
-- a post condition, the weakest precondition suffices to prove that post
-- condition.
-- 4. RWS-contract proves RWS-Contract, i.e., for every stateful computation
-- `m` and post condition `P`, given a proof over a pre-state `pre` the
-- weakest precondition for `P` holds, then postcondition `P` holds for the
-- post-state obtained from running `m` in state `pre`.
-- TODO-2: this module is independent of any particular implementation
-- and arguably belongs somewhere more general, such as next to Optics.
module LibraBFT.ImplShared.Util.Dijkstra.RWS where
-- RWS, the AST of computations with state `St` reading from an environment
-- `Ev` and producing a list of outputs of type `Wr`
data RWS (Ev Wr St : Set) : Set → Set₁ where
-- Primitive combinators
RWS-return : ∀ {A} → A → RWS Ev Wr St A
RWS-bind : ∀ {A B} → RWS Ev Wr St A → (A → RWS Ev Wr St B) → RWS Ev Wr St B
RWS-gets : ∀ {A} → (St → A) → RWS Ev Wr St A
RWS-put : St → RWS Ev Wr St Unit
RWS-ask : RWS Ev Wr St Ev
RWS-tell : List Wr → RWS Ev Wr St Unit
-- Branching combinators (used for creating more convenient contracts)
RWS-if : ∀ {A} → Guards (RWS Ev Wr St A) → RWS Ev Wr St A
RWS-either : ∀ {A B C} → Either B C
→ (B → RWS Ev Wr St A) → (C → RWS Ev Wr St A) → RWS Ev Wr St A
RWS-ebind : ∀ {A B C}
→ RWS Ev Wr St (Either C A)
→ (A → RWS Ev Wr St (Either C B)) → RWS Ev Wr St (Either C B)
RWS-maybe : ∀ {A B} → Maybe B
→ (RWS Ev Wr St A) → (B → RWS Ev Wr St A) → RWS Ev Wr St A
private
variable
Ev Wr St : Set
A B C : Set
-- To execute an RWS program, you provide an environment and prestate. This
-- produces a result value, poststate, and list of outputs.
RWS-run : RWS Ev Wr St A → Ev → St → A × St × List Wr
RWS-run (RWS-return x) ev st = x , st , []
RWS-run (RWS-bind m f) ev st
with RWS-run m ev st
...| x₁ , st₁ , outs₁
with RWS-run (f x₁) ev st₁
...| x₂ , st₂ , outs₂ = x₂ , st₂ , outs₁ ++ outs₂
RWS-run (RWS-gets f) ev st = f st , st , []
RWS-run (RWS-put st) ev _ = unit , st , []
RWS-run RWS-ask ev st = ev , st , []
RWS-run (RWS-tell outs) ev st = unit , st , outs
RWS-run (RWS-if (clause (b ≔ c) gs)) ev st =
if toBool b then RWS-run c ev st else RWS-run (RWS-if gs) ev st
RWS-run (RWS-if (otherwise≔ c)) ev st = RWS-run c ev st
RWS-run (RWS-either (Left x) f₁ f₂) ev st = RWS-run (f₁ x) ev st
RWS-run (RWS-either (Right y) f₁ f₂) ev st = RWS-run (f₂ y) ev st
RWS-run (RWS-ebind m f) ev st
with RWS-run m ev st
...| Left c , st₁ , outs₁ = Left c , st₁ , outs₁
...| Right a , st₁ , outs₁
with RWS-run (f a) ev st₁
...| r , st₂ , outs₂ = r , st₂ , outs₁ ++ outs₂
RWS-run (RWS-maybe nothing f₁ f₂) ev st = RWS-run f₁ ev st
RWS-run (RWS-maybe (just x) f₁ f₂) ev st = RWS-run (f₂ x) ev st
-- Accessors for the result, poststate, and outputs.
RWS-result : RWS Ev Wr St A → Ev → St → A
RWS-result m ev st = proj₁ (RWS-run m ev st)
RWS-post : RWS Ev Wr St A → Ev → St → St
RWS-post m ev st = proj₁ (proj₂ (RWS-run m ev st))
RWS-outs : RWS Ev Wr St A → Ev → St → List Wr
RWS-outs m ev st = proj₂ (proj₂ (RWS-run m ev st))
-- Preconditions are predicates over environments and prestates.
RWS-Pre : (Ev St : Set) → Set₁
RWS-Pre Ev St = (ev : Ev) (pre : St) → Set
-- Postconditions are predicates over a result, poststate, and list of outputs.
RWS-Post : (Wr St A : Set) → Set₁
RWS-Post Wr St A = (x : A) (post : St) (outs : List Wr) → Set
RWS-Post-⇒ : (P Q : RWS-Post Wr St A) → Set
RWS-Post-⇒ P Q = ∀ r st outs → P r st outs → Q r st outs
-- RWS-weakestPre computes a predicate transformer: it maps a RWS
-- computation `m` and desired postcondition `Post` to the weakest precondition
-- needed to prove `P` holds after running `m`.
RWS-PredTrans : (Ev Wr St A : Set) → Set₁
RWS-PredTrans Ev Wr St A = RWS-Post Wr St A → RWS-Pre Ev St
-- When RWS computations are sequenced, e.g., `RWS-bind m λ x → f x`,
-- outputs are concatenated. The postcondition desired for the above sequence
-- becomes a postcondition for `f x` in which the outputs of `m` are prepended
-- to the outputs of `f x`.
RWS-Post++ : ∀ {Wr St A} → RWS-Post Wr St A → List Wr → RWS-Post Wr St A
RWS-Post++ P outs x post outs₁ = P x post (outs ++ outs₁)
-- Consider again the sequence `RWS-bind m₁ λ x → f x`. We also translate a
-- postcondition `P` for the sequence into a postcondition for `m` ---
-- specifically, the post condition we want for `m` is that the weakest
-- precondition for `RWS-Post++ P outs` holds, where `outs` are the outputs of
-- `m`.
RWS-weakestPre-bindPost : (ev : Ev) (f : A → RWS Ev Wr St B) → RWS-Post Wr St B → RWS-Post Wr St A
RWS-weakestPre-ebindPost : (ev : Ev) (f : A → RWS Ev Wr St (C ⊎ B)) → RWS-Post Wr St (C ⊎ B) → RWS-Post Wr St (C ⊎ A)
RWS-weakestPre : (m : RWS Ev Wr St A) → RWS-PredTrans Ev Wr St A
RWS-weakestPre (RWS-return x) P ev pre = P x pre []
RWS-weakestPre (RWS-bind m f) P ev pre =
RWS-weakestPre m (RWS-weakestPre-bindPost ev f P) ev pre
RWS-weakestPre (RWS-gets f) P ev pre = P (f pre) pre []
RWS-weakestPre (RWS-put post) P ev pre = P unit post []
RWS-weakestPre RWS-ask P ev pre = P ev pre []
RWS-weakestPre (RWS-tell outs) P ev pre = P unit pre outs
RWS-weakestPre (RWS-if (clause (b ≔ c) gs)) P ev pre =
(toBool b ≡ true → RWS-weakestPre c P ev pre)
× (toBool b ≡ false → RWS-weakestPre (RWS-if gs) P ev pre)
RWS-weakestPre (RWS-if (otherwise≔ c)) P ev pre =
RWS-weakestPre c P ev pre
RWS-weakestPre (RWS-either e f₁ f₂) P ev pre =
(∀ x → (e ≡ Left x) →
RWS-weakestPre (f₁ x) P ev pre)
× (∀ y → (e ≡ Right y) →
RWS-weakestPre (f₂ y) P ev pre)
RWS-weakestPre (RWS-ebind m f) P ev pre =
RWS-weakestPre m (RWS-weakestPre-ebindPost ev f P) ev pre
RWS-weakestPre (RWS-maybe m f₁ f₂) P ev pre =
(m ≡ nothing → RWS-weakestPre f₁ P ev pre)
× (∀ j → m ≡ just j → RWS-weakestPre (f₂ j) P ev pre)
RWS-weakestPre-ebindPost ev f Post (Left r) post outs =
Post (Left r) post outs
RWS-weakestPre-ebindPost ev f Post (Right r) post outs =
∀ c → c ≡ r → RWS-weakestPre (f c) (RWS-Post++ Post outs) ev post
RWS-weakestPre-bindPost ev f Post x post outs =
∀ r → r ≡ x → RWS-weakestPre (f r) (RWS-Post++ Post outs) ev post
-- The post condition `P` holds for `m` with environment `ev` and prestate `pre`
RWS-Post-True : (P : RWS-Post Wr St A) (m : RWS Ev Wr St A) (ev : Ev) (pre : St) → Set
RWS-Post-True P m ev pre =
let (x , post , outs) = RWS-run m ev pre in
P x post outs
-- For every RWS computation `m`, `RWS-Contract m` is the type of proofs that,
-- for all post conditions `P`, starting environments `ev` and prestates `pre`,
-- to prove that `P` holds after running `m` in `ev` and `pre`, it suffices to
-- provide a proof of the weakest precondition for `P` with respect to `m`,
-- `ev`, and `pre`.
RWS-Contract : (m : RWS Ev Wr St A) → Set₁
RWS-Contract{Ev}{Wr}{St}{A} m =
(P : RWS-Post Wr St A)
→ (ev : Ev) (pre : St) → RWS-weakestPre m P ev pre
→ RWS-Post-True P m ev pre
-- This proves that `RWS-weakestPre` gives a *sufficient* precondition for
-- establishing a desired postcondition. Note thought that it does not prove
-- that this precondition is the weakest such one; even though this is true, it
-- is not important for our purposes.
RWS-contract : (m : RWS Ev Wr St A) → RWS-Contract m
RWS-contract (RWS-return x₁) P ev pre wp = wp
RWS-contract (RWS-bind m f) P ev pre wp
with RWS-contract m _ ev pre wp
...| con
with RWS-run m ev pre
...| x₁ , st₁ , outs₁ =
RWS-contract (f x₁) _ ev st₁ (con x₁ refl)
RWS-contract (RWS-gets f) P ev pre wp = wp
RWS-contract (RWS-put x₁) P ev pre wp = wp
RWS-contract RWS-ask P ev pre wp = wp
RWS-contract (RWS-tell x₁) P ev pre wp = wp
RWS-contract{Ev}{Wr}{St}{A} (RWS-if gs) P ev pre wp = RWS-contract-if gs P ev pre wp
where
RWS-contract-if : (gs : Guards (RWS Ev Wr St A)) → RWS-Contract (RWS-if gs)
RWS-contract-if (clause (b ≔ c) gs) P ev pre (wp₁ , wp₂)
with toBool b
...| true = RWS-contract c _ ev pre (wp₁ refl)
...| false = RWS-contract-if gs _ ev pre (wp₂ refl)
RWS-contract-if (otherwise≔ x) P ev pre wp =
RWS-contract x P ev pre wp
RWS-contract (RWS-either (Left x) f₁ f₂) P ev pre (wp₁ , wp₂) =
RWS-contract (f₁ x) _ ev pre (wp₁ x refl)
RWS-contract (RWS-either (Right y) f₁ f₂) P ev pre (wp₁ , wp₂) =
RWS-contract (f₂ y) _ ev pre (wp₂ y refl)
RWS-contract (RWS-ebind m f) P ev pre wp
with RWS-contract m _ ev pre wp
...| con
with RWS-run m ev pre
... | Left x , st₁ , outs₁ = con
... | Right y , st₁ , outs₁ = RWS-contract (f y) _ ev st₁ (con y refl)
RWS-contract (RWS-maybe nothing f₁ f₂) P ev pre (wp₁ , wp₂)
= RWS-contract f₁ _ ev pre (wp₁ refl)
RWS-contract (RWS-maybe (just x) f₁ f₂) P ev pre (wp₁ , wp₂) =
RWS-contract (f₂ x) _ ev pre (wp₂ x refl)
-- This helper function is primarily used to take a proof concerning one
-- computation `m` and show that that proof implies a property concerning a
-- larger computation which contains `m`.
RWS-⇒
: (P Q : RWS-Post Wr St A) → (RWS-Post-⇒ P Q)
→ ∀ m (ev : Ev) st → RWS-weakestPre m P ev st → RWS-weakestPre m Q ev st
RWS-⇒ P Q pf (RWS-return x) ev st pre = pf x st [] pre
RWS-⇒ P Q pf (RWS-bind m f) ev st pre =
RWS-⇒ _ _
(λ r₁ st₁ outs₁ pf₁ x x≡ →
RWS-⇒ _ _
(λ r₂ st₂ outs₂ pf₂ → pf r₂ st₂ (outs₁ ++ outs₂) pf₂)
(f x) ev st₁ (pf₁ x x≡))
m ev st pre
RWS-⇒ P Q pf (RWS-gets f) ev st pre = pf _ _ _ pre
RWS-⇒ P Q pf (RWS-put x) ev st pre = pf _ _ _ pre
RWS-⇒ P Q pf RWS-ask ev st pre = pf _ _ _ pre
RWS-⇒ P Q pf (RWS-tell x) ev st pre = pf _ _ _ pre
RWS-⇒ P Q pf (RWS-if (otherwise≔ x)) ev st pre = RWS-⇒ _ _ pf x ev st pre
RWS-⇒ P Q pf (RWS-if (clause (b ≔ c) cs)) ev st (pre₁ , pre₂) =
(λ pf' → RWS-⇒ _ _ pf c ev st (pre₁ pf'))
, λ pf' → RWS-⇒ _ _ pf (RWS-if cs) ev st (pre₂ pf')
proj₁ (RWS-⇒ P Q pf (RWS-either (Left x) f₁ f₂) ev st (pre₁ , pre₂)) x₁ x₁≡ =
RWS-⇒ _ _ pf (f₁ x₁) ev st (pre₁ x₁ x₁≡)
proj₂ (RWS-⇒ P Q pf (RWS-either (Left x) f₁ f₂) ev st (pre₁ , pre₂)) y ()
proj₁ (RWS-⇒ P Q pf (RWS-either (Right y) f₁ f₂) ev st (pre₁ , pre₂)) y₁ ()
proj₂ (RWS-⇒ P Q pf (RWS-either (Right y) f₁ f₂) ev st (pre₁ , pre₂)) y₁ y₁≡ =
RWS-⇒ _ _ pf (f₂ y₁) ev st (pre₂ y₁ y₁≡)
RWS-⇒ P Q pf (RWS-ebind m f) ev st pre =
RWS-⇒ _ _
(λ { (Left x₁) st₁ outs x → pf _ _ _ x
; (Right y) st₁ outs x → λ c x₁ →
RWS-⇒ _ _ (λ r st₂ outs₁ x₂ → pf r st₂ (outs ++ outs₁) x₂) (f c) ev st₁ (x c x₁)})
m ev st pre
proj₁ (RWS-⇒ P Q pf (RWS-maybe x m f) ev st (pre₁ , pre₂)) ≡nothing = RWS-⇒ _ _ pf m ev st (pre₁ ≡nothing)
proj₂ (RWS-⇒ P Q pf (RWS-maybe x m f) ev st (pre₁ , pre₂)) b b≡ = RWS-⇒ _ _ pf (f b) ev st (pre₂ b b≡)
RWS-⇒-bind
: (P : RWS-Post Wr St A) (Q : RWS-Post Wr St B)
→ (f : A → RWS Ev Wr St B) (ev : Ev)
→ RWS-Post-⇒ P (RWS-weakestPre-bindPost ev f Q)
→ ∀ m st → RWS-weakestPre m P ev st
→ RWS-weakestPre (RWS-bind m f) Q ev st
RWS-⇒-bind P Q f ev pf m st con =
RWS-⇒ P ((RWS-weakestPre-bindPost ev f Q)) pf m ev st con
RWS-⇒-ebind
: (P : RWS-Post Wr St (Either C A)) (Q : RWS-Post Wr St (Either C B))
→ (f : A → RWS Ev Wr St (Either C B)) (ev : Ev)
→ RWS-Post-⇒ P (RWS-weakestPre-ebindPost ev f Q)
→ ∀ m st → RWS-weakestPre m P ev st
→ RWS-weakestPre (RWS-ebind m f) Q ev st
RWS-⇒-ebind P Q f ev pf m st con =
RWS-⇒ P ((RWS-weakestPre-ebindPost ev f Q)) pf m ev st con
|
{
"alphanum_fraction": 0.6225987818,
"avg_line_length": 47.2546125461,
"ext": "agda",
"hexsha": "a29d07e54b95247f8ad0140151a19086a5f7b0a4",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "oracle/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "oracle/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS.agda",
"max_line_length": 117,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "oracle/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/ImplShared/Util/Dijkstra/RWS.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 4728,
"size": 12806
}
|
{-# OPTIONS --cubical-compatible #-}
module Issue388 where
data P (A : Set₁) : A → Set₁ where
p : ∀ x → P A x
data D : Set → Set₁ where
d : ∀ A → D A
Foo : ∀ A → P (D A) (d A) → Set
Foo A x = {!x!}
|
{
"alphanum_fraction": 0.5219512195,
"avg_line_length": 17.0833333333,
"ext": "agda",
"hexsha": "f503a277bb18bf4aceb99c90ced753650d63f9e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/interaction/Issue388.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/interaction/Issue388.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/interaction/Issue388.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 81,
"size": 205
}
|
{-# OPTIONS -v treeless.opt:20 #-}
module _ where
open import Common.Prelude
module _ {a} {A : Set a} (_<_ : A → A → Bool) where
merge : List A → List A → List A
merge [] ys = ys
merge xs [] = xs
merge xs@(x ∷ xs₁) ys@(y ∷ ys₁) =
if x < y then (x ∷ merge xs₁ ys) -- Generated treeless code should preserve
else (y ∷ merge xs ys₁) -- xs and ys (and not expand to _∷_).
open import Agda.Builtin.Nat
mapM! : {A : Set} → (A → IO Unit) → List A → IO Unit
mapM! f [] = return unit
mapM! f (x ∷ xs) = f x >>= λ _ → mapM! f xs
xs ys : List Nat
xs = 2 ∷ 3 ∷ 5 ∷ 10 ∷ 20 ∷ []
ys = 0 ∷ 1 ∷ 2 ∷ 8 ∷ 10 ∷ 15 ∷ []
main : IO Unit
main = mapM! printNat (merge _<_ xs ys)
|
{
"alphanum_fraction": 0.5523255814,
"avg_line_length": 26.4615384615,
"ext": "agda",
"hexsha": "e3a76e90f9ef47c257cc67dae4a75ca2862aee2e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Compiler/simple/CompileAsPattern.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Compiler/simple/CompileAsPattern.agda",
"max_line_length": 80,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Compiler/simple/CompileAsPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 276,
"size": 688
}
|
{-# OPTIONS --warning=error #-}
module UselessAbstractAbstract where
A : Set₁
abstract
abstract
A = Set
|
{
"alphanum_fraction": 0.6964285714,
"avg_line_length": 12.4444444444,
"ext": "agda",
"hexsha": "3b7e25055280a68ef2146c58bc2f47b5b69cf63c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UselessAbstractAbstract.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UselessAbstractAbstract.agda",
"max_line_length": 36,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UselessAbstractAbstract.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 29,
"size": 112
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommAlgebra.Instances.Initial where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Unit
open import Cubical.Data.Sigma.Properties using (Σ≡Prop)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra.Base using (IsAlgebraHom)
open import Cubical.Algebra.CommAlgebra.Base
private
variable
ℓ : Level
module _ ((R , str) : CommRing ℓ) where
initialCAlg : CommAlgebra (R , str) ℓ
initialCAlg =
let open CommRingStr str
in (R , commalgebrastr _ _ _ _ _ (λ r x → r · x)
(makeIsCommAlgebra (isSetRing (CommRing→Ring (R , str)))
+Assoc +Rid +Rinv +Comm
·Assoc ·Lid
·Ldist+ ·Comm
(λ x y z → sym (·Assoc x y z)) ·Ldist+ ·Rdist+ ·Lid
λ x y z → sym (·Assoc x y z)))
module _ (A : CommAlgebra (R , str) ℓ) where
open CommAlgebraStr ⦃... ⦄
private
instance
_ : CommAlgebraStr (R , str) (fst A)
_ = snd A
_ : CommAlgebraStr (R , str) R
_ = snd initialCAlg
_*_ : R → (fst A) → (fst A)
r * a = CommAlgebraStr._⋆_ (snd A) r a
initialMap : CommAlgebraHom initialCAlg A
initialMap =
makeCommAlgebraHom {M = initialCAlg} {N = A}
(λ r → r * 1a)
(⋆-lid _)
(λ x y → ⋆-ldist x y 1a)
(λ x y → (x · y) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩
x * (y * 1a) ≡[ i ]⟨ x * (·Lid (y * 1a) (~ i)) ⟩
x * (1a · (y * 1a)) ≡⟨ sym (⋆-lassoc _ _ _) ⟩
(x * 1a) · (y * 1a) ∎)
(λ r x → (r · x) * 1a ≡⟨ ⋆-assoc _ _ _ ⟩
(r * (x * 1a)) ∎)
initialMapEq : (f : CommAlgebraHom initialCAlg A)
→ f ≡ initialMap
initialMapEq f =
let open IsAlgebraHom (snd f)
in Σ≡Prop
(isPropIsCommAlgebraHom {M = initialCAlg} {N = A})
λ i x →
((fst f) x ≡⟨ cong (fst f) (sym (·Rid _)) ⟩
fst f (x · 1a) ≡⟨ pres⋆ x 1a ⟩
CommAlgebraStr._⋆_ (snd A) x (fst f 1a) ≡⟨ cong
(λ u → (snd A CommAlgebraStr.⋆ x) u)
pres1 ⟩
(CommAlgebraStr._⋆_ (snd A) x 1a) ∎) i
initialityIso : Iso (CommAlgebraHom initialCAlg A) (Unit* {ℓ = ℓ})
initialityIso = iso (λ _ → tt*)
(λ _ → initialMap)
(λ {tt*x → refl})
λ f → sym (initialMapEq f)
initialityPath : CommAlgebraHom initialCAlg A ≡ Unit*
initialityPath = isoToPath initialityIso
|
{
"alphanum_fraction": 0.4815321477,
"avg_line_length": 36.0987654321,
"ext": "agda",
"hexsha": "8e8e630997d1567a08f71348f9f5aa3fc6bdec83",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Initial.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 946,
"size": 2924
}
|
module z02-theorem-proving-with-booleans where
open import bool
open import eq
open import level
-- p 28
~~tt : ~ ~ tt ≡ tt
~~tt = refl
-- p 32
~~ff : ~ ~ ff ≡ ff
~~ff = refl
-- p 33
~~-elim : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim tt = refl
~~-elim ff = refl
-- p 34
~~-elim2 : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim2 tt = ~~tt
~~-elim2 ff = ~~ff
{-
-- p 34 - does not typecheck (on purpose) because of IMPLICIT ARGS
-- IMPLICIT ARGS: stated inside curly brackets (like IF previously)
~~-elim3 : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim3 tt = ~~ff
~~-elim3 ff = ~~tt
'refl' has implicit args
- the expression 'x' in 'x ≡ x' (e.g., in ~~tt the implicit is 'tt')
- in ~~-elim3 implicit arg 'tt' does not match '~~ff'
-}
{-
-- p 35 : HOLES
~~-elim4 : ∀ (b : 𝔹) → ~ ~ b ≡ b
~~-elim4 tt = ?
~~-elim4 ff = ?
-}
-- p 36
&&-same : ∀ (b : 𝔹) → b && b ≡ b
&&-same tt = refl
&&-same ff = refl
-- infer type of 'b'
&&-same2 : ∀ b → b && b ≡ b
&&-same2 tt = refl
&&-same2 ff = refl
-- 'b' as implicit argument
&&-same3 : ∀ {b} → b && b ≡ b
&&-same3 {tt} = refl
&&-same3 {ff} = refl
-- p 37
-- so no need to supply implicit arg to &&-same3
test-&&-same : tt && tt ≡ tt
test-&&-same = &&-same3
-- ok to explicitly supply implicit arg
test-&&-same2 : tt && tt ≡ tt
test-&&-same2 = &&-same3 {tt}
-- p 38
||-same : ∀ {b} → b || b ≡ b
||-same {tt} = refl
||-same {ff} = refl
------------------------------------------------------------------------------
-- p. 38 2.4 Theorems with Hypotheses
{-
to express an assumption, write fun that
- takes a proof of assumption
- returns proof of desired result
-}
-- if b1 || b2 is false, then b1 must be false
||≡ff₁ : ∀ {b1 b2}
→ b1 || b2 ≡ ff -- assumption
→ b1 ≡ ff -- desired result
-- 1st (implicit) arg is 'ff'
-- 2nd (explicit) arg is ((b1 || b2) ≡ ff) bound to 'p' (but not used)
||≡ff₁ {ff} p = refl -- b1 = ff ≡ ff
-- absurd pattern '()'
||≡ff₁ {tt} () -- no '=' sign because impossible
{-
To prove the impossible, but only if some impossible assumption is true,
use absurd, since that impossible assumption can never be satisfied by a use of this theorem.
-}
-- p 41 alternative
||≡ff₁-2 : ∀ {b1 b2} → b1 || b2 ≡ ff → b1 ≡ ff
||≡ff₁-2 {ff} p = refl
||≡ff₁-2 {tt} p = p -- 'p' is equal to 'tt ≡ ff' -- the desired result of 'b1' instantiated to 'tt'
-- prefer version that uses absurd -- more robust to later changes
------------------------------------------------------------------------------
-- p 42 2.4.3 Matching on equality proofs
{-
special case on CONGRUENCE
if X equals Y then any TYPE containing X is equal to that same TYPE with X's replaced by Y
Congruence holds for definitional equality automatically.
Congruence must be proved for PROPOSITIONAL equalities 'a ≡ b'
-}
||-cong₁ : ∀ {b1 b1’ b2} -- implicit args
→ b1 ≡ b1’ -- explicit arg
→ b1 || b2 ≡ b1’ || b2 -- desired result
||-cong₁ refl = refl
{-
-- p 43
only one way to construct an equality proof : via 'refl' constructor
refl can only prove something of the form x ≡ x
- so Agda deduces b1 must be exactly b1’
Agda uses definitional
- knows b1 must be definitionally equal to b1’
- so refines the desired type using this definitional equality
So only need to prove : ((b1 || b2) ≡ (b1 || b2)) -- b1' replaced with b1 since equal
- via 'refl'
------------------------------------------------------------------------------
REFL
Important rule about using type refinements (refl).
Not allowed in such a way that non-variable terms are discovered
to be definitionally equal to other such terms.
e.g.,
two non-variable terms are definitionally equal:
b1 || b2
ff
------------------------------------------------------------------------------
DOT PATTERN
b1, b1’, and b2 are implicit arguments above.
To include them in the pattern on the left-hand side of the equation:
||-cong₁ : ∀ {b1 b1’ b2} -- implicit args
→ b1 ≡ b1’ -- explicit arg
→ b1 || b2 ≡ b1’ || b2 -- desired result
||-cong₁ {b1}{b1’}{b2} refl = refl
but Agda will complain because to type check this pattern, b1 and b1' can NOT be distinct.
Agda deduces b1 and b1’ to be definitionally equal.
Workaround : dot pattern:
||-cong₁ : ∀ {b1 b1’ b2} -- implicit args
→ b1 ≡ b1’ -- explicit arg
→ b1 || b2 ≡ b1’ || b2 -- desired result
||-cong₁ {b1}{.b1}{b2} refl = refl
Writing “.” in front of term in pattern tells Agda that term is not a subpattern to match.
Rather it has a form which is dictated by the type of the whole pattern.
-}
------------------------------------------------------------------------------
-- p 44 2.4.4 The REWRITE directive
||-cong₂ : ∀ {b1 b2 b2'}
→ b2 ≡ b2'
→ b1 || b2 ≡ b1 || b2'
||-cong₂ p rewrite p = refl
{-
pattern variable p : with type b2 ≡ b2’
rewrite every occurrence of the left-hand side,
as it appears in the current goal,
with the right-hand side.
goal is formula to prove on right-hand side of current equation
rewrite p : transform the b2 (the left side of p) in
b1 || b2 ≡ b1 || b2'
to
b2' (the right side of p)
so goal (the type Agda is checking against the right-hand side of the equation) becomes
b1 || b2’ ≡ b1 || b2’
REWRITE
given proof 'p' of some equation X ≡ Y
(any expression which has X ≡ Y as its type, e.g., call to lemma of that type)
look in goal
for any occurrences of X
transform those into Y
X and Y can be complex expressions (not just variables)
------------------------------------------------------------------------------
-- p 44 2.5 Further examples
proving a polymorphic theorem
for every type level ℓ
and every type A at that level
and for all booleans
the given ITE holds
-}
ite-same : ∀ {ℓ} {A : Set ℓ} -- two implicit args
-- so no patterns needed on left hand side of equations
→ ∀ (b : 𝔹) (x : A) -- two explicit args
→ if b then x else x
≡ x
-- reason by cases on 'b'
ite-same tt _ = refl -- x ≡ x
ite-same ff _ = refl
------------------------------------------------------------------------------
-- p 45
B-contra : ff ≡ tt -- if ff ≡ tt holds
→ (∀ {P : Set} → P) -- then can prove anything
-- every formula P is true (which is NOT true)
B-contra ()
------------------------------------------------------------------------------
-- p 46 SUMMARY
{-
- equality TYPE t ≡ t’ expresses equality of expressions t and t’, which must have the same type
- prove equality with refl; will prove t ≡ t' for any definitionally equal t and t’
- two exprs definitionally equal if they can be proved equal using their defining equations
- proof is program defined using pattern matching
- Pattern matching can instantiate universally quantified variables which appear in the type.
Has the effect of specializing the desired formula to the specific instances of those variables.
- Args can be declared implicit with curly braces in the type.
Can pattern match on implicit arguments,
using curly braces around the pattern on left-hand side of equation
- assumptions in theorems are args to programs which serve as proofs of those theorems
- absurd pattern can be used when an assumption is definitionally equal to an impossible equality,
where the equated terms start with different constructors
- When using refl as the pattern for an equality assumption t ≡ t’,
Agda will try to refine the type by making t and t’ definitionally equal.
-}
------------------------------------------------------------------------------
-- p 47 Exercises
-- 1
&&-idem : ∀ {b} -- implicit arg
→ b && b ≡ b -- result
&&-idem {tt} = refl
&&-idem {ff} = refl
||-idem : ∀ {b} -- implicit arg
→ b || b ≡ b -- result
||-idem {tt} = refl
||-idem {ff} = refl
||≡ff₂ : ∀ {b1 b2} -- implicit args
→ b1 || b2 ≡ ff -- explicit arg
→ b2 ≡ ff -- result
||≡ff₂ {ff}{ff} _ = refl
{-
||≡ff₂ {tt} ()
||≡ff₂ {ff}{tt} ()
-}
||-tt : ∀ (b : 𝔹) -- explicit arg
→ b || tt ≡ tt -- result
||-tt tt = refl
||-tt ff = refl
ite-arg : ∀{ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} -- implicit args
→ (f : A → B) (b : 𝔹) (x y : A) -- explicit args
→ (f (if b then x else y)) ≡ (if b then f x else f y) -- result
ite-arg _ tt _ _ = refl
ite-arg _ ff _ _ = refl
𝔹-contra : ff ≡ tt
→ ∀{ℓ} {P : Set ℓ}
→ P
𝔹-contra ()
{-
open import sum
||-split : ∀ {b b' : 𝔹}
→ b || b' ≡ tt
→ b ≡ tt ⊎ b' ≡ tt
||-split{tt}{tt} p = inj₁ refl
||-split{tt}{ff} p = inj₁ refl
||-split{ff}{tt} p = inj₂ refl
||-split{ff}{ff} ()
𝔹-dec : ∀ (b : 𝔹)
→ b ≡ tt ⊎ b ≡ ff
𝔹-dec tt = inj₁ refl
𝔹-dec ff = inj₂ refl
-}
&&-snd : {p1 p2 : 𝔹} -- implicit args
→ p1 && p2 ≡ tt -- explicit arg
→ p2 ≡ tt -- result
&&-snd {tt} {tt} _ = refl
--&&-snd{ff} ()
&&-fst : {p1 p2 : 𝔹}
→ p1 && p2 ≡ tt
→ p1 ≡ tt
&&-fst {tt} {tt} _ = refl
-- &&-fst{ff} ()
&&-combo : {p1 p2 : 𝔹} -- implicit
→ p1 ≡ tt -- explcit
→ p2 ≡ tt -- explcit
→ p1 && p2 ≡ tt -- result
&&-combo {tt} {tt} _ _ = refl
{- alternative
&&-combo{tt} pr1 pr2 = pr2
&&-combo{ff} pr1 pr2 = 𝔹-contra pr1
-}
&&-ff : ∀(b : 𝔹)
→ b && ff ≡ ff
&&-ff tt = refl
&&-ff ff = refl
------------------------------------------------------------------------------
-- 2
ff-imp : ∀ (b : 𝔹)
→ ff imp b ≡ tt
ff-imp tt = refl
ff-imp ff = refl
imp-tt : ∀ (b : 𝔹)
→ b imp tt ≡ tt
imp-tt tt = refl
imp-tt ff = refl
imp-ff : ∀ (b : 𝔹)
→ b imp ff ≡ ~ b
imp-ff tt = refl
imp-ff ff = refl
tt-imp : ∀ (b : 𝔹)
→ tt imp b ≡ b
tt-imp tt = refl
tt-imp ff = refl
&&-tt : ∀ (b : 𝔹)
→ b && tt ≡ b
&&-tt tt = refl
&&-tt ff = refl
||-ff : ∀ (b : 𝔹)
→ b || ff ≡ b
||-ff tt = refl
||-ff ff = refl
&&-contra : ∀ (b : 𝔹)
→ b && ~ b ≡ ff
&&-contra tt = refl
&&-contra ff = refl
&&-comm : ∀ (b1 b2 : 𝔹)
→ b1 && b2 ≡ b2 && b1
&&-comm ff ff = refl
&&-comm ff tt = refl
&&-comm tt ff = refl
&&-comm tt tt = refl
||-comm : ∀ (b1 b2 : 𝔹)
→ b1 || b2 ≡ b2 || b1
||-comm ff ff = refl
||-comm ff tt = refl
||-comm tt ff = refl
||-comm tt tt = refl
&&-assoc : ∀ (b1 b2 b3 : 𝔹)
→ b1 && (b2 && b3) ≡ (b1 && b2) && b3
&&-assoc ff ff ff = refl
&&-assoc ff ff tt = refl
&&-assoc ff tt ff = refl
&&-assoc ff tt tt = refl
&&-assoc tt ff ff = refl
&&-assoc tt ff tt = refl
&&-assoc tt tt ff = refl
&&-assoc tt tt tt = refl
||-assoc : ∀ (b1 b2 b3 : 𝔹)
→ b1 || (b2 || b3) ≡ (b1 || b2) || b3
||-assoc ff ff ff = refl
||-assoc ff ff tt = refl
||-assoc ff tt ff = refl
||-assoc ff tt tt = refl
||-assoc tt ff ff = refl
||-assoc tt ff tt = refl
||-assoc tt tt ff = refl
||-assoc tt tt tt = refl
~-over-&& : ∀ (b1 b2 : 𝔹)
→ ~ ( b1 && b2 ) ≡ (~ b1 || ~ b2)
~-over-&& ff ff = refl
~-over-&& ff tt = refl
~-over-&& tt ff = refl
~-over-&& tt tt = refl
~-over-|| : ∀ (b1 b2 : 𝔹)
→ ~ ( b1 || b2 ) ≡ (~ b1 && ~ b2)
~-over-|| ff ff = refl
~-over-|| ff tt = refl
~-over-|| tt ff = refl
~-over-|| tt tt = refl
&&-over-||-l : ∀ (a b c : 𝔹)
→ a && (b || c) ≡ (a && b) || (a && c)
&&-over-||-l ff ff ff = refl
&&-over-||-l ff ff tt = refl
&&-over-||-l ff tt ff = refl
&&-over-||-l ff tt tt = refl
&&-over-||-l tt ff ff = refl
&&-over-||-l tt ff tt = refl
&&-over-||-l tt tt ff = refl
&&-over-||-l tt tt tt = refl
{-
&&-over-||-r : ∀ (a b c : 𝔹) → (a || b) && c ≡ (a && c) || (b && c)
||-over-&&-l : ∀ (a b c : 𝔹) → a || (b && c) ≡ (a || b) && (a || c)
||-over-&&-r : ∀ (a b c : 𝔹) → (a && b) || c ≡ (a || c) && (b || c)
&&-cong₁ : ∀ {b1 b1' b2 : 𝔹} → b1 ≡ b1' → b1 && b2 ≡ b1' && b2
&&-cong₂ : ∀ {b1 b2 b2' : 𝔹} → b2 ≡ b2' → b1 && b2 ≡ b1 && b2'
&&-intro : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b2 ≡ tt → b1 && b2 ≡ tt
||-intro1 : ∀ {b1 b2 : 𝔹} → b1 ≡ tt → b1 || b2 ≡ tt
--&&-elim : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt ∧ b2 ≡ tt
&&-elim1 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b1 ≡ tt
&&-elim2 : ∀ {b1 b2 : 𝔹} → b1 && b2 ≡ tt → b2 ≡ tt
--||-elim : ∀ {b1 b2 : 𝔹} → b1 || b2 ≡ tt → b1 ≡ tt ∨ b2 ≡ tt
-}
~-cong : ∀ {b b' : 𝔹}
→ b ≡ b'
→ ~ b ≡ ~ b'
~-cong refl = refl
ite-cong₁ : ∀{ℓ}{A : Set ℓ} {b b' : 𝔹}
(x y : A)
→ b ≡ b'
→ (if b then x else y) ≡ (if b' then x else y)
ite-cong₁ _ _ refl = refl
ite-cong₂ : ∀{ℓ} {A : Set ℓ}
(b : 𝔹)
{x x' : A}
(y : A)
→ x ≡ x'
→ (if b then x else y) ≡ (if b then x' else y)
ite-cong₂ _ _ refl = refl
ite-cong₃ : ∀{ℓ}{A : Set ℓ}
(b : 𝔹)
(x : A)
{y y' : A}
→ y ≡ y'
→ (if b then x else y) ≡ (if b then x else y')
ite-cong₃ _ _ refl = refl
--&&-split : ∀ {b b' : 𝔹} → b || b' ≡ ff → b ≡ ff ⊎ b' ≡ ff
{-
imp-same : ∀ (b : 𝔹) → b imp b ≡ tt
imp-to-|| : ∀ (b1 b2 : 𝔹) → (b1 imp b2) ≡ (~ b1 || b2)
imp-mp : ∀ {b b' : 𝔹} → b imp b' ≡ tt → b ≡ tt → b' ≡ tt
imp-antisymm : ∀ {b1 b2 : 𝔹} → b1 imp b2 ≡ tt → b2 imp b1 ≡ tt → b1 ≡ b2
ff-xor : ∀ (b : 𝔹) → ff xor b ≡ b
tt-xor : ∀ (b : 𝔹) → tt xor b ≡ ~ b
~-xor-distrb : ∀ (a b : 𝔹) → ~ (a xor b) ≡ ~ a xor b
xor-distrib-&& : ∀ (x y : 𝔹) → x xor (y && x) ≡ ~ y && x
xor~hop : ∀ (a b : 𝔹) → ~ a xor b ≡ a xor ~ b
xor-comm : ∀ (b1 b2 : 𝔹) → b1 xor b2 ≡ b2 xor b1
xor-assoc : (b1 b2 b3 : 𝔹) → b1 xor (b2 xor b3) ≡ (b1 xor b2) xor b3
xor-anti-idem : (b : 𝔹) → b xor b ≡ ff
xor-≡ : {b1 b2 : 𝔹} → b1 xor b2 ≡ ff → b1 ≡ b2
nor-not : ∀ (b : 𝔹) → b nor b ≡ ~ b
nor-or : ∀ (b1 b2 : 𝔹) → (b1 nor b2) nor (b1 nor b2) ≡ b1 || b2
nor-and : ∀ (b1 b2 : 𝔹) → (b1 nor b1) nor (b2 nor b2) ≡ b1 && b2
nor-comm : ∀ (b1 b2 : 𝔹) → b1 nor b2 ≡ b2 nor b1
nand-comm : ∀ (b1 b2 : 𝔹) → b1 nand b2 ≡ b2 nand b1
-}
------------------------------------------------------------------------------
-- 3
z02-3a : tt ≡ tt
z02-3a = refl
z02-3b : ff ≡ ff
z02-3b = refl
-- NO z02-3c : ff ≡ tt
z02-3d : ff && ff ≡ ~ tt
z02-3d = refl
z02-3e : ∀ (x : 𝔹)
→ tt && x
≡ x
z02-3e _ = refl
z02-3f : ∀ (x : 𝔹)
→ x && tt
≡ x
z02-3f tt = refl
z02-3f ff = refl
|
{
"alphanum_fraction": 0.4928746929,
"avg_line_length": 26.6261682243,
"ext": "agda",
"hexsha": "27b1dba633d802f7f985bb2e090faa2c83c66f13",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z02-theorem-proving-with-booleans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z02-theorem-proving-with-booleans.agda",
"max_line_length": 99,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/2015-Verified_Functional_programming_in_Agda-Stump/ial/z02-theorem-proving-with-booleans.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 5283,
"size": 14245
}
|
open import Nat
open import Prelude
open import dynamics-core
open import contexts
open import typed-elaboration
open import lemmas-gcomplete
open import lemmas-complete
module complete-elaboration where
mutual
complete-elaboration-synth : ∀{e τ Γ Δ d} →
Γ gcomplete →
e ecomplete →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
(d dcomplete × τ tcomplete × Δ == ∅)
complete-elaboration-synth gc ec ESNum = DCNum , TCNum , refl
complete-elaboration-synth gc (ECPlus ec₁ ec₂) (ESPlus {Δ1 = Δ1} {Δ2 = Δ2} apt dis x₁ x₂)
with complete-elaboration-ana gc ec₁ TCNum x₁ | complete-elaboration-ana gc ec₂ TCNum x₂
... | d1comp , t1comp , refl | d2comp , t2comp , refl =
DCPlus (DCCast d1comp t1comp TCNum) (DCCast d2comp t2comp TCNum) , TCNum , refl
complete-elaboration-synth gc ec (ESVar x₁) = DCVar , gc _ _ x₁ , refl
complete-elaboration-synth gc (ECLam2 ec x₁) (ESLam x₂ exp)
with complete-elaboration-synth (gcomp-extend gc x₁ x₂) ec exp
... | ih1 , ih2 , ih3 = DCLam ih1 x₁ , TCArr x₁ ih2 , ih3
complete-elaboration-synth gc (ECAp ec ec₁) (ESAp _ _ x MAHole x₂ x₃)
with comp-synth gc ec x
... | ()
complete-elaboration-synth gc (ECAp ec ec₁) (ESAp {Δ1 = Δ1} {Δ2 = Δ2} _ _ x MAArr x₂ x₃)
with comp-synth gc ec x
... | TCArr t1 t2
with complete-elaboration-ana gc ec (TCArr t1 t2) x₂ | complete-elaboration-ana gc ec₁ t1 x₃
... | ih1 , _ , ih4 | ih2 , _ , ih3 = DCAp (DCCast ih1 (comp-ana gc x₂ ih1) (TCArr t1 t2)) (DCCast ih2 (comp-ana gc x₃ ih2) t1) ,
t2 ,
tr (λ qq → (qq ∪ Δ2) == ∅) (! ih4) (tr (λ qq → (∅ ∪ qq) == ∅) (! ih3) refl)
complete-elaboration-synth gc () ESEHole
complete-elaboration-synth gc () (ESNEHole _ exp)
complete-elaboration-synth gc (ECAsc x ec) (ESAsc x₁)
with complete-elaboration-ana gc ec x x₁
... | ih1 , _ , ih2 = DCCast ih1 (comp-ana gc x₁ ih1) x , x , ih2
complete-elaboration-synth gc (ECPair ec ec₁) (ESPair {Δ1 = Δ1} {Δ2 = Δ2} x x₁ x₂ x₃)
with complete-elaboration-synth gc ec x₂ | complete-elaboration-synth gc ec₁ x₃
... | ih1 , ih2 , ih3 | ih1' , ih2' , ih3' = DCPair ih1 ih1' , TCProd ih2 ih2' , tr (λ qq → (qq ∪ Δ2) == ∅) (! ih3) ih3'
complete-elaboration-synth gc (ECFst ec) (ESFst x MPHole x₂)
with comp-synth gc ec x
... | ()
complete-elaboration-synth gc (ECFst ec) (ESFst x MPProd x₂)
with comp-synth gc ec x
... | TCProd τc1 τc2 with complete-elaboration-ana gc ec (TCProd τc1 τc2) x₂
... | ih1 , ih2 , ih3 = DCFst (DCCast ih1 ih2 (TCProd τc1 τc2)) , τc1 , ih3
complete-elaboration-synth gc (ECSnd ec) (ESSnd x MPHole x₂)
with comp-synth gc ec x
... | ()
complete-elaboration-synth gc (ECSnd ec) (ESSnd x MPProd x₂)
with comp-synth gc ec x
... | TCProd τc1 τc2 with complete-elaboration-ana gc ec (TCProd τc1 τc2) x₂
... | ih1 , ih2 , ih3 = DCSnd (DCCast ih1 ih2 (TCProd τc1 τc2)) , τc2 , ih3
complete-elaboration-ana : ∀{e τ τ' Γ Δ d} →
Γ gcomplete →
e ecomplete →
τ tcomplete →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
(d dcomplete × τ' tcomplete × Δ == ∅)
complete-elaboration-ana gc (ECLam1 ec) () (EALam x₁ MAHole exp)
complete-elaboration-ana gc (ECLam1 ec) (TCArr t1 t2) (EALam x₁ MAArr exp)
with complete-elaboration-ana (gcomp-extend gc t1 x₁) ec t2 exp
... | ih , ih3 , ih2 = DCLam ih t1 , TCArr t1 ih3 , ih2
complete-elaboration-ana gc ec tc (EASubsume x x₁ x₂ x₃)
with complete-elaboration-synth gc ec x₂
... | ih1 , ih2 , ih3 = ih1 , ih2 , ih3
complete-elaboration-ana gc (ECInl ec) (TCSum tc tc₁) (EAInl MSSum x₁)
with complete-elaboration-ana gc ec tc x₁
... | ih1 , ih2 , ih3 = DCInl tc₁ ih1 , TCSum ih2 tc₁ , ih3
complete-elaboration-ana gc (ECInr ec) (TCSum tc tc₁) (EAInr MSSum x₁)
with complete-elaboration-ana gc ec tc₁ x₁
... | ih1 , ih2 , ih3 = DCInr tc ih1 , TCSum tc ih2 , ih3
complete-elaboration-ana gc (ECCase ec ec₁ ec₂) tc (EACase x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ MSHole x₁₀ x₁₁)
with complete-elaboration-synth gc ec x₈
... | ih1 , () , ih3
complete-elaboration-ana gc (ECCase ec ec₁ ec₂) tc (EACase {Δ = Δ} {Δ1 = Δ1} {Δ2 = Δ2} x x₁ x₂ x₃ x₄ x₅ x₆ x₇ x₈ MSSum x₁₀ x₁₁)
with complete-elaboration-synth gc ec x₈
... | ih1 , TCSum ih2 ih4 , ih3 with complete-elaboration-ana (gcomp-extend gc ih2 x₆) ec₁ tc x₁₀
... | ih1' , ih2' , ih3' with complete-elaboration-ana (gcomp-extend gc ih4 x₇) ec₂ tc x₁₁
... | ih1'' , ih2'' , ih3'' = DCCase (DCCast ih1 (TCSum ih2 ih4) (TCSum ih2 ih4)) (DCCast ih1' ih2' tc) (DCCast ih1'' ih2'' tc) , tc , tr (λ qq → qq ∪ (Δ1 ∪ Δ2) == ∅) (! ih3) (tr (λ qq → ∅ ∪ (qq ∪ Δ2) == ∅) (! ih3') (tr (λ qq → ∅ ∪ (∅ ∪ qq) == ∅) (! ih3'') refl))
-- this is just a convenience since it shows up a few times above
comp-ana : ∀{Γ e τ d τ' Δ} →
Γ gcomplete →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
d dcomplete →
τ' tcomplete
comp-ana gc ex dc = complete-ta gc (π2 (typed-elaboration-ana ex)) dc
|
{
"alphanum_fraction": 0.5772676372,
"avg_line_length": 57.6129032258,
"ext": "agda",
"hexsha": "680b87d94e479f914450940f6c5c717bd70d31d6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "complete-elaboration.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "complete-elaboration.agda",
"max_line_length": 268,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "complete-elaboration.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2039,
"size": 5358
}
|
{-# OPTIONS --without-K #-}
module hott.univalence where
open import level using (lsuc)
open import sum using (_,_ ; proj₁)
open import equality.core
open import equality.calculus
open import equality.reasoning
open import function.core
open import function.isomorphism.core using (_≅_ ; module _≅_)
open import hott.equivalence.core
-- mapping from equality to function
coerce : ∀ {i} {X Y : Set i} → X ≡ Y → X → Y
coerce refl = id
coerce-equiv : ∀ {i} {X Y : Set i} → (p : X ≡ Y) → weak-equiv (coerce p)
coerce-equiv refl x = (x , refl) , λ { (.x , refl) → refl }
coerce-hom : ∀ {i} {X Y Z : Set i}
→ (p : X ≡ Y)(q : Y ≡ Z)
→ coerce (p · q) ≡ coerce q ∘ coerce p
coerce-hom refl q = refl
-- mapping from propositional equality to weak equivalence
≡⇒≈ : ∀ {i} {X Y : Set i} → X ≡ Y → X ≈ Y
≡⇒≈ p = coerce p , coerce-equiv p
Univalence : ∀ i → Set (lsuc i)
Univalence i = {X Y : Set i} → weak-equiv $ ≡⇒≈ {X = X} {Y = Y}
postulate univalence : ∀ {i} → Univalence i
private
module Properties {i} {X Y : Set i} where
uni-equiv : (X ≡ Y) ≈ (X ≈ Y)
uni-equiv = ≡⇒≈ , univalence
uni-iso : (X ≡ Y) ≅ (X ≈ Y)
uni-iso = ≈⇒≅ uni-equiv
open _≅_ uni-iso public using ()
renaming (from to ≈⇒≡)
uni-coherence : (f : X ≈ Y) → coerce (≈⇒≡ f) ≡ proj₁ f
uni-coherence f = begin
coerce (≈⇒≡ f)
≡⟨ refl ⟩
proj₁ (≡⇒≈ (≈⇒≡ f))
≡⟨ ap proj₁ (iso₂ f) ⟩
proj₁ f
∎
where
open ≡-Reasoning
open _≅_ uni-iso using (iso₂)
open Properties public
|
{
"alphanum_fraction": 0.5671834625,
"avg_line_length": 27.1578947368,
"ext": "agda",
"hexsha": "c9860a0424b7fc81ca0442258fe77fbe1da0bcfa",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "hott/univalence.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "hott/univalence.agda",
"max_line_length": 72,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "hott/univalence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 586,
"size": 1548
}
|
module Luau.Type where
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (cong)
open import FFI.Data.Maybe using (Maybe; just; nothing)
data Type : Set where
nil : Type
_⇒_ : Type → Type → Type
never : Type
unknown : Type
boolean : Type
number : Type
string : Type
_∪_ : Type → Type → Type
_∩_ : Type → Type → Type
data Scalar : Type → Set where
number : Scalar number
boolean : Scalar boolean
string : Scalar string
nil : Scalar nil
lhs : Type → Type
lhs (T ⇒ _) = T
lhs (T ∪ _) = T
lhs (T ∩ _) = T
lhs nil = nil
lhs never = never
lhs unknown = unknown
lhs number = number
lhs boolean = boolean
lhs string = string
rhs : Type → Type
rhs (_ ⇒ T) = T
rhs (_ ∪ T) = T
rhs (_ ∩ T) = T
rhs nil = nil
rhs never = never
rhs unknown = unknown
rhs number = number
rhs boolean = boolean
rhs string = string
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
nil ≡ᵀ nil = yes refl
nil ≡ᵀ (S ⇒ T) = no (λ ())
nil ≡ᵀ never = no (λ ())
nil ≡ᵀ unknown = no (λ ())
nil ≡ᵀ number = no (λ ())
nil ≡ᵀ boolean = no (λ ())
nil ≡ᵀ (S ∪ T) = no (λ ())
nil ≡ᵀ (S ∩ T) = no (λ ())
nil ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ string = no (λ ())
never ≡ᵀ string = no (λ ())
unknown ≡ᵀ string = no (λ ())
boolean ≡ᵀ string = no (λ ())
number ≡ᵀ string = no (λ ())
(S ∪ T) ≡ᵀ string = no (λ ())
(S ∩ T) ≡ᵀ string = no (λ ())
(S ⇒ T) ≡ᵀ nil = no (λ ())
(S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl
(S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q))
(S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q))
(S ⇒ T) ≡ᵀ never = no (λ ())
(S ⇒ T) ≡ᵀ unknown = no (λ ())
(S ⇒ T) ≡ᵀ number = no (λ ())
(S ⇒ T) ≡ᵀ boolean = no (λ ())
(S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ())
never ≡ᵀ nil = no (λ ())
never ≡ᵀ (U ⇒ V) = no (λ ())
never ≡ᵀ never = yes refl
never ≡ᵀ unknown = no (λ ())
never ≡ᵀ number = no (λ ())
never ≡ᵀ boolean = no (λ ())
never ≡ᵀ (U ∪ V) = no (λ ())
never ≡ᵀ (U ∩ V) = no (λ ())
unknown ≡ᵀ nil = no (λ ())
unknown ≡ᵀ (U ⇒ V) = no (λ ())
unknown ≡ᵀ never = no (λ ())
unknown ≡ᵀ unknown = yes refl
unknown ≡ᵀ number = no (λ ())
unknown ≡ᵀ boolean = no (λ ())
unknown ≡ᵀ (U ∪ V) = no (λ ())
unknown ≡ᵀ (U ∩ V) = no (λ ())
number ≡ᵀ nil = no (λ ())
number ≡ᵀ (T ⇒ U) = no (λ ())
number ≡ᵀ never = no (λ ())
number ≡ᵀ unknown = no (λ ())
number ≡ᵀ number = yes refl
number ≡ᵀ boolean = no (λ ())
number ≡ᵀ (T ∪ U) = no (λ ())
number ≡ᵀ (T ∩ U) = no (λ ())
boolean ≡ᵀ nil = no (λ ())
boolean ≡ᵀ (T ⇒ U) = no (λ ())
boolean ≡ᵀ never = no (λ ())
boolean ≡ᵀ unknown = no (λ ())
boolean ≡ᵀ boolean = yes refl
boolean ≡ᵀ number = no (λ ())
boolean ≡ᵀ (T ∪ U) = no (λ ())
boolean ≡ᵀ (T ∩ U) = no (λ ())
string ≡ᵀ nil = no (λ ())
string ≡ᵀ (x ⇒ x₁) = no (λ ())
string ≡ᵀ never = no (λ ())
string ≡ᵀ unknown = no (λ ())
string ≡ᵀ boolean = no (λ ())
string ≡ᵀ number = no (λ ())
string ≡ᵀ string = yes refl
string ≡ᵀ (U ∪ V) = no (λ ())
string ≡ᵀ (U ∩ V) = no (λ ())
(S ∪ T) ≡ᵀ nil = no (λ ())
(S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∪ T) ≡ᵀ never = no (λ ())
(S ∪ T) ≡ᵀ unknown = no (λ ())
(S ∪ T) ≡ᵀ number = no (λ ())
(S ∪ T) ≡ᵀ boolean = no (λ ())
(S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl
(S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q))
(S ∪ T) ≡ᵀ (U ∩ V) = no (λ ())
(S ∩ T) ≡ᵀ nil = no (λ ())
(S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ())
(S ∩ T) ≡ᵀ never = no (λ ())
(S ∩ T) ≡ᵀ unknown = no (λ ())
(S ∩ T) ≡ᵀ number = no (λ ())
(S ∩ T) ≡ᵀ boolean = no (λ ())
(S ∩ T) ≡ᵀ (U ∪ V) = no (λ ())
(S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl
(S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q))
(S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q))
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
nothing ≡ᴹᵀ nothing = yes refl
nothing ≡ᴹᵀ just U = no (λ ())
just T ≡ᴹᵀ nothing = no (λ ())
just T ≡ᴹᵀ just U with T ≡ᵀ U
(just T ≡ᴹᵀ just T) | yes refl = yes refl
(just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q))
src : Type → Type
src nil = never
src number = never
src boolean = never
src string = never
src (S ⇒ T) = S
src (S ∪ T) = (src S) ∩ (src T)
src (S ∩ T) = (src S) ∪ (src T)
src never = unknown
src unknown = never
tgt : Type → Type
tgt nil = never
tgt (S ⇒ T) = T
tgt never = never
tgt unknown = unknown
tgt number = never
tgt boolean = never
tgt string = never
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
optional : Type → Type
optional nil = nil
optional (T ∪ nil) = (T ∪ nil)
optional T = (T ∪ nil)
normalizeOptional : Type → Type
normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T
normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil
normalizeOptional (S ∪ T) | S′ | nil = optional S′
normalizeOptional (S ∪ T) | nil | T′ = optional T′
normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′
normalizeOptional T = T
|
{
"alphanum_fraction": 0.5179115854,
"avg_line_length": 28.3675675676,
"ext": "agda",
"hexsha": "59d1107fcd84a5116bd6798e7e2af5cf7812d87c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MeltzDev/luau",
"max_forks_repo_path": "prototyping/Luau/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MeltzDev/luau",
"max_issues_repo_path": "prototyping/Luau/Type.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5bb9f379b07e378db0a170e7c4030e3a943b2f14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MeltzDev/luau",
"max_stars_repo_path": "prototyping/Luau/Type.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2377,
"size": 5248
}
|
{-# OPTIONS --without-K --rewriting #-}
module LogicalTopology where
open import Basics
open import lib.types.Truncation
-- For convenience, we define the "power type" ℘ A
℘ : {i : ULevel} (j : ULevel) (A : Type i) → Type _
℘ j A = A → Prop j
_∩_ : {i j k : ULevel} {A : Type i}
→ ℘ j A → ℘ k A → ℘ _ A
U ∩ V = λ a → (U a) ∧ (V a)
_∪_ : ∀ {i j k} {A : Type i}
→ ℘ j A → ℘ k A → ℘ _ A
P ∪ Q = λ a → (P a) ∨ (Q a)
⋃ : {i j : ULevel} {A : Type i}
{I : Type j} (U : I → ℘ (lmax i j) A)
→ ℘ _ A
⋃ U = λ a → ∃ₚ λ i → (U i a)
infix 30 _⊆_
_⊆_ : ∀ {i j k} {A : Type i} (P : ℘ j A) (Q : ℘ k A)
→ Prop _
_⊆_ {A = A} P Q = ∀ₚ \(a : A) → (P a) ⇒ (Q a)
-- The definition of logically (Penon) open.
_is-open : {i j : ULevel} {A : Type i} (U : ℘ j A) → Type (lmax i j)
U is-open = ∀ x y → (p : (U x) holds) → ∥ (x ≠ y) ⊔ ((U y) holds) ∥
_is-closed : ∀ {i j} {A : Type i} (U : ℘ j A) → Type (lmax i j)
C is-closed = (not ∘ C) is-open
maps-are-cts : {i j k : ULevel} {A : Type i} {B : Type j}
{f : A → B} {U : ℘ k B} (p : U is-open)
→ (U ∘ f) is-open
maps-are-cts {A = A} {f = f} {U = U} p x y q =
let[ p' ]:= (p (f x) (f y) q) in-
[ (case₀ ⊔→ case₁) p' ]
where
case₀ : (f x ≠ f y) → x ≠ y
case₀ ne p = ne (ap f p)
case₁ : (U (f y)) holds → (U (f y)) holds
case₁ z = z
maps-are-cts-closed : {i j k : ULevel} {A : Type i} {B : Type j}
{f : A → B} {C : ℘ k B} (p : C is-closed)
→ (C ∘ f) is-closed
maps-are-cts-closed {C = C} = maps-are-cts {U = not ∘ C}
unions-of-opens-are-open : {i j : ULevel} {A : Type i}
{I : Type j} (U : I → ℘ _ A)
(o : (i : I) → (U i) is-open)
→ (⋃ U) is-open
unions-of-opens-are-open U o x y p = -- Supposing that x is in ⋃ U,
let[ q ]:= p in- -- We know that x is in some particular U i (i ≡ fst q), so
let[ z ]:= (o (fst q) x y (snd q)) in- -- we use the open-ness of U i to split into two cases
[ z |> -- z : (x ≠ y) ⊔ (U i y) holds
((idf (x ≠ y)) -- Case₀: x already isn't y
⊔→
((λ (w : U (fst q) y holds) → -- Case₁: y is in U i and therefore ⋃ U
[ (fst q) , w ])))
]
_is-logically-connected : ∀ {i j} {A : Type i} (U : ℘ j A) → Prop _
_is-logically-connected {j = j} {A = A} U =
∀ₚ λ (P : ℘ j A) → (U ⊆ (P ∪ (not ∘ P)))
⇒ ((U ⊆ P) ∨ (U ⊆ not ∘ P))
_is-detachable : ∀ {i j} {A : Type i} (P : ℘ j A) → Prop _
_is-detachable {A = A} P =
∀ₚ λ (a : A) → (P a) ∨ (not $ P a)
_is-inhabited : ∀ {i j} {A : Type i} (P : ℘ j A) → Prop _
_is-inhabited {A = A} P =
∃ₚ λ (a : A) → P a
_is-logical-ctd-cmp : ∀ {i j} {A : Type i} (P : ℘ j A) → Prop _
P is-logical-ctd-cmp =
(P is-inhabited) ∧
(P is-detachable) ∧
(P is-logically-connected)
|
{
"alphanum_fraction": 0.4164737016,
"avg_line_length": 34.3522727273,
"ext": "agda",
"hexsha": "5a62c01b874300912204f0c3c928fd4973ac9671",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "glangmead/formalization",
"max_forks_repo_path": "cohesion/david_jaz_261/LogicalTopology.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "glangmead/formalization",
"max_issues_repo_path": "cohesion/david_jaz_261/LogicalTopology.agda",
"max_line_length": 99,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "497e720a1ddaa2ec713c060f999f4b3ee2fe5e8a",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "glangmead/formalization",
"max_stars_repo_path": "cohesion/david_jaz_261/LogicalTopology.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-13T05:51:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-06T17:39:22.000Z",
"num_tokens": 1273,
"size": 3023
}
|
{-# OPTIONS --copatterns --sized-types #-}
{-
In this module, we show that languages are represented by causal stream
functions.
To this end, let A be a non-empty set (the alphabet) and 2 the
Booleans. For a stream s, we denote the list of the first n elements in
s by s ↓ n and by s[n] the element at the n-th position of s.
A function f : Aω → 2ω from streams over A to Boolean streams is
_causal_, if for all natural numbers n : ℕ and streams s,t : Aω, if
s ↓ n = t ↓ n implies that F(s)[n] = F(t)[n]. We denote by
C(Aω,2ω) = {f : Aω → 2ω | F causal}
the set of all causal stream functions.
A _language_ is a subset of A⋆, the set of finite words over A. Thus the set
of all languages over A is given by the function space A⋆ → 2.
Now we can show that C(Aω,2ω) ≅ A⋆ → 2 by establishing an isomorphism
α : (A⋆ → 2) → C(Aω,2ω)
with its inverse
β : C(Aω,2ω) → (A⋆ → 2).
This explains, why the set of languages is the final coalgebra for the
functor F = 2 × (A → Id).
The coinductive extension of a coalgebra c : X → F X is thereby given by
ĉ : X → C(Aω,2ω)
(ĉ x s)[0] = c₁ x
(ĉ x s)' = ĉ (c₂ x s[0]) s'
where cᵢ = πᵢ ∘ c.
-}
module CausIsLang where
open import Size
open import Function
open import Relation.Binary.PropositionalEquality as P
using (_≡_; refl; sym; trans; cong; module ≡-Reasoning)
open ≡-Reasoning
open import Data.Bool using (Bool)
open import Data.List
open import Data.Nat
open import Data.Product
open import Stream
-- Convenience
∥_∥ : ∀ {a} {A : Set a} → List A → ℕ
∥ l ∥ = length l
_⋆ : Set → Set
A ⋆ = List A
ε : ∀{A} → A ⋆
ε = []
-- Non-empty sets
record NonEmptyS (A : Set) : Set where
field
x : A
-- | Causal stream functions
record Causal (A B : Set) : Set where
field
F : Stream {∞} A → Stream {∞} B
caus : ∀ {n : ℕ} {s t : Stream A} →
s ↓ (1 + n) ≡ t ↓ (1 + n) → (F s) at n ≡ (F t) at n
record IsCaus {A B : Set} (f : Stream A → Stream B) : Set where
coinductive
field
out : ∀ {s t} →
hd s ≡ hd t →
hd (f s) ≡ hd (f t)
× (IsCaus (λ x → tl (f(scons (hd s) x))))
open IsCaus public
foo : ∀{A : Set} {x y : A} {u v : List A} → _≡_ {A = List A} (x ∷ u) (y ∷ v) → x ≡ y
foo refl = refl
bar : ∀{A : Set} {x y : A} {u v : List A} → _≡_ {A = List A} (x ∷ u) (y ∷ v) → u ≡ v
bar refl = refl
-- Cheat!
postulate
baz : ∀{A} (s : Stream A) → s ≡ scons (hd s) (tl s)
lem : ∀{A B} {f : Stream A → Stream B} → IsCaus f →
∀ {n s t} → s ↓ (1 + n) ≡ t ↓ (1 + n) → (f s) at n ≡ (f t) at n
lem caus {zero} sn=tn = proj₁ (IsCaus.out caus (foo sn=tn))
lem caus {suc n} {s} {t} sn=tn with IsCaus.out caus {s} {t} (foo sn=tn)
lem {f = f} caus {suc n} {s} {t} sn=tn | p , q =
let r = q
u = bar sn=tn
v = lem r u
in
begin
tl (f s) at n
≡⟨ cong (λ x → tl (f x) at n) (baz s) ⟩
tl (f (scons (hd s) (tl s))) at n
≡⟨ v ⟩
tl (f (scons (hd s) (tl t))) at n
≡⟨ cong (λ x → tl (f (scons x (tl t))) at n) (foo sn=tn) ⟩
tl (f (scons (hd t) (tl t))) at n
≡⟨ cong (λ x → tl (f x) at n) (sym (baz t)) ⟩
tl (f t) at n
∎
lem₂ : ∀{A B} {f : Stream A → Stream B} →
(∀ {n s t} → s ↓ (1 + n) ≡ t ↓ (1 + n) → (f s) at n ≡ (f t) at n) →
IsCaus f
out (lem₂ p) q = p {0} (cong (λ x → x ∷ []) q) , lem₂ {!x!}
lang-to-caus : ∀{A} → (A ⋆ → Bool) → (Stream A → Stream Bool)
hd (lang-to-caus L s) = L ε
tl (lang-to-caus L s) = lang-to-caus (λ w → L (hd s ∷ w)) (tl s)
lang-to-caus-explicit : ∀{A} {L : A ⋆ → Bool} {s : Stream A} →
(n : ℕ) → (lang-to-caus L s) at n ≡ L(s ↓ n)
lang-to-caus-explicit zero = refl
lang-to-caus-explicit {A} {L} {s} (suc n) =
begin
(lang-to-caus L s) at (suc n)
≡⟨ refl ⟩
hd (δ (suc n) (lang-to-caus L s))
≡⟨ refl ⟩
hd (δ n (tl (lang-to-caus L s)))
≡⟨ refl ⟩
hd (δ n (lang-to-caus (λ w → L (hd s ∷ w)) (tl s)))
≡⟨ refl ⟩
(lang-to-caus (λ w → L (hd s ∷ w)) (tl s)) at n
≡⟨ lang-to-caus-explicit n ⟩
(λ w → L (hd s ∷ w))((tl s) ↓ n)
≡⟨ refl ⟩
L (hd s ∷ ((tl s) ↓ n))
≡⟨ refl ⟩
L (s ↓ (suc n))
∎
lang-to-caus-is-causal : ∀{A} {L : A ⋆ → Bool} →
∀ {n : ℕ} {s t : Stream A} →
s ↓ n ≡ t ↓ n →
(lang-to-caus L s) at n ≡ (lang-to-caus L t) at n
lang-to-caus-is-causal {A} {L} {n} {s} {t} p =
begin
(lang-to-caus L s) at n
≡⟨ lang-to-caus-explicit n ⟩
L(s ↓ n)
≡⟨ cong (λ u → L u) p ⟩
L(t ↓ n)
≡⟨ sym (lang-to-caus-explicit n) ⟩
(lang-to-caus L t) at n
∎
-- Isomorphisms between languages and causal stream transformations
α : ∀{A} → (A ⋆ → Bool) → (Causal A Bool)
α L = record
{ F = lang-to-caus L
; caus = lang-to-caus-is-causal
}
β : ∀{A} {p : NonEmptyS A} → (Causal A Bool) → (A ⋆ → Bool)
β {A} {p} F′ w =
let open Causal F′
in F (w ++ˢ repeat (NonEmptyS.x p)) at ∥ w ∥
lemma-restr-extension-to-length-is-id :
∀ {A} {s : Stream A} (w : A ⋆) →
(w ++ˢ s) ↓ ∥ w ∥ ≡ w
lemma-restr-extension-to-length-is-id [] = refl
lemma-restr-extension-to-length-is-id {A} {s} (a ∷ w) =
begin
((a ∷ w) ++ˢ s) ↓ ∥ a ∷ w ∥
≡⟨ refl ⟩
((a ∷ w) ++ˢ s) ↓ (suc ∥ w ∥)
≡⟨ refl ⟩
(hd ((a ∷ w) ++ˢ s)) ∷ ((tl ((a ∷ w) ++ˢ s)) ↓ ∥ w ∥)
≡⟨ refl ⟩
a ∷ ((tl ((a ∷ w) ++ˢ s)) ↓ ∥ w ∥)
≡⟨ refl ⟩
a ∷ ((w ++ˢ s) ↓ ∥ w ∥)
≡⟨ cong (λ u → a ∷ u) (lemma-restr-extension-to-length-is-id w) ⟩
a ∷ w
∎
{-
lemma-β-indep-of-choice : ∀ {A} {F′ : Causal A Bool}
{p q : NonEmptyS A} {w : A ⋆} →
β {A} {p} F′ w ≡ β {A} {q} F′ w
lemma-β-indep-of-choice {A} {F′} {p} {q} {w} =
let
open Causal F′
n = ∥ w ∥
x = NonEmptyS.x p
y = NonEmptyS.x q
in begin
β {A} {p} F′ w
≡⟨ refl ⟩
F (w ++ˢ repeat x) at n
≡⟨ caus {n} {(w ++ˢ repeat x)} {(w ++ˢ repeat y)}
(trans (lemma-restr-extension-to-length-is-id w)
(sym (lemma-restr-extension-to-length-is-id w))) ⟩
F (w ++ˢ repeat y) at n
≡⟨ refl ⟩
β {A} {q} F′ w
∎
lang-iso-caus→ : ∀{A} {p : NonEmptyS A} {L : A ⋆ → Bool} (w : A ⋆) →
β {A} {p} (α L) w ≡ L w
lang-iso-caus→ [] = refl
lang-iso-caus→ {A} {p} {L} (a ∷ w) =
let
F′ = α L
F = Causal.F F′
n = ∥ w ∥
x = NonEmptyS.x p
s = (a ∷ w) ++ˢ repeat x
K = (λ w → L (hd s ∷ w))
G′ = α K
G = Causal.F G′
in begin
β F′ (a ∷ w)
≡⟨ refl ⟩
F ((a ∷ w) ++ˢ repeat x) at (suc n)
≡⟨ refl ⟩
F s at (suc n)
≡⟨ refl ⟩
lang-to-caus L s at (suc n)
≡⟨ refl ⟩
hd (δ (suc n) (lang-to-caus L s))
≡⟨ refl ⟩
hd (δ n (tl (lang-to-caus L s)))
≡⟨ refl ⟩
tl (lang-to-caus L s) at n
≡⟨ refl ⟩
lang-to-caus (λ w → L (hd s ∷ w)) (tl s) at n
≡⟨ refl ⟩
G (tl s) at n
≡⟨ refl ⟩
G (w ++ˢ repeat x) at n
≡⟨ refl ⟩
β G′ w
≡⟨ refl ⟩
β (α K) w
≡⟨ lang-iso-caus→ w ⟩
K w
≡⟨ refl ⟩
L (a ∷ w)
∎
-- This doesn't work as long as we don't have a notion of causality
-- that does not depend on explicit indexing.
{-
.lang-iso-caus← : ∀{A} {x : A} {F′ : Causal A Bool} (s : Stream A) →
Causal.F (α (β x F′)) s ∼ˢ Causal.F F′ s
hd≡ (lang-iso-caus← {A} {x} {F′} s) =
let
F = Causal.F F′
L = β x F′
G′ = α L
G = Causal.F G′
in begin
hd (G s)
≡⟨ refl ⟩
hd (lang-to-caus L s)
≡⟨ refl ⟩
L ε
≡⟨ refl ⟩
F (ε ++ˢ repeat x) at ∥ ε {A} ∥
≡⟨ refl ⟩
F (repeat x) at 0
≡⟨ refl ⟩
F (repeat x) at 0
≡⟨ Causal.caus F′ {0} {repeat x} {s} refl ⟩
F s at 0
≡⟨ refl ⟩
hd (F s)
∎
tl∼ (lang-iso-caus← {A} {x} {F′} s) =
let
F = Causal.F F′
L = β x F′
G′ = α L
G = Causal.F G′
K = (λ w → L (hd s ∷ w))
in beginˢ
tl (G s)
∼ˢ⟨ s-bisim-refl ⟩
tl (lang-to-caus L s)
∼ˢ⟨ s-bisim-refl ⟩
lang-to-caus (λ w → L (hd s ∷ w)) (tl s)
∼ˢ⟨ s-bisim-refl ⟩
lang-to-caus K (tl s)
∼ˢ⟨ s-bisim-refl ⟩
Causal.F (α K) (tl s)
∼ˢ⟨ {!!} ⟩
tl (F s)
∎ˢ
-}
lemma-length-restr : ∀ {A} {s : Stream A} (n : ℕ) → ∥ (s ↓ n) ∥ ≡ n
lemma-length-restr zero = refl
lemma-length-restr {A} {s} (suc n) =
begin
∥ (s ↓ (suc n)) ∥
≡⟨ refl ⟩
∥ hd s ∷ ((tl s) ↓ n) ∥
≡⟨ refl ⟩
suc ∥ (tl s) ↓ n ∥
≡⟨ cong (λ u → suc u) (lemma-length-restr n) ⟩
suc n
∎
lang-iso-caus← : ∀ {A} {p : NonEmptyS A} {F′ : Causal A Bool} {s : Stream A}
(n : ℕ) → Causal.F (α (β F′)) s at n ≡ Causal.F F′ s at n
lang-iso-caus← {A} {p} {F′} {s} n =
let
F = Causal.F F′
L = β F′
in begin
Causal.F (α L) s at n
≡⟨ refl ⟩
lang-to-caus L s at n
≡⟨ lang-to-caus-explicit n ⟩
L (s ↓ n)
≡⟨ refl ⟩
F ((s ↓ n) ++ˢ repeat x) at ∥ s ↓ n ∥
≡⟨ Causal.caus F′ {∥ s ↓ n ∥} {(s ↓ n) ++ˢ repeat x} {s} lemma-restr-ext ⟩
F s at ∥ (s ↓ n) ∥
≡⟨ cong (λ u → F s at u) (lemma-length-restr n) ⟩
F s at n
∎
where
x = NonEmptyS.x p
lemma-restr-ext : ((s ↓ n) ++ˢ repeat x) ↓ ∥ s ↓ n ∥ ≡ s ↓ ∥ s ↓ n ∥
lemma-restr-ext =
begin
((s ↓ n) ++ˢ repeat x) ↓ ∥ s ↓ n ∥
≡⟨ lemma-restr-extension-to-length-is-id (s ↓ n) ⟩
s ↓ n
≡⟨ cong (λ u → s ↓ u) (sym (lemma-length-restr n)) ⟩
s ↓ ∥ s ↓ n ∥
∎
-}
|
{
"alphanum_fraction": 0.4785869565,
"avg_line_length": 26.1363636364,
"ext": "agda",
"hexsha": "3e7f769c48225c8bae6daf68605978fcad62c3eb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Languages/CausIsLang.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Languages/CausIsLang.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Languages/CausIsLang.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4188,
"size": 9200
}
|
{- Conatural number properties (Tesla Ice Zhang et al., Feb. 2019)
This file defines operations and properties on conatural numbers:
- Infinity (∞).
- Proof that ∞ + 1 is equivalent to ∞.
- Proof that conatural is an hSet.
- Bisimulation on conatural
- Proof that bisimulation is equivalent to equivalence (Coinductive Proof
Principle).
- Proof that this bisimulation is prop valued
The standard library also defines bisimulation on conaturals:
https://github.com/agda/agda-stdlib/blob/master/src/Codata/Conat/Bisimilarity.agda
-}
{-# OPTIONS --safe --guardedness #-}
module Cubical.Codata.Conat.Properties where
open import Cubical.Data.Unit
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
renaming (Bool→Type to ⟨_⟩)
import Cubical.Data.Nat as Nat
import Cubical.Data.Nat.Order.Recursive as Nat
open import Cubical.Core.Everything
open import Cubical.Functions.Embedding
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Path
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Relation.Nullary
open import Cubical.Codata.Conat.Base
import Cubical.Axiom.Omniscience as Omni
Unwrap-prev : Conat′ → Type₀
Unwrap-prev zero = Unit
Unwrap-prev (suc _) = Conat
unwrap-prev : (n : Conat′) -> Unwrap-prev n
unwrap-prev zero = _
unwrap-prev (suc x) = x
private -- tests
𝟘 = conat zero
𝟙 = succ 𝟘
𝟚 = succ 𝟙
succ𝟙≡𝟚 : succ 𝟙 ≡ 𝟚
succ𝟙≡𝟚 i = 𝟚
pred𝟚≡𝟙 : unwrap-prev (force 𝟚) ≡ 𝟙
pred𝟚≡𝟙 i = 𝟙
∞ : Conat
force ∞ = suc ∞
∞+1≡∞ : succ ∞ ≡ ∞
force (∞+1≡∞ _) = suc ∞
∞+2≡∞ : succ (succ ∞) ≡ ∞
∞+2≡∞ = (cong succ ∞+1≡∞) ∙ ∞+1≡∞
_+_ : Conat → Conat → Conat
_+′_ : Conat′ → Conat → Conat′
force (x + y) = force x +′ y
zero +′ y = force y
suc x +′ y = suc (x + y)
n+∞≡∞ : ∀ n → n + ∞ ≡ ∞
n+′∞≡∞′ : ∀ n → n +′ ∞ ≡ suc ∞
force (n+∞≡∞ n i) = n+′∞≡∞′ (force n) i
n+′∞≡∞′ zero = refl
n+′∞≡∞′ (suc n) = λ i → suc (n+∞≡∞ n i)
∞+∞≡∞ : ∞ + ∞ ≡ ∞
force (∞+∞≡∞ i) = suc (∞+∞≡∞ i)
+-zeroˡ : ∀ n → 𝟘 + n ≡ n
force (+-zeroˡ n _) = force n
+-zeroʳ : ∀ n → n + 𝟘 ≡ n
+′-zeroʳ : ∀ n → n +′ 𝟘 ≡ n
force (+-zeroʳ n i) = +′-zeroʳ (force n) i
+′-zeroʳ zero _ = zero
+′-zeroʳ (suc n) i = suc (+-zeroʳ n i)
+-assoc : ∀ m n p → (m + n) + p ≡ m + (n + p)
+′-assoc : ∀ m n p → (m +′ n) +′ p ≡ m +′ (n + p)
force (+-assoc m n p i) = +′-assoc (force m) n p i
+′-assoc zero _ _ = refl
+′-assoc (suc m) n p i = suc (+-assoc m n p i)
conat-absurd : ∀ {y : Conat} {ℓ} {Whatever : Type ℓ} → zero ≡ suc y → Whatever
conat-absurd eq = ⊥.rec (transport (cong diag eq) tt)
where
diag : Conat′ → Type₀
diag zero = Unit
diag (suc _) = ⊥
embed : Nat.ℕ → Conat
embed Nat.zero .force = zero
embed (Nat.suc n) .force = suc (embed n)
embed-inj : ∀ m n → embed m ≡ embed n → m ≡ n
embed-inj m n p with ⊎Path.encode _ _ (cong force p)
embed-inj Nat.zero Nat.zero _ | _ = refl
embed-inj (Nat.suc m) (Nat.suc n) _ | lift q
= cong Nat.suc (embed-inj m n q)
embed≢∞ : ∀ n → embed n ≡ ∞ → ⊥
embed≢∞ Nat.zero = lower ∘ ⊎Path.encode _ _ ∘ cong force
embed≢∞ (Nat.suc n) = embed≢∞ n ∘ lower ∘ ⊎Path.encode _ _ ∘ cong force
cover : Nat.ℕ → Conat
cover Nat.zero = ∞
cover (Nat.suc n) = embed n
cover-inj : ∀ m n → cover m ≡ cover n → m ≡ n
cover-inj Nat.zero Nat.zero _ = refl
cover-inj (Nat.suc m) (Nat.suc n) p = cong Nat.suc (embed-inj m n p)
cover-inj Nat.zero (Nat.suc n) = ⊥.rec ∘ embed≢∞ n ∘ sym
cover-inj (Nat.suc m) Nat.zero = ⊥.rec ∘ embed≢∞ m
module IsSet where
≡-stable : {x y : Conat} → Stable (x ≡ y)
≡′-stable : {x y : Conat′} → Stable (x ≡ y)
force (≡-stable ¬¬p i) = ≡′-stable (λ ¬p → ¬¬p (λ p → ¬p (cong force p))) i
≡′-stable {zero} {zero} ¬¬p′ = refl
≡′-stable {suc x} {suc y} ¬¬p′ =
cong′ suc (≡-stable λ ¬p → ¬¬p′ λ p → ¬p (cong pred′′ p))
≡′-stable {zero} {suc y} ¬¬p′ = ⊥.rec (¬¬p′ conat-absurd)
≡′-stable {suc x} {zero} ¬¬p′ = ⊥.rec (¬¬p′ λ p → conat-absurd (sym p))
isSetConat : isSet Conat
isSetConat _ _ = Separated→isSet (λ _ _ → ≡-stable) _ _
isSetConat′ : isSet Conat′
isSetConat′ m n p′ q′ = cong (cong force) (isSetConat (conat m) (conat n) p q)
where p = λ where i .force → p′ i
q = λ where i .force → q′ i
module Bisimulation where
open IsSet using (isSetConat)
record _≈_ (x y : Conat) : Type₀
data _≈′_ (x y : Conat′) : Type₀
_≈′′_ : Conat′ → Conat′ → Type₀
zero ≈′′ zero = Unit
suc x ≈′′ suc y = x ≈ y
-- So impossible proofs are preserved
x ≈′′ y = ⊥
record _≈_ x y where
coinductive
field prove : force x ≈′ force y
data _≈′_ x y where
con : x ≈′′ y → x ≈′ y
open _≈_ public
bisim : ∀ {x y} → x ≈ y → x ≡ y
bisim′ : ∀ {x y} → x ≈′ y → x ≡ y
bisim′ {zero} {zero} (con tt) = refl
bisim′ {zero} {suc x} (con ())
bisim′ {suc x} {zero} (con ())
bisim′ {suc x} {suc y} (con eq) i = suc (bisim eq i)
force (bisim eq i) = bisim′ (prove eq) i
misib : ∀ {x y} → x ≡ y → x ≈ y
misib′ : ∀ {x y} → x ≡ y → x ≈′ y
misib′ {zero} {zero} _ = con tt
misib′ {zero} {suc x} = conat-absurd
misib′ {suc x} {zero} p = conat-absurd (sym p)
-- misib′ {suc x} {suc y} p = con λ where .prove → misib′ (cong pred′ p)
misib′ {suc x} {suc y} p = con (misib (cong pred′′ p))
prove (misib x≡y) = misib′ (cong force x≡y)
iso″ : ∀ {x y} → (p : x ≈ y) → misib (bisim p) ≡ p
iso′ : ∀ {x y} → (p : x ≈′ y) → misib′ (bisim′ p) ≡ p
iso′ {zero} {zero} (con p) = refl
iso′ {zero} {suc x} (con ())
iso′ {suc x} {zero} (con ())
iso′ {suc x} {suc y} (con p) = cong con (iso″ p)
prove (iso″ p i) = iso′ (prove p) i
osi : ∀ {x y} → (p : x ≡ y) → bisim (misib p) ≡ p
osi p = isSetConat _ _ _ p
path≃bisim : ∀ {x y} → (x ≡ y) ≃ (x ≈ y)
path≃bisim = isoToEquiv (iso misib bisim iso″ osi)
path≡bisim : ∀ {x y} → (x ≡ y) ≡ (x ≈ y)
path≡bisim = ua path≃bisim
isProp≈ : ∀ {x y} → isProp (x ≈ y)
isProp≈ = subst isProp path≡bisim (isSetConat _ _)
module WLPO where
-- search a decidable predicate on ℕ for the first true
search : (Nat.ℕ → Bool) → Conat
search′ : (Nat.ℕ → Bool) → Bool → Conat′
search f .force = search′ f (f 0)
search′ _ true = zero
search′ f false = suc (search (f ∘ Nat.suc))
-- the constantly false predicate searches to ∞
search-false : search (const false) ≡ ∞
search-false i .force = suc (search-false i)
wrap : Conat′ → Conat
wrap zero = ∞
wrap (suc m) = m
search-lemma : ∀ α n → search α ≡ ∞ → α n ≡ false
search-lemma α Nat.zero p with α 0 | cong force p
... | false | q = refl
... | true | q = ⊥.rec (⊎Path.encode zero (suc ∞) q .lower)
search-lemma α (Nat.suc n) p with α 0 | cong force p
... | false | q = search-lemma (α ∘ Nat.suc) n (cong wrap q)
... | true | q = ⊥.rec (⊎Path.encode zero (suc ∞) q .lower)
search-n : ∀ α n → search α ≡ embed n → α n ≡ true
search-n α Nat.zero p with α 0 | ⊎Path.encode _ _ (cong force p)
... | true | _ = refl
search-n α (Nat.suc n) p with α 0 | ⊎Path.encode _ _ (cong force p)
... | false | q = search-n (α ∘ Nat.suc) n (q .lower)
module _ (f : Conat → Nat.ℕ) (emb : isEmbedding f) where
discreteConat : Discrete Conat
discreteConat
= Embedding-into-Discrete→Discrete (f , emb) Nat.discreteℕ
wlpo' : Omni.WLPO' Nat.ℕ
wlpo' α with discreteConat (search α) ∞
... | yes p = yes λ i n → search-lemma α n p i
... | no ¬p = no (¬p ∘ _∙ search-false ∘ cong search)
module LPO where
open WLPO using (search; search-lemma; search-n)
module Un (uncover : Conat → Nat.ℕ) (sect : section cover uncover) where
search-0 : ∀ α → uncover (search α) ≡ 0 → ∀ n → α n ≡ false
search-0 α p n
= search-lemma α n (sym (sect (search α)) ∙ cong cover p)
search-n' : ∀ α n → uncover (search α) ≡ Nat.suc n → α n ≡ true
search-n' α n p = search-n α n (sym (sect (search α)) ∙ cong cover p)
-- So, surjectivity of `cover` implies LPO, since `cover` has
-- already been shown injective, and surjectivity would make it an
-- equivalence (as ℕ and Conat are sets).
lpo' : Omni.LPO∞ Nat.ℕ
lpo' α = disc (uncover (search α)) refl where
disc : ∀ n → uncover (search α) ≡ n → _
disc Nat.zero p = inl λ n → subst ⟨_⟩ (search-0 α p n)
disc (Nat.suc n) p = inr (n , subst⁻ ⟨_⟩ (search-n' α n p) _)
|
{
"alphanum_fraction": 0.588082289,
"avg_line_length": 29.2664359862,
"ext": "agda",
"hexsha": "4e099b9292cb45557c3d5d0a15441822c646dd8b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Codata/Conat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 3540,
"size": 8458
}
|
{-# OPTIONS --universe-polymorphism #-}
module PatternMatchingOnCodata where
data Level : Set where
zero : Level
suc : (i : Level) → Level
_⊔_ : Level → Level → Level
zero ⊔ j = j
suc i ⊔ zero = suc i
suc i ⊔ suc j = suc (i ⊔ j)
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO zero #-}
{-# BUILTIN LEVELSUC suc #-}
{-# BUILTIN LEVELMAX _⊔_ #-}
infix 1000 ♯_
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
my-♭ : ∀ {a} {A : Set a} → ∞ A → A
my-♭ (♯ x) = x
|
{
"alphanum_fraction": 0.5430210325,
"avg_line_length": 19.3703703704,
"ext": "agda",
"hexsha": "84f40754e2c27dc7f71575c6ca0586cb3f15ad7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/PatternMatchingOnCodata.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/PatternMatchingOnCodata.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/PatternMatchingOnCodata.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z",
"num_tokens": 196,
"size": 523
}
|
module lemmas where
open import prelude
open import defns
postulate NH-CONG : ∀ {D} (H H′ : NavigationHistory(D)) → let open NavigationHistory H in let open NavigationHistory H′ using () renaming ( A to A′ ; Fo to Fo′ ; Eq to Eq′ ; FTO to FTO′ ) in (A ⊆ A′) → (A′ ⊆ A) → (Fo ≣ Fo′) → (Eq ≣ Eq′) → (FTO ≣ FTO′) → (H ≣ H′)
BT-hd : ∀ {D} {H : NavigationHistory(D)} {n} d (ds : D ^ n) →
((d ∷ ds) ∈ BackTarget*(H)) →
(d ∈ BackTarget(H))
BT-hd {D} {H} {n} d ds d∷ds∈BT with Max-hd ((A ∪ JointSessionPast) ∩ CanGoBack) d ds d∷ds∈BT where open NavigationHistory H
BT-hd {D} {H} {n} d ds d∷ds∈BT | ((in₁ d∈A , d∈CGB), d-max′) = ((d∈A , d∈CGB) , d-max) where
open NavigationHistory H
d-max : ∀ e → (e ∈ (A ∩ CanGoBack) → (e ≤ d))
d-max e (e∈A , e∈CGB) = d-max′ e ((in₁ e∈A) , e∈CGB)
BT-hd {D} {H} {n} d ds d∷ds∈BT | ((in₂ (a , (a∈A , (d<a , d~a))) , d∈CGB), d-max) = contradiction (<-impl-≱ d<a (d-max a ((in₁ a∈A) , (d , (d<a , d~a))))) where open NavigationHistory H
BT-tl : ∀ {D} {H : NavigationHistory(D)} {n} d d∈CGB (ds : D ^ n) →
((d ∷ ds) ∈ BackTarget*(H)) →
(ds ∈ BackTarget*(H traverse-from d ∵ d∈CGB))
BT-tl {D} {H} {n} d d∈CGB ds d∷ds∈BT with Max-tl ((A ∪ JointSessionPast) ∩ CanGoBack) d ds d∷ds∈BT where open NavigationHistory H
BT-tl {D} {H} {n} d d∈CGB ds d∷ds∈BT | ((d>ds , (ds↓ , ds∈BT′)) , ds-max′) with max(SessionPast(d)) ∵ d∈CGB where open NavigationHistory H
BT-tl {D} {H} {n} d d∈CGB ds d∷ds∈BT | ((d>ds , (ds↓ , ds∈BT′)) , ds-max′) | (c , ((c<d , c~d) , c-max)) = ((ds↓ , ds∈BT) , ds-max) where
open NavigationHistory H
open NavigationHistory (H traverse-to c) using () renaming (A to A′ ; JointSessionPast to JointSessionPast′)
d∈A : (d ∈ A)
d∈A with BT-hd {H = H} d ds d∷ds∈BT
d∈A | ((d∈A , _) , _) = d∈A
d-max : ∀ e → (e ∈ (A ∩ CanGoBack) → (e ≤ d))
d-max with BT-hd {H = H} d ds d∷ds∈BT
d-max | ((_ , _) , d-max) = d-max
lemma : (Past(d) ∩ ((A ∪ JointSessionPast) ∩ CanGoBack)) ⊆ ((A′ ∪ JointSessionPast′) ∩ CanGoBack)
lemma e (e<d , (_ , e∈CGB)) with c ~? e
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e with ≤-total c e
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e | in₁ c≤e with ≤-asym c≤e (c-max e (e<d , ~-trans (~-sym c~e) c~d))
lemma ._ (e<d , (_ , e∈CGB)) | in₁ c~e | in₁ c≤e | refl = ((in₁ (in₂ refl)) , e∈CGB)
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e | in₂ e<c = (in₂ (_ , (in₂ refl , (e<c , ~-sym c~e))) , e∈CGB)
lemma e (e<d , (in₁ e∈A , e∈CGB)) | in₂ c≁e = ((in₁ (in₁ (c≁e , e∈A))) , e∈CGB)
lemma e (e<d , (in₂ (a , (a∈A , (e<a , e~a))) , e∈CGB)) | in₂ c≁e = (in₂ (a , (in₁ ((λ c~a → c≁e (~-trans c~a (~-sym e~a))) , a∈A) , (e<a , e~a))) , e∈CGB)
lemma′ : ((A′ ∪ JointSessionPast′) ∩ CanGoBack) ⊆ ((A ∪ JointSessionPast) ∩ CanGoBack)
lemma′ e (in₁ (in₁ (c≁e , e∈A)) , e∈CGB) = ((in₁ e∈A) , e∈CGB)
lemma′ ._ (in₁ (in₂ refl) , c∈CGB) = ((in₂ (d , (d∈A , (c<d , c~d)))) , c∈CGB)
lemma′ e (in₂ (a , (in₁ (c≁a , a∈A) , e≲a)) , e∈CGB) = (in₂ (a , (a∈A , e≲a)) , e∈CGB)
lemma′ e (in₂ (._ , (in₂ refl , e≲c)) , e∈CGB) = ((in₂ (d , (d∈A , ≲-trans e≲c (c<d , c~d)))) , e∈CGB)
lemma″ : ((A′ ∪ JointSessionPast′) ∩ CanGoBack) ⊆ (Past(d))
lemma″ e (in₁ (in₁ (c≁e , e∈A)) , e∈CGB) = (d-max e (e∈A , e∈CGB) , (λ e≡d → c≁e (~-trans c~d (≡-impl-~ (sym e≡d)))))
lemma″ ._ (in₁ (in₂ refl) , c∈CGB) = c<d
lemma″ e (in₂ (a , (in₁ (c≁a , a∈A) , e≲a)) , e∈CGB) = <-trans-≤ (≲-impl-< e≲a) (d-max a (a∈A , (e , e≲a)))
lemma″ e (in₂ (._ , (in₂ refl , (e<c , e~c))) , e∈CGB) = <-trans e<c c<d
ds∈BT : ds ∈ All((A′ ∪ JointSessionPast′) ∩ CanGoBack)
ds∈BT = All-resp-⊆ lemma ds (All-resp-∩ ds (d>ds , ds∈BT′))
ds-max : ∀ es → (es ∈ (Decreasing ∩ All((A′ ∪ JointSessionPast′) ∩ CanGoBack))) → (es ≤* ds)
ds-max es (es↓ , es∈BT′) = ds-max′ es (All-resp-⊆ lemma″ es es∈BT′ , (es↓ , All-resp-⊆ lemma′ es es∈BT′))
BT-nil : ∀ {D} {H : NavigationHistory(D)} →
(nil ∈ BackTarget*(H))
BT-nil = ((tt , tt) , λ { nil (tt , tt) → tt })
BT-cons : ∀ {D} {H : NavigationHistory(D)} {n} d d∈CGB (ds : D ^ n) →
(d ∈ BackTarget(H)) →
(ds ∈ BackTarget*(H traverse-from d ∵ d∈CGB)) →
((d ∷ ds) ∈ BackTarget*(H))
BT-cons {D} {H} d d∈CGB ds ((d∈A , _) , d-max) ((ds↓ , ds∈JSP′∩CGB) , ds-max) with max(SessionPast(d)) ∵ d∈CGB where open NavigationHistory H
BT-cons {D} {H} d d∈CGB ds ((d∈A , _) , d-max) ((ds↓ , ds∈JSP′∩CGB) , ds-max) | (c , ((c<d , c~d) , c-max)) = (((d<ds , ds↓) , (((in₁ d∈A) , d∈CGB) , All-resp-⊆ lemma′ ds ds∈JSP′∩CGB)) , d∷ds-max) where
open NavigationHistory H
open NavigationHistory (H traverse-to c) using () renaming (A to A′ ; JointSessionPast to JointSessionPast′)
lemma : (Past(d) ∩ ((A ∪ JointSessionPast) ∩ CanGoBack)) ⊆ ((A′ ∪ JointSessionPast′) ∩ CanGoBack)
lemma e (e<d , (_ , e∈CGB)) with c ~? e
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e with ≤-total c e
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e | in₁ c≤e with ≤-asym c≤e (c-max e (e<d , ~-trans (~-sym c~e) c~d))
lemma ._ (e<d , (_ , e∈CGB)) | in₁ c~e | in₁ c≤e | refl = ((in₁ (in₂ refl)) , e∈CGB)
lemma e (e<d , (_ , e∈CGB)) | in₁ c~e | in₂ e<c = (in₂ (_ , (in₂ refl , (e<c , ~-sym c~e))) , e∈CGB)
lemma e (e<d , (in₁ e∈A , e∈CGB)) | in₂ c≁e = ((in₁ (in₁ (c≁e , e∈A))) , e∈CGB)
lemma e (e<d , (in₂ (a , (a∈A , (e<a , e~a))) , e∈CGB)) | in₂ c≁e = (in₂ (a , (in₁ ((λ c~a → c≁e (~-trans c~a (~-sym e~a))) , a∈A) , (e<a , e~a))) , e∈CGB)
lemma′ : ((A′ ∪ JointSessionPast′) ∩ CanGoBack) ⊆ ((A ∪ JointSessionPast) ∩ CanGoBack)
lemma′ e (in₁ (in₁ (c≁e , e∈A)) , e∈CGB) = ((in₁ e∈A) , e∈CGB)
lemma′ ._ (in₁ (in₂ refl) , c∈CGB) = ((in₂ (d , (d∈A , (c<d , c~d)))) , c∈CGB)
lemma′ e (in₂ (a , (in₁ (c≁a , a∈A) , e≲a)) , e∈CGB) = (in₂ (a , (a∈A , e≲a)) , e∈CGB)
lemma′ e (in₂ (._ , (in₂ refl , e≲c)) , e∈CGB) = ((in₂ (d , (d∈A , ≲-trans e≲c (c<d , c~d)))) , e∈CGB)
lemma″ : ((A′ ∪ JointSessionPast′) ∩ CanGoBack) ⊆ (Past(d))
lemma″ e (in₁ (in₁ (c≁e , e∈A)) , e∈CGB) = (d-max e (e∈A , e∈CGB) , (λ e≡d → c≁e (~-trans c~d (≡-impl-~ (sym e≡d)))))
lemma″ ._ (in₁ (in₂ refl) , c∈CGB) = c<d
lemma″ e (in₂ (a , (in₁ (c≁a , a∈A) , e≲a)) , e∈CGB) = <-trans-≤ (≲-impl-< e≲a) (d-max a (a∈A , (e , e≲a)))
lemma″ e (in₂ (._ , (in₂ refl , (e<c , e~c))) , e∈CGB) = <-trans e<c c<d
d<ds : (ds ∈ All(Past(d)))
d<ds = All-resp-⊆ lemma″ ds ds∈JSP′∩CGB
d∷ds-max : ∀ es → es ∈ (Decreasing ∩ All ((A ∪ JointSessionPast) ∩ CanGoBack)) → (es ≤* (d ∷ ds))
d∷ds-max (e ∷ es) ((es<e , es↓) , ((e∈A∪JSP , e∈CGB) , es∈A∪JSP∩CGB)) = (e≤d , es≤ds) where
lemma‴ : ∀ f → (f ∈ ((A ∪ JointSessionPast) ∩ CanGoBack)) → (f ≤ d)
lemma‴ f (in₁ f∈A , f∈CGB) = d-max f (f∈A , f∈CGB)
lemma‴ f (in₂ (a , (a∈A , ((f≤a , f≠a) , f~a))) , f∈CGB) = ≤-trans f≤a (d-max a (a∈A , (f , ((f≤a , f≠a) , f~a))))
e≤d : (e ≤ d)
e≤d = lemma‴ e (e∈A∪JSP , e∈CGB)
es<d : es ∈ All(Past(d))
es<d = All-resp-⊆ (λ f f<e → <-trans-≤ f<e e≤d) es es<e
es≤ds : es ≤* ds
es≤ds = ds-max es (es↓ , All-resp-⊆ lemma es (All-resp-∩ es (es<d , es∈A∪JSP∩CGB)))
fwd? : ∀ {D} {H : NavigationHistory(D)} {δ} (ds : D ^ δ) →
(ds ∈ FwdTarget*(H)) →
(H traverses-by (+ve δ) to (H traverses-to ds))
fwd? {D} {H} {δ = zero} nil nil∈FT = back nil tt (BT-nil {H = H})
fwd? {D} {H} {δ = succ δ} ds ds∈FT = fwd ds ds∈FT
FT-hd : ∀ {D} {H : NavigationHistory(D)} {n} d (ds : D ^ n) →
((d ∷ ds) ∈ FwdTarget*(H)) →
(d ∈ FwdTarget(H))
FT-hd {D} {H} d ds (((d<ds , ds↑) , (d∈JSF , ds∈JSF)) , d∷ds-min) = (d∈JSF , d-min) where
open NavigationHistory H
d-min : ∀ e → (e ∈ JointSessionFuture) → (d ≤ e)
d-min e e∈JSF with ≤-total d e
d-min e e∈JSF | in₁ d≤e = d≤e
d-min e e∈JSF | in₂ e<d with d∷ds-min (e ∷ ds) (((All-resp-⊆ (λ f → <-trans e<d) ds d<ds) , ds↑) , (e∈JSF , ds∈JSF))
d-min e e∈JSF | in₂ e<d | (d≤e , ds≤ds) = d≤e
FT-tl : ∀ {D} {H : NavigationHistory(D)} {n} d (ds : D ^ n) →
((d ∷ ds) ∈ FwdTarget*(H)) →
(ds ∈ FwdTarget*(H traverse-to d))
FT-tl {D} {H} d ds (((d<ds , ds↑) , ((a , (a∈A , (a<d , a~d))) , ds∈JSF)) , d∷ds-min) = ((ds↑ , ds∈JSF′) , ds-min) where
H′ = (H traverse-to d)
open NavigationHistory H
open NavigationHistory H′ using () renaming (JointSessionFuture to JointSessionFuture′)
lemma : ((Future(d) ∩ JointSessionFuture) ⊆ JointSessionFuture′)
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) with d ~? b
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) | in₁ d~b = (d , (in₂ refl , (d<e , (~-trans d~b b~e))))
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) | in₂ d≁b = (b , (in₁ (d≁b , b∈A) , (b<e , b~e)))
lemma′ : (JointSessionFuture′ ⊆ Future(d))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) with ≤-total e d
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₁ e≤d with d∷ds-min (e ∷ ds) (((All-resp-⊆ (λ f → ≤-trans-< e≤d) ds d<ds) , ds↑) , ((b , (b∈A , (b<e , b~e))) , ds∈JSF))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₁ e≤d | (d≤e , ds≤ds) = contradiction (d≁b (~-trans (≡-impl-~ (≤-asym d≤e e≤d)) (~-sym b~e)))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₂ d<e = d<e
lemma′ e (.d , (in₂ refl , (d<e , d~e))) = d<e
lemma″ : (JointSessionFuture′ ⊆ JointSessionFuture)
lemma″ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) = (b , (b∈A , (b<e , b~e)))
lemma″ e (.d , (in₂ refl , (d<e , d~e))) = a , (a∈A , (<-trans a<d d<e , ~-trans a~d d~e))
ds∈JSF′ : (ds ∈ All(JointSessionFuture′))
ds∈JSF′ = All-resp-⊆ lemma ds (All-resp-∩ ds (d<ds , ds∈JSF))
ds-min : ∀ es → (es ∈ (Increasing ∩ All(JointSessionFuture′))) → (ds ≤* es)
ds-min es (es↑ , es∈JSF′) with d∷ds-min (d ∷ es) ((d<es , es↑) , ((a , (a∈A , (a<d , a~d))) , es∈JSF)) where
d<es : es ∈ All(Future(d))
d<es = All-resp-⊆ lemma′ es es∈JSF′
es∈JSF : es ∈ All(JointSessionFuture)
es∈JSF = All-resp-⊆ lemma″ es es∈JSF′
ds-min es (es↑ , es∈JSF′) | (d≤d , ds≤es) = ds≤es
FT-nil : ∀ {D} {H : NavigationHistory(D)} →
(nil ∈ FwdTarget*(H))
FT-nil = ((tt , tt) , λ { nil (tt , tt) → tt })
FT-cons : ∀ {D} {H : NavigationHistory(D)} {n} d (ds : D ^ n) →
(d ∈ FwdTarget(H)) →
(ds ∈ FwdTarget*(H traverse-to d)) →
((d ∷ ds) ∈ FwdTarget*(H))
FT-cons {D} {H} d ds ((a , (a∈A , (a<d , a~d))) , d-min) ((ds↑ , ds∈JSF′) , ds-min) = (((d<ds , ds↑) , ((a , (a∈A , (a<d , a~d))) , ds∈JSF)) , d∷ds-min) where
H′ = (H traverse-to d)
open NavigationHistory H
open NavigationHistory H′ using () renaming (JointSessionFuture to JointSessionFuture′)
lemma : ((Future(d) ∩ JointSessionFuture) ⊆ JointSessionFuture′)
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) with d ~? b
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) | in₁ d~b = (d , (in₂ refl , (d<e , (~-trans d~b b~e))))
lemma e (d<e , (b , (b∈A , (b<e , b~e)))) | in₂ d≁b = (b , (in₁ (d≁b , b∈A) , (b<e , b~e)))
lemma′ : (JointSessionFuture′ ⊆ Future(d))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) with ≤-total e d
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₁ e≤d with d-min e (b , (b∈A , (b<e , b~e)))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₁ e≤d | d≤e = contradiction (d≁b (~-trans (≡-impl-~ (≤-asym d≤e e≤d)) (~-sym b~e)))
lemma′ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) | in₂ d<e = d<e
lemma′ e (.d , (in₂ refl , (d<e , d~e))) = d<e
lemma″ : (JointSessionFuture′ ⊆ JointSessionFuture)
lemma″ e (b , (in₁ (d≁b , b∈A) , (b<e , b~e))) = (b , (b∈A , (b<e , b~e)))
lemma″ e (.d , (in₂ refl , (d<e , d~e))) = (a , (a∈A , (<-trans a<d d<e , ~-trans a~d d~e)))
d<ds : ds ∈ All(Future(d))
d<ds = All-resp-⊆ lemma′ ds ds∈JSF′
ds∈JSF : ds ∈ All(JointSessionFuture)
ds∈JSF = All-resp-⊆ lemma″ ds ds∈JSF′
d∷ds-min : ∀ es → (es ∈ (Increasing ∩ All(JointSessionFuture))) → ((d ∷ ds) ≤* es)
d∷ds-min (e ∷ es) ((e<es , es↑) , (e∈JSF , es∈JSF)) = (d≤e , ds≤es) where
d≤e : (d ≤ e)
d≤e = d-min e e∈JSF
d<es : es ∈ All(Future(d))
d<es = All-resp-⊆ (λ f → ≤-trans-< d≤e) es e<es
es∈JSF′ : (es ∈ All(JointSessionFuture′))
es∈JSF′ = All-resp-⊆ lemma es (All-resp-∩ es (d<es , es∈JSF))
ds≤es : (ds ≤* es)
ds≤es = ds-min es (es↑ , es∈JSF′)
from-to : ∀ {D} {H : NavigationHistory(D)} d e d∈CGB →
(WellFormed(H)) →
(d ∈ BackTarget(H)) →
(e ∈ FwdTarget(H traverse-from d ∵ d∈CGB)) →
(H ≣ ((H traverse-from d ∵ d∈CGB) traverse-to e))
from-to {D} {H} d e d∈CGB H∈WF ((d∈A , _) , d-max) e∈FT′ with lemma e∈FT′ where
H′ = (H traverse-from d ∵ d∈CGB)
open NavigationHistory H
open NavigationHistory H′ using () renaming (JointSessionFuture to JointSessionFuture′ ; FwdTarget to FwdTarget′)
lemma : (e ∈ FwdTarget′) → (d ≡ e)
lemma (e∈JSP′ , e-min) with max(SessionPast(d)) ∵ d∈CGB | ≤-total d e
lemma (e∈JSP′ , e-min) | (c , ((c<d , c~d) , c-max)) | in₁ d≤e = ≤-asym d≤e (e-min d (c , (in₂ refl , (c<d , c~d))))
lemma ((a , (in₁ (c≁a , a∈A) , (a<e , a~e))) , e-min) | c , ((c<d , c~d) , c-max) | in₂ e<d = contradiction (<-impl-≱ e<d (H∈WF (a<e , a~e) (c<d , c~d) a∈A d∈A))
lemma ((.c , (in₂ refl , (c<e , c~e))) , e-min) | c , ((c<d , c~d) , c-max) | in₂ e<d = contradiction (<-impl-≱ c<e (c-max e (e<d , ~-trans (~-sym c~e) c~d)))
from-to {D} {H} d .d d∈CGB H∈WF ((d∈A , _) , d-max) e∈FT′ | refl = H=H″ where
H′ = (H traverse-from d ∵ d∈CGB)
H″ = (H′ traverse-to d)
open NavigationHistory H
open NavigationHistory H″ using () renaming (A to A″)
A⊆A″ : (A ⊆ A″)
A⊆A″ f f∈A with d ~? f
A⊆A″ f f∈A | in₁ d~f with active-~-impl-≡ d∈A f∈A d~f
A⊆A″ .d _ | in₁ d~f | refl = in₂ refl
A⊆A″ f f∈A | in₂ d≁f with max(SessionPast(d)) ∵ d∈CGB
A⊆A″ f f∈A | in₂ d≁f | (c , ((c<d , c~d) , c-max)) = in₁ (d≁f , (in₁ ((λ c~f → d≁f (~-trans (~-sym c~d) c~f)) , f∈A)))
A″⊆A : (A″ ⊆ A)
A″⊆A f (in₁ (d≁f , in₁ (c≁f , f∈A))) = f∈A
A″⊆A ._ (in₁ (d≁c , in₂ refl)) with max(SessionPast(d)) ∵ d∈CGB
A″⊆A ._ (in₁ (d≁c , in₂ refl)) | (c , ((c<d , c~d) , c-max)) = contradiction (d≁c (~-sym c~d))
A″⊆A ._ (in₂ refl) = d∈A
H=H″ : (H ≣ H″)
H=H″ = NH-CONG H H″ A⊆A″ A″⊆A REFL REFL REFL
to-from : ∀ {D} {H : NavigationHistory(D)} d e e∈CGB →
(WellFormed(H)) →
(d ∈ FwdTarget(H)) →
(e ∈ BackTarget(H traverse-to d)) →
(H ≣ ((H traverse-to d) traverse-from e ∵ e∈CGB))
to-from {D} {H} d e e∈CGB H∈WF ((a , (a∈A , (a<d , a~d))) , d-min) e∈BT′ with lemma e∈BT′ | max(SessionPast(e)) ∵ e∈CGB where
H′ = (H traverse-to d)
open NavigationHistory H
open NavigationHistory H′ using () renaming (BackTarget to BackTarget′)
lemma : (e ∈ BackTarget′) → (d ≡ e)
lemma ((in₁ (d≁e , e∈A) , (b , (b<e , b~e))) , e-max) = ≤-asym d≤e e≤d where
d≤e : (d ≤ e)
d≤e = e-max d (in₂ refl , (a , (a<d , a~d)))
e≤d : (e ≤ d)
e≤d = H∈WF (a<d , a~d) (b<e , b~e) a∈A e∈A
lemma ((in₂ d≡e , _) , _) = d≡e
to-from {D} {H} d .d d∈CGB H∈WF ((a , (a∈A , (a<d , a~d))) , d-min) (_ , d-max) | refl | (c , ((c<d , c~d) , c-max)) with ≤-asym a≤c c≤a where
open NavigationHistory H
c≤a : (c ≤ a)
c≤a with ≤-total c a
c≤a | in₁ c≤a = c≤a
c≤a | in₂ a<c = contradiction (<-impl-≱ (<-trans-≤ c<d (d-min c (a , (a∈A , (a<c , (~-trans a~d (~-sym c~d))))))) ≤-refl)
a≤c : (a ≤ c)
a≤c = c-max a (a<d , a~d)
to-from {D} {H} d .d d∈CGB H∈WF ((a , (a∈A , (a<d , a~d))) , d-min) (_ , d-max) | refl | (.a , ((_ , _) , a-max)) | refl = H=H″ where
H′ = (H traverse-to d)
H″ = (H′ traverse-to a)
open NavigationHistory H
open NavigationHistory H″ using () renaming (A to A″)
A⊆A″ : (A ⊆ A″)
A⊆A″ f f∈A with a ~? f
A⊆A″ f f∈A | in₁ a~f = in₂ (active-~-impl-≡ a∈A f∈A (~-trans (~-trans a~d (~-sym a~d)) a~f))
A⊆A″ f f∈A | in₂ a≁f = in₁ (a≁f , (in₁ ((λ d~f → a≁f (~-trans a~d d~f)) , f∈A)))
A″⊆A : (A″ ⊆ A)
A″⊆A f (in₁ (_ , in₁ (_ , f∈A))) = f∈A
A″⊆A .d (in₁ (a≁d , in₂ refl)) = contradiction (a≁d a~d)
A″⊆A .a (in₂ refl) = a∈A
H=H″ : (H ≣ H″)
H=H″ = NH-CONG H H″ A⊆A″ A″⊆A REFL REFL REFL
fwd-WF : ∀ {D} (H : NavigationHistory(D)) e →
WellFormed(H) →
(e ∈ FwdTarget(H)) →
WellFormed(H traverse-to e)
fwd-WF H e H∈WF ((f , (f∈A , f≲e)) , e-min) a≲b c≲d (in₁ (e≁a , a∈A)) (in₁ (e≁d , d∈A)) = H∈WF a≲b c≲d a∈A d∈A
fwd-WF H e H∈WF ((f , (f∈A , f≲e)) , e-min) a≲b c≲e (in₁ (e≁a , a∈A)) (in₂ refl) = e-min _ (_ , (a∈A , a≲b))
fwd-WF H e H∈WF ((f , (f∈A , f≲e)) , e-min) e≲b c≲d (in₂ refl) (in₁ (e≁d , d∈A)) = H∈WF (≲-trans f≲e e≲b) c≲d f∈A d∈A where open NavigationHistory H
fwd-WF H e H∈WF ((f , (f∈A , f≲e)) , e-min) e≲b c≲e (in₂ refl) (in₂ refl) = e-min _ (f , (f∈A , ≲-trans f≲e e≲b)) where open NavigationHistory H
back-WF : ∀ {D} (H : NavigationHistory(D)) e e∈CGB →
WellFormed(H) →
(e ∈ BackTarget(H)) →
WellFormed(H traverse-from e ∵ e∈CGB)
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (a<b , a~b) c≲d a∈A′ d∈A′ with max(SessionPast(e)) ∵ e∈CGB where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (a<b , a~b) c≲d (in₁ (f≁a , a∈A)) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) = H∈WF (a<b , a~b) c≲d a∈A d∈A
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (a<b , a~b) c≲f (in₁ (f≁a , a∈A)) (in₂ refl) | (f , ((f<e , f~e) , f-max)) = ≤-trans (<-impl-≤ f<e) (H∈WF (a<b , a~b) (f<e , f~e) a∈A e∈A) where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) {b = b} (f<b , f~b) c≲d (in₂ refl) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) with ≤-total b e | ≤-total e b where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (f<b , f~b) c≲d (in₂ refl) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) | in₁ b≤e | in₁ e≤b with ≤-asym b≤e e≤b where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (f<b , f~b) c≲d (in₂ refl) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) | in₁ b≤e | in₁ e≤b | refl = e-max _ (d∈A , (_ , c≲d))
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (f<b , f~b) c≲d (in₂ refl) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) | in₁ b≤e | in₂ b<e = contradiction (<-impl-≱ f<b (f-max _ (b<e , ~-trans (~-sym f~b) f~e))) where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (f<b , f~b) c≲d (in₂ refl) (in₁ (f≁d , d∈A)) | (f , ((f<e , f~e) , f-max)) | in₂ e<b | _ = H∈WF (e<b , ~-trans (~-sym f~e) f~b) c≲d e∈A d∈A where open NavigationHistory H
back-WF H e e∈CGB H∈WF ((e∈A , _) , e-max) (f<b , f~b) c≲f (in₂ refl) (in₂ refl) | (f , ((f<e , f~e) , f-max)) = <-impl-≤ f<b where open NavigationHistory H
|
{
"alphanum_fraction": 0.4831225889,
"avg_line_length": 52.5746478873,
"ext": "agda",
"hexsha": "7392da45fcea15e0323456c6ab4eddd029d3a3da",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "cbrewster/ServoNavigation",
"max_forks_repo_path": "notes/lemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "cbrewster/ServoNavigation",
"max_issues_repo_path": "notes/lemmas.agda",
"max_line_length": 262,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "cea700aea1488df1d27092c8f3d79d5d99f7e09a",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "cbrewster/ServoNavigation",
"max_stars_repo_path": "notes/lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2017-04-22T01:51:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-22T01:51:07.000Z",
"num_tokens": 9433,
"size": 18664
}
|
open import FRP.LTL.RSet.Core using ( RSet ; ⟦_⟧ )
open import FRP.LTL.RSet.Stateless using ( _⇒_ )
open import FRP.LTL.Time using ( _≤_ ; ≤-refl ; _≤-trans_ )
module FRP.LTL.RSet.Globally where
-- □ A is "A holds globally in the future"
□ : RSet → RSet
□ A t = ∀ {u} → (t ≤ u) → A u
-- Comonad structure of □
extend : ∀ {A B} → ⟦ A ⇒ B ⟧ → ⟦ □ A ⇒ □ B ⟧
extend f a s≤t = f (a s≤t)
extract : ∀ {A} → ⟦ □ A ⇒ A ⟧
extract a = a ≤-refl
duplicate : ∀ {A} → ⟦ □ A ⇒ □ (□ A) ⟧
duplicate a s≤t t≤u = a (s≤t ≤-trans t≤u)
-- Applicative structure of □
[_] : ∀ {A} → ⟦ A ⟧ → ⟦ □ A ⟧
[ a ] s≤t = a
_⟨*⟩_ : ∀ {A B} → ⟦ □ (A ⇒ B) ⇒ □ A ⇒ □ B ⟧
(f ⟨*⟩ a) s≤t = f s≤t (a s≤t)
|
{
"alphanum_fraction": 0.4940298507,
"avg_line_length": 23.1034482759,
"ext": "agda",
"hexsha": "c07a160a3ac72845e782d230464d4ba04dc90821",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Globally.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Globally.agda",
"max_line_length": 59,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Globally.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 340,
"size": 670
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Hash
open import LibraBFT.Base.ByteString
open import LibraBFT.Base.Encode
open import LibraBFT.Base.PKCS
open import LibraBFT.Impl.Consensus.Types.EpochIndep
-- This module postulates a collision-resistant cryptographic hash
-- function (we call it sha256 for concreteness, but it could be any
-- collision-resistant cryptographic hash function), and defines hash
-- functions used in (an earlier version of) LibraBFT, properties
-- about it, and how Votes and Blocks are signed.
module LibraBFT.Impl.Util.Crypto where
-- Note that this is an abstraction of a collision-resistant hash function. It could be any such
-- hash function, not necessarily sha256. We just call it sha256 for "concreteness", to remind
-- ourselves it's modeling such a function.
postulate -- valid assumption (collision-resistant hash function)
sha256 : BitString → Hash
sha256-cr : ∀{x y} → sha256 x ≡ sha256 y → Collision sha256 x y ⊎ x ≡ y
open WithCryptoHash sha256 sha256-cr
blockInfoBSList : BlockInfo → List ByteString
blockInfoBSList (BlockInfo∙new epoch round id) = encode epoch ∷ encode round ∷ encode id ∷ []
hashBI : BlockInfo → HashValue
hashBI = sha256 ∘ bs-concat ∘ blockInfoBSList
hashBI-inj : ∀ {bi1 bi2} → hashBI bi1 ≡ hashBI bi2 → NonInjective-≡ sha256 ⊎ bi1 ≡ bi2
hashBI-inj {bi1} {bi2} hyp with sha256-cr hyp
...| inj₁ col = inj₁ (_ , col)
...| inj₂ res with bs-concat-inj (blockInfoBSList bi1) (blockInfoBSList bi2) res
...| final = inj₂ (BlockInfo-η (encode-inj (proj₁ (∷-injective final)))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective final)))))
(encode-inj (proj₁ (∷-injective (proj₂ (∷-injective (proj₂ (∷-injective final))))))))
voteDataHashList : VoteData → List Hash
voteDataHashList (VoteData∙new proposed parent) =
hProposed ∷ hParent ∷ []
where
hProposed = hashBI proposed
hParent = hashBI parent
hashVD : VoteData → HashValue
hashVD = hash-concat ∘ voteDataHashList
VoteData-≢-eid : ∀ {vd1 vd2 : VoteData}
→ vd1 ^∙ vdProposed ∙ biEpoch ≢ vd2 ^∙ vdProposed ∙ biEpoch
→ vd1 ≢ vd2
VoteData-≢-eid neq = λ x → neq (cong (_^∙ vdProposed ∙ biEpoch) x)
VoteData-hb : ∀ {vd1 vd2 : VoteData}
→ vd1 ^∙ vdProposed ∙ biEpoch ≢ vd2 ^∙ vdProposed ∙ biEpoch
→ hashVD vd1 ≡ hashVD vd2
→ NonInjective-≡ sha256
VoteData-hb {vd1} {vd2} neq hvd≡
with hash-concat-inj {voteDataHashList vd1} {voteDataHashList vd2} hvd≡
...| inj₁ hb = hb
...| inj₂ xxx
with cong head xxx
...| yyy
with cong tail xxx
...| yyy'
with cong head (just-injective yyy')
...| yyy''
with just-injective yyy | just-injective yyy''
...| zzz | zzz'
with hashBI-inj {vd1 ^∙ vdProposed} {vd2 ^∙ vdProposed} zzz |
hashBI-inj {vd1 ^∙ vdParent} {vd2 ^∙ vdParent} zzz'
...| inj₁ hb | _ = hb
...| inj₂ _ | inj₁ hb = hb
...| inj₂ aaa | inj₂ aaa' = ⊥-elim (VoteData-≢-eid {vd1} {vd2} neq (VoteData-η aaa aaa'))
hashVD-inj : ∀ {vd1 vd2} → hashVD vd1 ≡ hashVD vd2 → NonInjective-≡ sha256 ⊎ vd1 ≡ vd2
hashVD-inj {vd1} {vd2} prf
with hash-concat-inj {voteDataHashList vd1} {voteDataHashList vd2} prf
...| inj₁ hb = inj₁ hb
...| inj₂ vdLists≡
with hashBI-inj (proj₁ (∷-injective vdLists≡)) | hashBI-inj (proj₁ (∷-injective (proj₂ (∷-injective vdLists≡))))
...| inj₁ hb | _ = inj₁ hb
...| inj₂ _ | inj₁ hb = inj₁ hb
...| inj₂ prop≡ | inj₂ par≡ = inj₂ (VoteData-η prop≡ par≡)
hashLI : LedgerInfo → HashValue
hashLI (LedgerInfo∙new commitInfo consensusDataHash) =
hash-concat (hashBI commitInfo ∷ consensusDataHash ∷ [])
hashLI-inj : ∀ {li1 li2} → hashLI li1 ≡ hashLI li2 → NonInjective-≡ sha256 ⊎ li1 ≡ li2
hashLI-inj {LedgerInfo∙new ci1 cd1} {LedgerInfo∙new ci2 cd2} prf
with hash-concat-inj {hashBI ci1 ∷ cd1 ∷ []} {hashBI ci2 ∷ cd2 ∷ []} prf
...| inj₁ hb = inj₁ hb
...| inj₂ li1≡li2
with ∷-injective li1≡li2
...| ci≡ , rest≡
with ∷-injective rest≡
...| cdh≡ , _
with hashBI-inj ci≡
...| inj₁ hb = inj₁ hb
...| inj₂ cis≡
= inj₂ (LedgerInfo-η cis≡ cdh≡)
constructLI : Vote → LedgerInfo
constructLI v = LedgerInfo∙new (₋liCommitInfo (₋vLedgerInfo v)) (hashVD (₋vVoteData v))
hashVote : Vote → HashValue
hashVote = hashLI ∘ constructLI
hashVote-inj1 : ∀ {v1 v2} → hashVote v1 ≡ hashVote v2
→ NonInjective-≡ sha256 ⊎ ₋vVoteData v1 ≡ ₋vVoteData v2
hashVote-inj1 {v1} {v2} hyp with hashLI-inj {constructLI v1} {constructLI v2} hyp
...| inj₁ hb = inj₁ hb
...| inj₂ ok = hashVD-inj {₋vVoteData v1} {₋vVoteData v2} (cong ₋liConsensusDataHash ok)
-- A vote is always signed; as seen by the 'Unit'
-- in the definition of Signed.
instance
sig-Vote : WithSig Vote
sig-Vote = record
{ Signed = λ _ → Unit
; Signed-pi = λ _ _ _ → Unit-pi
; isSigned? = λ _ → yes unit
; signature = λ v _ → ₋vSignature v
; signableFields = encodeH ∘ hashVote
}
-- Captures a proof that a vote was cast by α by recording that 'verify' returns true.
VoteSigVerifies : PK → Vote → Set
VoteSigVerifies pk v = T (verify (signableFields ⦃ sig-Vote ⦄ v) (₋vSignature v) pk)
Signed-pi-Blk : (b : Block)
→ (is1 is2 : (Is-just ∘ ₋bSignature) b)
→ is1 ≡ is2
Signed-pi-Blk (Block∙new _ _ .(just _)) (just _) (just _) = cong just refl
-- A Block might carry a signature
instance
sig-Block : WithSig Block
sig-Block = record
{ Signed = Is-just ∘ ₋bSignature
; Signed-pi = Signed-pi-Blk
; isSigned? = λ b → Maybe-Any-dec (λ _ → yes tt) (b ^∙ bSignature)
; signature = λ { _ prf → to-witness prf }
; signableFields = λ b → concat (encodeH (₋bId b) ∷ encode (b ^∙ bBlockData) ∷ [])
}
|
{
"alphanum_fraction": 0.6313606636,
"avg_line_length": 40.9738562092,
"ext": "agda",
"hexsha": "cd4ccae16b0ebdabf7adc9dcb74d0efa912c4c71",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Impl/Util/Crypto.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Impl/Util/Crypto.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Impl/Util/Crypto.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2190,
"size": 6269
}
|
-- Andreas, 2016-10-12 AIM XXIV, issue #2256
open import Common.Equality
module _ a (A : Set a) where
data ⊥ : Set where
abs : ⊥ → Set a
abs = λ()
test : (x : ⊥) → abs x ≡ A
test x = refl
-- ERROR WAS:
-- (λ ()) a A x != A of type Set a
-- when checking that the expression refl has type abs x ≡ A
-- EXPECTED:
-- (λ ()) x != A of type Set a
-- when checking that the expression refl has type abs x ≡ A
|
{
"alphanum_fraction": 0.6073170732,
"avg_line_length": 18.6363636364,
"ext": "agda",
"hexsha": "32ba409e74a87801d91ef9bca7014319d5337db1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2256.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2256.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2256.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 139,
"size": 410
}
|
module Equiv where
import Prelude
import Eq
open Prelude
open Eq
data Equiv (a : Set) : Set1 where
equiv : (_==_ : a -> a -> Set)
-> (refl : (x : a) -> x == x)
-> (sym : (x y : a) -> x == y -> y == x)
-> (trans : (x y z : a) -> x == y -> y == z -> x == z)
-> Equiv a
rel : {a : Set} -> Equiv a -> (a -> a -> Set)
rel (equiv _==_ _ _ _) = _==_
data Decidable {a : Set} (eq : a -> a -> Set) : Set where
dec : ((x y : a) -> Either (eq x y) (Not (eq x y))) -> Decidable eq
private
boolFunctionsDecidable'
: {a : Set}
-> (f : a -> a -> Bool)
-> (x y : a)
-> (b : Bool)
-> (b =^= f x y)
-> Either (T' f x y) (Not (T' f x y))
boolFunctionsDecidable' eq x y True p = left (leibnizSubst p T unit)
boolFunctionsDecidable' eq x y False p =
right (not (\xy -> leibnizSubst (leibnizSym p) T xy))
boolFunctionsDecidable
: {a : Set} -> (f : a -> a -> Bool) -> Decidable (T' f)
boolFunctionsDecidable f =
dec (\x y -> boolFunctionsDecidable' f x y (f x y) leibnizRefl)
data DecidableEquiv (a : Set) : Set1 where
decEquiv : (eq : Equiv a) -> Decidable (rel eq) -> DecidableEquiv a
rel' : {a : Set} -> (eq : DecidableEquiv a) -> (a -> a -> Set)
rel' (decEquiv eq _) = rel eq
refl : {a : Set} -> (eq : DecidableEquiv a) -> {x : a} -> rel' eq x x
refl (decEquiv (equiv _ refl' _ _) _) = refl' _
sym : {a : Set} -> (eq : DecidableEquiv a) -> {x y : a}
-> rel' eq x y -> rel' eq y x
sym (decEquiv (equiv _ _ sym' _) _) = sym' _ _
trans : {a : Set} -> (eq : DecidableEquiv a) -> {x y z : a}
-> rel' eq x y -> rel' eq y z -> rel' eq x z
trans (decEquiv (equiv _ _ _ trans') _) = trans' _ _ _
decRel : {a : Set} -> (eq : DecidableEquiv a) -> (x y : a)
-> Either (rel' eq x y) (Not (rel' eq x y))
decRel (decEquiv _ (dec f)) = f
private
decRelI : {a : Set} -> (eq : a -> a -> Set) -> {x y : a}
-> Either (eq x y) (Not (eq x y)) -> Bool
decRelI _ (left _) = True
decRelI _ (right _) = False
decRel' : {a : Set} -> DecidableEquiv a -> (a -> a -> Bool)
decRel' eq x y = decRelI (rel' eq) (decRel eq x y)
private
pairEq : {a b : Set} -> DecidableEquiv a -> DecidableEquiv b
-> (p1 p2 : Pair a b) -> Set
pairEq a b (pair x1 x2) (pair y1 y2) = Pair (rel' a x1 y1) (rel' b x2 y2)
refl' : {a b : Set} -> (da : DecidableEquiv a) -> (db : DecidableEquiv b)
-> (x : Pair a b) -> pairEq da db x x
refl' a b (pair x1 x2) = pair (refl a) (refl b)
sym' : {a b : Set} -> (da : DecidableEquiv a) -> (db : DecidableEquiv b)
-> (x y : Pair a b) -> pairEq da db x y -> pairEq da db y x
sym' a b (pair x1 x2) (pair y1 y2) (pair xy1 xy2) =
pair (sym a xy1) (sym b xy2)
trans'
: {a b : Set} -> (da : DecidableEquiv a) -> (db : DecidableEquiv b)
-> (x y z : Pair a b)
-> pairEq da db x y -> pairEq da db y z -> pairEq da db x z
trans' a b (pair x1 x2) (pair y1 y2)
(pair z1 z2) (pair xy1 xy2) (pair yz1 yz2) =
pair (trans a xy1 yz1) (trans b xy2 yz2)
dec'' : {a b : Set} -> {da : DecidableEquiv a} -> {db : DecidableEquiv b}
-> {x1 y1 : a} -> {x2 y2 : b}
-> Either (rel' da x1 y1) (Not (rel' da x1 y1))
-> Either (rel' db x2 y2) (Not (rel' db x2 y2))
-> Either (pairEq da db (pair x1 x2) (pair y1 y2))
(Not (pairEq da db (pair x1 x2) (pair y1 y2)))
dec'' (left xy1) (left xy2) = left (pair xy1 xy2)
dec'' _ (right (not nxy2)) =
right (not (\xy -> nxy2 (snd xy)))
dec'' (right (not nxy1)) (left _) =
right (not (\xy -> nxy1 (fst xy)))
dec' : {a b : Set} -> (da : DecidableEquiv a) -> (db : DecidableEquiv b)
-> (x y : Pair a b) -> Either (pairEq da db x y) (Not (pairEq da db x y))
dec' a b (pair x1 x2) (pair y1 y2) =
dec'' {_} {_} {a} {b} (decRel a x1 y1) (decRel b x2 y2)
pairEquiv
: {a b : Set} -> DecidableEquiv a -> DecidableEquiv b
-> DecidableEquiv (Pair a b)
pairEquiv a b = decEquiv (equiv (pairEq a b)
(refl' a b) (sym' a b) (trans' a b))
(dec (dec' a b))
|
{
"alphanum_fraction": 0.4893023256,
"avg_line_length": 36.7521367521,
"ext": "agda",
"hexsha": "15d1dbad074635dcf1ea40deae9b2665c0a29c3f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM4/bag/Equiv.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM4/bag/Equiv.agda",
"max_line_length": 82,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM4/bag/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1636,
"size": 4300
}
|
{-# OPTIONS --safe #-}
module Cubical.Algebra.Matrix where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Functions.FunExtEquiv
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-comm to +ℕ-comm
; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc)
open import Cubical.Data.Vec
open import Cubical.Data.Sigma.Base
open import Cubical.Data.FinData
open import Cubical.Relation.Nullary
open import Cubical.Algebra.Group
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open Iso
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- Equivalence between Vec matrix and Fin function matrix
FinMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ
FinMatrix A m n = FinVec (FinVec A n) m
VecMatrix : (A : Type ℓ) (m n : ℕ) → Type ℓ
VecMatrix A m n = Vec (Vec A n) m
FinMatrix→VecMatrix : {m n : ℕ} → FinMatrix A m n → VecMatrix A m n
FinMatrix→VecMatrix M = FinVec→Vec (λ fm → FinVec→Vec (M fm))
VecMatrix→FinMatrix : {m n : ℕ} → VecMatrix A m n → FinMatrix A m n
VecMatrix→FinMatrix M fn fm = lookup fm (lookup fn M)
FinMatrix→VecMatrix→FinMatrix : {m n : ℕ} (M : FinMatrix A m n)
→ VecMatrix→FinMatrix (FinMatrix→VecMatrix M) ≡ M
FinMatrix→VecMatrix→FinMatrix {m = zero} M = funExt (⊥.rec ∘ ¬Fin0)
FinMatrix→VecMatrix→FinMatrix {n = zero} M = funExt₂ (λ _ → ⊥.rec ∘ ¬Fin0)
FinMatrix→VecMatrix→FinMatrix {m = suc m} {n = suc n} M = funExt₂ goal
where
goal : (fm : Fin (suc m)) (fn : Fin (suc n))
→ VecMatrix→FinMatrix (_ ∷ FinMatrix→VecMatrix (M ∘ suc)) fm fn ≡ M fm fn
goal zero zero = refl
goal zero (suc fn) i = FinVec→Vec→FinVec (M zero ∘ suc) i fn
goal (suc fm) fn i = FinMatrix→VecMatrix→FinMatrix (M ∘ suc) i fm fn
VecMatrix→FinMatrix→VecMatrix : {m n : ℕ} (M : VecMatrix A m n)
→ FinMatrix→VecMatrix (VecMatrix→FinMatrix M) ≡ M
VecMatrix→FinMatrix→VecMatrix {m = zero} [] = refl
VecMatrix→FinMatrix→VecMatrix {m = suc m} (M ∷ MS) i =
Vec→FinVec→Vec M i ∷ VecMatrix→FinMatrix→VecMatrix MS i
FinMatrixIsoVecMatrix : (A : Type ℓ) (m n : ℕ) → Iso (FinMatrix A m n) (VecMatrix A m n)
fun (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix
inv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix
rightInv (FinMatrixIsoVecMatrix A m n) = VecMatrix→FinMatrix→VecMatrix
leftInv (FinMatrixIsoVecMatrix A m n) = FinMatrix→VecMatrix→FinMatrix
FinMatrix≃VecMatrix : {m n : ℕ} → FinMatrix A m n ≃ VecMatrix A m n
FinMatrix≃VecMatrix {_} {A} {m} {n} = isoToEquiv (FinMatrixIsoVecMatrix A m n)
FinMatrix≡VecMatrix : (A : Type ℓ) (m n : ℕ) → FinMatrix A m n ≡ VecMatrix A m n
FinMatrix≡VecMatrix _ _ _ = ua FinMatrix≃VecMatrix
-- Define abelian group structure on matrices
module FinMatrixAbGroup (G' : AbGroup ℓ) where
open AbGroupStr (snd G') renaming ( is-set to isSetG )
private G = ⟨ G' ⟩
zeroFinMatrix : ∀ {m n} → FinMatrix G m n
zeroFinMatrix _ _ = 0g
negFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n
negFinMatrix M i j = - M i j
addFinMatrix : ∀ {m n} → FinMatrix G m n → FinMatrix G m n → FinMatrix G m n
addFinMatrix M N i j = M i j + N i j
isSetFinMatrix : ∀ {m n} → isSet (FinMatrix G m n)
isSetFinMatrix = isSetΠ2 λ _ _ → isSetG
addFinMatrixAssoc : ∀ {m n} → (M N K : FinMatrix G m n)
→ addFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (addFinMatrix M N) K
addFinMatrixAssoc M N K i j k = assoc (M j k) (N j k) (K j k) i
addFinMatrix0r : ∀ {m n} → (M : FinMatrix G m n)
→ addFinMatrix M zeroFinMatrix ≡ M
addFinMatrix0r M i j k = rid (M j k) i
addFinMatrix0l : ∀ {m n} → (M : FinMatrix G m n)
→ addFinMatrix zeroFinMatrix M ≡ M
addFinMatrix0l M i j k = lid (M j k) i
addFinMatrixNegMatrixr : ∀ {m n} → (M : FinMatrix G m n)
→ addFinMatrix M (negFinMatrix M) ≡ zeroFinMatrix
addFinMatrixNegMatrixr M i j k = invr (M j k) i
addFinMatrixNegMatrixl : ∀ {m n} → (M : FinMatrix G m n)
→ addFinMatrix (negFinMatrix M) M ≡ zeroFinMatrix
addFinMatrixNegMatrixl M i j k = invl (M j k) i
addFinMatrixComm : ∀ {m n} → (M N : FinMatrix G m n)
→ addFinMatrix M N ≡ addFinMatrix N M
addFinMatrixComm M N i k l = comm (M k l) (N k l) i
FinMatrixAbGroup : (m n : ℕ) → AbGroup ℓ
FinMatrixAbGroup m n =
makeAbGroup {G = FinMatrix G m n} zeroFinMatrix addFinMatrix negFinMatrix
isSetFinMatrix addFinMatrixAssoc addFinMatrix0r
addFinMatrixNegMatrixr addFinMatrixComm
-- Define a abelian group structure on vector matrices and prove that
-- it is equal to FinMatrixAbGroup using the SIP
module _ (G' : AbGroup ℓ) where
open AbGroupStr (snd G')
private G = ⟨ G' ⟩
zeroVecMatrix : ∀ {m n} → VecMatrix G m n
zeroVecMatrix = replicate (replicate 0g)
negVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n
negVecMatrix = map (map (λ x → - x))
addVec : ∀ {m} → Vec G m → Vec G m → Vec G m
addVec [] [] = []
addVec (x ∷ xs) (y ∷ ys) = x + y ∷ addVec xs ys
addVecMatrix : ∀ {m n} → VecMatrix G m n → VecMatrix G m n → VecMatrix G m n
addVecMatrix [] [] = []
addVecMatrix (M ∷ MS) (N ∷ NS) = addVec M N ∷ addVecMatrix MS NS
open FinMatrixAbGroup
-- Proof that FinMatrix→VecMatrix is a group homorphism
FinMatrix→VecMatrixHomAdd : (m n : ℕ) (M N : FinMatrix G m n)
→ FinMatrix→VecMatrix (addFinMatrix G' M N) ≡
addVecMatrix (FinMatrix→VecMatrix M) (FinMatrix→VecMatrix N)
FinMatrix→VecMatrixHomAdd zero n M N = refl
FinMatrix→VecMatrixHomAdd (suc m) n M N =
λ i → lem n (M zero) (N zero) i
∷ FinMatrix→VecMatrixHomAdd m n (λ i j → M (suc i) j) (λ i j → N (suc i) j) i
where
lem : (n : ℕ) (V W : FinVec G n)
→ FinVec→Vec (λ j → V j + W j) ≡ addVec (FinVec→Vec V) (FinVec→Vec W)
lem zero V W = refl
lem (suc n) V W = λ i → V zero + W zero ∷ lem n (V ∘ suc) (W ∘ suc) i
-- Combine everything to get an induced abelian group structure of
-- VecMatrix that is equal to the one on FinMatrix
VecMatrixAbGroup : (m n : ℕ) → AbGroup ℓ
VecMatrixAbGroup m n =
InducedAbGroup (FinMatrixAbGroup G' m n) addVecMatrix
FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n)
FinMatrixAbGroup≡VecMatrixAbGroup : (m n : ℕ) → FinMatrixAbGroup G' m n ≡ VecMatrixAbGroup m n
FinMatrixAbGroup≡VecMatrixAbGroup m n =
InducedAbGroupPath (FinMatrixAbGroup G' m n) addVecMatrix
FinMatrix≃VecMatrix (FinMatrix→VecMatrixHomAdd m n)
-- Define identity matrix and matrix multiplication for FinMatrix and
-- prove that square matrices form a ring
module _ (R' : Ring ℓ) where
open RingStr (snd R') renaming ( is-set to isSetR )
open RingTheory R'
open KroneckerDelta R'
open Sum R'
open FinMatrixAbGroup (_ , abgroupstr _ _ _ (snd R' .RingStr.+IsAbGroup))
private R = ⟨ R' ⟩
oneFinMatrix : ∀ {n} → FinMatrix R n n
oneFinMatrix i j = δ i j
mulFinMatrix : ∀ {m1 m2 m3} → FinMatrix R m1 m2 → FinMatrix R m2 m3 → FinMatrix R m1 m3
mulFinMatrix M N i k = ∑ λ j → M i j · N j k
∑Exchange : ∀ {m n} → (M : FinMatrix R m n) → ∑ (λ i → ∑ (λ j → M i j)) ≡ ∑ (λ j → ∑ (λ i → M i j))
∑Exchange {m = zero} {n = n} M = sym (∑0r n)
∑Exchange {m = suc m} {n = zero} M = cong (λ x → 0r + x) (∑0r m) ∙ +Rid 0r
∑Exchange {m = suc m} {n = suc n} M =
let a = M zero zero
L = ∑ λ j → M zero (suc j)
C = ∑ λ i → M (suc i) zero
N = ∑ λ i → ∑ λ j → M (suc i) (suc j)
-- N reindexed
N' = ∑ λ j → ∑ λ i → M (suc i) (suc j)
in a + L + ∑ (λ i → ∑ (λ j → M (suc i) j)) ≡⟨ (λ k → a + L + ∑Split (λ i → M (suc i) zero) (λ i → ∑ (λ j → M (suc i) (suc j))) k) ⟩
a + L + (C + N) ≡⟨ (λ k → a + L + (C + ∑Exchange (λ i j → M (suc i) (suc j)) k)) ⟩
a + L + (C + N') ≡⟨ sym (+Assoc _ _ _) ⟩
a + (L + (C + N')) ≡⟨ (λ k → a + +Assoc-comm1 L C N' k) ⟩
a + (C + (L + N')) ≡⟨ +Assoc _ _ _ ⟩
a + C + (L + N') ≡⟨ (λ k → a + C + ∑Split (λ j → M zero (suc j)) (λ j → ∑ (λ i → M (suc i) (suc j))) (~ k)) ⟩
a + C + ∑ (λ j → ∑ (λ i → M i (suc j))) ∎
mulFinMatrixAssoc : ∀ {m n k l} → (M : FinMatrix R m n) → (N : FinMatrix R n k) → (K : FinMatrix R k l)
→ mulFinMatrix M (mulFinMatrix N K) ≡ mulFinMatrix (mulFinMatrix M N) K
mulFinMatrixAssoc M N K = funExt₂ λ i j →
∑ (λ k → M i k · ∑ (λ l → N k l · K l j)) ≡⟨ ∑Ext (λ k → ∑Mulrdist (M i k) (λ l → N k l · K l j)) ⟩
∑ (λ k → ∑ (λ l → M i k · (N k l · K l j))) ≡⟨ ∑Ext (λ k → ∑Ext (λ l → ·Assoc (M i k) (N k l) (K l j))) ⟩
∑ (λ k → ∑ (λ l → M i k · N k l · K l j)) ≡⟨ ∑Exchange (λ k l → M i k · N k l · K l j) ⟩
∑ (λ l → ∑ (λ k → M i k · N k l · K l j)) ≡⟨ ∑Ext (λ l → sym (∑Mulldist (K l j) (λ k → M i k · N k l))) ⟩
∑ (λ l → ∑ (λ k → M i k · N k l) · K l j) ∎
mulFinMatrixr1 : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix M oneFinMatrix ≡ M
mulFinMatrixr1 M = funExt₂ λ i j → ∑Mulr1 _ (M i) j
mulFinMatrix1r : ∀ {m n} → (M : FinMatrix R m n) → mulFinMatrix oneFinMatrix M ≡ M
mulFinMatrix1r M = funExt₂ λ i j → ∑Mul1r _ (λ x → M x j) i
mulFinMatrixrDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n)
→ mulFinMatrix M (addFinMatrix N K) ≡ addFinMatrix (mulFinMatrix M N) (mulFinMatrix M K)
mulFinMatrixrDistrAddFinMatrix M N K = funExt₂ λ i j →
∑ (λ k → M i k · (N k j + K k j)) ≡⟨ ∑Ext (λ k → ·Rdist+ (M i k) (N k j) (K k j)) ⟩
∑ (λ k → M i k · N k j + M i k · K k j) ≡⟨ ∑Split (λ k → M i k · N k j) (λ k → M i k · K k j) ⟩
∑ (λ k → M i k · N k j) + ∑ (λ k → M i k · K k j) ∎
mulFinMatrixlDistrAddFinMatrix : ∀ {n} (M N K : FinMatrix R n n)
→ mulFinMatrix (addFinMatrix M N) K ≡ addFinMatrix (mulFinMatrix M K) (mulFinMatrix N K)
mulFinMatrixlDistrAddFinMatrix M N K = funExt₂ λ i j →
∑ (λ k → (M i k + N i k) · K k j) ≡⟨ ∑Ext (λ k → ·Ldist+ (M i k) (N i k) (K k j)) ⟩
∑ (λ k → M i k · K k j + N i k · K k j) ≡⟨ ∑Split (λ k → M i k · K k j) (λ k → N i k · K k j) ⟩
∑ (λ k → M i k · K k j) + ∑ (λ k → N i k · K k j) ∎
FinMatrixRing : (n : ℕ) → Ring ℓ
FinMatrixRing n =
makeRing {R = FinMatrix R n n} zeroFinMatrix oneFinMatrix addFinMatrix
mulFinMatrix negFinMatrix isSetFinMatrix addFinMatrixAssoc
addFinMatrix0r addFinMatrixNegMatrixr addFinMatrixComm
mulFinMatrixAssoc mulFinMatrixr1 mulFinMatrix1r
mulFinMatrixrDistrAddFinMatrix mulFinMatrixlDistrAddFinMatrix
-- Generators of product of two ideals
flatten : {n m : ℕ} → FinMatrix A n m → FinVec A (n ·ℕ m)
flatten {n = zero} _ ()
flatten {n = suc n} M = M zero ++Fin flatten (M ∘ suc)
flattenElim : {P : A → Type ℓ'} {n m : ℕ} (M : FinMatrix A n m)
→ (∀ i j → P (M i j))
→ (∀ i → P (flatten M i))
flattenElim {n = zero} M PMHyp ()
flattenElim {n = suc n} {m = zero} M PMHyp ind =
⊥.rec (¬Fin0 (transport (λ i → Fin (0≡m·0 n (~ i))) ind))
flattenElim {n = suc n} {m = suc m} M PMHyp zero = PMHyp zero zero
flattenElim {P = P} {n = suc n} {m = suc m} M PMHyp (suc i) =
++FinElim {P = P} (M zero ∘ suc) (flatten (M ∘ suc)) (PMHyp zero ∘ suc)
(flattenElim {P = P} (M ∘ suc) (PMHyp ∘ suc)) i
module ProdFin (R' : CommRing ℓ) where
private R = fst R'
open CommRingStr (snd R') renaming ( is-set to isSetR )
open CommRingTheory R'
open RingTheory (CommRing→Ring R')
open KroneckerDelta (CommRing→Ring R')
open Sum (CommRing→Ring R')
toMatrix : {n m : ℕ} → FinVec R n → FinVec R m → FinMatrix R n m
toMatrix V W i j = V i · W j
_··Fin_ : {n m : ℕ} → FinVec R n → FinVec R m → FinVec R (n ·ℕ m)
V ··Fin W = flatten (toMatrix V W)
Length1··Fin : ∀ (x y : R)
→ replicateFinVec 1 (x · y) ≡ (replicateFinVec 1 x) ··Fin (replicateFinVec 1 y)
Length1··Fin x y = sym (++FinRid (replicateFinVec 1 (x · y)) _)
∑Dist··Fin : {n m : ℕ} (U : FinVec R n) (V : FinVec R m)
→ (∑ U) · (∑ V) ≡ ∑ (U ··Fin V)
∑Dist··Fin {n = zero} U V = 0LeftAnnihilates _
∑Dist··Fin {n = suc n} U V =
(U zero + ∑ (U ∘ suc)) · (∑ V) ≡⟨ ·Ldist+ _ _ _ ⟩
U zero · (∑ V) + (∑ (U ∘ suc)) · (∑ V) ≡⟨ cong₂ (_+_) (∑Mulrdist _ V) (∑Dist··Fin (U ∘ suc) V) ⟩
∑ (λ j → U zero · V j) + ∑ ((U ∘ suc) ··Fin V) ≡⟨ sym (∑Split++ (λ j → U zero · V j) _) ⟩
∑ ((λ j → U zero · V j) ++Fin ((U ∘ suc) ··Fin V)) ∎
·Dist··Fin : {n m : ℕ} (α U : FinVec R n) (β V : FinVec R m)
→ ∀ j → ((λ i → α i · U i) ··Fin (λ i → β i · V i)) j ≡ (α ··Fin β) j · (U ··Fin V) j
·Dist··Fin {n = n} {m = m} α U β V = equivΠ e (equivHelper α U β V ) .fst
λ _ → ·-commAssocSwap _ _ _ _
where
e = (FinProdChar.Equiv n m)
equivHelper : {n m : ℕ} (α U : FinVec R n) (β V : FinVec R m) (a : Fin n × Fin m) →
(α (fst a) · U (fst a) · (β (snd a) · V (snd a))
≡ α (fst a) · β (snd a) · (U (fst a) · V (snd a)))
≃ (((λ i → α i · U i) ··Fin (λ i → β i · V i)) (FinProdChar.Equiv n m .fst a)
≡ (α ··Fin β) (FinProdChar.Equiv n m .fst a) · (U ··Fin V) (FinProdChar.Equiv n m .fst a))
equivHelper {n = suc n} {m = suc m} α U β V (zero , zero) = idEquiv _
equivHelper {n = suc n} {m = suc m} α U β V (zero , suc j) = transport
(λ 𝕚 → (α zero · U zero · (β (suc j) · V (suc j)) ≡ α zero · β (suc j) · (U zero · V (suc j)))
≃ (FinSumChar.++FinInl m (n ·ℕ suc m)
(λ x → α zero · U zero · (β (suc x) · V (suc x)))
(flatten (λ x y → α (suc x) · U (suc x) · (β y · V y))) j 𝕚
≡ (FinSumChar.++FinInl m (n ·ℕ suc m)
(λ x → α zero · β (suc x)) (flatten (λ x y → α (suc x) · β y)) j 𝕚)
· (FinSumChar.++FinInl m (n ·ℕ suc m)
(λ x → U zero · V (suc x)) (flatten (λ x y → U (suc x) · V y)) j 𝕚)))
(idEquiv _)
equivHelper {n = suc n} {m = suc m} α U β V (suc i , j) = transport
(λ 𝕚 → (α (suc i) · U (suc i) · (β j · V j) ≡ α (suc i) · β j · (U (suc i) · V j))
≃ (FinSumChar.++FinInr m (n ·ℕ suc m)
(λ x → α zero · U zero · (β (suc x) · V (suc x)))
(flatten (λ x y → α (suc x) · U (suc x) · (β y · V y)))
(FinProdChar.Equiv n (suc m) .fst (i , j)) 𝕚
≡ (FinSumChar.++FinInr m (n ·ℕ suc m)
(λ x → α zero · β (suc x)) (flatten (λ x y → α (suc x) · β y))
(FinProdChar.Equiv n (suc m) .fst (i , j)) 𝕚)
· (FinSumChar.++FinInr m (n ·ℕ suc m)
(λ x → U zero · V (suc x)) (flatten (λ x y → U (suc x) · V y))
(FinProdChar.Equiv n (suc m) .fst (i , j)) 𝕚)))
(equivHelper (α ∘ suc) (U ∘ suc) β V _)
|
{
"alphanum_fraction": 0.5583213867,
"avg_line_length": 45.5370919881,
"ext": "agda",
"hexsha": "7b93e223ae2fb22c9c92e8ec26f4ae0101aed856",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/Matrix.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/Matrix.agda",
"max_line_length": 140,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/Matrix.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5919,
"size": 15346
}
|
-- {-# OPTIONS -v term:30 #-}
-- 2010-10-14
module ProjectionsPreserveGuardednessTrivialExample where
open import Common.Level
open import Common.Coinduction
open import Common.Product
-- Streams
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
mutual
repeat : {A : Set}(a : A) → Stream A
repeat a = a ∷ proj₂ (repeat' a)
repeat' : {A : Set}(a : A) → A × ∞ (Stream A)
repeat' a = a , ♯ repeat a
|
{
"alphanum_fraction": 0.6285714286,
"avg_line_length": 19.7826086957,
"ext": "agda",
"hexsha": "148568f2bfc61dbdec3003eaa376ac20547434ae",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda",
"max_line_length": 57,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/ProjectionsPreserveGuardednessTrivialExample.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 163,
"size": 455
}
|
-- Testing how the pragmas are saved in the Agda interface files (using
-- the program dump-agdai interface).
-- 13 July 2012. Because for example the pragma BUILTIN is not a
-- PragmaOption it is not saved in iPragmaOptions, i.e.
--
-- iPragmaOptions = []
module NoOptionPragma where
data Bool : Set where
true false : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
|
{
"alphanum_fraction": 0.6987951807,
"avg_line_length": 24.4117647059,
"ext": "agda",
"hexsha": "eff824d600d74ae4986540d98f956a6a52daa9b4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "notes/agda-interface/NoOptionPragma.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "notes/agda-interface/NoOptionPragma.agda",
"max_line_length": 71,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "notes/agda-interface/NoOptionPragma.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 108,
"size": 415
}
|
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Level where
open import Agda.Primitive using (Level ; _⊔_ ; Setω) renaming (lzero to 0ℓ ; lsuc to ++_) public
record Lifted ℓ {aℓ} (𝕒 : Set aℓ) : Set (ℓ ⊔ aℓ) where
constructor lift
field lower : 𝕒
|
{
"alphanum_fraction": 0.6699346405,
"avg_line_length": 30.6,
"ext": "agda",
"hexsha": "5d457eefea534e5dedde1d5070ee0bb5ad08c388",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Level.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Level.agda",
"max_line_length": 97,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Level.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 104,
"size": 306
}
|
open import Kaleid as K using ()
open import Extract (K.kompile-funp) using (kompile)
open import ReflHelper
open import Data.Nat
open import Data.Nat.Properties
open import Data.List as L using (List; []; _∷_)
open import Data.Fin using (Fin; zero; suc; fromℕ<)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Reflection hiding (_≟_; _>>=_; return)
open import Structures
open import Function
test1-f : ℕ → ℕ
test1-f x = 1 + x
test₁ : kompile test1-f [] [] ≡ ok _
test₁ = refl
test2-f : ℕ → ℕ → ℕ
test2-f (suc x) (suc y) = suc $ test2-f x y
test2-f _ _ = 0
test₂ : kompile test2-f [] [] ≡ ok _
test₂ = refl
test3-f : (a b : ℕ) → a ≡ b → ℕ
test3-f a b _ = a ∸ b
test₃ : kompile test3-f [] [] ≡ ok _
test₃ = refl
test4-f : (x : ℕ) → x ≡ 0 → (y : ℕ) → x ≡ y → ℕ
test4-f x () (suc y) refl
test4-f x x=0 zero x=y = 0
test₄ : kompile test4-f [] [] ≡ ok _
test₄ = refl
-- _>_ is not (yet) supported, so no test₅ for now.
test5-f : (x y : ℕ) → x > y → ℕ
test5-f 0 0 ()
test5-f 0 x _ = x
test5-f (suc x) y _ = x + y
test6-f : (x y : ℕ) → ℕ
test6-f x y with x ≟ y
... | yes pf = 1
... | _ = 2
test₆ = kompile test6-f (quote _≟_ ∷ []) []
test7-f : (n : ℕ) → Fin (suc (n * n))
test7-f n = fromℕ< ≤-refl
test8-f : ℕ → ℕ
test8-f x = let a = x * x + 3 * x + 5 in a + a
test-args : (a b c d : ℕ) → ℕ
test-args a b c d = a + b + c + d
test-args2 : (a b : ℕ) → ℕ
test-args2 a b = test-args a b a b
|
{
"alphanum_fraction": 0.5867768595,
"avg_line_length": 18.8571428571,
"ext": "agda",
"hexsha": "aab38af70b496f4661453a6b7bcd9400c7f0d8c6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "ashinkarov/agda-extractor",
"max_forks_repo_path": "KalExample-00.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "ashinkarov/agda-extractor",
"max_issues_repo_path": "KalExample-00.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "ashinkarov/agda-extractor",
"max_stars_repo_path": "KalExample-00.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z",
"num_tokens": 590,
"size": 1452
}
|
module AnyRelational where
open import Data.Function
open import Data.Unit
open import Data.Empty
open import Data.Bool
open import Data.Nat
open import Data.List hiding (any)
open import Data.Sum
open import Data.Product
open import Relation.Nullary
open import Relation.Nullary.Decidable renaming (map to dec-map)
open import Relation.Binary.PropositionalEquality
Pred : Set → Set₁
Pred A = A → Set
_∈_ : {A : Set} → A → Pred A → Set
a ∈ P = P a
data Even : ℕ → Set where
zero : Even 0
suc : {n : ℕ} → Even n → Even (suc (suc n))
6-Even : 6 ∈ Even
6-Even = suc (suc (suc zero))
data Odd : ℕ → Set where
zero : Odd 1
suc : {n : ℕ} → Odd n → Odd (suc (suc n))
5-Odd : 5 ∈ Odd
5-Odd = suc (suc zero)
data Any {A : Set} (P : Pred A) : List A → Set where
here : ∀ {x xs} → x ∈ P → Any P (x ∷ xs)
there : ∀ {x xs} → Any P xs → Any P (x ∷ xs)
test-any-even : Any Even (3 ∷ 6 ∷ 9 ∷ [])
test-any-even = there (here 6-Even)
test-any-odd : Any Odd (3 ∷ 5 ∷ 10 ∷ [])
test-any-odd = there (here 5-Odd)
U : {A : Set} → Pred A
U _ = ⊤
42-U : 42 ∈ U
42-U = tt
true-U : true ∈ U
true-U = tt
Universal : {A : Set} → Pred A → Set
Universal P = ∀ a → a ∈ P
U-Universal : {A : Set} → Universal {A} U
U-Universal _ = tt
_∪_ : {A : Set} → Pred A → Pred A → Pred A
P ∪ Q = λ a → P a ⊎ Q a
evenOrOdd : Universal (Even ∪ Odd)
evenOrOdd 0 = inj₁ zero
evenOrOdd 1 = inj₂ zero
evenOrOdd (suc n) with evenOrOdd n
... | inj₁ p = inj₂ (evenSucOdd p) where
evenSucOdd : ∀ {n} → Even n → Odd (suc n)
evenSucOdd zero = zero
evenSucOdd (suc n) = suc (evenSucOdd n)
... | inj₂ p = inj₁ (oddSucEven p) where
oddSucEven : ∀ {n} → Odd n → Even (suc n)
oddSucEven zero = suc zero
oddSucEven (suc n) = suc (oddSucEven n)
∁ : {A : Set} → Pred A → Pred A
∁ P = λ a → ¬ (P a)
_⇒_ : {A : Set} → Pred A → Pred A → Set
P ⇒ Q = ∀ {a} → P a → Q a
predOdd : ∀ {n} → Odd (suc (suc n)) → Odd n
predOdd (suc n) = n
even⇒¬odd : Even ⇒ ∁ Odd
even⇒¬odd zero = λ()
even⇒¬odd (suc e) with even⇒¬odd e
even⇒¬odd (suc e) | f = λ o → f (predOdd o)
∅ : {A : Set} → Pred A
∅ _ = ⊥
_∉_ : {A : Set} → A → Pred A → Set
a ∉ P = ¬ (a ∈ P)
42-¬∅ : 42 ∉ ∅
42-¬∅ ()
true-¬∅ : true ∉ ∅
true-¬∅ ()
Empty : {A : Set} → Pred A → Set
Empty P = ∀ a → a ∉ P
∅-Empty : {A : Set} → Empty {A} ∅
∅-Empty _ ()
∁∅-Universal : {A : Set} → Universal {A} (∁ ∅)
∁∅-Universal _ ()
∁U-Empty : {A : Set} → Empty {A} (∁ U)
∁U-Empty _ ∁U = ∁U tt
test-any-6≡ : Any ( _≡_ 6) (3 ∷ 6 ∷ 9 ∷ [])
test-any-6≡ = there (here refl)
find : ∀ {A : Set} {P : Pred A} {as : List A} →
Any P as → ∃ (λ a → Any (_≡_ a) as × a ∈ P)
find (here p) = _ , (here refl , p)
find (there ps) = Data.Product.map id
(Data.Product.map there id)
(find ps)
-- test-any-even : Any Even (3 ∷ 6 ∷ 9 ∷ [])
-- test-any-even = there (here (suc (suc (suc zero))))
-- 6-found : proj₁ (find test-any-even) ≡ 6
-- 6-found = refl
-- 6-Even : 6 ∈ Even
-- 6-Even = proj₂ (proj₂ (find test-any-even))
-- test-any-6≡ : Any (_≡_ 6) (3 ∷ 6 ∷ 9 ∷ [])
-- test-any-6≡ = proj₁ (proj₂ (find test-any-even))
tail : ∀ {A x xs} {P : Pred A} → x ∉ P → Any P (x ∷ xs) → Any P xs
tail ¬p (here p) = ⊥-elim (¬p p)
tail ¬p (there ps) = ps
any : {A : Set} {P : Pred A} →
(∀ x → Dec (x ∈ P)) → (xs : List A) → Dec (Any P xs)
any f [] = no λ()
any f (x ∷ xs) with f x
any f (x ∷ xs) | yes p = yes (here p)
any f (x ∷ xs) | no ¬p = dec-map (there , tail ¬p) (any f xs)
predEven : ∀ {n} → Even (suc (suc n)) → Even n
predEven (suc n) = n
even¬Consecutive : ∀ {n} → n ∈ Even → suc n ∉ Even
even¬Consecutive zero = λ ()
even¬Consecutive (suc n) with even¬Consecutive n
... | ¬p = λ e → ¬p (predEven e)
postulate
¬even¬Consecutive : ∀ {n} → n ∉ Even → suc n ∈ Even
Dec-Even : ∀ n → Dec (n ∈ Even)
Dec-Even zero = yes zero
Dec-Even (suc zero) = no λ()
Dec-Even (suc n) with Dec-Even n
... | yes p = no (even¬Consecutive p)
... | no ¬p = yes (¬even¬Consecutive ¬p)
dec-any-even : Dec (Any Even (3 ∷ 6 ∷ 9 ∷ []))
dec-any-even = any Dec-Even (3 ∷ 6 ∷ 9 ∷ [])
|
{
"alphanum_fraction": 0.5485316078,
"avg_line_length": 24.0598802395,
"ext": "agda",
"hexsha": "61b9884ede15724e6404878a9d92f94dce59ebd3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T12:03:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T12:03:09.000Z",
"max_forks_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/bahug-april2010",
"max_forks_repo_path": "AnyRelational.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/bahug-april2010",
"max_issues_repo_path": "AnyRelational.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "60f71d369015b83b9ef5fabc75a70f367d20ac97",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/bahug-april2010",
"max_stars_repo_path": "AnyRelational.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1668,
"size": 4018
}
|
module Abstract where
data Bool : Set where
true false : Bool
not : Bool → Bool
not true = false
not false = true
abstract
Answer : Set
Answer = Bool
yes : Answer
yes = true
no : Answer
no = false
data _≡_ {A : Set}(x : A) : A → Set where
refl : x ≡ x
data Box : Set where
[_] : Answer → Box
bad-box : Box
bad-box = [ true ]
|
{
"alphanum_fraction": 0.6022727273,
"avg_line_length": 12.5714285714,
"ext": "agda",
"hexsha": "8763067f5ca2eaf9889c8363b4f404240c22f2dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Abstract.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Abstract.agda",
"max_line_length": 41,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/Abstract.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 119,
"size": 352
}
|
{-# OPTIONS --rewriting #-}
module Examples.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Luau.Syntax using (nil; var; _$_; function_is_end; return; _∙_; done; _⟨_⟩; number; binexp; +)
open import Luau.Value using (nil; number)
open import Luau.Run using (run; return)
open import Luau.Heap using (lookup-next; next-emp; lookup-next-emp)
import Agda.Builtin.Equality.Rewrite
{-# REWRITE lookup-next next-emp lookup-next-emp #-}
ex1 : (run (function "id" ⟨ var "x" ⟩ is return (var "x") ∙ done end ∙ return (var "id" $ nil) ∙ done) ≡ return nil _)
ex1 = refl
ex2 : (run (function "fn" ⟨ var "x" ⟩ is return (number 123.0) ∙ done end ∙ return (var "fn" $ nil) ∙ done) ≡ return (number 123.0) _)
ex2 = refl
ex3 : (run (function "fn" ⟨ var "x" ⟩ is return (binexp (number 1.0) + (number 2.0)) ∙ done end ∙ return (var "fn" $ nil) ∙ done) ≡ return (number 3.0) _)
ex3 = refl
|
{
"alphanum_fraction": 0.6592920354,
"avg_line_length": 41.0909090909,
"ext": "agda",
"hexsha": "534bb122b3a20baecf1262f05e1ccc3bb5930a51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Examples/Run.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Examples/Run.agda",
"max_line_length": 154,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Examples/Run.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 320,
"size": 904
}
|
-- Andreas, 2013-05-02 This ain't a bug, it is a feature.
-- {-# OPTIONS -v scope.name:10 #-}
-- {-# OPTIONS -v scope:10 #-}
module Issue836 where
module M where
record R : Set₁ where
field
X : Set
open M using (R)
X : R → Set
X = R.X
-- A glimpse at the scope (showing only concrete names, though):
-- modules
-- * scope Issue836
-- private names R --> [Issue836.M.R]
-- public modules M --> [Issue836.M]
-- * scope Issue836.M
-- public names R --> [Issue836.M.R]
-- modules R --> [Issue836.M.R]
-- * scope Issue836.M.R
-- public names X --> [Issue836.M.R.X]
-- Nisse:
-- The open directive did not mention the /module/ R, so (I think
-- that) the code above should be rejected.
-- Andreas:
-- NO, it is a feature that projections can also be accessed via
-- the record /type/.
-- Ulf:
-- With the fix to 836 using (R) now means using (R; module R).
|
{
"alphanum_fraction": 0.5916398714,
"avg_line_length": 23.9230769231,
"ext": "agda",
"hexsha": "074c3409f61d116e5b73502ad7038fc619359cdc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue836.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue836.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue836.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 272,
"size": 933
}
|
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
import GSeTT.Typed-Syntax
import Globular-TT.Syntax
{- Type theory for globular sets -}
module Globular-TT.Typed-Syntax {l}
(index : Set l) (rule : index → GSeTT.Typed-Syntax.Ctx × (Globular-TT.Syntax.Pre-Ty index)) (eqdec-index : eqdec index) where
open import Globular-TT.Syntax index
open import Globular-TT.Rules index rule
open import Globular-TT.Eqdec-syntax index eqdec-index
open import Globular-TT.Uniqueness-Derivations index rule eqdec-index
Ctx : Set (lsuc l)
Ctx = Σ Pre-Ctx (λ Γ → Γ ⊢C)
Ty : Ctx → Set (lsuc l)
Ty (Γ , _) = Σ Pre-Ty (λ A → Γ ⊢T A)
Tm : ∀ (Γ : Ctx) → Ty Γ → Set (lsuc l)
Tm (Γ , _) (A , _) = Σ Pre-Tm (λ t → Γ ⊢t t # A)
Sub : ∀ (Δ : Ctx) (Γ : Ctx) → Set (lsuc l)
Sub (Δ , _) (Γ , _) = Σ Pre-Sub (λ γ → Δ ⊢S γ > Γ)
eqC : ∀ (Γ Δ : Ctx) → fst Γ == fst Δ → Γ == Δ
eqC (Γ , Γ⊢) (.Γ , Γ⊢') idp = Σ= idp (has-all-paths-⊢C _ _)
eqT : ∀ {Γ} (A B : Ty Γ) → fst A == fst B → A == B
eqT (A , Γ⊢A) (.A , Γ⊢'A) idp = Σ= idp (has-all-paths-⊢T _ _)
eqt : ∀ {Γ A} (t u : Tm Γ A) → fst t == fst u → t == u
eqt (t , Γ⊢t:A) (.t , Γ⊢':A) idp = Σ= idp (has-all-paths-⊢t _ _)
eqS : ∀ {Γ Δ} (γ δ : Sub Γ Δ) → fst γ == fst δ → γ == δ
eqS (γ , Γ⊢γ:Δ) (.γ , Γ⊢'γ:Δ) idp = Σ= idp (has-all-paths-⊢S _ _)
trS : ∀ {Γ Δ Θ : Ctx} → (p : Δ == Θ) → {γ : Sub Γ Δ} → {δ : Sub Γ Θ} → fst γ == fst δ → transport p γ == δ
trS {Γ} {Δ} {Θ} idp {γ} {δ} x = eqS {Γ} {Θ} γ δ x
private
eqdec-typedTy : ∀ Γ → eqdec (Ty Γ)
eqdec-typedTy Γ (A , Γ⊢A) (B , Γ⊢B) with eqdec-Ty A B
... | inl idp = inl (eqT {Γ} (A , Γ⊢A) (B , Γ⊢B) idp)
... | inr A≠B = inr λ p → A≠B (fst-is-inj p)
is-set-Ty : ∀ Γ → is-set (Ty Γ)
is-set-Ty Γ = eqdec-is-set (eqdec-typedTy Γ)
|
{
"alphanum_fraction": 0.5323741007,
"avg_line_length": 33.462962963,
"ext": "agda",
"hexsha": "778bab7ffcc6c9a234d164ec0c5db0598106c7cd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "Globular-TT/Typed-Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "Globular-TT/Typed-Syntax.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "Globular-TT/Typed-Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 859,
"size": 1807
}
|
{- Comparison view and associated lemmas -}
module TemporalOps.Common.Compare where
open import CategoryTheory.Categories
open import Relation.Binary.PropositionalEquality as ≡
open import Relation.Binary.HeterogeneousEquality as ≅
open import Data.Nat.Properties using (+-identityʳ ; +-assoc ; +-suc)
open import Data.Nat using (ℕ ; zero ; suc ; _+_) public
-- (Very verbose) comparison view
-- Like 'compare', but only distinguishes ≤ or >.
data LeqOrdering : ℕ -> ℕ -> Set where
snd==[_+_] : ∀ k l → LeqOrdering k (k + l)
fst==suc[_+_] : ∀ k l → LeqOrdering (k + suc l) k
-- Auxiliary function to compareLeq
compareLeq-suc : ∀ n k -> LeqOrdering n k -> LeqOrdering (suc n) (suc k)
compareLeq-suc n .(n + l) snd==[ .n + l ] = snd==[ suc n + l ]
compareLeq-suc .(k + suc l) k fst==suc[ .k + l ] = fst==suc[ suc k + l ]
compareLeq : ∀ n k -> LeqOrdering n k
compareLeq zero k = snd==[ zero + k ]
compareLeq (suc n) zero = fst==suc[ zero + n ]
compareLeq (suc n) (suc k) = compareLeq-suc n k (compareLeq n k)
-- Lemmas for compareLeq
-- Comparing n and (n + k) always gives snd==[ n + k ]
compare-snd : ∀ (n k : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ]
compare-snd zero k = refl
compare-snd (suc n) k rewrite compare-snd n k = refl
-- If n ≤ n + k, then l + n ≤ (l + n) + k
compare-snd-+ : ∀ (n k l : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ]
-> compareLeq (l + n) ((l + n) + k) ≡ snd==[ (l + n) + k ]
compare-snd-+ n k zero pf = pf
compare-snd-+ zero k (suc l) pf rewrite +-identityʳ l = compare-snd (suc l) k
compare-snd-+ (suc n) k (suc l) pf
rewrite +-suc l n | compare-snd (l + n) k = refl
-- Heterogeneous version of compare-snd-+ with associativity
compare-snd-+-assoc : ∀ (n k l : ℕ) -> compareLeq n (n + k) ≡ snd==[ n + k ]
-> compareLeq (l + n) (l + (n + k)) ≅ snd==[ (l + n) + k ]
compare-snd-+-assoc n k l pf =
begin
compareLeq (l + n) (l + (n + k))
≅⟨ ≅.cong (λ x → compareLeq (l + n) x) (≡-to-≅ (≡.sym (+-assoc l n k))) ⟩
compareLeq (l + n) ((l + n) + k)
≅⟨ ≡-to-≅ (compare-snd-+ n k l pf) ⟩
snd==[ (l + n) + k ]
∎
where
open ≅.≅-Reasoning
-- Comparing (n + suc k and n always gives fst==suc[ n + k ]
compare-fst : ∀ (n k : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ]
compare-fst zero k = refl
compare-fst (suc n) k rewrite compare-fst n k = refl
-- If n + suc k > n, then (l + n) + suc k > l + n
compare-fst-+ : ∀ (n k l : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ]
-> compareLeq ((l + n) + suc k) (l + n) ≡ fst==suc[ (l + n) + k ]
compare-fst-+ n k zero pf = pf
compare-fst-+ zero k (suc l) pf rewrite +-identityʳ l = compare-fst (suc l) k
compare-fst-+ (suc n) k (suc l) pf
rewrite +-suc l n | compare-fst (l + n) k = refl
-- Heterogeneous version of compare-fst-+ with associativity
compare-fst-+-assoc : ∀ (n k l : ℕ) -> compareLeq (n + suc k) n ≡ fst==suc[ n + k ]
-> compareLeq (l + (n + suc k)) (l + n) ≅ fst==suc[ (l + n) + k ]
compare-fst-+-assoc n k l pf =
begin
compareLeq (l + (n + suc k)) (l + n)
≅⟨ ≅.cong (λ x → compareLeq x (l + n)) (≡-to-≅ (≡.sym (+-assoc l n (suc k)))) ⟩
compareLeq ((l + n) + suc k) (l + n)
≅⟨ ≡-to-≅ (compare-fst-+ n k l pf) ⟩
fst==suc[ (l + n) + k ]
∎
where
open ≅.≅-Reasoning
|
{
"alphanum_fraction": 0.5458320973,
"avg_line_length": 41.1097560976,
"ext": "agda",
"hexsha": "1c593d6d6378f8c02fb35a84789ca6020d8c26be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Common/Compare.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Common/Compare.agda",
"max_line_length": 84,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Common/Compare.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1332,
"size": 3371
}
|
open import Oscar.Prelude
open import Oscar.Class.HasEquivalence
open import Oscar.Data.Substitunction
open import Oscar.Data.Proposequality
import Oscar.Property.Setoid.Proposextensequality
open import Oscar.Class
import Oscar.Data.Constraint
module Oscar.Class.HasEquivalence.Substitunction where
module _ {𝔭} {𝔓 : Ø 𝔭} where
open Substitunction 𝔓
instance
HasEquivalenceSubstitunction : ∀ {x y} → HasEquivalence (Substitunction x y) _
HasEquivalenceSubstitunction = ∁ Proposextensequality
|
{
"alphanum_fraction": 0.8098039216,
"avg_line_length": 25.5,
"ext": "agda",
"hexsha": "01a1b5d27cc970b4b51884a36237cfc405d008b7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence/Substitunction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence/Substitunction.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/HasEquivalence/Substitunction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 135,
"size": 510
}
|
{-# OPTIONS --safe #-}
module Cubical.HITs.S2.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.HITs.S1.Base
open import Cubical.HITs.S2.Base
open import Cubical.HITs.Susp
open import Cubical.Homotopy.Loopspace
S²ToSetElim : ∀ {ℓ} {A : S² → Type ℓ}
→ ((x : S²) → isSet (A x))
→ A base
→ (x : S²) → A x
S²ToSetElim set b base = b
S²ToSetElim set b (surf i j) =
isOfHLevel→isOfHLevelDep 2 set b b {a0 = refl} {a1 = refl} refl refl surf i j
-- Wedge connectivity lemmas for S² (binary maps 2-groupoids)
wedgeconFunS² : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ ((x y : _) → isOfHLevel 4 (P x y))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ l base ≡ r base
→ (x y : _) → P x y
wedgeconFunS² {P = P} hlev l r p base y = r y
wedgeconFunS² {P = P} hlev l r p (surf i i₁) y = help y i i₁
where
help : (y : S²) → SquareP (λ i j → P (surf i j) y)
(λ _ → r y) (λ _ → r y)
(λ _ → r y) λ _ → r y
help =
S²ToSetElim (λ _ → isOfHLevelPathP' 2 (isOfHLevelPathP' 3 (hlev _ _) _ _) _ _)
λ w j → hcomp (λ k → λ { (j = i0) → p k
; (j = i1) → p k
; (w = i0) → p k
; (w = i1) → p k})
(l (surf w j))
wedgeconFunS²Id : ∀ {ℓ} {P : S² → S² → Type ℓ}
→ (h : ((x y : _) → isOfHLevel 4 (P x y)))
→ (l : ((x : S²) → P x base))
→ (r : (x : S²) → P base x)
→ (p : l base ≡ r base)
→ (x : S²) → wedgeconFunS² h l r p x base ≡ l x
wedgeconFunS²Id h l r p base = sym p
wedgeconFunS²Id h l r p (surf i j) k =
hcomp (λ w → λ {(i = i0) → p (~ k ∧ w)
; (i = i1) → p (~ k ∧ w)
; (j = i0) → p (~ k ∧ w)
; (j = i1) → p (~ k ∧ w)
; (k = i1) → l (surf i j)})
(l (surf i j))
S¹×S¹→S² : S¹ → S¹ → S²
S¹×S¹→S² base y = base
S¹×S¹→S² (loop i) base = base
S¹×S¹→S² (loop i) (loop j) = surf i j
invS² : S² → S²
invS² base = base
invS² (surf i j) = surf j i
S¹×S¹→S²-anticomm : (x y : S¹) → invS² (S¹×S¹→S² x y) ≡ S¹×S¹→S² y x
S¹×S¹→S²-anticomm base base = refl
S¹×S¹→S²-anticomm base (loop i) = refl
S¹×S¹→S²-anticomm (loop i) base = refl
S¹×S¹→S²-anticomm (loop i) (loop i₁) = refl
toSuspPresInvS² : (x : S²) → toSusp S²∙ (invS² x) ≡ sym (toSusp S²∙ x)
toSuspPresInvS² base =
rCancel (merid base) ∙∙ refl ∙∙ cong sym (sym (rCancel (merid base)))
toSuspPresInvS² (surf i j) k r =
hcomp (λ l → λ {(i = i0) → cc l k r
; (i = i1) → cc l k r
; (j = i0) → cc l k r
; (j = i1) → cc l k r
; (k = i0) → l1-fill j i r (~ l)
; (k = i1) → l1-fill i j (~ r) (~ l)
; (r = i0) → north
; (r = i1) → north})
(l1≡l2 k j i r)
where
cc : Cube {A = Susp S²} _ _ _ _ _ _
cc = doubleCompPath-filler
(rCancel (merid base)) refl (cong sym (sym (rCancel (merid base))))
l1-fill : (i j k r : I) → Susp S²
l1-fill i j k r =
hfill (λ r → λ {(i = i0) → rCancel (merid base) r k
; (i = i1) → rCancel (merid base) r k
; (j = i0) → rCancel (merid base) r k
; (j = i1) → rCancel (merid base) r k
; (k = i0) → north
; (k = i1) → north})
(inS (toSusp S²∙ (surf i j) k))
r
l1 : (Ω^ 3) (Susp∙ S²) .fst
l1 i j k = l1-fill i j k i1
l2 : (Ω^ 3) (Susp∙ S²) .fst
l2 i j k = l1 j i (~ k)
sym≡cong-sym-refl : ∀ {ℓ} {A : Type ℓ} {x : A} → sym≡cong-sym (λ _ _ → x) ≡ refl
sym≡cong-sym-refl {x = x} = transportRefl (λ _ _ _ → x)
l1≡l2 : l1 ≡ l2
l1≡l2 = sym (sym≡flipSquare (λ i j → l1 j i))
∙ ((λ _ i j k → l1 j (~ i) k)
∙ λ r i j k →
hcomp (λ l → λ {(i = i0) → north
; (i = i1) → north
; (j = i0) → sym≡cong-sym-refl {x = north} r (~ l) i k
; (j = i1) → sym≡cong-sym-refl {x = north} r (~ l) i k
; (k = i0) → north
; (k = i1) → north
; (r = i0) → sym≡cong-sym (λ i k → l1 j i k) (~ l) i k
; (r = i1) → l2 i j k})
(l2 i j k))
S¹×S¹→S²-sym : (x y : S¹) → toSusp S²∙ (S¹×S¹→S² x y) ≡ sym (toSusp S²∙ (S¹×S¹→S² y x))
S¹×S¹→S²-sym x y =
cong sym (sym (toSuspPresInvS² (S¹×S¹→S² x y)))
∙ cong (sym ∘ toSusp S²∙) (S¹×S¹→S²-anticomm x y)
|
{
"alphanum_fraction": 0.4632554222,
"avg_line_length": 35.4402985075,
"ext": "agda",
"hexsha": "3d4b60fe14d2b6ae34d48fcacfd255392e8fa665",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/S2/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/S2/Properties.agda",
"max_line_length": 87,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/S2/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1964,
"size": 4749
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Product.Properties where
-- properties of the product _※_ of Functors (so probably should be renamed?)
open import Level
open import Data.Product
open import Categories.Category
open import Categories.Functor renaming (id to idF)
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idNI)
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Category.Product
open import Categories.Morphism
import Categories.Morphism.Reasoning as MR
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
-- variables don't work quite right, use anonymous module instead
module _ {A : Category o ℓ e} {B : Category o′ ℓ′ e′} {C : Category o″ ℓ″ e″}
{i : Functor C A} {j : Functor C B} where
project₁ : πˡ ∘F (i ※ j) ≃ i
project₁ = record
{ F⇒G = ntHelper record { η = λ _ → id ; commute = λ _ → id-comm-sym }
; F⇐G = ntHelper record { η = λ _ → id ; commute = λ _ → id-comm-sym }
; iso = λ X → record { isoˡ = identityˡ ; isoʳ = identityʳ }
}
where open Category A; open MR.Basic A
project₂ : πʳ ∘F (i ※ j) ≃ j
project₂ = record
{ F⇒G = ntHelper record { η = λ _ → id ; commute = λ _ → id-comm-sym }
; F⇐G = ntHelper record { η = λ _ → id ; commute = λ _ → id-comm-sym }
; iso = λ X → record { isoˡ = identityˡ ; isoʳ = identityʳ }
}
where open Category B; open MR.Basic B
unique : {h : Functor C (Product A B)} →
πˡ ∘F h ≃ i → πʳ ∘F h ≃ j → (i ※ j) ≃ h
unique πˡ→i πʳ→j = record
{ F⇒G = ntHelper record
{ η = < L⇐.η , R⇐.η >
; commute = < L⇐.commute , R⇐.commute >
}
; F⇐G = ntHelper record
{ η = < L⇒.η , R⇒.η >
; commute = < L⇒.commute , R⇒.commute >
}
; iso = λ X → let L = iso πˡ→i X
R = iso πʳ→j X in record
{ isoˡ = isoʳ L , isoʳ R
; isoʳ = isoˡ L , isoˡ R
}
}
where
open NaturalIsomorphism
module L⇐ = NaturalTransformation (F⇐G πˡ→i)
module R⇐ = NaturalTransformation (F⇐G πʳ→j)
module L⇒ = NaturalTransformation (F⇒G πˡ→i)
module R⇒ = NaturalTransformation (F⇒G πʳ→j)
open Iso
-- further properties of products
module _ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) where
private
C×D : Category _ _ _
C×D = Product C D
module C×D = Category C×D
module C = Category C
module D = Category D
-- TODO: write an "essentially-equal" combinator for cases such as these?
πˡ※πʳ≃id : (πˡ ※ πʳ) ≃ idF {C = C×D}
πˡ※πʳ≃id = record
{ F⇒G = ntHelper record { η = λ _ → C×D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; F⇐G = ntHelper record { η = λ _ → C×D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; iso = λ X → record
{ isoˡ = C.identityˡ , D.identityˡ
; isoʳ = C.identityʳ , D.identityʳ
}
}
※-distrib : {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ : Level} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂}
→ (F : Functor B C) → (G : Functor B D) → (H : Functor A B)
→ ((F ∘F H) ※ (G ∘F H)) ≃ ((F ※ G) ∘F H)
※-distrib F G H = record
{ F⇒G = ntHelper record { η = λ _ → C×D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; F⇐G = ntHelper record { η = λ _ → C×D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; iso = λ X → record
{ isoˡ = C.identityˡ , D.identityˡ
; isoʳ = C.identityʳ , D.identityʳ
}
}
※-distrib₂ : {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂ : Level} {A : Category o₁ ℓ₁ e₁} {B : Category o₂ ℓ₂ e₂}
→ (F : Functor B C) → (G : Functor B D)
→ ((F ∘F πˡ) ※ (G ∘F πʳ)) ≃ (F ⁂ G)
※-distrib₂ F G = record
{ F⇒G = ntHelper record { η = λ X → C.id , D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; F⇐G = ntHelper record { η = λ X → C.id , D.id ; commute = λ _ → MR.id-comm-sym C , MR.id-comm-sym D }
; iso = λ X → record { isoˡ = C.identityˡ , D.identityʳ ; isoʳ = C.identityʳ , D.identityʳ }
}
|
{
"alphanum_fraction": 0.5735660848,
"avg_line_length": 37.476635514,
"ext": "agda",
"hexsha": "a994c4cc9436b451aede59786caa254bdd0388df",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Product/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Product/Properties.agda",
"max_line_length": 107,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Product/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1538,
"size": 4010
}
|
module Trans where
open import Prelude
Rel : Set -> Set1
Rel A = A -> A -> Set
data [_]* {A : Set}(R : Rel A)(x : A) : A -> Set where
ref : [ R ]* x x
_▹_ : {y z : A} -> R x y -> [ R ]* y z -> [ R ]* x z
infixr 40 _▹_ _▹◃_
length : {A : Set}{R : Rel A}{x y : A} -> [ R ]* x y -> Nat
length ref = zero
length (x ▹ xs) = suc (length xs)
_=[_]=>_ : {A B : Set}(R : Rel A)(i : A -> B)(S : Rel B) -> Set
R =[ i ]=> S = forall {x y} -> R x y -> S (i x) (i y)
map : {A B : Set}{R : Rel A}{S : Rel B}(i : A -> B) ->
(R =[ i ]=> S) ->
{x y : A} -> [ R ]* x y -> [ S ]* (i x) (i y)
map i f ref = ref
map i f (x ▹ xs) = f x ▹ map i f xs
lem-length-map :
{A B : Set}{R : Rel A}{S : Rel B}(i : A -> B)
(f : R =[ i ]=> S){x y : A}(xs : [ R ]* x y) ->
length xs ≡ length (map {S = S} i f xs)
lem-length-map i f ref = refl
lem-length-map i f (x ▹ xs) = cong suc (lem-length-map i f xs)
_▹◃_ : {A : Set}{R : Rel A}{x y z : A} ->
[ R ]* x y -> [ R ]* y z -> [ R ]* x z
ref ▹◃ ys = ys
(x ▹ xs) ▹◃ ys = x ▹ (xs ▹◃ ys)
lem-length▹◃ : {A : Set}{R : Rel A}{x y z : A}
(r₁ : [ R ]* x y)(r₂ : [ R ]* y z) ->
length r₁ + length r₂ ≡ length (r₁ ▹◃ r₂)
lem-length▹◃ ref ys = refl
lem-length▹◃ (x ▹ xs) ys = cong suc (lem-length▹◃ xs ys)
|
{
"alphanum_fraction": 0.4171732523,
"avg_line_length": 29.2444444444,
"ext": "agda",
"hexsha": "fb55825eecdcabc7543dc1794bbd8658f356f29f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/tait/Trans.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/tait/Trans.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/tait/Trans.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 581,
"size": 1316
}
|
module Coirc.Parser where
open import Data.Unit
open import Data.Bool
open import Data.Nat
open import Data.Char
open import Data.String
open import Data.Maybe
open import Data.List hiding (_++_)
open import Data.Sum
open import Data.Product
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Coirc
open import Coirc.Format
readTo-! : List Char → Maybe (String × List Char)
readTo-! [] = nothing
readTo-! ('!' ∷ xs) = just ("" , '!' ∷ xs)
readTo-! (x ∷ xs) with readTo-! xs
... | nothing = nothing
... | just (a , ys) = just ( fromList [ x ] ++ a , ys )
readTo-sp : List Char → Maybe (String × List Char)
readTo-sp [] = nothing
readTo-sp (' ' ∷ xs) = just ("" , ' ' ∷ xs)
readTo-sp (x ∷ xs) with readTo-sp xs
... | nothing = nothing
... | just (a , ys) = just ( fromList [ x ] ++ a , ys )
readTo-crlf : List Char → Maybe (String × List Char)
readTo-crlf [] = nothing
readTo-crlf ('\r' ∷ '\n' ∷ xs) = just ("" , '\r' ∷ '\n' ∷ xs)
readTo-crlf (x ∷ xs) with readTo-crlf xs
... | nothing = nothing
... | just (a , ys) = just ( fromList (x ∷ []) ++ a , ys )
read : (u : U) → List Char → Maybe (El u × List Char)
read CHAR (x ∷ xs) = just (x , xs)
read (DAR n) (x ∷ xs) with Data.Nat._≟_ n (toNat x)
... | no _ = nothing
... | yes p rewrite p = just (dar x , xs)
read (DAR-RANGE n m) (x ∷ xs) with Data.Bool._≟_ true (within? x n m)
... | no _ = nothing
... | yes p rewrite p = just (dar x , xs)
read `*! xs = readTo-! xs
read `*sp xs = readTo-sp xs
read `*crlf xs = readTo-crlf xs
read _ [] = nothing
parse : (f : Format) → List Char → Maybe (⟦ f ⟧ × List Char)
parse Fail _ = nothing
parse End xs = just (tt , xs)
parse (As val) xs = just (val , xs)
parse (Base u) xs = read u xs
parse (Skip f₁ f₂) xs with parse f₁ xs
... | nothing = nothing
... | just (_ , ys) = parse f₂ ys
parse (Or f₁ f₂) xs with parse f₁ xs
... | just (a , ys) = just (inj₁ a , ys)
... | nothing with parse f₂ xs
... | just (a , ys) = just (inj₂ a , ys)
... | nothing = nothing
parse (And f₁ f₂) xs with parse f₁ xs
... | nothing = nothing
... | just (a , ys) with parse f₂ ys
... | nothing = nothing
... | just (b , zs) = just ((a , b) , zs)
parse (Use f₁ f₂) xs with parse f₁ xs
... | nothing = nothing
... | just (a , ys) with parse (f₂ a) ys
... | nothing = nothing
... | just (b , zs) = just ((a , b) , zs)
parse-Event : List Char → Maybe Event
parse-Event xs with parse Notice xs
... | just (x , _) = just x
... | nothing with parse NumericReply xs
... | just (x , _) = just x
... | nothing with parse Mode xs
... | just (x , _) = just x
... | nothing with parse Ping xs
... | just (x , _) = just x
... | nothing with parse Privmsg xs
... | just ((_ , _ , x) , _) = just x
... | nothing = nothing
private
test : Event → String → Set
test e s = just e ≡ parse-Event (toList (s ++ "\r\n"))
test-Notice : test notice
":verne.freenode.net NOTICE * :*** Looking up your hostname..."
test-Notice = refl
test-NumericReply : test numeric
":verne.freenode.net 001 foobot-name :Welcome to the freenode Internet Relay Chat Network coalgbot"
test-NumericReply = refl
test-Mode : test mode
":coalgbot MODE coalgbot :+i"
test-Mode = refl
test-Ping : test ping
"PING :verne.freenode.net"
test-Ping = refl
test-Privmsg : test (privmsg "amiller" "PING 3073265598")
":amiller!debian-tor@gateway/tor-sasl/socrates1024 PRIVMSG coalgbot :PING 3073265598"
test-Privmsg = refl
|
{
"alphanum_fraction": 0.6113537118,
"avg_line_length": 29.358974359,
"ext": "agda",
"hexsha": "ee912e794d584b13c4c27a93f3e3eba5fbd86d13",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/coirc",
"max_forks_repo_path": "src/Coirc/Parser.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/coirc",
"max_issues_repo_path": "src/Coirc/Parser.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/coirc",
"max_stars_repo_path": "src/Coirc/Parser.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1164,
"size": 3435
}
|
postulate A : Set
record R : Set where
constructor r
field f : A
test : R → R
test x = let r a = x
foo : R → A
foo x = let r a = x in a
in r (foo (r a))
|
{
"alphanum_fraction": 0.4615384615,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "3de4e08a6752ca02c257d732848f70ebf197f0fe",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/ShadowingLetWithLet.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/ShadowingLetWithLet.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/ShadowingLetWithLet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 66,
"size": 195
}
|
{-# OPTIONS --without-K --safe #-}
module Dodo.Unary.Dec where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Relation.Nullary using (Dec)
open import Relation.Unary using (Pred)
DecPred : {a ℓ : Level} {A : Set a}
→ Pred A ℓ → Set (a ⊔ ℓ)
DecPred P = ∀ x → Dec (P x)
|
{
"alphanum_fraction": 0.6496598639,
"avg_line_length": 21,
"ext": "agda",
"hexsha": "c06d7d7849ed503cf16a91161c6d654f908465a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Unary/Dec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Unary/Dec.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Unary/Dec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 94,
"size": 294
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Closures of a unary relation with respect to a strict partial order
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Unary.Closure.StrictPartialOrder
{a r e} (P : StrictPartialOrder a e r) where
open StrictPartialOrder P renaming (_<_ to _∼_)
open import Relation.Unary using (Pred)
-- Specialising the results proven generically in `Base`.
import Relation.Unary.Closure.Base _∼_ as Base
open Base public using (□; map; Closed)
module _ {t} {T : Pred Carrier t} where
reindex : ∀ {x y} → x ∼ y → □ T x → □ T y
reindex = Base.reindex trans
duplicate : ∀ {x} → □ T x → □ (□ T) x
duplicate = Base.duplicate trans
□-closed : ∀ {t} {T : Pred Carrier t} → Closed (□ T)
□-closed = Base.□-closed trans
|
{
"alphanum_fraction": 0.5683530678,
"avg_line_length": 29.9677419355,
"ext": "agda",
"hexsha": "54741cf27cbf9a64dedd81db0089f470fda86885",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/StrictPartialOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/StrictPartialOrder.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Unary/Closure/StrictPartialOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 242,
"size": 929
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Group.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Algebra.Group.Base
open import Cubical.Data.Sigma
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
-- The following definition of GroupHom and GroupEquiv are level-wise heterogeneous.
-- This allows for example to deduce that G ≡ F from a chain of isomorphisms
-- G ≃ H ≃ F, even if H does not lie in the same level as G and F.
isGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) (f : ⟨ G ⟩ → ⟨ H ⟩) → Type _
isGroupHom G H f = (x y : ⟨ G ⟩) → f (x G.+ y) ≡ (f x H.+ f y) where
module G = GroupStr (snd G)
module H = GroupStr (snd H)
record GroupHom (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor grouphom
field
fun : ⟨ G ⟩ → ⟨ H ⟩
isHom : isGroupHom G H fun
record GroupEquiv (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor groupequiv
field
eq : ⟨ G ⟩ ≃ ⟨ H ⟩
isHom : isGroupHom G H (equivFun eq)
hom : GroupHom G H
hom = grouphom (equivFun eq) isHom
open GroupHom
open GroupStr
×hom : {A : Group {ℓ}} {B : Group {ℓ'}} {C : Group {ℓ''}} {D : Group {ℓ'''}}
→ GroupHom A C → GroupHom B D → GroupHom (dirProd A B) (dirProd C D)
fun (×hom mf1 mf2) = map-× (fun mf1) (fun mf2)
isHom (×hom mf1 mf2) a b = ≡-× (isHom mf1 _ _) (isHom mf2 _ _)
isInIm : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → ⟨ H ⟩ → Type (ℓ-max ℓ ℓ')
isInIm G H ϕ h = ∃[ g ∈ ⟨ G ⟩ ] ϕ .fun g ≡ h
isInKer : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → ⟨ G ⟩ → Type ℓ'
isInKer G H ϕ g = ϕ .fun g ≡ 0g (snd H)
isSurjective : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isSurjective G H ϕ = (x : ⟨ H ⟩) → isInIm G H ϕ x
isInjective : (G : Group {ℓ}) (H : Group {ℓ'}) → GroupHom G H → Type (ℓ-max ℓ ℓ')
isInjective G H ϕ = (x : ⟨ G ⟩) → isInKer G H ϕ x → x ≡ 0g (snd G)
|
{
"alphanum_fraction": 0.600402617,
"avg_line_length": 33.6779661017,
"ext": "agda",
"hexsha": "81f4fbabc0f42ce65ed1379471bce97128ec70b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 789,
"size": 1987
}
|
module combinators where
open import bool
open import bool-thms2
import closures
open import eq
open import list
open import list-thms
open import nat
open import nat-thms
open import product
open import product-thms
open import sum
open import string
open import termination
data comb : Set where
S : comb
K : comb
app : comb → comb → comb
size : comb → ℕ
size S = 1
size K = 1
size (app a b) = suc (size a + size b)
data _↝_ : comb → comb → Set where
↝K : (a b : comb) → (app (app K a) b) ↝ a
↝S : (a b c : comb) → (app (app (app S a) b) c) ↝ (app (app a c) (app b c))
↝Cong1 : {a a' : comb} (b : comb) → a ↝ a' → (app a b) ↝ (app a' b)
↝Cong2 : (a : comb) {b b' : comb} → b ↝ b' → (app a b) ↝ (app a b')
Sfree : comb → 𝔹
Sfree S = ff
Sfree K = tt
Sfree (app a b) = Sfree a && Sfree b
Sfree-↝-size> : ∀{a b : comb} → Sfree a ≡ tt → a ↝ b → size a > size b ≡ tt
Sfree-↝-size> p (↝K a b) = ≤<-trans {size a} (≤+1 (size a) (size b))
(<+2 {size a + size b} {2})
Sfree-↝-size> () (↝S a b c)
Sfree-↝-size> p (↝Cong1{a}{a'} b u) with &&-elim{Sfree a} p
Sfree-↝-size> p (↝Cong1{a}{a'} b u) | p1 , _ = <+mono2 {size a'} (Sfree-↝-size> p1 u)
Sfree-↝-size> p (↝Cong2 a u) with &&-elim{Sfree a} p
Sfree-↝-size> p (↝Cong2 a u) | _ , p2 = <+mono1{size a} (Sfree-↝-size> p2 u)
↝-preserves-Sfree : ∀{a b : comb} → Sfree a ≡ tt → a ↝ b → Sfree b ≡ tt
↝-preserves-Sfree p (↝K a b) = fst (&&-elim p)
↝-preserves-Sfree () (↝S a b c)
↝-preserves-Sfree p (↝Cong1 b u) with &&-elim p
↝-preserves-Sfree p (↝Cong1 b u) | p1 , p2 = &&-intro (↝-preserves-Sfree p1 u) p2
↝-preserves-Sfree p (↝Cong2 a u) with &&-elim{Sfree a} p
↝-preserves-Sfree p (↝Cong2 a u) | p1 , p2 = &&-intro p1 (↝-preserves-Sfree p2 u)
Sfree-comb : Set
Sfree-comb = Σ comb (λ a → Sfree a ≡ tt)
↝-Sfree-comb : Sfree-comb → Sfree-comb → Set
↝-Sfree-comb (a , _) (b , _) = a ↝ b
size-Sfree-comb : Sfree-comb → ℕ
size-Sfree-comb (a , _) = size a
decrease-size : ∀ {x y : Sfree-comb} → ↝-Sfree-comb x y → size-Sfree-comb x > size-Sfree-comb y ≡ tt
decrease-size{a , u}{b , _} p = Sfree-↝-size> u p
open measure{A = Sfree-comb} ↝-Sfree-comb (λ x y → x > y ≡ tt) size-Sfree-comb decrease-size
measure-decreases : ∀(a : Sfree-comb) → ↓ ↝-Sfree-comb a
measure-decreases a = measure-↓ (↓-> (size-Sfree-comb a))
Sfree-terminatesh : ∀{a : comb}{p : Sfree a ≡ tt} → ↓ ↝-Sfree-comb (a , p) → ↓ _↝_ a
Sfree-terminatesh{a}{p} (pf↓ f) = pf↓ h
where h : {y : comb} → a ↝ y → ↓ _↝_ y
h{y} u = Sfree-terminatesh (f {y , ↝-preserves-Sfree p u} u)
Sfree-terminates : ∀(a : comb) → Sfree a ≡ tt → ↓ _↝_ a
Sfree-terminates a p = Sfree-terminatesh (measure-decreases (a , p))
data varcomb : Set where
S : varcomb
K : varcomb
app : varcomb → varcomb → varcomb
var : (s : string) → varcomb
λ* : (s : string) → varcomb → varcomb
λ* s S = app K S
λ* s K = app K K
λ* s (app c1 c2) = app (app S (λ* s c1)) (λ* s c2)
λ* s (var s') = if (s =string s') then (app (app S K) K) else (app K (var s'))
subst : varcomb → string → varcomb → varcomb
subst c s S = S
subst c s K = K
subst c s (app c1 c2) = app (subst c s c1) (subst c s c2)
subst c s (var s') = if (s =string s') then c else var s'
data _↝vc_ : varcomb → varcomb → Set where
↝K : (a b : varcomb) → (app (app K a) b) ↝vc a
↝S : (a b c : varcomb) → (app (app (app S a) b) c) ↝vc (app (app a c) (app b c))
↝Cong1 : {a a' : varcomb} (b : varcomb) → a ↝vc a' → (app a b) ↝vc (app a' b)
↝Cong2 : (a : varcomb) {b b' : varcomb} → b ↝vc b' → (app a b) ↝vc (app a b')
-- open closures.basics _↝vc_
-- _↝vc+_ : varcomb → varcomb → Set
-- _↝vc+_ = tc
-- id↝ : ∀ (a : varcomb) → app (app (app S K) K) a ↝vc+ a
-- id↝ a = (tc-trans (tc-step (↝S K K a)) (tc-step (↝K a (app K a))))
-- trans-Cong1 : ∀{a a' : varcomb} (b : varcomb) → a ↝vc+ a' → (app a b) ↝vc+ (app a' b)
-- trans-Cong1 b (tc-trans d1 d2) = (tc-trans (trans-Cong1 b d1) (trans-Cong1 b d2))
-- trans-Cong1 b (tc-step d) = tc-step (↝Cong1 b d)
-- trans-Cong2 : ∀(a : varcomb) {b b' : varcomb} → b ↝vc+ b' → (app a b) ↝vc+ (app a b')
-- trans-Cong2 a (tc-trans d1 d2) = (tc-trans (trans-Cong2 a d1) (trans-Cong2 a d2))
-- trans-Cong2 a (tc-step d) = tc-step (↝Cong2 a d)
-- contains-var : string → varcomb → 𝔹
-- contains-var s S = ff
-- contains-var s K = ff
-- contains-var s (app c1 c2) = contains-var s c1 || contains-var s c2
-- contains-var s (var s') = s =string s'
-- λ*-binds : ∀(s : string)(v : varcomb) → contains-var s (λ* s v) ≡ ff
-- λ*-binds s S = refl
-- λ*-binds s K = refl
-- λ*-binds s (app c1 c2) rewrite λ*-binds s c1 | λ*-binds s c2 = refl
-- λ*-binds s (var s') with keep (s =string s')
-- λ*-binds s (var s') | tt , p rewrite p = refl
-- λ*-binds s (var s') | ff , p rewrite p = p
-- λ*-↝ : ∀ (v1 v2 : varcomb)(s : string) → (app (λ* s v1) v2) ↝vc+ (subst v2 s v1)
-- λ*-↝ S v2 s = tc-step (↝K S v2)
-- λ*-↝ K v2 s = tc-step (↝K K v2)
-- λ*-↝ (app c1 c2) v2 s =
-- (tc-trans (tc-step (↝S (λ* s c1) (λ* s c2) v2))
-- (tc-trans (trans-Cong1 (app (λ* s c2) v2) (λ*-↝ c1 v2 s))
-- (trans-Cong2 (subst v2 s c1) (λ*-↝ c2 v2 s))))
-- λ*-↝ (var s') v2 s with s =string s'
-- λ*-↝ (var s') v2 s | tt = id↝ v2
-- λ*-↝ (var s') v2 s | ff = tc-step (↝K (var s') v2)
|
{
"alphanum_fraction": 0.5566417481,
"avg_line_length": 36.2291666667,
"ext": "agda",
"hexsha": "fb4f33e6375f8d4a7ccbcfd1ade82bde97ccc7f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "combinators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "combinators.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "combinators.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2333,
"size": 5217
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a strict partial
-- order.
------------------------------------------------------------------------
-- Example uses:
--
-- u≤x : u ≤ x
-- u≤x = begin
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<x : u < x
-- u<x = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w≤x ⟩
-- x ∎
--
-- u<e : u < e
-- u<e = begin-strict
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w <⟨ w<x ⟩
-- x ≤⟨ x≤y ⟩
-- y <⟨ y<z ⟩
-- z ≡˘⟨ d≡z ⟩
-- d ≈˘⟨ e≈d ⟩
-- e ∎
--
-- u≈w : u ≈ w
-- u≈w = begin-equality
-- u ≈⟨ u≈v ⟩
-- v ≡⟨ v≡w ⟩
-- w ∎
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.StrictPartialOrder
{p₁ p₂ p₃} (S : StrictPartialOrder p₁ p₂ p₃) where
open StrictPartialOrder S
import Relation.Binary.Construct.StrictToNonStrict _≈_ _<_ as NonStrict
------------------------------------------------------------------------
-- Publicly re-export the contents of the base module
open import Relation.Binary.Reasoning.Base.Triple
(NonStrict.isPreorder₂ isStrictPartialOrder)
trans
<-resp-≈
NonStrict.<⇒≤
(NonStrict.<-≤-trans trans <-respʳ-≈)
public
|
{
"alphanum_fraction": 0.4251798561,
"avg_line_length": 22.7868852459,
"ext": "agda",
"hexsha": "3eeb609178609ac44e230abbd9a4f9a7761276af",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/StrictPartialOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 522,
"size": 1390
}
|
{-# OPTIONS --cubical #-}
module Type.Cubical.Path where
open import Type
open import Type.Cubical
postulate PathP : ∀{ℓ}(P : Interval → Type{ℓ}) → P(Interval.𝟎) → P(Interval.𝟏) → Type{ℓ}
{-# BUILTIN PATHP PathP #-}
-- The type of paths.
-- Can be seen as a path between two points in the space P.
-- (A continuous function from the closed unit interval to the space).
Path : ∀{ℓ}{P : Type{ℓ}} → P → P → Type{ℓ}
Path {P = P} = PathP(\i → P)
{-# BUILTIN PATH Path #-}
|
{
"alphanum_fraction": 0.6433121019,
"avg_line_length": 27.7058823529,
"ext": "agda",
"hexsha": "65c592a85c564749f7188ad277c06c46d4881af6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Path.agda",
"max_line_length": 88,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Path.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 156,
"size": 471
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category using (Category; module Commutation)
open import Categories.Category.Monoidal.Core using (Monoidal)
-- The "four middle interchange" for monoidal categories.
--
-- Aka the "interchange law" or "exchange law" (though those terms are
-- more comonly used in the more general context of composition in
-- 2-categories).
module Categories.Category.Monoidal.Interchange
{o ℓ e} {C : Category o ℓ e} where
open import Level using (_⊔_)
open import Data.Product using (_,_)
import Categories.Category.Monoidal.Construction.Product as MonoidalProduct
open import Categories.Category.Monoidal.Braided using (Braided)
open import Categories.Category.Monoidal.Braided.Properties
using (braiding-coherence; inv-Braided; inv-braiding-coherence)
open import Categories.Category.Monoidal.Properties using (module Kelly's)
import Categories.Category.Monoidal.Reasoning as MonoidalReasoning
open import Categories.Category.Monoidal.Symmetric using (Symmetric)
import Categories.Category.Monoidal.Utilities as MonoidalUtilities
open import Categories.Category.Product using (_⁂_; assocˡ)
open import Categories.Functor using (_∘F_)
open import Categories.NaturalTransformation.NaturalIsomorphism
using (_≃_; niHelper)
open import Categories.Morphism C using (_≅_; module ≅)
open import Categories.Morphism.IsoEquiv C using (module _≃_)
open import Categories.Morphism.Reasoning C
private module C = Category C
open C
open Commutation C
private
variable
W W₁ W₂ X X₁ X₂ Y Y₁ Y₂ Z Z₁ Z₂ : Obj
f g h i : X ⇒ Y
-- An abstract definition of an interchange map with the minimal set
-- of coherence laws required to make the tensor product ⊗ of C a
-- monoidal functor. (See also Categories.Functor.Monoidal.Tensor.)
record HasInterchange (M : Monoidal C) : Set (o ⊔ ℓ ⊔ e) where
open Monoidal M
open MonoidalUtilities.Shorthands M
-- The "four middle interchange" for tensor products.
field swapInner : ∀ {W X Y Z} → (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z})
private
i⇒ = swapInner.from
i⇐ = swapInner.to
-- Naturality and coherence laws of the interchange.
field
natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒
assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒
(X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨
i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩
i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩
α⇒ ⊗₁ α⇒
≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩
id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩
i⇒
⟩
unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨
λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩
i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩
λ⇒ ⊗₁ λ⇒
≈ λ⇒
⟩
unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨
id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩
i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩
ρ⇒ ⊗₁ ρ⇒
≈ ρ⇒
⟩
-- The interchange is a natural isomorphism.
naturalIso : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M
naturalIso = niHelper (record
{ η = λ _ → i⇒
; η⁻¹ = λ _ → i⇐
; commute = λ _ → natural
; iso = λ _ → swapInner.iso
})
-- Shorthands for composing and inverting isomorphisms.
open ≅ using () renaming (refl to idᵢ; sym to _⁻¹)
private
infixr 9 _∘ᵢ_
_∘ᵢ_ = λ {X Y Z} f g → ≅.trans {X} {Y} {Z} g f
-- Braided monoidal categories have an interchange map.
module BraidedInterchange {M : Monoidal C} (B : Braided M) where
open MonoidalReasoning M
open MonoidalUtilities M
open Braided B renaming (associator to α)
open Shorthands
-- Shorthands for braiding.
private
σ : X ⊗₀ Y ≅ Y ⊗₀ X
σ = braiding.FX≅GX
module σ {X Y} = _≅_ (σ {X} {Y})
σ⇒ = σ.from
σ⇐ = σ.to
-- The "four middle interchange" for braided tensor products.
swapInner : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner = α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ (α ∘ᵢ σ ⊗ᵢ idᵢ ∘ᵢ α ⁻¹) ∘ᵢ α
module swapInner {W X Y Z} = _≅_ (swapInner {W} {X} {Y} {Z})
private
i⇒ = swapInner.from
i⇐ = swapInner.to
-- The interchange is a natural isomorphism.
swapInner-natural : i⇒ ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i) ≈ (f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ i⇒
swapInner-natural {f = f} {g = g} {h = h} {i = i} = begin
(α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (f ⊗₁ g) ⊗₁ (h ⊗₁ i)
≈⟨ pullʳ (pullʳ assoc-commute-from) ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ f ⊗₁ g ⊗₁ (h ⊗₁ i) ∘ α⇒
≈⟨ refl⟩∘⟨ extendʳ (parallel id-comm-sym (begin
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ g ⊗₁ (h ⊗₁ i)
≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩
α⇒ ∘ σ⇒ ⊗₁ id ∘ (g ⊗₁ h) ⊗₁ i ∘ α⇐
≈⟨ refl⟩∘⟨ extendʳ (parallel (braiding.⇒.commute _) id-comm-sym) ⟩
α⇒ ∘ (h ⊗₁ g) ⊗₁ i ∘ σ⇒ ⊗₁ id ∘ α⇐
≈⟨ extendʳ assoc-commute-from ⟩
h ⊗₁ (g ⊗₁ i) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐
∎)) ⟩
α⇐ ∘ f ⊗₁ h ⊗₁ (g ⊗₁ i) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ extendʳ assoc-commute-to ⟩
(f ⊗₁ h) ⊗₁ (g ⊗₁ i) ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
∎
swapInner-naturalIsomorphism : ⊗ ∘F (⊗ ⁂ ⊗) ≃ ⊗ ∘F MonoidalProduct.⊗ M M
swapInner-naturalIsomorphism = niHelper (record
{ η = λ _ → i⇒
; η⁻¹ = λ _ → i⇐
; commute = λ _ → swapInner-natural
; iso = λ _ → swapInner.iso
})
-- Another version of the interchange that associates differently.
--
-- Why are there two versions and what's the difference? The domain
-- (X₁ ⊗ X₂) ⊗₀ (Y₁ ⊗ Y₂) and codomain (X₁ ⊗ Y₁) ⊗₀ (X₁ ⊗ Y₂) of the
-- interchange map are perfectly symmetric/balanced. But in order to
-- apply the braiding to the middle X₂ and Y₁, we need to
-- re-associate and that breaks the symmetry. We must first
-- re-associate the whole expression in one direction and then the
-- larger subterm in the other. This can be done in two ways,
-- associate to the right first, then to the left, resulting in X₁ ⊗
-- ((Y₂ ⊗₀ X₁) ⊗ Y₂), or vice versa, resulting in (X₁ ⊗ (Y₂ ⊗₀ X₁))
-- ⊗ Y₂. The choice is arbitrary and results in two distinct
-- interchange maps that behave the same way (as witnessed by
-- swapInner-coherent below).
--
-- Why define both? Because the proofs of some coherence laws become
-- easier when the core of the expression is associated in one
-- direction vs. the other. For example swapInner-unitˡ is easier to
-- prove for the second definition, while swapInner-unitʳ is easier
-- to prove for the first; swapInner-assoc uses both.
swapInner′ : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner′ = α ∘ᵢ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ σ ∘ᵢ α) ⊗ᵢ idᵢ ∘ᵢ α ⁻¹
module swapInner′ {W X Y Z} = _≅_ (swapInner′ {W} {X} {Y} {Z})
private
j⇒ = swapInner′.from
j⇐ = swapInner′.to
-- Derived coherence laws.
swapInner-coherent : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ]⟨
i⇒
≈ j⇒
⟩
swapInner-coherent = begin
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ conjugate-from α (idᵢ ⊗ᵢ α) (⟺ pentagon) ⟩
α⇐ ∘ id ⊗₁ α⇒ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ α⇐
≈˘⟨ pullʳ (pullʳ (extendʳ (pushˡ assoc-commute-from))) ⟩
(α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒ ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐
≈⟨ pushʳ sym-assoc ⟩∘⟨refl ⟩
((α⇐ ∘ id ⊗₁ α⇒ ∘ α⇒) ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐
≈⟨ pushˡ (conjugate-from (α ⊗ᵢ idᵢ) α (assoc ○ pentagon)) ⟩∘⟨refl ⟩
(α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐
≈˘⟨ pushʳ (pushʳ (pushˡ split₁ˡ)) ⟩
α⇒ ∘ α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
∎
swapInner-assoc : [ ((X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⇒
(X₁ ⊗₀ (Y₁ ⊗₀ Z₁)) ⊗₀ (X₂ ⊗₀ (Y₂ ⊗₀ Z₂)) ]⟨
i⇒ ⊗₁ id ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂)) ⊗₀ (Z₁ ⊗₀ Z₂) ⟩
i⇒ ⇒⟨ ((X₁ ⊗₀ Y₁) ⊗₀ Z₁) ⊗₀ ((X₂ ⊗₀ Y₂) ⊗₀ Z₂) ⟩
α⇒ ⊗₁ α⇒
≈ α⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Y₂) ⊗₀ (Z₁ ⊗₀ Z₂)) ⟩
id ⊗₁ i⇒ ⇒⟨ (X₁ ⊗₀ X₂) ⊗₀ ((Y₁ ⊗₀ Z₁) ⊗₀ (Y₂ ⊗₀ Z₂)) ⟩
i⇒
⟩
swapInner-assoc = begin
α⇒ ⊗₁ α⇒ ∘ i⇒ ∘ i⇒ ⊗₁ id
≈⟨ (begin
α⇒ ⊗₁ α⇒
≈⟨ serialize₂₁ ⟩
id ⊗₁ α⇒ ∘ α⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ switch-fromtoˡ α (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon) ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ cancelˡ α.isoʳ ⟩∘⟨refl ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ∘ α⇐) ∘ α⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨ pullʳ inv-pentagon ⟩∘⟨refl ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ ((α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (id ⊗₁ α⇐) ∘ α⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ assoc-commute-from ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘
α⇒ ∘ (id ⊗₁ id) ⊗₁ α⇐ ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒
∎) ⟩∘⟨refl ⟩
(id ⊗₁ α⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘
i⇒ ∘ i⇒ ⊗₁ id
≈˘⟨ pullˡ (pushˡ (⊗.identity ⟩⊗⟨refl ⟩∘⟨refl)) ⟩
((id ⊗₁ id) ⊗₁ α⇒ ∘ α⇐) ∘
(id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ id ⊗₁ α⇐ ∘ α⇒) ∘
(α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
i⇒ ⊗₁ id
≈⟨ ⟺ assoc-commute-to ⟩∘⟨
pullʳ (pullʳ (pushʳ (pushˡ (pushʳ (pushˡ split₂ˡ))))) ⟩
(α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒)) ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
((id ⊗₁ α⇐ ∘ α⇒) ∘ α⇐ ∘ id ⊗₁ α⇒) ∘
(id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
(α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ pullʳ (refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ elimˡ (_≅_.isoˡ (α ⁻¹ ∘ᵢ idᵢ ⊗ᵢ α))) ⟩
α⇐ ∘ id ⊗₁ (id ⊗₁ α⇒) ∘ id ⊗₁ (α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
(id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
(α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ sym-assoc ⟩∘⟨
pushʳ ((⟺ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩∘⟨ split₁ˡ) ⟩
α⇐ ∘ id ⊗₁ ((id ⊗₁ α⇒ ∘ α⇒) ∘ α⇐ ⊗₁ id ∘ α⇐) ∘
(α⇒ ∘ (id ⊗₁ id) ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
α⇐ ⊗₁ id ∘ (id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ refl⟩∘⟨ refl⟩⊗⟨
extendʳ (pushˡ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩∘⟨
extendʳ assoc-commute-from ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ α⇒) ∘ (α⇐ ⊗₁ id ∘ α⇐ ⊗₁ id) ∘ α⇐) ∘
(id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ (α⇒ ∘ α⇒)) ∘ α⇐ ⊗₁ id ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈˘⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (refl⟩∘⟨ split₁ˡ ⟩∘⟨refl) ⟩∘⟨
pushʳ (extendʳ (switch-fromtoʳ (α ⊗ᵢ idᵢ) (assoc ○ pentagon))) ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ⊗₁ id
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ split₁ˡ ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘ id ⊗₁ α⇒ ∘ α⇒ ∘
(id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐)) ⊗₁ id ∘ α⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc) ⟩∘⟨
refl⟩∘⟨ extendʳ assoc-commute-from ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐)) ∘
id ⊗₁ α⇒ ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ α⇒ ∘ α⇒ ⊗₁ id
≈⟨ refl⟩∘⟨ merge₂ (assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ assoc²')) ⟩∘⟨
refl⟩∘⟨ switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ∘ id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁
(α⇒ ∘ α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘
id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ merge₂ assoc²' ○ (refl⟩∘⟨ refl⟩∘⟨ (assoc²' ○
(refl⟩∘⟨ refl⟩∘⟨ assoc))) ⟩∘⟨ Equiv.refl ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ pushʳ (begin
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ extendʳ (pushˡ split₂ˡ) ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id) ∘ (id ⊗₁ α⇐ ∘ α⇒) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ (extendʳ assoc-commute-to ○ (refl⟩∘⟨ sym-assoc)) ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇐ ∘ (id ⊗₁ α⇐ ∘ α⇒)) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ refl⟩∘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○
(conjugate-to α (α ⊗ᵢ idᵢ) (sym-assoc ○ inv-pentagon))) ⟩∘⟨refl ⟩
α⇒ ∘ (α⇐ ∘ α⇐) ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id ∘ (α⇒ ⊗₁ id ∘ α⇐) ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈˘⟨ refl⟩∘⟨ split₁ Equiv.refl ⟩∘⟨
pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl) ⟩
α⇒ ∘ ((α⇐ ∘ α⇐) ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐ ∘
(α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐
≈⟨ refl⟩∘⟨ merge₁ assoc² ⟩∘⟨ extendʳ assoc-commute-to ⟩
α⇒ ∘ (α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘
((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘ α⇐ ∘ α⇐
≈˘⟨ refl⟩∘⟨ pushˡ split₁ˡ ⟩
α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘
α⇐ ∘ α⇐
≈˘⟨ refl⟩∘⟨ refl⟩∘⟨ (sym-assoc ○ inv-pentagon) ⟩
α⇒ ∘ ((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id) ⊗₁ id ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐
≈⟨ refl⟩∘⟨ pullˡ (⟺ split₁ˡ ○ (assoc ⟩⊗⟨refl)) ⟩
α⇒ ∘
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘
α⇐ ∘ id ⊗₁ α⇐
≈⟨ refl⟩∘⟨ (begin
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ pushˡ (pushʳ sym-assoc) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒ ∘ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ (refl⟩∘⟨ extendʳ (pushʳ split₁ˡ)) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (α⇒ ∘ α⇒ ⊗₁ id) ∘ (σ⇒ ⊗₁ id ∘ α⇐) ⊗₁ id ∘ α⇐
≈⟨ pushʳ (switch-fromtoˡ (idᵢ ⊗ᵢ α) pentagon ⟩∘⟨ pushˡ split₁ˡ) ⟩
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒) ∘ (id ⊗₁ α⇐ ∘ α⇒ ∘ α⇒)) ∘
(σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐
≈⟨ pushˡ (sym-assoc ○ (pullˡ (pullʳ assoc ⟩∘⟨refl))) ⟩
((α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘
α⇒ ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐ ⊗₁ id ∘ α⇐
≈⟨ pullʳ (refl⟩∘⟨ extendʳ assoc-commute-from) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇐) ∘ α⇒ ∘
σ⇒ ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐
≈⟨ (refl⟩∘⟨ refl⟩∘⟨ ⟺ split₂ˡ) ⟩∘⟨ refl⟩∘⟨ (refl⟩⊗⟨ ⊗.identity ⟩∘⟨
conjugate-from (idᵢ ⊗ᵢ (α ⁻¹)) (α ⁻¹) inv-pentagon) ⟩
(α⇐ ∘ α⇐ ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈˘⟨ extendʳ (sym-assoc ○ inv-pentagon) ⟩∘⟨refl ⟩
(α⇐ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (σ⇒ ∘ α⇐)) ∘
α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈˘⟨ (refl⟩∘⟨ pushʳ split₂ˡ) ⟩∘⟨refl ⟩
(α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ σ⇒ ∘ α⇐)) ∘
α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈˘⟨ pushˡ ((refl⟩∘⟨ refl⟩∘⟨ refl⟩⊗⟨
(sym-assoc ○ hexagon₂ ○ assoc)) ⟩∘⟨refl) ⟩
((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒)) ∘ α⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ pushˡ (pushʳ (pushʳ split₂ˡ)) ⟩∘⟨refl ⟩
((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ pushʳ (pushˡ split₂ˡ) ⟩∘⟨refl ⟩
(((α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ σ⇒ ⊗₁ id) ∘ id ⊗₁ α⇐) ∘
id ⊗₁ id ⊗₁ σ⇒ ∘ α⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ ((pushˡ (pushʳ assoc-commute-to) ⟩∘⟨
⟺ assoc-commute-from) ○ (pullʳ sym-assoc)) ⟩∘⟨refl ⟩
((α⇐ ⊗₁ id ∘ (id ⊗₁ σ⇒) ⊗₁ id) ∘ ((α⇐ ∘ id ⊗₁ α⇐) ∘ α⇒) ∘
(id ⊗₁ id) ⊗₁ σ⇒) ∘ σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ pullˡ (⟺ split₁ˡ ⟩∘⟨
conjugate-from α (idᵢ ⊗ᵢ α ∘ᵢ α) (⟺ (assoc ○ pentagon)))
⟩∘⟨refl ⟩
(((α⇐ ∘ id ⊗₁ σ⇒) ⊗₁ id ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (id ⊗₁ id) ⊗₁ σ⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ (pullˡ (⟺ split₁ˡ) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl) ⟩∘⟨refl ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ σ⇒) ∘
σ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ extend² (⟺ serialize₂₁ ○ serialize₁₂) ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ id) ∘
id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒
≈˘⟨ pushʳ (refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl ⟩
(((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐ ∘ σ⇒ ⊗₁ id ⊗₁ id) ∘
(id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ α⇒
≈⟨ pushʳ assoc-commute-to ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩
((((α⇐ ∘ id ⊗₁ σ⇒) ∘ α⇒) ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ id ⊗₁ σ⇒ ∘ id ⊗₁ α⇒
≈˘⟨ ((sym-assoc ○ sym-assoc) ⟩⊗⟨refl ○ split₁ˡ) ⟩∘⟨refl ⟩∘⟨
refl⟩∘⟨ split₂ˡ ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒)
≈˘⟨ extend² (sym-assoc ○ inv-pentagon) ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ⊗₁ id) ∘ α⇐ ⊗₁ id) ∘
(α⇐ ∘ id ⊗₁ α⇐) ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒)
≈˘⟨ split₁ˡ ⟩∘⟨ pushʳ split₂ˡ ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘
α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)
∎) ⟩⊗⟨refl ⟩∘⟨refl ⟩
α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐ ∘
id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐
≈⟨ (refl⟩∘⟨ pushˡ ((sym-assoc ⟩⊗⟨refl) ○ split₁ˡ)) ⟩
α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ⊗₁ id ∘
(id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒)) ⊗₁ id ∘ α⇐ ∘ id ⊗₁ α⇐
≈⟨ (refl⟩∘⟨ split₁ˡ ⟩∘⟨ extendʳ (⟺ assoc-commute-to)) ○ pushʳ assoc ⟩
(α⇒ ∘ (((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id) ⊗₁ id) ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐
≈⟨ pushˡ assoc-commute-from ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇒ ∘
α⇐ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ id ⊗₁ α⇐
≈˘⟨ refl⟩∘⟨ pullʳ (pullʳ (refl⟩∘⟨ split₂ˡ)) ⟩
((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘
(α⇒ ∘ α⇐ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐)
≈˘⟨ pullʳ (pullˡ (conjugate-from (α ∘ᵢ α ⊗ᵢ idᵢ) α pentagon)) ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ (id ⊗₁ id) ∘ α⇐) ∘
id ⊗₁ α⇒ ∘ id ⊗₁ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐)
≈⟨ refl⟩⊗⟨ ⊗.identity ⟩∘⟨refl ⟩∘⟨ ⟺ split₂ˡ ⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘
id ⊗₁ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐)
≡⟨⟩
(((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐) ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒
≈˘⟨ switch-fromtoʳ α (switch-fromtoˡ α (⟺ hexagon₁))
⟩⊗⟨refl ⟩∘⟨refl ⟩∘⟨refl ⟩
(σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒
∎) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ j⇒) ∘ α⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ id ⊗₁ j⇒ ∘ α⇒ ∘ α⇒
≈˘⟨ pullʳ (pullʳ (extendʳ assoc-commute-from)) ⟩
(α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒
≡⟨⟩
i⇒ ∘ (id ⊗₁ id) ⊗₁ j⇒ ∘ α⇒
≈⟨ refl⟩∘⟨ ⊗.identity ⟩⊗⟨ ⟺ swapInner-coherent ⟩∘⟨refl ⟩
i⇒ ∘ id ⊗₁ i⇒ ∘ α⇒
∎
where inv-pentagon = λ {W X Y Z} → _≃_.to-≈ (pentagon-iso {W} {X} {Y} {Z})
swapInner-unitˡ : [ unit ⊗₀ (X ⊗₀ Y) ⇒ (X ⊗₀ Y) ]⟨
λ⇐ ⊗₁ id ⇒⟨ (unit ⊗₀ unit) ⊗₀ (X ⊗₀ Y) ⟩
i⇒ ⇒⟨ (unit ⊗₀ X) ⊗₀ (unit ⊗₀ Y) ⟩
λ⇒ ⊗₁ λ⇒
≈ λ⇒
⟩
swapInner-unitˡ = begin
λ⇒ ⊗₁ λ⇒ ∘ i⇒ ∘ λ⇐ ⊗₁ id
≈⟨ refl⟩∘⟨ swapInner-coherent ⟩∘⟨ (Kelly₃′ ⟩⊗⟨refl) ⟩
λ⇒ ⊗₁ λ⇒ ∘ j⇒ ∘ ρ⇐ ⊗₁ id
≡⟨⟩
λ⇒ ⊗₁ λ⇒ ∘ (α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ ρ⇐ ⊗₁ id
≈⟨ pullˡ (pushˡ serialize₁₂) ⟩
(λ⇒ ⊗₁ id ∘ id ⊗₁ λ⇒ ∘ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ ρ⇐ ⊗₁ id
≈⟨ (refl⟩∘⟨ (begin
id ⊗₁ λ⇒ ∘ α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈⟨ pullˡ triangle ⟩
ρ⇒ ⊗₁ id ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈˘⟨ pushˡ split₁ˡ ⟩
(ρ⇒ ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈⟨ (pullˡ Kelly₂′ ⟩⊗⟨refl ⟩∘⟨refl) ⟩
(id ⊗₁ ρ⇒ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈˘⟨ pushˡ split₂ˡ ⟩⊗⟨refl ⟩∘⟨refl ⟩
(id ⊗₁ (ρ⇒ ∘ σ⇒) ∘ α⇒) ⊗₁ id ∘ α⇐
≈⟨ (refl⟩⊗⟨ σ⁻¹-coherence ⟩∘⟨refl) ⟩⊗⟨refl ⟩∘⟨refl ⟩
(id ⊗₁ λ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐
≈⟨ triangle ⟩⊗⟨refl ⟩∘⟨refl ⟩
(ρ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐
≈˘⟨ assoc-commute-to ⟩
α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id)
∎)) ⟩∘⟨refl ⟩
(λ⇒ ⊗₁ id ∘ α⇐ ∘ ρ⇒ ⊗₁ (id ⊗₁ id)) ∘ ρ⇐ ⊗₁ id
≈⟨ (sym-assoc ○ (Kelly₁′ ⟩∘⟨ refl⟩⊗⟨ ⊗.identity)) ⟩∘⟨refl ⟩
(λ⇒ ∘ ρ⇒ ⊗₁ id) ∘ ρ⇐ ⊗₁ id
≈⟨ cancelʳ (_≅_.isoʳ (unitorʳ ⊗ᵢ idᵢ)) ⟩
λ⇒
∎
where
Kelly₁′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₁ M))
Kelly₂′ = ⟺ (switch-fromtoʳ α (Kelly's.coherence₂ M))
Kelly₃′ = _≃_.to-≈ (Kelly's.coherence-iso₃ M)
σ⁻¹-coherence = inv-braiding-coherence (inv-Braided B)
swapInner-unitʳ : [ (X ⊗₀ Y) ⊗₀ unit ⇒ (X ⊗₀ Y) ]⟨
id ⊗₁ λ⇐ ⇒⟨ (X ⊗₀ Y) ⊗₀ (unit ⊗₀ unit) ⟩
i⇒ ⇒⟨ (X ⊗₀ unit) ⊗₀ (Y ⊗₀ unit) ⟩
ρ⇒ ⊗₁ ρ⇒
≈ ρ⇒
⟩
swapInner-unitʳ = begin
ρ⇒ ⊗₁ ρ⇒ ∘ i⇒ ∘ id ⊗₁ λ⇐
≡⟨⟩
ρ⇒ ⊗₁ ρ⇒ ∘ (α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ λ⇐
≈⟨ pullˡ (pushˡ serialize₂₁) ⟩
(id ⊗₁ ρ⇒ ∘ ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒) ∘ id ⊗₁ λ⇐
≈⟨ (refl⟩∘⟨ (begin
ρ⇒ ⊗₁ id ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ pushˡ (switch-fromtoʳ α triangle) ⟩
id ⊗₁ λ⇒ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ pushˡ split₂ˡ ⟩
id ⊗₁ (λ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ refl⟩⊗⟨ pullˡ (Kelly's.coherence₁ M) ⟩∘⟨refl ⟩
id ⊗₁ (λ⇒ ⊗₁ id ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ refl⟩⊗⟨ pushˡ split₁ˡ ⟩∘⟨refl ⟩
id ⊗₁ ((λ⇒ ∘ σ⇒) ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ refl⟩⊗⟨ (braiding-coherence B ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨refl ⟩
id ⊗₁ (ρ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ refl⟩⊗⟨ switch-fromtoʳ α triangle ⟩∘⟨refl ⟩
id ⊗₁ (id ⊗₁ λ⇒) ∘ α⇒
≈˘⟨ assoc-commute-from ⟩
α⇒ ∘ (id ⊗₁ id) ⊗₁ λ⇒
∎)) ⟩∘⟨refl ⟩
(id ⊗₁ ρ⇒ ∘ α⇒ ∘ (id ⊗₁ id) ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐
≈⟨ (sym-assoc ○ (Kelly's.coherence₂ M ⟩∘⟨ ⊗.identity ⟩⊗⟨refl)) ⟩∘⟨refl ⟩
(ρ⇒ ∘ id ⊗₁ λ⇒) ∘ id ⊗₁ λ⇐
≈⟨ cancelʳ (_≅_.isoʳ (idᵢ ⊗ᵢ unitorˡ)) ⟩
ρ⇒
∎
swapInner-braiding : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ]⟨
i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩
σ⇒ ⊗₁ σ⇒ ⇒⟨ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ⟩
i⇒
≈ σ⇒
⟩
swapInner-braiding = begin
i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ i⇒
≡⟨⟩
i⇒ ∘ σ⇒ ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ swapInner-coherent ⟩∘⟨ pushˡ serialize₁₂ ⟩
j⇒ ∘ σ⇒ ⊗₁ id ∘ id ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ ((refl⟩∘⟨ refl⟩⊗⟨ ⊗.identity) ⟩∘⟨ ⊗.identity ⟩⊗⟨refl ⟩∘⟨refl) ○ assoc ⟩
((α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ σ⇒ ⊗₁ (id ⊗₁ id)) ∘
(id ⊗₁ id) ⊗₁ σ⇒ ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ pullʳ (pullʳ assoc-commute-to) ⟩∘⟨ extendʳ (⟺ assoc-commute-to) ⟩
(α⇒ ∘ (α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ⊗₁ id ∘ (σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ (refl⟩∘⟨ pushˡ split₁ˡ) ⟩∘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
(α⇒ ∘ ((α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒) ∘ σ⇒ ⊗₁ id) ⊗₁ id ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ (id ⊗₁ σ⇒ ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ (refl⟩∘⟨ pullʳ (assoc ○ hexagon₁) ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨
refl⟩∘⟨ refl⟩⊗⟨ (⟺ assoc ○ (pullˡ (assoc ○ hexagon₁))) ⟩∘⟨refl ⟩
(α⇒ ∘ (α⇐ ∘ α⇒ ∘ σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ∘ α⇒) ∘ α⇐) ∘ α⇒
≈⟨ (refl⟩∘⟨ cancelˡ α.isoˡ ⟩⊗⟨refl ⟩∘⟨refl) ⟩∘⟨
refl⟩∘⟨ refl⟩⊗⟨ pullʳ (cancelʳ α.isoʳ) ⟩∘⟨refl ⟩
(α⇒ ∘ (σ⇒ ∘ α⇒) ⊗₁ id ∘ α⇐) ∘ α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒) ∘ α⇒
≈⟨ extendʳ (pushʳ split₁ˡ) ⟩∘⟨ extendʳ (pushʳ split₂ˡ) ⟩
((α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇒ ⊗₁ id ∘ α⇐) ∘ (α⇐ ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒
≈˘⟨ extendʳ (pushʳ (pushʳ assoc)) ⟩
(α⇒ ∘ σ⇒ ⊗₁ id) ∘ (α⇒ ⊗₁ id ∘ (α⇐ ∘ α⇐) ∘ id ⊗₁ α⇒) ∘ id ⊗₁ σ⇒ ∘ α⇒
≈˘⟨ refl⟩∘⟨ switch-tofromˡ (α ⊗ᵢ idᵢ)
(switch-tofromʳ (idᵢ ⊗ᵢ α) inv-pentagon) ⟩∘⟨refl ⟩
(α⇒ ∘ σ⇒ ⊗₁ id) ∘ α⇐ ∘ id ⊗₁ σ⇒ ∘ α⇒
≈⟨ pullʳ (sym-assoc ○ pullˡ hexagon₂) ⟩
α⇒ ∘ ((α⇐ ∘ σ⇒) ∘ α⇐) ∘ α⇒
≈⟨ (refl⟩∘⟨ cancelʳ α.isoˡ) ⟩
α⇒ ∘ (α⇐ ∘ σ⇒)
≈⟨ cancelˡ α.isoʳ ⟩
σ⇒
∎
where inv-pentagon = _≃_.to-≈ pentagon-iso
-- Braided monoidal categories have an interchange.
hasInterchange : HasInterchange M
hasInterchange = record
{ swapInner = swapInner
; natural = swapInner-natural
; assoc = swapInner-assoc
; unitˡ = swapInner-unitˡ
; unitʳ = swapInner-unitʳ
}
open HasInterchange hasInterchange public using (naturalIso)
-- Extra identities that hold only for symmetric monoidal categories.
module SymmetricInterchange {M : Monoidal C} (S : Symmetric M) where
open MonoidalReasoning M
open MonoidalUtilities M
open Symmetric S renaming (associator to α)
open Shorthands
open BraidedInterchange braided public
private
i⇒ = swapInner.from
i⇐ = swapInner.to
σ⇒ = λ {X Y} → braiding.⇒.η (X , Y)
σ⇐ = λ {X Y} → braiding.⇐.η (X , Y)
swapInner-commutative : [ (X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ⇒
(X₁ ⊗₀ X₂) ⊗₀ (Y₁ ⊗₀ Y₂) ]⟨
i⇒ ⇒⟨ (X₁ ⊗₀ Y₁) ⊗₀ (X₂ ⊗₀ Y₂) ⟩
i⇒
≈ id
⟩
swapInner-commutative = begin
i⇒ ∘ i⇒
≈⟨ pullʳ (cancelInner α.isoʳ) ⟩
α⇐ ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ id ⊗₁ (α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈˘⟨ refl⟩∘⟨ pushˡ split₂ˡ ⟩
α⇐ ∘ id ⊗₁ ((α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒ ∘ σ⇒ ⊗₁ id ∘ α⇐) ∘ α⇒
≈⟨ refl⟩∘⟨ refl⟩⊗⟨ (∘-resp-≈ʳ sym-assoc ○ α[σ⊗1]α⁻¹.isoʳ) ⟩∘⟨refl ⟩
α⇐ ∘ id ⊗₁ id ∘ α⇒
≈⟨ refl⟩∘⟨ ⊗.identity ⟩∘⟨refl ⟩
α⇐ ∘ id ∘ α⇒
≈⟨ ∘-resp-≈ʳ identityˡ ○ α.isoˡ ⟩
id
∎
where module α[σ⊗1]α⁻¹ = _≅_ (α ∘ᵢ braided-iso ⊗ᵢ idᵢ ∘ᵢ α ⁻¹)
swapInner-iso : (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ≅ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z)
swapInner-iso = record
{ from = i⇒
; to = i⇒
; iso = record
{ isoˡ = swapInner-commutative
; isoʳ = swapInner-commutative
}
}
swapInner-braiding′ : [ (W ⊗₀ X) ⊗₀ (Y ⊗₀ Z) ⇒ (Y ⊗₀ W) ⊗₀ (Z ⊗₀ X) ]⟨
i⇒ ⇒⟨ (W ⊗₀ Y) ⊗₀ (X ⊗₀ Z) ⟩
σ⇒ ⊗₁ σ⇒
≈ σ⇒ ⇒⟨ (Y ⊗₀ Z) ⊗₀ (W ⊗₀ X) ⟩
i⇒
⟩
swapInner-braiding′ = switch-fromtoˡ swapInner-iso swapInner-braiding
|
{
"alphanum_fraction": 0.424222123,
"avg_line_length": 43.0576923077,
"ext": "agda",
"hexsha": "58f14596118a77fd037f41983143702cf988c784",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TOTBWF/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Interchange.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TOTBWF/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Interchange.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TOTBWF/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Interchange.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 16929,
"size": 26868
}
|
module Issue848 where
A : Set1
A = B module _ where
B : Set1
B = Set
C : Set1
C = B
D : Set1
D = E module _ where
E : Set1
E = Set
F : Set1
F = G module _ where
G : Set1
G = H module _ where
H : Set1
H = Set
|
{
"alphanum_fraction": 0.5512820513,
"avg_line_length": 9.75,
"ext": "agda",
"hexsha": "b363f621850c5e7f2bf858624fb911d447adcaa3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue848.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue848.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue848.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 234
}
|
{-# OPTIONS --cubical --postfix-projections #-}
open import Prelude
open import Algebra
open import Container
module Control.Monad.ListT
{ℓ}
(𝔽 : Container ℓ ℓ)
(is-mon : IsMonad {ℓ} ⟦ 𝔽 ⟧ )
where
open IsMonad is-mon
postulate
cmap-return : (f : A → B) (x : ⟦ 𝔽 ⟧ A) →
(cmap f x ≡ (x >>= return ∘ f))
infixr 5 _∷_
mutual
List : Type ℓ → Type _
List A = ⟦ 𝔽 ⟧ (Cons A)
data Cons (A : Type ℓ) : Type ℓ where
[] : Cons A
_∷_ : (x : A) → (xs : List A) → Cons A
data ℭ𝔬𝔫𝔰 (A : Type ℓ) (P : List A → Type ℓ) : Type ℓ where
[] : ℭ𝔬𝔫𝔰 A P
_∷_⟨_⟩ : (x : A) → (xs : List A) → (P⟨xs⟩ : P xs) → ℭ𝔬𝔫𝔰 A P
module _ (P : List A → Type ℓ) where
wrapc : ℭ𝔬𝔫𝔰 A P → Cons A
wrapc [] = []
wrapc (x ∷ xs ⟨ P⟨xs⟩ ⟩) = x ∷ xs
wrap : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A P) → List A
wrap = cmap wrapc
{-# INLINE wrap #-}
module _ (ψ : (x : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A P)) → P (wrap x)) where
elim : (x : List A) → P x
elimc : Cons A → ℭ𝔬𝔫𝔰 A P
wrapc-elimc : (c : Cons A) → wrapc (elimc c) ≡ c
wrapc-elimc [] i = []
wrapc-elimc (x ∷ xs) i = x ∷ xs
elimc [] = []
elimc (x ∷ xs) = x ∷ xs ⟨ elim xs ⟩
elim xs =
subst
P
(cong (xs .fst ,_) (funExt (λ x → wrapc-elimc (xs .snd x))))
(ψ (cmap elimc xs))
module _ (ϕ : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A (const B)) → B) where
para : List A → B
parac : Cons A → ℭ𝔬𝔫𝔰 A (const B)
para xs = ϕ (cmap parac xs)
parac [] = []
parac (x ∷ xs) = x ∷ xs ⟨ para xs ⟩
++-ϕ : List A → ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A (const (List A))) → List A
++-ϕ ys xs = xs >>= λ { [] → ys ; (x ∷ _ ⟨ xs ⟩) → return (x ∷ xs) }
infixr 5 _++_
_++_ : List A → List A → List A
xs ++ ys = para (++-ϕ ys) xs
cmap-comp : (f : B → C) (g : A → B) (x : ⟦ 𝔽 ⟧ A) → cmap f (cmap g x) ≡ cmap (f ∘ g) x
cmap-comp f g x = refl
cmap-id : (x : ⟦ 𝔽 ⟧ A) → cmap id x ≡ x
cmap-id x = refl
open import Path.Reasoning
++-id : (xs : List A) → xs ++ return [] ≡ xs
++-id {A = A} = elim P ψ
where
P : List A → Type ℓ
P xs = xs ++ return [] ≡ xs
ϕ : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A (const (List A))) → List A
ϕ = ++-ϕ (return [])
ϕ′ : ℭ𝔬𝔫𝔰 A (const (List A)) → Cons A
ϕ′ [] = []
ϕ′ (x ∷ xs ⟨ P⟨xs⟩ ⟩) = x ∷ P⟨xs⟩
ϕ≡ : ∀ xs → ϕ xs ≡ (xs >>= return ∘′ ϕ′)
ϕ≡ xs = cong (xs >>=_) (funExt (λ { [] → refl ; (x ∷ xs ⟨ P⟨xs⟩ ⟩) → refl }))
lemma : (xs : ℭ𝔬𝔫𝔰 A P) → ϕ′ (parac ϕ (wrapc P xs)) ≡ wrapc P xs
lemma [] = refl
lemma (x ∷ xs ⟨ P⟨xs⟩ ⟩) = cong (x ∷_) P⟨xs⟩
ψ : (xs : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A P)) → P (wrap P xs)
ψ xs =
wrap P xs ++ return [] ≡⟨⟩
para ϕ (wrap P xs) ≡⟨⟩
ϕ (cmap (parac ϕ) (wrap P xs)) ≡⟨ ϕ≡ _ ⟩
(cmap (parac ϕ) (wrap P xs) >>= return ∘′ ϕ′) ≡˘⟨ cmap-return ϕ′ _ ⟩
cmap ϕ′ (cmap (parac ϕ) (wrap P xs)) ≡⟨⟩
cmap (ϕ′ ∘ parac ϕ) (wrap P xs) ≡⟨⟩
cmap (ϕ′ ∘ parac ϕ) (cmap (wrapc P) xs) ≡⟨⟩
cmap (ϕ′ ∘ parac ϕ ∘ wrapc P) xs ≡⟨ cong (flip cmap xs) (funExt lemma) ⟩
wrap P xs ∎
-- open import Cubical.Data.Sigma.Properties
-- ++-assoc : (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs)
-- ++-assoc {A = A} xs ys zs = elim P ψ xs
-- where
-- P : List A → Type ℓ
-- P xs′ = (xs′ ++ ys) ++ zs ≡ xs′ ++ (ys ++ zs)
-- {-# INLINE P #-}
-- ψ : (x : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A P)) → P (wrap P x)
-- ψ xs = ΣPathTransport→PathΣ _ _ ({!refl!} , {!!})
-- _>>=′_ : List A → (A → List B) → List B
-- _>>=′_ {A = A} {B = B} xs k = para ϕ xs
-- where
-- ϕ : ⟦ 𝔽 ⟧ (ℭ𝔬𝔫𝔰 A (List B)) → List B
-- ϕ xs = xs >>= λ { [] → return [] ; (x ∷ xs) → k x ++ xs }
|
{
"alphanum_fraction": 0.4658564815,
"avg_line_length": 25.7910447761,
"ext": "agda",
"hexsha": "24f306952202f0c8fb042dd98b3cb9ed35224a0b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/ListT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/ListT.agda",
"max_line_length": 86,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/ListT.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1760,
"size": 3456
}
|
-- 2014-05-27 Jesper and Andreas
postulate
A : Set
a : A → A → A
{-# BUILTIN REWRITE a #-}
-- Expected error:
-- a does not have the right type for a rewriting relation
-- because its type does not end in a sort, but in A
-- when checking the pragma BUILTIN REWRITE a
|
{
"alphanum_fraction": 0.6726618705,
"avg_line_length": 19.8571428571,
"ext": "agda",
"hexsha": "e8ad2c017da8c090af0bb396df5bc6e37c1be92c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/RewriteRelationNotSort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/RewriteRelationNotSort.agda",
"max_line_length": 59,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/RewriteRelationNotSort.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 82,
"size": 278
}
|
{-# OPTIONS --without-K --safe #-}
module Categories.NaturalTransformation where
-- all the important stuff about NaturalTransformation are defined in .Core
open import Categories.NaturalTransformation.Core public
|
{
"alphanum_fraction": 0.8055555556,
"avg_line_length": 30.8571428571,
"ext": "agda",
"hexsha": "be992cc5eb48eb6dff59088d5d59effe7eb59ad5",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/NaturalTransformation.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/NaturalTransformation.agda",
"max_line_length": 75,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 38,
"size": 216
}
|
open import Issue481PonderBase
open import Issue481PonderImportMe as as
module Issue481PonderMaster where
module M = as as as
|
{
"alphanum_fraction": 0.8372093023,
"avg_line_length": 16.125,
"ext": "agda",
"hexsha": "44dc616721a809a62dc419e7d5801c588fcc4d5d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue481PonderMaster.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue481PonderMaster.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue481PonderMaster.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 34,
"size": 129
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pullback.Properties {o ℓ e} (C : Category o ℓ e) where
open import Function using (_$_)
open import Categories.Category.Cartesian C
open import Categories.Diagram.Pullback C
open import Categories.Diagram.Equalizer C
open import Categories.Object.Product C
open import Categories.Object.Terminal C
open import Categories.Morphism.Reasoning C
private
open Category C
variable
X Y Z : Obj
f g h i : X ⇒ Y
open HomReasoning
-- pullback from a terminal object is the same as a product
module _ (t : Terminal) where
open Terminal t
pullback-⊤⇒product : Pullback (! {X}) (! {Y}) → Product X Y
pullback-⊤⇒product p = record
{ A×B = P
; π₁ = p₁
; π₂ = p₂
; ⟨_,_⟩ = λ f g → universal (!-unique₂ {f = ! ∘ f} {g = ! ∘ g})
; project₁ = p₁∘universal≈h₁
; project₂ = p₂∘universal≈h₂
; unique = λ eq eq′ → ⟺ (unique eq eq′)
}
where open Pullback p
product⇒pullback-⊤ : Product X Y → Pullback (! {X}) (! {Y})
product⇒pullback-⊤ p = record
{ p₁ = π₁
; p₂ = π₂
; isPullback = record
{ commute = !-unique₂
; universal = λ {_ f g} _ → ⟨ f , g ⟩
; unique = λ eq eq′ → ⟺ (unique eq eq′)
; p₁∘universal≈h₁ = project₁
; p₂∘universal≈h₂ = project₂
}
}
where open Product p
-- pullbacks respect _≈_
module _ (p : Pullback f g) where
open Pullback p
pullback-resp-≈ : f ≈ h → g ≈ i → Pullback h i
pullback-resp-≈ eq eq′ = record
{ p₁ = p₁
; p₂ = p₂
; isPullback = record
{ commute = ∘-resp-≈ˡ (⟺ eq) ○ commute ○ ∘-resp-≈ˡ eq′
; universal = λ eq″ → universal (∘-resp-≈ˡ eq ○ eq″ ○ ∘-resp-≈ˡ (⟺ eq′))
; unique = unique
; p₁∘universal≈h₁ = p₁∘universal≈h₁
; p₂∘universal≈h₂ = p₂∘universal≈h₂
}
}
-- Some facts about pulling back along identity
module _ (p : Pullback id f) where
open Pullback p
-- This is a more subtle way of saying that 'p₂ ≈ id', without involving heterogenous equality.
pullback-identity : universal id-comm-sym ∘ p₂ ≈ id
pullback-identity = begin
universal Basic.id-comm-sym ∘ p₂ ≈⟨ unique ( pullˡ p₁∘universal≈h₁ ) (pullˡ p₂∘universal≈h₂) ⟩
universal eq ≈⟨ universal-resp-≈ (⟺ commute ○ identityˡ) identityˡ ⟩
universal commute ≈˘⟨ Pullback.id-unique p ⟩
id ∎
where
eq : id ∘ f ∘ p₂ ≈ f ∘ id ∘ p₂
eq = begin
(id ∘ f ∘ p₂) ≈⟨ elimˡ Equiv.refl ⟩
(f ∘ p₂) ≈˘⟨ refl⟩∘⟨ identityˡ ⟩
(f ∘ id ∘ p₂) ∎
module _ (pullbacks : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g)
(cartesian : Cartesian) where
open Cartesian cartesian
pullback×cartesian⇒equalizer : Equalizer f g
pullback×cartesian⇒equalizer {f = f} {g = g} = record
{ arr = p.p₁
; equality = equality
; equalize = λ {_ h} eq → p.universal $ begin
⟨ f , g ⟩ ∘ h ≈⟨ ⟨⟩∘ ⟩
⟨ f ∘ h , g ∘ h ⟩ ≈˘⟨ ⟨⟩-cong₂ identityˡ (identityˡ ○ eq) ⟩
⟨ id ∘ f ∘ h , id ∘ f ∘ h ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ id , id ⟩ ∘ f ∘ h ∎
; universal = ⟺ p.p₁∘universal≈h₁
; unique = λ eq → p.unique (⟺ eq)
(⟺ (pullˡ eq′) ○ ⟺ (∘-resp-≈ʳ eq))
}
where p : Pullback ⟨ f , g ⟩ ⟨ id , id ⟩
p = pullbacks _ _
module p = Pullback p
eq : ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈ ⟨ p.p₂ , p.p₂ ⟩
eq = begin
⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈˘⟨ ⟨⟩∘ ⟩
⟨ f , g ⟩ ∘ p.p₁ ≈⟨ p.commute ⟩
⟨ id , id ⟩ ∘ p.p₂ ≈⟨ ⟨⟩∘ ⟩
⟨ id ∘ p.p₂ , id ∘ p.p₂ ⟩ ≈⟨ ⟨⟩-cong₂ identityˡ identityˡ ⟩
⟨ p.p₂ , p.p₂ ⟩ ∎
eq′ : f ∘ p.p₁ ≈ p.p₂
eq′ = begin
f ∘ p.p₁ ≈˘⟨ project₁ ⟩
π₁ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ refl⟩∘⟨ eq ⟩
π₁ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈⟨ project₁ ⟩
p.p₂ ∎
equality : f ∘ p.p₁ ≈ g ∘ p.p₁
equality = begin
f ∘ p.p₁ ≈⟨ eq′ ⟩
p.p₂ ≈˘⟨ project₂ ⟩
π₂ ∘ ⟨ p.p₂ , p.p₂ ⟩ ≈˘⟨ refl⟩∘⟨ eq ⟩
π₂ ∘ ⟨ f ∘ p.p₁ , g ∘ p.p₁ ⟩ ≈⟨ project₂ ⟩
g ∘ p.p₁ ∎
|
{
"alphanum_fraction": 0.4759009009,
"avg_line_length": 34.4186046512,
"ext": "agda",
"hexsha": "d67e96790e7f01ad475e01ed7a038e21f7a40ddf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bolt12/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bolt12/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bolt12/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Pullback/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1700,
"size": 4440
}
|
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst)
open import Relation.Binary
import MultiSorted.Context as MSC
import MultiSorted.AlgebraicTheory as MST
import SingleSorted.AlgebraicTheory
module MultiSorted.FromSingleSorted
(Σ : SingleSorted.AlgebraicTheory.Signature)
(𝒯 : SingleSorted.AlgebraicTheory.Theory lzero Σ)
where
module SS where
open SingleSorted.AlgebraicTheory public
open SingleSorted.AlgebraicTheory.Signature Σ public
data 𝒜 : Set where
A : 𝒜
single-sort : ∀ (X : 𝒜) → X ≡ A
single-sort A = refl
-- We have to transform the following constructions from the single sorted to the multi sorted setting
-- contexts, variables, operations, terms, equations, theory
singleSortedToMultiSortedContext : ∀ {𝓈} {Sort : Set 𝓈} (X : Sort) → SS.Context → MSC.Context Sort
singleSortedToMultiSortedContext _ SS.ctx-empty = MSC.Context.ctx-empty
singleSortedToMultiSortedContext X SS.ctx-slot = MSC.Context.ctx-slot X
singleSortedToMultiSortedContext X (SS.ctx-concat Γ Δ) =
MSC.Context.ctx-concat (singleSortedToMultiSortedContext X Γ) (singleSortedToMultiSortedContext X Δ)
multiSortedToSingleSortedContext : ∀ {𝓈} {Sort : Set 𝓈} (X : Sort) → MSC.Context Sort → SS.Context
multiSortedToSingleSortedContext X MSC.ctx-empty = SS.ctx-empty
multiSortedToSingleSortedContext X (MSC.ctx-slot x) = SS.ctx-slot
multiSortedToSingleSortedContext X (MSC.ctx-concat Γ Δ) =
SS.ctx-concat (multiSortedToSingleSortedContext X Γ) (multiSortedToSingleSortedContext X Δ)
S : MST.Signature
S = record { sort = 𝒜
; oper = SS.Signature.oper Σ
; oper-arity = λ{ f → singleSortedToMultiSortedContext A (SS.Signature.oper-arity Σ f) }
; oper-sort = λ{ f → A }
}
module MS where
open MST.Signature S public
singleSortedToMultiSortedVar : ∀ {Γ : SS.Context}
→ SS.var Γ → MS.var (singleSortedToMultiSortedContext A Γ)
singleSortedToMultiSortedVar SS.var-var = MS.var-var
singleSortedToMultiSortedVar (SS.var-inl x) = MS.var-inl (singleSortedToMultiSortedVar x)
singleSortedToMultiSortedVar (SS.var-inr x) = MS.var-inr (singleSortedToMultiSortedVar x)
coerce : ∀ {Γ : MS.Context} {X} {Y} → MS.Term Γ X → MS.Term Γ Y
coerce {Γ} {A} {A} t = subst (MS.Term Γ) refl t
argToArg : ∀ {Δ : SS.Context} → MS.arg (singleSortedToMultiSortedContext A Δ) → SS.arg Δ
argToArg {SS.ctx-slot} i = SS.var-var
argToArg {SS.ctx-concat Δ Γ} (MSC.var-inl i) = SS.var-inl (argToArg i)
argToArg {SS.ctx-concat Δ Γ} (MSC.var-inr i) = SS.var-inr (argToArg i)
singleSortedToMultiSortedTerm : ∀ {Γ : SS.Context}
→ SS.Term Γ
→ MS.Term (singleSortedToMultiSortedContext A Γ) A
singleSortedToMultiSortedTerm {Γ} (SS.tm-var x) = coerce (MS.tm-var (singleSortedToMultiSortedVar x))
singleSortedToMultiSortedTerm (SS.tm-oper f ts) = MS.tm-oper f
(λ i → coerce (singleSortedToMultiSortedTerm (ts (argToArg i))))
singleSortedToMultiSortedEquation : SS.Equation → MST.Equation S
singleSortedToMultiSortedEquation eq =
MST.make-eq
(singleSortedToMultiSortedContext A (SS.Equation.eq-ctx eq))
A
(singleSortedToMultiSortedTerm (SS.Equation.eq-lhs eq))
(singleSortedToMultiSortedTerm (SS.Equation.eq-rhs eq))
𝓣 : MST.Theory lzero S
𝓣 = record { ax = SS.Theory.ax 𝒯
; ax-eq = λ{ a → singleSortedToMultiSortedEquation (SS.Theory.ax-eq 𝒯 a)}
}
|
{
"alphanum_fraction": 0.7390279823,
"avg_line_length": 38.5795454545,
"ext": "agda",
"hexsha": "26884c7558d535ad73c67070477a53d04e86e9d1",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/MultiSorted/FromSingleSorted.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/MultiSorted/FromSingleSorted.agda",
"max_line_length": 102,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/MultiSorted/FromSingleSorted.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 1020,
"size": 3395
}
|
------------------------------------------------------------------------
-- Polymorphic and iso-recursive types
------------------------------------------------------------------------
module SystemF.Type where
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Nat using (ℕ; _+_)
open import Data.Star using (Star; ε; _◅_)
open import Data.Vec using (Vec; []; _∷_; lookup; map)
open import Relation.Binary.PropositionalEquality as PropEq
using (refl; _≡_; cong; cong₂; sym)
open PropEq.≡-Reasoning
------------------------------------------------------------------------
-- Polymorphic and iso-recursive types
infixr 7 _→'_
-- Types with up to n free type variables
data Type (n : ℕ) : Set where
var : Fin n → Type n -- type variable
_→'_ : Type n → Type n → Type n -- arrow/function type
∀' : Type (1 + n) → Type n -- universal type
μ : Type (1 + n) → Type n -- recursive type
------------------------------------------------------------------------
-- Substitutions in types
module TypeSubst where
module TypeApp {T : ℕ → Set} (l : Lift T Type) where
open Lift l hiding (var)
infixl 8 _/_
-- Apply a substitution to a type
_/_ : ∀ {m n} → Type m → Sub T m n → Type n
var x / σ = lift (lookup σ x)
(a →' b) / σ = (a / σ) →' (b / σ)
∀' a / σ = ∀' (a / σ ↑)
μ a / σ = μ (a / σ ↑)
open Application (record { _/_ = _/_ }) using (_/✶_)
-- Helper lemmas relating application of simple substitutions (_/_)
-- to application of sequences of substititions (_/✶_). These are
-- used to derive other (more general) lemmas below.
→'-/✶-↑✶ : ∀ k {m n a b} (ρs : Subs T m n) →
(a →' b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k)
→'-/✶-↑✶ k ε = refl
→'-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl
∀'-/✶-↑✶ : ∀ k {m n a} (ρs : Subs T m n) →
(∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ ρs ↑✶ (1 + k))
∀'-/✶-↑✶ k ε = refl
∀'-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (∀'-/✶-↑✶ k ρs) refl
μT-/✶-↑✶ : ∀ k {m n a} (ρs : Subs T m n) →
(μ a) /✶ ρs ↑✶ k ≡ μ (a /✶ ρs ↑✶ (1 + k))
μT-/✶-↑✶ k ε = refl
μT-/✶-↑✶ k (ρ ◅ ρs) = cong₂ _/_ (μT-/✶-↑✶ k ρs) refl
-- Defining the abstract members var and _/_ in
-- Data.Fin.Substitution.TermSubst for T = Type gives us access to a
-- number of (generic) substitution functions out-of-the-box.
typeSubst : TermSubst Type
typeSubst = record { var = var; app = TypeApp._/_ }
open TermSubst typeSubst public hiding (var)
weaken↑ : ∀ {n} → Type (1 + n) → Type (2 + n)
weaken↑ a = a / wk ↑
infix 8 _[/_]
-- Shorthand for single-variable type substitutions
_[/_] : ∀ {n} → Type (1 + n) → Type n → Type n
a [/ b ] = a / sub b
-- Substitution lemmas.
module TypeLemmas where
-- FIXME: The following lemmas are generic and should go somewhere
-- else.
module AdditionalLemmas {T} (lemmas : TermLemmas T) where
open TermLemmas lemmas
-- Weakening commutes with single-variable substitution
weaken-sub : ∀ {n} (a : T (1 + n)) (b : T n) →
weaken (a / sub b) ≡ a / wk ↑ / sub (weaken b)
weaken-sub a b = begin
weaken (a / sub b) ≡⟨ sym (/-wk′ (a / sub b)) ⟩
a / sub b / wk ≡⟨ sub-commutes a ⟩
a / wk ↑ / sub (b / wk) ≡⟨ cong (λ c → a / wk ↑ / sub c) (/-wk′ b) ⟩
a / wk ↑ / sub (weaken b) ∎
where /-wk′ : ∀ {n} (a : T n) → a / wk ≡ weaken a
/-wk′ a = /-wk {t = a}
-- Weakening commutes with reverse composition of substitutions.
map-weaken-⊙ : ∀ {m n k} (σ₁ : Sub T m n) (σ₂ : Sub T n k) →
map weaken (σ₁ ⊙ σ₂) ≡ (map weaken σ₁) ⊙ (σ₂ ↑)
map-weaken-⊙ σ₁ σ₂ = begin
map weaken (σ₁ ⊙ σ₂) ≡⟨ map-weaken ⟩
(σ₁ ⊙ σ₂) ⊙ wk ≡⟨ sym ⊙-assoc ⟩
σ₁ ⊙ (σ₂ ⊙ wk) ≡⟨ cong (λ σ₂ → σ₁ ⊙ σ₂) ⊙-wk ⟩
σ₁ ⊙ (wk ⊙ (σ₂ ↑)) ≡⟨ ⊙-assoc ⟩
(σ₁ ⊙ wk) ⊙ (σ₂ ↑) ≡⟨ cong (λ σ₁ → σ₁ ⊙ (σ₂ ↑)) (sym map-weaken) ⟩
(map weaken σ₁) ⊙ (σ₂ ↑) ∎
-- Giving concrete definitions (i.e. proofs) for the abstract members
-- (i.e. lemmas) in Data.Fin.Substitution.Lemmas.TermLemmas for T =
-- Type gives us access to a number of (generic) substitutions lemmas
-- out-of-the-box.
typeLemmas : TermLemmas Type
typeLemmas = record
{ termSubst = TypeSubst.typeSubst
; app-var = refl
; /✶-↑✶ = Lemma./✶-↑✶
}
where
module Lemma {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} where
open TypeSubst
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : ∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (var x) = hyp k x
/✶-↑✶ ρs₁ ρs₂ hyp k (a →' b) = begin
(a →' b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ TypeApp.→'-/✶-↑✶ _ k ρs₁ ⟩
(a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k)
≡⟨ cong₂ _→'_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (TypeApp.→'-/✶-↑✶ _ k ρs₂) ⟩
(a →' b) /✶₂ ρs₂ ↑✶₂ k
∎
/✶-↑✶ ρs₁ ρs₂ hyp k (∀' a) = begin
(∀' a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.∀'-/✶-↑✶ _ k ρs₁ ⟩
∀' (a /✶₁ ρs₁ ↑✶₁ (1 + k)) ≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (1 + k) a) ⟩
∀' (a /✶₂ ρs₂ ↑✶₂ (1 + k)) ≡⟨ sym (TypeApp.∀'-/✶-↑✶ _ k ρs₂) ⟩
(∀' a) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (μ a) = begin
(μ a) /✶₁ ρs₁ ↑✶₁ k ≡⟨ TypeApp.μT-/✶-↑✶ _ k ρs₁ ⟩
μ (a /✶₁ ρs₁ ↑✶₁ (1 + k)) ≡⟨ cong μ (/✶-↑✶ ρs₁ ρs₂ hyp (1 + k) a) ⟩
μ (a /✶₂ ρs₂ ↑✶₂ (1 + k)) ≡⟨ sym (TypeApp.μT-/✶-↑✶ _ k ρs₂) ⟩
(μ a) /✶₂ ρs₂ ↑✶₂ k ∎
open TermLemmas typeLemmas public hiding (var)
open TypeSubst public using (_[/_]; _/Var_; weaken↑; module Lifted)
-- The above lemma /✶-↑✶ specialized to single substitutions
/-↑⋆ : ∀ {T₁ T₂} {lift₁ : Lift T₁ Type} {lift₂ : Lift T₂ Type} →
let open Lifted lift₁ using () renaming (_↑⋆_ to _↑⋆₁_; _/_ to _/₁_)
open Lifted lift₂ using () renaming (_↑⋆_ to _↑⋆₂_; _/_ to _/₂_)
in
∀ {n k} (ρ₁ : Sub T₁ n k) (ρ₂ : Sub T₂ n k) →
(∀ i x → var x /₁ ρ₁ ↑⋆₁ i ≡ var x /₂ ρ₂ ↑⋆₂ i) →
∀ i a → a /₁ ρ₁ ↑⋆₁ i ≡ a /₂ ρ₂ ↑⋆₂ i
/-↑⋆ ρ₁ ρ₂ hyp i a = /✶-↑✶ (ρ₁ ◅ ε) (ρ₂ ◅ ε) hyp i a
open AdditionalLemmas typeLemmas public
------------------------------------------------------------------------
-- Encoding/translation of additional type operators
module TypeOperators where
open TypeLemmas hiding (id)
-- Type of the polymorphic identity
id : ∀ {n} → Type n
id = ∀' ((var zero) →' (var zero))
-- Bottom/initial/zero type
⊥ : ∀ {n} → Type n
⊥ = ∀' (var zero)
-- Top/terminal/unit type
⊤ : ∀ {n} → Type n
⊤ = id
-- Existential type
∃ : ∀ {n} → Type (1 + n) → Type n
∃ a = ∀' (∀' (weaken↑ a →' var (suc zero)) →' var zero)
infixr 7 _→ⁿ_
-- n-ary function type
_→ⁿ_ : ∀ {n k} → Vec (Type n) k → Type n → Type n
[] →ⁿ z = z
(a ∷ as) →ⁿ z = as →ⁿ a →' z
-- Record/finite tuple
rec : ∀ {n k} → Vec (Type n) k → Type n
rec [] = ⊤
rec (a ∷ as) = ∀' ((map weaken (a ∷ as) →ⁿ var zero) →' var zero)
------------------------------------------------------------------------
-- Lemmas about encoded type operators
module TypeOperatorLemmas where
open TypeOperators
open TypeLemmas hiding (_/_; id)
module TypeOperatorAppLemmas {T} (l : Lift T Type) where
open TypeSubst.TypeApp l
-- Type substitution commutes with the translation of of n-ary
-- function types
/-→ⁿ : ∀ {m n k} (as : Vec (Type m) k) (b : Type m) (σ : Sub T m n) →
(as →ⁿ b) / σ ≡ map (λ a → a / σ) as →ⁿ b / σ
/-→ⁿ [] _ _ = refl
/-→ⁿ (a ∷ as) b σ = /-→ⁿ as (a →' b) σ
-- FIXME: Write similar lemmas for the remaining type operators
private
module WeakeningLemmas where
open TypeOperatorAppLemmas TypeSubst.varLift
-- Weakening commutes with the translation of of n-ary function
-- types
weaken-→ⁿ : ∀ {n k} (as : Vec (Type n) k) (b : Type n) →
weaken (as →ⁿ b) ≡ map weaken as →ⁿ weaken b
weaken-→ⁿ as b = /-→ⁿ as b VarSubst.wk
-- FIXME: Write similar lemmas for the remaining type operators
open TypeOperatorAppLemmas TypeSubst.termLift public
open WeakeningLemmas public
|
{
"alphanum_fraction": 0.4849150387,
"avg_line_length": 36.0458333333,
"ext": "agda",
"hexsha": "9aeced51f58c66988f04db3d0485158da12f7db1",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z",
"max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sstucki/system-f-agda",
"max_forks_repo_path": "src/SystemF/Type.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sstucki/system-f-agda",
"max_issues_repo_path": "src/SystemF/Type.agda",
"max_line_length": 78,
"max_stars_count": 68,
"max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sstucki/system-f-agda",
"max_stars_repo_path": "src/SystemF/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z",
"num_tokens": 3548,
"size": 8651
}
|
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties.Universe {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Weakening as Lwk
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance as Irr
open import Definition.Typed.Properties
open import Definition.LogicalRelation.Properties.MaybeEmb
open import Definition.LogicalRelation.Properties.Escape
open import Definition.LogicalRelation.Properties.Reduction
open import Definition.LogicalRelation.Properties.Conversion
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Tools.Empty using (⊥; ⊥-elim)
import Data.Fin as Fin
import Data.Nat as Nat
Ugen : ∀ {Γ rU l} → (⊢Γ : ⊢ Γ) → Γ ⊩⟨ next l ⟩ Univ rU l ^ [ ! , next l ]
Ugen {Γ} {rU} {⁰} ⊢Γ = Uᵣ′ (Univ rU ⁰) (ι ¹) rU ⁰ emb< PE.refl ((idRed:*: (Ugenⱼ ⊢Γ)))
Ugen {Γ} {rU} {¹} ⊢Γ = Uᵣ′ (Univ rU ¹) ∞ rU ¹ ∞< PE.refl (idRed:*: (Uⱼ ⊢Γ))
U-Relevance-Level : ∀ {l ll Γ A} ([U] : Γ ⊩⟨ l ⟩U A ^ ll) → Relevance × Level
U-Relevance-Level (noemb (Uᵣ r l′ l< eq d)) = r , l′
U-Relevance-Level (emb x X) = U-Relevance-Level X
univRedTerm : ∀ {Γ r l u t ti}
→ Γ ⊢ Univ r l ⇒ u ∷ t ^ ti
→ ⊥
univRedTerm (conv d′ A≡t) = univRedTerm d′
univRed* : ∀ {Γ r l r′ l′ ti}
→ Γ ⊢ Univ r l ⇒* Univ r′ l′ ^ ti
→ (r PE.≡ r′) × (l PE.≡ l′)
univRed* (id x) = PE.refl , PE.refl
univRed* (univ x ⇨ D) = ⊥-elim (univRedTerm x)
-- Reducible terms of type U are reducible types.
univEq : ∀ {l Γ A r l′ ll′}
→ ([U] : Γ ⊩⟨ l ⟩ Univ r l′ ^ [ ! , ll′ ] )
→ Γ ⊩⟨ l ⟩ A ∷ Univ r l′ ^ [ ! , ll′ ] / [U]
→ Γ ⊩⟨ ι l′ ⟩ A ^ [ r , ι l′ ]
univEq {ι ⁰} {Γ} {A} {r} {l′} (Uᵣ (Uᵣ r₁ l′₁ () eq [[ ⊢A , ⊢B , D ]])) (Uₜ K d₁ typeK K≡K [t])
univEq {ι ¹} {Γ} {A} {r} {l′} (Uᵣ (Uᵣ r₁ ⁰ emb< eq [[ ⊢A , ⊢B , D ]])) (Uₜ K d₁ typeK K≡K [t]) =
let
⊢Γ = wf ⊢A
r≡r₁ , l′≡l′₁ = univRed* D
[t]′ : Γ ⊩⟨ ι ⁰ ⟩ A ^ [ r₁ , ι ⁰ ]
[t]′ = PE.subst (λ X → Γ ⊩⟨ _ ⟩ X ^ [ _ , _ ])
(Definition.Untyped.Properties.wk-id A) ([t] Definition.Typed.Weakening.id ⊢Γ)
in
PE.subst₂ (λ X Y → Γ ⊩⟨ ι Y ⟩ A ^ [ X , ι Y ]) (PE.sym r≡r₁) (PE.sym l′≡l′₁) [t]′
univEq {∞} {Γ} {A} {r} {l′} (Uᵣ (Uᵣ r₁ ¹ _ eq [[ ⊢A , ⊢B , D ]])) (Uₜ K d₁ typeK K≡K [t]) =
let
⊢Γ = wf ⊢A
r≡r₁ , l′≡l′₁ = univRed* D
[t]′ : Γ ⊩⟨ ι ¹ ⟩ A ^ [ r₁ , ι ¹ ]
[t]′ = PE.subst (λ X → Γ ⊩⟨ _ ⟩ X ^ [ _ , _ ])
(Definition.Untyped.Properties.wk-id A) ([t] Definition.Typed.Weakening.id ⊢Γ)
in
PE.subst₂ (λ X Y → Γ ⊩⟨ ι Y ⟩ A ^ [ X , ι Y ]) (PE.sym r≡r₁) (PE.sym l′≡l′₁) [t]′
univEq (ℕᵣ [[ ⊢A , ⊢B , univ x ⇨ D ]]) [A] = ⊥-elim (univRedTerm x)
univEq (ne′ K [[ ⊢A , ⊢B , univ x ⇨ D ]] neK K≡K) [A] = ⊥-elim (univRedTerm x)
univEq (Πᵣ′ rF lF lG _ _ F G [[ ⊢A , ⊢B , univ x ⇨ D ]] ⊢F ⊢G A≡A [F] [G] G-ext) [A] =
⊥-elim (univRedTerm x)
univEq {ι ¹} (emb _ [U]′) [A] = univEq [U]′ [A]
univEq {∞} (emb _ [U]′) [A] = univEq [U]′ [A]
univEqGen : ∀ {Γ UA A l′}
→ ([U] : ((next l′) LogRel.⊩¹U logRelRec (next l′) ^ Γ) UA (next l′))
→ Γ ⊩⟨ next l′ ⟩ A ∷ UA ^ [ ! , next l′ ] / Uᵣ [U]
→ Γ ⊩⟨ ι l′ ⟩ A ^ [ LogRel._⊩¹U_^_.r [U] , ι l′ ]
univEqGen {Γ} {UA} {A} {l′} [UA] [A] =
let (Uᵣ r l′₁ l< e [[ ⊢A , ⊢B , D ]]) = [UA]
[U] = Ugen {l = l′} (wf ⊢A)
[UA]' , [UAeq] = redSubst* (PE.subst (λ X → Γ ⊢ UA ⇒* Univ r X ^ [ ! , next X ]) (next-inj e) D) [U]
in univEq [U] (convTerm₁ {t = A} [UA]' [U] [UAeq] (irrelevanceTerm (Uᵣ [UA]) [UA]' [A]))
univ⊩ : ∀ {A Γ rU lU lU' l}
([U] : Γ ⊩⟨ l ⟩ Univ rU lU ^ [ ! , lU' ])
→ Γ ⊩⟨ l ⟩ A ∷ Univ rU lU ^ [ ! , lU' ] / [U]
→ Γ ⊩⟨ ι lU ⟩ A ^ [ rU , ι lU ]
univ⊩ {lU = lU} {l = l} [U] [A] = irrelevance-≤ (≡is≤ PE.refl) (univEq [U] [A])
univEqTerm : ∀ {Γ A t r l′ ll′}
→ ([U] : Γ ⊩⟨ ∞ ⟩ Univ r l′ ^ [ ! , ll′ ] )
→ ([A] : Γ ⊩⟨ ∞ ⟩ A ∷ Univ r l′ ^ [ ! , ll′ ] / [U])
→ Γ ⊩⟨ ∞ ⟩ t ∷ A ^ [ r , ι l′ ] / maybeEmb (univ⊩ [U] [A])
→ Γ ⊩⟨ ι l′ ⟩ t ∷ A ^ [ r , ι l′ ] / univEq [U] [A]
univEqTerm {Γ} {A} {t} {r} {⁰} [U] [A] [t] = [t]
univEqTerm {Γ} {A} {t} {r} {¹} [U] [A] [t] = [t]
-- Helper function for reducible term equality of type U for specific type derivations.
univEqEq′ : ∀ {l ll l′ Γ X A B} ([U] : Γ ⊩⟨ l ⟩U X ^ ll) →
let r = toTypeInfo (U-Relevance-Level [U])
in
([A] : Γ ⊩⟨ l′ ⟩ A ^ r)
→ Γ ⊩⟨ l ⟩ A ≡ B ∷ X ^ [ ! , ll ] / U-intr [U]
→ Γ ⊩⟨ l′ ⟩ A ≡ B ^ r / [A]
univEqEq′ {l} {ll} {l″} {Γ} {X} {A} {B} (noemb (Uᵣ r l′ l< eq [[ ⊢A , ⊢B , D ]])) [A]
(Uₜ₌ (Uₜ K d typeK K≡K [t]) [u] A≡B [t≡u]) =
let ⊢Γ = wf ⊢A in
irrelevanceEq″ (Definition.Untyped.Properties.wk-id A) (Definition.Untyped.Properties.wk-id B) PE.refl PE.refl
(emb l< ([t] Definition.Typed.Weakening.id ⊢Γ)) [A]
([t≡u] Definition.Typed.Weakening.id ⊢Γ)
univEqEq′ (emb emb< X) [A] [A≡B] = univEqEq′ X [A] [A≡B]
univEqEq′ (emb ∞< X) [A] [A≡B] = univEqEq′ X [A] [A≡B]
UnivNotℕ : ∀ {Γ r ll} → Γ ⊩ℕ Univ r ll → ⊥
UnivNotℕ {ll = ⁰} [[ ⊢A , ⊢B , D ]] = U≢ℕ (whrDet* (id (univ (univ 0<1 (wf ⊢A))) , Uₙ) (D , ℕₙ))
UnivNotℕ {ll = ¹} [[ ⊢A , ⊢B , D ]] = U≢ℕ (whrDet* (id (Uⱼ (wf ⊢A)) , Uₙ) (D , ℕₙ))
UnivNotΠ : ∀ {Γ r r' lΠ l ll} → (l LogRel.⊩¹Π logRelRec l ^[ Γ , Univ r ll ]) r' lΠ → ⊥
UnivNotΠ {ll = ⁰} (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = U≢Π (whrDet* (id (univ (univ 0<1 (wf ⊢F))) , Uₙ) (red D , Πₙ))
UnivNotΠ {ll = ¹} (Πᵣ rF lF lG _ _ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = U≢Π (whrDet* (id (Uⱼ (wf ⊢F)) , Uₙ) (red D , Πₙ))
U-Relevance-Level-eq : ∀ {l Γ r ll ll'} ([U] : Γ ⊩⟨ l ⟩ Univ r ll ^ [ ! , ll' ]) → U-Relevance-Level (U-elim [U]) PE.≡ (r , ll)
U-Relevance-Level-eq {ll = ⁰} (Uᵣ (Uᵣ r ⁰ l< eq d)) = ×-eq (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (univ (univ 0<1 (wf (_⊢_:⇒*:_^_.⊢A d)))) , Uₙ)))
U-Relevance-Level-eq {ll = ¹} (Uᵣ (Uᵣ r ⁰ l< eq d)) = let _ , X = (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (Uⱼ (wf (_⊢_:⇒*:_^_.⊢A d))) , Uₙ))) in ⊥-elim (⁰≢¹ X)
U-Relevance-Level-eq {ll = ¹} (Uᵣ (Uᵣ r ¹ l< eq d)) = ×-eq (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (Uⱼ (wf (_⊢_:⇒*:_^_.⊢A d))) , Uₙ)))
U-Relevance-Level-eq (ℕᵣ X) = ⊥-elim (UnivNotℕ X)
U-Relevance-Level-eq (ne′ K D neK K≡K) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
U-Relevance-Level-eq (Πᵣ X) = ⊥-elim (UnivNotΠ X)
U-Relevance-Level-eq {ι ¹} (emb l< (ℕᵣ X)) = ⊥-elim (UnivNotℕ X)
U-Relevance-Level-eq {ι ¹} (emb l< (ne′ K D neK K≡K)) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
U-Relevance-Level-eq {ι ¹} (emb l< (Πᵣ X)) = ⊥-elim (UnivNotΠ X)
U-Relevance-Level-eq {∞} {ll = ⁰} (emb ∞< (Uᵣ (Uᵣ r ⁰ l<₁ eq d))) = ×-eq (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (univ (univ 0<1 (wf (_⊢_:⇒*:_^_.⊢A d)))) , Uₙ)))
U-Relevance-Level-eq {∞} {ll = ¹} (emb ∞< (Uᵣ (Uᵣ r ⁰ l<₁ eq d))) = let _ , X = (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (Uⱼ (wf (_⊢_:⇒*:_^_.⊢A d))) , Uₙ))) in ⊥-elim (⁰≢¹ X)
U-Relevance-Level-eq {∞} {ll = ¹} (emb ∞< (Uᵣ (Uᵣ r ¹ l<₁ eq d))) = ×-eq (Univ-PE-injectivity (whrDet* (red d , Uₙ) (id (Uⱼ (wf (_⊢_:⇒*:_^_.⊢A d))) , Uₙ)))
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (ℕᵣ X)) = ⊥-elim (UnivNotℕ X)
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (ne′ K D neK K≡K)) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (Πᵣ x)) = ⊥-elim (UnivNotΠ x)
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (emb {l′ = ι ⁰} emb< (ℕᵣ x))) = ⊥-elim (UnivNotℕ x)
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (emb {l′ = ι ⁰} emb< (ne′ K D neK K≡K))) = ⊥-elim (U≢ne neK (whnfRed* (red D) Uₙ))
U-Relevance-Level-eq {∞} (emb {l′ = ι ¹} l< (emb {l′ = ι ⁰} emb< (Πᵣ x))) = ⊥-elim (UnivNotΠ x)
helper-eq : ∀ {l Γ A B r r'} {[A] : Γ ⊩⟨ l ⟩ A ^ r} (e : r PE.≡ r' ) → Γ ⊩⟨ l ⟩ A ≡ B ^ r' / (PE.subst _ e [A]) → Γ ⊩⟨ l ⟩ A ≡ B ^ r / [A]
helper-eq PE.refl X = X
-- Reducible term equality of type U is reducible type equality.
univEqEq : ∀ {l l′ Γ A B r ll} ([U] : Γ ⊩⟨ l ⟩ Univ r ll ^ [ ! , next ll ]) ([A] : Γ ⊩⟨ l′ ⟩ A ^ [ r , ι ll ])
→ Γ ⊩⟨ l ⟩ A ≡ B ∷ Univ r ll ^ [ ! , next ll ] / [U]
→ Γ ⊩⟨ l′ ⟩ A ≡ B ^ [ r , ι ll ] / [A]
univEqEq {l} {l′} {Γ} {A} {B} {r} {ll} [U] [A] [A≡B] =
let [A≡B]′ = irrelevanceEqTerm [U] (U-intr (U-elim [U])) [A≡B]
X = univEqEq′ (U-elim [U]) (PE.subst (λ r → Γ ⊩⟨ l′ ⟩ A ^ r) (PE.sym (PE.cong toTypeInfo (U-Relevance-Level-eq [U]))) [A]) [A≡B]′
in helper-eq (PE.sym (PE.cong toTypeInfo (U-Relevance-Level-eq [U]))) X
univEqEqTerm : ∀ {Γ A t u r l′ ll}
→ ([U] : Γ ⊩⟨ ∞ ⟩ Univ r l′ ^ [ ! , ll ] )
→ ([A] : Γ ⊩⟨ ∞ ⟩ A ∷ Univ r l′ ^ [ ! , ll ] / [U])
→ Γ ⊩⟨ ∞ ⟩ t ∷ A ^ [ r , ι l′ ] / maybeEmb (univ⊩ [U] [A])
→ Γ ⊩⟨ ∞ ⟩ t ≡ u ∷ A ^ [ r , ι l′ ] / maybeEmb (univ⊩ [U] [A])
→ Γ ⊩⟨ ι l′ ⟩ t ≡ u ∷ A ^ [ r , ι l′ ] / univEq [U] [A]
univEqEqTerm {Γ} {A} {t} {u} {r} {⁰} [U] [A] [t] [t≡u] = [t≡u]
univEqEqTerm {Γ} {A} {t} {u} {r} {¹} [U] [A] [t] [t≡u] = [t≡u]
un-univEq : ∀ {l Γ A r }
→ ([A] : Γ ⊩⟨ ι l ⟩ A ^ [ r , ι l ])
→ let [U] : Γ ⊩⟨ next l ⟩ Univ r l ^ [ ! , next l ]
[U] = Ugen (wf (escape [A]))
in Γ ⊩⟨ next l ⟩ A ∷ Univ r l ^ [ ! , next l ] / [U]
un-univEq {⁰} {Γ} {A} {.!} (ℕᵣ [[ ⊢A , ⊢ℕ , D ]] ) = Uₜ ℕ (un-univ:⇒*: [[ ⊢A , ⊢ℕ , D ]]) ℕₙ (≅ₜ-ℕrefl (wf ⊢A)) (λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (ℕᵣ [[ ⊢A , ⊢ℕ , D ]] ))
un-univEq {⁰} {Γ} {A} {.%} (Emptyᵣ [[ ⊢A , ⊢Empty , D ]]) = Uₜ (Empty ⁰) (un-univ:⇒*: [[ ⊢A , ⊢Empty , D ]]) Emptyₙ (≅ₜ-Emptyrefl (wf ⊢A))
(λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Emptyᵣ [[ ⊢A , ⊢Empty , D ]] ))
un-univEq {⁰} {Γ} {A} {r} (ne′ K D neK K≡K) = Uₜ K (un-univ:⇒*: D) (ne neK) (~-to-≅ₜ K≡K) (λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (ne′ K D neK K≡K))
un-univEq {⁰} {Γ} {A} {r} (Πᵣ′ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
Uₜ (Π F ^ rF ° ⁰ ▹ G ° ⁰ ° ⁰) (un-univ:⇒*: D) Πₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Πᵣ′ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)
un-univEq {⁰} {Γ} {A} {.%} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
Uₜ (∃ F ▹ G) (un-univ:⇒*: D) ∃ₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
un-univEq {¹} {Γ} {A} {.!} (Uᵣ (Uᵣ r .⁰ emb< eq [[ ⊢A , ⊢B , D ]])) = Uₜ (Univ r ⁰) (un-univ:⇒*: [[ ⊢A , ⊢B , D ]]) Uₙ (≅-U⁰refl (wf ⊢A))
(λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Uᵣ (Uᵣ r ⁰ emb< eq [[ ⊢A , ⊢B , D ]] )))
un-univEq {¹} {Γ} {A} {.%} (Emptyᵣ [[ ⊢A , ⊢Empty , D ]]) = Uₜ (Empty ¹) (un-univ:⇒*: [[ ⊢A , ⊢Empty , D ]]) Emptyₙ (≅ₜ-Emptyrefl (wf ⊢A))
(λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Emptyᵣ [[ ⊢A , ⊢Empty , D ]] ))
un-univEq {¹} {Γ} {A} {r} (ne′ K D neK K≡K) = Uₜ K (un-univ:⇒*: D) (ne neK) (~-to-≅ₜ K≡K) (λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (ne′ K D neK K≡K))
un-univEq {¹} {Γ} {A} {r} (Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
Uₜ (Π F ^ rF ° lF ▹ G ° lG ° ¹ ) (un-univ:⇒*: D) Πₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
un-univEq {¹} {Γ} {A} {.%} (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
Uₜ (∃ F ▹ G) (un-univ:⇒*: D) ∃ₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
un-univEq {¹} {Γ} {A} {.%} (emb emb< (Emptyᵣ [[ ⊢A , ⊢Empty , D ]])) = Uₜ (Empty ¹) (un-univ:⇒*: [[ ⊢A , ⊢Empty , D ]]) Emptyₙ (≅ₜ-Emptyrefl (wf ⊢A))
(λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (Emptyᵣ [[ ⊢A , ⊢Empty , D ]] ))
un-univEq {¹} {Γ} {A} {r} (emb emb< (ne′ K D neK K≡K)) = Uₜ K (un-univ:⇒*: D) (ne neK) (~-to-≅ₜ K≡K) (λ [ρ] ⊢Δ → Lwk.wk [ρ] ⊢Δ (ne′ K D neK K≡K))
un-univEq {¹} {Γ} {A} {r} (emb emb< (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) =
Uₜ (Π F ^ rF ° lF ▹ G ° lG ° ¹) (un-univ:⇒*: D) Πₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → let X = Lwk.wk [ρ] ⊢Δ (Πᵣ′ rF lF lG lF≤ lG≤ F G D ⊢F ⊢G A≡A [F] [G] G-ext) in maybeEmb′ (<is≤ 0<1) X
un-univEq {¹} {Γ} {A} {.%} (emb emb< (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)) =
Uₜ (∃ F ▹ G) (un-univ:⇒*: D) ∃ₙ (≅-un-univ A≡A) λ [ρ] ⊢Δ → let X = Lwk.wk [ρ] ⊢Δ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) in maybeEmb′ (<is≤ 0<1) X
un-univEqEq-Shape : ∀ {l Γ A B r }
([A] : Γ ⊩⟨ ι l ⟩ A ^ [ r , ι l ]) ([B] : Γ ⊩⟨ ι l ⟩ B ^ [ r , ι l ])
(ShapeA : ShapeView Γ (ι l) (ι l) A B [ r , ι l ] [ r , ι l ] [A] [B])
([A≡B] : Γ ⊩⟨ ι l ⟩ A ≡ B ^ [ r , ι l ] / [A])
→ let [U] : Γ ⊩⟨ next l ⟩ Univ r l ^ [ ! , next l ]
[U] = Ugen (wf (escape [A]))
in Γ ⊩⟨ next l ⟩ A ≡ B ∷ Univ r l ^ [ ! , next l ] / [U]
un-univEqEq-Shape {⁰} {Γ} {A} {B} {.!} _ _ (ℕᵥ [[ ⊢A , ⊢ℕ , D ]] ℕB) [A≡B] =
let [A] = ℕᵣ [[ ⊢A , ⊢ℕ , D ]]
[B] = ℕᵣ [[ redFirst* [A≡B] , ⊢ℕ , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ⁰} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-ℕrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {⁰} {Γ} {A} {B} {.%} _ _ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ⁰} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {⁰} {Γ} {A} {B} {r} _ _ (ne (ne K D neK K≡K) neB) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ⁰} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {⁰} {Γ} {A} {B} {r} _ _ (Πᵥ (Πᵣ rF .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' .⁰ .⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' ⁰ ⁰ (≡is≤ PE.refl) (≡is≤ PE.refl) F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , _ , G≡G , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ⁰} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° _ ≅ Π F' ^ rF' ° ⁰ ▹ X ° ⁰ ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° _ ≅ Π X ^ rF' ° ⁰ ▹ G′ ° ⁰ ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° ⁰ ▹ G ° ⁰ ° _ ≅ Π F′ ^ X ° ⁰ ▹ G′ ° ⁰ ° _ ^ _ ) rF≡rF A≡B)))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {⁰} {Γ} {A} {B} {.%} _ _ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ⁰} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.!} _ _ (Uᵥ (Uᵣ r .⁰ emb< eq d) (Uᵣ r₁ .⁰ emb< eq₁ d₁)) [A≡B] =
let [A] = Uᵣ (Uᵣ r ⁰ emb< eq d)
[B] = Uᵣ (Uᵣ r₁ ⁰ emb< eq₁ d₁)
[[ ⊢A , _ , _ ]] = d
r≡r , _ = Univ-PE-injectivity (whrDet* (red d₁ , Whnf.Uₙ) ([A≡B] , Whnf.Uₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(PE.subst (λ X → _ ⊢ Univ r ⁰ ≅ Univ X ⁰ ∷ U _ ^ _ ) (PE.sym r≡r) (≅-U⁰refl (wf ⊢A))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (ne (ne K D neK K≡K) neB) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (Πᵥ (Πᵣ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , lF≡lF , G≡G , lG≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F' ^ rF' ° lF' ▹ X ° lG' ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π X ^ rF' ° lF' ▹ G′ ° lG' ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° lF' ▹ G′ ° X ° _ ^ _ ) lG≡lG
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° X ▹ G′ ° lG ° _ ^ _ ) lF≡lF
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ X ° lF ▹ G′ ° lG ° _ ^ _ ) rF≡rF A≡B)))))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb⁰¹ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB)) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb⁰¹ (ne (ne K D neK K≡K) neB)) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb⁰¹ (Πᵥ (Πᵣ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext')))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , lF≡lF , G≡G , lG≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F' ^ rF' ° lF' ▹ X ° lG' ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π X ^ rF' ° lF' ▹ G′ ° lG' ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° lF' ▹ G′ ° X ° _ ^ _ ) lG≡lG
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° X ▹ G′ ° lG ° _ ^ _ ) lF≡lF
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ X ° lF ▹ G′ ° lG ° _ ^ _ ) rF≡rF A≡B)))))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb⁰¹ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext')))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb⁰¹ (emb¹⁰ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB))) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb⁰¹ (emb¹⁰ (ne (ne K D neK K≡K) neB))) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb⁰¹ (emb¹⁰ (Πᵥ (Πᵣ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , lF≡lF , G≡G , lG≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F' ^ rF' ° lF' ▹ X ° lG' ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π X ^ rF' ° lF' ▹ G′ ° lG' ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° lF' ▹ G′ ° X ° _ ^ _ ) lG≡lG
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° X ▹ G′ ° lG ° _ ^ _ ) lF≡lF
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ X ° lF ▹ G′ ° lG ° _ ^ _ ) rF≡rF A≡B)))))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb⁰¹ (emb¹⁰ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb¹⁰ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB)) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb¹⁰ (ne (ne K D neK K≡K) neB)) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb¹⁰ (Πᵥ (Πᵣ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext')))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , lF≡lF , G≡G , lG≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq [A] ) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F' ^ rF' ° lF' ▹ X ° lG' ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π X ^ rF' ° lF' ▹ G′ ° lG' ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° lF' ▹ G′ ° X ° _ ^ _ ) lG≡lG
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° X ▹ G′ ° lG ° _ ^ _ ) lF≡lF
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ X ° lF ▹ G′ ° lG ° _ ^ _ ) rF≡rF A≡B)))))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb¹⁰ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext')))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb¹⁰ (emb⁰¹ (Emptyᵥ [[ ⊢A , ⊢Empty , D ]] EmptyB))) [A≡B] =
let [A] = Emptyᵣ [[ ⊢A , ⊢Empty , D ]]
[B] = Emptyᵣ [[ redFirst* [A≡B] , ⊢Empty , [A≡B] ]]
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(≅ₜ-Emptyrefl (wf ⊢A)) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb¹⁰ (emb⁰¹ (ne (ne K D neK K≡K) neB))) (ne₌ M D′ neM K≡M) =
let [A] = ne′ K D neK K≡K
[B] = ne′ M D′ neM (~-trans (~-sym K≡M) K≡M)
[A≡B] = ne₌ M D′ neM K≡M
in Uₜ₌ (un-univEq [A]) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq [B]))
(~-to-≅ₜ K≡M) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {r} _ _ (emb¹⁰ (emb⁰¹ (Πᵥ (Πᵣ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πᵣ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))))
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = Πᵣ′ rF lF lG lF< lG< F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = Πᵣ′ rF' lF' lG' lF<' lG<' F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , rF≡rF , lF≡lF , G≡G , lG≡lG , _ = Π-PE-injectivity (whrDet* (D′ , Whnf.Πₙ) (red D' , Whnf.Πₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F' ^ rF' ° lF' ▹ X ° lG' ° _ ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π X ^ rF' ° lF' ▹ G′ ° lG' ° _ ^ _ ) F≡F
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° lF' ▹ G′ ° X ° _ ^ _ ) lG≡lG
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ rF' ° X ▹ G′ ° lG ° _ ^ _ ) lF≡lF
(PE.subst (λ X → _ ⊢ Π F ^ rF ° lF ▹ G ° lG ° _ ≅ Π F′ ^ X ° lF ▹ G′ ° lG ° _ ^ _ ) rF≡rF A≡B)))))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq-Shape {¹} {Γ} {A} {B} {.%} _ _ (emb¹⁰ (emb⁰¹ (∃ᵥ (∃ᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(∃ᵣ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'))))
(∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
let [A] = ∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
[B] = ∃ᵣ′ F' G' D' ⊢F' ⊢G' A≡A' [F'] [G'] G-ext'
[A≡B] = ∃₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]
F≡F , G≡G = ∃-PE-injectivity (whrDet* (D′ , Whnf.∃ₙ) (red D' , Whnf.∃ₙ))
in Uₜ₌ (un-univEq (maybeEmb′ (<is≤ 0<1) [A])) (irrelevanceTerm {l = next ¹} (Ugen (wf (escape [B]))) (Ugen (wf (escape [A]))) (un-univEq (maybeEmb′ (<is≤ 0<1) [B])))
(≅-un-univ (
PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ F' ▹ X ^ _ ) G≡G
(PE.subst (λ X → _ ⊢ ∃ F ▹ G ≅ ∃ X ▹ G′ ^ _ ) F≡F A≡B))) λ [ρ] ⊢Δ → Lwk.wkEq [ρ] ⊢Δ [A] [A≡B]
un-univEqEq : ∀ {l Γ A B r }
([A] : Γ ⊩⟨ ι l ⟩ A ^ [ r , ι l ]) ([B] : Γ ⊩⟨ ι l ⟩ B ^ [ r , ι l ])
([A≡B] : Γ ⊩⟨ ι l ⟩ A ≡ B ^ [ r , ι l ] / [A])
→ let [U] : Γ ⊩⟨ next l ⟩ Univ r l ^ [ ! , next l ]
[U] = Ugen (wf (escape [A]))
in Γ ⊩⟨ next l ⟩ A ≡ B ∷ Univ r l ^ [ ! , next l ] / [U]
un-univEqEq [A] [B] [A≡B] = un-univEqEq-Shape [A] [B] (goodCases [A] [B] [A≡B]) [A≡B]
|
{
"alphanum_fraction": 0.4217802184,
"avg_line_length": 70.7042889391,
"ext": "agda",
"hexsha": "da1c9a96048c149649b5d1780cf85172a447e9df",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties/Universe.agda",
"max_line_length": 180,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties/Universe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 17811,
"size": 31322
}
|
-- Products and Cartesian categories
module CategoryTheory.BCCCs.Cartesian where
open import CategoryTheory.Categories
open import Relation.Binary using (IsEquivalence)
module _ {n} (ℂ : Category n) where
open Category ℂ
-- Terminal object in a category
record TerminalObj : Set (lsuc n) where
field
-- | Data
-- The terminal object
⊤ : obj
-- Canonical morphism
! : {A : obj} -> (A ~> ⊤)
-- | Laws
-- Need to show that the canonical morphism ! is unique
!-unique : {A : obj} -> (m : A ~> ⊤)
-> m ≈ !
-- Product of two objects
-- Based on github.com/copumpkin/categories
record Product (A B : obj) : Set (lsuc n) where
infix 10 ⟨_,_⟩
field
-- | Data
-- Product of A and B
A⊗B : obj
-- First projection
π₁ : A⊗B ~> A
-- Second projection
π₂ : A⊗B ~> B
-- Canonical mediator
⟨_,_⟩ : ∀{P} -> (P ~> A) -> (P ~> B) -> (P ~> A⊗B)
-- | Laws
-- ⟨_,_⟩ expresses that given another candidate product C
-- and candidate projections to A and B there is a morphism
-- from P to A⊗B. We need to check that this mediator makes
-- the product diagram commute and is unique.
π₁-comm : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B}
-> π₁ ∘ ⟨ p₁ , p₂ ⟩ ≈ p₁
π₂-comm : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B}
-> π₂ ∘ ⟨ p₁ , p₂ ⟩ ≈ p₂
⊗-unique : ∀{P} -> {p₁ : P ~> A} {p₂ : P ~> B} {m : P ~> A⊗B}
-> π₁ ∘ m ≈ p₁ -> π₂ ∘ m ≈ p₂ -> ⟨ p₁ , p₂ ⟩ ≈ m
-- η-expansion of function pairs (via morphisms)
⊗-η-exp : ∀{P} -> {m : P ~> A⊗B}
-> ⟨ π₁ ∘ m , π₂ ∘ m ⟩ ≈ m
⊗-η-exp = ⊗-unique r≈ r≈
-- Pairing of projection functions is the identity
⊗-η-id : ⟨ π₁ , π₂ ⟩ ≈ id
⊗-η-id = ⊗-unique id-right id-right
-- Congruence over function pairing
⟨,⟩-cong : ∀{P} -> {p₁ q₁ : P ~> A} {p₂ q₂ : P ~> B}
-> p₁ ≈ q₁ -> p₂ ≈ q₂
-> ⟨ p₁ , p₂ ⟩ ≈ ⟨ q₁ , q₂ ⟩
⟨,⟩-cong pr1 pr2 = ⊗-unique (π₁-comm ≈> pr1 [sym]) (π₂-comm ≈> pr2 [sym])
⟨,⟩-distrib : ∀{P Q} -> {h : P ~> Q} {f : Q ~> A} {g : Q ~> B}
-> ⟨ f , g ⟩ ∘ h ≈ ⟨ f ∘ h , g ∘ h ⟩
⟨,⟩-distrib = ⊗-unique (∘-assoc [sym] ≈> ≈-cong-left π₁-comm)
(∘-assoc [sym] ≈> ≈-cong-left π₂-comm) [sym]
-- Type class for Cartesian categories
record Cartesian {n} (ℂ : Category n) : Set (lsuc n) where
open Category ℂ
field
-- | Data
-- Terminal object
term : TerminalObj ℂ
-- Binary products for all pairs of objects
prod : ∀(A B : obj) -> Product ℂ A B
open TerminalObj term public
open module P {A} {B} = Product (prod A B) public
-- Shorthand for sum object
infixl 25 _⊗_
_⊗_ : (A B : obj) -> obj
A ⊗ B = A⊗B {A} {B}
-- Parallel product of morphisms
infixl 65 _*_
_*_ : {A B P Q : obj} -> (A ~> P) -> (B ~> Q)
-> (A ⊗ B ~> P ⊗ Q)
_*_ {A} {B} {P} {Q} f g = ⟨ f ∘ π₁ , g ∘ π₂ ⟩
-- Parallel product with an idempotent morphism distributes over ∘
*-idemp-dist-∘ : {A B C D : obj}{g : B ~> C}{f : A ~> B}{h : D ~> D}
-> h ∘ h ≈ h
-> g * h ∘ f * h ≈ (g ∘ f) * h
*-idemp-dist-∘ {g = g}{f}{h} idemp = ⊗-unique u₁ u₂ [sym]
where
u₁ : π₁ ∘ (g * h ∘ f * h) ≈ (g ∘ f) ∘ π₁
u₁ = ∘-assoc [sym] ≈> ≈-cong-left π₁-comm
≈> ∘-assoc ≈> ≈-cong-right π₁-comm ≈> ∘-assoc [sym]
u₂ : π₂ ∘ (g * h ∘ f * h) ≈ h ∘ π₂
u₂ = ∘-assoc [sym] ≈> ≈-cong-left π₂-comm
≈> ∘-assoc ≈> ≈-cong-right π₂-comm
≈> ∘-assoc [sym] ≈> ≈-cong-left idemp
-- Parallel product with an idempotent morphism distributes over ∘
*-id-dist-∘ : {A B C : obj}{g : B ~> C}{f : A ~> B}
-> (_*_ {B = B} g id) ∘ f * id ≈ (g ∘ f) * id
*-id-dist-∘ = *-idemp-dist-∘ id-right
-- Commutativity of product
comm : {A B : obj} -> A ⊗ B ~> B ⊗ A
comm {A}{B} = ⟨ π₂ , π₁ ⟩
-- Associativity of product
assoc-left : {A B C : obj} -> A ⊗ (B ⊗ C) ~> (A ⊗ B) ⊗ C
assoc-left = ⟨ ⟨ π₁ , (π₁ ∘ π₂) ⟩ , π₂ ∘ π₂ ⟩
assoc-right : {A B C : obj} -> (A ⊗ B) ⊗ C ~> A ⊗ (B ⊗ C)
assoc-right = ⟨ π₁ ∘ π₁ , ⟨ (π₂ ∘ π₁) , π₂ ⟩ ⟩
-- Left and right unit for product
unit-left : {A : obj} -> ⊤ ⊗ A ~> A
unit-left = π₂
unit-right : {A : obj} -> A ⊗ ⊤ ~> A
unit-right = π₁
-- The terminal object is the unit for product
⊤-left-cancel : ∀{A} -> ⊤ ⊗ A <~> A
⊤-left-cancel {A} = record
{ iso~> = π₂
; iso<~ = ⟨ ! , id ⟩
; iso-id₁ = iso-id₁-⊤
; iso-id₂ = π₂-comm
}
where
iso-id₁-⊤ : ⟨ ! , id ⟩ ∘ π₂ ≈ id
iso-id₁-⊤ =
begin
⟨ ! , id ⟩ ∘ π₂
≈⟨ ⟨,⟩-distrib ⟩
⟨ ! ∘ π₂ , id ∘ π₂ ⟩
≈⟨ ⟨,⟩-cong r≈ id-left ⟩
⟨ ! ∘ π₂ , π₂ ⟩
≈⟨ ⟨,⟩-cong (!-unique (! ∘ π₂)) r≈ ⟩
⟨ ! , π₂ ⟩
≈⟨ ⟨,⟩-cong ((!-unique π₁) [sym]) r≈ ⟩
⟨ π₁ , π₂ ⟩
≈⟨ ⊗-η-id ⟩
id
∎
⊤-right-cancel : ∀{A} -> A ⊗ ⊤ <~> A
⊤-right-cancel {A} = record
{ iso~> = π₁
; iso<~ = ⟨ id , ! ⟩
; iso-id₁ = iso-id₁-⊤
; iso-id₂ = π₁-comm
}
where
iso-id₁-⊤ : ⟨ id , ! ⟩ ∘ π₁ ≈ id
iso-id₁-⊤ =
begin
⟨ id , ! ⟩ ∘ π₁
≈⟨ ⟨,⟩-distrib ⟩
⟨ id ∘ π₁ , ! ∘ π₁ ⟩
≈⟨ ⟨,⟩-cong id-left r≈ ⟩
⟨ π₁ , ! ∘ π₁ ⟩
≈⟨ ⟨,⟩-cong r≈ (!-unique (! ∘ π₁)) ⟩
⟨ π₁ , ! ⟩
≈⟨ ⟨,⟩-cong r≈ ((!-unique π₂) [sym]) ⟩
⟨ π₁ , π₂ ⟩
≈⟨ ⊗-η-id ⟩
id
∎
|
{
"alphanum_fraction": 0.4014913007,
"avg_line_length": 32.7989130435,
"ext": "agda",
"hexsha": "1de94c62b949743b2b972fe536cbbbbfe82fc982",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/CategoryTheory/BCCCs/Cartesian.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/CategoryTheory/BCCCs/Cartesian.agda",
"max_line_length": 81,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/CategoryTheory/BCCCs/Cartesian.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 2333,
"size": 6035
}
|
module Issue309b where
data D : Set where
d : D → D
syntax d x = f
g : D → D
g (d x) = f
|
{
"alphanum_fraction": 0.5531914894,
"avg_line_length": 9.4,
"ext": "agda",
"hexsha": "34ad8d8792d936a15386732c37502f9d635be633",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue309b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue309b.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue309b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 39,
"size": 94
}
|
module TerminationListInsertionNaive where
data List (A : Set) : Set where
[] : List A
_::_ : A -> List A -> List A
infixr 50 _::_
-- non-deterministic choice
postulate
_⊕_ : {A : Set} -> A -> A -> A
infixl 10 _⊕_
-- a funny formulation of insert
-- insert (a :: l) inserts a into l
--
-- this example cannot be handled with subpatterns
-- it is done with structured orders
-- could also be done with sized types
insert : {A : Set} -> List A -> List A
insert [] = []
insert (a :: []) = a :: []
insert (a :: b :: bs) = a :: b :: bs ⊕ -- case a <= b
b :: insert (a :: bs) -- case a > b
-- list flattening
-- termination using structured orders
flat : {A : Set} -> List (List A) -> List A
flat [] = []
flat ([] :: ll) = flat ll
flat ((x :: l) :: ll) = x :: flat (l :: ll)
{- generates two recursive calls with the following call matrices
[] :: ll (x :: l) ll
ll < l < .
ll . =
during composition, the second is collapsed to =, so the call graph is
already complete. Both matrices are idempotent and contain a strictly
decreasing argument.
It could also be done with sized types; lexicographic in (i,j)
with type
flat : {A : Set} -> (1 + Listʲ A × List^i (List^∞ A)) -> List^∞ A
-}
|
{
"alphanum_fraction": 0.5349344978,
"avg_line_length": 25.4444444444,
"ext": "agda",
"hexsha": "2e258e4904583087ad01650a12c3bdc30b499544",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/TerminationListInsertionNaive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/TerminationListInsertionNaive.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/TerminationListInsertionNaive.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 394,
"size": 1374
}
|
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Unit.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Nat
open import Cubical.Data.Unit.Base
open import Cubical.Data.Prod.Base
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Reflection.StrictEquiv
isContrUnit : isContr Unit
isContrUnit = tt , λ {tt → refl}
isPropUnit : isProp Unit
isPropUnit _ _ i = tt -- definitionally equal to: isContr→isProp isContrUnit
isSetUnit : isSet Unit
isSetUnit = isProp→isSet isPropUnit
isOfHLevelUnit : (n : HLevel) → isOfHLevel n Unit
isOfHLevelUnit n = isContr→isOfHLevel n isContrUnit
module _ {ℓ} (A : Type ℓ) where
UnitToType≃ : (Unit → A) ≃ A
unquoteDef UnitToType≃ = defStrictEquiv UnitToType≃ (λ f → f _) const
UnitToTypePath : ∀ {ℓ} (A : Type ℓ) → (Unit → A) ≡ A
UnitToTypePath A = ua (UnitToType≃ A)
isContr→Iso2 : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → isContr A → Iso (A → B) B
Iso.fun (isContr→Iso2 iscontr) f = f (fst iscontr)
Iso.inv (isContr→Iso2 iscontr) b _ = b
Iso.rightInv (isContr→Iso2 iscontr) _ = refl
Iso.leftInv (isContr→Iso2 iscontr) f = funExt λ x → cong f (snd iscontr x)
diagonal-unit : Unit ≡ Unit × Unit
diagonal-unit = isoToPath (iso (λ x → tt , tt) (λ x → tt) (λ {(tt , tt) i → tt , tt}) λ {tt i → tt})
fibId : ∀ {ℓ} (A : Type ℓ) → (fiber (λ (x : A) → tt) tt) ≡ A
fibId A = ua e
where
unquoteDecl e = declStrictEquiv e fst (λ a → a , refl)
isContr→≃Unit : ∀ {ℓ} {A : Type ℓ} → isContr A → A ≃ Unit
isContr→≃Unit contr = isoToEquiv (iso (λ _ → tt) (λ _ → fst contr) (λ _ → refl) λ _ → snd contr _)
isContr→≡Unit : {A : Type₀} → isContr A → A ≡ Unit
isContr→≡Unit contr = ua (isContr→≃Unit contr)
isContrUnit* : ∀ {ℓ} → isContr (Unit* {ℓ})
isContrUnit* = tt* , λ _ → refl
isPropUnit* : ∀ {ℓ} → isProp (Unit* {ℓ})
isPropUnit* _ _ = refl
isOfHLevelUnit* : ∀ {ℓ} (n : HLevel) → isOfHLevel n (Unit* {ℓ})
isOfHLevelUnit* zero = tt* , λ _ → refl
isOfHLevelUnit* (suc zero) _ _ = refl
isOfHLevelUnit* (suc (suc zero)) _ _ _ _ _ _ = tt*
isOfHLevelUnit* (suc (suc (suc n))) = isOfHLevelPlus 3 (isOfHLevelUnit* n)
|
{
"alphanum_fraction": 0.6868901146,
"avg_line_length": 33.1971830986,
"ext": "agda",
"hexsha": "fb5f049657bb8a70353b60ef42f9260c5ac811f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Edlyr/cubical",
"max_forks_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Edlyr/cubical",
"max_issues_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Edlyr/cubical",
"max_stars_repo_path": "Cubical/Data/Unit/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 875,
"size": 2357
}
|
open import Common.Prelude
_test_ : Nat → Nat → Nat
_test n = _+ n
|
{
"alphanum_fraction": 0.6764705882,
"avg_line_length": 13.6,
"ext": "agda",
"hexsha": "f7104839b88eb419e88c541317ccd516b67973dc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Sections-11.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Sections-11.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Sections-11.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 68
}
|
module ChainRule where
import Sets
import Functor
import Logic.ChainReasoning.Poly as CR
import Isomorphism
import Derivative
open Derivative
open Sets
open Functor
open Semantics
open Isomorphism
module Chain = CR _==_ (\x -> refl{x = x}) (\x y z -> trans{x = x}{y}{z})
open Chain
chain-rule : (F G : U)(X : Set) -> ⟦ ∂ (F [ G ]) ⟧ X ≅ ⟦ ∂ F [ G ] × ∂ G ⟧ X
chain-rule F G X = iso (i F) (j F) (ji F) (ij F)
where
i : (F : U) -> ⟦ ∂ (F [ G ]) ⟧ X -> ⟦ ∂ F [ G ] × ∂ G ⟧ X
i (K A) ()
i Id x = < <> , x >
i (F₁ + F₂) (inl c) = (inl <×> id) (i F₁ c)
i (F₁ + F₂) (inr c) = (inr <×> id) (i F₂ c)
i (F₁ × F₂) (inl < c , f₂ >) = (inl ∘ <∙, f₂ > <×> id) (i F₁ c)
i (F₁ × F₂) (inr < f₁ , c >) = (inr ∘ < f₁ ,∙> <×> id) (i F₂ c)
j : (F : U) -> ⟦ ∂ F [ G ] × ∂ G ⟧ X -> ⟦ ∂ (F [ G ]) ⟧ X
j (K A) < () , _ >
j Id < <> , x > = x
j (F₁ + F₂) < inl x , y > = inl (j F₁ < x , y >)
j (F₁ + F₂) < inr x , y > = inr (j F₂ < x , y >)
j (F₁ × F₂) < inl < x , y > , z > = inl < j F₁ < x , z > , y >
j (F₁ × F₂) < inr < x , y > , z > = inr < x , j F₂ < y , z > >
ij : (F : U)(x : _) -> i F (j F x) == x
ij (K A) < () , _ >
ij Id < <> , x > = refl
ij (F₁ + F₂) < lx@(inl x) , y > =
subst (\ ∙ -> (inl <×> id) ∙ == < lx , y >)
(ij F₁ < x , y >) refl
ij (F₁ + F₂) < rx@(inr x) , y > =
subst (\ ∙ -> (inr <×> id) ∙ == < rx , y >)
(ij F₂ < x , y >) refl
ij (F₁ × F₂) < xy@(inl < x , y >) , z > =
subst (\ ∙ -> (inl ∘ <∙, y > <×> id) ∙ == < xy , z >)
(ij F₁ < x , z >) refl
ij (F₁ × F₂) < xy@(inr < x , y >) , z > =
subst (\ ∙ -> (inr ∘ < x ,∙> <×> id) ∙ == < xy , z >)
(ij F₂ < y , z >) refl
ji : (F : U)(y : _) -> j F (i F y) == y
ji (K A) ()
ji Id x = refl
ji (F₁ + F₂) (inl c) =
chain> j (F₁ + F₂) ((inl <×> id) (i F₁ c))
=== inl (j F₁ _) by cong (j (F₁ + F₂) ∘ (inl <×> id)) (η-[×] (i F₁ c))
=== inl (j F₁ (i F₁ c)) by cong (inl ∘ j F₁) (sym $ η-[×] (i F₁ c))
=== inl c by cong inl (ji F₁ c)
ji (F₁ + F₂) rc @ (inr c) =
subst (\ ∙ -> j (F₁ + F₂) ((inr <×> id) ∙) == rc) (η-[×] (i F₂ c))
$ subst (\ ∙ -> inr (j F₂ ∙) == rc) (sym $ η-[×] (i F₂ c))
$ subst (\ ∙ -> inr ∙ == rc) (ji F₂ c) refl
ji (F₁ × F₂) l @ (inl < c , f₂ >) =
subst (\ ∙ -> j (F₁ × F₂) ((inl ∘ <∙, f₂ > <×> id) ∙) == l) (η-[×] (i F₁ c))
$ subst (\ ∙ -> inl < j F₁ ∙ , f₂ > == l) (sym $ η-[×] (i F₁ c))
$ subst (\ ∙ -> inl < ∙ , f₂ > == l) (ji F₁ c) refl
ji (F₁ × F₂) r @ (inr < f₁ , c >) =
subst (\ ∙ -> j (F₁ × F₂) ((inr ∘ < f₁ ,∙> <×> id) ∙) == r) (η-[×] (i F₂ c))
$ subst (\ ∙ -> inr < f₁ , j F₂ ∙ > == r) (sym $ η-[×] (i F₂ c))
$ subst (\ ∙ -> inr < f₁ , ∙ > == r) (ji F₂ c) refl
|
{
"alphanum_fraction": 0.3512557481,
"avg_line_length": 38.2027027027,
"ext": "agda",
"hexsha": "de5d14e873be49218ac7cc8246f0d41733302a0b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/clowns/ChainRule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/clowns/ChainRule.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/clowns/ChainRule.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 1407,
"size": 2827
}
|
module Data.List.Relation where
import Lvl
import Data
open import Data.List
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Type
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level
private variable T : Type{ℓ}
data Empty {ℓ}{T : Type{ℓ}} : List(T) → Stmt{Lvl.𝐒(ℓ)} where
intro : Empty(∅)
-- Statement of whether a list is contained in the beginning of another list
_isPrefixOf_ : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → List(T) → List(T) → Stmt{Lvl.of(T) Lvl.⊔ ℓₑ}
∅ isPrefixOf _ = Data.Unit
(p ⊰ prefix) isPrefixOf ∅ = Data.Empty
(p ⊰ prefix) isPrefixOf (x ⊰ l) = (p ≡ x) ∧ (prefix isPrefixOf l)
-- _isPrefixOf_ prefix l = (∃ \rest → l ≡ (prefix ++ rest))
-- Statement of whether a list is contained in the end of another list
_isSuffixOf_ : ⦃ equiv : Equiv{ℓₑ₁}(T) ⦄ → ⦃ equiv-list : Equiv{ℓₑ₂}(List(T)) ⦄ → List(T) → List(T) → Stmt{Lvl.of(T) Lvl.⊔ ℓₑ₁ Lvl.⊔ ℓₑ₂}
∅ isSuffixOf _ = Data.Unit
(p ⊰ prefix) isSuffixOf ∅ = Data.Empty
(p ⊰ prefix) isSuffixOf (x ⊰ l) = ((p ⊰ prefix) isSuffixOf l) ∨ ((p ⊰ prefix) ≡ (x ⊰ l))
-- _isSuffixOf_ suffix l = (∃ \rest → l ≡ (rest ++ suffix))
|
{
"alphanum_fraction": 0.6283261803,
"avg_line_length": 38.8333333333,
"ext": "agda",
"hexsha": "70e9bd55f345f5da1107e9db579fcccf5ec04f68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Relation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Relation.agda",
"max_line_length": 137,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Relation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 448,
"size": 1165
}
|
-- An example of something where normalization is surprisingly slow
{-# OPTIONS --cubical --safe #-}
module Cubical.Experiments.Problem where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Int
open import Cubical.HITs.S1
open import Cubical.HITs.S2
open import Cubical.HITs.S3
open import Cubical.HITs.Join
open import Cubical.HITs.Hopf
ptType : Type _
ptType = Σ Type₀ \ A → A
pt : (A : ptType) → A .fst
pt A = A .snd
S¹pt : ptType
S¹pt = (S¹ , base)
S²pt : ptType
S²pt = (S² , base)
S³pt : ptType
S³pt = (S³ , base)
joinpt : ptType
joinpt = (join S¹ S¹ , inl base)
Ω : (A : ptType) → ptType
Ω A = Path _ (pt A) (pt A) , refl
Ω² : (A : ptType) → ptType
Ω² A = Ω (Ω A)
Ω³ : (A : ptType) → ptType
Ω³ A = Ω² (Ω A)
α : join S¹ S¹ → S²
α (inl _) = base
α (inr _) = base
α (push x y i) = (merid y ∙ merid x) i
where
merid : S¹ → Path S² base base
merid base = refl
merid (loop i) = λ j → surf i j
-- The tests
test0To2 : Ω³ S³pt .fst
test0To2 i j k = surf i j k
f3 : Ω³ S³pt .fst → Ω³ joinpt .fst
f3 p i j k = S³→joinS¹S¹ (p i j k)
test0To3 : Ω³ joinpt .fst
test0To3 = f3 test0To2
f4 : Ω³ joinpt .fst → Ω³ S²pt .fst
f4 p i j k = α (p i j k)
test0To4 : Ω³ S²pt .fst
test0To4 = f4 test0To3
innerpath : ∀ i j → HopfS² (test0To4 i j i1)
innerpath i j = transp (λ k → HopfS² (test0To4 i j k)) i0 base
-- C-c C-n problem uses a lot of memory
problem : pos 0 ≡ pos 0
problem i = transp (λ j → helix (innerpath i j)) i0 (pos 0)
-- Lots of tests: (thanks Evan!)
winding2 : Path (Path S² base base) refl refl → Int
winding2 p = winding (λ j → transp (λ i → HopfS² (p i j)) i0 base)
test0 : Int
test0 = winding2 (λ i j → surf i j)
test1 : Int
test1 = winding2 (λ i j → surf j i)
test2 : Int
test2 = winding2 (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
test3 : Int
test3 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base)
test4 : Int
test4 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base)
test5 : Int
test5 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base)
test6 : Int
test6 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base)
test7 : Int
test7 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j))
test8 : Int
test8 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j))
test9 : Int
test9 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j))
test10 : Int
test10 = winding2 (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
-- Tests using HopfS²'
winding2' : Path (Path S² base base) refl refl → Int
winding2' p = winding (λ j → transp (λ i → HopfS²' (p i j)) i0 base)
test0' : Int
test0' = winding2' (λ i j → surf i j)
test1' : Int
test1' = winding2' (λ i j → surf j i)
test2' : Int
test2' = winding2' (λ i j → hcomp (λ _ → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
test3' : Int
test3' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base)
test4' : Int
test4' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) base)
test5' : Int
test5' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) base)
test6' : Int
test6' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) base)
test7' : Int
test7' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → surf j k ; (j = i0) → base ; (j = i1) → base}) (surf i j))
test8' : Int
test8' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → surf k i ; (j = i1) → base}) (surf i j))
test9' : Int
test9' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → surf k i}) (surf i j))
test10' : Int
test10' = winding2' (λ i j → hcomp (λ k → λ { (i = i0) → surf j k ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base}) (surf i j))
|
{
"alphanum_fraction": 0.5472854641,
"avg_line_length": 30.2516556291,
"ext": "agda",
"hexsha": "08e4ae8c25825d58aebfe907e254a98fd3ac49ee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Experiments/Problem.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Experiments/Problem.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Experiments/Problem.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2016,
"size": 4568
}
|
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Equivalence
module HoTT.Equivalence.Coproduct where
open variables
private variable A' B' : 𝒰 i
+-empty₁ : 𝟎 {i} + B ≃ B
+-empty₁ = let open Iso in iso→eqv λ where
.f (inl ())
.f (inr b) → b
.g → inr
.η (inl ())
.η (inr b) → refl
.ε _ → refl
+-empty₂ : A + 𝟎 {j} ≃ A
+-empty₂ = let open Iso in iso→eqv λ where
.f (inl a) → a
.f (inr ())
.g → inl
.η (inl b) → refl
.η (inr ())
.ε _ → refl
+-comm : A + B ≃ B + A
+-comm = let open Iso in iso→eqv λ where
.f (inl a) → inr a
.f (inr b) → inl b
.g (inl b) → inr b
.g (inr a) → inl a
.η (inl a) → refl
.η (inr b) → refl
.ε (inl b) → refl
.ε (inr a) → refl
+-equiv : A ≃ A' → B ≃ B' → A + B ≃ A' + B'
+-equiv e₁ e₂ =
iso→eqv λ where
.f (inl a) → inl (f₁ a)
.f (inr b) → inr (f₂ b)
.g (inl a') → inl (g₁ a')
.g (inr b') → inr (g₂ b')
.η (inl a) → ap inl (η₁ a)
.η (inr b) → ap inr (η₂ b)
.ε (inl a') → ap inl (ε₁ a')
.ε (inr b') → ap inr (ε₂ b')
where
open Iso
open Iso (eqv→iso e₁) renaming (f to f₁ ; g to g₁ ; η to η₁ ; ε to ε₁)
open Iso (eqv→iso e₂) renaming (f to f₂ ; g to g₂ ; η to η₂ ; ε to ε₂)
|
{
"alphanum_fraction": 0.4926948052,
"avg_line_length": 22.8148148148,
"ext": "agda",
"hexsha": "ba912e967f227f48893547f5ae0160d08cb08048",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Equivalence/Coproduct.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Equivalence/Coproduct.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Equivalence/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 589,
"size": 1232
}
|
module Datoid where
import Equiv
import Prelude
open Equiv
open Prelude
data Datoid : Set1 where
datoid : (a : Set) -> DecidableEquiv a -> Datoid
El : Datoid -> Set
El (datoid a _) = a
datoidEq : (a : Datoid) -> DecidableEquiv (El a)
datoidEq (datoid _ eq) = eq
datoidRel : (a : Datoid) -> El a -> El a -> Set
datoidRel d = rel' (datoidEq d)
datoidDecRel : (a : Datoid) -> (x y : El a)
-> Either (datoidRel a x y) (Not (datoidRel a x y))
datoidDecRel d = decRel (datoidEq d)
dRefl : (a : Datoid) -> {x : El a} -> datoidRel a x x
dRefl a = refl (datoidEq a)
dSym : (a : Datoid) -> {x y : El a}
-> datoidRel a x y -> datoidRel a y x
dSym a = sym (datoidEq a)
dTrans : (a : Datoid) -> {x y z : El a}
-> datoidRel a x y -> datoidRel a y z -> datoidRel a x z
dTrans a = trans (datoidEq a)
data Respects (a : Datoid) (P : El a -> Set) : Set where
respects : ((x y : El a) -> datoidRel a x y -> P x -> P y) -> Respects a P
subst : {a : Datoid} -> {P : El a -> Set} -> Respects a P
-> (x y : El a) -> datoidRel a x y -> P x -> P y
subst (respects f) = f
pairDatoid : (a b : Datoid) -> Datoid
pairDatoid a b = datoid (Pair (El a) (El b))
(pairEquiv (datoidEq a) (datoidEq b))
|
{
"alphanum_fraction": 0.5480399693,
"avg_line_length": 27.1041666667,
"ext": "agda",
"hexsha": "cfb8a7044c604cdf556730997eaacbf0deba2a1c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM4/bag/Datoid.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM4/bag/Datoid.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM4/bag/Datoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 495,
"size": 1301
}
|
open import MLib.Prelude.FromStdlib
open import Relation.Binary using (Decidable; IsStrictTotalOrder)
module MLib.Prelude.DFS
{v p e} {V : Set v} (_⇒_ : V → V → Set e)
{_<_ : V → V → Set p} (isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
open import MLib.Prelude.Path
open Bool using (T)
open import Function.Equivalence using (Equivalence)
import Data.AVL isStrictTotalOrder as Tree
open Tree using (Tree)
-- A (directed) graph is a map from vertices to the list of edges out of that
-- vertex.
Graph = Tree (λ x → List (∃ λ y → x ⇒ y))
private
module Seen where
-- Represents a set of vertices that have been seen. At most 'n' vertices
-- have /not/ been seen.
record SeenSet (n : ℕ) : Set (v ⊔ˡ e ⊔ˡ p) where
constructor mkSeen
field
getSeen : Tree (λ _ → ⊤)
isSeen : ∀ {n} → V → SeenSet n → Bool
isSeen x (mkSeen t) = x Tree.∈? t
-- Mark a vertex as seen, thus reducing the number of /unseen/ vertices.
mark : ∀ {n} → V → SeenSet (Nat.suc n) → Maybe (SeenSet n)
mark x u@(mkSeen t) = if Bool.not (isSeen x u) then just (mkSeen (Tree.insert x tt t)) else nothing
-- Make a seen set for a particular graph. The number of unseen vertices in
-- the result is bounded above by the number of vertices in the graph.
forGraph : Graph → ∃ SeenSet
forGraph gr = (countVertices gr , mkSeen Tree.empty)
where
-- this overcounts but that doesn't matter because the index is only there
-- to ensure termination of the DFS
countVertices : Graph → ℕ
countVertices = List.foldr (λ { (_ , es) n → List.foldr (λ _ → Nat.suc) n es }) 0 ∘ Tree.toList
inj : ∀ {n} → SeenSet n → SeenSet (Nat.suc n)
inj (mkSeen t) = mkSeen t
open Seen using (SeenSet)
private
infixl 1 _>>=ₛ_
MonadDfs : ∀ {a} → ℕ → Set a → Set (v ⊔ˡ (p ⊔ˡ (e ⊔ˡ a)))
MonadDfs n A = SeenSet n → A × SeenSet n
runMonadDfs : ∀ {n a} {A : Set a} → MonadDfs n A → SeenSet n → A
runMonadDfs f = proj₁ ∘ f
_>>=ₛ_ : ∀ {n a b} {A : Set a} {B : Set b} → MonadDfs n A → (A → MonadDfs n B) → MonadDfs n B
(f >>=ₛ g) s =
let x , s′ = f s
in g x s′
returnₛ : ∀ {n a} {A : Set a} → A → MonadDfs n A
returnₛ x s = x , s
withMarked : ∀ {n a} {A : Set a} V → MonadDfs n A → MonadDfs (Nat.suc n) (Maybe A)
withMarked v f s =
case Seen.mark v s of λ
{ (just s′) →
let x , s′′ = f s′
in just x , Seen.inj s′′
; nothing → nothing , s
}
module _ (graph : Graph) where
private
PathsFrom = List ∘ ∃ ∘ Path _⇒_
-- Calculates paths from the given source to every reachable target not in
-- the seen set. Returns the new seen set, the list of paths found, and
-- a boolean indicating whether this source was previously in the seen
-- set.
pathsFromSource : ∀ {n} (source : V) → MonadDfs n (Maybe (PathsFrom source))
-- Calculates paths from the given source to every reachable target not in
-- the seen set, whose first edge is among the list given.
pathsViaEdges : ∀ {n} {source : V} → List (∃ (λ dest → source ⇒ dest)) → MonadDfs n (PathsFrom source)
-- Calculates paths via the edge given to every reachable target not in the
-- seen set.
pathsViaEdge : ∀ {n} {source dest : V} → source ⇒ dest → MonadDfs n (PathsFrom source)
-- The base case of induction on the size of the seen set. This is only here
-- to satisfy the termination checker.
pathsFromSource {Nat.zero} source = returnₛ nothing
pathsFromSource {Nat.suc _} source = withMarked source (
case Tree.lookup source graph of λ
-- We have a list of edges from this source to some other vertex. For
-- each of these, a recursive call will only return paths from that
-- vertex if it is yet unseen. Note the recursive call is on a seen set
-- with an index one lower, satisfying Agda's termination checker.
{ (just es) → pathsViaEdges es >>=ₛ returnₛ ∘ just
-- there are no edges from this source so nothing is reachable from it
; nothing → returnₛ (just [])
}) >>=ₛ maybe returnₛ (returnₛ nothing)
pathsViaEdges [] = returnₛ []
pathsViaEdges ((d , e) ∷ es) =
pathsViaEdge e >>=ₛ λ pathsVia-d →
pathsViaEdges es >>=ₛ λ restPaths →
returnₛ (pathsVia-d List.++ restPaths)
pathsViaEdge {dest = d} e =
pathsFromSource d >>=ₛ λ
{ (just pathsFrom-d) →
let pathsVia-d = List.map (λ {(d′ , p) → d′ , connect (edge e) p}) pathsFrom-d
in returnₛ ((_ , edge e) ∷ pathsVia-d)
; nothing → returnₛ []
}
-- Given a source vertex S, finds all vertices T such that there is a path
-- from S to T, and returns the path. No target vertex is returned more than
-- once.
allTargetsFrom : (source : V) → List (∃ (Path _⇒_ source))
allTargetsFrom source =
let _ , seen = Seen.forGraph graph
in maybe id [] (runMonadDfs (pathsFromSource source) seen)
module _ (graph : Graph) (matches : V → Bool) where
private
findMatchingFrom : ∀ {n} (source : V) → MonadDfs n (Maybe (∃ λ dest → Path _⇒_ source dest × T (matches dest)))
findMatchingViaEdges : ∀ {n} {source : V} → List (∃ (λ inter → source ⇒ inter)) → MonadDfs n (Maybe (∃ λ dest → Path _⇒_ source dest × T (matches dest)))
findMatchingViaEdge : ∀ {n} {source inter : V} → source ⇒ inter → MonadDfs n (Maybe (∃ λ dest → Path _⇒_ source dest × T (matches dest)))
-- The base case of induction on the size of the seen set. This is only here
-- to satisfy the termination checker.
findMatchingFrom {Nat.zero} source = returnₛ nothing
findMatchingFrom {Nat.suc _} source = withMarked source (
case Tree.lookup source graph of λ
-- We have a list of edges from this source to some other vertex. For
-- each of these, a recursive call will only return paths from that
-- vertex if it is yet unseen. Note the recursive call is on a seen set
-- with an index one lower, satisfying Agda's termination checker.
{ (just es) → findMatchingViaEdges es
-- there are no edges from this source so nothing is reachable from it
; nothing → returnₛ nothing
}) >>=ₛ maybe returnₛ (returnₛ nothing)
findMatchingViaEdges [] = returnₛ nothing
findMatchingViaEdges ((d , e) ∷ es) =
findMatchingViaEdge e >>=ₛ λ
{ (just r) → returnₛ (just r)
; nothing → findMatchingViaEdges es
}
findMatchingViaEdge {inter = d} e with matches d | ≡.inspect matches d
findMatchingViaEdge {inter = _} e | true | ≡.[ eq ] = returnₛ (just (_ , edge e , Equivalence.from Bool.T-≡ ⟨$⟩ eq))
findMatchingViaEdge {inter = d} e | false | _ =
findMatchingFrom d >>=ₛ λ
{ (just (_ , p , q)) → returnₛ (just (_ , connect (edge e) p , q))
; nothing → returnₛ nothing
}
-- Given a source vertex S, finds all vertices T such that there is a path
-- from S to T, and returns the path. No target vertex is returned more than
-- once.
findMatching : (source : V) → Maybe (∃ λ dest → Path _⇒_ source dest × T (matches dest))
findMatching source =
let _ , seen = Seen.forGraph graph
in runMonadDfs (findMatchingFrom source) seen
module _ (graph : Graph) {dest} (isDest : ∀ v → Dec (v ≡ dest)) where
-- Given a source vertex S, finds all vertices T such that there is a path
-- from S to T, and returns the path. No target vertex is returned more than
-- once.
findDest : (source : V) → Maybe (Path _⇒_ source dest)
findDest source with findMatching graph (⌊_⌋ ∘ isDest) source
... | just (dest′ , p , q) with isDest dest′
... | yes ≡.refl = just p
findDest source | just (_ , _ , ()) | no _
findDest source | nothing = nothing
|
{
"alphanum_fraction": 0.63443519,
"avg_line_length": 40.4421052632,
"ext": "agda",
"hexsha": "fcff168286f395ee78aa62829ca544c16b2d6a73",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/DFS.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/DFS.agda",
"max_line_length": 157,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/DFS.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2344,
"size": 7684
}
|
open import Oscar.Prelude
open import Oscar.Class.[ExtensibleType]
open import Oscar.Data.Proposequality
module Oscar.Class.[ExtensibleType].Proposequality where
instance
[ExtensibleType]Proposequality : ∀ {a} {b} {A : Set a} {B : A → Set b} → [ExtensibleType] (λ {w} → Proposequality⟦ B w ⟧)
[ExtensibleType]Proposequality = ∁
|
{
"alphanum_fraction": 0.7351190476,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "28358fcda475632255be011e1f25284a21271ee1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType]/Proposequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType]/Proposequality.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/[ExtensibleType]/Proposequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 105,
"size": 336
}
|
{-# OPTIONS --cubical --safe #-}
module TreeFold where
open import Prelude
open import Data.List
open import Algebra using (Associative)
open import Data.List.Properties using (foldr-fusion; foldl-fusion; foldl′-foldl)
infixr 5 _^_&_
data Spine (A : Type a) : Type a where
&0 : Spine A
_^_&_ : A → ℕ → Spine A → Spine A
private variable n : ℕ
module Cons (f : A → A → A) where
infixr 5 _^_∹_
_^_∹_ : A → ℕ → Spine A → Spine A
x ^ n ∹ &0 = x ^ n & &0
x ^ n ∹ y ^ zero & xs = f x y ^ suc n ∹ xs
x ^ n ∹ y ^ suc m & xs = x ^ n & y ^ m & xs
_∹_ : A → Spine A → Spine A
_∹_ = _^ zero ∹_
module TreeFoldR (f : A → A → A) (z : A) where
open Cons f public
fold : Spine A → A
fold &0 = z
fold (x ^ n & xs) = f x (fold xs)
spine : List A → Spine A
spine = foldr _∹_ &0
treeFold : List A → A
treeFold = fold ∘ spine
∹-hom : Associative f → ∀ x xs → fold (x ^ n ∹ xs) ≡ f x (fold xs)
∹-hom p x &0 = refl
∹-hom p x (y ^ zero & xs) = ∹-hom p (f x y) xs ; p x y (fold xs)
∹-hom p x (y ^ suc n & xs) = refl
treeFoldHom : Associative f → ∀ xs → treeFold xs ≡ foldr f z xs
treeFoldHom f-assoc = foldr-fusion fold &0 (∹-hom f-assoc)
module TreeFold1 (f : A → A → A) where
open import Data.Maybe
open import Data.Maybe.Properties
open import Data.List.Properties
f? : Maybe A → Maybe A → Maybe A
f? nothing = id
f? (just x) = just ∘ maybe x (f x)
open TreeFoldR f? nothing
treeFoldMay : List A → Maybe A
treeFoldMay = treeFold ∘ map just
treeFoldMayHom : Associative f → ∀ xs → treeFoldMay xs ≡ foldrMay f xs
treeFoldMayHom f-assoc xs = treeFoldHom f?-assoc (map just xs) ; map-fusion f? nothing just xs
where
f?-assoc : Associative f?
f?-assoc nothing y z = refl
f?-assoc (just x) nothing z = refl
f?-assoc (just x) (just y) nothing = refl
f?-assoc (just x) (just y) (just z) = cong just (f-assoc x y z)
isJustSpine? : Spine (Maybe A) → Bool
isJustSpine? &0 = false
isJustSpine? (x ^ y & xs) = is-just x
IsJustSpine : Spine (Maybe A) → Type
IsJustSpine = T ∘ isJustSpine?
isJust-cons : ∀ x n xs → IsJustSpine (just x ^ n ∹ xs)
isJust-cons x n &0 = tt
isJust-cons x n (y ^ zero & xs) = isJust-cons (maybe x (f x) y) (suc n) xs
isJust-cons x n (y ^ suc m & xs) = tt
isJust-spine : ∀ xs → NonEmpty xs → IsJustSpine (spine (map just xs))
isJust-spine (x ∷ xs) p = isJust-cons x 0 (spine (map just xs))
isJust-fold : ∀ xs → IsJustSpine xs → IsJust (fold xs)
isJust-fold (just _ ^ _ & _) _ = tt
isJust-treeFoldMay : ∀ xs → NonEmpty xs → IsJust (treeFoldMay xs)
isJust-treeFoldMay xs xsne = isJust-fold (spine (map just xs)) (isJust-spine xs xsne)
treeFold1 : (xs : List A) → ⦃ NonEmpty xs ⦄ → A
treeFold1 xs ⦃ xsne ⦄ = fromJust (treeFoldMay xs)
where instance _ = isJust-treeFoldMay xs xsne
-- treeFold1-hom : Associative f → ∀ xs → ⦃ xsne : NonEmpty xs ⦄ → treeFold1 xs ≡ foldr1 f xs
-- treeFold1-hom f-assoc xs ⦃ xsne ⦄ = {!!}
open TreeFold1 using (treeFoldMay; treeFoldMayHom; treeFold1) public
open TreeFoldR using (treeFold; treeFoldHom) public
module TreeFoldL (f : A → A → A) (z : A) where
open TreeFoldR (flip f) z using (_∹_; fold; ∹-hom) public
spine : List A → Spine A
spine = foldl (flip _∹_) &0
treeFoldL : List A → A
treeFoldL = fold ∘ spine
treeFoldLHom : Associative f → ∀ xs → treeFoldL xs ≡ foldl f z xs
treeFoldLHom p = foldl-fusion fold &0 (flip (∹-hom λ x y z → sym (p z y x)))
open TreeFoldL using (treeFoldL; treeFoldLHom) public
module StrictCons (f : A → A → A) where
infixr 5 _^_∹_
_^_∹_ : A → ℕ → Spine A → Spine A
x ^ n ∹ &0 = x ^ n & &0
x ^ n ∹ y ^ zero & xs = (_^ suc n ∹ xs) $! (f x y)
x ^ n ∹ y ^ suc m & xs = x ^ n & y ^ m & xs
_∹_ : A → Spine A → Spine A
_∹_ = _^ zero ∹_
private module Lazy = Cons f
strict-lazy-cons : ∀ x n xs → x ^ n ∹ xs ≡ x Lazy.^ n ∹ xs
strict-lazy-cons x n &0 = refl
strict-lazy-cons x n (y ^ zero & xs) = $!-≡ (_^ suc n ∹ xs) (f x y) ; strict-lazy-cons (f x y) (suc n) xs
strict-lazy-cons x n (y ^ suc m & xs) = refl
module TreeFoldL′ (f : A → A → A) (z : A) where
open StrictCons (flip f)
spine : List A → Spine A
spine = foldl′ (flip _∹_) &0
private module Lazy = TreeFoldL f z
open Lazy using (fold)
treeFoldL′ : List A → A
treeFoldL′ = fold ∘ spine
treeFoldL′Hom : Associative f → ∀ xs → treeFoldL′ xs ≡ foldl f z xs
treeFoldL′Hom p xs =
cong fold (foldl′-foldl (flip _∹_) &0 xs ; cong (λ c → foldl c &0 xs) (funExt λ ys → funExt λ y → strict-lazy-cons y 0 ys)) ;
Lazy.treeFoldLHom p xs
open TreeFoldL′ using (treeFoldL′; treeFoldL′Hom) public
|
{
"alphanum_fraction": 0.6047063903,
"avg_line_length": 30.4736842105,
"ext": "agda",
"hexsha": "262193d7973291e82e6954a8c08ba0e446fa9c07",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "TreeFold.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "TreeFold.agda",
"max_line_length": 129,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "TreeFold.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1822,
"size": 4632
}
|
------------------------------------------------------------------------------
-- Testing the translation of definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Definition05 where
postulate
D : Set
_≡_ : D → D → Set
op : D → D
a : D
b : D
b = a
{-# ATP definition b #-}
c : D
c = op b
{-# ATP definition c #-}
-- We test the use of an ATP definition inside other ATP definition.
postulate foo : c ≡ op a
{-# ATP prove foo #-}
|
{
"alphanum_fraction": 0.4238310709,
"avg_line_length": 22.8620689655,
"ext": "agda",
"hexsha": "a9b7d408047ba4b0b9fab3c98fa64714a6474c6d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Definition05.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Definition05.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Definition05.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 139,
"size": 663
}
|
module Bound.Lower (A : Set) where
data Bound : Set where
bot : Bound
val : A → Bound
|
{
"alphanum_fraction": 0.6276595745,
"avg_line_length": 11.75,
"ext": "agda",
"hexsha": "cce11d51e44574d9520aa950ce97ddc2772ab583",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Bound/Lower.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Bound/Lower.agda",
"max_line_length": 34,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Bound/Lower.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 29,
"size": 94
}
|
-- 2014-05-16 Andreas: Question mark not recognized by emacs
module _ where
data Nat : Set where
suc : Nat → Nat
data Fin : Nat → Set where
zero : ∀ n → Fin (suc n)
test : ∀ n → Fin n → Set
test .? (zero n) = Nat
-- The questionmark in the dot pattern is not recognized by emacs-mode.
-- This cannot be tested by test/interaction, but I still put the test case here.
|
{
"alphanum_fraction": 0.6763925729,
"avg_line_length": 22.1764705882,
"ext": "agda",
"hexsha": "c8d1c92087ff9895ce0269833a7ce994a798005f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1132.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1132.agda",
"max_line_length": 81,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1132.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 377
}
|
module BHeap.Order {A : Set}(_≤_ : A → A → Set) where
open import BHeap _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
open import Data.Nat
_≺_ : {b b' : Bound} → BHeap b → BHeap b' → Set
h ≺ h' = # h <′ # h'
data Acc {b' : Bound}(h' : BHeap b') : Set where
acc : (∀ {b} h → (_≺_ {b} {b'} h h') → Acc h) → Acc h'
|
{
"alphanum_fraction": 0.5608308605,
"avg_line_length": 24.0714285714,
"ext": "agda",
"hexsha": "1028a561a94590a76c4c79c6a7b0aa39848b5d21",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BHeap/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BHeap/Order.agda",
"max_line_length": 56,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BHeap/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 140,
"size": 337
}
|
open import Data.Boolean
open import Type
module Data.BinaryTree.Heap {ℓ} {T : Type{ℓ}} (_≤?_ : T → T → Bool) where
import Lvl
open import Data hiding (empty)
open import Data.BinaryTree
BinaryHeap = BinaryTree (Unit{Lvl.𝟎}) (T)
private variable ℓᵣ : Lvl.Level
private variable R : Type{ℓᵣ}
open import Data.Option
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional as Fn using (_∘_ ; _∘₂_ ; _$_)
merge : BinaryHeap → BinaryHeap → BinaryHeap
merge (Leaf <>) (Leaf <>) = Leaf <>
merge x@(Node _ _ _) (Leaf <>) = x
merge (Leaf <>) y@(Node _ _ _) = y
merge x@(Node xa xl xr) y@(Node ya yl yr) with (xa ≤? ya) | (\_ → merge y xr) | (\_ → merge x yr)
... | 𝑇 | 𝑇-branch | _ = Node xa (𝑇-branch(<>{Lvl.𝟎})) xl
... | 𝐹 | _ | 𝐹-branch = Node ya (𝐹-branch(<>{Lvl.𝟎})) yl
insert : T → BinaryHeap → BinaryHeap
insert a = merge(singleton a)
pop : BinaryHeap → Option(T ⨯ BinaryHeap)
pop (Leaf <>) = None
pop (Node a l r) = Some(a , merge l r)
{-# TERMINATING #-}
foldOrdered : (T → R → R) → R → BinaryHeap → R
foldOrdered(_▫_) id (Leaf <>) = id
foldOrdered(_▫_) id (Node a l r) = a ▫ foldOrdered(_▫_) id (merge l r)
filterFold : (T → R → Option(R)) → R → BinaryHeap → (R ⨯ BinaryHeap)
filterFold (_▫_) r₀ (Leaf <>) = (r₀ , Leaf <>)
filterFold (_▫_) r₀ (Node a l r)
with (r₁ , il) ← filterFold (_▫_) r₀ l
with (r₂ , ir) ← filterFold (_▫_) r₁ r
with (a ▫ r₂)
... | Some r₃ = (r₃ , merge il ir)
... | None = (r₂ , Node a il ir)
filter : (T → Bool) → BinaryHeap → BinaryHeap
filter f = Tuple.right ∘ filterFold (\{a <> → (\{𝐹 → None ; 𝑇 → Some <>}) $ f(a)}) (<>{Lvl.𝟎})
open import Data.List
import Data.List.Functions as List
separate : (T → Bool) → BinaryHeap → (List(T) ⨯ BinaryHeap)
separate f = filterFold (\a l → (\{𝐹 → None ; 𝑇 → Some(a ⊰ l)}) $ f(a)) ∅
update : (T → Bool) → (T → T) → BinaryHeap → BinaryHeap
update p f a with (as , b) ← separate p a = List.foldᵣ insert b (List.map f as)
|
{
"alphanum_fraction": 0.5911854103,
"avg_line_length": 33.4576271186,
"ext": "agda",
"hexsha": "d74df8ce415bd463cfd67a3a808475bbaee16621",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/BinaryTree/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/BinaryTree/Heap.agda",
"max_line_length": 97,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/BinaryTree/Heap.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 736,
"size": 1974
}
|
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Thm: (∃x)A(x), (∀x)(A(x) ⇒ B(x)) ⊢ (∃x)B(x)
-- From: Elliott Mendelson. Introduction to mathematical logic. Chapman &
-- Hall, 4th edition, 1997, p. 155.
-- Rule A4: (∀x)A(x) ⇒ A(t) (with some conditions)
-- Rule E4: A(t) ⇒ (∃x)A(x) (with some conditions)
-- Rule C: From (∃x)A(x) to A(t) (with some conditions)
-- 1. (∃x)A(x) Hyp
-- 2. (∀x)(A(x) ⇒ B(x)) Hyp
-- 3. A(b) 1, rule C
-- 4. A(b) ⇒ B(b) 2, rule A4
-- 5. B(b) 4,3 MP
-- 6. (∃x)B(x) 5, rule E4
module FOT.Common.FOL.Existential.Witness where
postulate
D : Set
A B : D → Set
module Witness where
infixr 7 _,_
data ∃ (A : D → Set) : Set where
_,_ : ∀ x → A x → ∃ A
∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ x → A x → B) → B
∃-elim (x , Ax) h = h x Ax
-- A proof using the existential elimination.
prf₁ : ∃ A → (∀ {x} → A x → B x) → ∃ B
prf₁ h₁ h₂ = ∃-elim h₁ (λ x Ax → x , (h₂ Ax))
-- A proof using pattern matching.
prf₂ : ∃ A → (∀ {x} → A x → B x) → ∃ B
prf₂ (x , Ax) h = x , h Ax
module NonWitness₁ where
data ∃ (A : D → Set) : Set where
∃-intro : ∀ {x} → A x → ∃ A
∃-elim : {A : D → Set}{B : Set} → ∃ A → (∀ {x} → A x → B) → B
∃-elim (∃-intro Ax) h = h Ax
-- A proof using the existential elimination.
prf₁ : ∃ A → (∀ {x} → A x → B x) → ∃ B
prf₁ h₁ h₂ = ∃-elim h₁ (λ Ax → ∃-intro (h₂ Ax))
-- A proof using pattern matching.
prf₂ : ∃ A → (∀ {x} → A x → B x) → ∃ B
prf₂ (∃-intro Ax) h = ∃-intro (h Ax)
module NonWitness₂ where
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Relation/Nullary/Core.agda).
infix 6 ¬_
-- The empty type.
data ⊥ : Set where
⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()
¬_ : Set → Set
¬ A = A → ⊥
∃ : (D → Set) → Set
∃ A = ¬ (∀ x → ¬ (A x))
prf : ∃ A → (∀ x → A x → B x) → ∃ B
prf h₁ h₂ h₃ = h₁ (λ x Ax → h₃ x (h₂ x Ax))
|
{
"alphanum_fraction": 0.4797659678,
"avg_line_length": 25.012195122,
"ext": "agda",
"hexsha": "be10016b3d14858f640d69e218528028b2ce00c8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/Common/FOL/Existential/Witness.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/Common/FOL/Existential/Witness.agda",
"max_line_length": 73,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/Common/FOL/Existential/Witness.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 873,
"size": 2051
}
|
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Monoidal
open import Categories.Functor.Monoidal
module Categories.NaturalTransformation.NaturalIsomorphism.Monoidal
where
open import Level
open import Data.Product using (_,_)
open import Relation.Binary using (IsEquivalence; Setoid)
open import Categories.Category.Product
import Categories.Category.Monoidal.Reasoning as MonoidalReasoning
import Categories.Category.Monoidal.Utilities as MonoidalUtilities
open import Categories.Functor hiding (id)
open import Categories.Functor.Monoidal.Properties using () renaming
( idF-Monoidal to idFˡ ; idF-StrongMonoidal to idFˢ
; ∘-Monoidal to _∘Fˡ_ ; ∘-StrongMonoidal to _∘Fˢ_
)
import Categories.Morphism.Reasoning as MorphismReasoning
import Categories.NaturalTransformation.Monoidal as NT
open import Categories.NaturalTransformation.NaturalIsomorphism as NI
using (NaturalIsomorphism)
open NaturalIsomorphism using (F⇒G; F⇐G)
-- Monoidal natural isomorphisms between lax monoidal functors.
module Lax where
open NT.Lax hiding (id)
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
(F G : MonoidalFunctor C D) where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
module F = MonoidalFunctor F renaming (F to U)
module G = MonoidalFunctor G renaming (F to U)
IsMonoidalNaturalIsomorphism : NaturalIsomorphism F.U G.U → Set (o ⊔ ℓ′ ⊔ e′)
IsMonoidalNaturalIsomorphism α = IsMonoidalNaturalTransformation F G (F⇒G α)
record MonoidalNaturalIsomorphism : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
field
U : NaturalIsomorphism F.U G.U
F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism U
open NaturalIsomorphism U public
open IsMonoidalNaturalTransformation F⇒G-isMonoidal public
open D using (module Equiv)
open MorphismReasoning D.U using (switch-fromtoˡ; conjugate-from)
open MonoidalUtilities D.monoidal using (_⊗ᵢ_)
F⇐G-isMonoidal : IsMonoidalNaturalTransformation G F (F⇐G U)
F⇐G-isMonoidal = record
{ ε-compat = Equiv.sym (switch-fromtoˡ FX≅GX ε-compat)
; ⊗-homo-compat =
conjugate-from (FX≅GX ⊗ᵢ FX≅GX) FX≅GX (Equiv.sym ⊗-homo-compat)
}
F⇒G-monoidal : MonoidalNaturalTransformation F G
F⇒G-monoidal = record { U = F⇒G U ; isMonoidal = F⇒G-isMonoidal }
F⇐G-monoidal : MonoidalNaturalTransformation G F
F⇐G-monoidal = record { U = F⇐G U ; isMonoidal = F⇐G-isMonoidal }
infix 4 _≃_
_≃_ = MonoidalNaturalIsomorphism
open MonoidalNaturalTransformation using (isMonoidal)
open MonoidalNaturalIsomorphism
-- Identity and compositions
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where
infixr 9 _ⓘᵥ_
id : {F : MonoidalFunctor C D} → F ≃ F
id = record { U = NI.refl ; F⇒G-isMonoidal = isMonoidal NT.Lax.id }
_ⓘᵥ_ : {F G H : MonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H
_ⓘᵥ_ α β = record
{ U = U α NI.ⓘᵥ U β
; F⇒G-isMonoidal = isMonoidal (F⇒G-monoidal α ∘ᵥ F⇒G-monoidal β)
}
isEquivalence : IsEquivalence _≃_
isEquivalence = record
{ refl = id
; sym = λ α → record
{ U = NI.sym (U α)
; F⇒G-isMonoidal = F⇐G-isMonoidal α
}
; trans = λ α β → β ⓘᵥ α
}
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{E : MonoidalCategory o″ ℓ″ e″} where
infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_
_ⓘₕ_ : {F G : MonoidalFunctor C D} {H I : MonoidalFunctor D E} →
H ≃ I → F ≃ G → (H ∘Fˡ F) ≃ (I ∘Fˡ G)
_ⓘₕ_ α β = record
{ U = U α NI.ⓘₕ U β
; F⇒G-isMonoidal = isMonoidal (F⇒G-monoidal α ∘ₕ F⇒G-monoidal β)
}
_ⓘˡ_ : {F G : MonoidalFunctor C D}
(H : MonoidalFunctor D E) → F ≃ G → (H ∘Fˡ F) ≃ (H ∘Fˡ G)
H ⓘˡ α = id {F = H} ⓘₕ α
_ⓘʳ_ : {G H : MonoidalFunctor D E} →
G ≃ H → (F : MonoidalFunctor C D) → (G ∘Fˡ F) ≃ (H ∘Fˡ F)
α ⓘʳ F = α ⓘₕ id {F = F}
-- Left and right unitors.
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{F : MonoidalFunctor C D} where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
module F = MonoidalFunctor F
open D hiding (U; id; unitorˡ; unitorʳ)
open MorphismReasoning D.U using (id-comm-sym)
open MonoidalReasoning D.monoidal
unitorˡ : idFˡ D ∘Fˡ F ≃ F
unitorˡ = record
{ U = NI.unitorˡ
; F⇒G-isMonoidal = record
{ ε-compat = identityˡ ○ identityʳ
; ⊗-homo-compat = λ {X Y} → begin
D.id D.∘ F.⊗-homo.η (X , Y) D.∘ D.id ≈⟨ identityˡ ⟩
F.⊗-homo.η (X , Y) D.∘ D.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩
F.⊗-homo.η (X , Y) D.∘ D.id ⊗₁ D.id ∎
}
}
unitorʳ : F ∘Fˡ idFˡ C ≃ F
unitorʳ = record
{ U = NI.unitorʳ
; F⇒G-isMonoidal = record
{ ε-compat = begin
D.id ∘ F.₁ C.id ∘ F.ε ≈⟨ identityˡ ⟩
F.₁ C.id ∘ F.ε ≈⟨ F.identity ⟩∘⟨refl ⟩
D.id ∘ F.ε ≈⟨ identityˡ ⟩
F.ε ∎
; ⊗-homo-compat = λ {X Y} → begin
D.id D.∘ F.₁ C.id ∘ F.⊗-homo.η (X , Y) ≈⟨ identityˡ ⟩
F.₁ C.id ∘ F.⊗-homo.η (X , Y) ≈⟨ F.identity ⟩∘⟨refl ⟩
D.id ∘ F.⊗-homo.η (X , Y) ≈⟨ id-comm-sym ⟩
F.⊗-homo.η (X , Y) D.∘ D.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩
F.⊗-homo.η (X , Y) D.∘ D.id ⊗₁ D.id ∎
}
}
-- Associator.
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴}
{B : MonoidalCategory o ℓ e} {C : MonoidalCategory o′ ℓ′ e′}
{D : MonoidalCategory o″ ℓ″ e″} {E : MonoidalCategory o‴ ℓ‴ e‴}
{F : MonoidalFunctor B C} {G : MonoidalFunctor C D}
{H : MonoidalFunctor D E} where
private
module D = MonoidalCategory D
module E = MonoidalCategory E
module F = MonoidalFunctor F
module G = MonoidalFunctor G
module H = MonoidalFunctor H
open E hiding (U; id; associator)
open MorphismReasoning E.U
open MonoidalReasoning E.monoidal
associator : (H ∘Fˡ G) ∘Fˡ F ≃ H ∘Fˡ (G ∘Fˡ F)
associator = record
{ U = NI.associator (F.F) (G.F) (H.F)
; F⇒G-isMonoidal = record
{ ε-compat = begin
E.id ∘ H.₁ (G.₁ F.ε) ∘ H.₁ G.ε ∘ H.ε ≈⟨ identityˡ ⟩
H.₁ (G.₁ F.ε) ∘ H.₁ G.ε ∘ H.ε ≈˘⟨ pushˡ H.homomorphism ⟩
H.₁ (G.₁ F.ε D.∘ G.ε) ∘ H.ε ∎
; ⊗-homo-compat = λ {X Y} → begin
E.id ∘ H.₁ (G.₁ (F.⊗-homo.η (X , Y))) ∘
H.₁ (G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘
H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))
≈⟨ identityˡ ⟩
H.₁ (G.₁ (F.⊗-homo.η (X , Y))) ∘
H.₁ (G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘
H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))
≈˘⟨ pushˡ H.homomorphism ⟩
H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘
H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))
≈˘⟨ identityʳ ⟩
(H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘
H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))) ∘ E.id
≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩
(H.₁ (G.₁ (F.⊗-homo.η (X , Y)) D.∘ G.⊗-homo.η (F.F₀ X , F.F₀ Y)) ∘
H.⊗-homo.η (G.F₀ (F.F₀ X) , G.F₀ (F.F₀ Y))) ∘
E.id ⊗₁ E.id
∎
}
}
-- Monoidal natural isomorphisms between strong monoidal functors.
module Strong where
open NT.Strong using (IsMonoidalNaturalTransformation)
open StrongMonoidalFunctor renaming (F to UF; monoidalFunctor to laxF)
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
(F G : StrongMonoidalFunctor C D) where
IsMonoidalNaturalIsomorphism : NaturalIsomorphism (UF F) (UF G) →
Set (o ⊔ ℓ′ ⊔ e′)
IsMonoidalNaturalIsomorphism α = IsMonoidalNaturalTransformation F G (F⇒G α)
-- NOTE. This record contains the same data as the lax version,
-- but the type arguments are different. This helps type
-- inference by providing the right constraints.
record MonoidalNaturalIsomorphism : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
field
U : NaturalIsomorphism (UF F) (UF G)
F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism U
laxNI : Lax.MonoidalNaturalIsomorphism (laxF F) (laxF G)
laxNI = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal }
open Lax.MonoidalNaturalIsomorphism laxNI public
hiding (U; F⇒G-isMonoidal)
infix 4 _≃_
_≃_ = MonoidalNaturalIsomorphism
open MonoidalNaturalIsomorphism
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where
infixr 9 _ⓘᵥ_
-- Since they contain the same data, we can strengthen a lax
-- monoidal isomorphism to a strong one.
strengthen : {F G : StrongMonoidalFunctor C D} →
(laxF F) Lax.≃ (laxF G) → F ≃ G
strengthen α = record { U = L.U ; F⇒G-isMonoidal = L.F⇒G-isMonoidal }
where module L = Lax.MonoidalNaturalIsomorphism α
-- Identity and compositions
id : {F : StrongMonoidalFunctor C D} → F ≃ F
id = strengthen Lax.id
_ⓘᵥ_ : {F G H : StrongMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H
α ⓘᵥ β = strengthen (laxNI α Lax.ⓘᵥ laxNI β)
isEquivalence : IsEquivalence _≃_
isEquivalence = record
{ refl = λ {F} → id {F}
; sym = λ α → record
{ U = NI.sym (U α)
; F⇒G-isMonoidal = F⇐G-isMonoidal α
}
; trans = λ {F} {G} {H} α β → _ⓘᵥ_ {F} {G} {H} β α
}
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{E : MonoidalCategory o″ ℓ″ e″} where
open Lax.MonoidalNaturalIsomorphism
infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_
_ⓘₕ_ : {F G : StrongMonoidalFunctor C D} {H I : StrongMonoidalFunctor D E} →
H ≃ I → F ≃ G → (H ∘Fˢ F) ≃ (I ∘Fˢ G)
-- FIXME: this definition is clearly equivalent to
--
-- α ⓘₕ β = strengthen (laxNI α Lax.ⓘₕ laxNI β)
--
-- but the latter takes an unreasonably long time to typecheck,
-- while the unfolded version typechecks almost immediately.
α ⓘₕ β = record
{ U = L.U
; F⇒G-isMonoidal = record
{ ε-compat = L.ε-compat
; ⊗-homo-compat = L.⊗-homo-compat }
}
where
module L = Lax.MonoidalNaturalIsomorphism (laxNI α Lax.ⓘₕ laxNI β)
_ⓘˡ_ : {F G : StrongMonoidalFunctor C D}
(H : StrongMonoidalFunctor D E) → F ≃ G → (H ∘Fˢ F) ≃ (H ∘Fˢ G)
H ⓘˡ α = id {F = H} ⓘₕ α
_ⓘʳ_ : {G H : StrongMonoidalFunctor D E} →
G ≃ H → (F : StrongMonoidalFunctor C D) → (G ∘Fˢ F) ≃ (H ∘Fˢ F)
α ⓘʳ F = α ⓘₕ id {F = F}
-- Left and right unitors.
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{F : StrongMonoidalFunctor C D} where
unitorˡ : idFˢ D ∘Fˢ F ≃ F
-- FIXME: Again, this unfolded definition typechecks considerably
-- faster than the equivalent
--
-- strengthen (Lax.unitorʳ {F = laxF F})
unitorˡ = record
{ U = L.U
; F⇒G-isMonoidal = record
{ ε-compat = L.ε-compat
; ⊗-homo-compat = L.⊗-homo-compat
}
}
where module L = Lax.MonoidalNaturalIsomorphism (Lax.unitorˡ {F = laxF F})
unitorʳ : F ∘Fˢ idFˢ C ≃ F
-- FIXME: ... same here ...
unitorʳ = record
{ U = L.U
; F⇒G-isMonoidal = record
{ ε-compat = L.ε-compat
; ⊗-homo-compat = L.⊗-homo-compat
}
}
where module L = Lax.MonoidalNaturalIsomorphism (Lax.unitorʳ {F = laxF F})
-- Associator.
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴}
{B : MonoidalCategory o ℓ e} {C : MonoidalCategory o′ ℓ′ e′}
{D : MonoidalCategory o″ ℓ″ e″} {E : MonoidalCategory o‴ ℓ‴ e‴}
{F : StrongMonoidalFunctor B C} {G : StrongMonoidalFunctor C D}
{H : StrongMonoidalFunctor D E} where
associator : (H ∘Fˢ G) ∘Fˢ F ≃ H ∘Fˢ (G ∘Fˢ F)
-- FIXME: ... and here. Though, for this one, even the unfolded
-- version takes a lot of time.
associator = record
{ U = L.U
; F⇒G-isMonoidal = record
{ ε-compat = L.ε-compat
; ⊗-homo-compat = L.⊗-homo-compat
}
}
where
α = Lax.associator {F = laxF F} {laxF G} {laxF H}
module L = Lax.MonoidalNaturalIsomorphism α
|
{
"alphanum_fraction": 0.5495579339,
"avg_line_length": 35.3260273973,
"ext": "agda",
"hexsha": "a44d8163434da34c79f487469d618166568a10b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/agda-categories",
"max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d07746023503cc8f49670e309a6170dc4b404b95",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/agda-categories",
"max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "8cd50f92ce3c91dbb325b4b0a66d231df809d0a9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iblech/agda-categories",
"max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:47.000Z",
"num_tokens": 5026,
"size": 12894
}
|
postulate
∞ : ∀ {a} (A : Set a) → Set a
♯_ : ∀ {a} {A : Set a} → A → ∞ A
♭ : ∀ {a} {A : Set a} → ∞ A → A
{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP ♯_ #-}
{-# BUILTIN FLAT ♭ #-}
{-# COMPILE GHC ♭ as flat #-}
|
{
"alphanum_fraction": 0.3973799127,
"avg_line_length": 20.8181818182,
"ext": "agda",
"hexsha": "6724d45814ab4740e5a112e9a326ca1ccd385114",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2909-5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2909-5.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2909-5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 104,
"size": 229
}
|
-- Some basic stuff for Conor's talk.
module SomeBasicStuff where
infixr 40 _::_ _↦_∣_
infix 30 _∈_ _==_
infixr 10 _,_
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
data Σ (A : Set)(B : A -> Set) : Set where
_,_ : (x : A) -> B x -> Σ A B
_×_ : Set -> Set -> Set
A × B = Σ A \_ -> B
fst : {A : Set}{B : A -> Set} -> Σ A B -> A
fst (x , y) = x
snd : {A : Set}{B : A -> Set}(p : Σ A B) -> B (fst p)
snd (x , y) = y
data False : Set where
record True : Set where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data [_] (A : Set) : Set where
[] : [ A ]
_::_ : A -> [ A ] -> [ A ]
data _∈_ {A : Set} : A -> [ A ] -> Set where
zero : forall {x xs} -> x ∈ x :: xs
suc : forall {x y xs} -> x ∈ xs -> x ∈ y :: xs
postulate Tag : Set
{-# BUILTIN STRING Tag #-}
Enumeration = [ Tag ]
data Enum (ts : Enumeration) : Set where
enum : (t : Tag) -> t ∈ ts -> Enum ts
data Table (A : Set1) : Enumeration -> Set1 where
[] : Table A []
_↦_∣_ : forall {ts} -> (t : Tag) -> A -> Table A ts ->
Table A (t :: ts)
lookup : forall {A ts} -> Table A ts -> Enum ts -> A
lookup [] (enum _ ())
lookup (.t ↦ v ∣ tbl) (enum t zero) = v
lookup (_ ↦ v ∣ tbl) (enum t (suc p)) = lookup tbl (enum t p)
|
{
"alphanum_fraction": 0.4916334661,
"avg_line_length": 22.4107142857,
"ext": "agda",
"hexsha": "bb535dbc5fdd688607e83ef7d1e21c4d873b0267",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/DTP08/conor/SomeBasicStuff.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/DTP08/conor/SomeBasicStuff.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/DTP08/conor/SomeBasicStuff.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 487,
"size": 1255
}
|
module sn-calculus-confluence.potpot where
open import utility
open import sn-calculus
open import context-properties
using (->pot-view)
open import Esterel.Lang
open import Esterel.Lang.CanFunction
using (Can ; Canₛ ; Canₛₕ ; Canθ ; Canθₛ ; Canθₛₕ)
open import Esterel.Lang.CanFunction.Properties
using ( canθₛ-set-sig-monotonic-absence-lemma ; canθₛₕ-set-sig-monotonic-absence-lemma
; canθ-shr-var-irr
)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.Context
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Data.Bool
using (Bool ; true ; false ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; [_])
open import Data.List.Any
using (Any ; here ; there ; any)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; _≟_ ; zero ; suc ; _+_)
open import Data.Nat.Properties.Simple
using ( +-comm ; +-assoc)
open import Data.Product
using (Σ ; Σ-syntax ; _,_ ; proj₁ ; proj₂ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; id ; _∋_)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; sym ; trans ; cong ; subst ; module ≡-Reasoning)
open ->pot-view
open ≡-Reasoning
using (begin_ ; _∎ ; _≡⟨_⟩_ ; _≡⟨⟩_)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
pot-pot-conf-rec : ∀{p θ ql θl qr θr eql eqr A Al Ar Aql Arl}
→ {ρθ·psn⟶₁ρθl·ql : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θl , Al ⟩· ql)}
→ {ρθ·psn⟶₁ρθr·qr : (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ θr , Ar ⟩· qr)}
→ ->pot-view ρθ·psn⟶₁ρθl·ql eql Aql
→ ->pot-view ρθ·psn⟶₁ρθr·qr eqr Arl
→ (ρ⟨ θl , Al ⟩· ql ≡ ρ⟨ θr , Ar ⟩· qr)
⊎
Σ[ θo ∈ Env ]
(ρ⟨ θl , Al ⟩· ql) sn⟶₁ (ρ⟨ θo , A ⟩· p) ×
(ρ⟨ θr , Ar ⟩· qr) sn⟶₁ (ρ⟨ θo , A ⟩· p)
pot-pot-conf-rec {p} {θ} {.p} {θl} {.p} {θr} {_} {_} {A} {.A} {.A} {refl} {refl}
{.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)}
{.(rabsence {θ} {p} {S'} S'∈ θS'≡unknown S'∉can-p-θ)}
(vabsence S S∈ θS≡unknown S∉can-p-θ)
(vabsence S' S'∈ θS'≡unknown S'∉can-p-θ)
with S Signal.≟ S'
... | yes refl = inj₁ refl
... | no S≢S' =
inj₂
(_ ,
subst (λ sig* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (Θ sig* (Env.shr θl) (Env.var θl)) , A ⟩· p)
(SigMap.put-comm {_} {Env.sig θ} {S} {S'} {Signal.absent} {Signal.absent} S≢S')
(rabsence {θl} {p} {S'} S'∈Domθl θlS'≡unknown
(λ S'∈can-p-θl →
S'∉can-p-θ
(canθₛ-set-sig-monotonic-absence-lemma (Env.sig θ) 0 p S Env.[]env
S∈ θS≡unknown (Signal.unwrap S') S'∈can-p-θl))) ,′
rabsence {θr} {p} {S} S∈Domθr θrS≡unknown
(λ S∈can-p-θr →
S∉can-p-θ
(canθₛ-set-sig-monotonic-absence-lemma (Env.sig θ) 0 p S' Env.[]env
S'∈ θS'≡unknown (Signal.unwrap S) S∈can-p-θr)))
where
S∈Domθr = Env.sig-set-mono' {S} {S'} {θ} {Signal.absent} {S'∈} S∈
S'∈Domθl = Env.sig-set-mono' {S'} {S} {θ} {Signal.absent} {S∈} S'∈
θrS≡unknown = SigMap.putputget {_} {Env.sig θ} {S} {S'} {Signal.unknown} {Signal.absent}
S≢S' S∈ S∈Domθr θS≡unknown
θlS'≡unknown = SigMap.putputget {_} {Env.sig θ} {S'} {S} {Signal.unknown} {Signal.absent}
(S≢S' ∘ sym) S'∈ S'∈Domθl θS'≡unknown
pot-pot-conf-rec {p} {θ} {.p} {θl} {.p} {θr} {_} {_} {A} {.A} {.A} {refl} {refl}
{.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)}
{.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)}
(vabsence S S∈ θS≡unknown S∉can-p-θ)
(vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ) =
inj₂
(_ ,
rreadyness {θl} {p} {s} s∈ θs≡old⊎θs≡new
(λ s∈can-p-θl →
s∉can-p-θ
(canθₛₕ-set-sig-monotonic-absence-lemma (Env.sig θ) 0 p S Env.[]env
S∈ θS≡unknown (SharedVar.unwrap s) s∈can-p-θl)) ,′
rabsence {θr} {p} {S} S∈ θS≡unknown
(λ S∈can-p-θr →
S∉can-p-θ
(subst (Signal.unwrap S ∈_)
(cong proj₁ (canθ-shr-var-irr (Env.sig θ) 0 p Env.[]env Env.[]env refl))
S∈can-p-θr)))
pot-pot-conf-rec {p} {θ} {.p} {θl} {.p} {θr} {_} {_} {A} {.A} {.A} {refl} {refl}
{.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)}
{.(rabsence {θ} {p} {S} S∈ θS≡unknown S∉can-p-θ)}
(vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ)
(vabsence S S∈ θS≡unknown S∉can-p-θ) =
inj₂
(_ ,
rabsence {θl} {p} {S} S∈ θS≡unknown
(λ S∈can-p-θl →
S∉can-p-θ
(subst (Signal.unwrap S ∈_)
(cong proj₁ (canθ-shr-var-irr (Env.sig θ) 0 p Env.[]env Env.[]env refl))
S∈can-p-θl)) ,′
rreadyness {θr} {p} {s} s∈ θs≡old⊎θs≡new
(λ s∈can-p-θr →
s∉can-p-θ
(canθₛₕ-set-sig-monotonic-absence-lemma (Env.sig θ) 0 p S Env.[]env
S∈ θS≡unknown (SharedVar.unwrap s) s∈can-p-θr)))
pot-pot-conf-rec {p} {θ} {.p} {θl} {.p} {θr} {_} {_} {A} {.A} {.A} {refl} {refl}
{.(rreadyness {θ} {p} {s} s∈ θs≡old⊎θs≡new s∉can-p-θ)}
{.(rreadyness {θ} {p} {s'} s'∈ θs'≡old⊎θs'≡new s'∉can-p-θ)}
(vreadyness s s∈ θs≡old⊎θs≡new s∉can-p-θ)
(vreadyness s' s'∈ θs'≡old⊎θs'≡new s'∉can-p-θ)
with s SharedVar.≟ s'
... | yes refl rewrite Env.shr-vals-∈-irr {s'} {θ} s∈ s'∈ = inj₁ refl
... | no s≢s' =
inj₂
(_ ,
subst (λ shr* → ρ⟨ θl , A ⟩· p sn⟶₁ ρ⟨ (Θ (Env.sig θl) shr* (Env.var θl)) , A ⟩· p)
(cong Env.shr
(begin
Env.set-shr {s'} θl s'∈Domθl SharedVar.ready
(Env.shr-vals {s'} θl s'∈Domθl)
≡⟨ cong (Env.set-shr {s'} θl s'∈Domθl SharedVar.ready ∘ proj₂) θls'≡θs' ⟩
Env.set-shr {s'} θl s'∈Domθl SharedVar.ready θs'
≡⟨ cong (λ shr* → Θ (Env.sig θ) shr* (Env.var θ))
(ShrMap.put-comm {_} {Env.shr θ} {s} {s'}
{SharedVar.ready , θs} {SharedVar.ready , θs'} s≢s') ⟩
Env.set-shr {s} θr s∈Domθr SharedVar.ready θs
≡⟨ cong (Env.set-shr {s} θr s∈Domθr SharedVar.ready ∘ proj₂) (sym θrs≡θs) ⟩
Env.set-shr {s} θr s∈Domθr SharedVar.ready
(Env.shr-vals {s} θr s∈Domθr)
∎))
(rreadyness {θl} {p} {s'} s'∈Domθl
(Data.Sum.map
(trans (cong proj₁ θls'≡θs'))
(trans (cong proj₁ θls'≡θs'))
θs'≡old⊎θs'≡new)
(λ s'∈can-p-θl →
s'∉can-p-θ
(subst (SharedVar.unwrap s' ∈_)
(cong (proj₂ ∘ proj₂) (canθ-shr-var-irr (Env.sig θ) 0 p Env.[]env Env.[]env refl))
s'∈can-p-θl))) ,′
rreadyness {θr} {p} {s} s∈Domθr
(Data.Sum.map
(trans (cong proj₁ θrs≡θs))
(trans (cong proj₁ θrs≡θs))
θs≡old⊎θs≡new)
(λ s∈can-p-θr →
s∉can-p-θ
(subst (SharedVar.unwrap s ∈_)
(cong (proj₂ ∘ proj₂) (canθ-shr-var-irr (Env.sig θ) 0 p Env.[]env Env.[]env refl))
s∈can-p-θr)))
where
θs = Env.shr-vals {s} θ s∈
θs' = Env.shr-vals {s'} θ s'∈
s∈Domθr = Env.shr-set-mono' {s} {s'} {θ} {SharedVar.ready} {θs'} {s'∈} s∈
s'∈Domθl = Env.shr-set-mono' {s'} {s} {θ} {SharedVar.ready} {θs} {s∈} s'∈
θrs≡θs = ShrMap.putputget {_} {Env.shr θ} {s} {s'} {_} {SharedVar.ready ,′ θs'}
s≢s' s∈ s∈Domθr refl
θls'≡θs' = ShrMap.putputget {_} {Env.shr θ} {s'} {s} {_} {SharedVar.ready ,′ θs}
(s≢s' ∘ sym) s'∈ s'∈Domθl refl
|
{
"alphanum_fraction": 0.5273913579,
"avg_line_length": 41.2335025381,
"ext": "agda",
"hexsha": "ccb5da3c8f74d61d13d50844c05bc77b1890167d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/sn-calculus-confluence/potpot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/sn-calculus-confluence/potpot.agda",
"max_line_length": 97,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/sn-calculus-confluence/potpot.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 3632,
"size": 8123
}
|
{-# OPTIONS --safe #-}
module Issue2487.d where
-- trying to import a two-level, non-safe module
open import Issue2487.e
|
{
"alphanum_fraction": 0.7213114754,
"avg_line_length": 20.3333333333,
"ext": "agda",
"hexsha": "6cde35d19d7a0151ead9e8fb81292cde3a290e56",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2487/d.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2487/d.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2487/d.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 31,
"size": 122
}
|
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.EqReasoning where
open import Categories.Support.Equivalence using (Setoid; module Setoid)
open import Relation.Binary.PropositionalEquality using () renaming (_≡_ to _≣_; trans to ≣-trans; sym to ≣-sym; refl to ≣-refl)
module SetoidReasoning {s₁ s₂} (S : Setoid s₁ s₂) where
open Setoid S
infix 4 _IsRelatedTo_
infix 1 begin_
infixr 2 _≈⟨_⟩_ _↓⟨_⟩_ _↑⟨_⟩_ _↓≣⟨_⟩_ _↑≣⟨_⟩_ _↕_
infix 3 _∎
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : Carrier) : Set s₂ where
relTo : (x∼y : x ≈ y) → x IsRelatedTo y
.begin_ : ∀ {x y} → x IsRelatedTo y → x ≈ y
begin relTo x∼y = x∼y
._↓⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z)
-- where open IsEquivalence isEquivalence
._↑⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑⟨ y∼x ⟩ relTo y∼z = relTo (trans (sym y∼x) y∼z)
-- where open IsEquivalence isEquivalence
-- the syntax of the ancients, for compatibility
._≈⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_≈⟨_⟩_ = _↓⟨_⟩_
._↓≣⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓≣⟨ ≣-refl ⟩ y∼z = y∼z
._↑≣⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑≣⟨ ≣-refl ⟩ y∼z = y∼z
._↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z
_ ↕ x∼z = x∼z
._∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
-- where open IsEquivalence isEquivalence
module ≣-reasoning {ℓ} (S : Set ℓ) where
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _≈⟨_⟩_
infixr 2 _↓⟨_⟩_
infixr 2 _↑⟨_⟩_
infixr 2 _↕_
infix 1 begin_
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : S) : Set ℓ where
relTo : (x∼y : x ≣ y) → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ≣ y
begin relTo x∼y = x∼y
-- the syntax of the ancients, for compatibility
_≈⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ≈⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans x∼y y∼z)
_↓⟨_⟩_ : ∀ x {y z} → x ≣ y → y IsRelatedTo z → x IsRelatedTo z
_ ↓⟨ x∼y ⟩ relTo y∼z = relTo (≣-trans x∼y y∼z)
_↑⟨_⟩_ : ∀ x {y z} → y ≣ x → y IsRelatedTo z → x IsRelatedTo z
_ ↑⟨ y∼x ⟩ relTo y∼z = relTo (≣-trans (≣-sym y∼x) y∼z)
_↕_ : ∀ x {z} → x IsRelatedTo z → x IsRelatedTo z
_ ↕ x∼z = x∼z
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo ≣-refl
|
{
"alphanum_fraction": 0.6003098373,
"avg_line_length": 30.7380952381,
"ext": "agda",
"hexsha": "dcfacdeee67a710d81c1876827ffeac891055452",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/EqReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/EqReasoning.agda",
"max_line_length": 128,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Support/EqReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 1169,
"size": 2582
}
|
{-
This file contains a summary of what remains for π₄(S³) ≡ ℤ/2ℤ to be proved.
See the module π₄S³ at the end of this file.
-}
{-# OPTIONS --safe #-}
module Cubical.Homotopy.Group.Pi4S3.Summary where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Data.Nat.Base
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Int renaming (ℤ to Int) hiding (_+_)
open import Cubical.HITs.Sn
open import Cubical.HITs.SetTruncation
open import Cubical.Homotopy.Group.Base hiding (π)
open import Cubical.Homotopy.HopfInvariant.Base
open import Cubical.Homotopy.HopfInvariant.Homomorphism
open import Cubical.Homotopy.HopfInvariant.HopfMap
open import Cubical.Homotopy.Whitehead
open import Cubical.Homotopy.Group.Pi3S2
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.IntMod
open import Cubical.Algebra.Group.ZAction
private
variable
ℓ : Level
-- TODO: ideally this would not be off by one in the definition of π'Gr
π : ℕ → Pointed ℓ → Group ℓ
π n X = π'Gr (predℕ n) X
-- Nicer notation for the spheres (as pointed types)
𝕊² 𝕊³ : Pointed₀
𝕊² = S₊∙ 2
𝕊³ = S₊∙ 3
-- Whitehead product
[_]× : {X : Pointed ℓ} {n m : ℕ} → π' (suc n) X × π' (suc m) X → π' (suc (n + m)) X
[_]× (f , g) = [ f ∣ g ]π'
-- Some type abbreviations (unproved results)
π₄S³≡ℤ/something : GroupEquiv (π 3 𝕊²) ℤ → Type₁
π₄S³≡ℤ/something eq =
π 4 𝕊³ ≡ ℤ/ abs (eq .fst .fst [ ∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂ ]×)
-- Summary of the last steps of the proof
module π₄S³
(π₃S²≃ℤ : GroupEquiv (π 3 𝕊²) ℤ)
(gen-by-HopfMap : gen₁-by (π 3 𝕊²) ∣ HopfMap ∣₂)
(π₄S³≡ℤ/whitehead : π₄S³≡ℤ/something π₃S²≃ℤ)
(hopfWhitehead : abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×)) ≡ 2)
where
-- Package the Hopf invariant up into a group equivalence
hopfInvariantEquiv : GroupEquiv (π 3 𝕊²) ℤ
fst (fst hopfInvariantEquiv) = HopfInvariant-π' 0
snd (fst hopfInvariantEquiv) =
GroupEquivℤ-isEquiv (invGroupEquiv π₃S²≃ℤ) ∣ HopfMap ∣₂
gen-by-HopfMap (GroupHom-HopfInvariant-π' 0)
(abs→⊎ _ _ HopfInvariant-HopfMap)
snd hopfInvariantEquiv = snd (GroupHom-HopfInvariant-π' 0)
-- The two equivalences map [ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]× to
-- the same number, modulo the sign
remAbs : abs (groupEquivFun π₃S²≃ℤ [ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×)
≡ abs (groupEquivFun hopfInvariantEquiv [ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×)
remAbs = absGroupEquivℤGroup (invGroupEquiv π₃S²≃ℤ) (invGroupEquiv hopfInvariantEquiv) _
-- So the image of [ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]× under π₃S²≃ℤ
-- is 2 (modulo the sign)
remAbs₂ : abs (groupEquivFun π₃S²≃ℤ [ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×) ≡ 2
remAbs₂ = remAbs ∙ hopfWhitehead
-- The final result then follows
π₄S³≡ℤ : π 4 𝕊³ ≡ ℤ/ 2
π₄S³≡ℤ = π₄S³≡ℤ/whitehead ∙ cong (ℤ/_) remAbs₂
-- In order to instantiate the module, we need the four following lemmas:
-- Proved: 2/4
{- Lemma 1 -}
Lemma₁ : GroupEquiv ℤ (π'Gr 2 (S₊∙ 2))
Lemma₁ = invGroupEquiv π₃S²≅ℤ
{- Lemma 2 -}
Lemma₂ : gen₁-by (π 3 𝕊²) ∣ HopfMap ∣₂
Lemma₂ = π₂S³-gen-by-HopfMap
{- Lemma 3 (WIP) -}
{-
Lemma₃ : π₄S³≡ℤ/something (invGroupEquiv π₃S²≅ℤ)
Lemma₃ = ?
-}
{- Lemma 4 (WIP) -}
{-
Lemma₄ : abs (HopfInvariant-π' 0 ([ (∣ idfun∙ _ ∣₂ , ∣ idfun∙ _ ∣₂) ]×)) ≡ 2)
Lemma₄ = ?
-}
|
{
"alphanum_fraction": 0.6714163579,
"avg_line_length": 31.3303571429,
"ext": "agda",
"hexsha": "0f91508edadbd8e48c3f06e445d9a59cee9c6b27",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "FernandoLarrain/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "FernandoLarrain/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/Summary.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z",
"num_tokens": 1476,
"size": 3509
}
|
------------------------------------------------------------------------
-- The Agda standard library
--
-- More efficient mod and divMod operations (require the K axiom)
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.Nat.DivMod.WithK where
open import Data.Nat using (ℕ; _+_; _*_; _≟_; zero; suc)
open import Data.Nat.DivMod hiding (_mod_; _divMod_)
open import Data.Nat.Properties using (≤⇒≤″)
open import Data.Nat.WithK
open import Data.Fin using (Fin; toℕ; fromℕ≤″)
open import Data.Fin.Properties using (toℕ-fromℕ≤″)
open import Function using (_$_)
open import Relation.Nullary.Decidable using (False)
open import Relation.Binary.PropositionalEquality
using (refl; sym; cong; module ≡-Reasoning)
open import Relation.Binary.PropositionalEquality.WithK
open ≡-Reasoning
infixl 7 _mod_ _divMod_
------------------------------------------------------------------------
-- Certified modulus
_mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
(a mod 0) {}
(a mod suc n) = fromℕ≤″ (a % suc n) (≤″-erase (≤⇒≤″ (a%n<n a n)))
------------------------------------------------------------------------
-- Returns modulus and division result with correctness proof
_divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
DivMod dividend divisor
(a divMod 0) {}
(a divMod suc n) = result (a div suc n) (a mod suc n) $ ≡-erase $ begin
a ≡⟨ a≡a%n+[a/n]*n a n ⟩
a % suc n + [a/n]*n ≡⟨ cong (_+ [a/n]*n) (sym (toℕ-fromℕ≤″ lemma′)) ⟩
toℕ (fromℕ≤″ _ lemma′) + [a/n]*n ∎
where
lemma′ = ≤″-erase (≤⇒≤″ (a%n<n a n))
[a/n]*n = a div suc n * suc n
|
{
"alphanum_fraction": 0.5263466042,
"avg_line_length": 36.3404255319,
"ext": "agda",
"hexsha": "c90a32ff99cec8a00b2e747cd8a6230033d92797",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod/WithK.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Nat/DivMod/WithK.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 513,
"size": 1708
}
|
{-# OPTIONS --cubical-compatible #-}
mutual
record R : Set₁ where
constructor c
field
@0 A : Set
x : _
_ : (@0 A : Set) → A → R
_ = c
|
{
"alphanum_fraction": 0.4819277108,
"avg_line_length": 12.7692307692,
"ext": "agda",
"hexsha": "e594a036a83e5c6fe39f5b01421681a48449788f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue5434-4.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue5434-4.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue5434-4.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 57,
"size": 166
}
|
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Lemmas
open import LibraBFT.Base.PKCS
-- This module provides a utility function to make it easy to
-- provide the bft-lemma for implementations in which the
-- participants can have different voting power.
-- The module is parametrized with the number of participants -
-- `authorsN`, and with a function - `votPower` - that assigns to
-- each participant its voting power. The parameter `N` corresponds
-- to the total voting power of all participants, as required by the
-- parameter `totalVotPower` in the inner module. These
-- implementations should assume a fixed unknown subset of malicious
-- nodes - Byzantine - but should also assume a security threshold
-- `bizF`, such that N > 3 * bizF, which should be provided in
-- parameter `isBFT`. Finally, the `bft-assumption` states that the
-- combined voting power of Byzantine nodes must not exceed the
-- security threshold `bizF`.
-- The bft-lemma is the last lemma in this file and proves that in
-- the intersection of any quorums, whose combined voting power is
-- greater than or equal to `N - bizF`, there is an honest Member.
module LibraBFT.Abstract.BFT
(authorsN : ℕ)
(votPower : Fin authorsN → ℕ)
(bizF : ℕ)
(isBFT : f-sum votPower (allFin authorsN) ≥ suc (3 * bizF))
(getPubKey : Fin authorsN → PK)
where
-- The set of members of this epoch.
Member : Set
Member = Fin authorsN
Meta-dishonest? : ∀ (m : Member) → Dec (Meta-Dishonest-PK (getPubKey m))
Meta-dishonest? m = Meta-DishonestPK? (getPubKey m)
CombinedPower : List Member → ℕ
CombinedPower = f-sum votPower
TotalVotPower : ℕ
TotalVotPower = f-sum votPower (allFin authorsN)
open DecLemmas {A = Member} _≟Fin_
-- The bft-assumption states that the combined voting power of
-- Byzantine nodes must not exceed the security threshold
-- `bizF`. Therefore, for any list of distinct participants, the
-- combined power of the dishonest nodes is less than or equal to
-- `bizF`.
module _ (bft-assumption : ∀ (xs : List Member)
→ allDistinct xs
→ CombinedPower (List-filter Meta-dishonest? xs) ≤ bizF)
where
participants : List Member
participants = allFin authorsN
members⊆ : ∀ {xs : List Member} → xs ⊆List participants
members⊆ {_} {x} _ = Any-tabulate⁺ {f = id} x refl
union-votPower≤N : ∀ (xs ys : List Member)
→ allDistinct xs → allDistinct ys
→ CombinedPower (union xs ys) ≤ TotalVotPower
union-votPower≤N xs ys dxs dys
= sum-⊆-≤ (union xs ys) votPower (unionDistinct xs ys dxs dys) members⊆
union-votPower≡ : ∀ (xs ys : List Member)
→ allDistinct xs → allDistinct ys
→ CombinedPower (union xs ys) ≡ CombinedPower (xs ++ ys)
∸ CombinedPower (intersect xs ys)
union-votPower≡ xs [] dxs dys rewrite ++-identityʳ xs = refl
union-votPower≡ xs (y ∷ ys) dxs dys
with y ∈? xs
...| yes y∈xs rewrite union-votPower≡ xs ys dxs (allDistinctTail dys)
| sym (m+n∸n≡m (CombinedPower (xs ++ ys)) (votPower y))
| ∸-+-assoc (CombinedPower (xs ++ ys) + votPower y)
(votPower y)
(CombinedPower (intersect xs ys))
| map-++-commute votPower xs ys
| sum-++-commute (List-map votPower xs) (List-map votPower ys)
| +-assoc (CombinedPower xs)
(CombinedPower ys)
(votPower y)
| +-comm (CombinedPower ys) (votPower y)
| sym (sum-++-commute (List-map votPower xs) (List-map votPower (y ∷ ys)))
| sym (map-++-commute votPower xs (y ∷ ys)) = refl
...| no y∉xs rewrite union-votPower≡ xs ys dxs (allDistinctTail dys)
| sym (+-∸-assoc (votPower y) (sumIntersect≤ xs ys votPower))
| map-++-commute votPower xs ys
| sum-++-commute (List-map votPower xs) (List-map votPower ys)
| sym (+-assoc (votPower y) (CombinedPower xs) (CombinedPower ys))
| +-comm (votPower y) (CombinedPower xs)
| +-assoc (CombinedPower xs) (votPower y) (CombinedPower ys)
| sym (sum-++-commute (List-map votPower xs) (List-map votPower (y ∷ ys)))
| sym (map-++-commute votPower xs (y ∷ ys)) = refl
quorumInt>biz : ∀ (xs ys : List Member)
→ TotalVotPower ∸ bizF ≤ CombinedPower xs
→ TotalVotPower ∸ bizF ≤ CombinedPower ys
→ CombinedPower (xs ++ ys) ∸ TotalVotPower ≤ CombinedPower (intersect xs ys)
→ bizF + 1 ≤ CombinedPower (intersect xs ys)
quorumInt>biz xs ys q≤x q≤y ≤combPower
rewrite map-++-commute votPower xs ys
| sum-++-commute (List-map votPower xs) (List-map votPower ys)
= let powInt = CombinedPower (intersect xs ys)
p₁ = ≤-trans (∸-monoˡ-≤ TotalVotPower (+-mono-≤ q≤x q≤y)) ≤combPower
p₂ = subst (_≤ powInt) (simpExp₁ TotalVotPower bizF) p₁
p₃ = ≤-trans (∸-monoˡ-≤ (2 * bizF) isBFT) p₂
in subst (_≤ powInt) (simpExp₂ bizF) p₃
where simpExp₁ : ∀ (x y : ℕ) → (x ∸ y) + (x ∸ y) ∸ x ≡ x ∸ (2 * y)
simpExp₁ x y rewrite sym (*-identityʳ (x ∸ y))
| sym (*-distribˡ-+ (x ∸ y) 1 1)
| *-comm (x ∸ y) 2
| *-distribˡ-∸ 2 x y
| ∸-+-assoc (2 * x) (2 * y) x
| +-comm (2 * y) x
| sym (∸-+-assoc (2 * x) x (2 * y))
| +-identityʳ x
| m+n∸n≡m x x = refl
simpExp₂ : ∀ (x : ℕ) → suc (3 * x) ∸ 2 * x ≡ x + 1
simpExp₂ x rewrite +-∸-assoc 1 (*-monoˡ-≤ x {2} {3} (s≤s (s≤s z≤n)))
| sym (*-distribʳ-∸ x 3 2)
| sym (+-suc x 0) = refl
partition-hon : ∀ {xs dis hon : List Member} {x : Member}
→ partition Meta-dishonest? xs ≡ (dis , x ∷ hon)
→ x ∈ xs × Meta-Honest-PK (getPubKey x)
partition-hon {x ∷ xs} eq
with Meta-dishonest? x | eq
...| no imp | refl = here refl , imp
...| yes _ | eq₁
with partition Meta-dishonest? xs | inspect (partition Meta-dishonest?) xs
...| _ , x₂ ∷ _ | [ eq₂ ] rewrite just-injective (cong (head ∘ proj₂) eq₁)
= ×-map₁ there (partition-hon eq₂)
partition-dis : ∀ {xs dis : List Member}
→ partition Meta-dishonest? xs ≡ (dis , [])
→ List-filter Meta-dishonest? xs ≡ xs
partition-dis {[]} _ = refl
partition-dis {x ∷ xs} eq
with Meta-dishonest? x | eq
...| no ¬dis | ()
...| yes _ | _
with partition Meta-dishonest? xs | inspect (partition Meta-dishonest?) xs
...| _ , [] | [ eq₁ ] = cong (x ∷_) (partition-dis {xs} eq₁)
-- TODO-1 : An alternative to prove this lemma would be:
-- - First prove that
-- CombinedPower (List-filter Meta-dishonest? xs) ≤ CombinedPower xs.
-- - Then prove that:
-- - If CombinedPower (List-filter Meta-dishonest? xs) < CombinedPower xs
-- then ∃[ α ] (α ∈ xs × Meta-Honest-PK (getPubKey α)).
-- - If CombinedPower (List-filter Meta-dishonest? xs ≡ CombinedPower xs we
-- get a contradiction using the bft assumption (as we have now).
find-honest : ∀ {xs : List Member}
→ allDistinct xs
→ bizF < CombinedPower xs
→ ∃[ α ] (α ∈ xs × Meta-Honest-PK (getPubKey α))
find-honest {xs} sxs biz<
with partition Meta-dishonest? xs | inspect (partition Meta-dishonest?) xs
...| dis , [] | [ eq ]
= let bft = bft-assumption xs sxs
xsVot≤f = subst (_≤ bizF) (cong CombinedPower (partition-dis {xs} eq)) bft
in ⊥-elim (<⇒≱ biz< xsVot≤f)
...| dis , x ∷ hon | [ eq ] = x , partition-hon eq
bft-lemma : {xs ys : List Member}
→ allDistinct xs → allDistinct ys
→ TotalVotPower ∸ bizF ≤ CombinedPower xs
→ TotalVotPower ∸ bizF ≤ CombinedPower ys
→ ∃[ α ] (α ∈ xs × α ∈ ys × Meta-Honest-PK (getPubKey α))
bft-lemma {xs} {ys} all≢xs all≢ys q≤≢xs q≤≢ys
= let |q₁|+|q₂| = CombinedPower (xs ++ ys)
|q₁∩q₂| = CombinedPower (intersect xs ys)
|q₁∪q₂|≤n = union-votPower≤N xs ys all≢xs all≢ys
|q₁∪q₂|≡ = union-votPower≡ xs ys all≢xs all≢ys
exp₁ = subst (_≤ TotalVotPower) |q₁∪q₂|≡ |q₁∪q₂|≤n
exp₂ = m∸n≤o⇒m∸o≤n |q₁|+|q₂| |q₁∩q₂| TotalVotPower exp₁
f+1≤|q₁∩q₂| = quorumInt>biz xs ys q≤≢xs q≤≢ys exp₂
f<|q₁∩q₂| = subst (_≤ |q₁∩q₂|) (+-comm bizF 1) f+1≤|q₁∩q₂|
intDist = intersectDistinct xs ys all≢xs all≢ys
honInf = find-honest {intersect xs ys} intDist f<|q₁∩q₂|
h∈∩ = ∈-intersect xs ys ((proj₁ ∘ proj₂) honInf)
in proj₁ honInf , proj₁ h∈∩ , proj₂ h∈∩ , (proj₂ ∘ proj₂) honInf
|
{
"alphanum_fraction": 0.5465104221,
"avg_line_length": 49.1989795918,
"ext": "agda",
"hexsha": "6c6fdf0bd8b07bc2bd3273ea2fa97385bbf87a57",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Abstract/BFT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Abstract/BFT.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Abstract/BFT.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2971,
"size": 9643
}
|
module Coirc.Bot where
open import Coirc
open import Coirc.Network
open import Coinduction
open import IO
open import Data.String
server = "irc.freenode.org"
name = "coalgbot"
real = "Coalgebra Bot"
bot : Bot
bot =
put (nick name)
(♯ put (user name real)
(♯ loop)) where
loop = get f where
f : Event → Bot
f notice = put (print "<notice>") (♯ loop)
f numeric = put (print "<numeric-reply>") (♯ loop)
f mode = put (print "<mode>") (♯ loop)
f ping = put (print "<ping/pong>") (♯ put (pong name) (♯ loop))
f (privmsg source "/quit") =
put (privmsg source "ciao")
(♯ put (quit (source ++ " told me to leave"))
(♯ loop))
f (privmsg source text) =
put (print ("<privmsg>: " ++ text))
(♯ put (privmsg source "interesting, tell me more!")
(♯ loop))
main = run (runBot bot server)
|
{
"alphanum_fraction": 0.5948174323,
"avg_line_length": 24.9705882353,
"ext": "agda",
"hexsha": "71365282f5dcf28948e3c0e0dff313cc49bed907",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:53:29.000Z",
"max_forks_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/coirc",
"max_forks_repo_path": "src/Coirc/Bot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/coirc",
"max_issues_repo_path": "src/Coirc/Bot.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd5b9aeb84851da56ce018ed15a7da1dcc949461",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/coirc",
"max_stars_repo_path": "src/Coirc/Bot.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 265,
"size": 849
}
|
{-# OPTIONS --cubical --safe #-}
open import Prelude
open import Relation.Binary
module LexPerm where
|
{
"alphanum_fraction": 0.7403846154,
"avg_line_length": 14.8571428571,
"ext": "agda",
"hexsha": "7e7aaa5b22553b8a99f7675f70c527ac5e27ef78",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "LexPerm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "LexPerm.agda",
"max_line_length": 32,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "LexPerm.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 23,
"size": 104
}
|
open import Prelude
module Implicits.Resolution.Finite.Resolution where
open import Coinduction
open import Data.Fin.Substitution
open import Data.List
open import Data.List.Any
open Membership-≡
open import Implicits.Syntax
open import Implicits.Substitutions
open import Implicits.Resolution.Termination
open import Induction
open import Induction.Nat
open import Relation.Binary using (Rel)
mutual
data _⊢_↓_ {ν} (Δ : ICtx ν) : Type ν → SimpleType ν → Set where
i-simp : ∀ a → Δ ⊢ simpl a ↓ a
i-iabs : ∀ {ρ₁ ρ₂ a} → (, ρ₁) hρ< (, ρ₂) → Δ ⊢ᵣ ρ₁ → Δ ⊢ ρ₂ ↓ a → Δ ⊢ ρ₁ ⇒ ρ₂ ↓ a
i-tabs : ∀ {ρ a} b → Δ ⊢ ρ tp[/tp b ] ↓ a → Δ ⊢ ∀' ρ ↓ a
data _⊢ᵣ_ {ν} (Δ : ICtx ν) : Type ν → Set where
r-simp : ∀ {r τ} → r ∈ Δ → Δ ⊢ r ↓ τ → Δ ⊢ᵣ simpl τ
r-iabs : ∀ {ρ₁ ρ₂} → ((ρ₁ ∷ Δ) ⊢ᵣ ρ₂) → Δ ⊢ᵣ (ρ₁ ⇒ ρ₂)
r-tabs : ∀ {ρ} → ictx-weaken Δ ⊢ᵣ ρ → Δ ⊢ᵣ ∀' ρ
|
{
"alphanum_fraction": 0.6112385321,
"avg_line_length": 31.1428571429,
"ext": "agda",
"hexsha": "c7bd71c9711765c7b70ba4794c7c086179d5ada9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Finite/Resolution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Finite/Resolution.agda",
"max_line_length": 85,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Finite/Resolution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 379,
"size": 872
}
|
module Data.Fin.Sigma where
open import Prelude
open import Data.Nat
open import Data.Nat.Properties
Fin : ℕ → Type
Fin n = ∃ m × (m < n)
open import Data.List
_!!_ : (xs : List A) → Fin (length xs) → A
(x ∷ xs) !! (zero , p) = x
(x ∷ xs) !! (suc n , p) = xs !! (n , p)
|
{
"alphanum_fraction": 0.5781818182,
"avg_line_length": 18.3333333333,
"ext": "agda",
"hexsha": "aaacc2f764feaa66f027c6a7f6d92829467968d3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Sigma.agda",
"max_line_length": 42,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 103,
"size": 275
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.