Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Object.Terminal.Limit {o ℓ e} (C : Category o ℓ e) where open import Categories.Category.Lift open import Categories.Category.Finite.Fin.Construction.Discrete open import Categories.Object.Terminal C open import Categories.Diagram.Limit open import Categories.Functor.Core import Categories.Category.Construction.Cones as Co private module C = Category C open C module _ {o′ ℓ′ e′} {F : Functor (liftC o′ ℓ′ e′ (Discrete 0)) C} where limit⇒⊥ : Limit F → Terminal limit⇒⊥ L = record { ⊤ = apex ; ! = rep record { apex = record { ψ = λ () ; commute = λ { {()} } } } ; !-unique = λ f → terminal.!-unique record { arr = f ; commute = λ { {()} } } } where open Limit L module _ o′ ℓ′ e′ where ⊥⇒limit-F : Functor (liftC o′ ℓ′ e′ (Discrete 0)) C ⊥⇒limit-F = record { F₀ = λ () ; F₁ = λ { {()} } ; identity = λ { {()} } ; homomorphism = λ { {()} } ; F-resp-≈ = λ { {()} } } ⊥⇒limit : Terminal → Limit ⊥⇒limit-F ⊥⇒limit t = record { terminal = record { ⊤ = record { N = ⊤ ; apex = record { ψ = λ () ; commute = λ { {()} } } } ; ! = λ {K} → let open Co.Cone ⊥⇒limit-F K in record { arr = ! ; commute = λ { {()} } } ; !-unique = λ f → let module f = Co.Cone⇒ ⊥⇒limit-F f in !-unique f.arr } } where open Terminal t
{ "alphanum_fraction": 0.4841269841, "avg_line_length": 23.7391304348, "ext": "agda", "hexsha": "2cc0adc915f1439c6e3b544f64dc4a21f64420e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Object/Terminal/Limit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Object/Terminal/Limit.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Object/Terminal/Limit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1638 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Booleans ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Bool where open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl) ------------------------------------------------------------------------ -- The boolean type and some operations open import Data.Bool.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Bool.Properties public using (_≟_) ------------------------------------------------------------------------ -- Some properties decSetoid : DecSetoid _ _ decSetoid = PropEq.decSetoid _≟_
{ "alphanum_fraction": 0.4287396938, "avg_line_length": 26.53125, "ext": "agda", "hexsha": "4a4a7b7af19dbe28e19be9416da15caa1ed26920", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 128, "size": 849 }
-- 2010-09-29 module IllegalUseOfIrrelevantDeclaration where import Common.Irrelevance record Subset (A : Set) (P : A -> Set) : Set where constructor _#_ field elem : A .certificate : P elem postulate .irrelevant : {A : Set} -> .A -> A certificate : {A : Set}{P : A -> Set} -> (x : Subset A P) -> P (Subset.elem x) certificate (a # p) = irrelevant p -- since certificate is not declared irrelevant, cannot use irrelevant postulate here
{ "alphanum_fraction": 0.6551724138, "avg_line_length": 25.7777777778, "ext": "agda", "hexsha": "44badc7de8623b88342695b7e52d1a2958aae4b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/IllegalUseOfIrrelevantDeclaration.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/IllegalUseOfIrrelevantDeclaration.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IllegalUseOfIrrelevantDeclaration.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 135, "size": 464 }
{-# OPTIONS --without-K #-} open import lib.Base open import lib.PathGroupoid open import lib.cubical.Square module lib.cubical.Cube where {- Coordinates are yzx, where x : left -> right y : back -> front z : top -> bottom -} data Cube {i} {A : Type i} {a₀₀₀ : A} : {a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} (sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} (sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁) -- back (sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁) -- top (sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁) -- bottom (sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) -- front → Type i where idc : Cube ids ids ids ids ids ids {- Just transport, but less clutter to use -} module _ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front where cube-shift-left : {sq₋₋₀' : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} → sq₋₋₀ == sq₋₋₀' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀' sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ cube-shift-left idp cu = cu cube-shift-right : {sq₋₋₁' : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} → sq₋₋₁ == sq₋₋₁' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀ sq₋₋₁' sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ cube-shift-right idp cu = cu cube-shift-back : {sq₀₋₋' : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} → sq₀₋₋ == sq₀₋₋' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋' sq₋₀₋ sq₋₁₋ sq₁₋₋ cube-shift-back idp cu = cu cube-shift-top : {sq₋₀₋' : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} → sq₋₀₋ == sq₋₀₋' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋' sq₋₁₋ sq₁₋₋ cube-shift-top idp cu = cu cube-shift-bot : {sq₋₁₋' : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} → sq₋₁₋ == sq₋₁₋' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋' sq₁₋₋ cube-shift-bot idp cu = cu cube-shift-front : {sq₁₋₋' : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} → sq₁₋₋ == sq₁₋₋' → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋' cube-shift-front idp cu = cu {- A cube where two opposite squares are both [ids] is a square -} module _ {i} {A : Type i} where x-id-cube-in : {a₀ a₁ : A} {p₀₀ p₀₁ p₁₀ p₁₁ : a₀ == a₁} {α₀₋ : p₀₀ == p₁₀} {α₁₋ : p₀₁ == p₁₁} {α₋₀ : p₀₀ == p₀₁} {α₋₁ : p₁₀ == p₁₁} → Square α₀₋ α₋₀ α₋₁ α₁₋ → Cube ids ids (vert-degen-square α₀₋) (vert-degen-square α₋₀) (vert-degen-square α₋₁) (vert-degen-square α₁₋) x-id-cube-in {p₀₀ = idp} ids = idc y-id-cube-in : {a₀ a₁ : A} {p₀₀ p₀₁ p₁₀ p₁₁ : a₀ == a₁} {α₀₋ : p₀₀ == p₁₀} {α₁₋ : p₀₁ == p₁₁} {α₋₀ : p₀₀ == p₀₁} {α₋₁ : p₁₀ == p₁₁} → Square α₀₋ α₋₀ α₋₁ α₁₋ → Cube (vert-degen-square α₀₋) (vert-degen-square α₁₋) ids (horiz-degen-square α₋₀) (horiz-degen-square α₋₁) ids y-id-cube-in {p₀₀ = idp} ids = idc z-id-cube-in : {a₀ a₁ : A} {p₀₀ p₁₀ p₀₁ p₁₁ : a₀ == a₁} {α₀₋ : p₀₀ == p₁₀} {α₁₋ : p₀₁ == p₁₁} {α₋₀ : p₀₀ == p₀₁} {α₋₁ : p₁₀ == p₁₁} → Square α₀₋ α₋₀ α₋₁ α₁₋ → Cube (horiz-degen-square α₀₋) (horiz-degen-square α₁₋) (horiz-degen-square α₋₀) ids ids (horiz-degen-square α₋₁) z-id-cube-in {p₀₀ = idp} ids = idc {- Cube fillers -} module _ {i} {A : Type i} where fill-cube-left : {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} -- missing left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} (sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁) -- back (sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁) -- top (sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁) -- bottom (sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) -- front → Σ (Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) (λ sq₋₋₀ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋) fill-cube-left {p₋₀₀ = p₋₀₀} {p₋₁₀ = p₋₁₀} sq₋₋₁ ids sq₋₀₋ sq₋₁₋ ids = (_ , cube-shift-right (vert-degen-square-β sq₋₋₁) (cube-shift-top (horiz-degen-square-β sq₋₀₋) (cube-shift-bot (horiz-degen-square-β sq₋₁₋) cu))) where fill-sq : Σ (p₋₀₀ == p₋₁₀) (λ α₋₋₀ → Square α₋₋₀ (horiz-degen-path sq₋₀₋) (horiz-degen-path sq₋₁₋) (vert-degen-path sq₋₋₁)) fill-sq = fill-square-left _ _ _ cu : Cube (vert-degen-square (fst fill-sq)) (vert-degen-square (vert-degen-path sq₋₋₁)) ids (horiz-degen-square (horiz-degen-path sq₋₀₋)) (horiz-degen-square (horiz-degen-path sq₋₁₋)) ids cu = y-id-cube-in (snd fill-sq) fill-cube-right : {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} (sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} -- missing right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} (sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁) -- back (sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁) -- top (sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁) -- bottom (sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) -- front → Σ (Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) (λ sq₋₋₁ → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋) fill-cube-right sq₋₋₀ {p₋₀₁ = p₋₀₁} {p₋₁₁ = p₋₁₁} ids sq₋₀₋ sq₋₁₋ ids = (_ , cube-shift-left (vert-degen-square-β sq₋₋₀) (cube-shift-top (horiz-degen-square-β sq₋₀₋) (cube-shift-bot (horiz-degen-square-β sq₋₁₋) cu))) where fill-sq : Σ (p₋₀₁ == p₋₁₁) (λ α₋₋₁ → Square (vert-degen-path sq₋₋₀) (horiz-degen-path sq₋₀₋) (horiz-degen-path sq₋₁₋) α₋₋₁) fill-sq = fill-square-right _ _ _ cu : Cube (vert-degen-square (vert-degen-path sq₋₋₀)) (vert-degen-square (fst fill-sq)) ids (horiz-degen-square (horiz-degen-path sq₋₀₋)) (horiz-degen-square (horiz-degen-path sq₋₁₋)) ids cu = y-id-cube-in (snd fill-sq) fill-cube-left-unique : ∀ {i} {A : Type i} {a₀₀₀ : A} {a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → sq₋₋₀ == fst (fill-cube-left sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋) fill-cube-left-unique idc = idp fill-cube-right-unique : ∀ {i} {A : Type i} {a₀₀₀ : A} {a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → sq₋₋₁ == fst (fill-cube-right sq₋₋₀ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋) fill-cube-right-unique idc = idp {- Paths as degenerate cubes -} module _ {i} {A : Type i} where x-degen-cube : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq₋₋₀ sq₋₋₁ : Square p₀₋ p₋₀ p₋₁ p₁₋} → sq₋₋₀ == sq₋₋₁ → Cube sq₋₋₀ sq₋₋₁ hid-square hid-square hid-square hid-square x-degen-cube {sq₋₋₀ = ids} idp = idc y-degen-cube : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq₀₋₋ sq₁₋₋ : Square p₀₋ p₋₀ p₋₁ p₁₋} → sq₀₋₋ == sq₁₋₋ → Cube hid-square hid-square sq₀₋₋ vid-square vid-square sq₁₋₋ y-degen-cube {sq₀₋₋ = ids} idp = idc z-degen-cube : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq₋₀₋ sq₋₁₋ : Square p₀₋ p₋₀ p₋₁ p₁₋} → sq₋₀₋ == sq₋₁₋ → Cube vid-square vid-square vid-square sq₋₀₋ sq₋₁₋ vid-square z-degen-cube {sq₋₀₋ = ids} idp = idc x-degen-cube-out : {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} {sq₋₋₀ sq₋₋₁ : Square p₀₋ p₋₀ p₋₁ p₁₋} → Cube sq₋₋₀ sq₋₋₁ hid-square hid-square hid-square hid-square → sq₋₋₀ == sq₋₋₁ x-degen-cube-out cu = fill-cube-left-unique cu ∙ ! (fill-cube-left-unique (x-degen-cube idp)) {- A pathover between squares can be represented as a cube -} module _ {i j} {A : Type i} {B : Type j} {b₀₀ b₀₁ b₁₀ b₁₁ : A → B} {p₀₋ : (a : A) → b₀₀ a == b₀₁ a} {p₋₀ : (a : A) → b₀₀ a == b₁₀ a} {p₋₁ : (a : A) → b₀₁ a == b₁₁ a} {p₁₋ : (a : A) → b₁₀ a == b₁₁ a} where ↓-square-to-cube : {x y : A} {q : x == y} {u : Square (p₀₋ x) (p₋₀ x) (p₋₁ x) (p₁₋ x)} {v : Square (p₀₋ y) (p₋₀ y) (p₋₁ y) (p₁₋ y)} → u == v [ (λ z → Square (p₀₋ z) (p₋₀ z) (p₋₁ z) (p₁₋ z)) ↓ q ] → Cube u v (natural-square p₀₋ q ) (natural-square p₋₀ q) (natural-square p₋₁ q) (natural-square p₁₋ q) ↓-square-to-cube {q = idp} r = x-degen-cube r cube-to-↓-square : {x y : A} {q : x == y} {sqx : Square (p₀₋ x) (p₋₀ x) (p₋₁ x) (p₁₋ x)} {sqy : Square (p₀₋ y) (p₋₀ y) (p₋₁ y) (p₁₋ y)} → Cube sqx sqy (natural-square p₀₋ q) (natural-square p₋₀ q) (natural-square p₋₁ q) (natural-square p₁₋ q) → sqx == sqy [ (λ z → Square (p₀₋ z) (p₋₀ z) (p₋₁ z) (p₁₋ z)) ↓ q ] cube-to-↓-square {q = idp} cu = x-degen-cube-out cu module _ {i j} {A : Type i} {B : Type j} {b₀₀ b₀₁ b₁₀ b₁₁ : B} {p₀₋ : (a : A) → b₀₀ == b₀₁} {p₋₀ : (a : A) → b₀₀ == b₁₀} {p₋₁ : (a : A) → b₀₁ == b₁₁} {p₁₋ : (a : A) → b₁₀ == b₁₁} where cube-to-disc-square : {x y : A} {q : x == y} {sqx : Square (p₀₋ x) (p₋₀ x) (p₋₁ x) (p₁₋ x)} {sqy : Square (p₀₋ y) (p₋₀ y) (p₋₁ y) (p₁₋ y)} → Cube sqx sqy (natural-square p₀₋ q) (natural-square p₋₀ q) (natural-square p₋₁ q) (natural-square p₁₋ q) → Square (square-to-disc sqx) (ap (λ z → p₀₋ z ∙ p₋₁ z) q) (ap (λ z → p₋₀ z ∙ p₁₋ z) q) (square-to-disc sqy) cube-to-disc-square cu = ↓-='-to-square (ap↓ square-to-disc (cube-to-↓-square cu)) ap-cube : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube (ap-square f sq₋₋₀) (ap-square f sq₋₋₁) (ap-square f sq₀₋₋) (ap-square f sq₋₀₋) (ap-square f sq₋₁₋) (ap-square f sq₁₋₋) ap-cube f idc = idc natural-cube : ∀ {i j} {A : Type i} {B : Type j} {f₀₀ f₀₁ f₁₀ f₁₁ : A → B} {p₀₋ : (a : A) → f₀₀ a == f₀₁ a} {p₋₀ : (a : A) → f₀₀ a == f₁₀ a} {p₋₁ : (a : A) → f₀₁ a == f₁₁ a} {p₁₋ : (a : A) → f₁₀ a == f₁₁ a} (sq : ∀ a → Square (p₀₋ a) (p₋₀ a) (p₋₁ a) (p₁₋ a)) {x y : A} (q : x == y) → Cube (sq x) (sq y) (natural-square p₀₋ q) (natural-square p₋₀ q) (natural-square p₋₁ q) (natural-square p₁₋ q) natural-cube sq idp = x-degen-cube idp cube-rotate-x→z : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube (square-symmetry sq₀₋₋) (square-symmetry sq₁₋₋) (square-symmetry sq₋₀₋) sq₋₋₀ sq₋₋₁ (square-symmetry sq₋₁₋) cube-rotate-x→z idc = idc cube-symmetry-x : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube (square-symmetry sq₋₋₀) (square-symmetry sq₋₋₁) sq₋₀₋ sq₀₋₋ sq₁₋₋ sq₋₁₋ cube-symmetry-x idc = idc cube-!-x : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} {sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁} -- back {sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁} -- top {sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁} -- bottom {sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁} -- front → Cube sq₋₋₀ sq₋₋₁ sq₀₋₋ sq₋₀₋ sq₋₁₋ sq₁₋₋ → Cube sq₋₋₁ sq₋₋₀ (!□h sq₀₋₋) (!□h sq₋₀₋) (!□h sq₋₁₋) (!□h sq₁₋₋) cube-!-x idc = idc _∙³x_ : ∀ {i} {A : Type i} {a₀₀₀ a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ a₀₀₂ a₀₁₂ a₁₀₂ a₁₁₂ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} {sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀} -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} {sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁} -- middle {p₀₋₂ : a₀₀₂ == a₀₁₂} {p₋₀₂ : a₀₀₂ == a₁₀₂} {p₋₁₂ : a₀₁₂ == a₁₁₂} {p₁₋₂ : a₁₀₂ == a₁₁₂} {sq₋₋₂ : Square p₀₋₂ p₋₀₂ p₋₁₂ p₁₋₂} -- right {p₀₀l : a₀₀₀ == a₀₀₁} {p₀₁l : a₀₁₀ == a₀₁₁} {p₁₀l : a₁₀₀ == a₁₀₁} {p₁₁l : a₁₁₀ == a₁₁₁} {sq₀₋l : Square p₀₋₀ p₀₀l p₀₁l p₀₋₁} -- backl {sq₋₀l : Square p₋₀₀ p₀₀l p₁₀l p₋₀₁} -- topl {sq₋₁l : Square p₋₁₀ p₀₁l p₁₁l p₋₁₁} -- bottoml {sq₁₋l : Square p₁₋₀ p₁₀l p₁₁l p₁₋₁} -- frontl {p₀₀r : a₀₀₁ == a₀₀₂} {p₀₁r : a₀₁₁ == a₀₁₂} {p₁₀r : a₁₀₁ == a₁₀₂} {p₁₁r : a₁₁₁ == a₁₁₂} {sq₀₋r : Square p₀₋₁ p₀₀r p₀₁r p₀₋₂} -- backr {sq₋₀r : Square p₋₀₁ p₀₀r p₁₀r p₋₀₂} -- topr {sq₋₁r : Square p₋₁₁ p₀₁r p₁₁r p₋₁₂} -- bottomr {sq₁₋r : Square p₁₋₁ p₁₀r p₁₁r p₁₋₂} -- frontr → Cube sq₋₋₀ sq₋₋₁ sq₀₋l sq₋₀l sq₋₁l sq₁₋l → Cube sq₋₋₁ sq₋₋₂ sq₀₋r sq₋₀r sq₋₁r sq₁₋r → Cube sq₋₋₀ sq₋₋₂ (sq₀₋l ⊡h sq₀₋r) (sq₋₀l ⊡h sq₋₀r) (sq₋₁l ⊡h sq₋₁r) (sq₁₋l ⊡h sq₁₋r) idc ∙³x cu = cu infixr 8 _∙³x_
{ "alphanum_fraction": 0.5220473387, "avg_line_length": 38.4434180139, "ext": "agda", "hexsha": "d8c5053a8af246c82bd4baaa5babcc406cc76878", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/cubical/Cube.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/cubical/Cube.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/cubical/Cube.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 10347, "size": 16646 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Monad module Categories.Adjoint.Construction.EilenbergMoore {o ℓ e} {C : Category o ℓ e} (M : Monad C) where open import Categories.Category.Construction.EilenbergMoore M open import Categories.Adjoint open import Categories.Functor open import Categories.Functor.Properties open import Categories.NaturalTransformation open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_) open import Categories.Morphism.Reasoning C private module C = Category C module M = Monad M open M.F open C open HomReasoning Forgetful : Functor EilenbergMoore C Forgetful = record { F₀ = λ X → Module.A X ; F₁ = λ f → Module⇒.arr f ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } Free : Functor C EilenbergMoore Free = record { F₀ = λ A → record { A = F₀ A ; action = M.μ.η A ; commute = M.assoc ; identity = M.identityʳ } ; F₁ = λ f → record { arr = F₁ f ; commute = ⟺ (M.μ.commute f) } ; identity = identity ; homomorphism = homomorphism ; F-resp-≈ = F-resp-≈ } FF≃F : Forgetful ∘F Free ≃ M.F FF≃F = record { F⇒G = record { η = λ X → F₁ C.id ; commute = λ f → [ M.F ]-resp-square id-comm-sym ; sym-commute = λ f → [ M.F ]-resp-square id-comm } ; F⇐G = record { η = λ X → F₁ C.id ; commute = λ f → [ M.F ]-resp-square id-comm-sym ; sym-commute = λ f → [ M.F ]-resp-square id-comm } ; iso = λ X → record { isoˡ = elimˡ identity ○ identity ; isoʳ = elimˡ identity ○ identity } } Free⊣Forgetful : Free ⊣ Forgetful Free⊣Forgetful = record { unit = record { η = M.η.η ; commute = M.η.commute ; sym-commute = M.η.sym-commute } ; counit = record { η = λ X → let module X = Module X in record { arr = X.action ; commute = ⟺ X.commute } ; commute = λ f → ⟺ (Module⇒.commute f) ; sym-commute = Module⇒.commute } ; zig = M.identityˡ ; zag = λ {B} → Module.identity B }
{ "alphanum_fraction": 0.5768880801, "avg_line_length": 25.2643678161, "ext": "agda", "hexsha": "0307fab2ff4eaad35892fa4f445cda3b4bbd82b3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Adjoint/Construction/EilenbergMoore.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Adjoint/Construction/EilenbergMoore.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Adjoint/Construction/EilenbergMoore.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 737, "size": 2198 }
open import Data.Product using ( _×_ ; _,_ ) open import Relation.Binary.PropositionalEquality using ( refl ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.ABox using ( ABox ; ⟨ABox⟩ ) open import Web.Semantic.DL.ABox.Interp using ( Interp ; Surjective ; _,_ ; ⌊_⌋ ; ind ; _*_ ; emp ) open import Web.Semantic.DL.ABox.Interp.Morphism using ( _≲_ ; _,_ ; ≲⌊_⌋ ; ≲-resp-ind ; _≋_ ; _**_ ) open import Web.Semantic.DL.ABox.Model using ( _⊨a_ ; ⟨ABox⟩-resp-⊨ ; *-resp-⟨ABox⟩ ; ⊨a-resp-≡ ) open import Web.Semantic.DL.Integrity using ( _⊕_⊨_ ; Initial ; Mediator ; Mediated ; _,_ ) open import Web.Semantic.DL.KB using ( KB ; _,_ ) open import Web.Semantic.DL.KB.Model using ( _⊨_ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( _⊨_≈_ ; ≈-refl ) open import Web.Semantic.DL.TBox.Interp.Morphism using ( morph ; ≲-image ) open import Web.Semantic.Util using ( False ; _∘_ ; _⊕_⊕_ ; bnode ; inode ; enode ) module Web.Semantic.DL.Integrity.Closed {Σ : Signature} {X : Set} where infix 2 _⊨₀_ sur_⊨₀_ infixr 4 _,_ -- A closed-world variant on integrity constraints. data Mediated₀ (I J : Interp Σ X) : Set where _,_ : (I≲J : I ≲ J) → (∀ (I≲₁J I≲₂J : I ≲ J) → (I≲₁J ≋ I≲₂J)) → Mediated₀ I J data Initial₀ KB (I : Interp Σ X) : Set₁ where _,_ : (I ⊨ KB) → (∀ J → (J ⊨ KB) → Mediated₀ I J) → (I ∈ Initial₀ KB) data _⊨₀_ (KB₁ KB₂ : KB Σ X) : Set₁ where _,_ : ∀ I → ((I ∈ Initial₀ KB₁) × (I ⊨ KB₂)) → (KB₁ ⊨₀ KB₂) -- Surjective variant data sur_⊨₀_ (KB₁ KB₂ : KB Σ X) : Set₁ where _,_ : ∀ I → ((I ∈ Surjective) × (I ∈ Initial₀ KB₁) × (I ⊨ KB₂)) → (sur KB₁ ⊨₀ KB₂) -- Closed-world ICs are given by specializing the open-world case -- to the empty imported interpretion. exp : KB Σ X → KB Σ (False ⊕ False ⊕ X) exp (T , A) = (T , ⟨ABox⟩ enode A) enode⁻¹ : (False ⊕ False ⊕ X) → X enode⁻¹ (inode ()) enode⁻¹ (bnode ()) enode⁻¹ (enode x) = x emp-≲ : ∀ (I : Interp Σ False) → (emp ≲ I) emp-≲ I = (morph (λ ()) (λ {}) (λ ()) (λ {r} → λ {}) , λ ()) ⊨₀-impl-⊨ : ∀ KB₁ KB₂ → (KB₁ ⊨₀ KB₂) → (emp ⊕ exp KB₁ ⊨ KB₂) ⊨₀-impl-⊨ (T , A) (U , B) (I , ((I⊨T , I⊨A) , I-med) , I⊨U , I⊨B) = (I′ , I′-init , I⊨U , ⊨a-resp-≡ I (ind I) refl B I⊨B) where A′ : ABox Σ (False ⊕ False ⊕ X) A′ = ⟨ABox⟩ enode A I′ : Interp Σ (False ⊕ False ⊕ X) I′ = enode⁻¹ * I emp≲I′ : emp ≲ inode * I′ emp≲I′ = emp-≲ (inode * I′) I′-med : Mediator emp I′ emp≲I′ (T , A′) I′-med J′ emp≲J′ (J′⊨T , J′⊨A′) = lemma (I-med J (J′⊨T , J⊨A)) where J : Interp Σ X J = enode * J′ J⊨A : J ⊨a A J⊨A = *-resp-⟨ABox⟩ enode J′ A J′⊨A′ lemma : Mediated₀ I J → Mediated emp I′ J′ emp≲I′ emp≲J′ lemma ((I≲J , i≲j) , I≲J-uniq) = ((I≲J , i′≲j′) , (λ ()) , I′≲J′-uniq) where i′≲j′ : ∀ x → ⌊ J′ ⌋ ⊨ ≲-image I≲J (ind I (enode⁻¹ x)) ≈ ind J′ x i′≲j′ (inode ()) i′≲j′ (bnode ()) i′≲j′ (enode x) = i≲j x I′≲J′-uniq : ∀ (I≲₁J I≲₂J : I′ ≲ J′)_ _ → I≲₁J ≋ I≲₂J I′≲J′-uniq I≲₁J I≲₂J _ _ = I≲J-uniq (≲⌊ I≲₁J ⌋ , λ x → ≲-resp-ind I≲₁J (enode x)) (≲⌊ I≲₂J ⌋ , λ x → ≲-resp-ind I≲₂J (enode x)) I′⊨A′ : I′ ⊨a A′ I′⊨A′ = ⟨ABox⟩-resp-⊨ enode (λ x → ≈-refl ⌊ I ⌋) A I⊨A I′-init : I′ ∈ Initial emp (T , A′) I′-init = ( emp-≲ (inode * I′) , (I⊨T , I′⊨A′) , I′-med ) ⊨-impl-⊨₀ : ∀ KB₁ KB₂ → (emp ⊕ exp KB₁ ⊨ KB₂) → (KB₁ ⊨₀ KB₂) ⊨-impl-⊨₀ (T , A) (U , B) (I′ , (emp≲I′ , (I′⊨T , I′⊨A) , I′-med) , I′⊨U , I′⊨B) = (I , ((I′⊨T , I⊨A) , I-med) , I′⊨U , I′⊨B) where I : Interp Σ X I = enode * I′ I⊨A : I ⊨a A I⊨A = *-resp-⟨ABox⟩ enode I′ A I′⊨A I-med : ∀ J → (J ⊨ T , A) → Mediated₀ I J I-med J (J⊨T , J⊨A) = lemma (I′-med J′ emp≲J′ (J⊨T , J′⊨A)) where J′ : Interp Σ (False ⊕ False ⊕ X) J′ = enode⁻¹ * J emp≲J′ : emp ≲ inode * J′ emp≲J′ = emp-≲ (inode * J′) J′⊨A : J′ ⊨a ⟨ABox⟩ enode A J′⊨A = ⟨ABox⟩-resp-⊨ enode (λ x → ≈-refl ⌊ J ⌋) A J⊨A I≲J-impl-I′≲J′ : (I ≲ J) → (I′ ≲ J′) I≲J-impl-I′≲J′ I≲J = (≲⌊ I≲J ⌋ , i≲j) where i≲j : ∀ x → ⌊ J ⌋ ⊨ ≲-image ≲⌊ I≲J ⌋ (ind I′ x) ≈ ind J (enode⁻¹ x) i≲j (inode ()) i≲j (bnode ()) i≲j (enode x) = ≲-resp-ind I≲J x lemma : Mediated emp I′ J′ emp≲I′ emp≲J′ → Mediated₀ I J lemma (I≲J , _ , I≲J-uniq) = ( (≲⌊ I≲J ⌋ , λ x → ≲-resp-ind I≲J (enode x)) , λ I≲₁J I≲₂J x → I≲J-uniq (I≲J-impl-I′≲J′ I≲₁J) (I≲J-impl-I′≲J′ I≲₂J) (λ ()) (λ ()) x)
{ "alphanum_fraction": 0.5111010421, "avg_line_length": 34.484375, "ext": "agda", "hexsha": "fa1557478963df1a323022aef3163185f2165235", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Integrity/Closed.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Integrity/Closed.agda", "max_line_length": 101, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Integrity/Closed.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 2325, "size": 4414 }
-- The natural numbers. {-# OPTIONS --without-K --safe #-} module Tools.Nat where open import Tools.PropositionalEquality open import Tools.Nullary -- We reexport Agda's built-in type of natural numbers. open import Agda.Builtin.Nat using (zero; suc) open import Agda.Builtin.Nat using (Nat) public pattern 1+ n = suc n infix 4 _≟_ -- Predecessor, cutting off at 0. pred : Nat → Nat pred zero = zero pred (suc n) = n -- Decision of number equality. _≟_ : (m n : Nat) → Dec (m ≡ n) zero ≟ zero = yes refl suc m ≟ suc n with m ≟ n suc m ≟ suc .m | yes refl = yes refl suc m ≟ suc n | no prf = no (λ x → prf (subst (λ y → m ≡ pred y) x refl)) zero ≟ suc n = no λ() suc m ≟ zero = no λ()
{ "alphanum_fraction": 0.6402266289, "avg_line_length": 20.7647058824, "ext": "agda", "hexsha": "bfcb59889addfbf9176175882d0da967b9076c13", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Tools/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Tools/Nat.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Tools/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 245, "size": 706 }
------------------------------------------------------------------------ -- A counterexample: The number of steps taken by the uninstrumented -- interpreter is not, in general, linear in the number of steps taken -- by the virtual machine for the corresponding compiled program ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Interpreter.Steps.Counterexample {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E open import Prelude.Size open import Conat E.equality-with-J as Conat hiding ([_]_∼_; step-∼) renaming (_+_ to _⊕_; _*_ to _⊛_) open import Monad E.equality-with-J hiding (_⊛_) import Nat E.equality-with-J as Nat open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Lambda.Delay-crash open import Lambda.Interpreter def open import Lambda.Compiler def open import Lambda.Virtual-machine comp-name open import Lambda.Virtual-machine.Instructions Name hiding (crash) open Closure Tm -- The uninstrumented interpreter does not provide a suitable cost -- measure, in the sense that there is a family of programs for which -- the running "time" (number of steps) of the corresponding compiled -- programs on the virtual machine is not linear in the running time -- on the interpreter. not-suitable-cost-measure : ∃ λ (t : ℕ → Tm 0) → ¬ ∃ λ k₁ → ∃ λ k₂ → ∀ n → [ ∞ ] steps (exec ⟨ comp₀ (t n) , [] , [] ⟩) ≤ ⌜ k₁ ⌝ ⊕ ⌜ k₂ ⌝ ⊛ steps (⟦ t n ⟧ []) not-suitable-cost-measure = t , λ { (k₁ , k₂ , hyp) → Nat.+≮ 2 $ ⌜⌝-mono⁻¹ ( ⌜ 3 + k₁ ⌝ ∼⟨ symmetric-∼ (steps-exec-t∼ k₁) ⟩≤ steps (exec ⟨ comp₀ (t k₁) , [] , [] ⟩) ≤⟨ hyp k₁ ⟩ ⌜ k₁ ⌝ ⊕ ⌜ k₂ ⌝ ⊛ steps (⟦ t k₁ ⟧ []) ∼⟨ (⌜ k₁ ⌝ ∎∼) +-cong (_ ∎∼) *-cong steps⟦t⟧∼0 k₁ ⟩≤ ⌜ k₁ ⌝ ⊕ ⌜ k₂ ⌝ ⊛ zero ∼⟨ (_ ∎∼) +-cong *-right-zero ⟩≤ ⌜ k₁ ⌝ ⊕ zero ∼⟨ +-right-identity _ ⟩≤ ⌜ k₁ ⌝ ∎≤) } where -- A family of programs. t : ℕ → Tm 0 t zero = con true · con true t (suc n) = con true · t n -- The semantics of every program in this family is strongly -- bisimilar to crash. ⟦t⟧∼crash : ∀ {i} n → [ i ] ⟦ t n ⟧ [] ∼ crash ⟦t⟧∼crash zero = crash ∎ ⟦t⟧∼crash (suc n) = ⟦ t (suc n) ⟧ [] ∼⟨⟩ ⟦ t n ⟧ [] >>= con true ∙_ ∼⟨ ⟦t⟧∼crash n >>=-cong (λ _ → _ ∎) ⟩ crash >>= con true ∙_ ∼⟨⟩ crash ∎ -- Thus these programs all terminate (unsuccessfully) in zero steps. steps⟦t⟧∼0 : ∀ {i} n → Conat.[ i ] steps (⟦ t n ⟧ []) ∼ zero steps⟦t⟧∼0 = steps-cong ∘ ⟦t⟧∼crash -- However, running the compiled program corresponding to t n on the -- virtual machine takes 3 + n steps. steps-exec-t∼ : ∀ {i} n → Conat.[ i ] steps (exec ⟨ comp₀ (t n) , [] , [] ⟩) ∼ ⌜ 3 + n ⌝ steps-exec-t∼ = lemma where lemma : ∀ {i c s} n → Conat.[ i ] steps (exec ⟨ comp false (t n) c , s , [] ⟩) ∼ ⌜ 3 + n ⌝ lemma zero = suc λ { .force → suc λ { .force → suc λ { .force → zero }}} lemma (suc n) = suc λ { .force → lemma n }
{ "alphanum_fraction": 0.5282392027, "avg_line_length": 34.4895833333, "ext": "agda", "hexsha": "555c11ff7fd050f34623bbc97ed369d00eddc009", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Interpreter/Steps/Counterexample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Interpreter/Steps/Counterexample.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Interpreter/Steps/Counterexample.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1157, "size": 3311 }
open import Common.Prelude test : Bool → Nat test = if_then 4 Common.Prelude.else 5
{ "alphanum_fraction": 0.7529411765, "avg_line_length": 17, "ext": "agda", "hexsha": "5033e93236024db121737029deab4ae6eb93ef3b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Sections-15.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Sections-15.agda", "max_line_length": 38, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Sections-15.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 85 }
------------------------------------------------------------------------------ -- Totality properties of the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module LTC-PCF.Program.Division.Totality where open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Program.Division.ConversionRules open import LTC-PCF.Program.Division.Division open import LTC-PCF.Program.Division.Specification ------------------------------------------------------------------------------ -- The division is total when the dividend is less than the divisor. div-x<y-N : ∀ {i j} → i < j → N (div i j) div-x<y-N i<j = subst N (sym (div-x<y i<j)) nzero -- The division is total when the dividend is greater or equal than -- the divisor. -- N (div (i ∸ j) j) i ≮ j → div i j ≡ succ (div (i ∸ j) j) ------------------------------------------------------------------ -- N (div i j) div-x≮y-N : ∀ {i j} → (divSpec (i ∸ j) j (div (i ∸ j) j)) → i ≮ j → N (div i j) div-x≮y-N ih i≮j = subst N (sym (div-x≮y i≮j)) (nsucc (∧-proj₁ ih))
{ "alphanum_fraction": 0.4605654762, "avg_line_length": 37.3333333333, "ext": "agda", "hexsha": "5c2f181587a3925774a50df6addcfc8eed0ffe0e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/Division/Totality.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/Division/Totality.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/Division/Totality.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 333, "size": 1344 }
module sn-calculus where open import utility open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Lang.Properties open import Esterel.Lang.CanFunction using (Canθₛ ; Canθₛₕ ; [S]-env) open import Esterel.Environment as Env using (Env ; Θ ; _←_ ; sig ; []env ; module SigMap ; module ShrMap ; module VarMap) open import Esterel.Context using (EvaluationContext ; EvaluationContext1 ; _⟦_⟧e ; _≐_⟦_⟧e ; Context ; Context1 ; _⟦_⟧c ; _≐_⟦_⟧c) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Esterel.Context.Properties open import Relation.Nullary using (¬_) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; sym) open import Data.Empty using (⊥ ; ⊥-elim) import Data.FiniteMap open import Data.List using (List ; _∷_ ; []) open import Data.List.All as All using (All ; _∷_ ; []) open import Data.Nat using (ℕ ; zero ; suc ; _+_) open import Data.Product using (Σ-syntax ; Σ ; _,_ ; proj₁ ; proj₂ ; _×_ ; _,′_) open import Data.Sum using (_⊎_ ; inj₁ ; inj₂) open _≐_⟦_⟧e open _≐_⟦_⟧c open EvaluationContext1 open Context1 infix 4 _sn⟶₁_ infix 4 _sn⟶_ infix 4 _sn⟶*_ -- The environment created by rraise-signal rule -- [S]-env, is defined in Esterel.Lang.CanFunction -- It's simply Θ SigMap.[ S ↦ Signal.unknown ] ShrMap.empty VarMap.empty -- The environment created by rraise-shared rule [s,δe]-env : (s : SharedVar) → (v : ℕ) → Env [s,δe]-env s δe' = Θ SigMap.empty ShrMap.[ s ↦ (SharedVar.old ,′ δe') ] VarMap.empty -- The environment created by rraise-var rule [x,δe]-env : (x : SeqVar) → (v : ℕ) → Env [x,δe]-env x δe' = Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δe' ] [s,δe-new]-env : (s : SharedVar) → (v : ℕ) → Env [s,δe-new]-env s δe' = Θ SigMap.empty ShrMap.[ s ↦ (SharedVar.new ,′ δe') ] VarMap.empty data bound-ready : Env → s/l → Set where brnum : ∀{θ n} → bound-ready θ (num n) brseq : ∀{θ x} → (Env.isVar∈ x θ) → bound-ready θ (seq-ref x) brshr : ∀{θ s} → (s∈ : (Env.isShr∈ s θ)) → Env.shr-stats{s} θ s∈ ≡ SharedVar.ready → bound-ready θ (shr-ref s) data all-ready : Expr → Env → Set where aplus : ∀{θ operators} → All (bound-ready θ) operators → all-ready (plus operators) θ δ : ∀{e θ} → all-ready e θ → ℕ δ {(plus [])} {θ} (aplus []) = 0 δ {(plus (num n ∷ _))} {θ} (aplus (brnum ∷ ops)) = n + δ (aplus ops) δ {(plus (seq-ref x ∷ _))} {θ} (aplus (brseq x∈ ∷ ops)) = Env.var-vals{x} θ x∈ + δ (aplus ops) δ {(plus (shr-ref s ∷ _))} {θ} (aplus (brshr s∈ _ ∷ ops)) = Env.shr-vals{s} θ s∈ + δ (aplus ops) δ-e-irr : ∀{e θ} → (e' : all-ready e θ) → (e'' : all-ready e θ) → δ e' ≡ δ e'' δ-e-irr {plus []} (aplus []) (aplus []) = refl δ-e-irr {plus ((num n) ∷ x₁)} (aplus (brnum ∷ x₂)) (aplus (brnum ∷ x₃)) = cong (_+_ n) (δ-e-irr (aplus x₂) (aplus x₃)) δ-e-irr {plus ((seq-ref x) ∷ x₁)}{θ} (aplus (brseq x₂ ∷ x₃)) (aplus (brseq x₄ ∷ x₅)) with Env.var-vals-∈-irr{x}{θ} x₂ x₄ ... | k rewrite sym k = (cong (_+_ (Env.var-vals{x} θ x₂)) (δ-e-irr (aplus x₃) (aplus x₅))) δ-e-irr {plus ((shr-ref s) ∷ x₁)}{θ} (aplus (brshr s∈ x ∷ x₂)) (aplus (brshr s∈₁ x₃ ∷ x₄)) with Env.shr-vals-∈-irr{s}{θ} s∈ s∈₁ ... | k rewrite sym k = cong (_+_ (Env.shr-vals{s} θ s∈)) (δ-e-irr (aplus x₂) (aplus x₄)) {- In the current formalization, for reduction rules involving evaluation contexts, we will write them in the following form to enable pattern matching on p: (r ≐ E ⟦ p ⟧e) → (something r sn⟶₁ something E ⟦ p'⟧) -} {- this relation is the strongly normalizing subset of the calculus. It is just like _⟶₁_ in calculus.agda, but without the [par-swap] constructor. -} data _sn⟶₁_ : Term → Term → Set where rpar-done-right : ∀{p q} → (p' : halted p) → (q' : done q) → (p ∥ q) sn⟶₁ (value-max (dhalted p') q' (inj₁ p')) rpar-done-left : ∀{p q} → (p' : done p) → (q' : halted q) → (p ∥ q) sn⟶₁ (value-max p' (dhalted q') (inj₂ q')) ris-present : ∀{θ S r p q E A} → (S∈ : (Env.isSig∈ S θ)) → Env.sig-stats{S} θ S∈ ≡ Signal.present → r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e) ris-absent : ∀{θ S r p q E A} → (S∈ : (Env.isSig∈ S θ)) → Env.sig-stats{S} θ S∈ ≡ Signal.absent → r ≐ E ⟦ present S ∣⇒ p ∣⇒ q ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e) remit : ∀{θ r S E} → (S∈ : (Env.isSig∈ S θ)) → (¬S≡a : ¬ (Env.sig-stats{S} θ S∈) ≡ Signal.absent) → r ≐ E ⟦ emit S ⟧e → (ρ⟨ θ , GO ⟩· r) sn⟶₁ (ρ⟨ (Env.set-sig{S} θ S∈ Signal.present) , GO ⟩· E ⟦ nothin ⟧e) rloop-unroll : ∀{p} → (loop p) sn⟶₁ (loopˢ p p) rseq-done : ∀{q} → (nothin >> q) sn⟶₁ q rseq-exit : ∀{q n} → (exit n >> q) sn⟶₁ (exit n) rloopˢ-exit : ∀{q n} → (loopˢ (exit n) q) sn⟶₁ (exit n) rsuspend-done : ∀{p S} → halted p → (suspend p S) sn⟶₁ p -- traps rtrap-done : ∀{p} → (p' : halted p) → (trap p) sn⟶₁ (↓ p') -- lifting signals rraise-signal : ∀{p S} → (signl S p) sn⟶₁ (ρ⟨ (Θ SigMap.[ S ↦ Signal.unknown ] ShrMap.empty VarMap.empty) , WAIT ⟩· p) -- shared state rraise-shared : ∀{θ r s e p E A} → (e' : all-ready e θ) → r ≐ E ⟦ shared s ≔ e in: p ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ (ρ⟨ [s,δe]-env s (δ e') , WAIT ⟩· p) ⟧e) rset-shared-value-old : ∀{θ r s e E} → (e' : all-ready e θ) → (s∈ : (Env.isShr∈ s θ)) → Env.shr-stats{s} θ s∈ ≡ SharedVar.old → r ≐ E ⟦ s ⇐ e ⟧e → (ρ⟨ θ , GO ⟩· r) sn⟶₁ (ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (δ e')) , GO ⟩· E ⟦ nothin ⟧e) rset-shared-value-new : ∀{θ r s e E} → (e' : all-ready e θ) → (s∈ : (Env.isShr∈ s θ)) → Env.shr-stats{s} θ s∈ ≡ SharedVar.new → r ≐ E ⟦ s ⇐ e ⟧e → (ρ⟨ θ , GO ⟩· r) sn⟶₁ (ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , GO ⟩· E ⟦ nothin ⟧e) -- unshared state rraise-var : ∀{θ r x p e E A} → (e' : all-ready e θ) → r ≐ E ⟦ var x ≔ e in: p ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ (ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p) ⟧e) rset-var : ∀{θ r x e E A} → (x∈ : (Env.isVar∈ x θ)) → (e' : all-ready e θ) → r ≐ E ⟦ x ≔ e ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ (Env.set-var{x} θ x∈ (δ e')) , A ⟩· E ⟦ nothin ⟧e) -- if rif-false : ∀{θ r p q x E A} → (x∈ : (Env.isVar∈ x θ)) → Env.var-vals{x} θ x∈ ≡ zero → r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ q ⟧e) rif-true : ∀{θ r p q x E n A} → (x∈ : (Env.isVar∈ x θ)) → Env.var-vals{x} θ x∈ ≡ suc n → r ≐ E ⟦ if x ∣⇒ p ∣⇒ q ⟧e → (ρ⟨ θ , A ⟩· r) sn⟶₁ (ρ⟨ θ , A ⟩· E ⟦ p ⟧e) -- progression {- Thoughts: * These two rules are expressed differently to the definition in model/shared.rkt for simplicity. Instead of being more 'computative', the definition here is more 'declarative'. Keep an eye on the original definition to make sure that they are equivalent. -} rabsence : ∀{θ p S A} → (S∈ : (Env.isSig∈ S θ)) → Env.sig-stats{S} θ S∈ ≡ Signal.unknown → (Signal.unwrap S) ∉ Canθₛ (sig θ) 0 p []env → (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ (Env.set-sig{S} θ S∈ (Signal.absent)) , A ⟩· p) rreadyness : ∀{θ p s A} → (s∈ : (Env.isShr∈ s θ)) → (Env.shr-stats{s} θ s∈ ≡ SharedVar.old) ⊎ (Env.shr-stats{s} θ s∈ ≡ SharedVar.new) → (SharedVar.unwrap s) ∉ Canθₛₕ (sig θ) 0 p []env → (ρ⟨ θ , A ⟩· p) sn⟶₁ (ρ⟨ (Env.set-shr{s} θ s∈ (SharedVar.ready) (Env.shr-vals{s} θ s∈)) , A ⟩· p) rmerge : ∀{θ₁ θ₂ r p E A₁ A₂} → r ≐ E ⟦ ρ⟨ θ₂ , A₂ ⟩· p ⟧e → (ρ⟨ θ₁ , A₁ ⟩· r) sn⟶₁ (ρ⟨ (θ₁ ← θ₂) , (A-max A₁ A₂) ⟩· E ⟦ p ⟧e) -- The compatible closure of _sn⟶₁_. data _sn⟶_ : Term → Term → Set where rcontext : ∀{r p p'} → (C : Context) → (dc : r ≐ C ⟦ p ⟧c) → (psn⟶₁p' : p sn⟶₁ p') → r sn⟶ (C ⟦ p' ⟧c) sn⟶-inclusion : ∀{p q} → p sn⟶₁ q → p sn⟶ q sn⟶-inclusion psn⟶₁q = rcontext [] dchole psn⟶₁q data _sn⟶*_ : Term → Term → Set where rrefl : ∀{p} → (p sn⟶* p) rstep : ∀{p q r} → (psn⟶q : p sn⟶ q) → (qsn⟶*r : q sn⟶* r) → (p sn⟶* r) sn⟶*-inclusion : ∀{p q} → p sn⟶ q → p sn⟶* q sn⟶*-inclusion psn⟶q = rstep psn⟶q rrefl data _sn≡ₑ_ : Term → Term → Set where rstp : ∀{p q} → (psn⟶q : p sn⟶ q) → p sn≡ₑ q rsym : ∀{p q BV FV} → (psn≡ₑq : p sn≡ₑ q) → (CBp : CorrectBinding p BV FV) → q sn≡ₑ p rref : ∀{p} → p sn≡ₑ p rtrn : ∀{p q r} → (psn≡ₑr : p sn≡ₑ r) → (rsn≡ₑq : r sn≡ₑ q) → p sn≡ₑ q -- rstep, reversed: walk many steps first then walk one step rpets : ∀ {p q r} → p sn⟶* q → q sn⟶ r → p sn⟶* r rpets rrefl qsn⟶r = sn⟶*-inclusion qsn⟶r rpets (rstep psn⟶s ssn⟶*q) qsn⟶r = rstep psn⟶s (rpets ssn⟶*q qsn⟶r) {- Properties relating halted, paused, done programs and the reduction relation. * Halted, paused and done programs do not reduce under the original reduction relation _sn⟶₁_. halted-¬sn⟶₁ : ∀{p p'} → halted p → ¬ p sn⟶₁ p' paused-¬sn⟶₁ : ∀{p p'} → paused p → ¬ p sn⟶₁ p' done-¬sn⟶₁ : ∀{p p'} → done p → ¬ p sn⟶₁ p' * Halted programs do not reduce under the compatible closure relation _sn⟶_. halted-¬sn⟶ : ∀{p p'} → halted p → ¬ p sn⟶ p' * Paused programs remain paused under the compatible closure relation _sn⟶_. paused-sn⟶ : ∀{p p'} → paused p → p sn⟶ p' → paused p' -} halted-¬sn⟶₁ : ∀{p p'} → halted p → ¬ p sn⟶₁ p' halted-¬sn⟶₁ hnothin () halted-¬sn⟶₁ (hexit n) () paused-¬sn⟶₁ : ∀{p p'} → paused p → ¬ p sn⟶₁ p' paused-¬sn⟶₁ ppause () paused-¬sn⟶₁ (pseq ()) rseq-done paused-¬sn⟶₁ (pseq ()) rseq-exit paused-¬sn⟶₁ (ploopˢ ppause) () paused-¬sn⟶₁ (ploopˢ (pseq a)) () paused-¬sn⟶₁ (ploopˢ (ppar a a₁)) () paused-¬sn⟶₁ (ploopˢ (psuspend a)) () paused-¬sn⟶₁ (ploopˢ (ptrap a)) () paused-¬sn⟶₁ (ploopˢ (ploopˢ a)) () paused-¬sn⟶₁ (ppar paused₁ paused₂) (rpar-done-right p' q') = halted-paused-disjoint p' paused₁ paused-¬sn⟶₁ (ppar paused₁ paused₂) (rpar-done-left p' q') = halted-paused-disjoint q' paused₂ paused-¬sn⟶₁ (psuspend paused) (rsuspend-done halted) = halted-paused-disjoint halted paused paused-¬sn⟶₁ (ptrap paused) (rtrap-done halted) = halted-paused-disjoint halted paused done-¬sn⟶₁ : ∀{p p'} → done p → ¬ p sn⟶₁ p' done-¬sn⟶₁ (dhalted halted) psn⟶₁p' = halted-¬sn⟶₁ halted psn⟶₁p' done-¬sn⟶₁ (dpaused paused) psn⟶₁p' = paused-¬sn⟶₁ paused psn⟶₁p' halted-¬sn⟶ : ∀{p p'} → halted p → ¬ p sn⟶ p' halted-¬sn⟶ halted (rcontext C dc psn⟶₁p') = halted-¬sn⟶₁ (halted-⟦⟧c halted dc) psn⟶₁p' paused-sn⟶ : ∀{p p'} → paused p → p sn⟶ p' → paused p' paused-sn⟶ ppause (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ ppause psn⟶₁p') paused-sn⟶ (pseq paused) (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ (pseq paused) psn⟶₁p') paused-sn⟶ (ppar paused₁ paused₂) (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ (ppar paused₁ paused₂) psn⟶₁p') paused-sn⟶ (psuspend paused) (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ (psuspend paused) psn⟶₁p') paused-sn⟶ (ptrap paused) (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ (ptrap paused) psn⟶₁p') paused-sn⟶ (ploopˢ paused) (rcontext _ dchole psn⟶₁p') = ⊥-elim (paused-¬sn⟶₁ (ploopˢ paused) psn⟶₁p') paused-sn⟶ (ploopˢ paused) (rcontext _ (dcloopˢ₁ dc) psn⟶₁p') = ploopˢ (paused-sn⟶ paused (rcontext _ dc psn⟶₁p')) paused-sn⟶ (ploopˢ paused) (rcontext _ (dcloopˢ₂ dc) psn⟶₁p') = ploopˢ paused paused-sn⟶ (pseq paused) (rcontext _ (dcseq₁ dc) psn⟶₁p') = pseq (paused-sn⟶ paused (rcontext _ dc psn⟶₁p')) paused-sn⟶ (pseq paused) (rcontext _ (dcseq₂ dc) psn⟶₁p') = pseq paused paused-sn⟶ (ppar paused₁ paused₂) (rcontext _ (dcpar₁ dc) psn⟶₁p') = ppar (paused-sn⟶ paused₁ (rcontext _ dc psn⟶₁p')) paused₂ paused-sn⟶ (ppar paused₁ paused₂) (rcontext _ (dcpar₂ dc) psn⟶₁p') = ppar paused₁ (paused-sn⟶ paused₂ (rcontext _ dc psn⟶₁p')) paused-sn⟶ (psuspend paused) (rcontext _ (dcsuspend dc) psn⟶₁p') = psuspend (paused-sn⟶ paused (rcontext _ dc psn⟶₁p')) paused-sn⟶ (ptrap paused) (rcontext _ (dctrap dc) psn⟶₁p') = ptrap (paused-sn⟶ paused (rcontext _ dc psn⟶₁p')) done-sn⟶ : ∀{p q} → done p → p sn⟶ q → done q done-sn⟶ (dhalted p/halted) psn⟶q = ⊥-elim (halted-¬sn⟶ p/halted psn⟶q) done-sn⟶ (dpaused p/paused) psn⟶q = dpaused (paused-sn⟶ p/paused psn⟶q) Context1-sn⟶ : ∀{p p'} → (C1 : Context1) → p sn⟶ p' → (C1 ∷ []) ⟦ p ⟧c sn⟶ (C1 ∷ []) ⟦ p' ⟧c Context1-sn⟶ (ceval (epar₁ q)) (rcontext C dc psn⟶₁p') = rcontext (ceval (epar₁ q) ∷ C) (dcpar₁ dc) psn⟶₁p' Context1-sn⟶ (ceval (epar₂ p₁)) (rcontext C dc psn⟶₁p') = rcontext (ceval (epar₂ p₁) ∷ C) (dcpar₂ dc) psn⟶₁p' Context1-sn⟶ (ceval (eseq q)) (rcontext C dc psn⟶₁p') = rcontext (ceval (eseq q) ∷ C) (dcseq₁ dc) psn⟶₁p' Context1-sn⟶ (ceval (eloopˢ q)) (rcontext C dc psn⟶₁p') = rcontext (ceval (eloopˢ q) ∷ C) (dcloopˢ₁ dc) psn⟶₁p' Context1-sn⟶ (ceval (esuspend S)) (rcontext C dc psn⟶₁p') = rcontext (ceval (esuspend S) ∷ C) (dcsuspend dc) psn⟶₁p' Context1-sn⟶ (ceval etrap) (rcontext C dc psn⟶₁p') = rcontext (ceval etrap ∷ C) (dctrap dc) psn⟶₁p' Context1-sn⟶ (csignl S) (rcontext C dc psn⟶₁p') = rcontext (csignl S ∷ C) (dcsignl dc) psn⟶₁p' Context1-sn⟶ (cpresent₁ S q)(rcontext C dc psn⟶₁p') = rcontext (cpresent₁ S q ∷ C) (dcpresent₁ dc) psn⟶₁p' Context1-sn⟶ (cpresent₂ S p') (rcontext C dc psn⟶₁p') = rcontext (cpresent₂ S p' ∷ C) (dcpresent₂ dc) psn⟶₁p' Context1-sn⟶ (cloop) (rcontext C dc psn⟶₁p') = rcontext (cloop ∷ C) (dcloop dc) psn⟶₁p' Context1-sn⟶ (cloopˢ₂ p) (rcontext C dc psn⟶₁p') = rcontext (cloopˢ₂ p ∷ C) (dcloopˢ₂ dc) psn⟶₁p' Context1-sn⟶ (cseq₂ p') (rcontext C dc psn⟶₁p') = rcontext (cseq₂ p' ∷ C) (dcseq₂ dc) psn⟶₁p' Context1-sn⟶ (cshared s e) (rcontext C dc psn⟶₁p') = rcontext (cshared s e ∷ C) (dcshared dc) psn⟶₁p' Context1-sn⟶ (cvar x e) (rcontext C dc psn⟶₁p') = rcontext (cvar x e ∷ C) (dcvar dc) psn⟶₁p' Context1-sn⟶ (cif₁ x q) (rcontext C dc psn⟶₁p') = rcontext (cif₁ x q ∷ C) (dcif₁ dc) psn⟶₁p' Context1-sn⟶ (cif₂ x p') (rcontext C dc psn⟶₁p') = rcontext (cif₂ x p' ∷ C) (dcif₂ dc) psn⟶₁p' Context1-sn⟶ (cenv θ A) (rcontext C dc psn⟶₁p') = rcontext (cenv θ A ∷ C) (dcenv dc) psn⟶₁p' Context1-sn⟶* : ∀{p p'} → (C1 : Context1) → p sn⟶* p' → (C1 ∷ []) ⟦ p ⟧c sn⟶* (C1 ∷ []) ⟦ p' ⟧c Context1-sn⟶* C1 rrefl = rrefl Context1-sn⟶* C1 (rstep psn⟶p' p'sn⟶*p'') = rstep (Context1-sn⟶ C1 psn⟶p') (Context1-sn⟶* C1 p'sn⟶*p'') -- Unused helper function: compatible context append for _sn⟶_ -- We can't just give r sn⟶ C ⟦ p' ⟧c as the result since we can't pattern match on it Context-sn⟶ : ∀{r p p'} → (C : Context) → r ≐ C ⟦ p ⟧c → p sn⟶ p' → Σ[ r' ∈ Term ] (r' ≐ C ⟦ p' ⟧c) × (r sn⟶ r') Context-sn⟶ [] dchole psn⟶p' = _ , dchole ,′ psn⟶p' Context-sn⟶ (_ ∷ C) (dcpar₁ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcpar₁ dc₂ ,′ rcontext _ (dcpar₁ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcpar₂ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcpar₂ dc₂ ,′ rcontext _ (dcpar₂ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcseq₁ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcseq₁ dc₂ ,′ rcontext _ (dcseq₁ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcseq₂ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcseq₂ dc₂ ,′ rcontext _ (dcseq₂ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcsuspend dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcsuspend dc₂ ,′ rcontext _ (dcsuspend dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dctrap dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dctrap dc₂ ,′ rcontext _ (dctrap dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcsignl dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcsignl dc₂ ,′ rcontext _ (dcsignl dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcpresent₁ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcpresent₁ dc₂ ,′ rcontext _ (dcpresent₁ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcpresent₂ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcpresent₂ dc₂ ,′ rcontext _ (dcpresent₂ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcloop dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcloop dc₂ ,′ rcontext _ (dcloop dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcloopˢ₁ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcloopˢ₁ dc₂ ,′ rcontext _ (dcloopˢ₁ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcloopˢ₂ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcloopˢ₂ dc₂ ,′ rcontext _ (dcloopˢ₂ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcshared dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcshared dc₂ ,′ rcontext _ (dcshared dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcvar dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcvar dc₂ ,′ rcontext _ (dcvar dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcif₁ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcif₁ dc₂ ,′ rcontext _ (dcif₁ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcif₂ dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcif₂ dc₂ ,′ rcontext _ (dcif₂ dc') psn⟶₁p' Context-sn⟶ (_ ∷ C) (dcenv dc₁) psn⟶p' with Context-sn⟶ C dc₁ psn⟶p' ... | _ , dc₂ , rcontext _ dc' psn⟶₁p' = _ , dcenv dc₂ ,′ rcontext _ (dcenv dc') psn⟶₁p' Context-sn⟶⟦⟧ : ∀{p q} → (C : Context) → p sn⟶ q → ((C ⟦ p ⟧c) sn⟶ (C ⟦ q ⟧c)) Context-sn⟶⟦⟧{p} C psn⟶q with Context-sn⟶{r = C ⟦ p ⟧c} C Crefl psn⟶q ... | (r' , r=C⟦q⟧ , rsn⟶r') rewrite unplugc r=C⟦q⟧ = rsn⟶r' Context-sn⟶* : ∀{p q} → (C : Context) → p sn⟶* q → (C ⟦ p ⟧c) sn⟶* (C ⟦ q ⟧c) Context-sn⟶* C rrefl = rrefl Context-sn⟶* C₁ (rstep C→ psn⟶*q) = (rstep (Context-sn⟶⟦⟧ C₁ C→) (Context-sn⟶* C₁ psn⟶*q)) sn⟶*+ : ∀{p q r} → p sn⟶* r → r sn⟶* q → p sn⟶* q sn⟶*+ rrefl rsn⟶*q = rsn⟶*q sn⟶*+ (rstep x psn⟶*r) rsn⟶*q = rstep x (sn⟶*+ psn⟶*r rsn⟶*q) ρ-stays-ρ-sn⟶₁ : ∀{θ p q A} → (ρ⟨ θ , A ⟩· p) sn⟶₁ q → Σ[ θ' ∈ Env.Env ] Σ[ qin ∈ Term ] Σ[ A' ∈ Ctrl ] q ≡ (ρ⟨ θ' , A' ⟩· qin) ρ-stays-ρ-sn⟶₁ {θ} {A = A} (ris-present{p = p}{E = E} S∈ x x₁) = θ , E ⟦ p ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (ris-absent{q = q}{E = E} S∈ x x₁) = θ , E ⟦ q ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (remit{S = S}{E = E} S∈ _ x) = (Env.set-sig{S} θ S∈ Signal.present) , E ⟦ nothin ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rraise-shared{s = s}{p = p}{E = E} e' x) = θ , (E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.[ s ↦ (SharedVar.old ,′ (δ e'))] VarMap.empty) , WAIT ⟩· p) ⟧e) , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rset-shared-value-old{s = s}{E = E} e' s∈ x x₁) = (Env.set-shr{s} θ s∈ (SharedVar.new) (δ e')) , E ⟦ nothin ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rset-shared-value-new{s = s}{E = E} e' s∈ x x₁) = (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , E ⟦ nothin ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rraise-var{x = x}{p = p}{E = E} e' x₁) = θ , (E ⟦ (ρ⟨ (Θ SigMap.empty ShrMap.empty VarMap.[ x ↦ δ e' ]) , WAIT ⟩· p) ⟧e) , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rset-var{x = x}{E = E} x∈ e' x₁) = (Env.set-var{x} θ x∈ (δ e')) , E ⟦ nothin ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rif-false{q = q}{E = E} x∈ x₁ x₂) = θ , E ⟦ q ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rif-true{p = p}{E = E} x∈ x₁ x₂) = θ , E ⟦ p ⟧e , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rabsence{.θ}{p}{S} S∈ x x₁) = (Env.set-sig{S} θ S∈ (Signal.absent)) , p , A , refl ρ-stays-ρ-sn⟶₁ {θ} {A = A} (rreadyness{.θ}{p}{s} s∈ x x₁) = (Env.set-shr{s} θ s∈ (SharedVar.ready) (Env.shr-vals{s} θ s∈)) , p , A , refl ρ-stays-ρ-sn⟶₁ {θ} (rmerge{θ₁}{θ₂}{r}{p}{E}{A₁}{A₂} x) = (θ₁ ← θ₂) , E ⟦ p ⟧e , (A-max A₁ A₂) , refl ρ-stays-ρ-sn⟶ : ∀{θ p q A} → (ρ⟨ θ , A ⟩· p) sn⟶ q → Σ[ θ' ∈ Env.Env ] Σ[ qin ∈ Term ] Σ[ A' ∈ Ctrl ] q ≡ (ρ⟨ θ' , A' ⟩· qin) ρ-stays-ρ-sn⟶ (rcontext .[] dchole psn⟶₁p') = ρ-stays-ρ-sn⟶₁ psn⟶₁p' ρ-stays-ρ-sn⟶ (rcontext .(cenv _ _ ∷ _) (dcenv dc) psn⟶₁p') = _ , _ , _ , refl ρ-stays-ρ-sn⟶* : ∀{θ p q A} → (ρ⟨ θ , A ⟩· p) sn⟶* q → Σ[ θ' ∈ Env.Env ] Σ[ qin ∈ Term ] Σ[ A ∈ Ctrl ] q ≡ (ρ⟨ θ' , A ⟩· qin) ρ-stays-ρ-sn⟶* rrefl = _ , _ , _ , refl ρ-stays-ρ-sn⟶* (rstep x psn⟶*q) rewrite proj₂ (proj₂ (proj₂ (ρ-stays-ρ-sn⟶ x))) = ρ-stays-ρ-sn⟶* psn⟶*q
{ "alphanum_fraction": 0.5635609756, "avg_line_length": 41.2474849095, "ext": "agda", "hexsha": "8c36c85106d7b53eb7a37514d456079f4d494b87", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus.agda", "max_line_length": 181, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 9943, "size": 20500 }
module Lambda where open import Prelude -- Simply typed λ-calculus infixr 70 _⟶_ data Type : Set where ι : Type _⟶_ : Type -> Type -> Type Ctx : Set Ctx = List Type infixl 80 _•_ infix 20 ƛ_ data Term : Ctx -> Type -> Set where vz : forall {Γ τ } -> Term (Γ , τ) τ wk : forall {Γ σ τ} -> Term Γ τ -> Term (Γ , σ) τ _•_ : forall {Γ σ τ} -> Term Γ (σ ⟶ τ) -> Term Γ σ -> Term Γ τ ƛ_ : forall {Γ σ τ} -> Term (Γ , σ) τ -> Term Γ (σ ⟶ τ) Terms : Ctx -> Ctx -> Set Terms Γ Δ = All (Term Γ) Δ infixl 60 _◄_ infixr 70 _⇒_ _⇒_ : Ctx -> Type -> Type ε ⇒ τ = τ (Δ , σ) ⇒ τ = Δ ⇒ σ ⟶ τ infixl 80 _•ˢ_ _•ˢ_ : {Γ Δ : Ctx}{τ : Type} -> Term Γ (Δ ⇒ τ) -> Terms Γ Δ -> Term Γ τ t •ˢ ∅ = t t •ˢ (us ◄ u) = t •ˢ us • u Var : Ctx -> Type -> Set Var Γ τ = τ ∈ Γ var : forall {Γ τ} -> Var Γ τ -> Term Γ τ var hd = vz var (tl x) = wk (var x) vzero : forall {Γ τ} -> Var (Γ , τ) τ vzero = hd vsuc : forall {Γ σ τ} -> Var Γ τ -> Var (Γ , σ) τ vsuc = tl
{ "alphanum_fraction": 0.5091649695, "avg_line_length": 18.5283018868, "ext": "agda", "hexsha": "89c50c494878f99039d9101afa214a643f2f4627", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/tait/Lambda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/tait/Lambda.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/tait/Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 450, "size": 982 }
-- Andreas, 2016-06-13 issue #2027: Unbound variables in pattern synonyms -- Quiz by Ulf postulate Nat : Set pattern hm = x -- This pattern synonym should fail with a message like -- Unbound variables in pattern synonym: x quiz₁ : Nat → Nat → Nat quiz₁ hm hm = hm quiz₂ : Nat → Nat quiz₂ x = hm quiz₃ : Nat → Nat quiz₃ hm = x -- OLD ERROR: Not in scope: x
{ "alphanum_fraction": 0.6906077348, "avg_line_length": 19.0526315789, "ext": "agda", "hexsha": "6f1945b5f562326d9d79e2fd517aca21f7c0c65a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2027.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2027.agda", "max_line_length": 73, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2027.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 115, "size": 362 }
-- This is the preferred version of the integers in the library. Other -- versions can be found in the MoreInts directory. {-# OPTIONS --safe #-} module Cubical.Data.Int where open import Cubical.Data.Int.Base public open import Cubical.Data.Int.Properties public
{ "alphanum_fraction": 0.7735849057, "avg_line_length": 33.125, "ext": "agda", "hexsha": "57147d57961de8e1cd1047de435d7f96edef6b23", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Data/Int.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Data/Int.agda", "max_line_length": 70, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Data/Int.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 57, "size": 265 }
-- Andreas, 2014-05-08 -- Reported by guillaume.brunerie, Yesterday {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v tc.cc:25 -v reduce.compiled:95 #-} -- {-# OPTIONS --show-implicit -v tc.inj:30 -v tc.conv:20 -v tc.meta.assign:10 #-} -- The code below gives the following odd error: -- > Incomplete pattern matching when applying Cubical._.C -- The definition of [C] by pattern matching does not seem incomplete, but even if it were, it should be detected when type checking [C], not when using it (!). -- The last definition [test] is the one triggering the error, if you comment it then everything typechecks. record Unit : Set where constructor unit data _==_ {i} {A : Set i} (a : A) : A → Set where idp : a == a data Nat : Set where O : Nat S : Nat → Nat record BS (B : Set) (C : B → Set) : Set where constructor bs field {b₁ b₂} : B c₁ : C b₁ c₂ : C b₂ p : b₁ == b₂ postulate A : Set B : Nat → Set C : (n : Nat) → B n → Set B O = Unit B (S n) = BS (B n) (C n) -- No bug if no match on unit -- C O _ = A C O unit = A C (S n) (bs {b₁} c₁ c₂ idp) = _==_ {A = _} c₁ c₂ -- Due to a bug in TypeChecking.Patterns.Match -- a failed match of (C n b) against (C O unit) -- turned into (C n unit). -- This was because all patterns were matched in -- parallel, and evaluations of successfull matches -- (and a record constructor like unit can always -- be successfully matched) were returned, leading -- to a reassembly of (C n b) as (C n unit) which is -- illtyped. -- Now patterns are matched left to right and -- upon failure, no further matching is performed. record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ public PathOver : {A : Set} (B : A → Set) {x y : A} (p : x == y) (u : B x) (v : B y) → Set PathOver B idp u v = (u == v) syntax PathOver B p u v = u == v [ B ↓ p ] pair×= : {A B : Set} {a a' : A} (p : a == a') {b b' : B} (q : b == b') → (a , b) == (a' , b') pair×= idp idp = idp bs= : {B : Set} {C : B → Set} {b₁ b₁' : B} {pb₁ : b₁ == b₁'} {b₂ b₂' : B} {pb₂ : b₂ == b₂'} {c₁ : C b₁} {c₁' : C b₁'} (pc₁ : c₁ == c₁' [ C ↓ pb₁ ]) {c₂ : C b₂} {c₂' : C b₂'} (pc₂ : c₂ == c₂' [ C ↓ pb₂ ]) {p : b₁ == b₂} {p' : b₁' == b₂'} (α : p == p' [ (λ u → fst u == snd u) ↓ pair×= pb₁ pb₂ ]) → bs c₁ c₂ p == bs c₁' c₂' p' bs= {pb₁ = idp} {pb₂ = idp} idp idp idp = idp _=□^[_]_ : {a b c d : A} (p : a == b) (qr : (a == c) × (b == d)) (s : c == d) → Set p =□^[ qr ] s = C (S (S O)) (bs {b₁ = bs _ _ idp} p s (bs= {pb₁ = idp} {pb₂ = idp} (fst qr) (snd qr) idp)) test : {a b : A} (p q : a == b) → (p =□^[ idp , idp ] q) == (p == q) test p q = idp {- compareTerm (C n unit) =< (?0 n {b₁} c₁ c₂) : Set term (?0 n {b₁} c₁ c₂) :>= (C n unit) term (?0 n {b₁} c₁ c₂) :>= (C n unit) solving _111 := (λ n {b₁} c₁ c₂ → C n unit) -}
{ "alphanum_fraction": 0.5443037975, "avg_line_length": 29.3195876289, "ext": "agda", "hexsha": "1567c07dd2767e09e10c6889f6c84f8ea2fdf7c0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1124.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1124.agda", "max_line_length": 160, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1124.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 1126, "size": 2844 }
module Equality where postulate _==_ : {A : Set} -> A -> A -> Set refl : {A : Set}{x : A} -> x == x {-# BUILTIN EQUAL _==_ #-} {-# BUILTIN REFL refl #-} private primitive primEqElim : {A : Set}(x : A)(C : (y : A) -> x == y -> Set) -> C x refl -> (y : A) -> (p : x == y) -> C y p elim-== = \{A : Set} -> primEqElim {A} subst : {A : Set}(C : A -> Set){x y : A} -> x == y -> C y -> C x subst C {x}{y} p Cy = elim-== x (\z _ -> C z -> C x) (\Cx -> Cx) y p Cy sym : {A : Set}{x y : A} -> x == y -> y == x sym {x = x}{y = y} p = subst (\z -> y == z) p refl trans : {A : Set}{x y z : A} -> x == y -> y == z -> x == z trans {x = x}{y = y}{z = z} xy yz = subst (\w -> w == z) xy yz cong : {A B : Set}{x y : A}(f : A -> B) -> x == y -> f x == f y cong {y = y} f xy = subst (\ ∙ -> f ∙ == f y) xy refl
{ "alphanum_fraction": 0.3926453144, "avg_line_length": 29.0689655172, "ext": "agda", "hexsha": "5803c31d8e4df21be828c24c4c9c12060c8fc9ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Equality.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 362, "size": 843 }
{- Proof of the standard formulation of the univalence theorem and various consequences of univalence - Re-exports Glue types from Cubical.Core.Glue - The ua constant and its computation rule (up to a path) - Proof of univalence using that unglue is an equivalence ([EquivContr]) - Equivalence induction ([EquivJ], [elimEquiv]) - Univalence theorem ([univalence]) - The computation rule for ua ([uaβ]) - Isomorphism induction ([elimIso]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Univalence where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma.Base open import Cubical.Core.Glue public using ( Glue ; glue ; unglue ; lineToEquiv ) open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ' : Level -- The ua constant ua : ∀ {A B : Type ℓ} → A ≃ B → A ≡ B ua {A = A} {B = B} e i = Glue B (λ { (i = i0) → (A , e) ; (i = i1) → (B , idEquiv B) }) uaIdEquiv : {A : Type ℓ} → ua (idEquiv A) ≡ refl uaIdEquiv {A = A} i j = Glue A {φ = i ∨ ~ j ∨ j} (λ _ → A , idEquiv A) -- Propositional extensionality hPropExt : {A B : Type ℓ} → isProp A → isProp B → (A → B) → (B → A) → A ≡ B hPropExt Aprop Bprop f g = ua (propBiimpl→Equiv Aprop Bprop f g) -- the unglue and glue primitives specialized to the case of ua ua-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i) → B {- [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → x }) ] -} ua-unglue e i x = unglue (i ∨ ~ i) x ua-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A) (y : B [ _ ↦ (λ { (i = i0) → e .fst (x 1=1) }) ]) → ua e i {- [ _ ↦ (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) ] -} ua-glue e i x y = glue {φ = i ∨ ~ i} (λ { (i = i0) → x 1=1 ; (i = i1) → outS y }) (outS y) module _ {A B : Type ℓ} (e : A ≃ B) {x : A} {y : B} where -- sometimes more useful are versions of these functions with the (i : I) factored in ua-ungluePath : PathP (λ i → ua e i) x y → e .fst x ≡ y ua-ungluePath p i = ua-unglue e i (p i) ua-gluePath : e .fst x ≡ y → PathP (λ i → ua e i) x y ua-gluePath p i = ua-glue e i (λ { (i = i0) → x }) (inS (p i)) -- ua-ungluePath and ua-gluePath are definitional inverses ua-ungluePath-Equiv : (PathP (λ i → ua e i) x y) ≃ (e .fst x ≡ y) unquoteDef ua-ungluePath-Equiv = defStrictEquiv ua-ungluePath-Equiv ua-ungluePath ua-gluePath -- ua-unglue and ua-glue are also definitional inverses, in a way -- strengthening the types of ua-unglue and ua-glue gives a nicer formulation of this, see below ua-unglue-glue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : Partial (~ i) A) (y : B [ _ ↦ _ ]) → ua-unglue e i (ua-glue e i x y) ≡ outS y ua-unglue-glue _ _ _ _ = refl ua-glue-unglue : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : ua e i) → ua-glue e i (λ { (i = i0) → x }) (inS (ua-unglue e i x)) ≡ x ua-glue-unglue _ _ _ = refl -- mainly for documentation purposes, ua-unglue and ua-glue wrapped in cubical subtypes ua-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) → ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ] → B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ] ua-unglueS e i x y s = inS (ua-unglue e i (outS s)) ua-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) → B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ] → ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ] ua-glueS e i x y s = inS (ua-glue e i (λ { (i = i0) → x }) (inS (outS s))) ua-unglueS-glueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) (s : B [ _ ↦ (λ { (i = i0) → e .fst x ; (i = i1) → y }) ]) → outS (ua-unglueS e i x y (ua-glueS e i x y s)) ≡ outS s ua-unglueS-glueS _ _ _ _ _ = refl ua-glueS-unglueS : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) (y : B) (s : ua e i [ _ ↦ (λ { (i = i0) → x ; (i = i1) → y }) ]) → outS (ua-glueS e i x y (ua-unglueS e i x y s)) ≡ outS s ua-glueS-unglueS _ _ _ _ _ = refl -- a version of ua-glue with a single endpoint, identical to `ua-gluePath e {x} refl i` ua-gluePt : ∀ {A B : Type ℓ} (e : A ≃ B) (i : I) (x : A) → ua e i {- [ _ ↦ (λ { (i = i0) → x ; (i = i1) → e .fst x }) ] -} ua-gluePt e i x = ua-glue e i (λ { (i = i0) → x }) (inS (e .fst x)) -- Proof of univalence using that unglue is an equivalence: -- unglue is an equivalence unglueIsEquiv : ∀ (A : Type ℓ) (φ : I) (f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) → isEquiv {A = Glue A f} (unglue φ) equiv-proof (unglueIsEquiv A φ f) = λ (b : A) → let u : I → Partial φ A u i = λ{ (φ = i1) → equivCtr (f 1=1 .snd) b .snd (~ i) } ctr : fiber (unglue φ) b ctr = ( glue (λ { (φ = i1) → equivCtr (f 1=1 .snd) b .fst }) (hcomp u b) , λ j → hfill u (inS b) (~ j)) in ( ctr , λ (v : fiber (unglue φ) b) i → let u' : I → Partial (φ ∨ ~ i ∨ i) A u' j = λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .snd (~ j) ; (i = i0) → hfill u (inS b) j ; (i = i1) → v .snd (~ j) } in ( glue (λ { (φ = i1) → equivCtrPath (f 1=1 .snd) b v i .fst }) (hcomp u' b) , λ j → hfill u' (inS b) (~ j))) -- Any partial family of equivalences can be extended to a total one -- from Glue [ φ ↦ (T,f) ] A to A unglueEquiv : ∀ (A : Type ℓ) (φ : I) (f : PartialP φ (λ o → Σ[ T ∈ Type ℓ ] T ≃ A)) → (Glue A f) ≃ A unglueEquiv A φ f = ( unglue φ , unglueIsEquiv A φ f ) -- The following is a formulation of univalence proposed by Martín Escardó: -- https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ -- See also Theorem 5.8.4 of the HoTT Book. -- -- The reason we have this formulation in the core library and not the -- standard one is that this one is more direct to prove using that -- unglue is an equivalence. The standard formulation can be found in -- Cubical/Basics/Univalence. -- EquivContr : ∀ (A : Type ℓ) → ∃![ T ∈ Type ℓ ] (T ≃ A) EquivContr {ℓ = ℓ} A = ( (A , idEquiv A) , idEquiv≡ ) where idEquiv≡ : (y : Σ (Type ℓ) (λ T → T ≃ A)) → (A , idEquiv A) ≡ y idEquiv≡ w = \ { i .fst → Glue A (f i) ; i .snd .fst → unglueEquiv _ _ (f i) .fst ; i .snd .snd .equiv-proof → unglueEquiv _ _ (f i) .snd .equiv-proof } where f : ∀ i → PartialP (~ i ∨ i) (λ x → Σ[ T ∈ Type ℓ ] T ≃ A) f i = λ { (i = i0) → A , idEquiv A ; (i = i1) → w } contrSinglEquiv : {A B : Type ℓ} (e : A ≃ B) → (B , idEquiv B) ≡ (A , e) contrSinglEquiv {A = A} {B = B} e = isContr→isProp (EquivContr B) (B , idEquiv B) (A , e) -- Equivalence induction EquivJ : {A B : Type ℓ} (P : (A : Type ℓ) → (e : A ≃ B) → Type ℓ') → (r : P B (idEquiv B)) → (e : A ≃ B) → P A e EquivJ P r e = subst (λ x → P (x .fst) (x .snd)) (contrSinglEquiv e) r -- Assuming that we have an inverse to ua we can easily prove univalence module Univalence (au : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B) (aurefl : ∀ {ℓ} {A B : Type ℓ} → au refl ≡ idEquiv A) where ua-au : {A B : Type ℓ} (p : A ≡ B) → ua (au p) ≡ p ua-au {B = B} = J (λ _ p → ua (au p) ≡ p) (cong ua (aurefl {B = B}) ∙ uaIdEquiv) au-ua : {A B : Type ℓ} (e : A ≃ B) → au (ua e) ≡ e au-ua {B = B} = EquivJ (λ _ f → au (ua f) ≡ f) (subst (λ r → au r ≡ idEquiv _) (sym uaIdEquiv) (aurefl {B = B})) isoThm : ∀ {ℓ} {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B) isoThm .Iso.fun = au isoThm .Iso.inv = ua isoThm .Iso.rightInv = au-ua isoThm .Iso.leftInv = ua-au thm : ∀ {ℓ} {A B : Type ℓ} → isEquiv au thm {A = A} {B = B} = isoToIsEquiv {B = A ≃ B} isoThm pathToEquiv : {A B : Type ℓ} → A ≡ B → A ≃ B pathToEquiv p = lineToEquiv (λ i → p i) pathToEquivRefl : {A : Type ℓ} → pathToEquiv refl ≡ idEquiv A pathToEquivRefl {A = A} = equivEq (λ i x → transp (λ _ → A) i x) pathToEquiv-ua : {A B : Type ℓ} (e : A ≃ B) → pathToEquiv (ua e) ≡ e pathToEquiv-ua = Univalence.au-ua pathToEquiv pathToEquivRefl ua-pathToEquiv : {A B : Type ℓ} (p : A ≡ B) → ua (pathToEquiv p) ≡ p ua-pathToEquiv = Univalence.ua-au pathToEquiv pathToEquivRefl -- Univalence univalenceIso : {A B : Type ℓ} → Iso (A ≡ B) (A ≃ B) univalenceIso = Univalence.isoThm pathToEquiv pathToEquivRefl univalence : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalence = ( pathToEquiv , Univalence.thm pathToEquiv pathToEquivRefl ) -- The original map from UniMath/Foundations eqweqmap : {A B : Type ℓ} → A ≡ B → A ≃ B eqweqmap {A = A} e = J (λ X _ → A ≃ X) (idEquiv A) e eqweqmapid : {A : Type ℓ} → eqweqmap refl ≡ idEquiv A eqweqmapid {A = A} = JRefl (λ X _ → A ≃ X) (idEquiv A) univalenceStatement : {A B : Type ℓ} → isEquiv (eqweqmap {ℓ} {A} {B}) univalenceStatement = Univalence.thm eqweqmap eqweqmapid univalenceUAH : {A B : Type ℓ} → (A ≡ B) ≃ (A ≃ B) univalenceUAH = ( _ , univalenceStatement ) univalencePath : {A B : Type ℓ} → (A ≡ B) ≡ Lift (A ≃ B) univalencePath = ua (compEquiv univalence LiftEquiv) -- The computation rule for ua. Because of "ghcomp" it is now very -- simple compared to cubicaltt: -- https://github.com/mortberg/cubicaltt/blob/master/examples/univalence.ctt#L202 uaβ : {A B : Type ℓ} (e : A ≃ B) (x : A) → transport (ua e) x ≡ equivFun e x uaβ e x = transportRefl (equivFun e x) uaη : ∀ {A B : Type ℓ} → (P : A ≡ B) → ua (pathToEquiv P) ≡ P uaη = J (λ _ q → ua (pathToEquiv q) ≡ q) (cong ua pathToEquivRefl ∙ uaIdEquiv) -- Lemmas for constructing and destructing dependent paths in a function type where the domain is ua. ua→ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'} {f₀ : A₀ → B i0} {f₁ : A₁ → B i1} → ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a))) → PathP (λ i → ua e i → B i) f₀ f₁ ua→ {e = e} {f₀ = f₀} {f₁} h i a = hcomp (λ j → λ { (i = i0) → f₀ a ; (i = i1) → f₁ (lem a j) }) (h (transp (λ j → ua e (~ j ∧ i)) (~ i) a) i) where lem : ∀ a₁ → e .fst (transport (sym (ua e)) a₁) ≡ a₁ lem a₁ = retEq e _ ∙ transportRefl _ ua→⁻ : ∀ {ℓ ℓ'} {A₀ A₁ : Type ℓ} {e : A₀ ≃ A₁} {B : (i : I) → Type ℓ'} {f₀ : A₀ → B i0} {f₁ : A₁ → B i1} → PathP (λ i → ua e i → B i) f₀ f₁ → ((a : A₀) → PathP B (f₀ a) (f₁ (e .fst a))) ua→⁻ {e = e} {f₀ = f₀} {f₁} p a i = hcomp (λ k → λ { (i = i0) → f₀ a ; (i = i1) → f₁ (uaβ e a k) }) (p i (transp (λ j → ua e (j ∧ i)) (~ i) a)) -- Useful lemma for unfolding a transported function over ua -- If we would have regularity this would be refl transportUAop₁ : ∀ {A B : Type ℓ} → (e : A ≃ B) (f : A → A) (x : B) → transport (λ i → ua e i → ua e i) f x ≡ equivFun e (f (invEq e x)) transportUAop₁ e f x i = transportRefl (equivFun e (f (invEq e (transportRefl x i)))) i -- Binary version transportUAop₂ : ∀ {ℓ} {A B : Type ℓ} → (e : A ≃ B) (f : A → A → A) (x y : B) → transport (λ i → ua e i → ua e i → ua e i) f x y ≡ equivFun e (f (invEq e x) (invEq e y)) transportUAop₂ e f x y i = transportRefl (equivFun e (f (invEq e (transportRefl x i)) (invEq e (transportRefl y i)))) i -- Alternative version of EquivJ that only requires a predicate on functions elimEquivFun : {A B : Type ℓ} (P : (A : Type ℓ) → (A → B) → Type ℓ') → (r : P B (idfun B)) → (e : A ≃ B) → P A (e .fst) elimEquivFun P r e = subst (λ x → P (x .fst) (x .snd .fst)) (contrSinglEquiv e) r -- Isomorphism induction elimIso : {B : Type ℓ} → (Q : {A : Type ℓ} → (A → B) → (B → A) → Type ℓ') → (h : Q (idfun B) (idfun B)) → {A : Type ℓ} → (f : A → B) → (g : B → A) → section f g → retract f g → Q f g elimIso {ℓ} {ℓ'} {B} Q h {A} f g sfg rfg = rem1 f g sfg rfg where P : (A : Type ℓ) → (f : A → B) → Type (ℓ-max ℓ' ℓ) P A f = (g : B → A) → section f g → retract f g → Q f g rem : P B (idfun B) rem g sfg rfg = subst (Q (idfun B)) (λ i b → (sfg b) (~ i)) h rem1 : {A : Type ℓ} → (f : A → B) → P A f rem1 f g sfg rfg = elimEquivFun P rem (f , isoToIsEquiv (iso f g sfg rfg)) g sfg rfg uaInvEquiv : ∀ {A B : Type ℓ} → (e : A ≃ B) → ua (invEquiv e) ≡ sym (ua e) uaInvEquiv {B = B} = EquivJ (λ _ e → ua (invEquiv e) ≡ sym (ua e)) (cong ua (invEquivIdEquiv B)) uaCompEquiv : ∀ {A B C : Type ℓ} → (e : A ≃ B) (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f uaCompEquiv {B = B} {C} = EquivJ (λ _ e → (f : B ≃ C) → ua (compEquiv e f) ≡ ua e ∙ ua f) (λ f → cong ua (compEquivIdEquiv f) ∙ sym (cong (λ x → x ∙ ua f) uaIdEquiv ∙ sym (lUnit (ua f))))
{ "alphanum_fraction": 0.5250502551, "avg_line_length": 41.7225806452, "ext": "agda", "hexsha": "ab75a70a925fe2fedcc813280f090b8d609d4a6f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Foundations/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Foundations/Univalence.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Foundations/Univalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5369, "size": 12934 }
open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.List using (List; []; _∷_; [_]; _++_) open import Data.List.Any using (Any; here; there) open import Data.List.Any.Membership.Propositional using (_∈_) open import Data.Nat using (ℕ) open import Relation.Binary.PropositionalEquality using (_≡_; refl) -- open import Data.List.Any.Membership.Propositional.Properties using (∈-++⁺ˡ; ∈-++⁺ʳ; ∈-++⁻) Id = ℕ _⊆_ : List Id → List Id → Set xs ⊆ ys = ∀ {w} → w ∈ xs → w ∈ ys lemma : ∀ {x : Id} → x ∈ [ x ] lemma = here refl
{ "alphanum_fraction": 0.6534839925, "avg_line_length": 33.1875, "ext": "agda", "hexsha": "697dca35087c7711af76b2f0b8a5f7493fd1c802", "lang": "Agda", "max_forks_count": 304, "max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z", "max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z", "max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "manikdv/plfa.github.io", "max_forks_repo_path": "extra/extra/Membership.agda", "max_issues_count": 323, "max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "manikdv/plfa.github.io", "max_issues_repo_path": "extra/extra/Membership.agda", "max_line_length": 94, "max_stars_count": 1003, "max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "manikdv/plfa.github.io", "max_stars_repo_path": "extra/extra/Membership.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z", "num_tokens": 178, "size": 531 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Unsafe Float operations ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Data.Float.Unsafe where open import Data.Float open import Data.Bool.Base using (false; true) open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality using (_≡_) open import Relation.Binary.PropositionalEquality.TrustMe ------------------------------------------------------------------------ -- Equality testing infix 4 _≟_ _≟_ : (x y : Float) → Dec (x ≡ y) x ≟ y with primFloatEquality x y ... | true = yes trustMe ... | false = no whatever where postulate whatever : _
{ "alphanum_fraction": 0.5144356955, "avg_line_length": 28.2222222222, "ext": "agda", "hexsha": "db49288f260da400b8f4f35578b22a74e07ea35c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Float/Unsafe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Float/Unsafe.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Float/Unsafe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 151, "size": 762 }
------------------------------------------------------------------------ -- Subsets of finite sets ------------------------------------------------------------------------ module Data.Fin.Subset where open import Data.Nat open import Data.Vec hiding (_∈_) open import Data.Fin open import Data.Product open import Relation.Nullary open import Relation.Binary.PropositionalEquality infixr 2 _∈_ _∉_ _⊆_ _⊈_ ------------------------------------------------------------------------ -- Definitions data Side : Set where inside : Side outside : Side -- Partitions a finite set into two parts, the inside and the outside. Subset : ℕ → Set Subset = Vec Side ------------------------------------------------------------------------ -- Membership and subset predicates _∈_ : ∀ {n} → Fin n → Subset n → Set x ∈ p = p [ x ]= inside _∉_ : ∀ {n} → Fin n → Subset n → Set x ∉ p = ¬ (x ∈ p) _⊆_ : ∀ {n} → Subset n → Subset n → Set p₁ ⊆ p₂ = ∀ {x} → x ∈ p₁ → x ∈ p₂ _⊈_ : ∀ {n} → Subset n → Subset n → Set p₁ ⊈ p₂ = ¬ (p₁ ⊆ p₂) ------------------------------------------------------------------------ -- Some specific subsets all : ∀ {n} → Side → Subset n all {zero} _ = [] all {suc n} s = s ∷ all s ------------------------------------------------------------------------ -- Properties Nonempty : ∀ {n} (p : Subset n) → Set Nonempty p = ∃ λ f → f ∈ p Empty : ∀ {n} (p : Subset n) → Set Empty p = ¬ Nonempty p -- Point-wise lifting of properties. Lift : ∀ {n} → (Fin n → Set) → (Subset n → Set) Lift P p = ∀ {x} → x ∈ p → P x
{ "alphanum_fraction": 0.4299674267, "avg_line_length": 24.3650793651, "ext": "agda", "hexsha": "3cb707e4c9ee5399e3728359028d532ba1a5aed9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Fin/Subset.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Fin/Subset.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Fin/Subset.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 418, "size": 1535 }
------------------------------------------------------------------------ -- Operations on nullary relations (like negation and decidability) ------------------------------------------------------------------------ -- Some operations on/properties of nullary relations, i.e. sets. module Relation.Nullary where open import Data.Product import Relation.Nullary.Core as Core open import Relation.Binary open import Relation.Binary.FunctionSetoid import Relation.Binary.EqReasoning as EqReasoning ------------------------------------------------------------------------ -- Negation open Core public using (¬_) ------------------------------------------------------------------------ -- Equivalence infix 3 _⇔_ _⇔_ : Set → Set → Set P ⇔ Q = (P → Q) × (Q → P) ------------------------------------------------------------------------ -- Decidable relations open Core public using (Dec; yes; no) ------------------------------------------------------------------------ -- Injections Injective : ∀ {A B} → A ⟶ B → Set Injective {A} {B} f = ∀ {x y} → f ⟨$⟩ x ≈₂ f ⟨$⟩ y → x ≈₁ y where open Setoid A renaming (_≈_ to _≈₁_) open Setoid B renaming (_≈_ to _≈₂_) _LeftInverseOf_ : ∀ {A B} → B ⟶ A → A ⟶ B → Set _LeftInverseOf_ {A} f g = ∀ x → f ⟨$⟩ (g ⟨$⟩ x) ≈₁ x where open Setoid A renaming (_≈_ to _≈₁_) record Injection (From To : Setoid) : Set where field to : From ⟶ To injective : Injective to record LeftInverse (From To : Setoid) : Set where field to : From ⟶ To from : To ⟶ From left-inverse : from LeftInverseOf to open Setoid From open EqReasoning From injective : Injective to injective {x} {y} eq = begin x ≈⟨ sym (left-inverse x) ⟩ from ⟨$⟩ (to ⟨$⟩ x) ≈⟨ pres from eq ⟩ from ⟨$⟩ (to ⟨$⟩ y) ≈⟨ left-inverse y ⟩ y ∎ injection : Injection From To injection = record { to = to; injective = injective }
{ "alphanum_fraction": 0.4750898819, "avg_line_length": 28.2173913043, "ext": "agda", "hexsha": "7b1ddc54dfc35b68071e5c3cee04edfe7ef50f76", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Nullary.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Nullary.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Nullary.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 520, "size": 1947 }
-- Andreas, 2019-09-13, AIM XXX, test for #4050 by gallais -- Jesper, 2019-12-19, moved to test/Fail after unfix of #3823 record Wrap : Set₂ where field wrapped : Set₁ f : Wrap f = record { M } module M where wrapped : Set₁ wrapped = Set -- Should be accepted.
{ "alphanum_fraction": 0.6606498195, "avg_line_length": 18.4666666667, "ext": "agda", "hexsha": "ab0f74192da1714f1496ba220450acd1b02c3829", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue4050.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4050.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4050.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 277 }
{-# OPTIONS --without-K #-} module SimpleHoTT where open import Data.Empty open import Data.Sum renaming (map to _⊎→_) open import Function renaming (_∘_ to _○_) infixr 8 _∘_ -- path composition infix 4 _≡_ -- propositional equality infix 2 _∎ -- equational reasoning for paths infixr 2 _≡⟨_⟩_ -- equational reasoning for paths ------------------------------------------------------------------------------ -- Equivalences a la HoTT (using HoTT paths and path induction) -- Our own version of refl that makes 'a' explicit data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where refl : (a : A) → (a ≡ a) -- not sure where else to put this [Z] hetType : {A B : Set} → (a : A) → A ≡ B → B hetType a (refl _) = a -- J pathInd : ∀ {u ℓ} → {A : Set u} → (C : {x y : A} → x ≡ y → Set ℓ) → (c : (x : A) → C (refl x)) → ({x y : A} (p : x ≡ y) → C p) pathInd C c (refl x) = c x basedPathInd : {A : Set} → (a : A) → (C : (x : A) → (a ≡ x) → Set) → C a (refl a) → ((x : A) (p : a ≡ x) → C x p) basedPathInd a C c .a (refl .a) = c ! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x) ! = pathInd (λ {x} {y} _ → y ≡ x) refl _∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _∘_ {u} {A} {x} {y} {z} p q = pathInd {u} (λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z))) (λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q) {x} {y} p z q -- p = p . refl unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ p ∘ refl y) unitTransR {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ p ∘ (refl y)) (λ x → refl (refl x)) {x} {y} p -- p = refl . p unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p) unitTransL {A} {x} {y} p = pathInd (λ {x} {y} p → p ≡ (refl x) ∘ p) (λ x → refl (refl x)) {x} {y} p ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (x ≡ y) → (f x ≡ f y) ap {ℓ} {ℓ'} {A} {B} {x} {y} f p = pathInd -- on p (λ {x} {y} p → f x ≡ f y) (λ x → refl (f x)) {x} {y} p ap2 : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {C : Set ℓ''} {x₁ y₁ : A} {x₂ y₂ : B} → (f : A → B → C) → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (f x₁ x₂ ≡ f y₁ y₂) ap2 {ℓ} {ℓ'} {ℓ''} {A} {B} {C} {x₁} {y₁} {x₂} {y₂} f p₁ p₂ = pathInd -- on p₁ (λ {x₁} {y₁} p₁ → f x₁ x₂ ≡ f y₁ y₂) (λ x → pathInd -- on p₂ (λ {x₂} {y₂} p₂ → f x x₂ ≡ f x y₂) (λ y → refl (f x y)) {x₂} {y₂} p₂) {x₁} {y₁} p₁ -- Abbreviations for path compositions _≡⟨_⟩_ : ∀ {u} → {A : Set u} (x : A) {y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _ ≡⟨ p ⟩ q = p ∘ q bydef : ∀ {u} → {A : Set u} {x : A} → (x ≡ x) bydef {u} {A} {x} = refl x _∎ : ∀ {u} → {A : Set u} (x : A) → x ≡ x _∎ x = refl x -- Transport; Lifting transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} → (P : A → Set ℓ') → (p : x ≡ y) → P x → P y transport {ℓ} {ℓ'} {A} {x} {y} P p = pathInd -- on p (λ {x} {y} p → (P x → P y)) (λ _ → id) {x} {y} p -- Lemma 2.3.10 transport-f : ∀ {ℓ ℓ' ℓ''} → {A : Set ℓ} {B : Set ℓ'} {x y : A} → (f : A → B) → (P : B → Set ℓ'') → (p : x ≡ y) → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u transport-f {ℓ} {ℓ'} {ℓ''} {A} {B} {x} {y} f P p u = pathInd -- on p (λ {x} {y} p → (u : P (f x)) → transport (P ○ f) p u ≡ transport P (ap f p) u) (λ x u → refl u) {x} {y} p u -- Lemma 2.11.2 transportIdR : {A : Set} {a y z : A} → (p : y ≡ z) → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p transportIdR {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : a ≡ y) → transport (λ x → a ≡ x) p q ≡ q ∘ p) (λ y q → transport (λ x → a ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ∎) {y} {z} p q transportIdL : {A : Set} {a y z : A} → (p : y ≡ z) → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q transportIdL {A} {a} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ a) → transport (λ x → x ≡ a) p q ≡ ! p ∘ q) (λ y q → transport (λ x → x ≡ a) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransL q ⟩ ! (refl y) ∘ q ∎) {y} {z} p q transportIdRefl : {A : Set} {y z : A} → (p : y ≡ z) → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p transportIdRefl {A} {y} {z} p q = pathInd (λ {y} {z} p → (q : y ≡ y) → transport (λ x → x ≡ x) p q ≡ ! p ∘ q ∘ p) (λ y q → transport (λ x → x ≡ x) (refl y) q ≡⟨ bydef ⟩ q ≡⟨ unitTransR q ⟩ q ∘ refl y ≡⟨ unitTransL (q ∘ refl y) ⟩ ! (refl y) ∘ q ∘ refl y ∎) {y} {z} p q -- tools for coproducts (Sec. 2.12) indCP : {A B : Set} → (C : A ⊎ B → Set) → ((a : A) → C (inj₁ a)) → ((b : B) → C (inj₂ b)) → ((x : A ⊎ B) → C x) indCP C f g (inj₁ a) = f a indCP C f g (inj₂ b) = g b code : {A B : Set} → (a₀ : A) → A ⊎ B → Set code a₀ (inj₁ a) = a₀ ≡ a code a₀ (inj₂ b) = ⊥ encode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (p : inj₁ a₀ ≡ x) → code a₀ x encode {A} {B} a₀ x p = transport (code a₀) p (refl a₀) decode : {A B : Set} → (a₀ : A) → (x : A ⊎ B) → (c : code a₀ x) → inj₁ a₀ ≡ x decode a₀ (inj₁ a) c = ap inj₁ c decode a₀ (inj₂ b) ()
{ "alphanum_fraction": 0.4003433149, "avg_line_length": 29.96, "ext": "agda", "hexsha": "7391211816b721681a5face2901feb93eba0c14f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/OldUnivalence/SimpleHoTT.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/OldUnivalence/SimpleHoTT.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/OldUnivalence/SimpleHoTT.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2592, "size": 5243 }
module Oscar.Class.ThickAndThin where open import Oscar.Data.Fin open import Oscar.Data.Equality open import Oscar.Data.Nat open import Oscar.Data.Maybe record ThickAndThin {a} (A : Nat → Set a) : Set a where field thin : ∀ {m} → Fin (suc m) → A m → A (suc m) thin-injective : ∀ {m} (x : Fin (suc m)) {y₁ y₂ : A m} → thin x y₁ ≡ thin x y₂ → y₁ ≡ y₂ thick : ∀ {m} → A (suc m) → Fin m → A m thick∘thin=id : ∀ {m} (x : Fin m) (y : A m) → thick (thin (suc x) y) x ≡ y check : ∀ {m} → Fin (suc m) → A (suc m) → Maybe (A m) thin-check-id : ∀ {m} (x : Fin (suc m)) y → ∀ y' → thin x y' ≡ y → check x y ≡ just y' open ThickAndThin ⦃ … ⦄ public -- open import Oscar.Level -- record ThickAndThin' {a} {A : Set a} (f : A → A) {b} (B : A → Set b) (g : ∀ {x} → B x → B (f x)) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where -- field -- thin : ∀ {n} → B (f n) → C n → C (f n) -- thick : ∀ {n} → C (f n) → B n → C n -- thin-injective : ∀ {n} (z : B (f n)) {x y : C n} → thin z x ≡ thin z y → x ≡ y -- thick∘thin=id : ∀ {n} (x : B n) (y : C n) → thick (thin (g x) y) x ≡ y -- check : ∀ {n} → B (f n) → C (f n) → Maybe (C n) -- thin-check-id : ∀ {n} (x : B (f n)) y → ∀ y' → thin x y' ≡ y → check x y ≡ just y' -- --open ThickAndThin' ⦃ … ⦄ public
{ "alphanum_fraction": 0.4906687403, "avg_line_length": 40.1875, "ext": "agda", "hexsha": "5f9b6cbdf5380036f85813e0d90f6600b8d791bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/ThickAndThin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/ThickAndThin.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/ThickAndThin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 558, "size": 1286 }
open import Mockingbird.Forest using (Forest) module Mockingbird.Forest.Combination.Base {b ℓ} (forest : Forest {b} {ℓ}) where open import Level using (Level; _⊔_) open import Relation.Unary using (Pred; _∈_) open Forest forest private variable p : Level x y z : Bird P : Pred Bird p -- If P is a set of birds, we can think of ⟨ P ⟩ as the set of birds ‘generated -- by’ P. data ⟨_⟩ (P : Pred Bird p) : Pred Bird (p ⊔ b ⊔ ℓ) where [_] : (x∈P : x ∈ P) → x ∈ ⟨ P ⟩ _⟨∙⟩_∣_ : (x∈⟨P⟩ : x ∈ ⟨ P ⟩) → (y∈⟨P⟩ : y ∈ ⟨ P ⟩) → (xy≈z : x ∙ y ≈ z) → z ∈ ⟨ P ⟩ infixl 6 _⟨∙⟩_ _⟨∙⟩_ : x ∈ ⟨ P ⟩ → y ∈ ⟨ P ⟩ → x ∙ y ∈ ⟨ P ⟩ _⟨∙⟩_ = _⟨∙⟩_∣ refl
{ "alphanum_fraction": 0.5215453195, "avg_line_length": 22.4333333333, "ext": "agda", "hexsha": "07367cb192b9c61cbe99879641a589fc8a23d1ab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "splintah/combinatory-logic", "max_forks_repo_path": "Mockingbird/Forest/Combination/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "splintah/combinatory-logic", "max_issues_repo_path": "Mockingbird/Forest/Combination/Base.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "splintah/combinatory-logic", "max_stars_repo_path": "Mockingbird/Forest/Combination/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z", "num_tokens": 306, "size": 673 }
{-# OPTIONS --without-K --safe #-} -- In this module, we define the syntax of D<: module DsubDef where open import Data.List as List open import Data.List.All open import Data.Nat as ℕ open import Data.Maybe as Maybe open import Data.Product open import Data.Sum open import Data.Empty renaming (⊥ to False) open import Function open import Data.Nat.Properties as ℕₚ open import Data.Maybe.Properties as Maybeₚ open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Utils infix 8 _∙A infix 6 Π_∙_ ⟨A:_⋯_⟩ -- Types -- -- Notations in Agda should be more readable than in Coq. -- * ⊤ is a supertype of all types. -- * ⊥ is a subtype of all types. -- * (x ∙A) represents a path dependent type (x.A). -- * (Π S ∙ U) represents a dependent function type (∀(x : S)U). -- * (⟨A: S ⋯ U ⟩) represents a type declaration ({A : S .. U}). data Typ : Set where ⊤ : Typ ⊥ : Typ _∙A : (n : ℕ) → Typ Π_∙_ : (S U : Typ) → Typ ⟨A:_⋯_⟩ : (S U : Typ) → Typ -- typing context Env : Set Env = List Typ -- shifting operation of de Bruijn indices infixl 7 _↑_ _↑_ : Typ → ℕ → Typ ⊤ ↑ n = ⊤ ⊥ ↑ n = ⊥ (x ∙A) ↑ n with n ≤? x ... | yes n≤x = suc x ∙A ... | no n>x = x ∙A (Π S ∙ U) ↑ n = Π S ↑ n ∙ U ↑ suc n ⟨A: S ⋯ U ⟩ ↑ n = ⟨A: S ↑ n ⋯ U ↑ n ⟩ -- The remaining are technical setup. infix 4 _↦_∈_ data _↦_∈_ : ℕ → Typ → Env → Set where hd : ∀ {T Γ} → 0 ↦ T ↑ 0 ∈ T ∷ Γ tl : ∀ {n T T′ Γ} → n ↦ T ∈ Γ → suc n ↦ T ↑ 0 ∈ T′ ∷ Γ env-lookup : Env → ℕ → Maybe Typ env-lookup Γ n = Maybe.map (repeat (suc n) (_↑ 0)) (lookupOpt Γ n) ↦∈⇒lookup : ∀ {x T Γ} → x ↦ T ∈ Γ → env-lookup Γ x ≡ just T ↦∈⇒lookup hd = refl ↦∈⇒lookup {x} {_} {Γ} (tl T∈Γ) with lookupOpt Γ x | ↦∈⇒lookup T∈Γ ... | just T′ | eq = cong (just ∘ (_↑ zero)) (just-injective eq) ... | nothing | () lookup⇒↦∈ : ∀ {x T Γ} → env-lookup Γ x ≡ just T → x ↦ T ∈ Γ lookup⇒↦∈ {x} {_} {[]} () lookup⇒↦∈ {zero} {_} {T ∷ Γ} refl = hd lookup⇒↦∈ {suc x} {_} {T ∷ Γ} eq with lookupOpt Γ x | λ {T} → lookup⇒↦∈ {x} {T} {Γ} lookup⇒↦∈ refl | just T′ | rec = tl $ rec refl lookup⇒↦∈ () | nothing | _ ⟨A:⟩-injective : ∀ {S U S′ U′} → ⟨A: S ⋯ U ⟩ ≡ ⟨A: S′ ⋯ U′ ⟩ → S ≡ S′ × U ≡ U′ ⟨A:⟩-injective refl = refl , refl ↑-idx : ℕ → ℕ → ℕ ↑-idx x n with n ≤? x ... | yes p = suc x ... | no ¬p = x ↑-var : ∀ x n → x ∙A ↑ n ≡ ↑-idx x n ∙A ↑-var x n with n ≤? x ... | yes p = refl ... | no ¬p = refl ↑-↑-comm : ∀ T m n → m ≤ n → T ↑ m ↑ suc n ≡ T ↑ n ↑ m ↑-↑-comm ⊤ m n m≤n = refl ↑-↑-comm ⊥ m n m≤n = refl ↑-↑-comm (x ∙A) m n m≤n with n ≤? x ... | yes n≤x rewrite ≤?-yes (≤-trans m≤n n≤x) | ≤?-yes n≤x | ≤?-yes (≤-step (≤-trans m≤n n≤x)) = refl ... | no n>x with m ≤? x ... | yes m≤x rewrite proj₂ $ ≤?-no n>x = refl ... | no m>x with suc n ≤? x ... | yes 1+n≤x = ⊥-elim (m>x (≤-trans (≤-step m≤n) 1+n≤x)) ... | no 1+n>x = refl ↑-↑-comm (Π S ∙ U) m n m≤n rewrite ↑-↑-comm S m n m≤n | ↑-↑-comm U (suc m) (suc n) (s≤s m≤n) = refl ↑-↑-comm ⟨A: S ⋯ U ⟩ m n m≤n rewrite ↑-↑-comm S m n m≤n | ↑-↑-comm U m n m≤n = refl -- These two judgments are about to capture the characteristics of the image of -- interpretation functions from F<:⁻ to D<:. -- -- Covar quantifies the types in D<: which appears in the covariant positions in the -- image of the interpretation function. data Covar : Typ → Set where cv⊤ : Covar ⊤ cv∙A : ∀ n → Covar (n ∙A) cvΠ : ∀ {S U} → Covar S → Covar U → Covar (Π ⟨A: ⊥ ⋯ S ⟩ ∙ U) -- Contra quantifies the types in D<: which appears in the contravariant positions in -- the image of the interpretation function. data Contra : Typ → Set where ctt : ∀ {T} → Covar T → Contra ⟨A: ⊥ ⋯ T ⟩ ContraEnv : Env → Set ContraEnv = All Contra ↑-Covar : ∀ {T} n → Covar T → Covar (T ↑ n) ↑-Covar n cv⊤ = cv⊤ ↑-Covar n (cv∙A x) rewrite ↑-var x n = cv∙A _ ↑-Covar n (cvΠ S U) = cvΠ (↑-Covar n S) (↑-Covar (suc n) U) ↑-Contra : ∀ {T} n → Contra T → Contra (T ↑ n) ↑-Contra n (ctt T) = ctt (↑-Covar n T) ↑-injective : ∀ {S U n} → S ↑ n ≡ U ↑ n → S ≡ U ↑-injective {⊤} {⊤} {n} eq = refl ↑-injective {⊤} {⊥} {n} () ↑-injective {⊤} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⊤} {Π S ∙ U} {n} () ↑-injective {⊤} {⟨A: S ⋯ U ⟩} {n} () ↑-injective {⊥} {⊤} {n} () ↑-injective {⊥} {⊥} {n} eq = refl ↑-injective {⊥} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⊥} {Π S ∙ U} {n} () ↑-injective {⊥} {⟨A: S ⋯ U ⟩} {n} () ↑-injective {x ∙A} {⊤} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {⊥} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {y ∙A} {n} eq with n ≤? x | n ≤? y ↑-injective {x ∙A} {y ∙A} {n} refl | yes n≤x | yes n≤y = refl ↑-injective {x ∙A} {y ∙A} {n} refl | yes n≤x | no n>y = ⊥-elim (n>y (≤-step n≤x)) ↑-injective {x ∙A} {y ∙A} {n} refl | no n>x | yes n≤y = ⊥-elim (n>x (≤-step n≤y)) ↑-injective {x ∙A} {y ∙A} {n} refl | no n>x | no n>y = refl ↑-injective {x ∙A} {Π S ∙ U} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {x ∙A} {⟨A: S ⋯ U ⟩} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {Π S ∙ U} {⊤} {n} () ↑-injective {Π S ∙ U} {⊥} {n} () ↑-injective {Π S ∙ U} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {Π S ∙ U} {Π S′ ∙ U′} {n} eq with S ↑ n | U ↑ suc n | S′ ↑ n | U′ ↑ suc n | ↑-injective {S} {S′} {n} | ↑-injective {U} {U′} {suc n} ... | _ | _ | _ | _ | rec₁ | rec₂ with eq ... | refl = cong₂ Π_∙_ (rec₁ refl) (rec₂ refl) ↑-injective {Π S ∙ U} {⟨A: _ ⋯ _ ⟩} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⊤} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⊥} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-injective {⟨A: S ⋯ U ⟩} {Π _ ∙ _} {n} () ↑-injective {⟨A: S ⋯ U ⟩} {⟨A: S′ ⋯ U′ ⟩} {n} eq with S ↑ n | U ↑ n | S′ ↑ n | U′ ↑ n | ↑-injective {S} {S′} {n} | ↑-injective {U} {U′} {n} ... | _ | _ | _ | _ | rec₁ | rec₂ with eq ... | refl = cong₂ ⟨A:_⋯_⟩ (rec₁ refl) (rec₂ refl) ↑-⊥-inv : ∀ {S n} → S ↑ n ≡ ⊥ → S ≡ ⊥ ↑-⊥-inv {⊤} {n} () ↑-⊥-inv {⊥} {n} refl = refl ↑-⊥-inv {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ↑-⊥-inv {Π _ ∙ _} {n} () ↑-⊥-inv {⟨A: _ ⋯ _ ⟩} {n} () ⟨A:⟩-↑-inv : ∀ {T n S U} → ⟨A: S ⋯ U ⟩ ≡ T ↑ n → ∃₂ λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩ × S ≡ S′ ↑ n × U ≡ U′ ↑ n ⟨A:⟩-↑-inv {⊤} () ⟨A:⟩-↑-inv {⊥} () ⟨A:⟩-↑-inv {x ∙A} {n} eq rewrite ↑-var x n = case eq of λ () ⟨A:⟩-↑-inv {Π _ ∙ _} () ⟨A:⟩-↑-inv {⟨A: S′ ⋯ U′ ⟩} refl = S′ , U′ , refl , refl , refl ↦∈ContraEnv : ∀ {Γ n T} → n ↦ T ∈ Γ → ContraEnv Γ → Contra T ↦∈ContraEnv hd (T ∷ cT) = ↑-Contra 0 T ↦∈ContraEnv (tl T∈Γ) (_ ∷ cT) = ↑-Contra 0 (↦∈ContraEnv T∈Γ cT) lookupContraEnv : ∀ {Γ n T} → env-lookup Γ n ≡ just T → ContraEnv Γ → Contra T lookupContraEnv lk cT = ↦∈ContraEnv (lookup⇒↦∈ lk) cT lookupContraBot : ∀ {Γ n} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⊥ lookupContraBot all eq with lookupContraEnv eq all ... | () lookupContraBndBot : ∀ {Γ n S} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⟨A: S ⋯ ⊥ ⟩ lookupContraBndBot all eq with lookupContraEnv eq all ... | ctt () lookupContraBndBnd : ∀ {Γ n T S U} → ContraEnv Γ → ¬ env-lookup Γ n ≡ just ⟨A: T ⋯ ⟨A: S ⋯ U ⟩ ⟩ lookupContraBndBnd all eq with lookupContraEnv eq all ... | ctt () lookupContra⊥Lb : ∀ {Γ n S U} → ContraEnv Γ → env-lookup Γ n ≡ just ⟨A: S ⋯ U ⟩ → S ≡ ⊥ lookupContra⊥Lb all eq with lookupContraEnv eq all ... | ctt _ = refl Typ-measure : Typ → ℕ Typ-measure ⊤ = 1 Typ-measure ⊥ = 1 Typ-measure (_ ∙A) = 2 Typ-measure (Π S ∙ U) = 1 + Typ-measure S + Typ-measure U Typ-measure ⟨A: S ⋯ U ⟩ = 1 + Typ-measure S + Typ-measure U Typ-measure-↑ : ∀ T n → Typ-measure (T ↑ n) ≡ Typ-measure T Typ-measure-↑ ⊤ n = refl Typ-measure-↑ ⊥ n = refl Typ-measure-↑ (x ∙A) n rewrite ↑-var x n = refl Typ-measure-↑ (Π S ∙ U) n rewrite Typ-measure-↑ S n | Typ-measure-↑ U (suc n) = refl Typ-measure-↑ ⟨A: S ⋯ U ⟩ n rewrite Typ-measure-↑ S n | Typ-measure-↑ U n = refl -- Definition of Invertible Contexts -- -- As per Definition 9, we define a predicate for invertible contexts. record InvertibleEnv (P : Env → Set) : Set where field no-⊥ : ∀ {Γ n} → P Γ → ¬ env-lookup Γ n ≡ just ⊥ no-bnd-⊥ : ∀ {Γ n S} → P Γ → ¬ env-lookup Γ n ≡ just ⟨A: S ⋯ ⊥ ⟩ no-bnd-bnd : ∀ {Γ n T S U} → P Γ → ¬ env-lookup Γ n ≡ just ⟨A: T ⋯ ⟨A: S ⋯ U ⟩ ⟩ ⊥-lb : ∀ {Γ n S U} → P Γ → env-lookup Γ n ≡ just ⟨A: S ⋯ U ⟩ → S ≡ ⊥ contraInvertible : InvertibleEnv ContraEnv contraInvertible = record { no-⊥ = lookupContraBot ; no-bnd-⊥ = lookupContraBndBot ; no-bnd-bnd = lookupContraBndBnd ; ⊥-lb = lookupContra⊥Lb } -- Properties of Invertible Contexts -- -- Just by knowing the contexts being invertible, we can already derive many -- properties of D<:. In the following module, we show that in invertible contexts, -- inversion properties are recovered. For technical reasons, we leave the subtyping -- judgment open in order to accomodate multiple definition of subtyping in D<:. -- -- These properties are discussed in Section 4.4. module InvertibleProperties {P : Env → Set} (invertible : InvertibleEnv P) (_⊢_<:_ : Env → Typ → Typ → Set) where open InvertibleEnv invertible public -- We define <:ᵢ to describe a fragment of <: under the restriction of invertible contexts. infix 4 _⊢ᵢ_<:_ data _⊢ᵢ_<:_ : Env → Typ → Typ → Set where ditop : ∀ {Γ T} → Γ ⊢ᵢ T <: ⊤ dibot : ∀ {Γ T} → Γ ⊢ᵢ ⊥ <: T direfl : ∀ {Γ T} → Γ ⊢ᵢ T <: T ditrans : ∀ {Γ S U} T → (S<:T : Γ ⊢ᵢ S <: T) → (T<:U : Γ ⊢ᵢ T <: U) → Γ ⊢ᵢ S <: U dibnd : ∀ {Γ S U S′ U′} → (S′<:S : Γ ⊢ᵢ S′ <: S) → (U<:U′ : Γ ⊢ᵢ U <: U′) → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩ diall : ∀ {Γ S U S′ U′} → (S′<:S : Γ ⊢ᵢ S′ <: S) → (U<:U′ : (Γ ‣ S′ !) ⊢ U <: U′) → Γ ⊢ᵢ Π S ∙ U <: Π S′ ∙ U′ disel : ∀ {Γ n U} → (T∈Γ : env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ U ⟩) → Γ ⊢ᵢ n ∙A <: U module _ where ⊤<: : ∀ {Γ T} → Γ ⊢ᵢ ⊤ <: T → T ≡ ⊤ ⊤<: ditop = refl ⊤<: direfl = refl ⊤<: (ditrans T S<:T T<:U) with ⊤<: S<:T ... | refl = ⊤<: T<:U <:⊥ : ∀ {Γ T} → Γ ⊢ᵢ T <: ⊥ → P Γ → T ≡ ⊥ <:⊥ dibot pΓ = refl <:⊥ direfl pΓ = refl <:⊥ (ditrans T S<:T T<:U) pΓ with <:⊥ T<:U pΓ ... | refl = <:⊥ S<:T pΓ <:⊥ (disel T∈Γ) pΓ = ⊥-elim (no-bnd-⊥ pΓ T∈Γ) ⟨A:⟩<: : ∀ {Γ T S U} → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: T → T ≡ ⊤ ⊎ ∃₂ (λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩) ⟨A:⟩<: ditop = inj₁ refl ⟨A:⟩<: direfl = inj₂ (-, -, refl) ⟨A:⟩<: (ditrans T S<:T T<:U) with ⟨A:⟩<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (_ , _ , refl) with ⟨A:⟩<: T<:U ... | inj₁ eq = inj₁ eq ... | inj₂ (_ , _ , eq) = inj₂ (-, -, eq) ⟨A:⟩<: (dibnd D₁ D₂) = inj₂ (-, -, refl) <:⟨A:⟩ : ∀ {Γ T S U} → Γ ⊢ᵢ T <: ⟨A: S ⋯ U ⟩ → P Γ → T ≡ ⊥ ⊎ ∃₂ (λ S′ U′ → T ≡ ⟨A: S′ ⋯ U′ ⟩) <:⟨A:⟩ dibot pΓ = inj₁ refl <:⟨A:⟩ direfl pΓ = inj₂ (-, -, refl) <:⟨A:⟩ (ditrans T S<:T T<:U) pΓ with <:⟨A:⟩ T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (S′ , U′ , refl) with <:⟨A:⟩ S<:T pΓ ... | inj₁ eq = inj₁ eq ... | inj₂ (S″ , U″ , eq) = inj₂ (S″ , U″ , eq) <:⟨A:⟩ (dibnd D₁ D₂) pΓ = inj₂ (-, -, refl) <:⟨A:⟩ (disel T∈Γ) pΓ = ⊥-elim (no-bnd-bnd pΓ T∈Γ) ⟨A:⟩<:⟨A:⟩ : ∀ {Γ S S′ U U′} → Γ ⊢ᵢ ⟨A: S ⋯ U ⟩ <: ⟨A: S′ ⋯ U′ ⟩ → P Γ → Γ ⊢ᵢ S′ <: S × Γ ⊢ᵢ U <: U′ ⟨A:⟩<:⟨A:⟩ direfl pΓ = direfl , direfl ⟨A:⟩<:⟨A:⟩ (ditrans T S<:T T<:U) pΓ with ⟨A:⟩<: S<:T ... | inj₁ refl with ⊤<: T<:U ... | () ⟨A:⟩<:⟨A:⟩ (ditrans T S<:T T<:U) pΓ | inj₂ (_ , _ , refl) with ⟨A:⟩<:⟨A:⟩ S<:T pΓ | ⟨A:⟩<:⟨A:⟩ T<:U pΓ ... | S″<:S , U<:U″ | S′<:S″ , U″<:U′ = ditrans _ S′<:S″ S″<:S , ditrans _ U<:U″ U″<:U′ ⟨A:⟩<:⟨A:⟩ (dibnd D₁ D₂) pΓ = D₁ , D₂ infix 4 _reach_from_ data _reach_from_ : Env → Typ → ℕ → Set where /_/ : ∀ {Γ n T} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ T ⟩ → Γ reach T from n _∷_ : ∀ {Γ n m T} → env-lookup Γ n ≡ just ⟨A: ⊥ ⋯ m ∙A ⟩ → Γ reach T from m → Γ reach T from n rf-concat : ∀ {Γ T m n} → Γ reach T from m → Γ reach m ∙A from n → Γ reach T from n rf-concat m↝T / B∈Γ / = B∈Γ ∷ m↝T rf-concat m↝T (B∈Γ ∷ n↝m∙A) = B∈Γ ∷ rf-concat m↝T n↝m∙A ∙A<: : ∀ {Γ n T} → Γ ⊢ᵢ n ∙A <: T → T ≡ ⊤ ⊎ T ≡ n ∙A ⊎ ∃ λ T′ → Γ reach T′ from n × Γ ⊢ᵢ T′ <: T ∙A<: ditop = inj₁ refl ∙A<: direfl = inj₂ (inj₁ refl) ∙A<: (ditrans T S<:T T<:U) with ∙A<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (inj₁ refl) = ∙A<: T<:U ... | inj₂ (inj₂ (T′ , n↝T′ , T′<:T)) = inj₂ (inj₂ (T′ , n↝T′ , ditrans _ T′<:T T<:U)) ∙A<: (disel T∈Γ) = inj₂ (inj₂ (-, / T∈Γ / , direfl)) <:∙A : ∀ {Γ n T} → Γ ⊢ᵢ T <: n ∙A → P Γ → T ≡ ⊥ ⊎ T ≡ n ∙A ⊎ ∃ (λ m → T ≡ m ∙A × Γ reach n ∙A from m) <:∙A dibot pΓ = inj₁ refl <:∙A direfl pΓ = inj₂ (inj₁ refl) <:∙A (ditrans T S<:T T<:U) pΓ with <:∙A T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (inj₁ refl) = <:∙A S<:T pΓ ... | inj₂ (inj₂ (m , refl , m↝n∙A)) with <:∙A S<:T pΓ ... | inj₁ refl = inj₁ refl ... | inj₂ (inj₁ refl) = inj₂ (inj₂ (-, refl , m↝n∙A)) ... | inj₂ (inj₂ (m′ , refl , m′↝m∙A)) = inj₂ (inj₂ (-, refl , rf-concat m↝n∙A m′↝m∙A)) <:∙A (disel T∈Γ) pΓ = inj₂ (inj₂ (-, refl , / T∈Γ /)) Π<: : ∀ {Γ S U T} → Γ ⊢ᵢ Π S ∙ U <: T → T ≡ ⊤ ⊎ ∃₂ (λ S′ U′ → T ≡ Π S′ ∙ U′) Π<: ditop = inj₁ refl Π<: direfl = inj₂ (-, -, refl) Π<: (ditrans T S<:T T<:U) with Π<: S<:T ... | inj₁ refl = inj₁ (⊤<: T<:U) ... | inj₂ (_ , _ , refl) = Π<: T<:U Π<: (diall D₁ D₂) = inj₂ (-, -, refl) <:Π : ∀ {Γ S U T} → Γ ⊢ᵢ T <: Π S ∙ U → P Γ → T ≡ ⊥ ⊎ ∃ (λ n → T ≡ n ∙A) ⊎ ∃₂ (λ S′ U′ → T ≡ Π S′ ∙ U′) <:Π dibot pΓ = inj₁ refl <:Π direfl pΓ = inj₂ (inj₂ (-, -, refl)) <:Π (ditrans T S<:T T<:U) pΓ with <:Π T<:U pΓ ... | inj₁ refl = inj₁ (<:⊥ S<:T pΓ) ... | inj₂ (inj₁ (_ , refl)) with <:∙A S<:T pΓ ... | inj₁ eq = inj₁ eq ... | inj₂ (inj₁ eq) = inj₂ (inj₁ (-, eq)) ... | inj₂ (inj₂ (_ , eq , _)) = inj₂ (inj₁ (-, eq)) <:Π (ditrans T S<:T T<:U) pΓ | inj₂ (inj₂ (_ , _ , refl)) = <:Π S<:T pΓ <:Π (diall D₁ D₂) pΓ = inj₂ (inj₂ (-, -, refl)) <:Π (disel T∈Γ) pΓ = inj₂ (inj₁ (-, refl)) -- Terms and Values infix 6 var_ val_ infix 6 ⟨A=_⟩ _$$_ infixr 7 lt_inn_ infixr 6 Λ_∙_ mutual -- Values -- -- * (⟨A= T ⟩) represents a type tag ({A = T}). -- * (Λ T ∙ t) represents a lambda expression (λ(x : T)t) data Val : Set where ⟨A=_⟩ : (T : Typ) → Val Λ_∙_ : (T : Typ) → (t : Trm) → Val -- Terms -- -- * (var x) represents a variable. -- * (val v) represents a value as a term. -- * (x $$ y) is an application of two variables. -- * (lt t inn u) represents let binding (let x = t in u). data Trm : Set where var_ : ℕ → Trm val_ : (v : Val) → Trm _$$_ : (x y : ℕ) → Trm lt_inn_ : Trm → Trm → Trm -- substitution operation record Subst (T : Set) : Set where infixl 5 _[_/_] field _[_/_] : T → ℕ → ℕ → T open Subst {{...}} public infixl 5 _[_/_]ᵥ _[_/_]ₜ _[_/_]T ℕsubst : ℕ → ℕ → ℕ → ℕ ℕsubst x n m with x ≟ m ... | yes x≡m = n ... | no x≢m = x instance substℕ : Subst ℕ substℕ = record { _[_/_] = ℕsubst } _[_/_]T : Typ → ℕ → ℕ → Typ ⊤ [ n / m ]T = ⊤ ⊥ [ n / m ]T = ⊥ x ∙A [ n / m ]T = (x [ n / m ]) ∙A Π S ∙ U [ n / m ]T = Π S [ n / m ]T ∙ (U [ suc n / suc m ]T) ⟨A: S ⋯ U ⟩ [ n / m ]T = ⟨A: S [ n / m ]T ⋯ U [ n / m ]T ⟩ instance substTyp : Subst Typ substTyp = record { _[_/_] = _[_/_]T } mutual _[_/_]ᵥ : Val → ℕ → ℕ → Val ⟨A= T ⟩ [ n / m ]ᵥ = ⟨A= T [ n / m ] ⟩ Λ T ∙ t [ n / m ]ᵥ = Λ T [ n / m ] ∙ (t [ suc n / suc m ]ₜ) _[_/_]ₜ : Trm → ℕ → ℕ → Trm var x [ n / m ]ₜ = var (x [ n / m ]) val v [ n / m ]ₜ = val (v [ n / m ]ᵥ) x $$ y [ n / m ]ₜ = (x [ n / m ]) $$ (y [ n / m ]) lt t inn u [ n / m ]ₜ = lt (t [ n / m ]ₜ) inn (u [ suc n / suc m ]ₜ) instance substVal : Subst Val substVal = record { _[_/_] = _[_/_]ᵥ } substTrm : Subst Trm substTrm = record { _[_/_] = _[_/_]ₜ } data Closed : ℕ → Typ → Set where cl-⊤ : ∀ {n} → Closed n ⊤ cl-⊥ : ∀ {n} → Closed n ⊥ cl-∙A : ∀ {n m} (m≥n : m ≥ n) → Closed n (m ∙A) cl-Π : ∀ {n S U} → Closed n S → Closed (suc n) U → Closed n (Π S ∙ U) cl-⟨A⟩ : ∀ {n S U} → Closed n S → Closed n U → Closed n ⟨A: S ⋯ U ⟩ infix 7 _↓ _↓ : ∀ {n T} → Closed (suc n) T → Typ cl-⊤ ↓ = ⊤ cl-⊥ ↓ = ⊥ cl-∙A {_} {m} m≥n ↓ = pred m ∙A cl-Π S U ↓ = Π S ↓ ∙ (U ↓) cl-⟨A⟩ S U ↓ = ⟨A: S ↓ ⋯ U ↓ ⟩
{ "alphanum_fraction": 0.4382298709, "avg_line_length": 35.3695652174, "ext": "agda", "hexsha": "a11265ecda977d52e778f2e5299321a35daa7fc6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "HuStmpHrrr/popl20-artifact", "max_forks_repo_path": "agda/DsubDef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "HuStmpHrrr/popl20-artifact", "max_issues_repo_path": "agda/DsubDef.agda", "max_line_length": 105, "max_stars_count": 1, "max_stars_repo_head_hexsha": "48214a55ebb484fd06307df4320813d4a002535b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "HuStmpHrrr/popl20-artifact", "max_stars_repo_path": "agda/DsubDef.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-23T08:40:28.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T08:40:28.000Z", "num_tokens": 8429, "size": 17897 }
{-# OPTIONS --safe --cubical-compatible --no-universe-polymorphism --no-sized-types --no-guardedness #-} module Issue2487-1 where import Issue2487.Coinfective
{ "alphanum_fraction": 0.7577639752, "avg_line_length": 26.8333333333, "ext": "agda", "hexsha": "358a48954ce55146b6e377989002c288ac2c6f7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue2487-1.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue2487-1.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue2487-1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 43, "size": 161 }
-- Andreas, 2012-01-11 module Issue551b where data Box (A : Set) : Set where [_] : .A → Box A implicit : {A : Set}{{a : A}} -> A implicit {{a}} = a postulate A B : Set instance a : A a' : Box A a' = [ implicit ] -- this should succeed f : Box B → Box (Box B) f [ x ] = [ [ x ] ] -- this as well
{ "alphanum_fraction": 0.5392156863, "avg_line_length": 14.5714285714, "ext": "agda", "hexsha": "1ae76563b36b4851a63792301bb7e63d4f823e76", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue551b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue551b.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue551b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 306 }
------------------------------------------------------------------------ -- Yet another implementation of the Fibonacci sequence using tail ------------------------------------------------------------------------ module LargeCombinators where open import Codata.Musical.Notation open import Codata.Musical.Stream as S using (Stream; _∷_; _≈_) open import Data.Nat import Relation.Binary.PropositionalEquality as P -- Stream programs. Note that the destructor tail is encapsulated in a -- larger combinator, which also incorporates a constructor. This -- ensures that the combinator can be used freely, with no risk of -- destroying productivity. -- -- Note that, in the general case, the implementation of whnf for the -- "large combinator" may be quite tricky. In this case the -- implementation turns out to be very simple, though. -- -- The idea to use a "large combinator" is due to Thorsten Altenkirch. infixr 5 _∷_ data StreamP (A : Set) : Set where _∷_ : (x : A) (xs : ∞ (StreamP A)) → StreamP A zipWith : (f : A → A → A) (xs ys : StreamP A) → StreamP A -- The intention is that ⟦ x ∷zipWith f · xs [tail ys ] ⟧P should be -- equal to x ∷ ♯ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P). _∷zipWith_·_[tail_] : (x : A) (f : A → A → A) (xs ys : StreamP A) → StreamP A -- WHNFs. data StreamW (A : Set) : Set where _∷_ : (x : A) (xs : StreamP A) → StreamW A -- Stream programs can be turned into streams. whnf : ∀ {A} → StreamP A → StreamW A whnf (x ∷ xs) = x ∷ ♭ xs whnf (x ∷zipWith f · xs′ [tail ys ]) with whnf ys ... | _ ∷ ys′ = x ∷ zipWith f xs′ ys′ whnf (zipWith f xs ys) with whnf xs | whnf ys ... | x ∷ xs′ | y ∷ ys′ = f x y ∷ zipWith f xs′ ys′ mutual ⟦_⟧W : ∀ {A} → StreamW A → Stream A ⟦ x ∷ xs ⟧W = x ∷ ♯ ⟦ xs ⟧P ⟦_⟧P : ∀ {A} → StreamP A → Stream A ⟦ xs ⟧P = ⟦ whnf xs ⟧W -- The Fibonacci sequence. fib : StreamP ℕ fib = 0 ∷ ♯ (1 ∷zipWith _+_ · fib [tail fib ]) -- ⟦_⟧P is homomorphic with respect to zipWith/S.zipWith. zipWith-hom : ∀ {A} (f : A → A → A) (xs ys : StreamP A) → ⟦ zipWith f xs ys ⟧P ≈ S.zipWith f ⟦ xs ⟧P ⟦ ys ⟧P zipWith-hom f xs ys with whnf xs | whnf ys ... | x ∷ xs′ | y ∷ ys′ = P.refl ∷ ♯ zipWith-hom f xs′ ys′ -- The stream ⟦ fib ⟧P satisfies its intended defining equation. fib-correct : ⟦ fib ⟧P ≈ 0 ∷ ♯ (1 ∷ ♯ (S.zipWith _+_ ⟦ fib ⟧P (S.tail ⟦ fib ⟧P))) fib-correct = P.refl ∷ ♯ (P.refl ∷ ♯ zipWith-hom _+_ fib (1 ∷zipWith _+_ · fib [tail fib ])) -- For completeness, let us show that _∷zipWith_·_[tail_] is correctly -- implemented. open import Relation.Binary.PropositionalEquality as P using (_≡_; [_]) _∷zipWith_·_[tail_]-hom : ∀ {A} (x : A) (f : A → A → A) (xs ys : StreamP A) → ⟦ x ∷zipWith f · xs [tail ys ] ⟧P ≈ x ∷ ♯ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P) x ∷zipWith f · xs [tail ys ]-hom with whnf ys | P.inspect whnf ys ... | y ∷ ys′ | [ eq ] = P.refl ∷ ♯ helper eq where helper : whnf ys ≡ y ∷ ys′ → ⟦ zipWith f xs ys′ ⟧P ≈ S.zipWith f ⟦ xs ⟧P (S.tail ⟦ ys ⟧P) helper eq rewrite eq = zipWith-hom f xs ys′
{ "alphanum_fraction": 0.5810588622, "avg_line_length": 32.3510638298, "ext": "agda", "hexsha": "58cb4a2b1ba8c42a7d15c67bac8a4aa738b63cb6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "LargeCombinators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "LargeCombinators.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "LargeCombinators.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1134, "size": 3041 }
------------------------------------------------------------------------------ -- Inductive PA properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module PA.Inductive.PropertiesI where open import PA.Inductive.Base open import PA.Inductive.Relation.Binary.EqReasoning ------------------------------------------------------------------------------ -- Congruence properties succCong : ∀ {m n} → m ≡ n → succ m ≡ succ n succCong refl = refl +-leftCong : ∀ {m n o} → m ≡ n → m + o ≡ n + o +-leftCong refl = refl +-rightCong : ∀ {m n o} → n ≡ o → m + n ≡ m + o +-rightCong refl = refl ------------------------------------------------------------------------------ -- Peano's third axiom. P₃ : ∀ {m n} → succ m ≡ succ n → m ≡ n P₃ refl = refl -- Peano's fourth axiom. P₄ : ∀ {n} → zero ≢ succ n P₄ () x≢Sx : ∀ {n} → n ≢ succ n x≢Sx {zero} () x≢Sx {succ n} h = x≢Sx (P₃ h) +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity n = refl -- Adapted from the Agda standard library 0.8.1 (see -- Data.Nat.Properties.Simple.+-rightIdentity). +-rightIdentity : ∀ n → n + zero ≡ n +-rightIdentity zero = refl +-rightIdentity (succ n) = succCong (+-rightIdentity n) -- Adapted from the Agda standard library_0.8.1 (see -- Data.Nat.Properties.Simple.+-assoc). +-assoc : ∀ m n o → m + n + o ≡ m + (n + o) +-assoc zero _ _ = refl +-assoc (succ m) n o = succCong (+-assoc m n o) -- Adapted from the Agda standard library 0.8.1 (see -- Data.Nat.Properties.Simple.+-suc). x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) x+Sy≡S[x+y] zero _ = refl x+Sy≡S[x+y] (succ m) n = succCong (x+Sy≡S[x+y] m n) -- Adapted from the Agda standard library 0.8.1 (see -- Data.Nat.Properties.Simple.+-comm). +-comm : ∀ m n → m + n ≡ n + m +-comm zero n = sym (+-rightIdentity n) +-comm (succ m) n = succ (m + n) ≡⟨ succCong (+-comm m n) ⟩ succ (n + m) ≡⟨ sym (x+Sy≡S[x+y] n m) ⟩ n + succ m ∎
{ "alphanum_fraction": 0.4857008908, "avg_line_length": 31.3676470588, "ext": "agda", "hexsha": "e3e49b172bfc2261fefff8dca461596804f0b4e7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Inductive/PropertiesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Inductive/PropertiesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Inductive/PropertiesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 672, "size": 2133 }
open import Relation.Binary.Core open import Level using (Level; _⊔_; suc) open import Data.Product using (Σ; _×_; _,_; Σ-syntax; ∃-syntax; proj₁; proj₂) open import Function open import DeBruijn open import Beta open import Takahashi open import Z open import ConfluenceTakahashi using (lemma3-3; lemma3-5) star-left : ∀ {n} {M L N : Term n} → M —→ L → Star _—→_ L N ------------- → Star _—→_ M N star-left ML ε = ε ▻ ML star-left ML (L*N′ ▻ N′N) = star-left ML L*N′ ▻ N′N betas-star : ∀ {n} {M N : Term n} → M —↠ N ------------- → Star _—→_ M N betas-star (M ∎) = ε betas-star (M —→⟨ M—→M′ ⟩ M′—↠N) = star-left M—→M′ (betas-star M′—↠N) z-confluence-beta : ∀ {n} → Confluence (_—→_ {n}) z-confluence-beta = z-confluence ( _* , betas-star ∘ lemma3-3 , betas-star ∘ lemma3-5)
{ "alphanum_fraction": 0.5481651376, "avg_line_length": 24.2222222222, "ext": "agda", "hexsha": "259554fdfa0af87a3868009398738bc74d809dce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "iwilare/church-rosser", "max_forks_repo_path": "ConfluenceZ.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "iwilare/church-rosser", "max_issues_repo_path": "ConfluenceZ.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "iwilare/church-rosser", "max_stars_repo_path": "ConfluenceZ.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z", "num_tokens": 321, "size": 872 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Values for standard evaluation with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Denotation.Value where open import Nehemiah.Syntax.Type public open import Nehemiah.Change.Type public open import Base.Denotation.Notation public open import Structure.Bag.Nehemiah open import Data.Integer import Parametric.Denotation.Value Base as Value ⟦_⟧Base : Value.Structure ⟦ base-int ⟧Base = ℤ ⟦ base-bag ⟧Base = Bag open Value.Structure ⟦_⟧Base public
{ "alphanum_fraction": 0.605815832, "avg_line_length": 26.9130434783, "ext": "agda", "hexsha": "7ad544b4cfe3b9943ad5a6d408bab8f6a5f8dec9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Denotation/Value.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Denotation/Value.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Denotation/Value.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 132, "size": 619 }
import Everything open import Prelude open import Container.Traversable open import Container.Foldable open import Container.List open import Text.Parse open import Text.Lex open import Text.Printf open import Control.Monad.State open import Control.Monad.Transformer open import Control.WellFounded open import Builtin.Size open import Builtin.Coinduction open import Builtin.Float open import Builtin.Reflection open import Tactic.Reflection.DeBruijn open import Tactic.Reflection.Equality open import Tactic.Reflection.Free open import Tactic.Reflection.Quote open import Tactic.Reflection.Telescope open import Tactic.Deriving.Eq open import Tactic.Nat open import Numeric.Nat.DivMod open import Numeric.Nat.Divide open import Numeric.Nat.GCD open import Numeric.Nat.Prime open import Numeric.Rational open import Numeric.Nat.Modulo open import Numeric.Nat.Pow open import MonoidTactic -- open import DeriveEqTest Hello = printf "%c%s" 'H' "ello" World = printf "%-7s(%.6f)" "World" π M = StateT Nat IO putStrI : String → StateT Nat IO Unit putStrI s = do n ← get put (suc n) lift (putStr (printf "[%d] %s\n" n s)) main : IO ⊤ main = do runStateT (mapM putStrI (Hello ∷ World ∷ " " ∷ [])) 0 putStr (show (432429 divmod 41)) putStr ("\n" & show (gcd! (19 * 17 * 31) (31 * 5))) putStrLn "" downFrom : Nat → List Nat downFrom zero = [] downFrom (suc n) = suc n ∷ downFrom n thm : ∀ n → 6 * sumR (map (_^ 2) (downFrom n)) ≡ n * (n + 1) * (2 * n + 1) thm = induction thm₂ : (a b : Nat) → (a - b) * (a + b) ≡ a ^ 2 - b ^ 2 thm₂ a b = auto data N : Set where z : N s : N → N unquoteDecl eqN = deriveEq eqN (quote N)
{ "alphanum_fraction": 0.7113402062, "avg_line_length": 22.9027777778, "ext": "agda", "hexsha": "46c410447a9e605e6f01d0bc9853ca79f91fbebe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "test/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "test/Main.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "test/Main.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 528, "size": 1649 }
module Syntax.Number where import Lvl open import Logic.Propositional open import Numeral.Natural open import Type record Numeral {ℓ} (T : Type{ℓ}) : Typeω where field {restriction-ℓ} : Lvl.Level restriction : ℕ → Type{restriction-ℓ} num : (n : ℕ) → ⦃ _ : restriction(n) ⦄ → T open Numeral ⦃ ... ⦄ public using (num) {-# BUILTIN FROMNAT num #-} InfiniteNumeral = Numeral module InfiniteNumeral {ℓ} {T : Type{ℓ}} where intro : (ℕ → T) → InfiniteNumeral(T) Numeral.restriction-ℓ (intro(_)) = Lvl.𝟎 Numeral.restriction (intro(_)) _ = ⊤ Numeral.num (intro(f)) n ⦃ _ ⦄ = f(n) -- record InfiniteNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- record InfiniteNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- field -- num : ℕ → T -- instance -- Numeral-from-InfiniteNumeral : ∀{ℓ}{T} → ⦃ _ : InfiniteNumeral{ℓ}(T) ⦄ → Numeral{ℓ}(T) -- Numeral.restriction-ℓ ( Numeral-from-InfiniteNumeral ) = Lvl.𝟎 -- Numeral.restriction ( Numeral-from-InfiniteNumeral ) (_) = ⊤ -- num ⦃ Numeral-from-InfiniteNumeral ⦃ infNum ⦄ ⦄ (n) ⦃ _ ⦄ = InfiniteNumeral.num(infNum) (n) instance ℕ-InfiniteNumeral : InfiniteNumeral (ℕ) ℕ-InfiniteNumeral = InfiniteNumeral.intro(id) where id : ℕ → ℕ id x = x instance Level-InfiniteNumeral : InfiniteNumeral (Lvl.Level) Level-InfiniteNumeral = InfiniteNumeral.intro(f) where f : ℕ → Lvl.Level f(ℕ.𝟎) = Lvl.𝟎 f(ℕ.𝐒(n)) = Lvl.𝐒(f(n)) record NegativeNumeral {ℓ} (T : Type{ℓ}) : Typeω where field {restriction-ℓ} : Lvl.Level restriction : ℕ → Type{restriction-ℓ} num : (n : ℕ) → ⦃ _ : restriction(n) ⦄ → T open NegativeNumeral ⦃ ... ⦄ public using () renaming (num to -num) {-# BUILTIN FROMNEG -num #-} InfiniteNegativeNumeral = NegativeNumeral module InfiniteNegativeNumeral {ℓ} {T : Type{ℓ}} where intro : (ℕ → T) → InfiniteNegativeNumeral(T) NegativeNumeral.restriction-ℓ (intro(_)) = Lvl.𝟎 NegativeNumeral.restriction (intro(_)) _ = ⊤ NegativeNumeral.num (intro(f)) n ⦃ _ ⦄ = f(n) -- record InfiniteNegativeNumeral {ℓ} (T : Type{ℓ}) : Type{ℓ} where -- field -- num : ℕ → T -- open InfiniteNegativeNumeral ⦃ ... ⦄ public -- instance -- NegativeNumeral-from-InfiniteNegativeNumeral : ∀{ℓ}{T} → ⦃ _ : InfiniteNegativeNumeral{ℓ}(T) ⦄ → NegativeNumeral{ℓ}(T) -- NegativeNumeral.restriction-ℓ ( NegativeNumeral-from-InfiniteNegativeNumeral ) = Lvl.𝟎 -- NegativeNumeral.restriction ( NegativeNumeral-from-InfiniteNegativeNumeral ) (_) = ⊤ -- -num ⦃ NegativeNumeral-from-InfiniteNegativeNumeral ⦃ infNegNum ⦄ ⦄ (n) ⦃ _ ⦄ = InfiniteNegativeNumeral.num(infNegNum) (n)
{ "alphanum_fraction": 0.6500948767, "avg_line_length": 35.6081081081, "ext": "agda", "hexsha": "0d2281c71c10ca617259b49a2213bcd5318e1872", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Syntax/Number.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Syntax/Number.agda", "max_line_length": 127, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Syntax/Number.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 961, "size": 2635 }
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-} module Number.Operations.Specification where open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Data.Unit.Base -- Unit open import Number.Postulates open import Number.Base open ℕⁿ open ℤᶻ open ℚᶠ open ℝʳ open ℂᶜ open PatternsType -- workflow: -- 1. split on the both positivities at once -- 2. add a general clause on top -- 3. check file -- 4. remove all unreachable clauses and goto 2. -- feel free to remove too many clauses and let agda display the missing ones +-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing +-Positivityᵒʳ _ X = X +-Positivityᵒʳ X _ = X +-Positivityᵒʳ _ X⁺⁻ = X +-Positivityᵒʳ X⁺⁻ _ = X -- clauses with same sign +-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ +-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ +-Positivityᵒʳ X₀⁺ X⁺ = X⁺ +-Positivityᵒʳ X⁺ X₀⁺ = X⁺ +-Positivityᵒʳ X⁺ X⁺ = X⁺ +-Positivityᵒʳ X₀⁻ X⁻ = X⁻ +-Positivityᵒʳ X⁻ X⁻ = X⁻ +-Positivityᵒʳ X⁻ X₀⁻ = X⁻ -- remaining clauses with alternating sign +-Positivityᵒʳ X₀⁻ X₀⁺ = X +-Positivityᵒʳ X₀⁺ X₀⁻ = X +-Positivityᵒʳ X⁻ X₀⁺ = X +-Positivityᵒʳ X₀⁺ X⁻ = X +-Positivityᵒʳ X⁻ X⁺ = X +-Positivityᵒʳ X⁺ X⁻ = X +-Positivityᵒʳ X₀⁻ X⁺ = X +-Positivityᵒʳ X⁺ X₀⁻ = X +-Positivityᶠ : PositivityKindField → PositivityKindField → PositivityKindField -- positivity information is lost after _+_ on a field +-Positivityᶠ x y = X +-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l +-Positivityʰ isNat = +-Positivityᵒʳ +-Positivityʰ isInt = +-Positivityᵒʳ +-Positivityʰ isRat = +-Positivityᵒʳ +-Positivityʰ isReal = +-Positivityᵒʳ +-Positivityʰ isComplex = +-Positivityᶠ ·-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing ·-Positivityᵒʳ _ X = X ·-Positivityᵒʳ X _ = X ·-Positivityᵒʳ X₀⁺ X⁺⁻ = X ·-Positivityᵒʳ X⁺⁻ X₀⁺ = X ·-Positivityᵒʳ X₀⁻ X⁺⁻ = X ·-Positivityᵒʳ X⁺⁻ X₀⁻ = X -- multiplying nonzero numbers gives a nonzero number ·-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺⁻ X⁺ = X⁺⁻ ·-Positivityᵒʳ X⁻ X⁺⁻ = X⁺⁻ ·-Positivityᵒʳ X⁺⁻ X⁻ = X⁺⁻ -- multiplying positive numbers gives a positive number ·-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ ·-Positivityᵒʳ X₀⁺ X⁺ = X₀⁺ ·-Positivityᵒʳ X⁺ X₀⁺ = X₀⁺ ·-Positivityᵒʳ X⁺ X⁺ = X⁺ -- multiplying negative numbers gives a positive number ·-Positivityᵒʳ X₀⁻ X⁻ = X₀⁺ ·-Positivityᵒʳ X⁻ X₀⁻ = X₀⁺ ·-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁺ ·-Positivityᵒʳ X⁻ X⁻ = X⁺ -- multiplying a positive and a negative number gives a negative number ·-Positivityᵒʳ X⁻ X₀⁺ = X₀⁻ ·-Positivityᵒʳ X₀⁺ X⁻ = X₀⁻ ·-Positivityᵒʳ X₀⁻ X⁺ = X₀⁻ ·-Positivityᵒʳ X⁺ X₀⁻ = X₀⁻ ·-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁻ ·-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁻ ·-Positivityᵒʳ X⁻ X⁺ = X⁻ ·-Positivityᵒʳ X⁺ X⁻ = X⁻ ·-Positivityᶠ : PositivityKindField → PositivityKindField → PositivityKindField ·-Positivityᶠ X X = X ·-Positivityᶠ X X⁺⁻ = X ·-Positivityᶠ X⁺⁻ X = X -- multiplying nonzero numbers gives a nonzero number ·-Positivityᶠ X⁺⁻ X⁺⁻ = X⁺⁻ ·-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l ·-Positivityʰ isNat = ·-Positivityᵒʳ ·-Positivityʰ isInt = ·-Positivityᵒʳ ·-Positivityʰ isRat = ·-Positivityᵒʳ ·-Positivityʰ isReal = ·-Positivityᵒʳ ·-Positivityʰ isComplex = ·-Positivityᶠ min-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing min-Positivityᵒʳ X X = X min-Positivityᵒʳ X X⁺⁻ = X min-Positivityᵒʳ X X₀⁺ = X min-Positivityᵒʳ X X⁺ = X min-Positivityᵒʳ X X⁻ = X⁻ min-Positivityᵒʳ X X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁺⁻ X = X min-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ min-Positivityᵒʳ X⁺⁻ X₀⁺ = X min-Positivityᵒʳ X⁺⁻ X⁺ = X⁺⁻ min-Positivityᵒʳ X⁺⁻ X⁻ = X⁻ min-Positivityᵒʳ X⁺⁻ X₀⁻ = X₀⁻ min-Positivityᵒʳ X₀⁺ X = X min-Positivityᵒʳ X₀⁺ X⁺⁻ = X min-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ min-Positivityᵒʳ X₀⁺ X⁺ = X₀⁺ min-Positivityᵒʳ X₀⁺ X⁻ = X⁻ min-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁺ X = X min-Positivityᵒʳ X⁺ X⁺⁻ = X⁺⁻ min-Positivityᵒʳ X⁺ X₀⁺ = X₀⁺ min-Positivityᵒʳ X⁺ X⁺ = X⁺ min-Positivityᵒʳ X⁺ X⁻ = X⁻ min-Positivityᵒʳ X⁺ X₀⁻ = X₀⁻ min-Positivityᵒʳ X⁻ X = X⁻ min-Positivityᵒʳ X⁻ X⁺⁻ = X⁻ min-Positivityᵒʳ X⁻ X₀⁺ = X⁻ min-Positivityᵒʳ X⁻ X⁺ = X⁻ min-Positivityᵒʳ X⁻ X⁻ = X⁻ min-Positivityᵒʳ X⁻ X₀⁻ = X⁻ min-Positivityᵒʳ X₀⁻ X = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁺⁻ = X₀⁻ min-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁺ = X₀⁻ min-Positivityᵒʳ X₀⁻ X⁻ = X⁻ min-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ max-Positivityᵒʳ : PositivityKindOrderedRing → PositivityKindOrderedRing → PositivityKindOrderedRing max-Positivityᵒʳ X X = X max-Positivityᵒʳ X X⁺⁻ = X max-Positivityᵒʳ X X₀⁺ = X₀⁺ max-Positivityᵒʳ X X⁺ = X⁺ max-Positivityᵒʳ X X⁻ = X max-Positivityᵒʳ X X₀⁻ = X max-Positivityᵒʳ X⁺⁻ X = X max-Positivityᵒʳ X⁺⁻ X⁺⁻ = X⁺⁻ max-Positivityᵒʳ X⁺⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X⁺⁻ X⁺ = X⁺ max-Positivityᵒʳ X⁺⁻ X⁻ = X⁺⁻ max-Positivityᵒʳ X⁺⁻ X₀⁻ = X max-Positivityᵒʳ X₀⁺ X = X₀⁺ max-Positivityᵒʳ X₀⁺ X⁺⁻ = X₀⁺ max-Positivityᵒʳ X₀⁺ X₀⁺ = X₀⁺ max-Positivityᵒʳ X₀⁺ X⁺ = X⁺ max-Positivityᵒʳ X₀⁺ X⁻ = X₀⁺ max-Positivityᵒʳ X₀⁺ X₀⁻ = X₀⁺ max-Positivityᵒʳ X⁺ X = X⁺ max-Positivityᵒʳ X⁺ X⁺⁻ = X⁺ max-Positivityᵒʳ X⁺ X₀⁺ = X⁺ max-Positivityᵒʳ X⁺ X⁺ = X⁺ max-Positivityᵒʳ X⁺ X⁻ = X⁺ max-Positivityᵒʳ X⁺ X₀⁻ = X⁺ max-Positivityᵒʳ X⁻ X = X max-Positivityᵒʳ X⁻ X⁺⁻ = X⁺⁻ max-Positivityᵒʳ X⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X⁻ X⁺ = X⁺ max-Positivityᵒʳ X⁻ X⁻ = X⁻ max-Positivityᵒʳ X⁻ X₀⁻ = X₀⁻ max-Positivityᵒʳ X₀⁻ X = X max-Positivityᵒʳ X₀⁻ X⁺⁻ = X max-Positivityᵒʳ X₀⁻ X₀⁺ = X₀⁺ max-Positivityᵒʳ X₀⁻ X⁺ = X⁺ max-Positivityᵒʳ X₀⁻ X⁻ = X₀⁻ max-Positivityᵒʳ X₀⁻ X₀⁻ = X₀⁻ min-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l min-Positivityʰ isNat = min-Positivityᵒʳ min-Positivityʰ isInt = min-Positivityᵒʳ min-Positivityʰ isRat = min-Positivityᵒʳ min-Positivityʰ isReal = min-Positivityᵒʳ min-Positivityʰ isComplex = λ _ _ → X -- doesn't matter since `min` is undefined for ℂ max-Positivityʰ : (l : NumberKind) → PositivityKindType l → PositivityKindType l → PositivityKindType l max-Positivityʰ isNat = max-Positivityᵒʳ max-Positivityʰ isInt = max-Positivityᵒʳ max-Positivityʰ isRat = max-Positivityᵒʳ max-Positivityʰ isReal = max-Positivityᵒʳ max-Positivityʰ isComplex = λ _ _ → X -- doesn't matter since `max` is undefined for ℂ +-Types : NumberProp → NumberProp → NumberProp +-Types (level₀ , pos₀) (level₁ , pos₁) = let level = maxₙₗ level₀ level₁ in level , +-Positivityʰ level (coerce-PositivityKind level₀ level pos₀) (coerce-PositivityKind level₁ level pos₁) ·-Types : NumberProp → NumberProp → NumberProp ·-Types (level₀ , pos₀) (level₁ , pos₁) = let level = maxₙₗ level₀ level₁ in level , ·-Positivityʰ level (coerce-PositivityKind level₀ level pos₀) (coerce-PositivityKind level₁ level pos₁) ⁻¹-Types : ∀{l p} → Number (l , p) → Type (ℓ-max (NumberLevel (maxₙₗ l isRat)) (NumberKindProplevel l)) -- numbers that can be zero need an additional apartness proof ⁻¹-Types {isNat } {X } (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isInt } {X } (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isRat } {X } (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁺⁻) ⁻¹-Types {isReal } {X } (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁺⁻) ⁻¹-Types {isComplex} {X } (x ,, p) = ∀{{ q : x #ᶜ 0ᶜ }} → Number (isComplex , X⁺⁻) ⁻¹-Types {isNat } {X₀⁺} (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X₀⁺} (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁺ ) ⁻¹-Types {isRat } {X₀⁺} (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁺ ) ⁻¹-Types {isReal } {X₀⁺} (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁺ ) ⁻¹-Types {isNat } {X₀⁻} (x ,, p) = ∀{{ q : x #ⁿ 0ⁿ }} → Number (isRat , X⁻ ) ⁻¹-Types {isInt } {X₀⁻} (x ,, p) = ∀{{ q : x #ᶻ 0ᶻ }} → Number (isRat , X⁻ ) ⁻¹-Types {isRat } {X₀⁻} (x ,, p) = ∀{{ q : x #ᶠ 0ᶠ }} → Number (isRat , X⁻ ) ⁻¹-Types {isReal } {X₀⁻} (x ,, p) = ∀{{ q : x #ʳ 0ʳ }} → Number (isReal , X⁻ ) -- positive, negative and nonzero numbers are already apart from zero ⁻¹-Types {isNat } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isNat } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isNat } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isNat } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isInt } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isInt } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isInt } Unit }} → Number (isRat , X⁻ ) ⁻¹-Types {isRat } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁺⁻) ⁻¹-Types {isRat } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁺ ) ⁻¹-Types {isRat } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isRat } Unit }} → Number (isRat , X⁻ ) ⁻¹-Types {isReal } {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁺⁻) ⁻¹-Types {isReal } {X⁺ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁺ ) ⁻¹-Types {isReal } {X⁻ } (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isReal } Unit }} → Number (isReal , X⁻ ) ⁻¹-Types {isComplex} {X⁺⁻} (x ,, p) = ∀{{ q : Lift {j = NumberKindProplevel isComplex} Unit }} → Number (isComplex , X⁺⁻) -Types : ∀{l p} → Number (l , p) → Type (NumberLevel (maxₙₗ l isInt)) -Types {isInt } {X } (x ,, p) = Number (isInt , X) -Types {isRat } {X } (x ,, p) = Number (isRat , X) -Types {isReal } {X } (x ,, p) = Number (isReal , X) -Types {isComplex} {X } (x ,, p) = Number (isComplex , X) -- the negative of a natural number is a Nonpositive integer -Types {isNat } {X } (x ,, p) = Number (isInt , X₀⁻) -- the negative of a nonzero number is a nonzero number -Types {isNat } {X⁺⁻} (x ,, p) = Number (isInt , X⁺⁻) -Types {isInt } {X⁺⁻} (x ,, p) = Number (isInt , X⁺⁻) -Types {isRat } {X⁺⁻} (x ,, p) = Number (isRat , X⁺⁻) -Types {isReal } {X⁺⁻} (x ,, p) = Number (isReal , X⁺⁻) -Types {isComplex} {X⁺⁻} (x ,, p) = Number (isComplex , X⁺⁻) -- the negative of a positive number is a negative number -Types {isNat } {X₀⁺} (x ,, p) = Number (isInt , X₀⁻) -Types {isInt } {X₀⁺} (x ,, p) = Number (isInt , X₀⁻) -Types {isRat } {X₀⁺} (x ,, p) = Number (isRat , X₀⁻) -Types {isReal } {X₀⁺} (x ,, p) = Number (isReal , X₀⁻) -Types {isNat } {X⁺ } (x ,, p) = Number (isInt , X⁻ ) -Types {isInt } {X⁺ } (x ,, p) = Number (isInt , X⁻ ) -Types {isRat } {X⁺ } (x ,, p) = Number (isRat , X⁻ ) -Types {isReal } {X⁺ } (x ,, p) = Number (isReal , X⁻ ) -- the negative of a negative number is a positive number -Types {isNat } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) -Types {isInt } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) -Types {isRat } {X₀⁻} (x ,, p) = Number (isRat , X₀⁺) -Types {isReal } {X₀⁻} (x ,, p) = Number (isReal , X₀⁺) -Types {isInt } {X⁻ } (x ,, p) = Number (isInt , X⁺ ) -Types {isRat } {X⁻ } (x ,, p) = Number (isRat , X⁺ ) -Types {isReal } {X⁻ } (x ,, p) = Number (isReal , X⁺ ) abs-Types : ∀{l p} → Number (l , p) → Type (NumberLevel (minₙₗ l isReal)) abs-Types {isNat } {X } (x ,, p) = Number (isNat , X₀⁺) abs-Types {isNat } {X⁺⁻} (x ,, p) = Number (isNat , X⁺ ) abs-Types {isNat } {X₀⁺} (x ,, p) = Number (isNat , X₀⁺) abs-Types {isNat } {X⁺ } (x ,, p) = Number (isNat , X⁺ ) abs-Types {isNat } {X₀⁻} (x ,, p) = Number (isNat , X₀⁺) abs-Types {isInt } {X } (x ,, p) = Number (isInt , X₀⁺) abs-Types {isInt } {X⁺⁻} (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X₀⁺} (x ,, p) = Number (isInt , X₀⁺) abs-Types {isInt } {X⁺ } (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X⁻ } (x ,, p) = Number (isInt , X⁺ ) abs-Types {isInt } {X₀⁻} (x ,, p) = Number (isInt , X₀⁺) abs-Types {isRat } {X } (x ,, p) = Number (isRat , X₀⁺) abs-Types {isRat } {X⁺⁻} (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X₀⁺} (x ,, p) = Number (isRat , X₀⁺) abs-Types {isRat } {X⁺ } (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X⁻ } (x ,, p) = Number (isRat , X⁺ ) abs-Types {isRat } {X₀⁻} (x ,, p) = Number (isRat , X₀⁺) abs-Types {isReal } {X } (x ,, p) = Number (isReal , X₀⁺) abs-Types {isReal } {X⁺⁻} (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X₀⁺} (x ,, p) = Number (isReal , X₀⁺) abs-Types {isReal } {X⁺ } (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X⁻ } (x ,, p) = Number (isReal , X⁺ ) abs-Types {isReal } {X₀⁻} (x ,, p) = Number (isReal , X₀⁺) abs-Types {isComplex} {X } (x ,, p) = Number (isReal , X₀⁺) abs-Types {isComplex} {X⁺⁻} (x ,, p) = Number (isReal , X⁺ )
{ "alphanum_fraction": 0.589893977, "avg_line_length": 45.3890784983, "ext": "agda", "hexsha": "04ed442343906bbba934b24050f0868e2c6dd7d6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Operations/Specification.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Operations/Specification.agda", "max_line_length": 121, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Operations/Specification.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 6660, "size": 13299 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Equivalence where -- Strong equivalence of categories. Same as ordinary equivalence in Cat. -- May not include everything we'd like to think of as equivalences, namely -- the full, faithful functors that are essentially surjective on objects. open import Level open import Relation.Binary using (IsEquivalence; Setoid) open import Categories.Adjoint.Equivalence open import Categories.Category import Categories.Morphism.Reasoning as MR import Categories.Morphism.Properties as MP open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.NaturalTransformation using (ntHelper; _∘ᵥ_; _∘ˡ_; _∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (NaturalIsomorphism ; unitorˡ; unitorʳ; associator; _ⓘᵥ_; _ⓘˡ_; _ⓘʳ_) renaming (sym to ≃-sym) open import Categories.NaturalTransformation.NaturalIsomorphism.Properties private variable o ℓ e : Level C D E : Category o ℓ e record WeakInverse (F : Functor C D) (G : Functor D C) : Set (levelOfTerm F ⊔ levelOfTerm G) where field F∘G≈id : NaturalIsomorphism (F ∘F G) idF G∘F≈id : NaturalIsomorphism (G ∘F F) idF module F∘G≈id = NaturalIsomorphism F∘G≈id module G∘F≈id = NaturalIsomorphism G∘F≈id private module C = Category C module D = Category D module F = Functor F module G = Functor G -- adjoint equivalence F⊣G : ⊣Equivalence F G F⊣G = record { unit = ≃-sym G∘F≈id ; counit = let open D open HomReasoning open MR D open MP D in record { F⇒G = ntHelper record { η = λ X → F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ; commute = λ {X Y} f → begin (F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G.F₁ f))) ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X))) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ Y) C.∘ G.F₁ (F.F₁ (G.F₁ f))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G.F₁ f)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η Y ∘ F.F₁ (G.F₁ f C.∘ G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ refl ⟩∘⟨ F.homomorphism ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η Y ∘ (F.F₁ (G.F₁ f) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ center⁻¹ (F∘G≈id.⇒.commute f) refl ⟩ (f ∘ F∘G≈id.⇒.η X) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ≈⟨ assoc ⟩ f ∘ F∘G≈id.⇒.η X ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ X)) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ X)) ∎ } ; F⇐G = ntHelper record { η = λ X → (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ; commute = λ {X Y} f → begin ((F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F∘G≈id.⇐.η Y) ∘ f ≈⟨ pullʳ (F∘G≈id.⇐.commute f) ⟩ (F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y))) ∘ F.F₁ (G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ center (⟺ F.homomorphism) ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ Y) C.∘ G.F₁ f) ∘ F∘G≈id.⇐.η X ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇐.commute (G.F₁ f)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ F.F₁ (G.F₁ (F.F₁ (G.F₁ f)) C.∘ G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ refl ⟩∘⟨ F.homomorphism ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ (G.F₀ Y)) ∘ (F.F₁ (G.F₁ (F.F₁ (G.F₁ f))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ≈⟨ center⁻¹ (F∘G≈id.⇒.commute _) refl ⟩ (F.F₁ (G.F₁ f) ∘ F∘G≈id.⇒.η (F.F₀ (G.F₀ X))) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X)) ∘ F∘G≈id.⇐.η X ≈⟨ center refl ⟩ F.F₁ (G.F₁ f) ∘ (F∘G≈id.⇒.η (F.F₀ (G.F₀ X)) ∘ F.F₁ (G∘F≈id.⇐.η (G.F₀ X))) ∘ F∘G≈id.⇐.η X ∎ } ; iso = λ X → Iso-∘ (Iso-∘ (Iso-swap (F∘G≈id.iso _)) ([ F ]-resp-Iso (G∘F≈id.iso _))) (F∘G≈id.iso X) } ; zig = λ {A} → let open D open HomReasoning open MR D in begin (F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F∘G≈id.⇐.η (F.F₀ (G.F₀ (F.F₀ A)))) ∘ F.F₁ (G∘F≈id.⇐.η A) ≈⟨ pull-last (F∘G≈id.⇐.commute (F.F₁ (G∘F≈id.⇐.η A))) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A))) ∘ F.F₁ (G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈˘⟨ refl⟩∘⟨ pushˡ F.homomorphism ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇒.η (G.F₀ (F.F₀ A)) C.∘ G.F₁ (F.F₁ (G∘F≈id.⇐.η A))) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl ⟩∘⟨ F.F-resp-≈ (G∘F≈id.⇒.commute (G∘F≈id.⇐.η A)) ⟩∘⟨ refl ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F.F₁ (G∘F≈id.⇐.η A C.∘ G∘F≈id.⇒.η A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ refl ⟩∘⟨ elimˡ ((F.F-resp-≈ (G∘F≈id.iso.isoˡ _)) ○ F.identity) ⟩ F∘G≈id.⇒.η (F.F₀ A) ∘ F∘G≈id.⇐.η (F.F₀ A) ≈⟨ F∘G≈id.iso.isoʳ _ ⟩ id ∎ } module F⊣G = ⊣Equivalence F⊣G record StrongEquivalence {o ℓ e o′ ℓ′ e′} (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C D G : Functor D C weak-inverse : WeakInverse F G open WeakInverse weak-inverse public refl : StrongEquivalence C C refl = record { F = idF ; G = idF ; weak-inverse = record { F∘G≈id = unitorˡ ; G∘F≈id = unitorˡ } } sym : StrongEquivalence C D → StrongEquivalence D C sym e = record { F = G ; G = F ; weak-inverse = record { F∘G≈id = G∘F≈id ; G∘F≈id = F∘G≈id } } where open StrongEquivalence e trans : StrongEquivalence C D → StrongEquivalence D E → StrongEquivalence C E trans {C = C} {D = D} {E = E} e e′ = record { F = e′.F ∘F e.F ; G = e.G ∘F e′.G ; weak-inverse = record { F∘G≈id = let module S = Setoid (NI.Functor-NI-setoid E E) in S.trans (S.trans (associator (e.G ∘F e′.G) e.F e′.F) (e′.F ⓘˡ (unitorˡ ⓘᵥ (e.F∘G≈id ⓘʳ e′.G) ⓘᵥ NI.sym (associator e′.G e.G e.F)))) e′.F∘G≈id ; G∘F≈id = let module S = Setoid (NI.Functor-NI-setoid C C) in S.trans (S.trans (associator (e′.F ∘F e.F) e′.G e.G) (e.G ⓘˡ (unitorˡ ⓘᵥ (e′.G∘F≈id ⓘʳ e.F) ⓘᵥ NI.sym (associator e.F e′.F e′.G)))) e.G∘F≈id } } where module e = StrongEquivalence e module e′ = StrongEquivalence e′ isEquivalence : ∀ {o ℓ e} → IsEquivalence (StrongEquivalence {o} {ℓ} {e}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } setoid : ∀ o ℓ e → Setoid _ _ setoid o ℓ e = record { Carrier = Category o ℓ e ; _≈_ = StrongEquivalence ; isEquivalence = isEquivalence }
{ "alphanum_fraction": 0.4899929028, "avg_line_length": 40.2571428571, "ext": "agda", "hexsha": "d19830b7765e29cdd8d9547bb5e698fdd16f44fc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Equivalence.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3575, "size": 7045 }
module nodcap.LocalChoice where open import Algebra open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ open import Data.List as L using (List; []; _∷_; _++_) open import Data.List.Any as LA using (Any; here; there) open import Data.List.Any.BagAndSetEquality as B open import Data.Product as PR using (∃; _×_; _,_; proj₁; proj₂) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Function using (_$_; flip) open import Function.Equality using (_⟨$⟩_) open import Function.Inverse as I using () open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Data.Environment open import nodcap.Base open import nodcap.Typing open I.Inverse using (to; from) private module ++ {a} {A : Set a} = Monoid (L.monoid A) -- We define local choice as follows: _or_ : {A : Type} → ⊢ A ∷ [] → ⊢ A ∷ [] → ⊢ A ∷ [] x or y = cut (pool (in? x) (in? y)) out where in? : ∀ {A} → ⊢ A ∷ [] → ⊢ ![ suc 0 ] (𝟏 & A) ∷ [] in? x = mk!₁ $ case halt x out : ∀ {A} → ⊢ ?[ suc 1 ] (⊥ ⊕ (A ^)) ∷ A ∷ [] out = cont $ mk?₁ $ sel₁ $ wait $ mk?₁ $ sel₂ $ exch (bbl []) $ ax -- However, Luís Caires defines local choice with contexts. For this to work we -- need an additional trick: conversion between contexts and types. -- We can represent a context as a sequence of pars. ⅋[_] : Environment → Type ⅋[ [] ] = ⊥ ⅋[ A ∷ Γ ] = A ⅋ ⅋[ Γ ] -- See: recv⋆ : {Γ Δ : Environment} → ⊢ Γ ++ Δ → ------------ ⊢ ⅋[ Γ ] ∷ Δ recv⋆ {[]} x = wait x recv⋆ {A ∷ Γ} x = recv $ exch (bbl []) $ recv⋆ $ exch (bwd [] Γ) $ x -- In order to reverse this, we need to show that the `recv` rule is invertible. -- Fortunately, it is: recv⁻¹ : {Γ : Environment} {A B : Type} → ⊢ A ⅋ B ∷ Γ → ------------- ⊢ A ∷ B ∷ Γ recv⁻¹ {Γ} {A} {B} x = exch (swp₂ (A ∷ B ∷ [])) $ cut {Γ} {A ∷ B ∷ []} x $ send ( exch (bbl []) ax ) ( exch (bbl []) ax ) -- It should come as no surprise that the repeated application of `recv` is also -- invertible. recv⋆⁻¹ : {Γ Δ : Environment} → ⊢ ⅋[ Γ ] ∷ Δ → -------------- ⊢ Γ ++ Δ recv⋆⁻¹ {[]} x = cut halt x recv⋆⁻¹ {A ∷ Γ} x = exch (fwd [] Γ) $ recv⋆⁻¹ {Γ} $ exch (bbl []) $ recv⁻¹ x -- Using these additional derivable operators, we can represent the version of -- local choice as used by Luís Caires: _or⋆_ : {Γ : Environment} → ⊢ Γ → ⊢ Γ → ⊢ Γ _or⋆_ {Γ} x y = P.subst ⊢_ (proj₂ ++.identity Γ) $ recv⋆⁻¹ {Γ} $ ( recv⋆ $ P.subst ⊢_ (P.sym $ proj₂ ++.identity Γ) x ) or ( recv⋆ $ P.subst ⊢_ (P.sym $ proj₂ ++.identity Γ) y ) -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.5650470219, "avg_line_length": 28.043956044, "ext": "agda", "hexsha": "6b796591f67c270ce69c8bf28f0a0a4caf675e41", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/nodcap/LocalChoice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/nodcap/LocalChoice.agda", "max_line_length": 80, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/nodcap/LocalChoice.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 992, "size": 2552 }
-- In this file we consider the special of localising at a single -- element f : R (or rather the set of powers of f). This is also -- known as inverting f. {-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Localisation.InvertingElements where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Foundations.Powerset open import Cubical.Foundations.Transport open import Cubical.Functions.FunExtEquiv import Cubical.Data.Empty as ⊥ open import Cubical.Data.Bool open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc ; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm) open import Cubical.Data.Vec open import Cubical.Data.Sigma.Base open import Cubical.Data.Sigma.Properties open import Cubical.Data.FinData open import Cubical.Relation.Nullary open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.Localisation.Base open import Cubical.Algebra.CommRing.Localisation.UniversalProperty open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT open Iso private variable ℓ ℓ' : Level A : Type ℓ module _(R' : CommRing {ℓ}) where open isMultClosedSubset private R = R' .fst -- open CommRingStr ⦃...⦄ open CommRingStr (R' .snd) open Exponentiation R' [_ⁿ|n≥0] : R → ℙ R [ f ⁿ|n≥0] g = (∃[ n ∈ ℕ ] g ≡ f ^ n) , propTruncIsProp -- Σ[ n ∈ ℕ ] (s ≡ f ^ n) × (∀ m → s ≡ f ^ m → n ≤ m) maybe better, this isProp: -- (n,s≡fⁿ,p) (m,s≡fᵐ,q) then n≤m by p and m≤n by q => n≡m powersFormMultClosedSubset : (f : R) → isMultClosedSubset R' [ f ⁿ|n≥0] powersFormMultClosedSubset f .containsOne = ∣ zero , refl ∣ powersFormMultClosedSubset f .multClosed = PT.map2 λ (m , p) (n , q) → (m +ℕ n) , (λ i → (p i) · (q i)) ∙ ·-of-^-is-^-of-+ f m n R[1/_] : R → Type ℓ R[1/ f ] = Loc.S⁻¹R R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) R[1/_]AsCommRing : R → CommRing {ℓ} R[1/ f ]AsCommRing = Loc.S⁻¹RAsCommRing R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) -- A useful lemma: (gⁿ/1)≡(g/1)ⁿ in R[1/f] ^-respects-/1 : {f g : R} (n : ℕ) → [ (g ^ n) , 1r , ∣ 0 , (λ _ → 1r) ∣ ] ≡ Exponentiation._^_ R[1/ f ]AsCommRing [ g , 1r , powersFormMultClosedSubset _ .containsOne ] n ^-respects-/1 zero = refl ^-respects-/1 {f} {g} (suc n) = eq/ _ _ ( (1r , powersFormMultClosedSubset f .containsOne) , cong (1r · (g · (g ^ n)) ·_) (·-lid 1r)) ∙ cong (CommRingStr._·_ (R[1/ f ]AsCommRing .snd) [ g , 1r , powersFormMultClosedSubset f .containsOne ]) (^-respects-/1 n) -- A slight improvement for eliminating into propositions InvElPropElim : {f : R} {P : R[1/ f ] → Type ℓ'} → (∀ x → isProp (P x)) → (∀ (r : R) (n : ℕ) → P [ r , (f ^ n) , ∣ n , refl ∣ ]) ---------------------------------------------------------- → (∀ x → P x) InvElPropElim {f = f} {P = P} PisProp base = elimProp (λ _ → PisProp _) []-case where S[f] = Loc.S R' [ f ⁿ|n≥0] (powersFormMultClosedSubset f) []-case : (a : R × S[f]) → P [ a ] []-case (r , s , s∈S[f]) = PT.rec (PisProp _) Σhelper s∈S[f] where Σhelper : Σ[ n ∈ ℕ ] s ≡ f ^ n → P [ r , s , s∈S[f] ] Σhelper (n , p) = subst P (cong [_] (≡-× refl (Σ≡Prop (λ _ → propTruncIsProp) (sym p)))) (base r n)
{ "alphanum_fraction": 0.6123188406, "avg_line_length": 39.8350515464, "ext": "agda", "hexsha": "2af1a491f0b1a5cdb9634d82cbfc085cfd7367a8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Localisation/InvertingElements.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1342, "size": 3864 }
module IIDg where open import LF -- Codes for indexed inductive types data OPg (I : Set) : Set1 where ι : I -> OPg I σ : (A : Set)(γ : A -> OPg I) -> OPg I δ : (H : Set)(i : H -> I)(γ : OPg I) -> OPg I -- The top-level structure of values in an IIDg Args : {I : Set}(γ : OPg I)(U : I -> Set) -> Set Args (ι _) U = One Args (σ A γ) U = A × \a -> Args (γ a) U Args (δ H i γ) U = ((x : H) -> U (i x)) × \_ -> Args γ U -- The index of a value in an IIDg Index : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> I Index (ι i) U _ = i Index (σ A γ) U < a | b > = Index (γ a) U b Index (δ _ _ γ) U < _ | b > = Index γ U b -- The assumptions of a particular inductive occurrence. IndArg : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> Set IndArg (ι _) U _ = Zero IndArg (σ A γ) U < a | b > = IndArg (γ a) U b IndArg (δ H i γ) U < _ | b > = H + IndArg γ U b -- The index of an inductive occurrence. IndIndex : {I : Set}(γ : OPg I)(U : I -> Set)(a : Args γ U) -> IndArg γ U a -> I IndIndex (ι _) U _ () IndIndex (σ A γ) U < a | b > h = IndIndex (γ a) U b h IndIndex (δ A i γ) U < g | b > (inl h) = i h IndIndex (δ A i γ) U < g | b > (inr h) = IndIndex γ U b h -- An inductive occurrence. Ind : {I : Set}(γ : OPg I)(U : I -> Set)(a : Args γ U)(h : IndArg γ U a) -> U (IndIndex γ U a h) Ind (ι _) U _ () Ind (σ A γ) U < a | b > h = Ind (γ a) U b h Ind (δ H i γ) U < g | b > (inl h) = g h Ind (δ H i γ) U < _ | b > (inr h) = Ind γ U b h -- The type of induction hypotheses. IndHyp : {I : Set}(γ : OPg I)(U : I -> Set)(C : (i : I) -> U i -> Set)(a : Args γ U) -> Set IndHyp γ U C a = (hyp : IndArg γ U a) -> C (IndIndex γ U a hyp) (Ind γ U a hyp) -- Large induction hypostheses. IndHyp₁ : {I : Set}(γ : OPg I)(U : I -> Set)(C : (i : I) -> U i -> Set1)(a : Args γ U) -> Set1 IndHyp₁ γ U C a = (hyp : IndArg γ U a) -> C (IndIndex γ U a hyp) (Ind γ U a hyp)
{ "alphanum_fraction": 0.5083857442, "avg_line_length": 37.4117647059, "ext": "agda", "hexsha": "d3397b26d20f285420913837302c7643689cb366", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/iird/IIDg.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/iird/IIDg.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/iird/IIDg.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 796, "size": 1908 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Fresh lists, a proof relevant variant of Catarina Coquand's contexts in -- "A Formalised Proof of the Soundness and Completeness of a Simply Typed -- Lambda-Calculus with Explicit Substitutions" ------------------------------------------------------------------------ -- See README.Data.List.Fresh and README.Data.Trie.NonDependent for -- examples of how to use fresh lists. {-# OPTIONS --without-K --safe #-} module Data.List.Fresh where open import Level using (Level; _⊔_; Lift) open import Data.Bool.Base using (true; false) open import Data.Unit.Base open import Data.Product using (∃; _×_; _,_; -,_; proj₁; proj₂) open import Data.List.Relation.Unary.All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.Maybe.Base as Maybe using (Maybe; just; nothing) open import Data.Nat.Base using (ℕ; zero; suc) open import Function using (_∘′_; flip; id; _on_) open import Relation.Nullary using (does) open import Relation.Unary as U using (Pred) open import Relation.Binary as B using (Rel) open import Relation.Nary private variable a b p r s : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Basic type -- If we pick an R such that (R a b) means that a is different from b -- then we have a list of distinct values. module _ {a} (A : Set a) (R : Rel A r) where data List# : Set (a ⊔ r) fresh : (a : A) (as : List#) → Set r data List# where [] : List# cons : (a : A) (as : List#) → fresh a as → List# -- Whenever R can be reconstructed by η-expansion (e.g. because it is -- the erasure ⌊_⌋ of a decidable predicate, cf. Relation.Nary) or we -- do not care about the proof, it is convenient to get back list syntax. -- We use a different symbol to avoid conflict when importing both Data.List -- and Data.List.Fresh. infixr 5 _∷#_ pattern _∷#_ x xs = cons x xs _ fresh a [] = Lift _ ⊤ fresh a (x ∷# xs) = R a x × fresh a xs -- Convenient notation for freshness making A and R implicit parameters infix 5 _#_ _#_ : {R : Rel A r} (a : A) (as : List# A R) → Set r _#_ = fresh _ _ ------------------------------------------------------------------------ -- Operations for modifying fresh lists module _ {R : Rel A r} {S : Rel B s} (f : A → B) (R⇒S : ∀[ R ⇒ (S on f) ]) where map : List# A R → List# B S map-# : ∀ {a} as → a # as → f a # map as map [] = [] map (cons a as ps) = cons (f a) (map as) (map-# as ps) map-# [] _ = _ map-# (a ∷# as) (p , ps) = R⇒S p , map-# as ps module _ {R : Rel B r} (f : A → B) where map₁ : List# A (R on f) → List# B R map₁ = map f id module _ {R : Rel A r} {S : Rel A s} (R⇒S : ∀[ R ⇒ S ]) where map₂ : List# A R → List# A S map₂ = map id R⇒S ------------------------------------------------------------------------ -- Views data Empty {A : Set a} {R : Rel A r} : List# A R → Set (a ⊔ r) where [] : Empty [] data NonEmpty {A : Set a} {R : Rel A r} : List# A R → Set (a ⊔ r) where cons : ∀ x xs pr → NonEmpty (cons x xs pr) ------------------------------------------------------------------------ -- Operations for reducing fresh lists length : {R : Rel A r} → List# A R → ℕ length [] = 0 length (_ ∷# xs) = suc (length xs) ------------------------------------------------------------------------ -- Operations for constructing fresh lists pattern [_] a = a ∷# [] fromMaybe : {R : Rel A r} → Maybe A → List# A R fromMaybe nothing = [] fromMaybe (just a) = [ a ] module _ {R : Rel A r} (R-refl : B.Reflexive R) where replicate : ℕ → A → List# A R replicate-# : (n : ℕ) (a : A) → a # replicate n a replicate zero a = [] replicate (suc n) a = cons a (replicate n a) (replicate-# n a) replicate-# zero a = _ replicate-# (suc n) a = R-refl , replicate-# n a ------------------------------------------------------------------------ -- Operations for deconstructing fresh lists uncons : {R : Rel A r} → List# A R → Maybe (A × List# A R) uncons [] = nothing uncons (a ∷# as) = just (a , as) head : {R : Rel A r} → List# A R → Maybe A head = Maybe.map proj₁ ∘′ uncons tail : {R : Rel A r} → List# A R → Maybe (List# A R) tail = Maybe.map proj₂ ∘′ uncons take : {R : Rel A r} → ℕ → List# A R → List# A R take-# : {R : Rel A r} → ∀ n a (as : List# A R) → a # as → a # take n as take zero xs = [] take (suc n) [] = [] take (suc n) (cons a as ps) = cons a (take n as) (take-# n a as ps) take-# zero a xs _ = _ take-# (suc n) a [] ps = _ take-# (suc n) a (x ∷# xs) (p , ps) = p , take-# n a xs ps drop : {R : Rel A r} → ℕ → List# A R → List# A R drop zero as = as drop (suc n) [] = [] drop (suc n) (a ∷# as) = drop n as module _ {P : Pred A p} (P? : U.Decidable P) where takeWhile : {R : Rel A r} → List# A R → List# A R takeWhile-# : ∀ {R : Rel A r} a (as : List# A R) → a # as → a # takeWhile as takeWhile [] = [] takeWhile (cons a as ps) with does (P? a) ... | true = cons a (takeWhile as) (takeWhile-# a as ps) ... | false = [] takeWhile-# a [] _ = _ takeWhile-# a (x ∷# xs) (p , ps) with does (P? x) ... | true = p , takeWhile-# a xs ps ... | false = _ dropWhile : {R : Rel A r} → List# A R → List# A R dropWhile [] = [] dropWhile aas@(a ∷# as) with does (P? a) ... | true = dropWhile as ... | false = aas filter : {R : Rel A r} → List# A R → List# A R filter-# : ∀ {R : Rel A r} a (as : List# A R) → a # as → a # filter as filter [] = [] filter (cons a as ps) with does (P? a) ... | true = cons a (filter as) (filter-# a as ps) ... | false = filter as filter-# a [] _ = _ filter-# a (x ∷# xs) (p , ps) with does (P? x) ... | true = p , filter-# a xs ps ... | false = filter-# a xs ps ------------------------------------------------------------------------ -- Relationship to List and AllPairs toList : {R : Rel A r} → List# A R → ∃ (AllPairs R) toAll : ∀ {R : Rel A r} {a} as → fresh A R a as → All (R a) (proj₁ (toList as)) toList [] = -, [] toList (cons x xs ps) = -, toAll xs ps ∷ proj₂ (toList xs) toAll [] ps = [] toAll (a ∷# as) (p , ps) = p ∷ toAll as ps fromList : ∀ {R : Rel A r} {xs} → AllPairs R xs → List# A R fromList-# : ∀ {R : Rel A r} {x xs} (ps : AllPairs R xs) → All (R x) xs → x # fromList ps fromList [] = [] fromList (r ∷ rs) = cons _ (fromList rs) (fromList-# rs r) fromList-# [] _ = _ fromList-# (p ∷ ps) (r ∷ rs) = r , fromList-# ps rs
{ "alphanum_fraction": 0.4985220219, "avg_line_length": 31.9150943396, "ext": "agda", "hexsha": "a73ccf5b7fdf281767c8926fe978229bd7b226ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2201, "size": 6766 }
{- This file contains: - Definition of propositional truncation -} {-# OPTIONS --cubical --safe #-} module Cubical.HITs.PropositionalTruncation.Base where open import Cubical.Core.Primitives -- Propositional truncation as a higher inductive type: data ∥_∥ {ℓ} (A : Type ℓ) : Type ℓ where ∣_∣ : A → ∥ A ∥ squash : ∀ (x y : ∥ A ∥) → x ≡ y
{ "alphanum_fraction": 0.6628242075, "avg_line_length": 19.2777777778, "ext": "agda", "hexsha": "e5802ab1c3274babd54cc7ee4a6cf2c962bdb04e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/PropositionalTruncation/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 118, "size": 347 }
-- Reported by stevan.andjelkovic, 2014-10-23 -- Case splitting on n in the goal g produces the wrong output, it -- seems like {n} in f is the problem... data ℕ : Set where zero : ℕ suc : ℕ → ℕ f : {_ : ℕ} → Set₁ f {n} = Set where g : ℕ → Set g n = {!n!}
{ "alphanum_fraction": 0.5830258303, "avg_line_length": 16.9375, "ext": "agda", "hexsha": "c590af0fad3bdb605cbfb3fdec8ae8a5dafa9578", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1325.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1325.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1325.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 271 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.Base where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Core.Glue public using ( isEquiv ; equiv-proof ; _≃_ ; equivFun ; equivProof ) fiber : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) (y : B) → Type (ℓ-max ℓ ℓ') fiber {A = A} f y = Σ[ x ∈ A ] f x ≡ y -- Helper function for constructing equivalences from pairs (f,g) that cancel each other up to definitional -- equality. For such (f,g), the result type simplifies to isContr (fiber f b). strictContrFibers : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} (g : B → A) (b : B) → Σ[ t ∈ fiber f (f (g b)) ] ((t' : fiber f b) → Path (fiber f (f (g b))) t (g (f (t' .fst)) , cong (f ∘ g) (t' .snd))) strictContrFibers {f = f} g b .fst = (g b , refl) strictContrFibers {f = f} g b .snd (a , p) i = (g (p (~ i)) , λ j → f (g (p (~ i ∨ j)))) -- The identity equivalence idIsEquiv : ∀ {ℓ} (A : Type ℓ) → isEquiv (idfun A) idIsEquiv A .equiv-proof = strictContrFibers (idfun A) idEquiv : ∀ {ℓ} (A : Type ℓ) → A ≃ A idEquiv A .fst = idfun A idEquiv A .snd = idIsEquiv A
{ "alphanum_fraction": 0.6040955631, "avg_line_length": 41.8571428571, "ext": "agda", "hexsha": "3bd44d5fe237611688290e41c9225a9dc9bc206d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_line_length": 107, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Foundations/Equiv/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 454, "size": 1172 }
module par-swap.properties where open import par-swap open import Esterel.Lang open import Esterel.Lang.Binding open import Esterel.Context open import Data.List using ([] ; [_] ; _∷_ ; List ; _++_) open import Data.Product Context1-∥R : ∀{p p'} → (C1 : Context1) → p ∥R p' → ((C1 ∷ []) ⟦ p ⟧c) ∥R ((C1 ∷ []) ⟦ p' ⟧c) Context1-∥R (ceval (epar₁ q₁)) (∥Rstep dc) = ∥Rstep (dcpar₁ dc) Context1-∥R (ceval (epar₂ p₂)) (∥Rstep dc) = ∥Rstep (dcpar₂ dc) Context1-∥R (ceval (eseq q₁)) (∥Rstep dc) = ∥Rstep (dcseq₁ dc) Context1-∥R (ceval (eloopˢ q₁)) (∥Rstep dc) = ∥Rstep (dcloopˢ₁ dc) Context1-∥R (ceval (esuspend S)) (∥Rstep dc) = ∥Rstep (dcsuspend dc) Context1-∥R (ceval etrap) (∥Rstep dc) = ∥Rstep (dctrap dc) Context1-∥R (csignl S) (∥Rstep dc) = ∥Rstep (dcsignl dc) Context1-∥R (cpresent₁ S q₁) (∥Rstep dc) = ∥Rstep (dcpresent₁ dc) Context1-∥R (cpresent₂ S p₂) (∥Rstep dc) = ∥Rstep (dcpresent₂ dc) Context1-∥R cloop (∥Rstep dc) = ∥Rstep (dcloop dc) Context1-∥R (cloopˢ₂ p₂) (∥Rstep dc) = ∥Rstep (dcloopˢ₂ dc) Context1-∥R (cseq₂ p₂) (∥Rstep dc) = ∥Rstep (dcseq₂ dc) Context1-∥R (cshared s e) (∥Rstep dc) = ∥Rstep (dcshared dc) Context1-∥R (cvar x e) (∥Rstep dc) = ∥Rstep (dcvar dc) Context1-∥R (cif₁ x q₁) (∥Rstep dc) = ∥Rstep (dcif₁ dc) Context1-∥R (cif₂ x p₂) (∥Rstep dc) = ∥Rstep (dcif₂ dc) Context1-∥R (cenv θ A) (∥Rstep dc) = ∥Rstep (dcenv dc) Context1-∥R* : ∀ {p q} -> (C1 : Context1) -> p ∥R* q -> ((C1 ∷ []) ⟦ p ⟧c) ∥R* ((C1 ∷ []) ⟦ q ⟧c) Context1-∥R* C1 ∥R0 = ∥R0 Context1-∥R* C1 (∥Rn p∥Rq q∥R*r) = ∥Rn (Context1-∥R C1 p∥Rq) (Context1-∥R* C1 q∥R*r)
{ "alphanum_fraction": 0.6218649518, "avg_line_length": 48.59375, "ext": "agda", "hexsha": "ea0c2b1e25ebc8053412fc39a5b9990f7e292d37", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/par-swap/properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/par-swap/properties.agda", "max_line_length": 97, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/par-swap/properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 777, "size": 1555 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Quotients for Heterogeneous equality ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Relation.Binary.HeterogeneousEquality.Quotients where open import Function open import Level hiding (lift) open import Relation.Binary open import Relation.Binary.HeterogeneousEquality open ≅-Reasoning record Quotient {c ℓ} (S : Setoid c ℓ) : Set (suc (c ⊔ ℓ)) where open Setoid S renaming (Carrier to A) field Q : Set c abs : A → Q compat : (B : Q → Set c) (f : ∀ a → B (abs a)) → Set (c ⊔ ℓ) compat _ f = {a a′ : A} → a ≈ a′ → f a ≅ f a′ field compat-abs : compat _ abs lift : (B : Q → Set c) (f : ∀ a → B (abs a)) → compat B f → ∀ q → B q lift-conv : {B : Q → Set c} (f : ∀ a → B (abs a)) (p : compat B f) → ∀ a → lift B f p (abs a) ≅ f a Quotients : ∀ c ℓ → Set (suc (c ⊔ ℓ)) Quotients c ℓ = (S : Setoid c ℓ) → Quotient S module Properties {c ℓ} {S : Setoid c ℓ} (Qu : Quotient S) where open Setoid S renaming (Carrier to A) hiding (refl; sym; trans) open Quotient Qu module _ {B B′ : Q → Set c} {f : ∀ a → B (abs a)} {p : compat B f} where lift-unique : {g : ∀ q → B′ q} → (∀ a → g (abs a) ≅ f a) → ∀ x → lift B f p x ≅ g x lift-unique {g} ext = lift _ liftf≅g liftf≅g-ext where liftf≅g : ∀ a → lift B f p (abs a) ≅ g (abs a) liftf≅g x = begin lift _ f p (abs x) ≅⟨ lift-conv f p x ⟩ f x ≅⟨ sym (ext x) ⟩ g (abs x) ∎ liftf≅g-ext : ∀ {a a′} → a ≈ a′ → liftf≅g a ≅ liftf≅g a′ liftf≅g-ext eq = ≅-heterogeneous-irrelevantˡ _ _ $ cong (lift B f p) (compat-abs eq) lift-ext : {g : ∀ a → B′ (abs a)} {p′ : compat B′ g} → (∀ x → f x ≅ g x) → ∀ x → lift B f p x ≅ lift B′ g p′ x lift-ext {g} {p′} h = lift-unique $ λ a → begin lift B′ g p′ (abs a) ≅⟨ lift-conv g p′ a ⟩ g a ≅⟨ sym (h a) ⟩ f a ∎ lift-conv-abs : ∀ a → lift (const Q) abs compat-abs a ≅ a lift-conv-abs = lift-unique (λ _ → refl) lift-fold : {B : Q → Set c} (f : ∀ q → B q) → ∀ a → lift B (f ∘ abs) (cong f ∘ compat-abs) a ≅ f a lift-fold f = lift-unique (λ _ → refl) abs-epimorphism : {B : Q → Set c} {f g : ∀ q → B q} → (∀ x → f (abs x) ≅ g (abs x)) → ∀ q → f q ≅ g q abs-epimorphism {B} {f} {g} p q = begin f q ≅⟨ sym (lift-fold f q) ⟩ lift B (f ∘ abs) (cong f ∘ compat-abs) q ≅⟨ lift-ext p q ⟩ lift B (g ∘ abs) (cong g ∘ compat-abs) q ≅⟨ lift-fold g q ⟩ g q ∎ ------------------------------------------------------------------------ -- Properties provable with extensionality module _ (ext : ∀ {a b} {A : Set a} {B₁ B₂ : A → Set b} {f₁ : ∀ a → B₁ a} {f₂ : ∀ a → B₂ a} → (∀ a → f₁ a ≅ f₂ a) → f₁ ≅ f₂) where module Properties₂ {c ℓ} {S₁ S₂ : Setoid c ℓ} (Qu₁ : Quotient S₁) (Qu₂ : Quotient S₂) where module S₁ = Setoid S₁ module S₂ = Setoid S₂ module Qu₁ = Quotient Qu₁ module Qu₂ = Quotient Qu₂ module _ {B : _ → _ → Set c} (f : ∀ s₁ s₂ → B (Qu₁.abs s₁) (Qu₂.abs s₂)) where compat₂ : Set _ compat₂ = ∀ {a b a′ b′} → a S₁.≈ a′ → b S₂.≈ b′ → f a b ≅ f a′ b′ lift₂ : compat₂ → ∀ q q′ → B q q′ lift₂ p = Qu₁.lift _ g (ext ∘ g-ext) module Lift₂ where g : ∀ a q → B (Qu₁.abs a) q g a = Qu₂.lift (B (Qu₁.abs a)) (f a) (p S₁.refl) g-ext : ∀ {a a′} → a S₁.≈ a′ → ∀ q → g a q ≅ g a′ q g-ext a≈a′ = Properties.lift-ext Qu₂ (λ _ → p a≈a′ S₂.refl) lift₂-conv : (p : compat₂) → ∀ a a′ → lift₂ p (Qu₁.abs a) (Qu₂.abs a′) ≅ f a a′ lift₂-conv p a a′ = begin lift₂ p (Qu₁.abs a) (Qu₂.abs a′) ≅⟨ cong (_$ (Qu₂.abs a′)) (Qu₁.lift-conv (Lift₂.g p) (ext ∘ Lift₂.g-ext p) a) ⟩ Lift₂.g p a (Qu₂.abs a′) ≡⟨⟩ Qu₂.lift (B (Qu₁.abs a)) (f a) (p S₁.refl) (Qu₂.abs a′) ≅⟨ Qu₂.lift-conv (f a) (p S₁.refl) a′ ⟩ f a a′ ∎ module Properties₃ {c ℓ} {S₁ S₂ S₃ : Setoid c ℓ} (Qu₁ : Quotient S₁) (Qu₂ : Quotient S₂) (Qu₃ : Quotient S₃) where module S₁ = Setoid S₁ module S₂ = Setoid S₂ module S₃ = Setoid S₃ module Qu₁ = Quotient Qu₁ module Qu₂ = Quotient Qu₂ module Qu₃ = Quotient Qu₃ module _ {B : _ → _ → _ → Set c} (f : ∀ s₁ s₂ s₃ → B (Qu₁.abs s₁) (Qu₂.abs s₂) (Qu₃.abs s₃)) where compat₃ : Set _ compat₃ = ∀ {a b c a′ b′ c′} → a S₁.≈ a′ → b S₂.≈ b′ → c S₃.≈ c′ → f a b c ≅ f a′ b′ c′ lift₃ : compat₃ → ∀ q₁ q₂ q₃ → B q₁ q₂ q₃ lift₃ p = Qu₁.lift _ h (ext ∘ h-ext) module Lift₃ where g : ∀ a b q → B (Qu₁.abs a) (Qu₂.abs b) q g a b = Qu₃.lift (B (Qu₁.abs a) (Qu₂.abs b)) (f a b) (p S₁.refl S₂.refl) g-ext : ∀ {a a′ b b′} → a S₁.≈ a′ → b S₂.≈ b′ → ∀ c → g a b c ≅ g a′ b′ c g-ext a≈a′ b≈b′ = Properties.lift-ext Qu₃ (λ _ → p a≈a′ b≈b′ S₃.refl) h : ∀ a q₂ q₃ → B (Qu₁.abs a) q₂ q₃ h a = Qu₂.lift (λ b → ∀ q → B (Qu₁.abs a) b q) (g a) (ext ∘ g-ext S₁.refl) h-ext : ∀ {a a′} → a S₁.≈ a′ → ∀ b → h a b ≅ h a′ b h-ext a≈a′ = Properties.lift-ext Qu₂ $ λ _ → ext (g-ext a≈a′ S₂.refl)
{ "alphanum_fraction": 0.4610557401, "avg_line_length": 36.12, "ext": "agda", "hexsha": "a429dafe8fb1d442a8fff7a859c86b5e13302418", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients.agda", "max_line_length": 89, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/HeterogeneousEquality/Quotients.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2219, "size": 5418 }
-- Reasoning with both a strict and non-strict relation. {-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Relation.Binary.Raw module Cubical.Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Type a} {_≤_ : RawRel A ℓ₁} {_<_ : RawRel A ℓ₂} (≤-isPreorder : IsPreorder _≤_) (<-transitive : Transitive _<_) (<⇒≤ : _<_ ⇒ _≤_) (<-≤-transitive : Trans _<_ _≤_ _<_) (≤-<-transitive : Trans _≤_ _<_ _<_) where open import Cubical.Foundations.Prelude open import Cubical.Data.Prod using (proj₁; proj₂) open import Cubical.Foundations.Function using (case_of_; id) open import Cubical.Relation.Nullary using (Dec; yes; no; IsYes; toWitness) open IsPreorder ≤-isPreorder renaming ( reflexive to ≤-reflexive ; transitive to ≤-transitive ) ------------------------------------------------------------------------ -- A datatype to abstract over the current relation infix 4 _IsRelatedTo_ data _IsRelatedTo_ (x y : A) : Type (ℓ-max a (ℓ-max ℓ₁ ℓ₂)) where strict : (x<y : x < y) → x IsRelatedTo y nonstrict : (x≤y : x ≤ y) → x IsRelatedTo y ------------------------------------------------------------------------ -- Types that are used to ensure that the final relation proved by the -- chain of reasoning can be converted into the required relation. data IsStrict {x y} : x IsRelatedTo y → Type (ℓ-max a (ℓ-max ℓ₁ ℓ₂)) where isStrict : ∀ x<y → IsStrict (strict x<y) IsStrict? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsStrict x≲y) IsStrict? (strict x<y) = yes (isStrict x<y) IsStrict? (nonstrict _) = no λ() extractStrict : ∀ {x y} {x≲y : x IsRelatedTo y} → IsStrict x≲y → x < y extractStrict (isStrict x<y) = x<y ------------------------------------------------------------------------ -- Reasoning combinators infix 0 begin_ begin-strict_ infixr 1 _<⟨_⟩_ _≤⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_ infix 2 _∎ -- Beginnings of various types of proofs begin_ : ∀ {x y} → x IsRelatedTo y → x ≤ y begin strict x<y = <⇒≤ x<y begin nonstrict x≤y = x≤y begin-strict_ : ∀ {x y} (r : x IsRelatedTo y) → {s : IsYes (IsStrict? r)} → x < y begin-strict_ r {s} = extractStrict (toWitness s) -- Step with the strict relation _<⟨_⟩_ : ∀ (x : A) {y z} → x < y → y IsRelatedTo z → x IsRelatedTo z x <⟨ x<y ⟩ strict y<z = strict (<-transitive x<y y<z) x <⟨ x<y ⟩ nonstrict y≤z = strict (<-≤-transitive x<y y≤z) -- Step with the non-strict relation _≤⟨_⟩_ : ∀ (x : A) {y z} → x ≤ y → y IsRelatedTo z → x IsRelatedTo z x ≤⟨ x≤y ⟩ strict y<z = strict (≤-<-transitive x≤y y<z) x ≤⟨ x≤y ⟩ nonstrict y≤z = nonstrict (≤-transitive x≤y y≤z) -- Step with non-trivial propositional equality _≡⟨_⟩_ : ∀ (x : A) {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z _≡⟨_⟩_ x {_} {z} x≡y y≲z = J (λ w _ → w IsRelatedTo z) y≲z (sym x≡y) -- Flipped step with non-trivial propositional equality _≡˘⟨_⟩_ : ∀ x {y z} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z x ≡˘⟨ y≡x ⟩ y≲z = x ≡⟨ sym y≡x ⟩ y≲z -- Step with trivial propositional equality _≡⟨⟩_ : ∀ (x : A) {y} → x IsRelatedTo y → x IsRelatedTo y x ≡⟨⟩ x≲y = x≲y -- Syntax for path definition ≡⟨⟩-syntax : ∀ x {y z : A} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z ≡⟨⟩-syntax = _≡⟨_⟩_ infixr 1 ≡⟨⟩-syntax syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y ≡˘⟨⟩-syntax : ∀ x {y z : A} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z ≡˘⟨⟩-syntax = _≡˘⟨_⟩_ infixr 1 ≡˘⟨⟩-syntax syntax ≡˘⟨⟩-syntax x (λ i → B) y = x ≡˘[ i ]⟨ B ⟩ y -- Termination step _∎ : ∀ x → x IsRelatedTo x x ∎ = nonstrict ≤-reflexive
{ "alphanum_fraction": 0.5870491338, "avg_line_length": 32.6018518519, "ext": "agda", "hexsha": "db890f040f346a5bcf92c3dbaab5162c7915c64a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Double.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Double.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Reasoning/Base/Double.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1400, "size": 3521 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Propertiers of any for containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Relation.Unary.Any.Properties where open import Level open import Algebra open import Data.Product as Prod using (∃; _×_; ∃₂; _,_; proj₂) open import Data.Product.Function.NonDependent.Propositional using (_×-cong_) import Data.Product.Function.Dependent.Propositional as Σ open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]) open import Function open import Function.Equality using (_⟨$⟩_) open import Function.Equivalence using (equivalence) open import Function.HalfAdjointEquivalence using (_≃_; ↔→≃) open import Function.Inverse as Inv using (_↔_; inverse; module Inverse) open import Function.Related as Related using (Related; SK-sym) open import Function.Related.TypeIsomorphisms open import Relation.Unary using (Pred ; _∪_ ; _∩_) open import Relation.Binary using (REL) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl) open Related.EquationalReasoning hiding (_≡⟨_⟩_) private module ×⊎ {k ℓ} = CommutativeSemiring (×-⊎-commutativeSemiring k ℓ) open import Data.Container.Core import Data.Container.Combinator as C open import Data.Container.Combinator.Properties open import Data.Container.Related open import Data.Container.Relation.Unary.Any as Any using (◇; any) open import Data.Container.Membership module _ {s p} (C : Container s p) {x} {X : Set x} {ℓ} {P : Pred X ℓ} where -- ◇ can be unwrapped to reveal the Σ type ↔Σ : ∀ {xs : ⟦ C ⟧ X} → ◇ C P xs ↔ ∃ λ p → P (proj₂ xs p) ↔Σ {xs} = inverse ◇.proof any (λ _ → P.refl) (λ _ → P.refl) -- ◇ can be expressed using _∈_. ↔∈ : ∀ {xs : ⟦ C ⟧ X} → ◇ C P xs ↔ (∃ λ x → x ∈ xs × P x) ↔∈ {xs} = inverse to from (λ _ → P.refl) (to∘from) where to : ◇ C P xs → ∃ λ x → x ∈ xs × P x to (any (p , Px)) = (proj₂ xs p , (any (p , P.refl)) , Px) from : (∃ λ x → x ∈ xs × P x) → ◇ C P xs from (.(proj₂ xs p) , (any (p , refl)) , Px) = any (p , Px) to∘from : to ∘ from ≗ id to∘from (.(proj₂ xs p) , any (p , refl) , Px) = P.refl module _ {s p} {C : Container s p} {x} {X : Set x} {ℓ₁ ℓ₂} {P₁ : Pred X ℓ₁} {P₂ : Pred X ℓ₂} where -- ◇ is a congruence for bag and set equality and related preorders. cong : ∀ {k} {xs₁ xs₂ : ⟦ C ⟧ X} → (∀ x → Related k (P₁ x) (P₂ x)) → xs₁ ∼[ k ] xs₂ → Related k (◇ C P₁ xs₁) (◇ C P₂ xs₂) cong {k} {xs₁} {xs₂} P₁↔P₂ xs₁≈xs₂ = ◇ C P₁ xs₁ ↔⟨ ↔∈ C ⟩ (∃ λ x → x ∈ xs₁ × P₁ x) ∼⟨ Σ.cong Inv.id (xs₁≈xs₂ ×-cong P₁↔P₂ _) ⟩ (∃ λ x → x ∈ xs₂ × P₂ x) ↔⟨ SK-sym (↔∈ C) ⟩ ◇ C P₂ xs₂ ∎ -- Nested occurrences of ◇ can sometimes be swapped. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x y} {X : Set x} {Y : Set y} {r} {P : REL X Y r} where swap : {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → let ◈ : ∀ {s p} {C : Container s p} {x} {X : Set x} {ℓ} → ⟦ C ⟧ X → Pred X ℓ → Set (p ⊔ ℓ) ◈ = λ {_} {_} → flip (◇ _) in ◈ xs (◈ ys ∘ P) ↔ ◈ ys (◈ xs ∘ flip P) swap {xs} {ys} = ◇ _ (λ x → ◇ _ (P x) ys) xs ↔⟨ ↔∈ C₁ ⟩ (∃ λ x → x ∈ xs × ◇ _ (P x) ys) ↔⟨ Σ.cong Inv.id $ Σ.cong Inv.id $ ↔∈ C₂ ⟩ (∃ λ x → x ∈ xs × ∃ λ y → y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {x} → ∃∃↔∃∃ (λ _ y → y ∈ ys × P x y)) ⟩ (∃₂ λ x y → x ∈ xs × y ∈ ys × P x y) ↔⟨ ∃∃↔∃∃ (λ x y → x ∈ xs × y ∈ ys × P x y) ⟩ (∃₂ λ y x → x ∈ xs × y ∈ ys × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → Σ.cong Inv.id (λ {x} → (x ∈ xs × y ∈ ys × P x y) ↔⟨ SK-sym Σ-assoc ⟩ ((x ∈ xs × y ∈ ys) × P x y) ↔⟨ Σ.cong (×-comm _ _) Inv.id ⟩ ((y ∈ ys × x ∈ xs) × P x y) ↔⟨ Σ-assoc ⟩ (y ∈ ys × x ∈ xs × P x y) ∎)) ⟩ (∃₂ λ y x → y ∈ ys × x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (λ {y} → ∃∃↔∃∃ {B = y ∈ ys} (λ x _ → x ∈ xs × P x y)) ⟩ (∃ λ y → y ∈ ys × ∃ λ x → x ∈ xs × P x y) ↔⟨ Σ.cong Inv.id (Σ.cong Inv.id (SK-sym (↔∈ C₁))) ⟩ (∃ λ y → y ∈ ys × ◇ _ (flip P y) xs) ↔⟨ SK-sym (↔∈ C₂) ⟩ ◇ _ (λ y → ◇ _ (flip P y) xs) ys ∎ -- Nested occurrences of ◇ can sometimes be flattened. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where flatten : ∀ (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → ◇ C₁ (◇ C₂ P) xss ↔ ◇ (C₁ C.∘ C₂) P (Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss) flatten xss = inverse t f (λ _ → P.refl) (λ _ → P.refl) where ◇₁ = ◇ C₁; ◇₂ = ◇ C₂; ◇₁₂ = ◇ (C₁ C.∘ C₂) open Inverse t : ◇₁ (◇₂ P) xss → ◇₁₂ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) t (any (p₁ , (any (p₂ , p)))) = any (any (p₁ , p₂) , p) f : ◇₁₂ P (from (Composition.correct C₁ C₂) ⟨$⟩ xss) → ◇₁ (◇₂ P) xss f (any (any (p₁ , p₂) , p)) = any (p₁ , any (p₂ , p)) -- Sums commute with ◇ (for a fixed instance of a given container). module _ {s p} {C : Container s p} {x} {X : Set x} {ℓ ℓ′} {P : Pred X ℓ} {Q : Pred X ℓ′} where ◇⊎↔⊎◇ : ∀ {xs : ⟦ C ⟧ X} → ◇ C (P ∪ Q) xs ↔ (◇ C P xs ⊎ ◇ C Q xs) ◇⊎↔⊎◇ {xs} = inverse to from from∘to to∘from where to : ◇ C (λ x → P x ⊎ Q x) xs → ◇ C P xs ⊎ ◇ C Q xs to (any (pos , inj₁ p)) = inj₁ (any (pos , p)) to (any (pos , inj₂ q)) = inj₂ (any (pos , q)) from : ◇ C P xs ⊎ ◇ C Q xs → ◇ C (λ x → P x ⊎ Q x) xs from = [ Any.map₂ inj₁ , Any.map₂ inj₂ ] from∘to : from ∘ to ≗ id from∘to (any (pos , inj₁ p)) = P.refl from∘to (any (pos , inj₂ q)) = P.refl to∘from : to ∘ from ≗ id to∘from = [ (λ _ → P.refl) , (λ _ → P.refl) ] -- Products "commute" with ◇. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x y} {X : Set x} {Y : Set y} {ℓ ℓ′} {P : Pred X ℓ} {Q : Pred Y ℓ′} where ×◇↔◇◇× : ∀ {xs : ⟦ C₁ ⟧ X} {ys : ⟦ C₂ ⟧ Y} → ◇ C₁ (λ x → ◇ C₂ (λ y → P x × Q y) ys) xs ↔ (◇ C₁ P xs × ◇ C₂ Q ys) ×◇↔◇◇× {xs} {ys} = inverse to from (λ _ → P.refl) (λ _ → P.refl) where ◇₁ = ◇ C₁; ◇₂ = ◇ C₂ to : ◇₁ (λ x → ◇₂ (λ y → P x × Q y) ys) xs → ◇₁ P xs × ◇₂ Q ys to (any (p₁ , any (p₂ , p , q))) = (any (p₁ , p) , any (p₂ , q)) from : ◇₁ P xs × ◇₂ Q ys → ◇₁ (λ x → ◇₂ (λ y → P x × Q y) ys) xs from (any (p₁ , p) , any (p₂ , q)) = any (p₁ , any (p₂ , p , q)) -- map can be absorbed by the predicate. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where map↔∘ : ∀ {xs : ⟦ C ⟧ X} (f : X → Y) → ◇ C P (map f xs) ↔ ◇ C (P ∘′ f) xs map↔∘ {xs} f = ◇ C P (map f xs) ↔⟨ ↔Σ C ⟩ ∃ (P ∘′ proj₂ (map f xs)) ↔⟨⟩ ∃ (P ∘′ f ∘′ proj₂ xs) ↔⟨ SK-sym (↔Σ C) ⟩ ◇ C (P ∘′ f) xs ∎ -- Membership in a mapped container can be expressed without reference -- to map. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where ∈map↔∈×≡ : ∀ {f : X → Y} {xs : ⟦ C ⟧ X} {y} → y ∈ map f xs ↔ (∃ λ x → x ∈ xs × y ≡ f x) ∈map↔∈×≡ {f = f} {xs} {y} = y ∈ map f xs ↔⟨ map↔∘ C (y ≡_) f ⟩ ◇ C (λ x → y ≡ f x) xs ↔⟨ ↔∈ C ⟩ ∃ (λ x → x ∈ xs × y ≡ f x) ∎ -- map is a congruence for bag and set equality and related preorders. module _ {s p} (C : Container s p) {x y} {X : Set x} {Y : Set y} {ℓ} (P : Pred Y ℓ) where map-cong : ∀ {k} {f₁ f₂ : X → Y} {xs₁ xs₂ : ⟦ C ⟧ X} → f₁ ≗ f₂ → xs₁ ∼[ k ] xs₂ → map f₁ xs₁ ∼[ k ] map f₂ xs₂ map-cong {f₁ = f₁} {f₂} {xs₁} {xs₂} f₁≗f₂ xs₁≈xs₂ {x} = x ∈ map f₁ xs₁ ↔⟨ map↔∘ C (_≡_ x) f₁ ⟩ ◇ C (λ y → x ≡ f₁ y) xs₁ ∼⟨ cong (Related.↔⇒ ∘ helper) xs₁≈xs₂ ⟩ ◇ C (λ y → x ≡ f₂ y) xs₂ ↔⟨ SK-sym (map↔∘ C (_≡_ x) f₂) ⟩ x ∈ map f₂ xs₂ ∎ where helper : ∀ y → (x ≡ f₁ y) ↔ (x ≡ f₂ y) helper y rewrite f₁≗f₂ y = Inv.id -- Uses of linear morphisms can be removed. module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where remove-linear : ∀ {xs : ⟦ C₁ ⟧ X} (m : C₁ ⊸ C₂) → ◇ C₂ P (⟪ m ⟫⊸ xs) ↔ ◇ C₁ P xs remove-linear {xs} m = Inv.inverse t f f∘t t∘f where open _≃_ open P.≡-Reasoning renaming (_∎ to _∎′) position⊸m : ∀ {s} → Position C₂ (shape⊸ m s) ≃ Position C₁ s position⊸m = ↔→≃ (position⊸ m) ◇₁ = ◇ C₁; ◇₂ = ◇ C₂ t : ◇₂ P (⟪ m ⟫⊸ xs) → ◇₁ P xs t = Any.map₁ (_⊸_.morphism m) f : ◇₁ P xs → ◇₂ P (⟪ m ⟫⊸ xs) f (any (x , p)) = any $ from position⊸m x , P.subst (P ∘′ proj₂ xs) (P.sym (right-inverse-of position⊸m _)) p f∘t : f ∘ t ≗ id f∘t (any (p₂ , p)) = P.cong any $ Inverse.to Σ-≡,≡↔≡ ⟨$⟩ ( left-inverse-of position⊸m p₂ , (P.subst (P ∘ proj₂ xs ∘ to position⊸m) (left-inverse-of position⊸m p₂) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.subst-∘ (left-inverse-of position⊸m _) ⟩ P.subst (P ∘ proj₂ xs) (P.cong (to position⊸m) (left-inverse-of position⊸m p₂)) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m _)) _)) (_≃_.left-right position⊸m _) ⟩ P.subst (P ∘ proj₂ xs) (right-inverse-of position⊸m (to position⊸m p₂)) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) p) ≡⟨ P.subst-subst (P.sym (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) (P.trans (P.sym (right-inverse-of position⊸m (to position⊸m p₂))) (right-inverse-of position⊸m (to position⊸m p₂))) p ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq p) (P.trans-symˡ (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) P.refl p ≡⟨⟩ p ∎′) ) t∘f : t ∘ f ≗ id t∘f (any (p₁ , p)) = P.cong any $ Inverse.to Σ-≡,≡↔≡ ⟨$⟩ ( right-inverse-of position⊸m p₁ , (P.subst (P ∘ proj₂ xs) (right-inverse-of position⊸m p₁) (P.subst (P ∘ proj₂ xs) (P.sym (right-inverse-of position⊸m p₁)) p) ≡⟨ P.subst-subst (P.sym (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) (P.trans (P.sym (right-inverse-of position⊸m p₁)) (right-inverse-of position⊸m p₁)) p ≡⟨ P.cong (λ eq → P.subst (P ∘ proj₂ xs) eq p) (P.trans-symˡ (right-inverse-of position⊸m _)) ⟩ P.subst (P ∘ proj₂ xs) P.refl p ≡⟨⟩ p ∎′) ) -- Linear endomorphisms are identity functions if bag equality is used. module _ {s p} {C : Container s p} {x} {X : Set x} where linear-identity : ∀ {xs : ⟦ C ⟧ X} (m : C ⊸ C) → ⟪ m ⟫⊸ xs ∼[ bag ] xs linear-identity {xs} m {x} = x ∈ ⟪ m ⟫⊸ xs ↔⟨ remove-linear (_≡_ x) m ⟩ x ∈ xs ∎ -- If join can be expressed using a linear morphism (in a certain -- way), then it can be absorbed by the predicate. module _ {s₁ s₂ s₃ p₁ p₂ p₃} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂} {C₃ : Container s₃ p₃} {x} {X : Set x} {ℓ} (P : Pred X ℓ) where join↔◇ : (join′ : (C₁ C.∘ C₂) ⊸ C₃) (xss : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)) → let join : ∀ {X} → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₃ ⟧ X join = λ {_} → ⟪ join′ ⟫⊸ ∘ _⟨$⟩_ (Inverse.from (Composition.correct C₁ C₂)) in ◇ C₃ P (join xss) ↔ ◇ C₁ (◇ C₂ P) xss join↔◇ join xss = ◇ C₃ P (⟪ join ⟫⊸ xss′) ↔⟨ remove-linear P join ⟩ ◇ (C₁ C.∘ C₂) P xss′ ↔⟨ SK-sym $ flatten P xss ⟩ ◇ C₁ (◇ C₂ P) xss ∎ where xss′ = Inverse.from (Composition.correct C₁ C₂) ⟨$⟩ xss
{ "alphanum_fraction": 0.4461070844, "avg_line_length": 41.2572347267, "ext": "agda", "hexsha": "2facd10a82fdc951a0525739f9b040747c529a68", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda", "max_line_length": 130, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5213, "size": 12831 }
module Highlighting.M where
{ "alphanum_fraction": 0.8571428571, "avg_line_length": 14, "ext": "agda", "hexsha": "89b037dd3a54fee814ab1526a1b531b76c1f38e7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/Highlighting/M.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/Highlighting/M.agda", "max_line_length": 27, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/Highlighting/M.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 6, "size": 28 }
module Sized.CounterCell where open import Data.Product open import Data.Nat.Base open import Data.Nat.Show open import Data.String.Base using (String; _++_) open import SizedIO.Object open import SizedIO.IOObject open import SizedIO.Base open import SizedIO.Console hiding (main) open import SizedIO.ConsoleObject open import NativeIO open import Sized.SimpleCell hiding (program; main) open import Size data CounterMethod A : Set where super : (m : CellMethod A) → CounterMethod A stats : CounterMethod A pattern getᶜ = super get pattern putᶜ x = super (put x) -- CounterResult : ∀{A} → counterI : (A : Set) → Interface Method (counterI A) = CounterMethod A Result (counterI A) (super m) = Result (cellJ A) m Result (counterI A) stats = Unit CounterC : (i : Size) → Set CounterC i = ConsoleObject i (counterI String) -- counterP is constructor for the consoleObject for interface counterI counterP : ∀{i} (c : CellC i) (ngets nputs : ℕ) → CounterC i method (counterP c ngets nputs) getᶜ = method c get >>= λ { (s , c') → return (s , counterP c' (1 + ngets) nputs) } method (counterP c ngets nputs) (putᶜ x) = method c (put x) >>= λ { (_ , c') → return (_ , counterP c' ngets (1 + nputs)) } method (counterP c ngets nputs) stats = exec (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ → return (_ , counterP c ngets nputs) program : String → IOConsole ∞ Unit program arg = let c₀ = counterP (cellP "Start") 0 0 in method c₀ getᶜ >>= λ{ (s , c₁) → exec1 (putStrLn s) >> method c₁ (putᶜ arg) >>= λ{ (_ , c₂) → method c₂ getᶜ >>= λ{ (s' , c₃) → exec1 (putStrLn s') >> method c₃ (putᶜ "Over!") >>= λ{ (_ , c₄) → method c₄ stats >>= λ{ (_ , c₅) → return _ }}}}} main : NativeIO Unit main = translateIOConsole (program "Hello") -- -} -- -} -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.5886627907, "avg_line_length": 27.1578947368, "ext": "agda", "hexsha": "c58e8de704e9b49a95e8de304577807f8def9918", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/Sized/CounterCell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/Sized/CounterCell.agda", "max_line_length": 71, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/Sized/CounterCell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 646, "size": 2064 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Wedge where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.MayerVietorisUnreduced open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to pRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∣_∣ to ∣_∣₁) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; elim2 to trElim2) open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.HITs.Pushout open import Cubical.Data.Sigma open import Cubical.Foundations.Isomorphism open import Cubical.Homotopy.Connected open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.Equiv module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where module I = MV (typ A) (typ B) Unit (λ _ → pt A) (λ _ → pt B) Hⁿ-⋁ : (n : ℕ) → GroupIso (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B)) Hⁿ-⋁ zero = BijectionIsoToGroupIso bijIso where surj-helper : (x : coHom 0 Unit) → isInIm _ _ (I.Δ 0) x surj-helper = sElim (λ _ → isOfHLevelSuc 1 propTruncIsProp) λ f → ∣ (∣ (λ _ → f tt) ∣₂ , 0ₕ 0) , cong ∣_∣₂ (funExt λ _ → -rUnitₖ 0 (f tt)) ∣₁ helper : (x : coHom 1 (A ⋁ B)) → isInIm _ _ (I.d 0) x → x ≡ 0ₕ 1 helper x inim = pRec (setTruncIsSet _ _) (λ p → sym (snd p) ∙ MV.Im-Δ⊂Ker-d _ _ Unit (λ _ → pt A) (λ _ → pt B) 0 (fst p) (surj-helper (fst p))) inim bijIso : BijectionIso (coHomGr 1 (A ⋁ B)) (×coHomGr 1 (typ A) (typ B)) BijectionIso.map' bijIso = I.i 1 BijectionIso.inj bijIso = sElim (λ _ → isSetΠ λ _ → isProp→isSet (setTruncIsSet _ _)) λ f inker → helper ∣ f ∣₂ (I.Ker-i⊂Im-d 0 ∣ f ∣₂ inker) BijectionIso.surj bijIso p = I.Ker-Δ⊂Im-i 1 p (isContr→isProp (isContrHⁿ-Unit 0) _ _) Hⁿ-⋁ (suc n) = Iso+Hom→GrIso mainIso (sElim2 (λ _ _ → isOfHLevelPath 2 (isOfHLevel× 2 setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl) where helpIso : ∀ {ℓ'''} {C : Type ℓ'''} → Iso (A ⋁ B → C) (Σ[ f ∈ (typ A → C) × (typ B → C) ] (fst f) (pt A) ≡ (snd f) (pt B)) Iso.fun helpIso f = ((λ x → f (inl x)) , λ x → f (inr x)) , cong f (push tt) Iso.inv helpIso ((f , g) , p) (inl x) = f x Iso.inv helpIso ((f , g) , p) (inr x) = g x Iso.inv helpIso ((f , g) , p) (push a i) = p i Iso.rightInv helpIso ((f , g) , p) = ΣPathP (ΣPathP (refl , refl) , refl) Iso.leftInv helpIso f = funExt λ {(inl a) → refl ; (inr a) → refl ; (push a i) → refl} mainIso : Iso (coHom (2 + n) (A ⋁ B)) (coHom (2 + n) (typ A) × coHom (2 + n) (typ B)) mainIso = compIso (setTruncIso helpIso) (compIso theIso setTruncOfProdIso) where forget : ∥ (Σ[ f ∈ (typ A → coHomK (2 + n)) × (typ B → coHomK (2 + n)) ] (fst f) (pt A) ≡ (snd f) (pt B)) ∥₂ → ∥ (typ A → coHomK (2 + n)) × (typ B → coHomK (2 + n)) ∥₂ forget = sMap (λ {((f , g) , _) → f , g}) isEq : (f : ∥ (typ A → coHomK (2 + n)) × (typ B → coHomK (2 + n)) ∥₂) → isContr (fiber forget f) isEq = sElim (λ _ → isOfHLevelSuc 1 isPropIsContr) (uncurry λ f g → helper f g (f (pt A)) (g (pt B)) refl refl) where helper : (f : (typ A → coHomK (2 + n))) (g : (typ B → coHomK (2 + n))) (x y : coHomK (2 + n)) → f (pt A) ≡ x → g (pt B) ≡ y → isContr (fiber forget ∣ f , g ∣₂) helper f g = trElim2 (λ _ _ → isProp→isOfHLevelSuc (3 + n) (isPropΠ2 λ _ _ → isPropIsContr)) (suspToPropElim2 (ptSn (suc n)) (λ _ _ → isPropΠ2 λ _ _ → isPropIsContr) λ p q → (∣ (f , g) , (p ∙ sym q) ∣₂ , refl) , uncurry (sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isOfHLevelΣ 2 setTruncIsSet λ _ → isOfHLevelPath 2 setTruncIsSet _ _) _ _) λ { ((f' , g') , id1) y → Σ≡Prop (λ _ → setTruncIsSet _ _) (pRec (setTruncIsSet _ _) (λ id2 → trRec (setTruncIsSet _ _) (λ pathp → cong ∣_∣₂ (ΣPathP ((sym id2) , pathp))) (isConnectedPathP 1 {A = λ i → (fst (id2 (~ i)) (pt A) ≡ snd (id2 (~ i)) (pt B))} (isConnectedPath 2 (isConnectedSubtr 3 n (subst (λ m → isConnected m (coHomK (2 + n))) (+-comm 3 n) (isConnectedKn (suc n)))) _ _) (p ∙ sym q) id1 .fst)) (Iso.fun PathIdTrunc₀Iso y))})) theIso : Iso ∥ (Σ[ f ∈ (typ A → coHomK (2 + n)) × (typ B → coHomK (2 + n)) ] (fst f) (pt A) ≡ (snd f) (pt B)) ∥₂ ∥ (typ A → coHomK (2 + n)) × (typ B → coHomK (2 + n)) ∥₂ theIso = equivToIso (forget , record { equiv-proof = isEq }) {- Alternative, less direct proof : vSES→GroupIso _ _ (ses (isOfHLevelSuc 0 (isContrHⁿ-Unit n)) (isOfHLevelSuc 0 (isContrHⁿ-Unit (suc n))) (I.d (suc n)) (I.Δ (suc (suc n))) (I.i (suc (suc n))) (I.Ker-i⊂Im-d (suc n)) (I.Ker-Δ⊂Im-i (suc (suc n)))) -} wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥) → ((x : typ B) → ∥ pt B ≡ x ∥) → (x : A ⋁ B) → ∥ inl (pt A) ≡ x ∥ wedgeConnected conA conB = PushoutToProp (λ _ → propTruncIsProp) (λ a → pRec propTruncIsProp (λ p → ∣ cong inl p ∣₁) (conA a)) λ b → pRec propTruncIsProp (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b)
{ "alphanum_fraction": 0.49595975, "avg_line_length": 53.325203252, "ext": "agda", "hexsha": "21767844e61b004b4cb871a036c3c19cd59f3169", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_line_length": 154, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2314, "size": 6559 }
module Generic.Test.Data.W where open import Generic.Main data W′ {α β} (A : Set α) (B : A -> Set β) : Set (α ⊔ β) where sup′ : ∀ {x} -> (B x -> W′ A B) -> W′ A B W : ∀ {α β} -> (A : Set α) -> (A -> Set β) -> Set (α ⊔ β) W = readData W′ pattern sup x g = !#₀ (relv x , g , lrefl) elimW : ∀ {α β π} {A : Set α} {B : A -> Set β} -> (P : W A B -> Set π) -> (∀ {x} {g : B x -> W A B} -> (∀ y -> P (g y)) -> P (sup x g)) -> ∀ w -> P w elimW {B = B} P h (sup x g) = h (λ y -> elimW {B = B} P h (g y))
{ "alphanum_fraction": 0.4087452471, "avg_line_length": 27.6842105263, "ext": "agda", "hexsha": "779810c2a4754ec7122cf17a83f556b940428533", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z", "max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z", "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Test/Data/W.agda", "max_issues_count": 9, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z", "max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Test/Data/W.agda", "max_line_length": 70, "max_stars_count": 30, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Test/Data/W.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z", "num_tokens": 234, "size": 526 }
{-# OPTIONS --safe --warning=error #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Logic.PropositionalLogic module ExampleSheets.LogicAndSets.Sheet1 where q1i : {a : _} {A : Set a} → (p1 p2 p3 : Propositions A) → Tautology (implies (implies p1 (implies p2 p3)) (implies p2 (implies p1 p3))) Tautology.isTaut (q1i p1 p2 p3) {v} with inspect (Valuation.v v p3) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolTrue with≡ p3T = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationT v p3T)) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with≡ p3F with inspect (Valuation.v v p2) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with≡ p3F | BoolTrue with≡ p2T with inspect (Valuation.v v p1) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with≡ p3F | BoolTrue with≡ p2T | BoolTrue with≡ p1T = Valuation.vImplicationVacuous v (Valuation.vImplicationF v p1T (Valuation.vImplicationF v p2T p3F)) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with≡ p3F | BoolTrue with≡ p2T | BoolFalse with≡ p1F = Valuation.vImplicationT v (Valuation.vImplicationT v (Valuation.vImplicationVacuous v p1F)) Tautology.isTaut (q1i p1 p2 p3) {v} | BoolFalse with≡ p3F | BoolFalse with≡ p2F = Valuation.vImplicationT v (Valuation.vImplicationVacuous v p2F)
{ "alphanum_fraction": 0.7375189107, "avg_line_length": 77.7647058824, "ext": "agda", "hexsha": "fff8104f3877172783bb2223e95dcc30b4a7b1f5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "ExampleSheets/LogicAndSets/Sheet1.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "ExampleSheets/LogicAndSets/Sheet1.agda", "max_line_length": 203, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "ExampleSheets/LogicAndSets/Sheet1.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 516, "size": 1322 }
module Numeral.Natural.Oper.Modulo.Proofs.Elim where import Lvl open import Data.Boolean.Stmt open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Inductions open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.DivMod.Proofs open import Numeral.Natural.Oper.FlooredDivision open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Relator open import Structure.Relator.Ordering open import Structure.Relator.Properties open import Type mod-elim : ∀{ℓ} → (P : {ℕ} → ℕ → Type{ℓ}) → ∀{b} ⦃ _ : IsTrue(positive?(b)) ⦄ → (∀{a n} → (a < b) → P{a + (n ⋅ b)}(a)) → (∀{a} → P{a}(a mod b)) mod-elim P {𝐒 b} proof {a} with [<][≥]-dichotomy {a}{𝐒 b} ... | [∨]-introₗ lt = substitute₂(\x y → P{x}(y)) (reflexivity(_≡_)) (symmetry(_≡_) (mod-lesser-than-modulus ⦃ [≤]-without-[𝐒] lt ⦄)) (proof{a}{0} lt) ... | [∨]-introᵣ ge = substitute₂(\x y → P{x}(y)) ([↔]-to-[→] ([−₀][+]-nullify2ᵣ {(a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)}{a}) (subtransitivityᵣ(_≤_)(_≡_) ([≤]-of-[+]ₗ {(a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b)}{a mod 𝐒(b)}) ([⌊/⌋][mod]-is-division-with-remainder {a}{b}))) (symmetry(_≡_) ([⌊/⌋][⋅]-inverseOperatorᵣ-error {a}{b})) (proof{a −₀ ((a ⌊/⌋ 𝐒(b)) ⋅ 𝐒(b))}{a ⌊/⌋ 𝐒(b)} (subtransitivityₗ(_<_)(_≡_) (symmetry(_≡_) ([⌊/⌋][⋅]-inverseOperatorᵣ-error {a}{b})) (mod-maxᵣ{a}{𝐒 b})))
{ "alphanum_fraction": 0.6622641509, "avg_line_length": 46.7647058824, "ext": "agda", "hexsha": "649a77b72714143a4900b221733ad648d9f4492c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Elim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Elim.agda", "max_line_length": 183, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Modulo/Proofs/Elim.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 668, "size": 1590 }
module Structure.Container.Iterable where import Lvl open import Data open import Data.Boolean open import Data.Option open import Data.Tuple as Tuple using (_⨯_ ; _,_) open import Functional import Structure.Container.IndexedIterable open import Type private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ : Lvl.Level private variable T : Type{ℓ} private variable Elem : Type{ℓₑ} open Structure.Container.IndexedIterable{Index = Unit{Lvl.𝟎}} hiding (Iterable ; module Iterable) module Iterable{ℓ}{Iter} = Structure.Container.IndexedIterable.Iterable{Index = Unit{Lvl.𝟎}}{ℓ}{Iter = const Iter} Iterable : ∀{ℓ} → Type{ℓ} → ∀{ℓₑ} → Type Iterable{ℓ} Iter {ℓₑ} = Structure.Container.IndexedIterable.Iterable{Index = Unit{Lvl.𝟎}}{ℓ}(const Iter){ℓₑ} module _ {Iter : Type{ℓ}} (iterator : Iterable(Iter){ℓₑ}) where open Iterable(iterator) next : Iter → Option(Element ⨯ Iter) next(i) with isEmpty(i) | indexStep i | current i | step i ... | 𝑇 | <> | <> | <> = None ... | 𝐹 | _ | x | is = Some(x , is) head : Iter → Option(Element) head(i) with isEmpty(i) | indexStep i | current i ... | 𝑇 | <> | <> = None ... | 𝐹 | _ | x = Some(x) tail : Iter → Option(Iter) tail(i) with isEmpty(i) | indexStep i | step i ... | 𝑇 | <> | <> = None ... | 𝐹 | _ | is = Some(is) tail₀ : Iter → Iter tail₀(i) with isEmpty(i) | indexStep i | step i ... | 𝑇 | <> | <> = i ... | 𝐹 | _ | is = is {- record Finite : Type{ℓ} where field length : I → ℕ field length-proof : LengthCriteria(length) --field -- length-when-empty : ∀{i} → IsTrue (isEmpty(i)) → (length(i) ≡ 𝟎) -- length-when-nonempty : ∀{i} → IsFalse(isEmpty(i)) → ∃(n ↦ length(i) ≡ 𝐒(n)) -- length-of-step : ∀{i} → IsFalse(isEmpty(i)) → (𝐒(length(step i)) ≡ length(i))) -- empty-on-length-step : ∀{i} → IsTrue(isEmpty₊(length(i)) i) -- length-minimal-empty-step : ∀{n}{i} → (n < length(i)) → IsFalse(isEmpty₊(n) i) open Finite ⦃ … ⦄ public -} -- TODO: It is possible for Finite and the constructions to be from different iterables module _ ⦃ fin : Finite ⦄ {prepend : (x : Element) → (iter : Iter) → Iter} ⦃ prepend-construction : PrependConstruction(prepend) ⦄ where _++_ : Iter → Iter → Iter _++_ = swap(foldᵣ prepend) module _ ⦃ fin : Finite ⦄ {empty} ⦃ empty-construciton : EmptyConstruction(empty) ⦄ {prepend : (x : Element) → (iter : Iter) → Iter} ⦃ prepend-construction : PrependConstruction(prepend) ⦄ where map : (Element → Element) → (Iter → Iter) map f = foldᵣ (prepend ∘ f) empty filter : (Element → Bool) → Iter → Iter filter f = foldᵣ (x ↦ if f(x) then (prepend x) else id) empty reverse : Iter → Iter reverse = foldₗ (swap prepend) empty postpend : Element → Iter → Iter postpend = foldᵣ prepend ∘ singleton open import Numeral.Natural repeat : Element → ℕ → Iter repeat x 𝟎 = empty repeat x (𝐒(n)) = prepend x (repeat x n)
{ "alphanum_fraction": 0.6069635085, "avg_line_length": 32.1182795699, "ext": "agda", "hexsha": "f583d12d1720cec4429439e2481553cfc048bf0c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Container/Iterable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Container/Iterable.agda", "max_line_length": 114, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Container/Iterable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1024, "size": 2987 }
-- Private signatures module Issue476d where module M where private record R : Set₁ record R where field X : Set Q : Set₁ Q = M.R
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 12, "ext": "agda", "hexsha": "599b9ca688f61742380e796b404d3d2af04adb9c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue476d.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue476d.agda", "max_line_length": 22, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/Issue476d.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 44, "size": 144 }
-- {-# OPTIONS --show-implicit #-} -- {-# OPTIONS -v term:20 -v term.function:30 #-} -- Andreas, 2015-05-31, issue reported by Bruno Bianchi module Issue1530 {A : Set}(_<=_ : A -> A -> Set) where open import Common.List open import Issue1530.Bound _<=_ data OList : Bound -> Set where nil : {b : Bound} -> OList b cons : {b : Bound}{x : A} -> LeB b (val x) -> OList (val x) -> OList b forget : {b : Bound} -> OList b -> List A forget nil = [] forget (cons {x = x} _ xs) = x ∷ forget xs data Sorted : List A -> Set where empty : Sorted [] single : (x : A) -> Sorted (x ∷ []) step : {x y : A}{ys : List A} -> x <= y -> Sorted (y ∷ ys) -> Sorted (x ∷ y ∷ ys) olist-sorted : {b : Bound}(xs : OList b) -> Sorted (forget xs) olist-sorted nil = empty olist-sorted (cons {x = x} _ nil) = single x olist-sorted (cons b<=x (cons (lexy x<=y) ys)) = step x<=y (olist-sorted (cons (lexy x<=y) ys)) -- should termination check -- problem WAS: TermCheck did not *deeply* resolve constructor names on rhs in last clause. -- TermCheck.reduceCon did not reduce the lexy on the rhs, as it was deep inside.
{ "alphanum_fraction": 0.6130198915, "avg_line_length": 33.5151515152, "ext": "agda", "hexsha": "d8d630eb5c95eef9ce9396893b2aea1a232af9fc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1530.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1530.agda", "max_line_length": 95, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1530.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 367, "size": 1106 }
-- Andreas, 2019-08-17, issue #1346 open import Issue1346 -- Repeating the definitions of Issue1346.agda private test₁ : List⁺ Bool test₁ = true ∷ false ∷ [] -- mixing _∷_ of _×_ and List test₂ : ∀{A : Set} → A → List A × List⁺ A × List⁺ A test₂ a = [] , a ∷ [] , a ∷ a ∷ [] -- mixing _,_ and _∷_ of _×_
{ "alphanum_fraction": 0.5817610063, "avg_line_length": 24.4615384615, "ext": "agda", "hexsha": "c29ec7ec94800ddc99ee7bae4fd38a5a9093ee1d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1346Import.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1346Import.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1346Import.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 129, "size": 318 }
firstTrue : (f : ℕ → Bool) → ∃ (λ n → f n ≡ true) → ℕ firstTrue f prf = mp-ℕ firstTrue-true : firstTrue f prf ≡ n → f n ≡ true firstTrue-true = ? firstTrue-false : firstTrue f prf ≡ n → ∀ m → m < n → f m ≡ false firstTrue-false = ?
{ "alphanum_fraction": 0.5897435897, "avg_line_length": 26, "ext": "agda", "hexsha": "743f305dd37374a8d92ba50399b13e4a334ee0ce", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/Search.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/Search.agda", "max_line_length": 65, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/Search.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 96, "size": 234 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.RP2 where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.KleinBottle open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to pRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim) hiding (map) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; elim2 to trElim2) open import Cubical.Algebra.Group open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.Transport open import Cubical.ZCohomology.Groups.Connected open import Cubical.Data.Sigma open import Cubical.Foundations.Isomorphism open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.Equiv open import Cubical.Homotopy.Connected open import Cubical.HITs.RPn.Base open GroupIso renaming (map to map') open GroupHom open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.Data.Bool open import Cubical.Data.Int open import Cubical.Foundations.Path private variable ℓ : Level A : Type ℓ funSpaceIso-RP² : Iso (RP² → A) (Σ[ x ∈ A ] Σ[ p ∈ x ≡ x ] p ≡ sym p) Iso.fun funSpaceIso-RP² f = f point , (cong f line , λ i j → f (square i j)) Iso.inv funSpaceIso-RP² (x , p , P) point = x Iso.inv funSpaceIso-RP² (x , p , P) (line i) = p i Iso.inv funSpaceIso-RP² (x , p , P) (square i j) = P i j Iso.rightInv funSpaceIso-RP² (x , p , P) i = x , p , P Iso.leftInv funSpaceIso-RP² f _ point = f point Iso.leftInv funSpaceIso-RP² f _ (line i) = f (line i) Iso.leftInv funSpaceIso-RP² f _ (square i j) = f (square i j) private pathIso : {x : A} {p : x ≡ x} → Iso (p ≡ sym p) (p ∙ p ≡ refl) pathIso {p = p} = compIso (congIso (equivToIso (_ , compPathr-isEquiv p))) (pathToIso (cong (p ∙ p ≡_) (lCancel p))) --- H⁰(RP²) ≅ ℤ ---- H⁰-RP²≅ℤ : GroupIso (coHomGr 0 RP²) intGroup H⁰-RP²≅ℤ = H⁰-connected point connectedRP¹ where connectedRP¹ : (x : RP²) → ∥ point ≡ x ∥ connectedRP¹ point = ∣ refl ∣ connectedRP¹ (line i) = isOfHLevel→isOfHLevelDep 1 {B = λ x → ∥ point ≡ x ∥} (λ _ → propTruncIsProp) ∣ refl ∣ ∣ refl ∣ line i connectedRP¹ (square i j) = helper i j where helper : SquareP (λ i j → ∥ point ≡ square i j ∥) (isOfHLevel→isOfHLevelDep 1 {B = λ x → ∥ point ≡ x ∥} (λ _ → propTruncIsProp) ∣ refl ∣ ∣ refl ∣ line) (symP (isOfHLevel→isOfHLevelDep 1 {B = λ x → ∥ point ≡ x ∥} (λ _ → propTruncIsProp) ∣ refl ∣ ∣ refl ∣ line)) refl refl helper = toPathP (isOfHLevelPathP 1 propTruncIsProp _ _ _ _) --- H¹(RP²) ≅ 0 ---- isContr-H¹-RP²-helper : isContr ∥ Σ[ x ∈ coHomK 1 ] Σ[ p ∈ x ≡ x ] p ∙ p ≡ refl ∥₂ fst isContr-H¹-RP²-helper = ∣ 0ₖ 1 , refl , sym (rUnit refl) ∣₂ snd isContr-H¹-RP²-helper = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry (trElim (λ _ → isGroupoidΠ λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _)) (toPropElim (λ _ → isPropΠ (λ _ → setTruncIsSet _ _)) λ {(p , nilp) → cong ∣_∣₂ (ΣPathP (refl , Σ≡Prop (λ _ → isOfHLevelTrunc 3 _ _ _ _) (rUnit refl ∙∙ cong (Kn→ΩKn+1 0) (sym (nilpotent→≡0 (ΩKn+1→Kn 0 p) (sym (ΩKn+1→Kn-hom 0 p p) ∙ cong (ΩKn+1→Kn 0) nilp))) ∙∙ Iso.rightInv (Iso-Kn-ΩKn+1 0) p)))}))) H¹-RP²≅0 : GroupIso (coHomGr 1 RP²) trivialGroup H¹-RP²≅0 = IsoContrGroupTrivialGroup (isOfHLevelRetractFromIso 0 (setTruncIso (compIso funSpaceIso-RP² (Σ-cong-iso-snd (λ _ → Σ-cong-iso-snd λ _ → pathIso)))) isContr-H¹-RP²-helper) --- H²(RP²) ≅ ℤ/2ℤ ---- Iso-H²-RP²₁ : Iso ∥ Σ[ x ∈ coHomK 2 ] Σ[ p ∈ x ≡ x ] p ≡ sym p ∥₂ ∥ Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ≡ sym p ∥₂ Iso.fun Iso-H²-RP²₁ = sRec setTruncIsSet (uncurry (trElim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet) (sphereElim _ (λ _ → isSetΠ (λ _ → setTruncIsSet)) λ p → ∣ fst p , snd p ∣₂))) Iso.inv Iso-H²-RP²₁ = sMap λ p → (0ₖ 2) , p Iso.rightInv Iso-H²-RP²₁ = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ _ → refl Iso.leftInv Iso-H²-RP²₁ = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry (trElim (λ _ → is2GroupoidΠ λ _ → isOfHLevelPlus {n = 1} 3 (setTruncIsSet _ _)) (sphereToPropElim _ (λ _ → isPropΠ (λ _ → setTruncIsSet _ _)) λ p → refl))) Iso-H²-RP²₂ : Iso ∥ Σ[ p ∈ 0ₖ 2 ≡ 0ₖ 2 ] p ≡ sym p ∥₂ Bool Iso-H²-RP²₂ = compIso (setTruncIso (Σ-cong-iso-snd λ _ → pathIso)) (compIso Iso-H²-𝕂²₂ testIso) H²-RP²≅Bool : GroupIso (coHomGr 2 RP²) BoolGroup H²-RP²≅Bool = invGroupIso (≅Bool (compIso (compIso (setTruncIso funSpaceIso-RP²) Iso-H²-RP²₁) Iso-H²-RP²₂))
{ "alphanum_fraction": 0.597538907, "avg_line_length": 41.8636363636, "ext": "agda", "hexsha": "40de8a2bfe5b7cd618f62d7c10272a8ec135dc77", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/RP2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/RP2.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/RP2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2017, "size": 5526 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Consequences.Consistency where open import Definition.Untyped open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.EqRelInstance open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.ShapeView open import Definition.LogicalRelation.Fundamental.Reducibility open import Tools.Embedding open import Tools.Empty open import Tools.Product import Tools.PropositionalEquality as PE zero≢one′ : ∀ {Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ) → Γ ⊩⟨ l ⟩ zero ≡ suc zero ∷ ℕ / ℕ-intr [ℕ] → ⊥ zero≢one′ (noemb x) (ιx (ℕₜ₌ .(suc _) .(suc _) d d′ k≡k′ (sucᵣ x₁))) = zero≢suc (whnfRed*Term (redₜ d) zeroₙ) zero≢one′ (noemb x) (ιx (ℕₜ₌ .zero .zero d d′ k≡k′ zeroᵣ)) = zero≢suc (PE.sym (whnfRed*Term (redₜ d′) sucₙ)) zero≢one′ (noemb x) (ιx (ℕₜ₌ k k′ d d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m)))) = zero≢ne neK (whnfRed*Term (redₜ d) zeroₙ) zero≢one′ (emb 0<1 [ℕ]) (ιx n) = zero≢one′ [ℕ] n -- Zero cannot be judgmentally equal to one. zero≢one : ∀ {Γ} → Γ ⊢ zero ≡ suc zero ∷ ℕ → ⊥ zero≢one 0≡1 = let [ℕ] , [0≡1] = reducibleEqTerm 0≡1 in zero≢one′ (ℕ-elim [ℕ]) (irrelevanceEqTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [0≡1])
{ "alphanum_fraction": 0.6784037559, "avg_line_length": 36.5142857143, "ext": "agda", "hexsha": "825ecc5a83c7559653512e2c63b5ddb57df73f60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Consequences/Consistency.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Consequences/Consistency.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Consequences/Consistency.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 526, "size": 1278 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Nat open import Agda.Builtin.Cubical.Path postulate admit : ∀ {A : Set} → A data Z : Set where pos : Nat → Z neg : Nat → Z sameZero : pos 0 ≡ neg 0 _+Z_ : Z → Z → Z pos x +Z pos y = admit pos x +Z neg y = admit pos x +Z sameZero y = admit neg x +Z z = admit sameZero x +Z z = admit
{ "alphanum_fraction": 0.5260545906, "avg_line_length": 20.15, "ext": "agda", "hexsha": "c0ba30eb02b8584834947a1418861ccdcff6dc98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5953ce337eb6b77b29ace7180478f49c541aea1c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "zgrannan/agda", "max_forks_repo_path": "test/Succeed/Issue3314.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5953ce337eb6b77b29ace7180478f49c541aea1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "zgrannan/agda", "max_issues_repo_path": "test/Succeed/Issue3314.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "5953ce337eb6b77b29ace7180478f49c541aea1c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "zgrannan/agda", "max_stars_repo_path": "test/Succeed/Issue3314.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 141, "size": 403 }
module Stable where open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩) open import Negation using (¬_; ¬¬¬-elim) Stable : Set → Set Stable A = ¬ ¬ A → A ¬-stable : ∀ {A : Set} → Stable (¬ A) ¬-stable = λ ¬¬¬a → (λ a → ¬¬¬a (λ ¬a → ¬a a)) -- ¬-stable = ¬¬¬-elim ×-stable : ∀ {A B : Set} → Stable A → Stable B → Stable (A × B) ×-stable sa sb = λ ¬¬a×b → ⟨ (sa λ{ ¬a → ¬¬a×b λ{ a×b → ¬a (proj₁ a×b) }}) , (sb λ{ ¬b → ¬¬a×b λ{ a×b → ¬b (proj₂ a×b) }}) ⟩
{ "alphanum_fraction": 0.4948453608, "avg_line_length": 25.5263157895, "ext": "agda", "hexsha": "6fc9ff43ee052fffa2f319793320c65b9eb0476f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/negation/Stable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/negation/Stable.agda", "max_line_length": 74, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/negation/Stable.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 216, "size": 485 }
data Term (V : Set) : Set where App : Term V -> Term V -> Term V Abs : (V -> Term V) -> Term V -- ouch, posititity.
{ "alphanum_fraction": 0.55, "avg_line_length": 30, "ext": "agda", "hexsha": "139bcf833dd28a815f97acbedcc0db5f513760b4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "johnyob/agda-sigma", "max_forks_repo_path": "src/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "johnyob/agda-sigma", "max_issues_repo_path": "src/Sigma.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "johnyob/agda-sigma", "max_stars_repo_path": "src/Sigma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 44, "size": 120 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.Semigroup.Arith.Atomic where open import Fragment.Examples.Semigroup.Arith.Base -- Fully dynamic associativity dyn-assoc₁ : ∀ {m n o} → (m + n) + o ≡ m + (n + o) dyn-assoc₁ = fragment SemigroupFrex +-semigroup dyn-assoc₂ : ∀ {m n o p} → ((m + n) + o) + p ≡ m + (n + (o + p)) dyn-assoc₂ = fragment SemigroupFrex +-semigroup dyn-assoc₃ : ∀ {m n o p q} → (m + n) + o + (p + q) ≡ m + (n + o + p) + q dyn-assoc₃ = fragment SemigroupFrex +-semigroup -- Partially static associativity sta-assoc₁ : ∀ {m n} → (m + 2) + (3 + n) ≡ m + (5 + n) sta-assoc₁ = fragment SemigroupFrex +-semigroup sta-assoc₂ : ∀ {m n o p} → (((m + n) + 5) + o) + p ≡ m + (n + (2 + (3 + (o + p)))) sta-assoc₂ = fragment SemigroupFrex +-semigroup sta-assoc₃ : ∀ {m n o p} → ((m + n) + 2) + (3 + (o + p)) ≡ m + ((n + 1) + (4 + o)) + p sta-assoc₃ = fragment SemigroupFrex +-semigroup
{ "alphanum_fraction": 0.5747001091, "avg_line_length": 32.75, "ext": "agda", "hexsha": "e18c5069c984ff739325cc7c2b31a4274263cbe7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/Semigroup/Arith/Atomic.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/Semigroup/Arith/Atomic.agda", "max_line_length": 86, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/Semigroup/Arith/Atomic.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 364, "size": 917 }
-- Andreas, 2012-11-18 see issue 761 module AbstractMutual where module MA where mutual abstract -- accepted S : Set₁ S = T T : Set₁ T = Set module AM where abstract -- rejected before, should also be accepted mutual S : Set₁ S = T T : Set₁ T = Set
{ "alphanum_fraction": 0.5646687697, "avg_line_length": 12.68, "ext": "agda", "hexsha": "25b41c9023f688c5f6928525745c4d2b1457d5ef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/AbstractMutual.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/AbstractMutual.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/AbstractMutual.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 317 }
{-# OPTIONS --safe --warning=error #-} open import LogicalFormulae open import Orders open import Groups.Groups open import Numbers.Naturals.Naturals open import Numbers.Naturals.WithK open import Numbers.Primes.PrimeNumbers open import Rings.Definition open import Setoids.Setoids open import Numbers.Modulo.IntegersModN open import Semirings.Definition module IntegersModNRing where modNToℕ : {n : ℕ} {pr : 0 <N n} → (a : ℤn n pr) → ℕ modNToℕ record { x = x ; xLess = xLess } = x *nhelper : {n : ℕ} {pr : 0 <N n} → (max : ℕ) → (a : ℤn n pr) → ℤn n pr → (max ≡ modNToℕ a) → ℤn n pr *nhelper {zero} {()} *nhelper {succ n} zero a b pr2 = record { x = 0 ; xLess = succIsPositive n } *nhelper {succ n} (succ max) record { x = zero ; xLess = xLess } b () *nhelper {succ n} (succ max) record { x = (succ x) ; xLess = xLess } b pr2 = (*nhelper max record { x = x ; xLess = xLess2 } b (succInjective pr2)) +n b where xLess2 : x <N succ n xLess2 = PartialOrder.transitive (TotalOrder.order ℕTotalOrder) (a<SuccA x) xLess _*n_ : {n : ℕ} {pr : 0 <N n} → ℤn n pr → ℤn n pr → ℤn n pr _*n_ {0} {()} _*n_ {succ n} {_} record { x = a ; xLess = aLess } b = *nhelper a record { x = a ; xLess = aLess } b refl ℤnIdent : (n : ℕ) → (pr : 0 <N n) → ℤn n pr ℤnIdent 0 () ℤnIdent 1 pr = record { x = 0 ; xLess = pr } ℤnIdent (succ (succ n)) _ = record { x = 1 ; xLess = succPreservesInequality (succIsPositive n) } ℤnMult0Right : {n : ℕ} {pr : 0 <N n} → (max : ℕ) → (a : ℤn n pr) → (modNToℕ a ≡ max) → (a *n record { x = 0 ; xLess = pr }) ≡ record { x = 0 ; xLess = pr } ℤnMult0Right {0} {()} ℤnMult0Right {succ n} .zero record { x = zero ; xLess = xLess } refl = equalityZn _ _ refl ℤnMult0Right {succ n} {pr} (.succ x) record { x = (succ x) ; xLess = xLess } refl rewrite ℤnMult0Right {succ n} {pr} x record { x = x ; xLess = PartialOrder.transitive (TotalOrder.order ℕTotalOrder) (a<SuccA x) xLess } refl = equalityZn _ _ refl ℤnMultCommutative : {n : ℕ} {pr : 0 <N n} → (a b : ℤn n pr) → (a *n b) ≡ (b *n a) ℤnMultCommutative {0} {()} ℤnMultCommutative {succ n} {pr} record { x = zero ; xLess = xLess } b with <NRefl pr xLess ... | refl rewrite ℤnMult0Right (modNToℕ b) b refl = equalityZn _ _ refl ℤnMultCommutative {succ n} record { x = (succ x) ; xLess = xLess } b = {!!} ℤnMultIdent : {n : ℕ} {pr : 0 <N n} → (a : ℤn n pr) → (ℤnIdent n pr) *n a ≡ a ℤnMultIdent {zero} {()} ℤnMultIdent {succ zero} {pr} record { x = zero ; xLess = (le diff proof) } = equalityZn _ _ refl ℤnMultIdent {succ zero} {pr} record { x = (succ a) ; xLess = (le diff proof) } = exFalso f where f : False f rewrite Semiring.commutative ℕSemiring diff (succ a) = naughtE (succInjective (equalityCommutative proof)) ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } with orderIsTotal a (succ (succ n)) ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inl a<ssn) = equalityZn _ _ refl ℤnMultIdent {succ (succ n)} {pr} record { x = a ; xLess = aLess } | inl (inr ssn<a) = exFalso (PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) (PartialOrder.transitive (TotalOrder.order ℕTotalOrder) aLess ssn<a)) ℤnMultIdent {succ (succ n)} {pr} record { x = .(succ (succ n)) ; xLess = aLess } | inr refl = exFalso (PartialOrder.irreflexive (TotalOrder.order ℕTotalOrder) aLess) ℤnRing : (n : ℕ) → (pr : 0 <N n) → Ring (reflSetoid (ℤn n pr)) (_+n_) (_*n_) Ring.additiveGroup (ℤnRing n 0<n) = (ℤnGroup n 0<n) Ring.multWellDefined (ℤnRing n 0<n) = reflGroupWellDefined Ring.1R (ℤnRing n pr) = ℤnIdent n pr Ring.groupIsAbelian (ℤnRing n 0<n) = AbelianGroup.commutative (ℤnAbGroup n 0<n) Ring.multAssoc (ℤnRing n 0<n) = {!!} Ring.multCommutative (ℤnRing n 0<n) {a} {b} = ℤnMultCommutative a b Ring.multDistributes (ℤnRing n 0<n) = {!!} Ring.multIdentIsIdent (ℤnRing n 0<n) {a} = ℤnMultIdent a
{ "alphanum_fraction": 0.6330510649, "avg_line_length": 57.3088235294, "ext": "agda", "hexsha": "bc88234178098ab362458cf4de4fa6fe31894365", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "IntegersModNRing.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "IntegersModNRing.agda", "max_line_length": 247, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "IntegersModNRing.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1560, "size": 3897 }
open import Type module Graph.Properties where open import Functional open import Function.Equals open import Lang.Instance open import Logic open import Logic.Propositional import Lvl open import Graph open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Setoid.Uniqueness open import Structure.Relator.Properties open import Type.Properties.MereProposition module _ {ℓ₁ ℓ₂} {V : Type{ℓ₁}} (_⟶_ : Graph{ℓ₁}{ℓ₂}(V)) where -- An undirected graph always have for every edge an edge in the other direction which is the same edge. record Undirected : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ reversable ⦄ : Symmetry(_⟶_) reverse = symmetry(_⟶_) field reverse-involution : ∀{a b} → (reverse ∘ reverse ⊜ (id {T = a ⟶ b})) undirected-reverse = inst-fn Undirected.reverse -- Construction of an undirected graph from any graph. undirect : Graph{ℓ₁}{ℓ₂}(V) undirect a b = (b ⟶ a) ∨ (a ⟶ b) -- A graph is singular when there is at most one edge between every pair of vertices. -- In other words, when it is not a multigraph. -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. record Singular : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{a b : V} → MereProposition(a ⟶ b) singular = inst-fn(\inst {a}{b}{x}{y} → MereProposition.uniqueness(Singular.proof inst {a}{b}) {x}{y}) -- A complete graph have an edge for each pair of vertices from V. Loops are allowed. record Complete : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x y : V} → (x ⟶ y) ↔ (x ≢ y) complete = inst-fn Complete.proof record CompleteWithLoops : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x y : V} → (x ⟶ y) completeWithLoops = inst-fn CompleteWithLoops.proof -- A linear graph contains vertices with a maximum of one outgoing edge and a maximum of one ingoing edge. record Linear : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field unique-start-vertex : ∀{y} → Unique(x ↦ (x ⟶ y)) unique-end-vertex : ∀{x} → Unique(y ↦ (x ⟶ y)) module _ (v : V) where -- An initial vertex have no ingoing edges pointing towards it. record InitialVertex : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x} → ¬(x ⟶ v) initialVertex = inst-fn InitialVertex.proof -- A final vertex have no outgoing edges pointing from it. record FinalVertex : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x} → ¬(v ⟶ x) finalVertex = inst-fn FinalVertex.proof -- A graph is a list when it is linear and has an unique initial vertex and an unique final vertex. -- The linearity guarantees so that if there are preceding and succeding elements of the list, they are unique. -- The initial vertex represents the first element of the list. -- The final vertex represents the last element of the list. record IsList : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ linear ⦄ : Linear unique-initial-vertex : Unique(InitialVertex) unique-final-vertex : Unique(FinalVertex) -- A graph is a cycle when it is linear and do not have initial or final vertices. -- The linearity guarantees so that if there are preceding and succeding elements of the list, they are unique. -- The non-existence of initial vertices and final vertices means no first and last elements. record IsCycle : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ linear ⦄ : Linear no-initial-vertex : ∀{v} → ¬(InitialVertex v) no-final-vertex : ∀{v} → ¬(FinalVertex v) module _ where open import Graph.Walk open import Graph.Walk.Properties -- A graph is a tree when it has an unique path between every pair of vertices. -- The existence of a path means that it is always possible to traverse the tree from every vertex along the edges to every vertex. record IsTree : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x y : V} → ∃!{Obj = Walk(_⟶_) x y}(Path) isTree = inst-fn IsTree.proof record IsForest : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field proof : ∀{x y : V} → Unique{Obj = Walk(_⟶_) x y}(Path) isForest = inst-fn IsForest.proof record IsOutwardRootedTree : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ tree ⦄ : IsTree unique-initial-vertex : ∃!(InitialVertex) -- TODO: Should not this be defined as ∃!(root ↦ InitialVertex(root) ∧ (∀{x : V} → ∃!{T = Walk(_⟶_) root x}(Path))) ? record IsInwardRootedTree : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where constructor intro field ⦃ tree ⦄ : IsTree unique-initial-vertex : ∃!(FinalVertex) module _ {ℓ₁ ℓ₂} {V : Type{ℓ₁}} (_⟶_ : Graph{ℓ₁}{ℓ₂}(V)) where open import Graph.Walk -- A connected graph have walks from every vertex to any vertex. -- For undirected graphs, this can be visually interpreted as disconnected islands of vertices. -- Note: Equality on edges must respect uniqueness. In other words, one edge must not have multiple constructions. Connected = CompleteWithLoops(Walk(_⟶_)) connected = completeWithLoops(Walk(_⟶_))
{ "alphanum_fraction": 0.6818008394, "avg_line_length": 40.0152671756, "ext": "agda", "hexsha": "44557c8b9067ac6a2044db8f466b929f8c752be9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Graph/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Graph/Properties.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Graph/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1575, "size": 5242 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Unit module Oscar.Class.Surjection where module Surjection {𝔬₁} (𝔒₁ : Ø 𝔬₁) {𝔬₂} (𝔒₂ : Ø 𝔬₂) = ℭLASS (𝔒₁ , 𝔒₂) (𝔒₁ → 𝔒₂) module _ {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔬₂} {𝔒₂ : Ø 𝔬₂} where surjection = Surjection.method 𝔒₁ 𝔒₂ instance Surjection-toUnit : ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ → Unit.class (Surjection.type 𝔒₁ 𝔒₂) Surjection-toUnit .⋆ = surjection
{ "alphanum_fraction": 0.6659090909, "avg_line_length": 20.9523809524, "ext": "agda", "hexsha": "6550384532ac705bfa992314e015d9b531b5700d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Surjection.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Surjection.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Surjection.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 212, "size": 440 }
-- 2014-09-19 -- Reported by Mateusz Kowalczyk. good : Set₁ good = let -- F : _ -- worked if you added the type signature F X = X in F Set -- Now works without the type signature.
{ "alphanum_fraction": 0.615, "avg_line_length": 22.2222222222, "ext": "agda", "hexsha": "ded4c08d4fb74ac1750c0a944ee71a771e6b1209", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue1028.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue1028.agda", "max_line_length": 62, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/succeed/Issue1028.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 61, "size": 200 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.CommRing.Instances.MultivariatePoly where open import Cubical.Foundations.Prelude open import Cubical.Data.Nat renaming(_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Properties private variable ℓ ℓ' : Level module _ (A' : CommRing ℓ) (n : ℕ) where private A = fst A' Ar = CommRing→Ring A' open CommRingStr open RingTheory Ar open Nth-Poly-structure A' n PolyCommRing : CommRing ℓ fst PolyCommRing = Poly A' n 0r (snd PolyCommRing) = 0P 1r (snd PolyCommRing) = 1P _+_ (snd PolyCommRing) = _Poly+_ _·_ (snd PolyCommRing) = _Poly*_ - snd PolyCommRing = Poly-inv isCommRing (snd PolyCommRing) = makeIsCommRing trunc Poly+-assoc Poly+-Rid Poly+-rinv Poly+-comm Poly*-assoc Poly*-Rid Poly*-Rdist Poly*-comm
{ "alphanum_fraction": 0.5704545455, "avg_line_length": 28.6956521739, "ext": "agda", "hexsha": "35bb8eb45ef58aa65e00bd17313a559c3a1fcd7e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/MultivariatePoly.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 335, "size": 1320 }
test = forall _0_ → Set
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 12, "ext": "agda", "hexsha": "2b38f7d2f51fe8a36800eb314785fc9c9c6ee1a9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/InvalidNamePartLiteral.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/InvalidNamePartLiteral.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/InvalidNamePartLiteral.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 9, "size": 24 }
module Human.List where open import Human.Nat infixr 5 _,_ data List {a} (A : Set a) : Set a where end : List A _,_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List #-} {-# COMPILE JS List = function(x,v) { if (x.length < 1) { return v["[]"](); } else { return v["_∷_"](x[0], x.slice(1)); } } #-} {-# COMPILE JS end = Array() #-} {-# COMPILE JS _,_ = function (x) { return function(y) { return Array(x).concat(y); }; } #-} foldr : ∀ {A : Set} {B : Set} → (A → B → B) → B → List A → B foldr c n end = n foldr c n (x , xs) = c x (foldr c n xs) length : ∀ {A : Set} → List A → Nat length = foldr (λ a n → suc n) zero
{ "alphanum_fraction": 0.5290423862, "avg_line_length": 28.9545454545, "ext": "agda", "hexsha": "f83121ae1befbe9c6db4fba920d81f077b94ca04", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/AgdaCalculator", "max_forks_repo_path": "src/Human/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/AgdaCalculator", "max_issues_repo_path": "src/Human/List.agda", "max_line_length": 128, "max_stars_count": 1, "max_stars_repo_head_hexsha": "e977a5f2a005682cee123568b49462dd7d7b11ad", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/AgdaCalculator", "max_stars_repo_path": "src/Human/List.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-29T02:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T02:30:10.000Z", "num_tokens": 236, "size": 637 }
module Auxiliary where open import Agda.Primitive open import Data.List open import Data.Nat renaming (_+_ to _+ᴺ_ ; _≤_ to _≤ᴺ_ ; _≥_ to _≥ᴺ_ ; _<_ to _<ᴺ_ ; _>_ to _>ᴺ_) open import Data.Nat.Properties open import Data.Integer renaming (_+_ to _+ᶻ_ ; _≤_ to _≤ᶻ_ ; _≥_ to _≥ᶻ_ ; _<_ to _<ᶻ_ ; _>_ to _>ᶻ_) import Data.Integer.Properties open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Nullary.Negation open import Data.Product open import Data.Sum -- natural numbers n≢m⇒sucn≢sucm : {n m : ℕ} → n ≢ m → ℕ.suc n ≢ ℕ.suc m n≢m⇒sucn≢sucm {n} {m} neq = λ x → contradiction (cong Data.Nat.pred x) neq sucn≢sucm⇒n≢m : {n m : ℕ} → ℕ.suc n ≢ ℕ.suc m → n ≢ m sucn≢sucm⇒n≢m {n} {m} neq = λ x → contradiction (cong ℕ.suc x) neq n+1≡sucn : {n : ℕ} → n +ᴺ 1 ≡ ℕ.suc n n+1≡sucn {zero} = refl n+1≡sucn {ℕ.suc n} = cong ℕ.suc (n+1≡sucn{n}) n≤sucn : {n : ℕ} → n ≤ᴺ ℕ.suc n n≤sucn {zero} = z≤n n≤sucn {ℕ.suc n} = s≤s n≤sucn n<sucn : {n : ℕ} → n <ᴺ ℕ.suc n n<sucn {zero} = s≤s z≤n n<sucn {ℕ.suc n} = s≤s n<sucn m<n⇒m+o<n+o : {m n o : ℕ} → m <ᴺ n → m +ᴺ o <ᴺ n +ᴺ o m<n⇒m+o<n+o {zero} {n} {o} le = m<n+m o le m<n⇒m+o<n+o {ℕ.suc m} {ℕ.suc n} {o} (s≤s le) = s≤s (m<n⇒m+o<n+o le) m≤n⇒m+o≤n+o : {m n o : ℕ} → m ≤ᴺ n → m +ᴺ o ≤ᴺ n +ᴺ o m≤n⇒m+o≤n+o {zero} {n} {o} le = m≤n+m o n m≤n⇒m+o≤n+o {ℕ.suc m} {ℕ.suc n} {o} (s≤s le) = s≤s (m≤n⇒m+o≤n+o le) ≤-refl-+-comm : {m n : ℕ} → m +ᴺ n ≤ᴺ n +ᴺ m ≤-refl-+-comm {m} {n} rewrite (+-comm m n) = ≤-refl a<b≤c⇒a<c : {a b c : ℕ} → a <ᴺ b → b ≤ᴺ c → a <ᴺ c a<b≤c⇒a<c {a} {b} {c} lt le = ≤-trans lt le a≤b<c⇒a<c : {a b c : ℕ} → a ≤ᴺ b → b <ᴺ c → a <ᴺ c a≤b<c⇒a<c {.0} {zero} {c} z≤n lt = lt a≤b<c⇒a<c {.0} {ℕ.suc b} {ℕ.suc c} z≤n (s≤s lt) = s≤s z≤n a≤b<c⇒a<c {.(ℕ.suc _)} {.(ℕ.suc _)} {ℕ.suc c} (s≤s le) (s≤s lt) = s≤s (a≤b<c⇒a<c le lt) m≤n∧m≡q⇒q≤n : {m n q : ℕ} → m ≤ᴺ n → m ≡ q → q ≤ᴺ n m≤n∧m≡q⇒q≤n {m} {n} {q} le eq rewrite eq = le m≤n∧n≡q⇒m≤q : {m n q : ℕ} → m ≤ᴺ n → n ≡ q → m ≤ᴺ q m≤n∧n≡q⇒m≤q le eq rewrite eq = le n≤m⇒n≤sucm : {n m : ℕ} → n ≤ᴺ m → n ≤ᴺ ℕ.suc m n≤m⇒n≤sucm {.0} {m} z≤n = z≤n n≤m⇒n≤sucm {.(ℕ.suc _)} {.(ℕ.suc _)} (s≤s le) = s≤s (n≤m⇒n≤sucm le) n≤m⇒n<sucm : {n m : ℕ} → n ≤ᴺ m → n <ᴺ ℕ.suc m n≤m⇒n<sucm {n} {m} le = s≤s le sucn≤m⇒n≤m : {n m : ℕ} → ℕ.suc n ≤ᴺ m → n ≤ᴺ m sucn≤m⇒n≤m {n} {.(ℕ.suc _)} (s≤s le) = ≤-trans le n≤sucn [k<x]⇒[k<x+1] : {x : ℕ} {k : ℕ} → (k <ᴺ x) → (k <ᴺ x +ᴺ 1) [k<x]⇒[k<x+1]{x} {k} le = <-trans le (m<m+n x (s≤s z≤n)) [k<x]⇒[k<sucx] : {x : ℕ} {k : ℕ} → (k <ᴺ x) → (k <ᴺ ℕ.suc (x)) [k<x]⇒[k<sucx] {x} {k} le = <-trans le (s≤s ≤-refl) ¬[x≤k]⇒¬[sucx≤k] : {x : ℕ} {k : ℕ} → ¬ (x ≤ᴺ k) → ¬ ((x +ᴺ 1) ≤ᴺ k) ¬[x≤k]⇒¬[sucx≤k] {x} {k} nle = <⇒≱ ([k<x]⇒[k<x+1] (≰⇒> nle)) n+m≤n+q+m : {n m q : ℕ} → n +ᴺ m ≤ᴺ n +ᴺ (q +ᴺ m) n+m≤n+q+m {n} {m} {q} rewrite (+-comm q m) | (sym (+-assoc n m q)) = m≤m+n (n +ᴺ m) q m>n⇒m∸n≥1 : {m n : ℕ} → n <ᴺ m → m ∸ n ≥ᴺ 1 m>n⇒m∸n≥1 {ℕ.suc m} {zero} le = s≤s z≤n m>n⇒m∸n≥1 {ℕ.suc m} {ℕ.suc n} (s≤s le) = m>n⇒m∸n≥1 le m∸n≥q⇒m≥q : {m n q : ℕ} → m ∸ n ≥ᴺ q → m ≥ᴺ q m∸n≥q⇒m≥q {m} {n} {q} ge = ≤-trans ge (m∸n≤m m n) -- lists & length ++-assoc : {a : Level} {s : Set a} {Δ ∇ Γ : List s} → ((Δ ++ ∇) ++ Γ) ≡ (Δ ++ (∇ ++ Γ)) ++-assoc {a} {s} {[]} {∇} {Γ} = refl ++-assoc {a} {s} {x ∷ Δ} {∇} {Γ} = cong (_∷_ x) (++-assoc{a}{s}{Δ}{∇}{Γ}) length[A]≥0 : {a : Level} {s : Set a} {A : List s} → length A ≥ᴺ 0 length[A]≥0 {a} {s} {A} = z≤n A++[]≡A : {a : Level} {s : Set a} {A : List s} → A ++ [] ≡ A A++[]≡A {a} {s} {[]} = refl A++[]≡A {a} {s} {x ∷ A} = cong (_∷_ x) (A++[]≡A {a} {s} {A}) n+length[]≡n : {a : Level} {A : Set a} {n : ℕ} → n +ᴺ length{a}{A} [] ≡ n n+length[]≡n {a} {A} {zero} = refl n+length[]≡n {a} {A} {ℕ.suc n} = cong ℕ.suc (n+length[]≡n{a}{A}) length[A∷B]≡suc[length[B]] : {a : Level} {s : Set a} {A : s} {B : List s} → length (A ∷ B) ≡ ℕ.suc (length B) length[A∷B]≡suc[length[B]] {a} {s} {A} {B} = refl length[A∷B]≥1 : {a : Level} {s : Set a} {A : s} {B : List s} → length (A ∷ B) ≥ᴺ 1 length[A∷B]≥1 {a} {s} {A} {B} = s≤s z≤n length[A++B]≡length[A]+length[B] : {a : Level} {s : Set a} {A B : List s} → length (A ++ B) ≡ length A +ᴺ length B length[A++B]≡length[A]+length[B] {a} {s} {[]} {B} = refl length[A++B]≡length[A]+length[B] {a} {s} {x ∷ A} {B} rewrite length[A∷B]≡suc[length[B]]{a}{s}{x}{A ++ B} = cong ℕ.suc (length[A++B]≡length[A]+length[B]{a}{s}{A}{B}) length[A++B∷[]]≡suc[length[A]] : {a : Level} {s : Set a} {A : List s} {B : s} → length (A ++ B ∷ []) ≡ ℕ.suc (length A) length[A++B∷[]]≡suc[length[A]] {a} {s} {A} {B} rewrite (length[A++B]≡length[A]+length[B]{a}{s}{A}{B ∷ []}) = n+1≡sucn A++B∷[]++C≡A++B∷C : {a : Level} {s : Set a} {A C : List s} {B : s} → ((A ++ B ∷ []) ++ C) ≡ (A ++ B ∷ C) A++B∷[]++C≡A++B∷C {a} {s} {[]} {C} {B} = refl A++B∷[]++C≡A++B∷C {a} {s} {x ∷ A} {C} {B} = cong (_∷_ x) A++B∷[]++C≡A++B∷C A++B++D∷[]++C≡A++B++D∷C : {a : Level} {s : Set a} { A B C : List s} {D : s} → (A ++ B ++ D ∷ []) ++ C ≡ (A ++ B ++ D ∷ C) A++B++D∷[]++C≡A++B++D∷C {a} {s} {[]} {B} {C} {D} = A++B∷[]++C≡A++B∷C A++B++D∷[]++C≡A++B++D∷C {a} {s} {x ∷ A} {B} {C} {D} = cong (_∷_ x) (A++B++D∷[]++C≡A++B++D∷C{a}{s}{A}{B}{C}{D}) -- integers m≥0⇒n+m≥0 : {n : ℕ} {m : ℤ} → m ≥ᶻ +0 → + n +ᶻ m ≥ᶻ +0 m≥0⇒n+m≥0 {n} {+_ m} ge = +≤+ z≤n n>0⇒n>∣n⊖1∣ : {n : ℕ} → n ≥ᴺ 1 → n >ᴺ ∣ n ⊖ 1 ∣ n>0⇒n>∣n⊖1∣ {.(ℕ.suc _)} (s≤s le) = n<sucn ∣nℕ+1⊖1∣≡n : {n : ℕ} → ∣ n +ᴺ 1 ⊖ 1 ∣ ≡ n ∣nℕ+1⊖1∣≡n {zero} = refl ∣nℕ+1⊖1∣≡n {ℕ.suc n} = n+1≡sucn m≥0⇒∣n+m∣≥n : {n : ℕ} {m : ℤ} → m ≥ᶻ +0 → ∣ +_ n +ᶻ m ∣ ≥ᴺ n m≥0⇒∣n+m∣≥n {n} {+_ m} ge = m≤m+n n m m>0⇒∣n+m∣>n : {n : ℕ} {m : ℤ} → m >ᶻ +0 → ∣ +_ n +ᶻ m ∣ >ᴺ n m>0⇒∣n+m∣>n {n} {(+ m)} (+<+ m<n) = m<m+n n m<n ∣n∣≥n : {n : ℤ} → + ∣ n ∣ ≥ᶻ n ∣n∣≥n {+_ n} = +≤+ ≤-refl ∣n∣≥n { -[1+_] n} = -≤+ +a≤b⇒a≤∣b∣ : {a : ℕ} {b : ℤ} → + a ≤ᶻ b → a ≤ᴺ ∣ b ∣ +a≤b⇒a≤∣b∣ {zero} {b} le = z≤n +a≤b⇒a≤∣b∣ {ℕ.suc a} {(+ b)} (+≤+ m≤n) = m≤n +[1+q]≡q+1 : {q : ℕ} → +[1+ q ] ≡ + q +ᶻ + 1 +[1+q]≡q+1 {zero} = refl +[1+q]≡q+1 {ℕ.suc q} = cong +[1+_] (sym n+1≡sucn) +q≤+c+l⇒+1q≤+1c+l : {q c : ℕ} {l : ℤ} → + q ≤ᶻ + c +ᶻ l → +[1+ q ] ≤ᶻ +[1+ c ] +ᶻ l +q≤+c+l⇒+1q≤+1c+l {q} {c} {l} le rewrite (+[1+q]≡q+1{q}) | (+[1+q]≡q+1{c}) | (Data.Integer.Properties.+-assoc (+ c) (+ 1) l) | (Data.Integer.Properties.+-comm (+ 1) l) | (sym (Data.Integer.Properties.+-assoc (+ c) (l) (+ 1))) = Data.Integer.Properties.+-monoˡ-≤ (+ 1) le ℤ-m≤n⇒m+o≤n+o : {m n o : ℤ} → m ≤ᶻ n → m +ᶻ o ≤ᶻ n +ᶻ o ℤ-m≤n⇒m+o≤n+o {m} {n} {o} le = Data.Integer.Properties.+-monoˡ-≤ o le minus-1 : {y x : ℕ} {lt : x <ᴺ y} → ∣ y ∸ x ⊖ 1 ∣ +ᴺ x ≡ ∣ y ⊖ 1 ∣ minus-1 {y} {x} {lt} rewrite (Data.Integer.Properties.⊖-≥{y ∸ x}{1} (m>n⇒m∸n≥1 lt)) | (sym (+-∸-comm {y ∸ x} x {1} (m>n⇒m∸n≥1 lt))) | (m∸n+n≡m {y} {x} (sucn≤m⇒n≤m lt)) | (Data.Integer.Properties.⊖-≥{y}{1} ((m∸n≥q⇒m≥q{y}{x} (m>n⇒m∸n≥1{y}{x} lt)))) = refl k≥0⇒∣+x+k∣≡x+k : {x k : ℕ} → ∣ + x +ᶻ + k ∣ ≡ x +ᴺ k k≥0⇒∣+x+k∣≡x+k {x} {k} = refl -- products & sums -- deMorgan on products and sums dm1 : {P Q : Set} → (¬ P × ¬ Q) → ¬ (P ⊎ Q) dm1 {P} {Q} (fst , snd) (inj₁ x) = contradiction x fst dm1 {P} {Q} (fst , snd) (inj₂ y) = contradiction y snd dm2 : {P Q : Set} → ¬ (P ⊎ Q) → (¬ P × ¬ Q) dm2 {P} {Q} d = (λ x → contradiction (inj₁ x) d) , λ x → contradiction (inj₂ x) d
{ "alphanum_fraction": 0.4459776459, "avg_line_length": 37.3556701031, "ext": "agda", "hexsha": "8f0a03dd516775163e440eaf64e9c999e3366301", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/llc/Auxiliary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/llc/Auxiliary.agda", "max_line_length": 164, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/llc/Auxiliary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4716, "size": 7247 }
{-# OPTIONS --experimental-irrelevance #-} module ShapeIrrelevantParameterNoBecauseOfRecursion where data ⊥ : Set where record ⊤ : Set where data Bool : Set where true false : Bool True : Bool → Set True false = ⊥ True true = ⊤ data D ..(b : Bool) : Set where c : True b → D b -- should fail -- Jesper, 2017-09-14: I think the definition of D is fine, but the definition -- of cast below should fail since `D a` and `D b` are different types. fromD : {b : Bool} → D b → True b fromD (c p) = p cast : .(a b : Bool) → D a → D b cast _ _ x = x bot : ⊥ bot = fromD (cast true false (c _))
{ "alphanum_fraction": 0.6416666667, "avg_line_length": 20.6896551724, "ext": "agda", "hexsha": "a6a694172b7c38692ab807df499cd4840177d53b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/ShapeIrrelevantParameterNoBecauseOfRecursion.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 200, "size": 600 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Definition of Monoidal Category -- Big design decision that differs from the previous version: -- Do not go through "Functor.Power" to encode variables and work -- at the level of NaturalIsomorphisms, instead work at the object/morphism -- level, via the more direct _⊗₀_ _⊗₁_ _⊗- -⊗_. -- The original design needed quite a few contortions to get things working, -- but these are simply not needed when working directly with the morphisms. -- -- Smaller design decision: export some items with long names -- (unitorˡ, unitorʳ and associator), but internally work with the more classical -- short greek names (λ, ρ and α respectively). module Categories.Category.Monoidal.Core {o ℓ e} (C : Category o ℓ e) where open import Level open import Function using (_$_) open import Data.Product using (_×_; _,_; curry′) open import Categories.Category.Product open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor; appˡ; appʳ) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (unitorˡ; unitorʳ; associator; _≃_) open import Categories.Morphism C using (_≅_; module ≅) open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Isomorphism C using (_∘ᵢ_; lift-triangle′; lift-pentagon′) open import Categories.Morphism.Reasoning C private module C = Category C open C hiding (id; identityˡ; identityʳ; assoc) open Commutation private variable X Y Z W A B : Obj f g h i a b : X ⇒ Y record Monoidal : Set (o ⊔ ℓ ⊔ e) where infixr 10 _⊗₀_ _⊗₁_ field ⊗ : Bifunctor C C C unit : Obj open Functor ⊗ _⊗₀_ : Obj → Obj → Obj _⊗₀_ = curry′ F₀ -- this is also 'curry', but a very-dependent version _⊗₁_ : X ⇒ Y → Z ⇒ W → X ⊗₀ Z ⇒ Y ⊗₀ W f ⊗₁ g = F₁ (f , g) _⊗- : Obj → Functor C C X ⊗- = appˡ ⊗ X -⊗_ : Obj → Functor C C -⊗ X = appʳ ⊗ X field unitorˡ : unit ⊗₀ X ≅ X unitorʳ : X ⊗₀ unit ≅ X associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z) module unitorˡ {X} = _≅_ (unitorˡ {X = X}) module unitorʳ {X} = _≅_ (unitorʳ {X = X}) module associator {X} {Y} {Z} = _≅_ (associator {X} {Y} {Z}) -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that private λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to -- eta expansion fixes a problem in 2.6.1, will be reported α⇒ = λ {X} {Y} {Z} → associator.from {X} {Y} {Z} α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} field unitorˡ-commute-from : CommutativeSquare (C.id ⊗₁ f) λ⇒ λ⇒ f unitorˡ-commute-to : CommutativeSquare f λ⇐ λ⇐ (C.id ⊗₁ f) unitorʳ-commute-from : CommutativeSquare (f ⊗₁ C.id) ρ⇒ ρ⇒ f unitorʳ-commute-to : CommutativeSquare f ρ⇐ ρ⇐ (f ⊗₁ C.id) assoc-commute-from : CommutativeSquare ((f ⊗₁ g) ⊗₁ h) α⇒ α⇒ (f ⊗₁ (g ⊗₁ h)) assoc-commute-to : CommutativeSquare (f ⊗₁ (g ⊗₁ h)) α⇐ α⇐ ((f ⊗₁ g) ⊗₁ h) triangle : [ (X ⊗₀ unit) ⊗₀ Y ⇒ X ⊗₀ Y ]⟨ α⇒ ⇒⟨ X ⊗₀ (unit ⊗₀ Y) ⟩ C.id ⊗₁ λ⇒ ≈ ρ⇒ ⊗₁ C.id ⟩ pentagon : [ ((X ⊗₀ Y) ⊗₀ Z) ⊗₀ W ⇒ X ⊗₀ Y ⊗₀ Z ⊗₀ W ]⟨ α⇒ ⊗₁ C.id ⇒⟨ (X ⊗₀ Y ⊗₀ Z) ⊗₀ W ⟩ α⇒ ⇒⟨ X ⊗₀ (Y ⊗₀ Z) ⊗₀ W ⟩ C.id ⊗₁ α⇒ ≈ α⇒ ⇒⟨ (X ⊗₀ Y) ⊗₀ Z ⊗₀ W ⟩ α⇒ ⟩
{ "alphanum_fraction": 0.5876549456, "avg_line_length": 35.9363636364, "ext": "agda", "hexsha": "c7b035d7a9772cfa2fe12b5809254600aad53267", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Core.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Core.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1441, "size": 3953 }
module Prelude.Show where open import Prelude.Unit open import Prelude.String open import Prelude.Char open import Prelude.Nat open import Prelude.Int open import Prelude.Word open import Prelude.Function open import Prelude.List open import Prelude.Fin open import Prelude.Vec open import Prelude.Maybe open import Prelude.Sum open import Prelude.Product open import Prelude.Bool open import Prelude.Ord open import Prelude.Semiring --- Class --- ShowS = String → String showString : String → ShowS showString s r = s & r showParen : Bool → ShowS → ShowS showParen false s = s showParen true s = showString "(" ∘ s ∘ showString ")" record Show {a} (A : Set a) : Set a where field showsPrec : Nat → A → ShowS show : A → String show x = showsPrec 0 x "" shows : A → ShowS shows = showsPrec 0 open Show {{...}} public simpleShowInstance : ∀ {a} {A : Set a} → (A → String) → Show A showsPrec {{simpleShowInstance s}} _ x = showString (s x) ShowBy : ∀ {a b} {A : Set a} {B : Set b} {{ShowB : Show B}} → (A → B) → Show A showsPrec {{ShowBy f}} p = showsPrec p ∘ f --- Instances --- -- Bool -- instance ShowBool : Show Bool ShowBool = simpleShowInstance λ b → if b then "true" else "false" -- Int -- instance ShowInt : Show Int ShowInt = simpleShowInstance primShowInteger -- Nat -- instance ShowNat : Show Nat ShowNat = simpleShowInstance (primShowInteger ∘ pos) -- Word64 -- instance ShowWord64 : Show Word64 ShowWord64 = simpleShowInstance (show ∘ word64ToNat) -- Char -- instance ShowChar : Show Char ShowChar = simpleShowInstance primShowChar -- String -- instance ShowString : Show String ShowString = simpleShowInstance primShowString -- List -- instance ShowList : ∀ {a} {A : Set a} {{ShowA : Show A}} → Show (List A) showsPrec {{ShowList}} _ [] = showString "[]" showsPrec {{ShowList}} _ (x ∷ xs) = showString "[" ∘ foldl (λ r x → r ∘ showString ", " ∘ showsPrec 2 x) (showsPrec 2 x) xs ∘ showString "]" -- Fin -- instance ShowFin : ∀ {n} → Show (Fin n) ShowFin = simpleShowInstance (show ∘ finToNat) -- Vec -- instance ShowVec : ∀ {a} {A : Set a} {n} {{ShowA : Show A}} → Show (Vec A n) ShowVec = ShowBy vecToList -- Maybe -- instance ShowMaybe : ∀ {a} {A : Set a} {{ShowA : Show A}} → Show (Maybe A) showsPrec {{ShowMaybe}} p nothing = showString "nothing" showsPrec {{ShowMaybe}} p (just x) = showParen (p >? 9) (showString "just " ∘ showsPrec 10 x) -- Either -- instance ShowEither : ∀ {a b} {A : Set a} {B : Set b} {{ShowA : Show A}} {{ShowB : Show B}} → Show (Either A B) showsPrec {{ShowEither}} p (left x) = showParen (p >? 9) $ showString "left " ∘ showsPrec 10 x showsPrec {{ShowEither}} p (right x) = showParen (p >? 9) $ showString "right " ∘ showsPrec 10 x -- Sigma -- instance ShowSigma : ∀ {a b} {A : Set a} {B : A → Set b} {{ShowA : Show A}} {{ShowB : ∀ {x} → Show (B x)}} → Show (Σ A B) showsPrec {{ShowSigma}} p (x , y) = showParen (p >? 1) $ showsPrec 2 x ∘ showString ", " ∘ showsPrec 1 y
{ "alphanum_fraction": 0.6388343157, "avg_line_length": 23.4923076923, "ext": "agda", "hexsha": "dccfa37a9b3252958a7ed0dc7f142c7a791e33a4", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/Show.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/Show.agda", "max_line_length": 106, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/Show.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 978, "size": 3054 }
{-# OPTIONS --prop #-} open import Agda.Builtin.Reflection open import Agda.Builtin.List open import Agda.Builtin.Unit _>>=_ = bindTC return = returnTC postulate X : Prop x₀ : X f : X f = x₀ macro getValue : Name → Term → TC ⊤ getValue s _ = do function (clause _ _ t ∷ []) ← getDefinition s where _ → typeError (strErr "Not a defined name" ∷ []) typeError (strErr "The value of " ∷ nameErr s ∷ strErr " is " ∷ termErr t ∷ []) test = getValue f
{ "alphanum_fraction": 0.6355932203, "avg_line_length": 19.6666666667, "ext": "agda", "hexsha": "952cf1987a058f020adc3ffce115af3aecc6b981", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/Issue3553.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/Issue3553.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/Issue3553.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 153, "size": 472 }
------------------------------------------------------------------------------ -- Equality on Conat ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Conat.Equality.Type where open import FOTC.Base infix 4 _≈_ ------------------------------------------------------------------------------ -- Functional for the relation _≈_ (adapted from (Sander 1992, -- p. 58)). -- -- ≈-F : (D → D → Set) → D → D → Set -- ≈-F R m n = -- (m ≡ zero ∧ n ≡ zero) ∨ (∃[ m' ] ∃[ n' ] m ≡ succ m' ∧ n ≡ succ n' ∧ R m' n') -- The relation _≈_ is the greatest post-fixed point of the functional -- ≈-F (by ≈-out and ≈-coind). -- The equality on Conat. postulate _≈_ : D → D → Set -- The relation _≈_ is a post-fixed point of the functional ≈-F, -- i.e. -- -- _≈_ ≤ ≈-F _≈_. postulate ≈-out : ∀ {m n} → m ≈ n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ m' ≈ n') {-# ATP axiom ≈-out #-} -- The relation _N≈_ is the greatest post-fixed point of _N≈_, i.e. -- -- ∀ R. R ≤ ≈-F R ⇒ R ≤ _N≈_. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate ≈-coind : (R : D → D → Set) → -- R is a post-fixed point of the functional ≈-F. (∀ {m n} → R m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ R m' n')) → -- _≈_ is greater than R. ∀ {m n} → R m n → m ≈ n ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
{ "alphanum_fraction": 0.4573016675, "avg_line_length": 31.9193548387, "ext": "agda", "hexsha": "3faed2c71a1b11f7a694341018feed792dda82a0", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Conat/Equality/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Conat/Equality/Type.agda", "max_line_length": 80, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Conat/Equality/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 607, "size": 1979 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.Equivalence2 open import lib.path-seq.Rotations open import lib.types.Unit open import lib.types.Nat open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Paths open import lib.types.TLevel open import lib.types.Truncation module lib.NConnected where is-connected : ∀ {i} → ℕ₋₂ → Type i → Type i is-connected n A = is-contr (Trunc n A) has-conn-fibers : ∀ {i j} {A : Type i} {B : Type j} → ℕ₋₂ → (A → B) → Type (lmax i j) has-conn-fibers {A = A} {B = B} n f = Π B (λ b → is-connected n (hfiber f b)) {- all types are -2-connected -} -2-conn : ∀ {i} (A : Type i) → is-connected -2 A -2-conn A = Trunc-level {- all inhabited types are -1-connected -} inhab-conn : ∀ {i} {A : Type i} (a : A) → is-connected -1 A inhab-conn a = has-level-in ([ a ] , prop-has-all-paths [ a ]) {- connectedness is a prop -} is-connected-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i} → is-prop (is-connected n A) is-connected-is-prop = is-contr-is-prop {- "induction principle" for n-connected maps (where codomain is n-type) -} module ConnExtend {i j k} {A : Type i} {B : Type j} {n : ℕ₋₂} {h : A → B} (c : has-conn-fibers n h) (P : B → n -Type k) where private helper : Π A (fst ∘ P ∘ h) → (b : B) → Trunc n (Σ A (λ a → h a == b)) → (fst (P b)) helper t b r = Trunc-rec {{snd (P b)}} (λ x → transport (λ y → fst (P y)) (snd x) (t (fst x))) r restr : Π B (fst ∘ P) → Π A (fst ∘ P ∘ h) restr t = t ∘ h abstract ext : Π A (fst ∘ P ∘ h) → Π B (fst ∘ P) ext f b = helper f b (contr-center (c b)) private abstract ext-β' : (f : Π A (fst ∘ P ∘ h)) (a : A) → restr (ext f) a == f a ext-β' f a = transport (λ r → Trunc-rec {{snd (P (h a))}} _ r == f a) (! (contr-path(c (h a)) [ (a , idp) ])) idp abstract restr-β : (t : Π B (fst ∘ P)) (b : B) → ext (restr t) b == t b restr-β t b = Trunc-elim {{λ r → =-preserves-level {x = helper (t ∘ h) b r} (snd (P b))}} (λ x → lemma (fst x) b (snd x)) (contr-center (c b)) where lemma : ∀ xl → ∀ b → (p : h xl == b) → helper (t ∘ h) b [ (xl , p) ] == t b lemma xl ._ idp = idp restr-is-equiv : is-equiv restr restr-is-equiv = is-eq restr ext (λ= ∘ ext-β') (λ= ∘ restr-β) restr-equiv : Π B (fst ∘ P) ≃ Π A (fst ∘ P ∘ h) restr-equiv = restr , restr-is-equiv ext-β : (f : Π A (fst ∘ P ∘ h)) (a : A) → restr (ext f) a == f a ext-β f = app= (is-equiv.f-g restr-is-equiv f) abstract restr-β-ext-β-adj : (t : Π B (fst ∘ P)) (a : A) → ext-β (restr t) a == restr-β t (h a) restr-β-ext-β-adj t a = ext-β (restr t) a =⟨ ! (ap (λ s → app= s a) (is-equiv.adj restr-is-equiv t)) ⟩ app= (ap restr (λ= (restr-β t))) a =⟨ ∘-ap (_$ a) restr (λ= (restr-β t)) ⟩ app= (λ= (restr-β t)) (h a) =⟨ app=-β (restr-β t) (h a) ⟩ restr-β t (h a) =∎ open ConnExtend using () renaming (ext to conn-extend; ext-β to conn-extend-β; restr-is-equiv to pre∘-conn-is-equiv) public module ⊙ConnExtend {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {n : ℕ₋₂} (h : X ⊙→ Y) (c : has-conn-fibers n (fst h)) (Z-level : has-level n (de⊙ Z)) where open ConnExtend c (λ _ → de⊙ Z , Z-level) public ⊙restr : Y ⊙→ Z → X ⊙→ Z ⊙restr = _⊙∘ h ext-pt-seq : (f : X ⊙→ Z) → ext (fst f) (pt Y) =-= pt Z ext-pt-seq f = ext (fst f) (pt Y) =⟪ ! (ap (ext (fst f)) (snd h)) ⟫ ext (fst f) (fst h (pt X)) =⟪ ext-β (fst f) (pt X) ⟫ fst f (pt X) =⟪ snd f ⟫ pt Z ∎∎ ext-pt : (f : X ⊙→ Z) → ext (fst f) (pt Y) == pt Z ext-pt f = ↯ (ext-pt-seq f) ⊙ext : X ⊙→ Z → Y ⊙→ Z ⊙ext f = ext (fst f) , ext-pt f abstract ⊙ext-β : (f : X ⊙→ Z) → ⊙restr (⊙ext f) == f ⊙ext-β f = ⊙λ=' (ext-β (fst f)) $ ↓-idf=cst-in $ =ₛ-out $ ap (fst (⊙ext f)) (snd h) ◃∙ ext-pt-seq f =ₛ⟨ 0 & 2 & seq-!-inv-r (ap (fst (⊙ext f)) (snd h) ◃∎) ⟩ ext-β (fst f) (pt X) ◃∙ snd f ◃∎ ∎ₛ ⊙restr-β : (t : Y ⊙→ Z) → ⊙ext (⊙restr t) == t ⊙restr-β t = ⊙λ=' (restr-β (fst t)) $ ↓-idf=cst-in $ =ₛ-out $ ext-pt-seq (⊙restr t) =ₛ₁⟨ 1 & 1 & restr-β-ext-β-adj (fst t) (pt X) ⟩ ! (ap (ext (fst (⊙restr t))) (snd h)) ◃∙ restr-β (fst t) (fst h (pt X)) ◃∙ snd (⊙restr t) ◃∎ =ₛ⟨ 2 & 1 & expand (ap (fst t) (snd h) ◃∙ snd t ◃∎) ⟩ ! (ap (ext (fst (⊙restr t))) (snd h)) ◃∙ restr-β (fst t) (fst h (pt X)) ◃∙ ap (fst t) (snd h) ◃∙ snd t ◃∎ =ₛ⟨ 0 & 3 & !ₛ $ pre-rotate-in $ homotopy-naturality (ext (fst (⊙restr t))) (fst t) (restr-β (fst t)) (snd h) ⟩ restr-β (fst t) (pt Y) ◃∙ snd t ◃∎ ∎ₛ ⊙restr-is-equiv : is-equiv ⊙restr ⊙restr-is-equiv = is-eq ⊙restr ⊙ext ⊙ext-β ⊙restr-β ⊙restr-equiv : (Y ⊙→ Z) ≃ (X ⊙→ Z) ⊙restr-equiv = ⊙restr , ⊙restr-is-equiv open ⊙ConnExtend using () renaming (⊙ext to ⊙conn-extend; ⊙restr-is-equiv to pre⊙∘-conn-is-equiv) public {- generalized "almost induction principle" for maps into ≥n-types TODO: rearrange this to use ≤T? -} conn-extend-general : ∀ {i j} {A : Type i} {B : Type j} {n k : ℕ₋₂} → {f : A → B} → has-conn-fibers n f → ∀ {l} (P : B → (k +2+ n) -Type l) → ∀ t → has-level k (Σ (Π B (fst ∘ P)) (λ s → (s ∘ f) == t)) conn-extend-general {k = ⟨-2⟩} c P t = equiv-is-contr-map (pre∘-conn-is-equiv c P) t conn-extend-general {B = B} {n = n} {k = S k'} {f = f} c P t = has-level-in λ {(g , p) (h , q) → equiv-preserves-level (e g h p q) {{conn-extend-general {k = k'} c (Q g h) (app= (p ∙ ! q))}} } where Q : (g h : Π B (fst ∘ P)) → B → (k' +2+ n) -Type _ Q g h b = ((g b == h b) , has-level-apply (snd (P b)) _ _) app=-pre∘ : ∀ {i j k} {A : Type i} {B : Type j} {C : B → Type k} (f : A → B) {g h : Π B C} (p : g == h) → app= (ap (λ k → k ∘ f) p) == app= p ∘ f app=-pre∘ f idp = idp move-right-on-right-econv : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : x == z) (r : y == z) → (p == q ∙ ! r) ≃ (p ∙ r == q) move-right-on-right-econv {x = x} p idp idp = (_ , pre∙-is-equiv (∙-unit-r p)) lemma : ∀ g h p q → (H : g ∼ h) → ((H ∘ f) == app= (p ∙ ! q)) ≃ (ap (λ v → v ∘ f) (λ= H) ∙ q == p) lemma g h p q H = move-right-on-right-econv (ap (λ v → v ∘ f) (λ= H)) p q ∘e transport (λ w → (w == app= (p ∙ ! q)) ≃ (ap (λ v → v ∘ f) (λ= H) == p ∙ ! q)) (app=-pre∘ f (λ= H) ∙ ap (λ k → k ∘ f) (λ= $ app=-β H)) (ap-equiv app=-equiv _ _ ⁻¹) e : ∀ g h p q → (Σ (g ∼ h) (λ r → (r ∘ f) == app= (p ∙ ! q))) ≃ ((g , p) == (h , q)) e g h p q = ((=Σ-econv _ _ ∘e Σ-emap-r (λ u → ↓-app=cst-econv ∘e !-equiv)) ∘e (Σ-emap-l _ λ=-equiv)) ∘e Σ-emap-r (lemma g h p q) conn-in : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} {h : A → B} → (∀ (P : B → n -Type (lmax i j)) → Σ (Π A (fst ∘ P ∘ h) → Π B (fst ∘ P)) (λ u → ∀ (t : Π A (fst ∘ P ∘ h)) → u t ∘ h ∼ t)) → has-conn-fibers n h conn-in {A = A} {B = B} {h = h} sec b = let s = sec (λ b → (Trunc _ (hfiber h b) , Trunc-level)) in has-level-in (fst s (λ a → [ a , idp ]) b , Trunc-elim (λ k → transport (λ v → fst s (λ a → [ a , idp ]) (fst v) == [ fst k , snd v ]) (contr-path (pathfrom-is-contr (h (fst k))) (b , snd k)) (snd s (λ a → [ a , idp ]) (fst k)))) abstract pointed-conn-in : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A) → has-conn-fibers {A = ⊤} n (cst a₀) → is-connected (S n) A pointed-conn-in {n = n} A a₀ c = has-level-in ([ a₀ ] , Trunc-elim (λ a → Trunc-rec (λ x → ap [_] (snd x)) (contr-center $ c a))) abstract pointed-conn-out : ∀ {i} {n : ℕ₋₂} (A : Type i) (a₀ : A) {{_ : is-connected (S n) A}} → has-conn-fibers {A = ⊤} n (cst a₀) pointed-conn-out {n = n} A a₀ {{c}} a = has-level-in (point , λ y → ! (cancel point) ∙ (ap out $ contr-has-all-paths (into point) (into y)) ∙ cancel y) where into-aux : Trunc n (Σ ⊤ (λ _ → a₀ == a)) → Trunc n (a₀ == a) into-aux = Trunc-fmap snd into : Trunc n (Σ ⊤ (λ _ → a₀ == a)) → [_] {n = S n} a₀ == [ a ] into = <– (=ₜ-equiv [ a₀ ] [ a ]) ∘ into-aux out-aux : Trunc n (a₀ == a) → Trunc n (Σ ⊤ (λ _ → a₀ == a)) out-aux = Trunc-fmap (λ p → (tt , p)) out : [_] {n = S n} a₀ == [ a ] → Trunc n (Σ ⊤ (λ _ → a₀ == a)) out = out-aux ∘ –> (=ₜ-equiv [ a₀ ] [ a ]) cancel : (x : Trunc n (Σ ⊤ (λ _ → a₀ == a))) → out (into x) == x cancel x = out (into x) =⟨ ap out-aux (<–-inv-r (=ₜ-equiv [ a₀ ] [ a ]) (into-aux x)) ⟩ out-aux (into-aux x) =⟨ Trunc-fmap-∘ _ _ x ⟩ Trunc-fmap (λ q → (tt , (snd q))) x =⟨ Trunc-elim {P = λ x → Trunc-fmap (λ q → (tt , snd q)) x == x} (λ _ → idp) x ⟩ x =∎ point : Trunc n (Σ ⊤ (λ _ → a₀ == a)) point = out $ contr-has-all-paths [ a₀ ] [ a ] prop-over-connected : ∀ {i j} {A : Type i} {a : A} {{p : is-connected 0 A}} → (P : A → hProp j) → fst (P a) → Π A (fst ∘ P) prop-over-connected P x = conn-extend (pointed-conn-out _ _) P (λ _ → x) {- Connectedness of a truncated type -} instance Trunc-preserves-conn : ∀ {i} {A : Type i} {n : ℕ₋₂} {m : ℕ₋₂} → is-connected n A → is-connected n (Trunc m A) Trunc-preserves-conn {n = ⟨-2⟩} _ = Trunc-level Trunc-preserves-conn {A = A} {n = S n} {m} c = lemma (contr-center c) (contr-path c) where lemma : (x₀ : Trunc (S n) A) → (∀ x → x₀ == x) → is-connected (S n) (Trunc m A) lemma = Trunc-elim (λ a → λ p → has-level-in ([ [ a ] ] , Trunc-elim (Trunc-elim {{λ _ → =-preserves-level (Trunc-preserves-level (S n) Trunc-level)}} (λ x → <– (=ₜ-equiv [ [ a ] ] [ [ x ] ]) (Trunc-fmap (ap [_]) (–> (=ₜ-equiv [ a ] [ x ]) (p [ x ]))))))) {- Connectedness of a Σ-type -} abstract instance Σ-conn : ∀ {i} {j} {A : Type i} {B : A → Type j} {n : ℕ₋₂} → is-connected n A → (∀ a → is-connected n (B a)) → is-connected n (Σ A B) Σ-conn {A = A} {B = B} {n = ⟨-2⟩} cA cB = -2-conn (Σ A B) Σ-conn {A = A} {B = B} {n = S m} cA cB = Trunc-elim {P = λ ta → (∀ tx → ta == tx) → is-connected (S m) (Σ A B)} (λ a₀ pA → Trunc-elim {P = λ tb → (∀ ty → tb == ty) → is-connected (S m) (Σ A B)} (λ b₀ pB → has-level-in ([ a₀ , b₀ ] , Trunc-elim {P = λ tp → [ a₀ , b₀ ] == tp} (λ {(r , s) → Trunc-rec (λ pa → Trunc-rec (λ pb → ap [_] (pair= pa (from-transp! B pa pb))) (–> (=ₜ-equiv [ b₀ ] [ transport! B pa s ]) (pB [ transport! B pa s ]))) (–> (=ₜ-equiv [ a₀ ] [ r ]) (pA [ r ]))}))) (contr-center (cB a₀)) (contr-path (cB a₀))) (contr-center cA) (contr-path cA) ×-conn : ∀ {i} {j} {A : Type i} {B : Type j} {n : ℕ₋₂} → is-connected n A → is-connected n B → is-connected n (A × B) ×-conn cA cB = Σ-conn cA (λ _ → cB) {- connectedness of a path space -} abstract instance path-conn : ∀ {i} {A : Type i} {x y : A} {n : ℕ₋₂} → is-connected (S n) A → is-connected n (x == y) path-conn {x = x} {y = y} cA = equiv-preserves-level (=ₜ-equiv [ x ] [ y ]) {{has-level-apply (contr-is-prop cA) [ x ] [ y ]}} {- an n-Type which is n-connected is contractible -} connected-at-level-is-contr : ∀ {i} {A : Type i} {n : ℕ₋₂} {{pA : has-level n A}} {{cA : is-connected n A}} → is-contr A connected-at-level-is-contr {{pA}} {{cA}} = equiv-preserves-level (unTrunc-equiv _) {{cA}} {- if A is n-connected and m ≤ n, then A is m-connected -} connected-≤T : ∀ {i} {m n : ℕ₋₂} {A : Type i} → m ≤T n → {{_ : is-connected n A}} → is-connected m A connected-≤T {m = m} {n = n} {A = A} leq = transport is-contr (ua (Trunc-fuse-≤ A leq)) (Trunc-preserves-level m ⟨⟩) {- Equivalent types have the same connectedness -} equiv-preserves-conn : ∀ {i j} {A : Type i} {B : Type j} {n : ℕ₋₂} (e : A ≃ B) {{_ : is-connected n A}} → is-connected n B equiv-preserves-conn {n = n} e = equiv-preserves-level (Trunc-emap e) trunc-proj-conn : ∀ {i} (A : Type i) (n : ℕ₋₂) → has-conn-fibers n ([_] {n = n} {A = A}) trunc-proj-conn A n = conn-in $ λ P → Trunc-elim {P = fst ∘ P} {{snd ∘ P}} , λ t a → idp {- Composite of two connected functions is connected -} ∘-conn : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} → {n : ℕ₋₂} → (f : A → B) → (g : B → C) → has-conn-fibers n f → has-conn-fibers n g → has-conn-fibers n (g ∘ f) ∘-conn {n = n} f g cf cg = conn-in (λ P → conn-extend cg P ∘ conn-extend cf (P ∘ g) , lemma P) where lemma : ∀ P h x → conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x)) == h x lemma P h x = conn-extend cg P (conn-extend cf (P ∘ g) h) (g (f x)) =⟨ conn-extend-β cg P (conn-extend cf (P ∘ g) h) (f x) ⟩ conn-extend cf (P ∘ g) h (f x) =⟨ conn-extend-β cf (P ∘ g) h x ⟩ h x =∎
{ "alphanum_fraction": 0.4621318893, "avg_line_length": 35.664021164, "ext": "agda", "hexsha": "946160265f2f020ebc856fb97b47fbccd70e6601", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/NConnected.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/NConnected.agda", "max_line_length": 86, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/NConnected.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 5602, "size": 13481 }
{-# OPTIONS --without-K #-} module FiniteType where open import Equiv using (_≃_) open import Data.Product using (Σ; _,_) open import Data.Nat using (ℕ) open import Data.Fin using (Fin) -------------------------------------------------------------------------- -- -- A finite type is a type which is equivalent to Fin n -- FiniteType : ∀ {ℓ} → (A : Set ℓ) → (n : ℕ) → Set ℓ FiniteType A n = A ≃ Fin n --------------------------------------------------------------------------
{ "alphanum_fraction": 0.4460580913, "avg_line_length": 25.3684210526, "ext": "agda", "hexsha": "0d74afdb4f065bab48d7b8170e28acd4ea6da472", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FiniteType.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FiniteType.agda", "max_line_length": 74, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FiniteType.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 107, "size": 482 }
{-# OPTIONS --copatterns #-} module IOExampleGraphicsDrawingProgramWhenJust where open import Data.Bool.Base open import Data.Char.Base renaming (primCharEquality to charEquality) open import Data.Nat.Base hiding (_≟_;_⊓_; _+_; _*_) open import Data.List.Base hiding (_++_) open import Data.Integer.Base hiding (suc) open import Data.String.Base open import Data.Maybe.Base open import Function open import SizedIO.Base open import SizedIO.IOGraphicsLib open import NativeInt --PrimTypeHelpers open import NativeIO integerLess : ℤ → ℤ → Bool integerLess x y with ∣(y - (x ⊓ y))∣ ... | zero = true ... | z = false line : Point → Point → Graphic line p newpoint = withColor red (polygon (point x y ∷ point a b ∷ point (a + xAddition) (b + yAddition) ∷ point (x + xAddition) (y + yAddition) ∷ [] ) ) where x = proj1Point p y = proj2Point p a = proj1Point newpoint b = proj2Point newpoint diffx = + ∣ (a - x) ∣ diffy = + ∣ (b - y) ∣ diffx*3 = diffx * (+ 3) diffy*3 = diffy * (+ 3) condition = (integerLess diffx diffy*3) ∧ (integerLess diffy diffx*3) xAddition = if condition then + 2 else + 1 yAddition = if condition then + 2 else + 1 State = Maybe Point loop : ∀{i} → Window → State → IOGraphics i Unit force (loop w s) = exec' (getWindowEvent w) λ{ (Key c t) → if charEquality c 'x' then return _ else loop w s ; (MouseMove p₂) → whenJust s (λ p₁ → exec1 (drawInWindow w (line p₁ p₂))) >>= λ _ → loop w (just p₂) ; _ → loop w s } myProgram : ∀{i} → IOGraphics i Unit myProgram = exec (openWindow "Drawing Program" nothing (just (size (+ 1000) (+ 1000))) nativeDrawGraphic nothing) λ window → loop window nothing main : NativeIO Unit main = nativeRunGraphics (translateIOGraphics myProgram)
{ "alphanum_fraction": 0.6082949309, "avg_line_length": 27.125, "ext": "agda", "hexsha": "867eb1b19fe00e7e0443d0a8be3937e5be9cb2b1", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgramWhenJust.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgramWhenJust.agda", "max_line_length": 89, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/DrawingProgram/IOExampleGraphicsDrawingProgramWhenJust.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 590, "size": 1953 }
module Miscellaneous.associative-side where private variable T : Set private variable _▫_ : T → T → T private variable id : T data _≡_ {ℓ}{T : Set(ℓ)} : T → T → Set(ℓ) where [≡]-intro : ∀{x : T} → (x ≡ x) Associativity : (T → T → T) → Set Associativity(_▫_) = ∀{a b c} → ((a ▫ (b ▫ c)) ≡ ((a ▫ b) ▫ c)) Identityₗ : (T → T → T) → T → Set Identityₗ(_▫_)(id) = ∀{a} → ((id ▫ a) ≡ a) Identityᵣ : (T → T → T) → T → Set Identityᵣ(_▫_)(id) = ∀{a} → ((a ▫ id) ≡ a) right-op₂-associativity : Associativity{T}(\x y → y) right-op₂-associativity = [≡]-intro right-op₂-identityₗ : Identityₗ{T}(\x y → y)(id) right-op₂-identityₗ {a = a} = [≡]-intro right-op₂-when-identityᵣₗ : (∀{a} → (id ≡ a)) → Identityᵣ{T}(\x y → y)(id) right-op₂-when-identityᵣₗ p = p right-op₂-when-identityᵣᵣ : Identityᵣ{T}(\x y → y)(id) → (∀{a} → (id ≡ a)) right-op₂-when-identityᵣᵣ p = p
{ "alphanum_fraction": 0.5679442509, "avg_line_length": 28.7, "ext": "agda", "hexsha": "b4aabc510d9cebf0ea571f56561e42aefe4e8328", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Miscellaneous/associative-side.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Miscellaneous/associative-side.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Miscellaneous/associative-side.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 401, "size": 861 }
open import Common.Level postulate ℓ : Level data D : Set (lsuc ℓ) where c : (ℓ : Level) → Set ℓ → D -- Bad error: -- The type of the constructor does not fit in the sort of the -- datatype, since Set (lsuc ℓ) is not less or equal than Set (lsuc ℓ) -- when checking the constructor c in the declaration of D
{ "alphanum_fraction": 0.6857142857, "avg_line_length": 24.2307692308, "ext": "agda", "hexsha": "4705a87e13987203575df1894e537429006966f7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/Issue998e.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/Issue998e.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/Issue998e.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 97, "size": 315 }
------------------------------------------------------------------------ -- Typing of pure type systems (PTS) ------------------------------------------------------------------------ module Pts.Typing where open import Data.Fin using (Fin; zero) open import Data.Fin.Substitution open import Data.Fin.Substitution.Lemmas open import Data.Fin.Substitution.ExtraLemmas open import Data.Fin.Substitution.Typed open import Data.Nat using (ℕ; _+_) open import Data.Product using (_,_; ∃; _×_; proj₂) open import Data.Star using (ε; _◅_) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec.All using (lookup₂) open import Function using (flip) open import Relation.Binary import Relation.Binary.PropositionalEquality as PropEq open import Pts.Core public open import Pts.Syntax using (module SubstApp) open import Pts.Reduction.Full ------------------------------------------------------------------------ -- Typing derivations. -- -- The presentation of the typing rules below follows that of Pollak -- (1994) rather than that of Barendregt (1992) in that it uses a -- separate well-formedness judgment "Γ wf" for contexts in favor of -- an explicit weakening rule. The well-formedness judgment is used -- to strengthen the variable and sort typing rules. For the -- remaining rules, well-formedness of contexts is an invariant (as e -- witnessed by the "wt-wf" Lemma below). -- -- References: -- -- * H. P. Barendregt, Lambda Calculi with Types, chapter 2 of the -- Handbook of Logic in Computer Science (vol. 2), Oxford -- University Press, 1992. -- -- * R. Pollack, The Theory of LEGO: A Proof Checker for the Extended -- Calculus of Constructions, Ph.D. thesis, University of -- Edinburgh, 1994 -- Definitions and lemmas are parametrized by a given PTS instance. module Typing (pts : PTS) where open PTS pts open Ctx open Syntax open Substitution using (_[_]) infixl 9 _·_ infix 4 _wf _⊢_∈_ mutual -- Well-formed contexts. _wf : ∀ {n} → Ctx n → Set Γ wf = WfCtx._wf _⊢_∈_ Γ -- Typing derivations. data _⊢_∈_ {n} (Γ : Ctx n) : Term n → Term n → Set where var : ∀ x → Γ wf → Γ ⊢ var x ∈ lookup x Γ axiom : ∀ {s₁ s₂} (a : Axiom s₁ s₂) → Γ wf → Γ ⊢ sort s₁ ∈ sort s₂ Π : ∀ {s₁ s₂ s₃ a b} (r : Rule s₁ s₂ s₃) → Γ ⊢ a ∈ sort s₁ → a ∷ Γ ⊢ b ∈ sort s₂ → Γ ⊢ Π a b ∈ sort s₃ ƛ : ∀ {a t b s} → a ∷ Γ ⊢ t ∈ b → Γ ⊢ Π a b ∈ sort s → Γ ⊢ ƛ a t ∈ Π a b _·_ : ∀ {f a b t} → Γ ⊢ f ∈ Π a b → Γ ⊢ t ∈ a → Γ ⊢ f · t ∈ b [ t ] conv : ∀ {t a b s} → Γ ⊢ t ∈ a → Γ ⊢ b ∈ sort s → a ≡β b → Γ ⊢ t ∈ b open WfCtx _⊢_∈_ public hiding (_wf; _⊢_wf) ------------------------------------------------------------------------ -- Properties of typings module _ {pts} where open PTS pts open Syntax open Ctx open Typing pts -- Contexts of typings are well-formed. wt-wf : ∀ {n} {Γ : Ctx n} {t a} → Γ ⊢ t ∈ a → Γ wf wt-wf (var x Γ-wf) = Γ-wf wt-wf (axiom a Γ-wf) = Γ-wf wt-wf (Π r a∈s₁ b∈s₂) = wt-wf a∈s₁ wt-wf (ƛ t∈b Πab∈s) = wt-wf Πab∈s wt-wf (f∈Πab · t∈a) = wt-wf f∈Πab wt-wf (conv t∈a b∈s a≡b) = wt-wf t∈a -- Contexts of well-formed types are well-formed. wf-wf : ∀ {n} {Γ : Ctx n} {a} → (∃ λ s → Γ ⊢ a ∈ sort s) → Γ wf wf-wf (_ , a∈s) = wt-wf a∈s private module Sβ {n} where open Setoid (≡β-setoid {Sort} {n}) public using (refl; trans; sym) -- A generation lemma for sorts. sort-gen : ∀ {n} {Γ : Ctx n} {s a} → Γ ⊢ sort s ∈ a → ∃ λ s′ → Axiom s s′ × a ≡β sort s′ sort-gen (axiom ax Γ-wf) = _ , ax , Sβ.refl sort-gen (conv s∈a b∈s₁ a≡b) = let s₂ , ax , a≡s₂ = sort-gen s∈a in s₂ , ax , Sβ.trans (Sβ.sym a≡b) a≡s₂ -- A generation lemma for product typings. Π-gen : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ Π a b ∈ c → ∃ λ s₁ → ∃ λ s₂ → ∃ λ s₃ → Rule s₁ s₂ s₃ × Γ ⊢ a ∈ sort s₁ × a ∷ Γ ⊢ b ∈ sort s₂ × c ≡β sort s₃ Π-gen (Π r a∈s₁ b∈s₂) = _ , _ , _ , r , a∈s₁ , b∈s₂ , Sβ.refl Π-gen (conv Πab∈c₁ c₂∈s c₁≡c₂) = let s₁ , s₂ , s₃ , r , a∈s₁ , b∈s₂ , c₁≡s₃ = Π-gen Πab∈c₁ in s₁ , s₂ , s₃ , r , a∈s₁ , b∈s₂ , Sβ.trans (Sβ.sym c₁≡c₂) c₁≡s₃ -- A generation lemma for abstractions. ƛ-gen : ∀ {n} {Γ : Ctx n} {a t c} → Γ ⊢ ƛ a t ∈ c → ∃ λ s → ∃ λ b → Γ ⊢ Π a b ∈ sort s × a ∷ Γ ⊢ t ∈ b × c ≡β Π a b ƛ-gen (ƛ t∈b Πab∈s) = _ , _ , Πab∈s , t∈b , Sβ.refl ƛ-gen (conv λat∈c₁ c₂∈s c₁≡c₂) = let s , b , Πab∈s , t∈b , c₁≡Πab = ƛ-gen λat∈c₁ in s , b , Πab∈s , t∈b , Sβ.trans (Sβ.sym c₁≡c₂) c₁≡Πab ---------------------------------------------------------------------- -- Well-typed substitutions (i.e. substitution lemmas) -- A shorthand for typings of Ts. TermTyping : (ℕ → Set) → Set₁ TermTyping T = Typing Term T Term -- Term-typed substitutions. module TermTypedSub {T} (l : Lift T Term) (_⊢T_∈_ : TermTyping T) where typedSub : TypedSub Term Term T typedSub = record { _⊢_∈_ = _⊢T_∈_ ; _⊢_wf = WfCtx._⊢_wf _⊢_∈_ ; application = record { _/_ = SubstApp._/_ Sort l } ; weakenOps = record { weaken = Substitution.weaken } } open TypedSub typedSub public hiding (_⊢_∈_) -- Typed liftings from Ts to Terms. LiftToTermTyped : ∀ {T} → Lift T Term → TermTyping T → Set LiftToTermTyped l _⊢T_∈_ = LiftTyped l typedSub _⊢_∈_ where open TermTypedSub l _⊢T_∈_ using (typedSub) -- Application of well-typed substitutions to terms. record TypedSubstApp {T} l {_⊢T_∈_ : TermTyping T} (lt : LiftToTermTyped l _⊢T_∈_) : Set where open LiftTyped lt open Substitution using (_[_]) open PropEq hiding ([_]) private module A = SubstApp Sort l module L = Lift l -- Substitutions commute. field /-sub-↑ : ∀ {m n} a b (σ : Sub T m n) → a [ b ] A./ σ ≡ (a A./ σ L.↑) [ b A./ σ ] open BetaSubstApp (record { /-sub-↑ = /-sub-↑ }) hiding (/-sub-↑) open TermTypedSub l _⊢T_∈_ hiding (_/_) infixl 8 _/_ -- Substitutions preserve well-typedness of terms. _/_ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {t a σ} → Γ ⊢ t ∈ a → Γ ⇒ Δ ⊢ σ → Δ ⊢ t A./ σ ∈ a A./ σ var x Γ-wf / (σ-wt , _) = lift (lookup₂ x σ-wt) axiom a Γ-wf / (_ , Δ-wf) = axiom a Δ-wf Π r a∈s₁ b∈s₂ / σ-wt = Π r (a∈s₁ / σ-wt) (b∈s₂ / σ-wt ↑ (_ , a∈s₁ / σ-wt)) ƛ t∈b Πab∈s / σ-wt = let _ , _ , _ , _ , a/σ∈s , _ = Π-gen (Πab∈s / σ-wt) in ƛ (t∈b / σ-wt ↑ (_ , a/σ∈s)) (Πab∈s / σ-wt) _·_ {b = b} f∈Πab t∈a / σ-wt = subst (_⊢_∈_ _ _) (sym (/-sub-↑ b _ _)) ((f∈Πab / σ-wt) · (t∈a / σ-wt)) conv t∈a b∈s a≡b / σ-wt = conv (t∈a / σ-wt) (b∈s / σ-wt) (a≡b /≡β _) -- Typed variable substitutions (renamings). module TypedRenaming where open Substitution using (termSubst; varLiftAppLemmas; varLiftSubLemmas) open TermSubst termSubst using (varLift) open LiftAppLemmas varLiftAppLemmas hiding (lift) typedVarSubst : TypedVarSubst (WfCtx._⊢_wf _⊢_∈_) typedVarSubst = record { application = AppLemmas.application appLemmas ; weakenOps = Ctx.weakenOps ; id-vanishes = id-vanishes ; /-⊙ = /-⊙ ; /-wk = PropEq.refl ; wf-wf = wf-wf } open TypedVarSubst typedVarSubst public -- Liftings from variables to typed terms. liftTyped : LiftTyped varLift typedSub _⊢_∈_ liftTyped = record { simpleTyped = simpleTyped ; lift = lift } where lift : ∀ {n} {Γ : Ctx n} {x a} → Γ ⊢Var x ∈ a → Γ ⊢ var x ∈ a lift (var x Γ-wf) = var x Γ-wf open LiftSubLemmas varLiftSubLemmas typedSubstApp : TypedSubstApp varLift liftTyped typedSubstApp = record { /-sub-↑ = /-sub-↑ } -- Typed term substitutions in terms. module TypedSubstitution where open Substitution using (simple; termSubst) open SimpleExt simple using (extension) open TermSubst termSubst using (termLift) open TermTypedSub termLift _⊢_∈_ public using (typedSub; _⇒_⊢_) open TypedRenaming using (_⇒_⊢Var_) private module U = Substitution module V = TypedRenaming module L = ExtAppLemmas U.appLemmas infixl 8 _/Var_ _/_ -- Renaming preserves well-typedness. _/Var_ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} → Γ ⊢ a ∈ b → Γ ⇒ Δ ⊢Var σ → Δ ⊢ a U./Var σ ∈ b U./Var σ _/Var_ = TypedSubstApp._/_ V.typedSubstApp -- Weakening preserves well-typedness. weaken : ∀ {n} {Γ : Ctx n} {a b c s} → Γ ⊢ a ∈ b → Γ ⊢ c ∈ sort s → (c ∷ Γ) ⊢ (U.weaken a) ∈ (U.weaken b) weaken a∈b c∈s = a∈b /Var V.wk (_ , c∈s) -- Extensions of typed term substitutions. extensionTyped : ExtensionTyped extension typedSub extensionTyped = record { weaken = λ { (_ , c∈s) a∈b → weaken a∈b c∈s } ; weaken-/ = ExtLemmas₄.weaken-/ L.lemmas₄ ; wt-wf = wt-wf } -- Simple typed term substitutions. simpleTyped : SimpleTyped simple typedSub simpleTyped = record { extensionTyped = extensionTyped ; var = var ; id-vanishes = L.id-vanishes ; /-wk = λ {_ a} → L./-wk {t = a} ; wk-sub-vanishes = L.wk-sub-vanishes ; wf-wf = wf-wf } -- Liftings from terms to terms. liftTyped : LiftTyped termLift typedSub _⊢_∈_ liftTyped = record { simpleTyped = simpleTyped ; lift = Function.id } open LiftTyped liftTyped public hiding (var; weaken; extensionTyped; simpleTyped; wt-wf; wf-wf) typedSubstApp : TypedSubstApp termLift liftTyped typedSubstApp = record { /-sub-↑ = λ a _ _ → L.sub-commutes a } -- Substitutions preserve well-typedness. _/_ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} → Γ ⊢ a ∈ b → Γ ⇒ Δ ⊢ σ → Δ ⊢ a U./ σ ∈ b U./ σ _/_ = TypedSubstApp._/_ typedSubstApp infix 10 _[_] -- Single-variable substitutions preserve well-typedness. _[_] : ∀ {n} {Γ : Ctx n} {t a u b} → b ∷ Γ ⊢ t ∈ a → Γ ⊢ u ∈ b → Γ ⊢ t U.[ u ] ∈ a U.[ u ] t∈a [ u∈b ] = t∈a / sub u∈b -- Conversion of the first type in a context preserves -- well-typedness. conv-⊢ : ∀ {n} {Γ : Ctx n} {a₁ a₂ t b s} → a₁ ∷ Γ ⊢ t ∈ b → Γ ⊢ a₂ ∈ sort s → a₁ ≡β a₂ → a₂ ∷ Γ ⊢ t ∈ b conv-⊢ t∈b a₂∈s a₁≡a₂ = subst₂ (_⊢_∈_ _) (L.id-vanishes _) (L.id-vanishes _) (t∈b / csub) where open PropEq using (subst₂) open BetaSubstitution using (weaken-≡β) open Setoid ≡β-setoid using (sym) a₁∷Γ-wf = wt-wf t∈b a₁∈s′ = proj₂ (wf-∷₁ a₁∷Γ-wf) a₂∷Γ-wf = (_ , a₂∈s) ∷ (wf-∷₂ a₁∷Γ-wf) csub = tsub (conv (var zero a₂∷Γ-wf) (weaken a₁∈s′ a₂∈s) (weaken-≡β (sym a₁≡a₂))) open TypedSubstitution -- Operations on well-formed contexts that require weakening of -- well-formedness judgments. module WfCtxOps where private module E = ExtensionTyped extensionTyped wfWeakenOps : WfWeakenOps weakenOps wfWeakenOps = record { weaken = λ { a-wk (_ , b∈s) → (_ , E.weaken a-wk b∈s) } } open WfWeakenOps wfWeakenOps public ---------------------------------------------------------------------- -- Preservation of types under reduction (aka subject reduction) open Sβ open PropEq using (_≡_) -- Every well-typed term is either a type or an element. tp-or-el : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ∈ b → ∃ λ s → b ≡ sort s ⊎ Γ ⊢ b ∈ sort s tp-or-el (var x Γ-wf) = _ , inj₂ (proj₂ (WfCtxOps.lookup x Γ-wf)) tp-or-el (axiom a Γ-wf) = _ , inj₁ PropEq.refl tp-or-el (Π r a∈s₁ b∈s₂) = _ , inj₁ PropEq.refl tp-or-el (ƛ t∈b Πab∈s) = _ , inj₂ Πab∈s tp-or-el (f∈Πab · t∈a) with tp-or-el f∈Πab tp-or-el (f∈Πab · t∈a) | _ , inj₁ () tp-or-el (f∈Πab · t∈a) | _ , inj₂ Πab∈s = let _ , s , _ , _ , _ , b∈s , _ = Π-gen Πab∈s in s , inj₂ (b∈s [ t∈a ]) tp-or-el (conv t∈a b∈s a≡b) = _ , inj₂ b∈s -- An inversion lemma for product typings. Π-inv : ∀ {n} {Γ : Ctx n} {f a b} → Γ ⊢ f ∈ Π a b → ∃ λ s₁ → ∃ λ s₂ → Γ ⊢ a ∈ sort s₁ × a ∷ Γ ⊢ b ∈ sort s₂ Π-inv f∈Πab with tp-or-el f∈Πab Π-inv f∈Πab | _ , inj₁ () Π-inv f∈Πab | _ , inj₂ Πab∈s = let s₁ , s₂ , _ , _ , a∈s₁ , b∈s₂ , _ = Π-gen Πab∈s in s₁ , s₂ , a∈s₁ , b∈s₂ -- An inversion lemma for abstractions. ƛ-inv : ∀ {n} {Γ : Ctx n} {a t b c} → Γ ⊢ ƛ a t ∈ Π b c → ∃ λ s → Γ ⊢ a ∈ sort s × b ≡β a × a ∷ Γ ⊢ t ∈ c ƛ-inv λat∈Πbc = let _ , _ , Πad∈s , t∈d , Πbc≡Πad = ƛ-gen λat∈Πbc s₁ , _ , _ , _ , a∈s₁ , _ = Π-gen Πad∈s _ , _ , _ , c∈s₂ = Π-inv λat∈Πbc b≡a , c≡d = Π-inj Πbc≡Πad in s₁ , a∈s₁ , b≡a , conv t∈d (conv-⊢ c∈s₂ a∈s₁ b≡a) (sym c≡d) -- Preservation of types under one-step reduction. pres : ∀ {n} {Γ : Ctx n} {a a′ b} → Γ ⊢ a ∈ b → a →β a′ → Γ ⊢ a′ ∈ b pres (var _ _) () pres (axiom _ _) () pres (Π r a∈s₁ b∈s₂) (Π₁ a→a′ b) = Π r a′∈s₂ (conv-⊢ b∈s₂ a′∈s₂ (→β⇒≡β a→a′)) where a′∈s₂ = pres a∈s₁ a→a′ pres (Π r a∈s₁ b∈s₂) (Π₂ a b→b′) = Π r a∈s₁ (pres b∈s₂ b→b′) pres (ƛ t∈b Πab∈s) (ƛ₁ a→a′ t) = let _ , _ , _ , _ , a′∈s , _ = Π-gen (pres Πab∈s (Π₁ a→a′ _)) Πab→Πa′b = Π₁ a→a′ _ in conv (ƛ (conv-⊢ t∈b a′∈s (→β⇒≡β a→a′)) (pres Πab∈s Πab→Πa′b)) Πab∈s (sym (→β⇒≡β Πab→Πa′b)) pres (ƛ t∈b Πab∈s) (ƛ₂ a t→t′) = ƛ (pres t∈b t→t′) Πab∈s pres (λat∈Πbc · u∈b) (cont a t u) = let _ , a∈s , b≡a , t∈c = ƛ-inv λat∈Πbc in t∈c [ conv u∈b a∈s b≡a ] pres (f∈Πab · t∈a) (f→f′ ·₁ t) = pres f∈Πab f→f′ · t∈a pres (_·_ {b = b} f∈Πab t∈a) (f ·₂ t→t′) = let _ , _ , _ , b∈s = Π-inv f∈Πab in conv (f∈Πab · pres t∈a t→t′) (b∈s [ t∈a ]) (sym (→β*⇒≡β (b [→β t→t′ ]))) pres (conv a∈b₁ b₂∈s b₁≡b₂) a→a′ = conv (pres a∈b₁ a→a′) b₂∈s b₁≡b₂ -- Preservation of types under reduction (aka subject reduction). pres* : ∀ {n} {Γ : Ctx n} {a a′ b} → Γ ⊢ a ∈ b → a →β* a′ → Γ ⊢ a′ ∈ b pres* a∈b ε = a∈b pres* a₁∈b (a₁→a₂ ◅ a₂→*a₃) = pres* (pres a₁∈b a₁→a₂) a₂→*a₃
{ "alphanum_fraction": 0.5231727807, "avg_line_length": 36.7197943445, "ext": "agda", "hexsha": "6ccaff7a5019de7daaef31406653378942d8ef6f", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z", "max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/pts-agda", "max_forks_repo_path": "src/Pts/Typing.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z", "max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/pts-agda", "max_issues_repo_path": "src/Pts/Typing.agda", "max_line_length": 77, "max_stars_count": 21, "max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/pts-agda", "max_stars_repo_path": "src/Pts/Typing.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z", "max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z", "num_tokens": 5997, "size": 14284 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Category.Complete.Finitely {o ℓ e} (C : Category o ℓ e) where open import Level open import Categories.Category.Cartesian C open import Categories.Diagram.Equalizer C open import Categories.Diagram.Pullback C open Category C record FinitelyComplete : Set (levelOfTerm C) where field cartesian : Cartesian equalizer : ∀ {A B} (f g : A ⇒ B) → Equalizer f g module cartesian = Cartesian cartesian module equalizer {A B} (f g : A ⇒ B) = Equalizer (equalizer f g) open cartesian public pullback : ∀ {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) → Pullback f g pullback f g = Product×Equalizer⇒Pullback product (equalizer _ _) module pullback {X Y Z} (f : X ⇒ Z) (g : Y ⇒ Z) = Pullback (pullback f g)
{ "alphanum_fraction": 0.6900878294, "avg_line_length": 28.4642857143, "ext": "agda", "hexsha": "61ec0f59fc6e28cec23cc7223d7a78c2df0b4d20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Complete/Finitely.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Complete/Finitely.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Complete/Finitely.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 236, "size": 797 }
{-# OPTIONS --without-K --safe #-} module Categories.Functor where open import Level open import Data.Product using (_×_; Σ) open import Function.Surjection using (Surjective) open import Function.Equality using (_⟶_) open import Relation.Nullary open import Categories.Category open import Categories.Functor.Core public import Categories.Morphism as Morphism private variable o ℓ e o′ ℓ′ e′ : Level C D : Category o ℓ e Contravariant : ∀ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Set _ Contravariant C D = Functor (Category.op C) D Faithful : Functor C D → Set _ Faithful {C = C} {D = D} F = ∀ {X Y} → (f g : C [ X , Y ]) → D [ F₁ f ≈ F₁ g ] → C [ f ≈ g ] where open Functor F Full : Functor C D → Set _ Full {C = C} {D = D} F = ∀ {X Y} → Surjective {To = D.hom-setoid {F₀ X} {F₀ Y}} G where module C = Category C module D = Category D open Functor F G : ∀ {X Y} → (C.hom-setoid {X} {Y}) ⟶ D.hom-setoid {F₀ X} {F₀ Y} G = record { _⟨$⟩_ = F₁ ; cong = F-resp-≈ } FullyFaithful : Functor C D → Set _ FullyFaithful F = Full F × Faithful F -- Note that this is a constructive version of Essentially Surjective, which is -- quite a strong assumption. EssentiallySurjective : Functor C D → Set _ EssentiallySurjective {C = C} {D = D} F = (d : Obj) → Σ C.Obj (λ c → Functor.F₀ F c ≅ d) where open Morphism D open Category D module C = Category C
{ "alphanum_fraction": 0.6451612903, "avg_line_length": 30.3260869565, "ext": "agda", "hexsha": "c01b9fb28953d24fe548555e21ebe3bd9b33b5ea", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Functor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Functor.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Functor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 466, "size": 1395 }
{-# OPTIONS --safe --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong) open import Relation.Nullary using (Dec; yes; no) import Data.Product as Product import Data.Sum as Sum import Data.Nat as ℕ import Data.Nat.Properties as ℕₚ open Product using (∃-syntax; _,_) open Sum using (inj₁) open ℕ using (ℕ; _+_; zero; suc) open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.Algebras.Graded where _≔_∙_ : ℕ → ℕ → ℕ → Set x ≔ y ∙ z = x ≡ (y + z) computeʳ : (x y : ℕ) → Dec (∃[ z ] (x ≔ y ∙ z)) computeʳ x y with y ℕₚ.≤″? x computeʳ x y | yes (ℕ.less-than-or-equal proof) = yes (_ , (sym proof)) computeʳ x y | no ¬p = no λ where (_ , p) → ¬p (ℕ.less-than-or-equal (sym p)) Graded : Algebra ℕ Algebra.0∙ Graded = 0 Algebra.1∙ Graded = 1 Algebra._≔_∙_ Graded = _≔_∙_ Algebra.∙-computeʳ Graded = computeʳ Algebra.∙-unique Graded refl refl = refl Algebra.∙-uniqueˡ Graded refl = ℕₚ.+-cancelʳ-≡ _ _ Algebra.0∙-minˡ Graded {zero} {zero} refl = refl Algebra.∙-idˡ Graded = refl Algebra.∙-comm Graded {y = y} refl = ℕₚ.+-comm y _ Algebra.∙-assoc Graded {z = z} {v = v} refl refl = v + z , (ℕₚ.+-assoc _ v z , refl)
{ "alphanum_fraction": 0.6672283067, "avg_line_length": 30.4358974359, "ext": "agda", "hexsha": "602bb9bcc7fb1663519f32d3b6ba2d46578b85fc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Graded.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Graded.agda", "max_line_length": 84, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Graded.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 467, "size": 1187 }
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} module Parity where open import Nat -- Parity n tells us whether n is even or odd. data Parity : Nat -> Set where even : (k : Nat) -> Parity (2 * k) odd : (k : Nat) -> Parity (2 * k + 1) -- Every number is either even or odd. parity : (n : Nat) -> Parity n parity zero = even zero parity (suc n) with parity n parity (suc .(2 * k)) | even k = {! !} parity (suc .(2 * k + 1)) | odd k = {! !} half : Nat -> Nat half n with parity n half .(2 * k) | even k = k half .(2 * k + 1) | odd k = k
{ "alphanum_fraction": 0.4919472914, "avg_line_length": 17.9736842105, "ext": "agda", "hexsha": "6390ff69f1f0a3db573f3e3b2e5037fc6ed760df", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/SummerSchool07/Lecture/Parity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/SummerSchool07/Lecture/Parity.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/SummerSchool07/Lecture/Parity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 229, "size": 683 }
{-# OPTIONS --without-K #-} module Util.HoTT.HLevel where open import Util.HoTT.HLevel.Core public open import Util.HoTT.Equiv open import Util.HoTT.FunctionalExtensionality open import Util.HoTT.Homotopy open import Util.HoTT.Univalence.Axiom open import Util.Prelude open import Util.Relation.Binary.PropositionalEquality using ( Σ-≡⁺ ; Σ-≡⁻ ; Σ-≡⁺∘Σ-≡⁻ ) open import Util.Relation.Binary.LogicalEquivalence private variable α β γ : Level A B C : Set α infixr 0 _→-HProp_ -- Note that A and B must be at the same level. A more direct proof could -- probably avoid this. ≃-pres-IsOfHLevel : ∀ {A B : Set α} n → A ≃ B → IsOfHLevel n A → IsOfHLevel n B ≃-pres-IsOfHLevel n A≃B = subst (IsOfHLevel n) (≃→≡ A≃B) ≅-pres-IsOfHLevel : ∀ {A B : Set α} n → A ≅ B → IsOfHLevel n A → IsOfHLevel n B ≅-pres-IsOfHLevel n A≅B = ≃-pres-IsOfHLevel n (≅→≃ A≅B) ∀-IsProp : {B : A → Set β} → (∀ a → IsProp (B a)) → IsProp (∀ a → B a) ∀-IsProp B-prop f g = funext λ a → B-prop _ _ _ ∀∙-IsProp : {B : A → Set β} → (∀ a → IsProp (B a)) → IsProp (∀ {a} → B a) ∀∙-IsProp B-prop f g = funext∙ (B-prop _ _ _) →-IsProp : IsProp B → IsProp (A → B) →-IsProp B-prop = ∀-IsProp λ _ → B-prop ∀-HProp : (A : Set α) → ((a : A) → HProp β) → HProp (α ⊔ℓ β) ∀-HProp A B = HLevel⁺ (∀ a → B a .type) (∀-IsProp (λ a → B a .level)) ∀∙-HProp : {A : Set α} → ((a : A) → HProp β) → HProp (α ⊔ℓ β) ∀∙-HProp B = HLevel⁺ (∀ {a} → B a .type) (∀∙-IsProp (λ a → B a .level)) _→-HProp_ : Set α → HProp β → HProp (α ⊔ℓ β) A →-HProp B = HLevel⁺ (A → B .type) (→-IsProp (B .level)) _→-HProp′_ : HProp α → HProp β → HProp (α ⊔ℓ β) A →-HProp′ B = A .type →-HProp B IsContr-IsProp : IsProp (IsContr A) IsContr-IsProp (x , x-unique) (y , y-unique) = Σ-≡⁺ (x-unique y , eq-prop _ _) where eq-prop : IsProp (∀ y′ → y ≡ y′) eq-prop = ∀-IsProp λ γ′ → IsOfHLevel-suc 1 (IsOfHLevel-suc 0 (x , x-unique)) IsProp-IsProp : IsProp (IsProp A) IsProp-IsProp A-prop A-prop′ = ∀-IsProp (λ x → ∀-IsProp λ y → IsOfHLevel-suc 1 A-prop) A-prop A-prop′ IsOfHLevel-IsProp : ∀ n → IsProp (IsOfHLevel n A) IsOfHLevel-IsProp {A = A} zero = IsContr-IsProp IsOfHLevel-IsProp (suc zero) = IsProp-IsProp IsOfHLevel-IsProp (suc (suc n)) = ∀∙-IsProp λ x → ∀∙-IsProp λ y → IsOfHLevel-IsProp (suc n) IsSet-IsProp : IsProp (IsSet A) IsSet-IsProp = IsOfHLevel-IsProp 2 ∀-IsSet : {A : Set α} {B : A → Set β} → (∀ a → IsSet (B a)) → IsSet (∀ a → B a) ∀-IsSet B-set {f} {g} p q = let open ≡-Reasoning in begin p ≡˘⟨ funext∘≡→~ p ⟩ funext (≡→~ p) ≡⟨ cong funext (funext λ a → B-set a (≡→~ p a) (≡→~ q a)) ⟩ funext (≡→~ q) ≡⟨ funext∘≡→~ q ⟩ q ∎ ∀∙-IsSet : {A : Set α} {B : A → Set β} → (∀ a → IsSet (B a)) → IsSet (∀ {a} → B a) ∀∙-IsSet {A = A} {B = B} B-set = ≅-pres-IsOfHLevel 2 iso (∀-IsSet B-set) where iso : (∀ a → B a) ≅ (∀ {a} → B a) iso = record { forth = λ f {a} → f a ; isIso = record { back = λ f a → f {a} ; back∘forth = λ _ → refl ; forth∘back = λ _ → refl } } →-IsSet : IsSet B → IsSet (A → B) →-IsSet B-set = ∀-IsSet (λ _ → B-set) ∀-HSet : (A : Set α) → (A → HSet β) → HSet (α ⊔ℓ β) ∀-HSet A B = HLevel⁺ (∀ a → B a .type) (∀-IsSet (λ a → B a .level)) ∀∙-HSet : {A : Set α} → (A → HSet β) → HSet (α ⊔ℓ β) ∀∙-HSet B = HLevel⁺ (∀ {a} → B a .type) (∀∙-IsSet (λ a → B a .level)) HLevel-≡⁺ : ∀ {n} (A B : HLevel α n) → A .type ≡ B .type → A ≡ B HLevel-≡⁺ (HLevel⁺ A A-level) (HLevel⁺ B B-level) refl = cong (HLevel⁺ A) (IsOfHLevel-IsProp _ _ _) IsContr-≅⁺ : IsContr A → IsContr B → A ≅ B IsContr-≅⁺ (a , a-uniq) (b , b-uniq) = record { forth = λ _ → b ; isIso = record { back = λ _ → a ; back∘forth = λ _ → a-uniq _ ; forth∘back = λ _ → b-uniq _ } } HContr-≡⁺ : (A B : HContr α) → A ≡ B HContr-≡⁺ A B = HLevel-≡⁺ A B (≅→≡ (IsContr-≅⁺ (A .level) (B .level))) IsProp-≅⁺ : IsProp A → IsProp B → A ↔ B → A ≅ B IsProp-≅⁺ A-prop B-prop A↔B = record { forth = A↔B .forth ; isIso = record { back = A↔B .back ; back∘forth = λ _ → A-prop _ _ ; forth∘back = λ _ → B-prop _ _ } } HProp-≡⁺ : (A B : HProp α) → A .type ↔ B .type → A ≡ B HProp-≡⁺ A B A↔B = HLevel-≡⁺ A B (≅→≡ (IsProp-≅⁺ (A .level) (B .level) A↔B))
{ "alphanum_fraction": 0.5425129901, "avg_line_length": 25.6606060606, "ext": "agda", "hexsha": "6db53e6e7797c396ad122224dd0c54af466923e1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/HLevel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/HLevel.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/HLevel.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 1993, "size": 4234 }
{-# OPTIONS --without-K --safe #-} module Experiment.FingerTree where open import Level renaming (zero to lzero ; suc to lsuc) open import Algebra open import Experiment.FingerTree.Common data Digit {a} (A : Set a) : Set a where one : (a : A) → Digit A two : (a b : A) → Digit A three : (a b c : A) → Digit A four : (a b c d : A) → Digit A data Node {v a} (V : Set v) (A : Set a) : Set (a ⊔ v) where :node2 : (v : V) → (a b : A) → Node V A :node3 : (v : V) → (a b c : A) → Node V A nodeToDigit : ∀ {v a} {V : Set v} {A : Set a} → Node V A → Digit A nodeToDigit (:node2 v a b ) = two a b nodeToDigit (:node3 v a b c) = three a b c data FingerTree {v a} (V : Set v) (A : Set a) : Set (a ⊔ v) where :empty : FingerTree V A :single : A → FingerTree V A :deep : V → Digit A → FingerTree V (Node V A) → Digit A → FingerTree V A Digit-foldr : ∀ {a b} {A : Set a} {B : Set b} → (A → B → B) → B → Digit A → B Digit-foldr _<>_ e (one a) = a <> e Digit-foldr _<>_ e (two a b) = a <> (b <> e) Digit-foldr _<>_ e (three a b c) = a <> (b <> (c <> e)) Digit-foldr _<>_ e (four a b c d) = a <> (b <> (c <> (d <> e))) Node-foldr : ∀ {v a b} {V : Set v} {A : Set a} {B : Set b} → (A → B → B) → B → Node V A → B Node-foldr _<>_ e (:node2 v a b ) = a <> (b <> e) Node-foldr _<>_ e (:node3 v a b c) = a <> (b <> (c <> e)) Node-measure : ∀ {v a} {V : Set v} {A : Set a} → Node V A → V Node-measure (:node2 v a b ) = v Node-measure (:node3 v a b c) = v record IsMeasured {c e a} (M : Monoid c e) (A : Set a) : Set (a ⊔ c ⊔ e) where open Monoid M field measure : A → Carrier module Constructor {c e a} {A : Set a} {M : Monoid c e} (MS : IsMeasured M A) where open Monoid M renaming (Carrier to V) open IsMeasured MS empty : FingerTree V A empty = :empty single : A → FingerTree V A single = :single deep : Digit A → FingerTree V (Node V A) → Digit A → FingerTree V A deep pr m sf = :deep {! (Node-measure pr ∙ measure m) ∙ Node-measure sf !} pr m sf
{ "alphanum_fraction": 0.5426739023, "avg_line_length": 33.7833333333, "ext": "agda", "hexsha": "d8896d707682006084ba7ed8882b5eed022d81a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/FingerTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/FingerTree.agda", "max_line_length": 85, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/FingerTree.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 798, "size": 2027 }
module string where open import bool open import eq open import char open import list open import nat open import unit ---------------------------------------------------------------------- -- datatypes ---------------------------------------------------------------------- postulate string : Set {-# BUILTIN STRING string #-} private primitive primStringToList : string → 𝕃 char primStringAppend : string → string → string primStringFromList : 𝕃 char → string primStringEquality : string → string → 𝔹 -- see string-thms.agda for some axioms about the above primitive functions ---------------------------------------------------------------------- -- syntax ---------------------------------------------------------------------- infixr 6 _^_ infix 8 _=string_ ---------------------------------------------------------------------- -- operations ---------------------------------------------------------------------- _^_ : string → string → string _^_ = primStringAppend string-to-𝕃char : string → 𝕃 char string-to-𝕃char = primStringToList 𝕃char-to-string : 𝕃 char → string 𝕃char-to-string = primStringFromList _=string_ : string → string → 𝔹 _=string_ = primStringEquality char-to-string : char → string char-to-string c = 𝕃char-to-string [ c ] string-append-t : ℕ → Set string-append-t 0 = string → string string-append-t (suc n) = string → (string-append-t n) string-append-h : (n : ℕ) → string → string-append-t n string-append-h 0 ret = λ x → ret ^ x string-append-h (suc n) ret = λ x → (string-append-h n (ret ^ x)) string-append : (n : ℕ) → string-append-t n string-append n = string-append-h n "" string-concat : 𝕃 string → string string-concat [] = "" string-concat (s :: ss) = s ^ (string-concat ss) string-concat-sep : (separator : string) → 𝕃 string → string string-concat-sep sep [] = "" string-concat-sep sep (s1 :: ss) with ss ... | [] = s1 ... | s2 :: ss' = s1 ^ sep ^ (string-concat-sep sep ss) string-concat-sep-map : ∀{A : Set} → (separator : string) → (A → string) → 𝕃 A → string string-concat-sep-map sep f l = string-concat-sep sep (map f l) escape-string-h : 𝕃 char → 𝕃 char escape-string-h ('\n' :: cs) = '\\' :: 'n' :: (escape-string-h cs) escape-string-h ('"' :: cs) = '\\' :: '"' :: (escape-string-h cs) escape-string-h (c :: cs) = c :: escape-string-h cs escape-string-h [] = [] escape-string : string → string escape-string s = 𝕃char-to-string( escape-string-h( string-to-𝕃char s ) ) string-length : string → ℕ string-length s = length (string-to-𝕃char s)
{ "alphanum_fraction": 0.5537974684, "avg_line_length": 27.4782608696, "ext": "agda", "hexsha": "455b66eecf7ebb4d74017d63d501b1e59e921ca1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "string.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "string.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "string.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 665, "size": 2528 }
-- Andreas, 2019-02-23, issue #3586, reported by mcoblenz shrunk by G. Allais -- WAS: Internal error in ConcreteToAbstract. -- {-# OPTIONS -v scope.pat:60 #-} infixl 5 ^_ data D : Set where ^_ : D → D postulate _^_ : D → D → D foo : D → Set foo x@(y ^ z) = D -- The term "y ^ z" is parsed as operator pattern (_^_ y z) -- with _^_ being a variable name. -- That is nonsense the scope checker did not expect and crashed. -- Now, we report instead: -- -- y ^ z is not a valid pattern
{ "alphanum_fraction": 0.6356275304, "avg_line_length": 21.4782608696, "ext": "agda", "hexsha": "a7fcb5f259d6d5558f3a544ecbbe06809d0255b7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3586.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3586.agda", "max_line_length": 77, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3586.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 163, "size": 494 }
------------------------------------------------------------------------------ -- Lists ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.List where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List.Type public infixr 5 _++_ ------------------------------------------------------------------------------ -- Basic functions postulate length : D → D length-[] : length [] ≡ zero length-∷ : ∀ x xs → length (x ∷ xs) ≡ succ₁ (length xs) {-# ATP axioms length-[] length-∷ #-} postulate _++_ : D → D → D ++-[] : ∀ ys → [] ++ ys ≡ ys ++-∷ : ∀ x xs ys → (x ∷ xs) ++ ys ≡ x ∷ (xs ++ ys) {-# ATP axioms ++-[] ++-∷ #-} -- List transformations postulate map : D → D → D map-[] : ∀ f → map f [] ≡ [] map-∷ : ∀ f x xs → map f (x ∷ xs) ≡ f · x ∷ map f xs {-# ATP axioms map-[] map-∷ #-} postulate rev : D → D → D rev-[] : ∀ ys → rev [] ys ≡ ys rev-∷ : ∀ x xs ys → rev (x ∷ xs) ys ≡ rev xs (x ∷ ys) {-# ATP axioms rev-[] rev-∷ #-} reverse : D → D reverse xs = rev xs [] {-# ATP definition reverse #-} postulate reverse' : D → D reverse'-[] : reverse' [] ≡ [] reverse'-∷ : ∀ x xs → reverse' (x ∷ xs) ≡ reverse' xs ++ (x ∷ []) postulate replicate : D → D → D replicate-0 : ∀ x → replicate zero x ≡ [] replicate-S : ∀ n x → replicate (succ₁ n) x ≡ x ∷ replicate n x {-# ATP axioms replicate-0 replicate-S #-} -- Reducing lists postulate foldr : D → D → D → D foldr-[] : ∀ f n → foldr f n [] ≡ n foldr-∷ : ∀ f n x xs → foldr f n (x ∷ xs) ≡ f · x · (foldr f n xs) {-# ATP axioms foldr-[] foldr-∷ #-} -- Building lists postulate iterate : D → D → D iterate-eq : ∀ f x → iterate f x ≡ x ∷ iterate f (f · x) {-# ATP axiom iterate-eq #-}
{ "alphanum_fraction": 0.4304733728, "avg_line_length": 26.6842105263, "ext": "agda", "hexsha": "a5f3c0f66d351a13b3139c538fd3beb6f91e28a6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/List.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/List.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 639, "size": 2028 }
-- Andrea(s), 2018-11-23, issue #3378 -- -- WAS: internal error in coverage checker and clause compiler -- for missing hcomp clauses triggered by non-exact splitting. {-# OPTIONS --cubical #-} -- {-# OPTIONS -v tc.cover:10 #-} open import Agda.Builtin.Cubical.Path open import Agda.Builtin.Unit data Interval : Set where pos : Interval neg : Interval zeroes-identified : pos ≡ neg test : Interval → Interval → ⊤ test pos pos = tt test neg pos = tt test (zeroes-identified i) pos = tt test x neg = tt test x (zeroes-identified j) = tt -- Should pass (with non-exact splitting).
{ "alphanum_fraction": 0.6977928693, "avg_line_length": 22.6538461538, "ext": "agda", "hexsha": "1f14375f02217bd2c971576af7fcf35cf4229e84", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3378.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3378.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3378.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 589 }
{-# OPTIONS --show-implicit #-} data Bool : Set where true : Bool false : Bool data D : Set where d : D data E : Set where e : E HSet : Set₁ HSet = {b : Bool} → Set -- Here HA is HSet -- The output of this function is the set E, for input HSet G. ⊨_ : HSet → Set ⊨_ HA = HA {true} G : HSet G {true} = E G {false} = D noo : ⊨ G {false} noo = {!!} boo : ⊨ λ {b} → G {b} boo = {!!}
{ "alphanum_fraction": 0.546835443, "avg_line_length": 13.1666666667, "ext": "agda", "hexsha": "12a28add40ad5648cd3ef98c0392a376f11ae551", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue4160.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue4160.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue4160.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 156, "size": 395 }
{-# OPTIONS --without-K #-} module Perm where -- Definitions for permutations in the Cauchy representation open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) open import Relation.Unary using (Pred) renaming (Decidable to UnaryDecidable) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid; proof-irrelevance; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Data.Nat.Properties using (cancel-+-left; n∸n≡0; +-∸-assoc; m+n∸n≡m; 1+n≰n; m≤m+n; n≤m+n; n≤1+n; cancel-*-right-≤; ≰⇒>; ¬i+1+j≤i) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+; +-*-suc) open import Data.Nat.DivMod using (DivMod; result; _divMod_; _div_; _mod_) open import Relation.Binary using (Rel; Decidable; Setoid) open import Relation.Binary.Core using (REL; Transitive; _⇒_) open import Data.String using (String) renaming (_++_ to _++S_) open import Data.Nat.Show using (show) open import Data.Bool using (Bool; false; true) open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_; _≥_; z≤n; s≤s; _≟_; _≤?_; ≤-pred; module ≤-Reasoning) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; fromℕ≤; _ℕ-_; _≺_; reduce≥; raise; inject+; inject₁; inject≤; _≻toℕ_) renaming (_+_ to _F+_) open import Data.Fin.Properties using (bounded; to-from; inject+-lemma; inject≤-lemma; toℕ-injective; toℕ-raise; toℕ-fromℕ≤) open import Data.Vec.Properties using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘; tabulate-allFin; allFin-map; lookup-++-inject+; lookup-++-≥; lookup-++-<) open import Data.Product using (Σ; swap) open import Data.List using (List; []; _∷_; _∷ʳ_; foldl; replicate; reverse; downFrom; concatMap; gfilter; initLast; InitLast; _∷ʳ'_) renaming (_++_ to _++L_; map to mapL; concat to concatL; zip to zipL) open import Data.List.NonEmpty using (List⁺; [_]; _∷⁺_; head; last; _⁺++_) renaming (toList to nonEmptyListtoList; _∷ʳ_ to _n∷ʳ_; tail to ntail) open import Data.List.Any using (Any; here; there; any; module Membership) open import Data.Maybe using (Maybe; nothing; just; maybe′) open import Data.Vec using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt; _[_]≔_; allFin; toList) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Function using (id; _∘_; _$_; flip) open import Data.Maybe using (Maybe; just; nothing) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Proofs open import Cauchy ------------------------------------------------------------------------------ -- What JC thinks will actually work -- we need injectivity. surjectivity ought to be provable. Permutation : ℕ → Set Permutation n = Σ (Cauchy n) (λ v → ∀ {i j} → lookup i v ≡ lookup j v → i ≡ j) ------------------------------------------------------------------------------ -- Iso between Fin (m * n) and Fin m × Fin n absurd-quotient : (m n q : ℕ) (r : Fin (suc n)) (k : Fin (suc (n + m * suc n))) (k≡r+q*sn : toℕ k ≡ toℕ r + q * suc n) (p : suc m ≤ q) → ⊥ absurd-quotient m n q r k k≡r+q*sn p = ¬i+1+j≤i (toℕ k) {toℕ r} k≥k+sr where k≥k+sr : toℕ k ≥ toℕ k + suc (toℕ r) k≥k+sr = begin (toℕ k + suc (toℕ r) ≡⟨ +-suc (toℕ k) (toℕ r) ⟩ suc (toℕ k) + toℕ r ≤⟨ cong+r≤ (bounded k) (toℕ r) ⟩ (suc n + m * suc n) + toℕ r ≡⟨ +-comm (suc n + m * suc n) (toℕ r) ⟩ toℕ r + (suc n + m * suc n) ≡⟨ refl ⟩ toℕ r + suc m * suc n ≤⟨ cong+l≤ (cong*r≤ p (suc n)) (toℕ r) ⟩ toℕ r + q * suc n ≡⟨ sym k≡r+q*sn ⟩ toℕ k ∎) where open ≤-Reasoning Fin0-⊥ : Fin 0 → ⊥ Fin0-⊥ () fin-project : (m n : ℕ) → Fin (m * n) → Fin m × Fin n fin-project 0 n () fin-project (suc m) 0 k = ⊥-elim (Fin0-⊥ (subst Fin (*-right-zero (suc m)) k)) fin-project (suc m) (suc n) k with (toℕ k) divMod (suc n) ... | result q r k≡r+q*sn = (fromℕ≤ {q} {suc m} (s≤s q≤m) , r) where q≤m : q ≤ m q≤m with suc m ≤? q ... | yes p = ⊥-elim (absurd-quotient m n q r k k≡r+q*sn p) ... | no ¬p = ≤-pred (≰⇒> ¬p) fin-proj-lem : (m n : ℕ) (k : Fin (m * n)) → k ≡ let (b , d) = fin-project m n k in inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d) fin-proj-lem 0 n () fin-proj-lem (suc m) 0 k = ⊥-elim (Fin0-⊥ (subst Fin (*-right-zero (suc m)) k)) fin-proj-lem (suc m) (suc n) k with _divMod_ (toℕ k) (suc n) {_} ... | result q r k≡r+q*sn with suc m ≤? q ... | yes p = ⊥-elim (absurd-quotient m n q r k k≡r+q*sn p) ... | no ¬p = toℕ-injective toℕk≡ where q≡ : (m : ℕ) (q : ℕ) (¬p : ¬ suc m ≤ q) → q ≡ toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) q≡ m q ¬p = sym (toℕ-fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) toℕk≡ = begin (toℕ k ≡⟨ k≡r+q*sn ⟩ toℕ r + q * suc n ≡⟨ +-comm (toℕ r) (q * suc n) ⟩ q * suc n + toℕ r ≡⟨ cong (λ x → x * suc n + toℕ r) (q≡ m q ¬p) ⟩ toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc n + toℕ r ≡⟨ sym (to-from (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc n + toℕ r)) ⟩ toℕ (fromℕ (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc n + toℕ r)) ≡⟨ sym (inject≤-lemma (fromℕ (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc n + toℕ r)) (i*n+k≤m*n (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) r)) ⟩ toℕ (inject≤ (fromℕ (toℕ (fromℕ≤ (s≤s (≤-pred (≰⇒> ¬p)))) * suc n + toℕ r)) (i*n+k≤m*n (fromℕ≤ {q} {suc m} (s≤s (≤-pred (≰⇒> ¬p)))) r)) ∎) where open ≡-Reasoning fin-proj-lem2 : (m n : ℕ) (b : Fin m) (d : Fin n) → (b , d) ≡ fin-project m n (inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) fin-proj-lem2 m 0 b () fin-proj-lem2 0 (suc n) () d fin-proj-lem2 (suc m) (suc n) b d with (toℕ (inject≤ (fromℕ (toℕ b * suc n + toℕ d)) (i*n+k≤m*n b d))) divMod (suc n) ... | result q r eq = begin ((b , d) ≡⟨ cong₂ _,_ (toℕ-injective (sym (trans (toℕ-fromℕ≤ (s≤s (trans≤ (refl′ (proj₁ eq')) (bounded' m b)))) (proj₁ eq'))) ) (sym (proj₂ eq')) ⟩ (fromℕ≤ (s≤s (trans≤ (refl′ (proj₁ eq')) (bounded' m b))) , r) ≡⟨ cong₂ _,_ (cong fromℕ≤ (≤-proof-irrelevance _ _)) refl ⟩ (fromℕ≤ _ , r) ∎) where open ≡-Reasoning eq' : q ≡ toℕ b × r ≡ d eq' = swap (addMul-lemma′ q (toℕ b) n r d (trans (trans (+-comm (q * suc n) (toℕ r)) (sym eq)) (trans (inject≤-lemma _ _) (to-from _)))) -- The actual isomorphism record Fin-Product-Iso (m n : ℕ) : Set where constructor iso field split : Fin (m * n) → Fin m × Fin n combine : Fin m × Fin n → Fin (m * n) inv : (i : Fin (m * n)) → combine (split i) ≡ i inv' : (bd : Fin m × Fin n) → split (combine bd) ≡ bd fin-product-iso : (m n : ℕ) → Fin-Product-Iso m n fin-product-iso m n = iso (fin-project m n) (λ {(b , d) → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)}) (λ k → sym (fin-proj-lem m n k)) ((λ {(b , d) → sym (fin-proj-lem2 m n b d)})) record Fin-DivMod (m n : ℕ) (i : Fin (m * n)) : Set where constructor fin-result field b : Fin m d : Fin n dec : toℕ i ≡ toℕ d + toℕ b * n dec' : i ≡ inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d) fin-divMod : (m n : ℕ) (i : Fin (m * n)) → Fin-DivMod m n i fin-divMod m n i = fin-result b d dec dec' where bd = Fin-Product-Iso.split (fin-product-iso m n) i b = proj₁ bd d = proj₂ bd dec' = sym (Fin-Product-Iso.inv (fin-product-iso m n) i) dec = begin (toℕ i ≡⟨ cong toℕ (sym (inv (fin-product-iso m n) i)) ⟩ toℕ (inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) ≡⟨ inject≤-lemma (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d) ⟩ toℕ (fromℕ (toℕ b * n + toℕ d)) ≡⟨ to-from (toℕ b * n + toℕ d) ⟩ toℕ b * n + toℕ d ≡⟨ +-comm (toℕ b * n) (toℕ d) ⟩ toℕ d + toℕ b * n ∎) where open ≡-Reasoning open Fin-Product-Iso fin-addMul-lemma : (m n : ℕ) (b b' : Fin m) (d d' : Fin n) → toℕ b * n + toℕ d ≡ toℕ b' * n + toℕ d' → b ≡ b' × d ≡ d' fin-addMul-lemma m 0 _ _ () fin-addMul-lemma m (suc n) b b' d d' p = let (d≡ , b≡) = addMul-lemma′ (toℕ b) (toℕ b') n d d' p in (toℕ-injective b≡ , d≡) ------------------------------------------------------------------------------ -- Vec lemmas fi≡fj : {m : ℕ} → (i j : Fin m) (f : Fin m → Fin m) → (p : lookup i (tabulate f) ≡ lookup j (tabulate f)) → (f i ≡ f j) fi≡fj i j f p = trans (sym (lookup∘tabulate f i)) (trans p (lookup∘tabulate f j)) lookup-bounded : (m n : ℕ) (i : Fin n) (v : Vec (Fin m) n) → toℕ (lookup i v) < m lookup-bounded m 0 () v lookup-bounded m (suc n) zero (x ∷ v) = bounded x lookup-bounded m (suc n) (suc i) (x ∷ v) = lookup-bounded m n i v lookup-concat-left : ∀ {ℓ} {A : Set ℓ} {m n : ℕ} → (d : Fin n) (leq : suc (toℕ d) ≤ n + m) (vs : Vec A n) (ws : Vec A m) → lookup (inject≤ (fromℕ (toℕ d)) leq) (vs ++V ws) ≡ lookup d vs lookup-concat-left zero (s≤s z≤n) (x ∷ vs) ws = refl lookup-concat-left (suc d) (s≤s leq) (x ∷ vs) ws = lookup-concat-left d leq vs ws lookup-concat-right : ∀ {ℓ} {A : Set ℓ} {m n : ℕ} → (j : ℕ) (leq : suc (n + j) ≤ n + m) (leq' : suc j ≤ m) (vs : Vec A n) (ws : Vec A m) → lookup (inject≤ (fromℕ (n + j)) leq) (vs ++V ws) ≡ lookup (inject≤ (fromℕ j) leq') ws lookup-concat-right {n = 0} j leq leq' [] ws = cong (λ x → lookup (inject≤ (fromℕ j) x) ws) (≤-proof-irrelevance leq leq') lookup-concat-right {n = suc n} j (s≤s leq) leq' (v ∷ vs) ws = lookup-concat-right j leq leq' vs ws lookup-concat-right' : ∀ {ℓ} {A : Set ℓ} {m n : ℕ} → (j k : ℕ) (leq : suc ((n + j) + k) ≤ n + m) (leq' : suc (j + k) ≤ m) (vs : Vec A n) (ws : Vec A m) → lookup (inject≤ (fromℕ ((n + j) + k)) leq) (vs ++V ws) ≡ lookup (inject≤ (fromℕ (j + k)) leq') ws lookup-concat-right' {n = 0} j k leq leq' [] ws = cong (λ x → lookup (inject≤ (fromℕ (j + k)) x) ws) (≤-proof-irrelevance leq leq') lookup-concat-right' {n = suc n} j k (s≤s leq) leq' (v ∷ vs) ws = lookup-concat-right' j k leq leq' vs ws helper-leq : (m n : ℕ) → (b : Fin m) → suc (n + toℕ b * suc n) ≤ n + m * suc n helper-leq m n b = begin (suc (n + toℕ b * suc n) ≡⟨ cong suc (+-comm n (toℕ b * suc n)) ⟩ suc (toℕ b * suc n + n) ≡⟨ cong (λ x → suc (toℕ b * suc n + x)) (sym (to-from n)) ⟩ suc (toℕ b * suc n + toℕ (fromℕ n)) ≤⟨ i*n+k≤m*n b (fromℕ n) ⟩ m * suc n ≤⟨ n≤m+n n (m * suc n) ⟩ n + m * suc n ∎) where open ≤-Reasoning helper-leq' : (m n : ℕ) → (b : Fin m) → suc (toℕ b * suc n) ≤ m * suc n helper-leq' 0 n () helper-leq' (suc m) n zero = s≤s z≤n helper-leq' (suc m) n (suc b) = s≤s (helper-leq m n b) lookup-concat-inner : {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (m n : ℕ) (b : Fin m) (j : B) (leq : suc (toℕ b * suc n) ≤ m * suc n) (f : A × B → C) (pm : Vec A m) (pn : Vec B n) → lookup (inject≤ (fromℕ (toℕ b * suc n)) leq) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡ f (lookup b pm , j) lookup-concat-inner 0 n () j leq f pm pn lookup-concat-inner (suc m) n zero j (s≤s z≤n) f (i ∷ pm) pn = refl lookup-concat-inner (suc m) n (suc b) j (s≤s leq) f (i ∷ pm) pn = begin (lookup (inject≤ (fromℕ (n + toℕ b * suc n)) leq) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat-right (toℕ b * suc n) leq (helper-leq' m n b) (mapV (λ d → f (i , d)) pn) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ⟩ lookup (inject≤ (fromℕ (toℕ b * suc n)) (helper-leq' m n b)) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat-inner m n b j (helper-leq' m n b) f pm pn ⟩ f (lookup b pm , j) ∎) where open ≡-Reasoning lookup-concat' : ∀ {ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (m n : ℕ) (b : Fin m) (d : Fin n) → (leq : suc (toℕ b * n + toℕ d) ≤ m * n) → (f : A × B → C) (pm : Vec A m) (pn : Vec B n) → lookup (inject≤ (fromℕ (toℕ b * n + toℕ d)) leq) (concatV (mapV (λ b → mapV (λ d → f (b , d)) pn) pm)) ≡ f (lookup b pm , lookup d pn) lookup-concat' 0 n () d leq f pm pn lookup-concat' (suc m) n zero d leq f (i ∷ pm) pn = begin (lookup (inject≤ (fromℕ (toℕ d)) leq) (concatV (mapV (λ b → mapV (λ d → f (b , d)) pn) (i ∷ pm))) ≡⟨ refl ⟩ lookup (inject≤ (fromℕ (toℕ d)) leq) (concatV (mapV (λ d → f (i , d)) pn ∷ mapV (λ b → mapV (λ d → f (b , d)) pn) pm)) ≡⟨ refl ⟩ lookup (inject≤ (fromℕ (toℕ d)) leq) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) pn) pm)) ≡⟨ lookup-concat-left d leq (mapV (λ d → f (i , d)) pn) (concatV (mapV (λ b → mapV (λ d → f (b , d)) pn) pm)) ⟩ lookup d (mapV (λ d → f (i , d)) pn) ≡⟨ lookup-map d (λ d → f (i , d)) pn ⟩ f (i , lookup d pn) ∎) where open ≡-Reasoning lookup-concat' (suc m) 0 (suc b) () leq f (i ∷ pm) pn lookup-concat' (suc m) (suc n) (suc b) zero (s≤s leq) f (i ∷ pm) (j ∷ pn) = begin (lookup (inject≤ (fromℕ ((n + toℕ b * suc n) + 0)) leq) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ cong₂D! (λ x y → lookup (inject≤ (fromℕ x) y) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm))) (sym (+-right-identity (n + toℕ b * suc n))) (≤-proof-irrelevance (subst (λ z → suc z ≤ n + m * suc n) (sym (+-right-identity (n + toℕ b * suc n))) (helper-leq m n b)) leq) ⟩ lookup (inject≤ (fromℕ (n + toℕ b * suc n)) (helper-leq m n b)) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat-right (toℕ b * suc n) (helper-leq m n b) (helper-leq' m n b) (mapV (λ d → f (i , d)) pn) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ⟩ lookup (inject≤ (fromℕ (toℕ b * suc n)) (helper-leq' m n b)) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat-inner m n b j (helper-leq' m n b) f pm pn ⟩ f (lookup b pm , j) ∎) where open ≡-Reasoning lookup-concat' (suc m) (suc n) (suc b) (suc d) (s≤s leq) f (i ∷ pm) (j ∷ pn) = begin (lookup (inject≤ (fromℕ ((n + toℕ b * suc n) + toℕ (suc d))) leq) (mapV (λ d → f (i , d)) pn ++V concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat-right' (toℕ b * suc n) (toℕ (suc d)) leq (i*n+k≤m*n b (suc d)) (mapV (λ d → f (i , d)) pn) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ⟩ lookup (inject≤ (fromℕ (toℕ b * suc n + toℕ (suc d))) (i*n+k≤m*n b (suc d))) (concatV (mapV (λ b → mapV (λ d → f (b , d)) (j ∷ pn)) pm)) ≡⟨ lookup-concat' m (suc n) b (suc d) (i*n+k≤m*n b (suc d)) f pm (j ∷ pn) ⟩ f (lookup b pm , lookup d pn) ∎) where open ≡-Reasoning lookup-2d : (m n : ℕ) (i : Fin (m * n)) (α : Cauchy m) (β : Cauchy n) → (h : (Fin m × Fin n) → Fin (m * n)) → lookup i (concatV (mapV (λ b → mapV (λ d → h (b , d)) β) α)) ≡ let fin-result b d _ _ = fin-divMod m n i in h (lookup b α , lookup d β) lookup-2d m n i α β h = let fin-result b d dec dec' = fin-divMod m n i in begin (lookup i (concatV (mapV (λ b → mapV (λ d → h (b , d)) β) α)) ≡⟨ cong (λ x → lookup x (concatV (mapV (λ b → mapV (λ d → h (b , d)) β) α))) dec' ⟩ lookup (inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)) (concatV (mapV (λ b → mapV (λ d → h (b , d)) β) α)) ≡⟨ lookup-concat' m n b d (i*n+k≤m*n b d) h α β ⟩ h (lookup b α , lookup d β) ∎) where open ≡-Reasoning ------------------------------------------------------------------------------ -- Elementary permutations in the Cauchy representation emptyperm : Permutation 0 emptyperm = (emptycauchy , f) where f : {i j : Fin 0} → (lookup i emptycauchy ≡ lookup j emptycauchy) → (i ≡ j) f {()} idperm : (n : ℕ) → Permutation n idperm n = (idcauchy n , λ {i} {j} p → fi≡fj i j id p) -- Sequential composition scompperm : ∀ {n} → Permutation n → Permutation n → Permutation n scompperm {n} (α , f) (β , g) = (scompcauchy α β , λ {i} {j} p → f (g (fi≡fj i j (λ i → lookup (lookup i α) β) p))) -- swap the first m elements with the last n elements -- [ v₀ , v₁ , v₂ , ... , vm-1 , vm , vm₊₁ , ... , vm+n-1 ] -- ==> -- [ vm , vm₊₁ , ... , vm+n-1 , v₀ , v₁ , v₂ , ... , vm-1 ] swap+cauchy< : (m n : ℕ) (i : Fin (m + n)) (i< : toℕ i < m) → lookup i (swap+cauchy m n) ≡ id+ {m} (raise n (fromℕ≤ i<)) swap+cauchy< m n i i< = let j = fromℕ≤ i< in let eq = inj₁-≡ i i< in begin (lookup i (splitVOp+ {m} {n} {f = id+ {m}}) ≡⟨ cong (flip lookup (splitVOp+ {m} {n} {f = id+ {m}})) eq ⟩ lookup (inject+ n j) (splitVOp+ {m} {n} {f = id+ {m}}) ≡⟨ lookup-++-inject+ (tabulate (id+ {m} ∘ raise n)) (tabulate (id+ {m} ∘ inject+ m)) j ⟩ lookup j (tabulate {m} (id+ {m} ∘ raise n)) ≡⟨ lookup∘tabulate (id+ {m} ∘ raise n) j ⟩ id+ {m} (raise n j) ∎) where open ≡-Reasoning swap+cauchy≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) → lookup i (swap+cauchy m n) ≡ subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥)) swap+cauchy≥ m n i i≥ = let j = reduce≥ i i≥ in let eq = inj₂-≡ i i≥ in let v = splitVOp+ {m} {f = id+ {m}} in begin ( lookup i v ≡⟨ cong (flip lookup v) eq ⟩ lookup (raise m j) v ≡⟨ lookup-++-raise (tabulate (id+ {m} ∘ raise n)) (tabulate (id+ {m} ∘ inject+ m)) j ⟩ lookup j (tabulate (id+ {m} ∘ inject+ m)) ≡⟨ lookup∘tabulate (id+ {m} ∘ inject+ m) j ⟩ id+ {m} (inject+ m j) ∎) where open ≡-Reasoning swap+perm' : (m n : ℕ) (i j : Fin (m + n)) (p : lookup i (swap+cauchy m n) ≡ lookup j (swap+cauchy m n)) → (i ≡ j) swap+perm' m n i j p with toℕ i <? m | toℕ j <? m ... | yes i< | yes j< = toℕ-injective (cancel-+-left n {toℕ i} {toℕ j} ni≡nj) where ni≡nj = begin (n + toℕ i ≡⟨ sym (raise< m n i i<) ⟩ toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡⟨ cong toℕ (sym (swap+cauchy< m n i i<)) ⟩ toℕ (lookup i (swap+cauchy m n)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (swap+cauchy m n)) ≡⟨ cong toℕ (swap+cauchy< m n j j<) ⟩ toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ j<))) ≡⟨ raise< m n j j< ⟩ n + toℕ j ∎) where open ≡-Reasoning ... | yes i< | no j≥ = ⊥-elim (1+n≰n contra') where contra : n + toℕ i ≡ toℕ j ∸ m contra = begin (n + toℕ i ≡⟨ sym (raise< m n i i<) ⟩ toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡⟨ cong toℕ (sym (swap+cauchy< m n i i<)) ⟩ toℕ (lookup i (swap+cauchy m n)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (swap+cauchy m n)) ≡⟨ cong toℕ (swap+cauchy≥ m n j (≤-pred (≰⇒> j≥))) ⟩ toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ j (≤-pred (≰⇒> j≥))))) ≡⟨ inject≥ m n j (≤-pred (≰⇒> j≥)) ⟩ toℕ j ∸ m ∎) where open ≡-Reasoning contra' : suc (m + n) ≤ m + n contra' = begin (suc (m + n) ≤⟨ m≤m+n (suc (m + n)) (toℕ i) ⟩ suc (m + n) + toℕ i ≡⟨ +-assoc (suc m) n (toℕ i) ⟩ suc (m + (n + toℕ i)) ≡⟨ cong (λ x → suc m + x) contra ⟩ suc (m + (toℕ j ∸ m)) ≡⟨ cong suc (sym (+-∸-assoc m (≤-pred (≰⇒> j≥)))) ⟩ suc ((m + toℕ j) ∸ m) ≡⟨ cong (λ x → suc (x ∸ m)) (+-comm m (toℕ j)) ⟩ suc ((toℕ j + m) ∸ m) ≡⟨ cong suc (m+n∸n≡m (toℕ j) m) ⟩ suc (toℕ j) ≤⟨ bounded j ⟩ m + n ∎) where open ≤-Reasoning ... | no i≥ | yes j< = ⊥-elim (1+n≰n contra') where contra : n + toℕ j ≡ toℕ i ∸ m contra = begin (n + toℕ j ≡⟨ sym (raise< m n j j<) ⟩ toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ j<))) ≡⟨ cong toℕ (sym (swap+cauchy< m n j j<)) ⟩ toℕ (lookup j (swap+cauchy m n)) ≡⟨ cong toℕ (sym p) ⟩ toℕ (lookup i (swap+cauchy m n)) ≡⟨ cong toℕ (swap+cauchy≥ m n i (≤-pred (≰⇒> i≥))) ⟩ toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i (≤-pred (≰⇒> i≥))))) ≡⟨ inject≥ m n i (≤-pred (≰⇒> i≥)) ⟩ toℕ i ∸ m ∎) where open ≡-Reasoning contra' : suc (m + n) ≤ m + n contra' = begin (suc (m + n) ≤⟨ m≤m+n (suc (m + n)) (toℕ j) ⟩ suc (m + n) + toℕ j ≡⟨ +-assoc (suc m) n (toℕ j) ⟩ suc (m + (n + toℕ j)) ≡⟨ cong (λ x → suc m + x) contra ⟩ suc (m + (toℕ i ∸ m)) ≡⟨ cong suc (sym (+-∸-assoc m (≤-pred (≰⇒> i≥)))) ⟩ suc ((m + toℕ i) ∸ m) ≡⟨ cong (λ x → suc (x ∸ m)) (+-comm m (toℕ i)) ⟩ suc ((toℕ i + m) ∸ m) ≡⟨ cong suc (m+n∸n≡m (toℕ i) m) ⟩ suc (toℕ i) ≤⟨ bounded i ⟩ m + n ∎) where open ≤-Reasoning ... | no i≥ | no j≥ = ∸≡ m n i j (≤-pred (≰⇒> i≥)) (≤-pred (≰⇒> j≥)) ri≡rj where ri≡rj = begin (toℕ i ∸ m ≡⟨ sym (inject≥ m n i (≤-pred (≰⇒> i≥))) ⟩ toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i (≤-pred (≰⇒> i≥))))) ≡⟨ cong toℕ (sym (swap+cauchy≥ m n i (≤-pred (≰⇒> i≥)))) ⟩ toℕ (lookup i (swap+cauchy m n)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (swap+cauchy m n)) ≡⟨ cong toℕ (swap+cauchy≥ m n j (≤-pred (≰⇒> j≥))) ⟩ toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ j (≤-pred (≰⇒> j≥))))) ≡⟨ inject≥ m n j (≤-pred (≰⇒> j≥)) ⟩ toℕ j ∸ m ∎) where open ≡-Reasoning swap+perm : (m n : ℕ) → Permutation (m + n) swap+perm m n = (swap+cauchy m n , λ {i} {j} p → swap+perm' m n i j p) -- Parallel additive composition -- append both permutations but adjust the indices in the second -- permutation by the size of the first type so that it acts on the -- second part of the vector pcompperm' : (m n : ℕ) (i j : Fin (m + n)) (α : Cauchy m) (β : Cauchy n) (p : lookup i (pcompcauchy α β) ≡ lookup j (pcompcauchy α β)) (f : {i j : Fin m} → lookup i α ≡ lookup j α → i ≡ j) (g : {i j : Fin n} → lookup i β ≡ lookup j β → i ≡ j) → i ≡ j pcompperm' m n i j α β p f g with toℕ i <? m | toℕ j <? m ... | yes i< | yes j< = fromℕ≤-inj m (m + n) i j i< j< (f (toℕ-injective li≡lj)) where li≡lj = begin (toℕ (lookup (fromℕ≤ i<) α) ≡⟨ inject+-lemma n (lookup (fromℕ≤ i<) α) ⟩ toℕ (inject+ n (lookup (fromℕ≤ i<) α)) ≡⟨ cong toℕ (sym (lookup-map (fromℕ≤ i<) (inject+ n) α)) ⟩ toℕ (lookup (fromℕ≤ i<) (mapV (inject+ n) α)) ≡⟨ cong toℕ (sym (lookup-++-< (mapV (inject+ n) α) (mapV (raise m) β) i i<)) ⟩ toℕ (lookup i (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ (lookup-++-< (mapV (inject+ n) α) (mapV (raise m) β) j j<) ⟩ toℕ (lookup (fromℕ≤ j<) (mapV (inject+ n) α)) ≡⟨ cong toℕ (lookup-map (fromℕ≤ j<) (inject+ n) α) ⟩ toℕ (inject+ n (lookup (fromℕ≤ j<) α)) ≡⟨ sym (inject+-lemma n (lookup (fromℕ≤ j<) α)) ⟩ toℕ (lookup (fromℕ≤ j<) α) ∎) where open ≡-Reasoning ... | yes i< | no j≥ = ⊥-elim (1+n≰n contra') where contra = begin (toℕ (lookup (fromℕ≤ i<) α) ≡⟨ inject+-lemma n (lookup (fromℕ≤ i<) α) ⟩ toℕ (inject+ n (lookup (fromℕ≤ i<) α)) ≡⟨ cong toℕ (sym (lookup-map (fromℕ≤ i<) (inject+ n) α)) ⟩ toℕ (lookup (fromℕ≤ i<) (mapV (inject+ n) α)) ≡⟨ cong toℕ (sym (lookup-++-< (mapV (inject+ n) α) (mapV (raise m) β) i i<)) ⟩ toℕ (lookup i (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ (lookup-++-≥ (mapV (inject+ n) α) (mapV (raise m) β) j (≤-pred (≰⇒> j≥))) ⟩ toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) (mapV (raise m) β)) ≡⟨ cong toℕ (lookup-map (reduce≥ j (≤-pred (≰⇒> j≥))) (raise m) β) ⟩ toℕ (raise m (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β)) ≡⟨ toℕ-raise m (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β) ⟩ m + toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β) ∎) where open ≡-Reasoning contra' = begin (suc (toℕ (lookup (fromℕ≤ i<) α)) ≤⟨ lookup-bounded m m (fromℕ≤ i<) α ⟩ m ≤⟨ m≤m+n m (toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β)) ⟩ m + toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β) ≡⟨ sym contra ⟩ toℕ (lookup (fromℕ≤ i<) α) ∎) where open ≤-Reasoning ... | no i≥ | yes j< = ⊥-elim (1+n≰n contra') where contra = begin (m + toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β) ≡⟨ sym (toℕ-raise m (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β)) ⟩ toℕ (raise m (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β)) ≡⟨ cong toℕ (sym (lookup-map (reduce≥ i (≤-pred (≰⇒> i≥))) (raise m) β)) ⟩ toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) (mapV (raise m) β)) ≡⟨ cong toℕ (sym (lookup-++-≥ (mapV (inject+ n) α) (mapV (raise m) β) i (≤-pred (≰⇒> i≥)))) ⟩ toℕ (lookup i (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ (lookup-++-< (mapV (inject+ n) α) (mapV (raise m) β) j j<) ⟩ toℕ (lookup (fromℕ≤ j<) (mapV (inject+ n) α)) ≡⟨ cong toℕ (lookup-map (fromℕ≤ j<) (inject+ n) α) ⟩ toℕ (inject+ n (lookup (fromℕ≤ j<) α)) ≡⟨ sym (inject+-lemma n (lookup (fromℕ≤ j<) α)) ⟩ toℕ (lookup (fromℕ≤ j<) α) ∎) where open ≡-Reasoning contra' = begin (suc (toℕ (lookup (fromℕ≤ j<) α)) ≤⟨ lookup-bounded m m (fromℕ≤ j<) α ⟩ m ≤⟨ m≤m+n m (toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β)) ⟩ m + toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β) ≡⟨ contra ⟩ toℕ (lookup (fromℕ≤ j<) α) ∎) where open ≤-Reasoning ... | no i≥ | no j≥ = reduce≥-inj m n i j (≤-pred (≰⇒> i≥)) (≤-pred (≰⇒> j≥)) (g (toℕ-injective (cancel-+-left m li≡lj))) where li≡lj = begin (m + toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β) ≡⟨ sym (toℕ-raise m (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β)) ⟩ toℕ (raise m (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) β)) ≡⟨ cong toℕ (sym (lookup-map (reduce≥ i (≤-pred (≰⇒> i≥))) (raise m) β)) ⟩ toℕ (lookup (reduce≥ i (≤-pred (≰⇒> i≥))) (mapV (raise m) β)) ≡⟨ cong toℕ (sym (lookup-++-≥ (mapV (inject+ n) α) (mapV (raise m) β) i (≤-pred (≰⇒> i≥)))) ⟩ toℕ (lookup i (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (mapV (inject+ n) α ++V mapV (raise m) β)) ≡⟨ cong toℕ (lookup-++-≥ (mapV (inject+ n) α) (mapV (raise m) β) j (≤-pred (≰⇒> j≥))) ⟩ toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) (mapV (raise m) β)) ≡⟨ cong toℕ (lookup-map (reduce≥ j (≤-pred (≰⇒> j≥))) (raise m) β) ⟩ toℕ (raise m (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β)) ≡⟨ toℕ-raise m (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β) ⟩ m + toℕ (lookup (reduce≥ j (≤-pred (≰⇒> j≥))) β) ∎) where open ≡-Reasoning pcompperm : ∀ {m n} → Permutation m → Permutation n → Permutation (m + n) pcompperm {m} {n} (α , f) (β , g) = (pcompcauchy α β , λ {i} {j} p → pcompperm' m n i j α β p f g) -- Tensor multiplicative composition -- Transpositions in α correspond to swapping entire rows -- Transpositions in β correspond to swapping entire columns tcompperm' : (m n : ℕ) (i j : Fin (m * n)) (α : Cauchy m) (β : Cauchy n) (f : {i j : Fin m} → lookup i α ≡ lookup j α → i ≡ j) (g : {i j : Fin n} → lookup i β ≡ lookup j β → i ≡ j) (p : lookup i (tcompcauchy α β) ≡ lookup j (tcompcauchy α β)) → (i ≡ j) tcompperm' m n i j α β f g p = let fin-result bi di deci deci' = fin-divMod m n i fin-result bj dj decj decj' = fin-divMod m n j (lookb≡ , lookd≡) = fin-addMul-lemma m n (lookup bi α) (lookup bj α) (lookup di β) (lookup dj β) sp (b≡ , d≡) = (f {bi} {bj} lookb≡ , g {di} {dj} lookd≡) bn+d≡ = cong₂ (λ b d → toℕ d + toℕ b * n) b≡ d≡ in toℕ-injective (trans deci (trans bn+d≡ (sym decj))) where sp = let fin-result bi di deci deci' = fin-divMod m n i fin-result bj dj decj decj' = fin-divMod m n j in begin (let b' = lookup bi α d' = lookup di β in toℕ b' * n + toℕ d' ≡⟨ sym (to-from _) ⟩ toℕ (let b' = lookup bi α d' = lookup di β in fromℕ (toℕ b' * n + toℕ d')) ≡⟨ sym (inject≤-lemma _ _) ⟩ toℕ (let b' = lookup bi α d' = lookup di β in inject≤ (fromℕ (toℕ b' * n + toℕ d')) (i*n+k≤m*n b' d')) ≡⟨ cong toℕ (sym (lookup-2d m n i α β (λ {(b , d) → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)}))) ⟩ toℕ (lookup i (tcompcauchy α β)) ≡⟨ cong toℕ p ⟩ toℕ (lookup j (tcompcauchy α β)) ≡⟨ cong toℕ (lookup-2d m n j α β (λ {(b , d) → inject≤ (fromℕ (toℕ b * n + toℕ d)) (i*n+k≤m*n b d)})) ⟩ toℕ (let b' = lookup bj α d' = lookup dj β in inject≤ (fromℕ (toℕ b' * n + toℕ d')) (i*n+k≤m*n b' d')) ≡⟨ inject≤-lemma _ _ ⟩ toℕ (let b' = lookup bj α d' = lookup dj β in fromℕ (toℕ b' * n + toℕ d')) ≡⟨ to-from _ ⟩ let b' = lookup bj α d' = lookup dj β in toℕ b' * n + toℕ d' ∎) where open ≡-Reasoning tcompperm : ∀ {m n} → Permutation m → Permutation n → Permutation (m * n) tcompperm {m} {n} (α , f) (β , g) = (tcompcauchy α β , λ {i} {j} p → tcompperm' m n i j α β f g p) -- swap⋆ -- -- This is essentially the classical problem of in-place matrix transpose: -- "http://en.wikipedia.org/wiki/In-place_matrix_transposition" -- Given m and n, the desired permutation in Cauchy representation is: -- P(i) = m*n-1 if i=m*n-1 -- = m*i mod m*n-1 otherwise transpose≡ : (m n : ℕ) (i j : Fin (m * n)) (bi bj : Fin m) (di dj : Fin n) (deci : toℕ i ≡ toℕ di + toℕ bi * n) (decj : toℕ j ≡ toℕ dj + toℕ bj * n) (tpr : transposeIndex m n bi di ≡ transposeIndex m n bj dj) → (i ≡ j) transpose≡ m n i j bi bj di dj deci decj tpr = let (d≡ , b≡) = fin-addMul-lemma n m di dj bi bj stpr d+bn≡ = cong₂ (λ x y → toℕ x + toℕ y * n) d≡ b≡ in toℕ-injective (trans deci (trans d+bn≡ (sym decj))) where stpr = begin (toℕ di * m + toℕ bi ≡⟨ sym (to-from _) ⟩ toℕ (fromℕ (toℕ di * m + toℕ bi)) ≡⟨ sym (inject≤-lemma _ _) ⟩ toℕ (inject≤ (fromℕ (toℕ di * m + toℕ bi)) (trans≤ (i*n+k≤m*n di bi) (refl′ (*-comm n m)))) ≡⟨ cong toℕ tpr ⟩ toℕ (inject≤ (fromℕ (toℕ dj * m + toℕ bj)) (trans≤ (i*n+k≤m*n dj bj) (refl′ (*-comm n m)))) ≡⟨ inject≤-lemma _ _ ⟩ toℕ (fromℕ (toℕ dj * m + toℕ bj)) ≡⟨ to-from _ ⟩ toℕ dj * m + toℕ bj ∎) where open ≡-Reasoning swap⋆perm' : (m n : ℕ) (i j : Fin (m * n)) (p : lookup i (swap⋆cauchy m n) ≡ lookup j (swap⋆cauchy m n)) → (i ≡ j) swap⋆perm' m n i j p = let fin-result bi di deci _ = fin-divMod m n i fin-result bj dj decj _ = fin-divMod m n j in transpose≡ m n i j bi bj di dj deci decj pr where pr = let fin-result bi di _ _ = fin-divMod m n i fin-result bj dj _ _ = fin-divMod m n j in begin (transposeIndex m n bi di ≡⟨ cong₂ (transposeIndex m n) (sym (lookup-allFin bi)) (sym (lookup-allFin di)) ⟩ transposeIndex m n (lookup bi (allFin m)) (lookup di (allFin n)) ≡⟨ sym (lookup-2d m n i (allFin m) (allFin n) (λ {(b , d) → transposeIndex m n b d})) ⟩ lookup i (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin n)) (allFin m))) ≡⟨ p ⟩ lookup j (concatV (mapV (λ b → mapV (λ d → transposeIndex m n b d) (allFin n)) (allFin m))) ≡⟨ lookup-2d m n j (allFin m) (allFin n) (λ {(b , d) → transposeIndex m n b d}) ⟩ transposeIndex m n (lookup bj (allFin m)) (lookup dj (allFin n)) ≡⟨ cong₂ (transposeIndex m n) (lookup-allFin bj) (lookup-allFin dj) ⟩ transposeIndex m n bj dj ∎) where open ≡-Reasoning swap⋆perm : (m n : ℕ) → Permutation (m * n) swap⋆perm m n = (swap⋆cauchy m n , λ {i} {j} p → swap⋆perm' m n i j p) ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4154708635, "avg_line_length": 46.2928571429, "ext": "agda", "hexsha": "d3ac86f7b652b313e47816060873f66225a638d1", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Perm.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Perm.agda", "max_line_length": 98, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Perm.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 14815, "size": 38886 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise lifting of relations to lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Pointwise where open import Function.Base open import Function.Inverse using (Inverse) open import Data.Bool.Base using (true; false) open import Data.Product hiding (map) open import Data.List.Base as List hiding (map; head; tail; uncons) open import Data.List.Properties using (≡-dec; length-++) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.AllPairs using (AllPairs; []; _∷_) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Data.Fin.Base using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Nat.Properties open import Level open import Relation.Nullary hiding (Irrelevant) open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec using (map′) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Unary as U using (Pred) open import Relation.Binary renaming (Rel to Rel₂) open import Relation.Binary.PropositionalEquality as P using (_≡_) private variable a b c d p q r ℓ ℓ₁ ℓ₂ ℓ₃ : Level A : Set a B : Set b C : Set c D : Set d ------------------------------------------------------------------------ -- Definition infixr 5 _∷_ data Pointwise {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where [] : Pointwise _∼_ [] [] _∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Pointwise _∼_ xs ys) → Pointwise _∼_ (x ∷ xs) (y ∷ ys) ------------------------------------------------------------------------ -- Operations module _ {_∼_ : REL A B ℓ} where head : ∀ {x y xs ys} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y head (x∼y ∷ xs∼ys) = x∼y tail : ∀ {x y xs ys} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → Pointwise _∼_ xs ys tail (x∼y ∷ xs∼ys) = xs∼ys uncons : ∀ {x y xs ys} → Pointwise _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y × Pointwise _∼_ xs ys uncons = < head , tail > rec : ∀ (P : ∀ {xs ys} → Pointwise _∼_ xs ys → Set c) → (∀ {x y xs ys} {xs∼ys : Pointwise _∼_ xs ys} → (x∼y : x ∼ y) → P xs∼ys → P (x∼y ∷ xs∼ys)) → P [] → ∀ {xs ys} (xs∼ys : Pointwise _∼_ xs ys) → P xs∼ys rec P c n [] = n rec P c n (x∼y ∷ xs∼ys) = c x∼y (rec P c n xs∼ys) map : ∀ {_≈_ : REL A B ℓ₂} → _≈_ ⇒ _∼_ → Pointwise _≈_ ⇒ Pointwise _∼_ map ≈⇒∼ [] = [] map ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ map ≈⇒∼ xs≈ys ------------------------------------------------------------------------ -- Relational properties reflexive : ∀ {_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} → _≈_ ⇒ _∼_ → Pointwise _≈_ ⇒ Pointwise _∼_ reflexive ≈⇒∼ [] = [] reflexive ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ reflexive ≈⇒∼ xs≈ys refl : ∀ {_∼_ : Rel₂ A ℓ} → Reflexive _∼_ → Reflexive (Pointwise _∼_) refl rfl {[]} = [] refl rfl {x ∷ xs} = rfl ∷ refl rfl symmetric : ∀ {_≈_ : REL A B ℓ₁} {_∼_ : REL B A ℓ₂} → Sym _≈_ _∼_ → Sym (Pointwise _≈_) (Pointwise _∼_) symmetric sym [] = [] symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys transitive : ∀ {_≋_ : REL A B ℓ₁} {_≈_ : REL B C ℓ₂} {_∼_ : REL A C ℓ₃} → Trans _≋_ _≈_ _∼_ → Trans (Pointwise _≋_) (Pointwise _≈_) (Pointwise _∼_) transitive trans [] [] = [] transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) = trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs antisymmetric : ∀ {_≤_ : REL A B ℓ₁} {_≤′_ : REL B A ℓ₂} {_≈_ : REL A B ℓ₃} → Antisym _≤_ _≤′_ _≈_ → Antisym (Pointwise _≤_) (Pointwise _≤′_) (Pointwise _≈_) antisymmetric antisym [] [] = [] antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) = antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs respects₂ : ∀ {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} → _∼_ Respects₂ _≈_ → (Pointwise _∼_) Respects₂ (Pointwise _≈_) respects₂ {_≈_ = _≈_} {_∼_} resp = respʳ , respˡ where respʳ : (Pointwise _∼_) Respectsʳ (Pointwise _≈_) respʳ [] [] = [] respʳ (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) = proj₁ resp x≈y z∼x ∷ respʳ xs≈ys zs∼xs respˡ : (Pointwise _∼_) Respectsˡ (Pointwise _≈_) respˡ [] [] = [] respˡ (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) = proj₂ resp x≈y x∼z ∷ respˡ xs≈ys xs∼zs module _ {_∼_ : REL A B ℓ} (dec : Decidable _∼_) where decidable : Decidable (Pointwise _∼_) decidable [] [] = yes [] decidable [] (y ∷ ys) = no (λ ()) decidable (x ∷ xs) [] = no (λ ()) decidable (x ∷ xs) (y ∷ ys) = Dec.map′ (uncurry _∷_) uncons (dec x y ×-dec decidable xs ys) module _ {_≈_ : Rel₂ A ℓ} where isEquivalence : IsEquivalence _≈_ → IsEquivalence (Pointwise _≈_) isEquivalence eq = record { refl = refl Eq.refl ; sym = symmetric Eq.sym ; trans = transitive Eq.trans } where module Eq = IsEquivalence eq isDecEquivalence : IsDecEquivalence _≈_ → IsDecEquivalence (Pointwise _≈_) isDecEquivalence eq = record { isEquivalence = isEquivalence DE.isEquivalence ; _≟_ = decidable DE._≟_ } where module DE = IsDecEquivalence eq module _ {_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} where isPreorder : IsPreorder _≈_ _∼_ → IsPreorder (Pointwise _≈_) (Pointwise _∼_) isPreorder pre = record { isEquivalence = isEquivalence Pre.isEquivalence ; reflexive = reflexive Pre.reflexive ; trans = transitive Pre.trans } where module Pre = IsPreorder pre isPartialOrder : IsPartialOrder _≈_ _∼_ → IsPartialOrder (Pointwise _≈_) (Pointwise _∼_) isPartialOrder po = record { isPreorder = isPreorder PO.isPreorder ; antisym = antisymmetric PO.antisym } where module PO = IsPartialOrder po setoid : Setoid a ℓ → Setoid a (a ⊔ ℓ) setoid s = record { isEquivalence = isEquivalence (Setoid.isEquivalence s) } decSetoid : DecSetoid a ℓ → DecSetoid a (a ⊔ ℓ) decSetoid d = record { isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d) } preorder : Preorder a ℓ₁ ℓ₂ → Preorder _ _ _ preorder p = record { isPreorder = isPreorder (Preorder.isPreorder p) } poset : Poset a ℓ₁ ℓ₂ → Poset _ _ _ poset p = record { isPartialOrder = isPartialOrder (Poset.isPartialOrder p) } ------------------------------------------------------------------------ -- Relationships to other predicates module _ {_∼_ : Rel₂ A ℓ} {P : Pred A p} where All-resp-Pointwise : P Respects _∼_ → (All P) Respects (Pointwise _∼_) All-resp-Pointwise resp [] [] = [] All-resp-Pointwise resp (x∼y ∷ xs) (px ∷ pxs) = resp x∼y px ∷ All-resp-Pointwise resp xs pxs Any-resp-Pointwise : P Respects _∼_ → (Any P) Respects (Pointwise _∼_) Any-resp-Pointwise resp (x∼y ∷ xs) (here px) = here (resp x∼y px) Any-resp-Pointwise resp (x∼y ∷ xs) (there pxs) = there (Any-resp-Pointwise resp xs pxs) module _ {_∼_ : Rel₂ A ℓ} {R : Rel₂ A r} where AllPairs-resp-Pointwise : R Respects₂ _∼_ → (AllPairs R) Respects (Pointwise _∼_) AllPairs-resp-Pointwise _ [] [] = [] AllPairs-resp-Pointwise resp@(respₗ , respᵣ) (x∼y ∷ xs) (px ∷ pxs) = All-resp-Pointwise respₗ xs (All.map (respᵣ x∼y) px) ∷ (AllPairs-resp-Pointwise resp xs pxs) ------------------------------------------------------------------------ -- length module _ {_∼_ : REL A B ℓ} where Pointwise-length : ∀ {xs ys} → Pointwise _∼_ xs ys → length xs ≡ length ys Pointwise-length [] = P.refl Pointwise-length (x∼y ∷ xs∼ys) = P.cong ℕ.suc (Pointwise-length xs∼ys) ------------------------------------------------------------------------ -- tabulate module _ {_∼_ : REL A B ℓ} where tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → (∀ i → f i ∼ g i) → Pointwise _∼_ (tabulate f) (tabulate g) tabulate⁺ {zero} f∼g = [] tabulate⁺ {suc n} f∼g = f∼g fzero ∷ tabulate⁺ (f∼g ∘ fsuc) tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → B} → Pointwise _∼_ (tabulate f) (tabulate g) → (∀ i → f i ∼ g i) tabulate⁻ {suc n} (x∼y ∷ xs∼ys) fzero = x∼y tabulate⁻ {suc n} (x∼y ∷ xs∼ys) (fsuc i) = tabulate⁻ xs∼ys i ------------------------------------------------------------------------ -- _++_ module _ {_∼_ : REL A B ℓ} where ++⁺ : ∀ {ws xs ys zs} → Pointwise _∼_ ws xs → Pointwise _∼_ ys zs → Pointwise _∼_ (ws ++ ys) (xs ++ zs) ++⁺ [] ys∼zs = ys∼zs ++⁺ (w∼x ∷ ws∼xs) ys∼zs = w∼x ∷ ++⁺ ws∼xs ys∼zs module _ {_∼_ : Rel₂ A ℓ} where ++-cancelˡ : ∀ xs {ys zs : List A} → Pointwise _∼_ (xs ++ ys) (xs ++ zs) → Pointwise _∼_ ys zs ++-cancelˡ [] ys∼zs = ys∼zs ++-cancelˡ (x ∷ xs) (_ ∷ xs++ys∼xs++zs) = ++-cancelˡ xs xs++ys∼xs++zs ++-cancelʳ : ∀ {xs : List A} ys zs → Pointwise _∼_ (ys ++ xs) (zs ++ xs) → Pointwise _∼_ ys zs ++-cancelʳ [] [] _ = [] ++-cancelʳ (y ∷ ys) (z ∷ zs) (y∼z ∷ ys∼zs) = y∼z ∷ (++-cancelʳ ys zs ys∼zs) -- Impossible cases ++-cancelʳ {xs} [] (z ∷ zs) eq = contradiction (P.trans (Pointwise-length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs)) ++-cancelʳ {xs} (y ∷ ys) [] eq = contradiction (P.trans (P.sym (length-++ (y ∷ ys))) (Pointwise-length eq)) (m≢1+n+m (length xs) ∘ P.sym) ------------------------------------------------------------------------ -- concat module _ {_∼_ : REL A B ℓ} where concat⁺ : ∀ {xss yss} → Pointwise (Pointwise _∼_) xss yss → Pointwise _∼_ (concat xss) (concat yss) concat⁺ [] = [] concat⁺ (xs∼ys ∷ xss∼yss) = ++⁺ xs∼ys (concat⁺ xss∼yss) ------------------------------------------------------------------------ -- reverse module _ {R : REL A B ℓ} where reverseAcc⁺ : ∀ {as bs as′ bs′} → Pointwise R as′ bs′ → Pointwise R as bs → Pointwise R (reverseAcc as′ as) (reverseAcc bs′ bs) reverseAcc⁺ rs′ [] = rs′ reverseAcc⁺ rs′ (r ∷ rs) = reverseAcc⁺ (r ∷ rs′) rs ʳ++⁺ : ∀ {as bs as′ bs′} → Pointwise R as bs → Pointwise R as′ bs′ → Pointwise R (as ʳ++ as′) (bs ʳ++ bs′) ʳ++⁺ rs rs′ = reverseAcc⁺ rs′ rs reverse⁺ : ∀ {as bs} → Pointwise R as bs → Pointwise R (reverse as) (reverse bs) reverse⁺ = reverseAcc⁺ [] ------------------------------------------------------------------------ -- map module _ {R : REL C D ℓ} where map⁺ : ∀ {as bs} (f : A → C) (g : B → D) → Pointwise (λ a b → R (f a) (g b)) as bs → Pointwise R (List.map f as) (List.map g bs) map⁺ f g [] = [] map⁺ f g (r ∷ rs) = r ∷ map⁺ f g rs map⁻ : ∀ {as bs} (f : A → C) (g : B → D) → Pointwise R (List.map f as) (List.map g bs) → Pointwise (λ a b → R (f a) (g b)) as bs map⁻ {as = []} {[]} f g [] = [] map⁻ {as = []} {b ∷ bs} f g rs = contradiction (Pointwise-length rs) λ() map⁻ {as = a ∷ as} {[]} f g rs = contradiction (Pointwise-length rs) λ() map⁻ {as = a ∷ as} {b ∷ bs} f g (r ∷ rs) = r ∷ map⁻ f g rs ------------------------------------------------------------------------ -- filter module _ {R : REL A B ℓ} {P : Pred A p} {Q : Pred B q} (P? : U.Decidable P) (Q? : U.Decidable Q) (P⇒Q : ∀ {a b} → R a b → P a → Q b) (Q⇒P : ∀ {a b} → R a b → Q b → P a) where filter⁺ : ∀ {as bs} → Pointwise R as bs → Pointwise R (filter P? as) (filter Q? bs) filter⁺ [] = [] filter⁺ {a ∷ _} {b ∷ _} (r ∷ rs) with P? a | Q? b ... | true because _ | true because _ = r ∷ filter⁺ rs ... | false because _ | false because _ = filter⁺ rs ... | yes p | no ¬q = contradiction (P⇒Q r p) ¬q ... | no ¬p | yes q = contradiction (Q⇒P r q) ¬p ------------------------------------------------------------------------ -- replicate module _ {R : REL A B ℓ} where replicate⁺ : ∀ {a b} → R a b → ∀ n → Pointwise R (replicate n a) (replicate n b) replicate⁺ r 0 = [] replicate⁺ r (suc n) = r ∷ replicate⁺ r n ------------------------------------------------------------------------ -- Irrelevance module _ {R : REL A B ℓ} where irrelevant : Irrelevant R → Irrelevant (Pointwise R) irrelevant R-irr [] [] = P.refl irrelevant R-irr (r ∷ rs) (r₁ ∷ rs₁) = P.cong₂ _∷_ (R-irr r r₁) (irrelevant R-irr rs rs₁) ------------------------------------------------------------------------ -- Properties of propositional pointwise Pointwise-≡⇒≡ : Pointwise {A = A} _≡_ ⇒ _≡_ Pointwise-≡⇒≡ [] = P.refl Pointwise-≡⇒≡ (P.refl ∷ xs∼ys) with Pointwise-≡⇒≡ xs∼ys ... | P.refl = P.refl ≡⇒Pointwise-≡ : _≡_ ⇒ Pointwise {A = A} _≡_ ≡⇒Pointwise-≡ P.refl = refl P.refl Pointwise-≡↔≡ : Inverse (setoid (P.setoid A)) (P.setoid (List A)) Pointwise-≡↔≡ = record { to = record { _⟨$⟩_ = id; cong = Pointwise-≡⇒≡ } ; from = record { _⟨$⟩_ = id; cong = ≡⇒Pointwise-≡ } ; inverse-of = record { left-inverse-of = λ _ → refl P.refl ; right-inverse-of = λ _ → P.refl } } ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 0.15 Rel = Pointwise {-# WARNING_ON_USAGE Rel "Warning: Rel was deprecated in v0.15. Please use Pointwise instead." #-} Rel≡⇒≡ = Pointwise-≡⇒≡ {-# WARNING_ON_USAGE Rel≡⇒≡ "Warning: Rel≡⇒≡ was deprecated in v0.15. Please use Pointwise-≡⇒≡ instead." #-} ≡⇒Rel≡ = ≡⇒Pointwise-≡ {-# WARNING_ON_USAGE ≡⇒Rel≡ "Warning: ≡⇒Rel≡ was deprecated in v0.15. Please use ≡⇒Pointwise-≡ instead." #-} Rel↔≡ = Pointwise-≡↔≡ {-# WARNING_ON_USAGE Rel↔≡ "Warning: Rel↔≡ was deprecated in v0.15. Please use Pointwise-≡↔≡ instead." #-} -- Version 1.0 decidable-≡ = ≡-dec {-# WARNING_ON_USAGE decidable-≡ "Warning: decidable-≡ was deprecated in v1.0. Please use ≡-dec from `Data.List.Properties` instead." #-}
{ "alphanum_fraction": 0.5120180447, "avg_line_length": 35.8257575758, "ext": "agda", "hexsha": "b3df9abd0e9740bf9ad206166b10e99214655fed", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Pointwise.agda", "max_line_length": 108, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5292, "size": 14187 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Functions.Definition open import Orders.WellFounded.Definition module Orders.WellFounded.Induction {a b : _} {A : Set a} {_<_ : Rel {a} {b} A} (wf : WellFounded _<_) where private foldAcc : {c : _} (P : A → Set c) → (∀ x → (∀ y → y < x → P y) → P x) → ∀ z → Accessible _<_ z → P z foldAcc P inductionProof = go where go : (z : A) → (Accessible _<_ z) → P z go z (access prf) = inductionProof z (λ y yLessZ → go y (prf y yLessZ)) rec : {c : _} (P : A → Set c) → (∀ x → (∀ y → y < x → P y) → P x) → (∀ z → P z) rec P inductionProof z = foldAcc P inductionProof _ (wf z)
{ "alphanum_fraction": 0.5491923642, "avg_line_length": 27.24, "ext": "agda", "hexsha": "2911314cd50ac61892f1607c1c1214779d257db1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Orders/WellFounded/Induction.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Orders/WellFounded/Induction.agda", "max_line_length": 108, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Orders/WellFounded/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 252, "size": 681 }
module DecidableMembership where open import OscarPrelude open import Membership open import Successor record DecidableMembership {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set (⊹ ℓ) where field _∈?_ : (x : m) → (X : M) → Dec $ x ∈ X field _∉?_ : (x : m) → (X : M) → Dec $ x ∉ X open DecidableMembership ⦃ … ⦄ public instance DecidableMembershipList : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → DecidableMembership A $ List A DecidableMembership._∈?_ (DecidableMembershipList {ℓ} {A}) = _∈List?_ where _∈List?_ : (a : A) → (xs : List A) → Dec (a ∈ xs) a ∈List? [] = no λ () a ∈List? (x ∷ xs) with a ≟ x … | yes a≡x rewrite a≡x = yes zero … | no a≢x with a ∈List? xs … | yes a∈xs = yes (⊹ a∈xs) … | no a∉xs = no (λ {zero → a≢x refl ; (suc a∈xs) → a∉xs a∈xs}) DecidableMembership._∉?_ (DecidableMembershipList {ℓ} {A}) x X with x ∈? X DecidableMembership._∉?_ (DecidableMembershipList {ℓ} {A}) x X | yes x∈X = no (λ x∉X → x∉X x∈X) DecidableMembership._∉?_ (DecidableMembershipList {ℓ} {A}) x X | no x∉X = yes x∉X
{ "alphanum_fraction": 0.6052123552, "avg_line_length": 37, "ext": "agda", "hexsha": "e0fa54ead15d3b772ed888369d864c17da5f98c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/DecidableMembership.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/DecidableMembership.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/DecidableMembership.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 451, "size": 1036 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The Delay type and some operations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Delay where open import Size open import Codata.Thunk using (Thunk; force) open import Codata.Conat using (Conat; zero; suc; Finite) open import Data.Empty open import Relation.Nullary open import Data.Nat.Base open import Data.Maybe.Base hiding (map ; fromMaybe ; zipWith ; alignWith ; zip ; align) open import Data.Product as P hiding (map ; zip) open import Data.Sum as S hiding (map) open import Data.These as T using (These; this; that; these) open import Function ------------------------------------------------------------------------ -- Definition data Delay {ℓ} (A : Set ℓ) (i : Size) : Set ℓ where now : A → Delay A i later : Thunk (Delay A) i → Delay A i module _ {ℓ} {A : Set ℓ} where length : ∀ {i} → Delay A i → Conat i length (now _) = zero length (later d) = suc λ where .force → length (d .force) never : ∀ {i} → Delay A i never = later λ where .force → never fromMaybe : Maybe A → Delay A ∞ fromMaybe = maybe now never runFor : ℕ → Delay A ∞ → Maybe A runFor zero d = nothing runFor (suc n) (now a) = just a runFor (suc n) (later d) = runFor n (d .force) module _ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} where map : (A → B) → ∀ {i} → Delay A i → Delay B i map f (now a) = now (f a) map f (later d) = later λ where .force → map f (d .force) bind : ∀ {i} → Delay A i → (A → Delay B i) → Delay B i bind (now a) f = f a bind (later d) f = later λ where .force → bind (d .force) f unfold : (A → A ⊎ B) → A → ∀ {i} → Delay B i unfold next seed with next seed ... | inj₁ seed′ = later λ where .force → unfold next seed′ ... | inj₂ b = now b module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where zipWith : (A → B → C) → ∀ {i} → Delay A i → Delay B i → Delay C i zipWith f (now a) d = map (f a) d zipWith f d (now b) = map (λ a → f a b) d zipWith f (later a) (later b) = later λ where .force → zipWith f (a .force) (b .force) alignWith : (These A B → C) → ∀ {i} → Delay A i → Delay B i → Delay C i alignWith f (now a) (now b) = now (f (these a b)) alignWith f (now a) (later _) = now (f (this a)) alignWith f (later _) (now b) = now (f (that b)) alignWith f (later a) (later b) = later λ where .force → alignWith f (a .force) (b .force) module _ {a b} {A : Set a} {B : Set b} where zip : ∀ {i} → Delay A i → Delay B i → Delay (A × B) i zip = zipWith _,_ align : ∀ {i} → Delay A i → Delay B i → Delay (These A B) i align = alignWith id ------------------------------------------------------------------------ -- Finite Delays module _ {ℓ} {A : Set ℓ} where infix 3 _⇓ data _⇓ : Delay A ∞ → Set ℓ where now : ∀ a → now a ⇓ later : ∀ {d} → d .force ⇓ → later d ⇓ extract : ∀ {d} → d ⇓ → A extract (now a) = a extract (later d) = extract d ¬never⇓ : ¬ (never ⇓) ¬never⇓ (later p) = ¬never⇓ p length-⇓ : ∀ {d} → d ⇓ → Finite (length d) length-⇓ (now a) = zero length-⇓ (later d⇓) = suc (length-⇓ d⇓) module _ {ℓ ℓ′} {A : Set ℓ} {B : Set ℓ′} where map-⇓ : ∀ (f : A → B) {d} → d ⇓ → map f d ⇓ map-⇓ f (now a) = now (f a) map-⇓ f (later d) = later (map-⇓ f d) bind-⇓ : ∀ {m} (m⇓ : m ⇓) {f : A → Delay B ∞} → f (extract m⇓) ⇓ → bind m f ⇓ bind-⇓ (now a) fa⇓ = fa⇓ bind-⇓ (later p) fa⇓ = later (bind-⇓ p fa⇓)
{ "alphanum_fraction": 0.5205749718, "avg_line_length": 30.852173913, "ext": "agda", "hexsha": "f92a9cfe1ce84deb6102c2a67ef1a6dae0bf5477", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Delay.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1265, "size": 3548 }