The Dataset Viewer has been disabled on this dataset.

Dataset Classification Script

GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured generation.

πŸš€ Quick Start

# Classify IMDB reviews
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-classified

That's it! No installation, no setup - just uv run.

πŸ“‹ Requirements

  • GPU Required: Uses GPU-accelerated inference
  • Python 3.10+
  • UV (will handle all dependencies automatically)
  • vLLM >= 0.6.6

🎯 Features

  • Guaranteed valid outputs using structured generation with guided decoding
  • Zero-shot classification without training data required
  • GPU-optimized for maximum throughput and efficiency
  • Default model: HuggingFaceTB/SmolLM3-3B (fast 3B model with thinking capabilities)
  • Robust text handling with preprocessing and validation
  • Automatic progress tracking and detailed statistics
  • Direct Hub integration - read and write datasets seamlessly
  • Label descriptions support for providing context to improve accuracy
  • Reasoning mode for interpretable classifications with thinking traces
  • JSON output parsing for reliable extraction from reasoning mode
  • Optimized batching with vLLM's automatic batch processing
  • Multiple guided backends - supports outlines, xgrammar, and more

πŸ’» Usage

Basic Classification

uv run classify-dataset.py \
  --input-dataset <dataset-id> \
  --column <text-column> \
  --labels <comma-separated-labels> \
  --output-dataset <output-id>

Arguments

Required:

  • --input-dataset: Hugging Face dataset ID (e.g., stanfordnlp/imdb, user/my-dataset)
  • --column: Name of the text column to classify
  • --labels: Comma-separated classification labels (e.g., "spam,ham")
  • --output-dataset: Where to save the classified dataset

Optional:

  • --model: Model to use (default: HuggingFaceTB/SmolLM3-3B - a fast 3B parameter model)
  • --label-descriptions: Provide descriptions for each label to improve classification accuracy
  • --enable-reasoning: Enable reasoning mode with thinking traces (adds reasoning column)
  • --split: Dataset split to process (default: train)
  • --max-samples: Limit samples for testing
  • --shuffle: Shuffle dataset before selecting samples (useful for random sampling)
  • --shuffle-seed: Random seed for shuffling (default: 42)
  • --temperature: Generation temperature (default: 0.1)
  • --guided-backend: Backend for guided decoding (default: outlines)
  • --hf-token: Hugging Face token (or use HF_TOKEN env var)

Label Descriptions

Provide context for your labels to improve classification accuracy:

uv run classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature,question,other" \
  --label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \
  --output-dataset user/tickets-classified

The model uses these descriptions to better understand what each label represents, leading to more accurate classifications.

Reasoning Mode

Enable thinking traces for interpretable classifications:

uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative,neutral" \
  --enable-reasoning \
  --output-dataset user/imdb-with-reasoning

When --enable-reasoning is used:

  • The model generates step-by-step reasoning using SmolLM3's thinking capabilities
  • Output includes three columns: classification, reasoning, and parsing_success
  • Final answer must be in JSON format: {"label": "chosen_label"}
  • Useful for understanding complex classification decisions
  • Trade-off: Slower but more interpretable

πŸ“Š Examples

Sentiment Analysis

uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-sentiment

Support Ticket Classification

uv run classify-dataset.py \
  --input-dataset user/support-tickets \
  --column content \
  --labels "bug,feature_request,question,other" \
  --label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \
  --output-dataset user/tickets-classified

News Categorization

uv run classify-dataset.py \
  --input-dataset ag_news \
  --column text \
  --labels "world,sports,business,tech" \
  --output-dataset user/ag-news-categorized \
  --model meta-llama/Llama-3.2-3B-Instruct

Complex Classification with Reasoning

uv run classify-dataset.py \
  --input-dataset user/customer-feedback \
  --column text \
  --labels "very_positive,positive,neutral,negative,very_negative" \
  --label-descriptions "very_positive:extremely satisfied,positive:generally satisfied,neutral:mixed feelings,negative:dissatisfied,very_negative:extremely dissatisfied" \
  --enable-reasoning \
  --output-dataset user/feedback-analyzed

This combines label descriptions with reasoning mode for maximum interpretability.

ArXiv ML Research Classification

Classify academic papers into machine learning research areas:

# Fast classification with random sampling
uv run classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
  --label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \
  --output-dataset user/arxiv-ml-classified \
  --split "train[:10000]" \
  --max-samples 100 \
  --shuffle

# With reasoning for nuanced classification
uv run classify-dataset.py \
  --input-dataset librarian-bots/arxiv-metadata-snapshot \
  --column abstract \
  --labels "multimodal,agents,reasoning,safety,efficiency" \
  --label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \
  --enable-reasoning \
  --output-dataset user/arxiv-frontier-research \
  --split "train[:1000]" \
  --max-samples 50

The reasoning mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine the primary focus.

πŸš€ Running on HF Jobs

Optimized for Hugging Face Jobs (requires Pro subscription or Team/Enterprise organization):

# Run on L4 GPU with vLLM image
hf jobs uv run \
  --flavor l4x1 \
  --image vllm/vllm-openai:latest \
  https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-classified

GPU Flavors

  • t4-small: Budget option for smaller models
  • l4x1: Good balance for 7B models
  • a10g-small: Fast inference for 3B models
  • a10g-large: More memory for larger models
  • a100-large: Maximum performance

πŸ”§ Advanced Usage

Random Sampling

When working with ordered datasets, use --shuffle with --max-samples to get a representative sample:

# Get 50 random reviews instead of the first 50
uv run classify-dataset.py \
  --input-dataset stanfordnlp/imdb \
  --column text \
  --labels "positive,negative" \
  --output-dataset user/imdb-sample \
  --max-samples 50 \
  --shuffle \
  --shuffle-seed 123  # For reproducibility

This is especially important for:

  • Chronologically ordered datasets (news, papers, social media)
  • Pre-sorted datasets (by rating, category, etc.)
  • Testing on diverse samples before processing the full dataset

Using Different Models

By default, this script uses HuggingFaceTB/SmolLM3-3B - a fast, efficient 3B parameter model that's perfect for most classification tasks. You can easily use any other instruction-tuned model:

# Larger model for complex classification
uv run classify-dataset.py \
  --input-dataset user/legal-docs \
  --column text \
  --labels "contract,patent,brief,memo,other" \
  --output-dataset user/legal-classified \
  --model Qwen/Qwen2.5-7B-Instruct

Large Datasets

vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention:

uv run classify-dataset.py \
  --input-dataset user/huge-dataset \
  --column text \
  --labels "A,B,C" \
  --output-dataset user/huge-classified

πŸ“ˆ Performance

  • SmolLM3-3B (default): ~50-100 texts/second on A10
  • 7B models: ~20-50 texts/second on A10
  • vLLM automatically optimizes batching for best throughput
  • Performance scales with GPU memory and compute capability

🀝 How It Works

  1. vLLM: Provides efficient GPU batch inference with automatic batching
  2. Guided Decoding: Uses outlines backend to guarantee valid label outputs
  3. Structured Generation: Constrains model outputs to exact label choices
  4. UV: Handles all dependencies automatically

The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs, then saves the results as a new column in the output dataset.

πŸ› Troubleshooting

CUDA Not Available

This script requires a GPU. Run it on:

  • A machine with NVIDIA GPU
  • HF Jobs (recommended)
  • Cloud GPU instances

Out of Memory

  • Use a smaller model
  • Use a larger GPU (e.g., a100-large)

Invalid/Skipped Texts

  • Texts shorter than 3 characters are skipped
  • Empty or None values are marked as invalid
  • Very long texts are truncated to 4000 characters

Classification Quality

  • With guided decoding, outputs are guaranteed to be valid labels
  • For better results, use clear and distinct label names
  • Try the reasoning prompt style for complex classifications
  • Use a larger model for nuanced tasks

vLLM Version Issues

If you see ImportError: cannot import name 'GuidedDecodingParams':

  • Your vLLM version is too old (requires >= 0.6.6)
  • The script specifies the correct version in its dependencies
  • UV should automatically install the correct version

πŸ”¬ Advanced Workflows

For complex real-world workflows that integrate UV scripts with the Python HF Jobs API, see the ArXiv ML Trends example. This demonstrates:

  • Multi-stage pipelines: Data preparation β†’ GPU classification β†’ Analysis
  • Python API orchestration: Using run_uv_job() to manage GPU jobs programmatically
  • Production patterns: Error handling, parallel execution, and incremental updates
  • Cost optimization: Choosing appropriate compute resources for each task
# Example: Submit a classification job via Python API
from huggingface_hub import run_uv_job

job = run_uv_job(
    script="https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py",
    args=["--input-dataset", "my/dataset", "--labels", "A,B,C"],
    flavor="l4x1",
    image="vllm/vllm-openai:latest"
)
result = job.wait()

πŸ“ License

This script is provided as-is for use with the UV Scripts organization.

Downloads last month
77