File size: 16,475 Bytes
1d07414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "sglang[all]",
# "flashinfer-python",
# "transformers",
# "torch",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
#
# [[tool.uv.index]]
# name = "flashinfer"
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
# ///
"""
Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models.
This script provides efficient GPU-based classification with optional reasoning support,
optimized for models like SmolLM3-3B that use <think> tokens for chain-of-thought.
Example:
# Fast classification without reasoning
uv run classify-dataset-sglang.py \\
--input-dataset imdb \\
--column text \\
--labels "positive,negative" \\
--output-dataset user/imdb-classified
# Complex classification with reasoning
uv run classify-dataset-sglang.py \\
--input-dataset arxiv-papers \\
--column abstract \\
--labels "reasoning_systems,agents,multimodal,robotics,other" \\
--output-dataset user/arxiv-classified \\
--reasoning
HF Jobs example:
hf jobs uv run --flavor l4x1 \\
https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\
--input-dataset user/emails \\
--column content \\
--labels "spam,ham" \\
--output-dataset user/emails-classified \\
--reasoning
"""
import argparse
import logging
import os
import sys
from typing import List, Dict, Any, Optional, Tuple
import json
import re
import torch
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi, get_token
import sglang as sgl
# Default model - SmolLM3 with reasoning capabilities
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3
# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Classify text in HuggingFace datasets using SGLang with reasoning support",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
# Required arguments
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset ID on Hugging Face Hub",
)
parser.add_argument(
"--column", type=str, required=True, help="Name of the text column to classify"
)
parser.add_argument(
"--labels",
type=str,
required=True,
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset ID on Hugging Face Hub",
)
# Optional arguments
parser.add_argument(
"--model",
type=str,
default=DEFAULT_MODEL,
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
)
parser.add_argument(
"--reasoning",
action="store_true",
help="Enable reasoning mode (allows model to think through complex cases)",
)
parser.add_argument(
"--save-reasoning",
action="store_true",
help="Save reasoning traces to a separate column (requires --reasoning)",
)
parser.add_argument(
"--max-samples",
type=int,
default=None,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--hf-token",
type=str,
default=None,
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to process (default: train)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.1,
help="Temperature for generation (default: 0.1)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=500,
help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size for processing (default: 32)",
)
parser.add_argument(
"--grammar-backend",
type=str,
default="xgrammar",
choices=["outlines", "xgrammar", "llguidance"],
help="Grammar backend for structured outputs (default: xgrammar)",
)
return parser.parse_args()
def preprocess_text(text: str) -> str:
"""Preprocess text for classification."""
if not text or not isinstance(text, str):
return ""
# Strip whitespace
text = text.strip()
# Truncate if too long
if len(text) > MAX_TEXT_LENGTH:
text = f"{text[:MAX_TEXT_LENGTH]}..."
return text
def validate_text(text: str) -> bool:
"""Check if text is valid for classification."""
return bool(text and len(text) >= MIN_TEXT_LENGTH)
def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str:
"""Create a prompt for classification with optional reasoning mode."""
if reasoning:
system_prompt = "You are a helpful assistant that thinks step-by-step before answering."
else:
system_prompt = "You are a helpful assistant. /no_think"
user_prompt = f"""Classify this text as one of: {', '.join(labels)}
Text: {text}
Classification:"""
# Format as a conversation
return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n"
def create_ebnf_grammar(labels: List[str]) -> str:
"""Create an EBNF grammar that constrains output to one of the given labels."""
# Escape any special characters in labels
escaped_labels = [f'"{label}"' for label in labels]
choices = ' | '.join(escaped_labels)
return f"root ::= {choices}"
def parse_reasoning_output(output: str, label: str) -> Optional[str]:
"""Extract reasoning from output if present."""
# Look for thinking tags
if "<think>" in output and "</think>" in output:
start = output.find("<think>")
end = output.find("</think>") + len("</think>")
reasoning = output[start:end]
return reasoning
return None
def classify_batch_with_sglang(
engine: sgl.Engine,
texts: List[str],
labels: List[str],
args: argparse.Namespace
) -> List[Dict[str, Any]]:
"""Classify texts using SGLang with optional reasoning."""
# Prepare prompts
prompts = []
valid_indices = []
for i, text in enumerate(texts):
processed_text = preprocess_text(text)
if validate_text(processed_text):
prompt = create_classification_prompt(processed_text, labels, args.reasoning)
prompts.append(prompt)
valid_indices.append(i)
if not prompts:
return [{"label": None, "reasoning": None} for _ in texts]
# Set max tokens based on reasoning mode
max_tokens = args.max_tokens if args.reasoning else 50
# Create EBNF grammar for label constraints
ebnf_grammar = create_ebnf_grammar(labels)
# Set up sampling parameters with EBNF constraint
sampling_params = {
"temperature": args.temperature,
"max_new_tokens": max_tokens,
"ebnf": ebnf_grammar, # This ensures output is one of the valid labels
}
try:
# Generate with structured output constraint
outputs = engine.generate(prompts, sampling_params)
# Process outputs
results = [{"label": None, "reasoning": None} for _ in texts]
for idx, output in enumerate(outputs):
original_idx = valid_indices[idx]
# The output text should be just the label due to EBNF constraint
classification = output.text.strip().strip('"') # Remove quotes if present
# Extract reasoning if present and requested
reasoning = None
if args.reasoning and args.save_reasoning:
# Get the full output including reasoning
# Note: We need to check if SGLang provides access to full output with reasoning
reasoning = parse_reasoning_output(output.text, classification)
results[original_idx] = {
"label": classification,
"reasoning": reasoning
}
return results
except Exception as e:
logger.error(f"Error during batch classification: {e}")
# Return None labels for all texts in case of error
return [{"label": None, "reasoning": None} for _ in texts]
def main():
args = parse_args()
# Validate reasoning arguments
if args.save_reasoning and not args.reasoning:
logger.error("--save-reasoning requires --reasoning to be enabled")
sys.exit(1)
# Check authentication early
logger.info("Checking authentication...")
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
if not token:
logger.error("No authentication token found. Please either:")
logger.error("1. Run 'huggingface-cli login'")
logger.error("2. Set HF_TOKEN environment variable")
logger.error("3. Pass --hf-token argument")
sys.exit(1)
# Validate token by checking who we are
try:
api = HfApi(token=token)
user_info = api.whoami()
logger.info(f"Authenticated as: {user_info['name']}")
except Exception as e:
logger.error(f"Authentication failed: {e}")
logger.error("Please check your token is valid")
sys.exit(1)
# Check CUDA availability
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with GPU support or use HF Jobs.")
sys.exit(1)
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
# Parse and validate labels
labels = [label.strip() for label in args.labels.split(",")]
if len(labels) < 2:
logger.error("At least two labels are required for classification.")
sys.exit(1)
logger.info(f"Classification labels: {labels}")
# Load dataset
logger.info(f"Loading dataset: {args.input_dataset}")
try:
dataset = load_dataset(args.input_dataset, split=args.split)
# Limit samples if specified
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
logger.info(f"Limited dataset to {len(dataset)} samples")
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
except Exception as e:
logger.error(f"Failed to load dataset: {e}")
sys.exit(1)
# Verify column exists
if args.column not in dataset.column_names:
logger.error(f"Column '{args.column}' not found in dataset.")
logger.error(f"Available columns: {dataset.column_names}")
sys.exit(1)
# Extract texts
texts = dataset[args.column]
# Initialize SGLang Engine
logger.info(f"Initializing SGLang Engine with model: {args.model}")
logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}")
logger.info(f"Grammar backend: {args.grammar_backend}")
try:
# Determine reasoning parser based on model
reasoning_parser = None
if "smollm3" in args.model.lower() or "qwen" in args.model.lower():
reasoning_parser = "qwen" # Uses <think> tokens
elif "deepseek-r1" in args.model.lower():
reasoning_parser = "deepseek-r1"
engine_kwargs = {
"model_path": args.model,
"trust_remote_code": True,
"dtype": "auto",
"grammar_backend": args.grammar_backend,
}
if reasoning_parser and args.reasoning:
engine_kwargs["reasoning_parser"] = reasoning_parser
logger.info(f"Using reasoning parser: {reasoning_parser}")
engine = sgl.Engine(**engine_kwargs)
logger.info("SGLang engine initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize SGLang: {e}")
sys.exit(1)
# Process in batches
logger.info(f"Starting classification with batch size {args.batch_size}...")
all_results = []
for i in range(0, len(texts), args.batch_size):
batch_end = min(i + args.batch_size, len(texts))
batch_texts = texts[i:batch_end]
logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}")
batch_results = classify_batch_with_sglang(
engine, batch_texts, labels, args
)
all_results.extend(batch_results)
# Extract labels and reasoning
all_labels = [r["label"] for r in all_results]
all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None
# Add classifications to dataset
dataset = dataset.add_column("classification", all_labels)
# Add reasoning column if requested
if args.save_reasoning and args.reasoning:
dataset = dataset.add_column("reasoning", all_reasoning)
logger.info("Added reasoning traces to dataset")
# Calculate statistics
valid_count = sum(1 for label in all_labels if label is not None)
invalid_count = len(all_labels) - valid_count
if invalid_count > 0:
logger.warning(
f"{invalid_count} texts were too short or invalid for classification"
)
# Show classification distribution
label_counts = {label: all_labels.count(label) for label in labels}
logger.info("Classification distribution:")
for label, count in label_counts.items():
percentage = count / len(all_labels) * 100 if all_labels else 0
logger.info(f" {label}: {count} ({percentage:.1f}%)")
if invalid_count > 0:
none_percentage = invalid_count / len(all_labels) * 100
logger.info(f" Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)")
# Log success rate
success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0
logger.info(f"Classification success rate: {success_rate:.1f}%")
# Save to Hub
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
try:
commit_msg = f"Add classifications using {args.model} with SGLang"
if args.reasoning:
commit_msg += " (reasoning mode)"
dataset.push_to_hub(
args.output_dataset,
token=token,
commit_message=commit_msg,
)
logger.info(
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
)
except Exception as e:
logger.error(f"Failed to push to Hub: {e}")
sys.exit(1)
# Clean up
engine.shutdown()
logger.info("SGLang engine shutdown complete")
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Example HF Jobs commands:")
print("\n# Fast classification (no reasoning):")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative' \\")
print(" --output-dataset user/imdb-classified")
print("\n# Complex classification with reasoning:")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
print(" --input-dataset arxiv-papers \\")
print(" --column abstract \\")
print(" --labels 'reasoning_systems,agents,multimodal,robotics,other' \\")
print(" --output-dataset user/arxiv-classified \\")
print(" --reasoning --save-reasoning")
sys.exit(0)
main() |