File size: 16,475 Bytes
1d07414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "sglang[all]",
#     "flashinfer-python",
#     "transformers",
#     "torch",
#     "datasets",
#     "huggingface-hub[hf_transfer]",
# ]
# 
# [[tool.uv.index]]
# name = "flashinfer"
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
# ///

"""
Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models.

This script provides efficient GPU-based classification with optional reasoning support,
optimized for models like SmolLM3-3B that use <think> tokens for chain-of-thought.

Example:
    # Fast classification without reasoning
    uv run classify-dataset-sglang.py \\
        --input-dataset imdb \\
        --column text \\
        --labels "positive,negative" \\
        --output-dataset user/imdb-classified

    # Complex classification with reasoning
    uv run classify-dataset-sglang.py \\
        --input-dataset arxiv-papers \\
        --column abstract \\
        --labels "reasoning_systems,agents,multimodal,robotics,other" \\
        --output-dataset user/arxiv-classified \\
        --reasoning

HF Jobs example:
    hf jobs uv run --flavor l4x1 \\
        https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\
        --input-dataset user/emails \\
        --column content \\
        --labels "spam,ham" \\
        --output-dataset user/emails-classified \\
        --reasoning
"""

import argparse
import logging
import os
import sys
from typing import List, Dict, Any, Optional, Tuple
import json
import re

import torch
from datasets import load_dataset, Dataset
from huggingface_hub import HfApi, get_token
import sglang as sgl

# Default model - SmolLM3 with reasoning capabilities
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"

# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3

# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Classify text in HuggingFace datasets using SGLang with reasoning support",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog=__doc__,
    )

    # Required arguments
    parser.add_argument(
        "--input-dataset",
        type=str,
        required=True,
        help="Input dataset ID on Hugging Face Hub",
    )
    parser.add_argument(
        "--column", type=str, required=True, help="Name of the text column to classify"
    )
    parser.add_argument(
        "--labels",
        type=str,
        required=True,
        help="Comma-separated list of classification labels (e.g., 'positive,negative')",
    )
    parser.add_argument(
        "--output-dataset",
        type=str,
        required=True,
        help="Output dataset ID on Hugging Face Hub",
    )

    # Optional arguments
    parser.add_argument(
        "--model",
        type=str,
        default=DEFAULT_MODEL,
        help=f"Model to use for classification (default: {DEFAULT_MODEL})",
    )
    parser.add_argument(
        "--reasoning",
        action="store_true",
        help="Enable reasoning mode (allows model to think through complex cases)",
    )
    parser.add_argument(
        "--save-reasoning",
        action="store_true",
        help="Save reasoning traces to a separate column (requires --reasoning)",
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        default=None,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--hf-token",
        type=str,
        default=None,
        help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
    )
    parser.add_argument(
        "--split",
        type=str,
        default="train",
        help="Dataset split to process (default: train)",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.1,
        help="Temperature for generation (default: 0.1)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=500,
        help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=32,
        help="Batch size for processing (default: 32)",
    )
    parser.add_argument(
        "--grammar-backend",
        type=str,
        default="xgrammar",
        choices=["outlines", "xgrammar", "llguidance"],
        help="Grammar backend for structured outputs (default: xgrammar)",
    )

    return parser.parse_args()


def preprocess_text(text: str) -> str:
    """Preprocess text for classification."""
    if not text or not isinstance(text, str):
        return ""

    # Strip whitespace
    text = text.strip()

    # Truncate if too long
    if len(text) > MAX_TEXT_LENGTH:
        text = f"{text[:MAX_TEXT_LENGTH]}..."

    return text


def validate_text(text: str) -> bool:
    """Check if text is valid for classification."""
    return bool(text and len(text) >= MIN_TEXT_LENGTH)


def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str:
    """Create a prompt for classification with optional reasoning mode."""
    if reasoning:
        system_prompt = "You are a helpful assistant that thinks step-by-step before answering."
    else:
        system_prompt = "You are a helpful assistant. /no_think"
    
    user_prompt = f"""Classify this text as one of: {', '.join(labels)}

Text: {text}

Classification:"""
    
    # Format as a conversation
    return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n"


def create_ebnf_grammar(labels: List[str]) -> str:
    """Create an EBNF grammar that constrains output to one of the given labels."""
    # Escape any special characters in labels
    escaped_labels = [f'"{label}"' for label in labels]
    choices = ' | '.join(escaped_labels)
    return f"root ::= {choices}"


def parse_reasoning_output(output: str, label: str) -> Optional[str]:
    """Extract reasoning from output if present."""
    # Look for thinking tags
    if "<think>" in output and "</think>" in output:
        start = output.find("<think>")
        end = output.find("</think>") + len("</think>")
        reasoning = output[start:end]
        return reasoning
    return None


def classify_batch_with_sglang(
    engine: sgl.Engine,
    texts: List[str],
    labels: List[str],
    args: argparse.Namespace
) -> List[Dict[str, Any]]:
    """Classify texts using SGLang with optional reasoning."""
    
    # Prepare prompts
    prompts = []
    valid_indices = []
    
    for i, text in enumerate(texts):
        processed_text = preprocess_text(text)
        if validate_text(processed_text):
            prompt = create_classification_prompt(processed_text, labels, args.reasoning)
            prompts.append(prompt)
            valid_indices.append(i)
    
    if not prompts:
        return [{"label": None, "reasoning": None} for _ in texts]
    
    # Set max tokens based on reasoning mode
    max_tokens = args.max_tokens if args.reasoning else 50
    
    # Create EBNF grammar for label constraints
    ebnf_grammar = create_ebnf_grammar(labels)
    
    # Set up sampling parameters with EBNF constraint
    sampling_params = {
        "temperature": args.temperature,
        "max_new_tokens": max_tokens,
        "ebnf": ebnf_grammar,  # This ensures output is one of the valid labels
    }
    
    try:
        # Generate with structured output constraint
        outputs = engine.generate(prompts, sampling_params)
        
        # Process outputs
        results = [{"label": None, "reasoning": None} for _ in texts]
        
        for idx, output in enumerate(outputs):
            original_idx = valid_indices[idx]
            
            # The output text should be just the label due to EBNF constraint
            classification = output.text.strip().strip('"')  # Remove quotes if present
            
            # Extract reasoning if present and requested
            reasoning = None
            if args.reasoning and args.save_reasoning:
                # Get the full output including reasoning
                # Note: We need to check if SGLang provides access to full output with reasoning
                reasoning = parse_reasoning_output(output.text, classification)
            
            results[original_idx] = {
                "label": classification,
                "reasoning": reasoning
            }
        
        return results
        
    except Exception as e:
        logger.error(f"Error during batch classification: {e}")
        # Return None labels for all texts in case of error
        return [{"label": None, "reasoning": None} for _ in texts]


def main():
    args = parse_args()

    # Validate reasoning arguments
    if args.save_reasoning and not args.reasoning:
        logger.error("--save-reasoning requires --reasoning to be enabled")
        sys.exit(1)

    # Check authentication early
    logger.info("Checking authentication...")
    token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())

    if not token:
        logger.error("No authentication token found. Please either:")
        logger.error("1. Run 'huggingface-cli login'")
        logger.error("2. Set HF_TOKEN environment variable")
        logger.error("3. Pass --hf-token argument")
        sys.exit(1)

    # Validate token by checking who we are
    try:
        api = HfApi(token=token)
        user_info = api.whoami()
        logger.info(f"Authenticated as: {user_info['name']}")
    except Exception as e:
        logger.error(f"Authentication failed: {e}")
        logger.error("Please check your token is valid")
        sys.exit(1)

    # Check CUDA availability
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with GPU support or use HF Jobs.")
        sys.exit(1)

    logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")

    # Parse and validate labels
    labels = [label.strip() for label in args.labels.split(",")]
    if len(labels) < 2:
        logger.error("At least two labels are required for classification.")
        sys.exit(1)
    logger.info(f"Classification labels: {labels}")

    # Load dataset
    logger.info(f"Loading dataset: {args.input_dataset}")
    try:
        dataset = load_dataset(args.input_dataset, split=args.split)

        # Limit samples if specified
        if args.max_samples:
            dataset = dataset.select(range(min(args.max_samples, len(dataset))))
            logger.info(f"Limited dataset to {len(dataset)} samples")

        logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
    except Exception as e:
        logger.error(f"Failed to load dataset: {e}")
        sys.exit(1)

    # Verify column exists
    if args.column not in dataset.column_names:
        logger.error(f"Column '{args.column}' not found in dataset.")
        logger.error(f"Available columns: {dataset.column_names}")
        sys.exit(1)

    # Extract texts
    texts = dataset[args.column]

    # Initialize SGLang Engine
    logger.info(f"Initializing SGLang Engine with model: {args.model}")
    logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}")
    logger.info(f"Grammar backend: {args.grammar_backend}")
    
    try:
        # Determine reasoning parser based on model
        reasoning_parser = None
        if "smollm3" in args.model.lower() or "qwen" in args.model.lower():
            reasoning_parser = "qwen"  # Uses <think> tokens
        elif "deepseek-r1" in args.model.lower():
            reasoning_parser = "deepseek-r1"
        
        engine_kwargs = {
            "model_path": args.model,
            "trust_remote_code": True,
            "dtype": "auto",
            "grammar_backend": args.grammar_backend,
        }
        
        if reasoning_parser and args.reasoning:
            engine_kwargs["reasoning_parser"] = reasoning_parser
            logger.info(f"Using reasoning parser: {reasoning_parser}")
        
        engine = sgl.Engine(**engine_kwargs)
        logger.info("SGLang engine initialized successfully")
    except Exception as e:
        logger.error(f"Failed to initialize SGLang: {e}")
        sys.exit(1)

    # Process in batches
    logger.info(f"Starting classification with batch size {args.batch_size}...")
    all_results = []
    
    for i in range(0, len(texts), args.batch_size):
        batch_end = min(i + args.batch_size, len(texts))
        batch_texts = texts[i:batch_end]
        
        logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}")
        
        batch_results = classify_batch_with_sglang(
            engine, batch_texts, labels, args
        )
        all_results.extend(batch_results)

    # Extract labels and reasoning
    all_labels = [r["label"] for r in all_results]
    all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None

    # Add classifications to dataset
    dataset = dataset.add_column("classification", all_labels)
    
    # Add reasoning column if requested
    if args.save_reasoning and args.reasoning:
        dataset = dataset.add_column("reasoning", all_reasoning)
        logger.info("Added reasoning traces to dataset")

    # Calculate statistics
    valid_count = sum(1 for label in all_labels if label is not None)
    invalid_count = len(all_labels) - valid_count
    
    if invalid_count > 0:
        logger.warning(
            f"{invalid_count} texts were too short or invalid for classification"
        )

    # Show classification distribution
    label_counts = {label: all_labels.count(label) for label in labels}
    logger.info("Classification distribution:")
    for label, count in label_counts.items():
        percentage = count / len(all_labels) * 100 if all_labels else 0
        logger.info(f"  {label}: {count} ({percentage:.1f}%)")
    if invalid_count > 0:
        none_percentage = invalid_count / len(all_labels) * 100
        logger.info(f"  Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)")

    # Log success rate
    success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0
    logger.info(f"Classification success rate: {success_rate:.1f}%")

    # Save to Hub
    logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
    try:
        commit_msg = f"Add classifications using {args.model} with SGLang"
        if args.reasoning:
            commit_msg += " (reasoning mode)"
        
        dataset.push_to_hub(
            args.output_dataset,
            token=token,
            commit_message=commit_msg,
        )
        logger.info(
            f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
        )
    except Exception as e:
        logger.error(f"Failed to push to Hub: {e}")
        sys.exit(1)

    # Clean up
    engine.shutdown()
    logger.info("SGLang engine shutdown complete")


if __name__ == "__main__":
    if len(sys.argv) == 1:
        print("Example HF Jobs commands:")
        print("\n# Fast classification (no reasoning):")
        print("hf jobs uv run \\")
        print("  --flavor l4x1 \\")
        print("  https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
        print("  --input-dataset stanfordnlp/imdb \\")
        print("  --column text \\")
        print("  --labels 'positive,negative' \\")
        print("  --output-dataset user/imdb-classified")
        print("\n# Complex classification with reasoning:")
        print("hf jobs uv run \\")
        print("  --flavor l4x1 \\")
        print("  https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
        print("  --input-dataset arxiv-papers \\")
        print("  --column abstract \\")
        print("  --labels 'reasoning_systems,agents,multimodal,robotics,other' \\")
        print("  --output-dataset user/arxiv-classified \\")
        print("  --reasoning --save-reasoning")
        sys.exit(0)

    main()