classification / classify-dataset.py
davanstrien's picture
davanstrien HF Staff
update
d272f1c
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "vllm>=0.6.6",
# "transformers>=4.53.0",
# "torch",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
# ///
"""
Classify text columns in Hugging Face datasets using vLLM with structured outputs.
This script provides efficient GPU-based classification with guaranteed valid outputs,
optimized for running on HF Jobs.
Example:
uv run classify-dataset.py \\
--input-dataset imdb \\
--column text \\
--labels "positive,negative" \\
--output-dataset user/imdb-classified
HF Jobs example:
hfjobs run --flavor a10 uv run classify-dataset.py \\
--input-dataset user/emails \\
--column content \\
--labels "spam,ham" \\
--output-dataset user/emails-classified \\
--prompt-style reasoning
"""
import argparse
import logging
import os
import sys
from typing import List
import torch
from datasets import load_dataset
from huggingface_hub import HfApi, get_token
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
# Default model - SmolLM3 for good balance of speed and quality
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
def parse_label_descriptions(desc_string: str) -> dict:
"""Parse label descriptions from CLI format 'label1:desc1,label2:desc2'."""
if not desc_string:
return {}
descriptions = {}
# Split by comma, but be careful about commas in descriptions
parts = desc_string.split(',')
current_label = None
current_desc_parts = []
for part in parts:
if ':' in part and not current_label:
# New label:description pair
label, desc = part.split(':', 1)
current_label = label.strip()
current_desc_parts = [desc.strip()]
elif ':' in part and current_label:
# Save previous label and start new one
descriptions[current_label] = ','.join(current_desc_parts)
label, desc = part.split(':', 1)
current_label = label.strip()
current_desc_parts = [desc.strip()]
else:
# Continuation of previous description (had comma in it)
current_desc_parts.append(part.strip())
# Don't forget the last one
if current_label:
descriptions[current_label] = ','.join(current_desc_parts)
return descriptions
def create_messages(text: str, labels: List[str], label_descriptions: dict = None, enable_reasoning: bool = False) -> List[dict]:
"""Create messages for chat template with optional label descriptions."""
# Build the classification prompt
if label_descriptions:
# Format with descriptions
categories_text = "Categories:\n"
for label in labels:
desc = label_descriptions.get(label, "")
if desc:
categories_text += f"- {label}: {desc}\n"
else:
categories_text += f"- {label}\n"
else:
# Simple format without descriptions
categories_text = f"Categories: {', '.join(labels)}"
if enable_reasoning:
# Reasoning mode: allow thinking and request JSON output
user_content = f"""Classify this text into one of these categories:
{categories_text}
Text: {text}
Think through your classification step by step, then provide your final answer in this JSON format:
{{"label": "your_chosen_label"}}"""
system_content = "You are a helpful classification assistant that thinks step by step."
else:
# Structured output mode: fast classification
if label_descriptions:
user_content = f"Classify this text into one of these categories:\n\n{categories_text}\nText: {text}\n\nCategory:"
else:
user_content = f"Classify this text as one of: {', '.join(labels)}\n\nText: {text}\n\nLabel:"
system_content = "You are a helpful classification assistant. /no_think"
return [
{"role": "system", "content": system_content},
{"role": "user", "content": user_content}
]
# Minimum text length for valid classification
MIN_TEXT_LENGTH = 3
# Maximum text length (in characters) to avoid context overflow
MAX_TEXT_LENGTH = 4000
def parse_reasoning_output(output: str, valid_labels: List[str]) -> tuple[str, str, bool]:
"""Parse reasoning output to extract label from JSON after </think> tag.
Returns:
tuple: (label or None, full reasoning text, parsing_success)
"""
import json
# Find the </think> tag
think_end = output.find("</think>")
if think_end != -1:
# Extract everything after </think>
json_part = output[think_end + len("</think>"):].strip()
reasoning = output[:think_end + len("</think>")]
else:
# No think tags, look for JSON in the output
# Try to find JSON by looking for {
json_start = output.find("{")
if json_start != -1:
json_part = output[json_start:].strip()
reasoning = output[:json_start].strip() if json_start > 0 else ""
else:
json_part = output
reasoning = output
# Try to parse JSON
try:
# Find the first complete JSON object
if "{" in json_part:
# Extract just the JSON object
json_str = json_part[json_part.find("{"):]
# Find the matching closing brace
brace_count = 0
end_pos = 0
for i, char in enumerate(json_str):
if char == "{":
brace_count += 1
elif char == "}":
brace_count -= 1
if brace_count == 0:
end_pos = i + 1
break
if end_pos > 0:
json_str = json_str[:end_pos]
data = json.loads(json_str)
label = data.get("label", "")
# Validate label
if label in valid_labels:
return label, output, True
else:
logger.warning(f"Parsed label '{label}' not in valid labels: {valid_labels}")
return None, output, False
else:
logger.warning("Could not find complete JSON object")
return None, output, False
else:
logger.warning("No JSON found in output")
return None, output, False
except json.JSONDecodeError as e:
logger.warning(f"JSON parsing error: {e}")
return None, output, False
except Exception as e:
logger.warning(f"Unexpected error parsing output: {e}")
return None, output, False
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(
description="Classify text in HuggingFace datasets using vLLM with structured outputs",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
# Required arguments
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset ID on Hugging Face Hub",
)
parser.add_argument(
"--column", type=str, required=True, help="Name of the text column to classify"
)
parser.add_argument(
"--labels",
type=str,
required=True,
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset ID on Hugging Face Hub",
)
# Optional arguments
parser.add_argument(
"--model",
type=str,
default=DEFAULT_MODEL,
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
)
# Removed --batch-size argument as vLLM handles batching internally
parser.add_argument(
"--label-descriptions",
type=str,
default=None,
help="Descriptions for each label in format 'label1:description1,label2:description2'",
)
parser.add_argument(
"--enable-reasoning",
action="store_true",
help="Enable reasoning mode with thinking traces (disables structured outputs)",
)
parser.add_argument(
"--max-samples",
type=int,
default=None,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--hf-token",
type=str,
default=None,
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
)
parser.add_argument(
"--split",
type=str,
default="train",
help="Dataset split to process (default: train)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.1,
help="Temperature for generation (default: 0.1)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=100,
help="Maximum tokens to generate (default: 100, automatically increased 20x for reasoning mode)",
)
parser.add_argument(
"--guided-backend",
type=str,
default="outlines",
help="Guided decoding backend (default: outlines)",
)
parser.add_argument(
"--shuffle",
action="store_true",
help="Shuffle dataset before selecting samples (useful with --max-samples for random sampling)",
)
parser.add_argument(
"--shuffle-seed",
type=int,
default=42,
help="Random seed for shuffling (default: 42)",
)
return parser.parse_args()
def preprocess_text(text: str) -> str:
"""Preprocess text for classification."""
if not text or not isinstance(text, str):
return ""
# Strip whitespace
text = text.strip()
# Truncate if too long
if len(text) > MAX_TEXT_LENGTH:
text = f"{text[:MAX_TEXT_LENGTH]}..."
return text
def validate_text(text: str) -> bool:
"""Check if text is valid for classification."""
return bool(text and len(text) >= MIN_TEXT_LENGTH)
def prepare_prompts(
texts: List[str], labels: List[str], tokenizer: AutoTokenizer,
label_descriptions: dict = None, enable_reasoning: bool = False
) -> tuple[List[str], List[int]]:
"""Prepare prompts using chat template for classification, filtering invalid texts."""
prompts = []
valid_indices = []
for i, text in enumerate(texts):
processed_text = preprocess_text(text)
if validate_text(processed_text):
# Create messages for chat template
messages = create_messages(processed_text, labels, label_descriptions, enable_reasoning)
# Apply chat template
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
prompts.append(prompt)
valid_indices.append(i)
return prompts, valid_indices
def main():
args = parse_args()
# Check authentication early
logger.info("Checking authentication...")
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
if not token:
logger.error("No authentication token found. Please either:")
logger.error("1. Run 'huggingface-cli login'")
logger.error("2. Set HF_TOKEN environment variable")
logger.error("3. Pass --hf-token argument")
sys.exit(1)
# Validate token by checking who we are
try:
api = HfApi(token=token)
user_info = api.whoami()
logger.info(f"Authenticated as: {user_info['name']}")
except Exception as e:
logger.error(f"Authentication failed: {e}")
logger.error("Please check your token is valid")
sys.exit(1)
# Check CUDA availability
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with GPU support or use HF Jobs.")
sys.exit(1)
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
# Parse and validate labels
labels = [label.strip() for label in args.labels.split(",")]
if len(labels) < 2:
logger.error("At least two labels are required for classification.")
sys.exit(1)
logger.info(f"Classification labels: {labels}")
# Parse label descriptions if provided
label_descriptions = None
if args.label_descriptions:
label_descriptions = parse_label_descriptions(args.label_descriptions)
logger.info("Label descriptions provided:")
for label, desc in label_descriptions.items():
logger.info(f" {label}: {desc}")
# Load dataset
logger.info(f"Loading dataset: {args.input_dataset}")
try:
dataset = load_dataset(args.input_dataset, split=args.split)
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
# Shuffle if requested
if args.shuffle:
logger.info(f"Shuffling dataset with seed {args.shuffle_seed}")
dataset = dataset.shuffle(seed=args.shuffle_seed)
# Limit samples if specified
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
logger.info(f"Limited dataset to {len(dataset)} samples")
if args.shuffle:
logger.info("Note: Samples were randomly selected due to shuffling")
except Exception as e:
logger.error(f"Failed to load dataset: {e}")
sys.exit(1)
# Verify column exists
if args.column not in dataset.column_names:
logger.error(f"Column '{args.column}' not found in dataset.")
logger.error(f"Available columns: {dataset.column_names}")
sys.exit(1)
# Extract texts
texts = dataset[args.column]
# Load tokenizer for chat template formatting
logger.info(f"Loading tokenizer for {args.model}")
try:
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
except Exception as e:
logger.error(f"Failed to load tokenizer: {e}")
sys.exit(1)
# Initialize vLLM
logger.info(f"Initializing vLLM with model: {args.model}")
logger.info(f"Using guided decoding backend: {args.guided_backend}")
try:
llm = LLM(
model=args.model,
trust_remote_code=True,
dtype="auto",
gpu_memory_utilization=0.95,
guided_decoding_backend=args.guided_backend,
)
except Exception as e:
logger.error(f"Failed to initialize vLLM: {e}")
sys.exit(1)
# Set up sampling parameters based on mode
if args.enable_reasoning:
# Reasoning mode: no guided decoding, much more tokens for thinking
sampling_params = SamplingParams(
temperature=args.temperature,
max_tokens=args.max_tokens * 20, # 20x more tokens for extensive reasoning
)
logger.info("Using reasoning mode - model will generate thinking traces with JSON output")
else:
# Structured output mode: guided decoding
guided_params = GuidedDecodingParams(choice=labels)
sampling_params = SamplingParams(
guided_decoding=guided_params,
temperature=args.temperature,
max_tokens=args.max_tokens,
)
logger.info("Using structured output with guided_choice - outputs guaranteed to be valid labels")
# Prepare all prompts
logger.info("Preparing prompts for classification...")
all_prompts, valid_indices = prepare_prompts(texts, labels, tokenizer, label_descriptions, args.enable_reasoning)
if not all_prompts:
logger.error("No valid texts found for classification.")
sys.exit(1)
logger.info(f"Prepared {len(all_prompts)} valid prompts out of {len(texts)} texts")
# Let vLLM handle batching internally
logger.info("Starting classification (vLLM will handle batching internally)...")
try:
# Generate all classifications at once - vLLM handles batching
outputs = llm.generate(all_prompts, sampling_params)
# Process outputs based on mode
if args.enable_reasoning:
# Reasoning mode: parse JSON and extract reasoning
all_classifications = [None] * len(texts)
all_reasoning = [None] * len(texts)
all_parsing_success = [False] * len(texts)
for idx, output in enumerate(outputs):
original_idx = valid_indices[idx]
generated_text = output.outputs[0].text.strip()
# Parse the reasoning output
label, reasoning, success = parse_reasoning_output(generated_text, labels)
all_classifications[original_idx] = label
all_reasoning[original_idx] = reasoning
all_parsing_success[original_idx] = success
# Log first few examples
if idx < 3:
logger.info(f"\nExample {idx + 1} output:")
logger.info(f"Raw output: {generated_text[:200]}...")
logger.info(f"Parsed label: {label}")
logger.info(f"Parsing success: {success}")
# Count parsing statistics
parsing_success_count = sum(1 for s in all_parsing_success if s)
parsing_fail_count = sum(1 for s in all_parsing_success if s is not None and not s)
logger.info(f"\nParsing statistics:")
logger.info(f" Successful: {parsing_success_count}/{len(valid_indices)} ({parsing_success_count/len(valid_indices)*100:.1f}%)")
logger.info(f" Failed: {parsing_fail_count}/{len(valid_indices)} ({parsing_fail_count/len(valid_indices)*100:.1f}%)")
valid_texts = parsing_success_count
else:
# Structured output mode: direct classification
all_classifications = [None] * len(texts)
for idx, output in enumerate(outputs):
original_idx = valid_indices[idx]
generated_text = output.outputs[0].text.strip()
all_classifications[original_idx] = generated_text
valid_texts = len(valid_indices)
# Count statistics
total_texts = len(texts)
except Exception as e:
logger.error(f"Classification failed: {e}")
sys.exit(1)
# Add columns to dataset
dataset = dataset.add_column("classification", all_classifications)
if args.enable_reasoning:
dataset = dataset.add_column("reasoning", all_reasoning)
dataset = dataset.add_column("parsing_success", all_parsing_success)
# Calculate statistics
none_count = total_texts - valid_texts
if none_count > 0:
logger.warning(
f"{none_count} texts were too short or invalid for classification"
)
# Show classification distribution
label_counts = {label: all_classifications.count(label) for label in labels}
# Count None values separately
none_classifications = all_classifications.count(None)
logger.info("Classification distribution:")
for label, count in label_counts.items():
percentage = count / total_texts * 100 if total_texts > 0 else 0
logger.info(f" {label}: {count} ({percentage:.1f}%)")
if none_classifications > 0:
none_percentage = none_classifications / total_texts * 100
if args.enable_reasoning:
logger.info(f" Failed to parse: {none_classifications} ({none_percentage:.1f}%)")
else:
logger.info(f" Invalid/Skipped: {none_classifications} ({none_percentage:.1f}%)")
# Log success rate
success_rate = (valid_texts / total_texts * 100) if total_texts > 0 else 0
logger.info(f"Classification success rate: {success_rate:.1f}%")
# Save to Hub (token already validated at start)
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
try:
dataset.push_to_hub(
args.output_dataset,
token=token,
commit_message=f"Add classifications using {args.model} {'with reasoning' if args.enable_reasoning else 'with structured outputs'}",
)
logger.info(
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
)
except Exception as e:
logger.error(f"Failed to push to Hub: {e}")
sys.exit(1)
if __name__ == "__main__":
if len(sys.argv) == 1:
print("Example commands:")
print("\n# Simple classification:")
print("uv run classify-dataset.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative' \\")
print(" --output-dataset user/imdb-classified")
print("\n# With label descriptions:")
print("uv run classify-dataset.py \\")
print(" --input-dataset user/support-tickets \\")
print(" --column content \\")
print(" --labels 'bug,feature,question' \\")
print(" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,question:asking for help or clarification' \\")
print(" --output-dataset user/tickets-classified")
print("\n# With reasoning mode (thinking + JSON output):")
print("uv run classify-dataset.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative,neutral' \\")
print(" --enable-reasoning \\")
print(" --output-dataset user/imdb-reasoned")
print("\n# HF Jobs example:")
print("hf jobs uv run \\")
print(" --flavor l4x1 \\")
print(" --image vllm/vllm-openai:latest \\")
print(" classify-dataset.py \\")
print(" --input-dataset stanfordnlp/imdb \\")
print(" --column text \\")
print(" --labels 'positive,negative' \\")
print(" --output-dataset user/imdb-classified")
sys.exit(0)
main()