vllm / README.md
davanstrien's picture
davanstrien HF Staff
Add plain text prompt support and sample limiting to generate-responses.py
d034c0d
---
viewer: false
tags: [uv-script, vllm, gpu, inference]
---
# vLLM Inference Scripts
Ready-to-run UV scripts for GPU-accelerated inference using [vLLM](https://github.com/vllm-project/vllm).
These scripts use [UV's inline script metadata](https://docs.astral.sh/uv/guides/scripts/) to automatically manage dependencies - just run with `uv run` and everything installs automatically!
## πŸ“‹ Available Scripts
### classify-dataset.py
Batch text classification using BERT-style encoder models (e.g., BERT, RoBERTa, DeBERTa, ModernBERT) with vLLM's optimized inference engine.
**Note**: This script is specifically for encoder-only classification models, not generative LLMs.
**Features:**
- πŸš€ High-throughput batch processing
- 🏷️ Automatic label mapping from model config
- πŸ“Š Confidence scores for predictions
- πŸ€— Direct integration with Hugging Face Hub
**Usage:**
```bash
# Local execution (requires GPU)
uv run classify-dataset.py \
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
username/input-dataset \
username/output-dataset \
--inference-column text \
--batch-size 10000
```
**HF Jobs execution:**
```bash
hf jobs uv run \
--flavor l4x1 \
--image vllm/vllm-openai \
https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
username/input-dataset \
username/output-dataset \
--inference-column text \
--batch-size 100000
```
### generate-responses.py
Generate responses for prompts using generative LLMs (e.g., Llama, Qwen, Mistral) with vLLM's high-performance inference engine.
**Features:**
- πŸ’¬ Automatic chat template application
- πŸ“ Support for both chat messages and plain text prompts
- πŸ”€ Multi-GPU tensor parallelism support
- πŸ“ Smart filtering for prompts exceeding context length
- πŸ“Š Comprehensive dataset cards with generation metadata
- ⚑ HF Transfer enabled for fast model downloads
- πŸŽ›οΈ Full control over sampling parameters
- 🎯 Sample limiting with `--max-samples` for testing
**Usage:**
```bash
# With chat-formatted messages (default)
uv run generate-responses.py \
username/input-dataset \
username/output-dataset \
--messages-column messages \
--max-tokens 1024
# With plain text prompts (NEW!)
uv run generate-responses.py \
username/input-dataset \
username/output-dataset \
--prompt-column question \
--max-tokens 1024 \
--max-samples 100
# With custom model and parameters
uv run generate-responses.py \
username/input-dataset \
username/output-dataset \
--model-id meta-llama/Llama-3.1-8B-Instruct \
--prompt-column text \
--temperature 0.9 \
--top-p 0.95 \
--max-model-len 8192
```
**HF Jobs execution (multi-GPU):**
```bash
hf jobs uv run \
--flavor l4x4 \
--image vllm/vllm-openai \
-e UV_PRERELEASE=if-necessary \
-s HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \
davanstrien/cards_with_prompts \
davanstrien/test-generated-responses \
--model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \
--gpu-memory-utilization 0.9 \
--max-tokens 600 \
--max-model-len 8000
```
### Multi-GPU Tensor Parallelism
- Auto-detects available GPUs by default
- Use `--tensor-parallel-size` to manually specify
- Required for models larger than single GPU memory (e.g., 30B+ models)
### Handling Long Contexts
The generate-responses.py script includes smart prompt filtering:
- **Default behavior**: Skips prompts exceeding max_model_len
- **Use `--max-model-len`**: Limit context to reduce memory usage
- **Use `--no-skip-long-prompts`**: Fail on long prompts instead of skipping
- Skipped prompts receive empty responses and are logged
## πŸ“š About vLLM
vLLM is a high-throughput inference engine optimized for:
- Fast model serving with PagedAttention
- Efficient batch processing
- Support for various model architectures
- Seamless integration with Hugging Face models
## πŸ”§ Technical Details
### UV Script Benefits
- **Zero setup**: Dependencies install automatically on first run
- **Reproducible**: Locked dependencies ensure consistent behavior
- **Self-contained**: Everything needed is in the script file
- **Direct execution**: Run from local files or URLs
### Dependencies
Scripts use UV's inline metadata for automatic dependency management:
```python
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "flashinfer-python",
# "huggingface-hub[hf_transfer]",
# "torch",
# "transformers",
# "vllm",
# ]
# ///
```
For bleeding-edge features, use the `UV_PRERELEASE=if-necessary` environment variable to allow pre-release versions when needed.
### Docker Image
For HF Jobs, we recommend the official vLLM Docker image: `vllm/vllm-openai`
This image includes:
- Pre-installed CUDA libraries
- vLLM and all dependencies
- UV package manager
- Optimized for GPU inference
### Environment Variables
- `HF_TOKEN`: Your Hugging Face authentication token (auto-detected if logged in)
- `UV_PRERELEASE=if-necessary`: Allow pre-release packages when required
- `HF_HUB_ENABLE_HF_TRANSFER=1`: Automatically enabled for faster downloads
## πŸ”— Resources
- [vLLM Documentation](https://docs.vllm.ai/)
- [UV Documentation](https://docs.astral.sh/uv/)
- [UV Scripts Organization](https://huggingface.co/uv-scripts)