NASA_IMPACT_TCB_OBJ / README.md
viknesh1211's picture
Update README.md
9d0d4da verified
---
license: mit
task_categories:
- object-detection
language:
- en
tags:
- remote_sensing
- NASA_IMPACT
- YOLO
- Cloud_image
- Turbulance
- Transverse_Cirrus_Bands
pretty_name: Manually Annotated Data Set for Transverse Cirrus Bands
size_categories:
- 100M<n<1B
---
# Transverse Cirrus Bands (TCB) Dataset
## Dataset Overview
This dataset contains manually annotated satellite imagery of **Transverse Cirrus Bands (TCBs)**, a type of cloud formation often associated with atmospheric turbulence. The dataset is formatted for object detection tasks using the **YOLO** and **COCO** annotation formats, making it suitable for training deep learning models for automated TCB detection.
## Data Collection
- **Source**: NASA-IMPACT Data Share
- **Satellite Sensors**: VIIRS (Visible Infrared Imaging Radiometer Suite), MODIS (Moderate Resolution Imaging Spectroradiometer)
- **Acquisition Method**: Downloaded via AWS S3
## Annotation Details
- **Format**: YOLO (.txt) and COCO (.json)
- **Bounding Box Labels**: Transverse Cirrus Bands (TCB)
- **Annotation Tool**: MakeSense.ai
- **Total Images**: X (To be specified)
- **Train/Validation/Test Split**: 70% / 20% / 10%
## File Structure
```
TCB_Dataset/
│── images/
β”‚ β”œβ”€β”€ train/
β”‚ β”œβ”€β”€ val/
β”‚ β”œβ”€β”€ test/
│── labels/
β”‚ β”œβ”€β”€ train/
β”‚ β”œβ”€β”€ val/
β”‚ β”œβ”€β”€ test/
│── annotations/
β”‚ β”œβ”€β”€ COCO_format.json
│── README.md
```
## Potential Applications
- **Turbulence Detection**: Enhancing aviation safety by predicting turbulence-prone regions.
- **AI-based Weather Prediction**: Training deep learning models for real-time cloud pattern analysis.
- **Climate Research**: Studying the impact of TCBs on atmospheric dynamics and climate change.
- **Satellite-based Hazard Assessment**: Detecting and monitoring extreme weather events.
## How to Use
1. Clone the repository:
```bash
git clone <repo_link>
```
2. Load images and annotations into your object detection model pipeline.
3. Train models using **YOLOv8** or any compatible object detection framework.
## Citation
If you use this dataset in your research, please cite:
```
@article{TCB_Dataset2024,
title={A Manually Annotated Dataset of Transverse Cirrus Bands for Object Detection in Satellite Imagery},
author={Your Name},
year={2024},
journal={Hugging Face Dataset Repository}
}
```
## License
mit
---
This dataset is open for contributions. Feel free to submit pull requests or raise issues for improvements!