Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

Introduction

MCL-MLAAD is the first multilingual benchmark for speech deepfake source tracing. It spans mono- and cross-lingual protocols, includes DSP and SSL baselines, studies language-specific fine-tuning for cross-lingual generalization, and tests robustness to unseen languages/speakers. See arXiv:2508.04143.

Download the Dataset

Install the datasets package:

pip install datasets

Log in with your Hugging Face account:

huggingface-cli login

Load the dataset in Python:

from datasets import load_dataset

# Download from HF and cache
ds = load_dataset("xxuan-speech/MCL-MLAAD")

# Optionally: Save the dataset to your own directory
ds.save_to_disk("mcl-mlaad_local")

Code:

A reference implementation Code is available at: https://github.com/xuanxixi/Multilingual-Source-Tracing

Bibtex:

@misc{xuan2025multilingualsourcetracingspeech,
      title={Multilingual Source Tracing of Speech Deepfakes: A First Benchmark}, 
      author={Xi Xuan and Yang Xiao and Rohan Kumar Das and Tomi Kinnunen},
      year={2025},
      eprint={2508.04143},
      archivePrefix={arXiv},
      primaryClass={eess.AS},
      url={https://arxiv.org/abs/2508.04143}
}
Downloads last month
3,486