Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
ploshkin's picture
Add code for benchmarking
1be89f3 verified
import gc
import json
from pathlib import Path
from typing import Any
import click
import polars as pl
import torch
from yambda.constants import Constants
from yambda.evaluation.metrics import calc_metrics
from yambda.evaluation.ranking import Embeddings, Targets, rank_items
from yambda.processing import timesplit
from yambda.utils import argmax
DEFAULT_GRIDS = {
"50m": {
"likes": [0, 0.001, 0.25, 0.5, 1, 2, 3, 4, 6],
"listens": [0, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0, 2],
},
"500m": {
"likes": [0, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0],
"listens": [0, 0.001, 0.002, 0.004, 0.008],
},
}
@click.command()
@click.option(
'--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
)
@click.option(
'--size',
required=True,
type=click.Choice(['50m', '500m']), # 5b is not supported
default="50m",
multiple=False,
show_default=True,
help="5b is not supported due to (num_user, num_user) matrix",
)
@click.option(
'--interaction',
required=True,
type=click.Choice(['likes', 'listens']),
default="likes",
multiple=False,
show_default=True,
)
@click.option(
'--hours',
required=True,
type=float,
default=[-1],
multiple=True,
show_default=True,
help="Hyperparameter. If -1 default grid will be used",
)
@click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
@click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
@click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
def main(
data_dir: str,
size: str,
interaction: str,
hours: list[float],
validation_metric: str,
report_metrics: list[str],
device: str,
):
print(f"REPORT METRICS: {report_metrics}")
print(f"SIZE {size}, INTERACTION {interaction}")
result = item_knn(
data_dir,
size,
interaction,
device,
hours=hours if hours[0] != -1 else DEFAULT_GRIDS[size][interaction],
validation_metric=validation_metric,
report_metrics=report_metrics,
)
print(json.dumps(result, indent=2))
def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
path = Path(path) / dataset_size / dataset_name
df = pl.scan_parquet(path.with_suffix(".parquet"))
return df
def preprocess(
df: pl.LazyFrame, interaction: str, val_size: int
) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
if interaction == "listens":
df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
train, val, test = timesplit.flat_split_train_val_test(
df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
)
return (
train,
val.collect(engine="streaming").lazy() if val is not None else None,
test.collect(engine="streaming").lazy(),
)
def eliminate_zeros(x: torch.Tensor, threshold: float = 1e-9) -> torch.Tensor:
mask = (x._values() > threshold).nonzero()
nv = x._values().index_select(0, mask.view(-1))
ni = x._indices().index_select(1, mask.view(-1))
return torch.sparse_coo_tensor(ni, nv, x.shape)
def create_weighted_sparse_tensor(train: pl.LazyFrame, tau: float) -> torch.Tensor:
uid_mapping = (
train.select("uid").unique().with_columns(pl.col("uid").rank(method="dense").alias("uid_idx") - 1).collect()
)
item_mapping = (
train.select("item_id")
.unique()
.with_columns(pl.col("item_id").rank(method="dense").alias("item_idx") - 1)
.collect()
)
processed = (
train.with_columns(pl.max("timestamp").over("uid").alias("max_timestamp"))
.with_columns((pl.col("max_timestamp") - pl.col("timestamp")).alias("delta"))
.with_columns((tau ** pl.col("delta")).alias("weight"))
.join(uid_mapping.lazy(), on="uid", how="inner")
.join(item_mapping.lazy(), on="item_id", how="inner")
)
coo_data = processed.group_by(["uid_idx", "item_idx"]).agg(pl.sum("weight").alias("total_weight")).collect()
indices = torch.concat([coo_data["uid_idx"].to_torch()[None, :], coo_data["item_idx"].to_torch()[None, :]], dim=0)
values = torch.tensor(coo_data["total_weight"].to_numpy(), dtype=torch.float)
return eliminate_zeros(
torch.sparse_coo_tensor(
indices=indices, values=values, size=(uid_mapping["uid_idx"].max() + 1, item_mapping["item_idx"].max() + 1)
)
)
def sparse_normalize(sparse_tensor: torch.Tensor, dim=0, eps=1e-12):
indices = sparse_tensor.coalesce().indices()
values = sparse_tensor.coalesce().values()
unique_dim_indices, inverse = torch.unique(indices[dim], return_inverse=True)
squared_values = values**2
sum_squared = torch.zeros_like(unique_dim_indices, dtype=torch.float32)
sum_squared.scatter_add_(0, inverse, squared_values)
norms = torch.sqrt(sum_squared + eps)
normalized_values = values / norms[inverse]
return torch.sparse_coo_tensor(indices, normalized_values, sparse_tensor.size())
def training(
train: pl.LazyFrame, hour: float, user_item: torch.Tensor, user_ids: torch.Tensor, device: str, decay: float = 0.9
) -> Embeddings:
tau = 0.0 if hour == 0 else decay ** (1 / 24 / 60 / 60 / (hour / 24))
user_item_with_tau = create_weighted_sparse_tensor(train, tau)
user_embeddings = (user_item_with_tau @ user_item.T).to_dense()
user_embeddings = torch.nn.functional.normalize(user_embeddings, dim=-1)
return Embeddings(user_ids, user_embeddings.to(device))
def evaluation(
train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str]
) -> list[dict[str, Any]]:
num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device)
unique_item_ids = (
train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device)
)
user_item = create_weighted_sparse_tensor(train, 1.0)
item_embeddings = sparse_normalize(user_item.T.to(device), dim=-1)
item_embeddings = Embeddings(unique_item_ids, item_embeddings)
targets = Targets.from_sequential(
val.group_by('uid', maintain_order=True).agg(pl.all().exclude('uid')).select(['uid', 'item_id']),
device,
)
hour2metrics = []
for hour in hours:
user_embeddings = training(
train=train,
hour=hour,
user_item=user_item,
user_ids=unique_user_ids,
device=device,
)
ranked = rank_items(
users=user_embeddings,
items=item_embeddings,
num_items=num_ranked_items,
batch_size=128,
)
del user_embeddings
gc.collect()
hour2metrics.append(calc_metrics(ranked, targets, metrics))
del unique_user_ids
del unique_item_ids
del item_embeddings
del targets
gc.collect()
return hour2metrics
def item_knn(
data_dir: str,
size: str,
interaction: str,
device: str,
hours: list[float],
validation_metric: str,
report_metrics: list[str],
) -> dict[str, Any]:
df = scan(data_dir, size, interaction)
# hyperopt by validation
train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
results = evaluation(train, val, device, hours, [validation_metric])
metric_name, k = validation_metric.split('@')
best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])]
print(f"FINAL HYPERPARAMS {best_hour=}")
# train final model
train, _, test = preprocess(df, interaction, val_size=0)
return evaluation(train, test, device, [best_hour], report_metrics)[0]
if __name__ == "__main__":
main()