|
import logging |
|
from dataclasses import dataclass, field |
|
from functools import cached_property |
|
from typing import Dict, List |
|
|
|
import numpy as np |
|
import polars as pl |
|
import torch |
|
|
|
from yambda.constants import Constants |
|
from yambda.processing import timesplit |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class Data: |
|
train: pl.LazyFrame |
|
validation: pl.LazyFrame | None |
|
test: pl.LazyFrame |
|
item_id_to_idx: dict[int, int] |
|
|
|
_train_user_ids: torch.Tensor | None = field(init=False, default=None) |
|
|
|
@property |
|
def num_items(self): |
|
return len(self.item_id_to_idx) |
|
|
|
@cached_property |
|
def num_train_users(self): |
|
return self.train.select(pl.len()).collect(engine="streaming").item() |
|
|
|
def train_user_ids(self, device): |
|
if self._train_user_ids is None or self._train_user_ids.device != device: |
|
self._train_user_ids = self.train.select('uid').collect(engine="streaming")['uid'].to_torch().to(device) |
|
return self._train_user_ids |
|
|
|
|
|
def preprocess(df: pl.LazyFrame, interaction: str, val_size=Constants.VAL_SIZE, max_seq_len: int = 200) -> Data: |
|
""" |
|
Preprocesses raw interaction data for recommendation system modeling. |
|
|
|
Args: |
|
df (pl.LazyFrame): Raw input data containing user interaction sequences |
|
interaction (str): Type of interaction to process. Must be either 'likes' or 'listens'. |
|
val_size (float): Proportion of data to use for validation (default: from Constants) |
|
|
|
Returns: |
|
Data: Named tuple containing: |
|
- train (pl.LazyFrame): Training data |
|
- val (pl.LazyFrame): Validation data |
|
- test (pl.LazyFrame): Test data |
|
- item_id_to_idx (dict): Mapping from original item IDs to model indices |
|
|
|
Note: |
|
- For 'listens' interactions, uses strict engagement threshold |
|
- Item indices start at 1 to reserve 0 for padding/masking |
|
""" |
|
if interaction == 'listens': |
|
df = df.select( |
|
'uid', |
|
pl.col('item_id', 'timestamp').list.gather( |
|
pl.col('played_ratio_pct').list.eval(pl.arg_where(pl.element() >= Constants.TRACK_LISTEN_THRESHOLD)) |
|
), |
|
).filter(pl.col('item_id').list.len() > 0) |
|
|
|
unique_item_ids = ( |
|
df.select(pl.col("item_id").explode().unique().sort()).collect(engine="streaming")["item_id"].to_list() |
|
) |
|
|
|
item_id_to_idx = {int(item_id): i + 1 for i, item_id in enumerate(unique_item_ids)} |
|
|
|
train, val, test = timesplit.sequential_split_train_val_test( |
|
df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP, drop_non_train_items=False |
|
) |
|
|
|
def replace_strict(df): |
|
return ( |
|
df.select( |
|
pl.col("item_id").list.eval(pl.element().replace_strict(item_id_to_idx)), |
|
pl.all().exclude("item_id"), |
|
) |
|
.collect(engine="streaming") |
|
.lazy() |
|
) |
|
|
|
|
|
train = train.select('uid', pl.all().exclude('uid').list.slice(-max_seq_len, max_seq_len)) |
|
train = replace_strict(train) |
|
|
|
if val is not None: |
|
val = replace_strict(val) |
|
|
|
test = replace_strict(test) |
|
|
|
return Data(train, val, test, item_id_to_idx) |
|
|
|
|
|
class TrainDataset: |
|
def __init__(self, dataset: pl.DataFrame, num_items: int, max_seq_len: int): |
|
self._dataset = dataset |
|
self._num_items = num_items |
|
self._max_seq_len = max_seq_len |
|
|
|
@property |
|
def dataset(self) -> pl.DataFrame: |
|
return self._dataset |
|
|
|
def __len__(self) -> int: |
|
return len(self._dataset) |
|
|
|
def __getitem__(self, index: int) -> Dict[str, List[int] | int]: |
|
sample = self._dataset.row(index, named=True) |
|
|
|
item_sequence = sample['item_id'][:-1][-self._max_seq_len :] |
|
positive_sequence = sample['item_id'][1:][-self._max_seq_len :] |
|
negative_sequence = np.random.randint(1, self._num_items + 1, size=(len(item_sequence),)).tolist() |
|
|
|
return { |
|
'user.ids': [sample['uid']], |
|
'user.length': 1, |
|
'item.ids': item_sequence, |
|
'item.length': len(item_sequence), |
|
'positive.ids': positive_sequence, |
|
'positive.length': len(positive_sequence), |
|
'negative.ids': negative_sequence, |
|
'negative.length': len(negative_sequence), |
|
} |
|
|
|
|
|
class EvalDataset: |
|
def __init__(self, dataset: pl.DataFrame, max_seq_len: int): |
|
self._dataset = dataset |
|
self._max_seq_len = max_seq_len |
|
|
|
@property |
|
def dataset(self) -> pl.DataFrame: |
|
return self._dataset |
|
|
|
def __len__(self) -> int: |
|
return len(self._dataset) |
|
|
|
def __getitem__(self, index: int) -> Dict[str, List[int] | int]: |
|
sample = self._dataset.row(index, named=True) |
|
|
|
item_sequence = sample['item_id_train'][-self._max_seq_len :] |
|
next_items = sample['item_id_valid'] |
|
|
|
return { |
|
'user.ids': [sample['uid']], |
|
'user.length': 1, |
|
'item.ids': item_sequence, |
|
'item.length': len(item_sequence), |
|
'labels.ids': next_items, |
|
'labels.length': len(next_items), |
|
} |
|
|
|
|
|
def collate_fn(batch: List[Dict]) -> Dict[str, torch.Tensor]: |
|
""" |
|
Collates a batch of samples into batched tensors suitable for model input. |
|
|
|
This function processes a list of dictionaries, each containing keys like '{prefix}.ids' |
|
and '{prefix}.length' (the length of the sequence for that prefix). For each such prefix, it: |
|
- Concatenates all '{prefix}.ids' lists from the batch into a single flat list. |
|
- Collects all '{prefix}.length' values into a list. |
|
- Converts the resulting lists into torch.LongTensor objects. |
|
|
|
Args: |
|
batch (List[Dict]): List of sample dictionaries. Each sample must contain keys of the form |
|
'{prefix}.ids' (list of ints) and '{prefix}.length' (int). |
|
|
|
Returns: |
|
Dict[str, torch.Tensor]: Dictionary with keys '{prefix}.ids' and '{prefix}.length' for each prefix, |
|
where values are 1D torch.LongTensor objects suitable for model input. |
|
""" |
|
processed_batch = {} |
|
for key in batch[0].keys(): |
|
if key.endswith('.ids'): |
|
prefix = key.split('.')[0] |
|
assert '{}.length'.format(prefix) in batch[0] |
|
|
|
processed_batch[f'{prefix}.ids'] = [] |
|
processed_batch[f'{prefix}.length'] = [] |
|
|
|
for sample in batch: |
|
processed_batch[f'{prefix}.ids'].extend(sample[f'{prefix}.ids']) |
|
processed_batch[f'{prefix}.length'].append(sample[f'{prefix}.length']) |
|
|
|
for part, values in processed_batch.items(): |
|
processed_batch[part] = torch.tensor(values, dtype=torch.long) |
|
|
|
return processed_batch |
|
|